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QUASI-OPTIMAL NONCONFORMING APPROXIMATION OF
ELLIPTIC PDES WITH CONTRASTED COEFFICIENTS AND H*",
r >0, REGULARITY"

ALEXANDRE ERNT AND JEAN-LUC GUERMOND}

Abstract. In this paper, we investigate the approximation of a diffusion model problem with
contrasted diffusivity for various nonconforming approximation methods. The essential difficulty is
that the Sobolev smoothness index of the exact solution may be just barely larger than 1. The lack
of smoothness is handled by giving a weak meaning to the normal derivative of the exact solution at
the mesh faces. We derive robust and quasi-optimal error estimates. Quasi-optimality means that
the approximation error is bounded, up to a generic constant, by the best-approximation error in the
discrete trial space, and robustness means that the generic constant is independent of the diffusivity
contrast. The error estimates use a mesh-dependent norm that is equivalent, at the discrete level, to
the energy norm and that remains bounded as long as the exact solution has a Sobolev index strictly
larger than 1. Finally, we briefly show how the analysis can be extended to the Maxwell’s equations.

Key words. Finite elements, Nonconforming methods, Error estimates, Minimal regularity,
Nitsche method, Boundary penalty, Elliptic equations, Maxwell’s equations.

AMS subject classifications. 35J25, 656N15, 65N30
This article is dedicated to the memory of Christine Bernardi.

1. Introduction. The objective of the present paper is to revisit and unify
the error analysis of various nonconforming approximation techniques applied to a
diffusion model problem with contrasted diffusivity. We also briefly show how to
extend the analysis to Maxwell’s equations.

1.1. Content of the paper. The nonconforming techniques we have in mind
are Crouzeix—Raviart finite elements [14], Nitsche’s boundary penalty method [32],
the interior penalty discontinuous Galerkin (IPDG) method [2], and the hybrid high-
order (HHO) methods [16, 18] which are closely related to hybridizable discontinuous
Galerkin methods [13]. The main difficulty in the error analysis is that owing to
the contrast in the diffusivity, the Sobolev smoothness index of the exact solution
is barely larger than one. This makes the estimation of the consistency error in-
curred by nonconforming approximation techniques particularly challenging since the
normal derivative of the solution at the mesh faces is not integrable and it is thus
not straightforward to give a reasonable meaning to this quantity on each mesh face
independently.

The main goal of the present paper is to establish robust and quasi-optimal error
estimates by using a mesh-dependent norm that remains bounded as long as the exact
solution has a Sobolev smoothness index strictly larger than 1. By quasi-optimality,
we mean that the approximation error measured in the augmented norm is bounded,
up to a generic constant, by the best-approximation error of the exact solution mea-
sured, in the same augmented norm, by members of the discrete trial space. In this
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paper, we say that an error estimate is robust when the generic constant is independent
of the contrast in the diffusivity. This property is important in practice since other-
wise, the error estimates become meaningless when the diffusion coefficient is highly
contrasted. We emphasize that quasi-optimal error estimates are more informative
than the more traditional asymptotic error estimates, which bound the approximation
error by terms that optimally decay with the mesh size. Indeed, the former cover the
whole computational range whereas the latter only cover the asymptotic range. One
key novelty herein is the introduction of a weighted bilinear form that accounts for
the default of consistency in all the cases (see (3.12)).

The paper is organized as follows. The model problem under consideration and
the discrete setting are introduced in §2. The weighted bilinear form mentioned above
which accounts for the consistency default at the mesh interfaces and boundary faces
is defined in §3. The key results in this section are Lemma 3.3 and Lemma 3.5.
We collect in §4 the error analyses of the approximation of the model problem with
the Crouzeix—Raviart approximation, Nitsche’s boundary penalty method, the IPDG
approximation, and the HHO approximation. To avoid invoking Strang’s second
lemma, we introduce in §4.1 a linear form §;, that measures consistency but does not
need the exact solution to be inserted into the arguments of the discrete bilinear form
at hand. The weighted bilinear form (3.12) turns out to be an essential tool to deduce
robust estimates of the norm of the consistency form &, for all the nonconforming
methods considered in §4. Combined with stability, this bound on the consistency
error leads to robust and quasi-optimal error estimates formulated using the above
mesh-dependent norm. Another salient feature is that the source term is assumed to
be only in L(D), where ¢ is such that L?(D) is continuously embedded in H (D) :=
(H}(D))'; specifically, this means that ¢ > 2, := 22+7dd > 1 (here, d > 2 is the space
dimension).

1.2. Literature overview. Let us put our work in perspective with the liter-
ature. Perhaps a bit surprisingly, error estimates for nonconforming approximation
methods are rarely presented in a quasi-optimal form in the literature. A key step
toward achieving quasi-optimal error estimates has been achieved in Veeser and Zan-
otti [34, 35]. Therein, the approximation error and the best-approximation error are
both measured using the energy norm and the source term is assumed to be just in
the dual space H (D). However, at the time of this writing, this setting does not
yet cover robust estimates. In the present work, we proceed somewhat differently
to obtain robust quasi-optimal error estimates. This is done at the following price:
(i) We invoke augmented norms that are stronger than the energy norm, but are,
however, compatible with the elliptic regularity theory; (ii) We only consider source
terms in the Lebesgue spaces LI(D) with ¢ > 2, := 22_;1 5 = 1, and not in dual Sobolev
spaces such as H~!(D); notice though that this regularity is weaker than assum-
ing that source terms are in L?(D), as usually done in the literature, and L4(D) is
continuously embedded in H=1(D) := (H (D))’ for all ¢ > 2,.

The traditional approach to tackle the error analysis for nonconforming approxi-
mation techniques are Strang’s lemmas. However, an important shortcoming of this
approach whenever the Sobolev smoothness index of the exact solution is barely larger
than one, is that it is not possible to insert the exact solution in the first argument of
the discrete bilinear form. To do so, one needs to assume some additional regularity
on the exact solution which often goes beyond the regularity provided by the prob-
lem at hand. This approach has nevertheless been used by many authors to analyze
discontinuous Galerkin (dG) methods (see, e.g., [15, 21] and the references therein).
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One way to overcome the limitations of Strang’s Second Lemma has been proposed
by Gudi [29]. The key idea consists of introducing a mapping that transforms the
discrete test functions into elements of the exact test space. An important property
of this operator is that its kernel is composed of discrete (test) functions that are
only needed to “stabilize” the discrete bilinear form, but do not contribute to the
interpolation properties of the approximation setting. We refer to this mapping as
trimming operator. The notion of trimming operator has been used in Li and Mao
[31] to perform the analysis of the Crouzeix—Raviart approximation of the diffusion
problem and source term in L?(D) (see e.g., the definitions (5)—(7) and the identity
(11) therein). The trimmed error estimate (which is sometimes referred to as “medius
analysis” in the literature) has been applied in Gudi [29] to the IPDG approximation
of the Laplace equation with a source term in L?(D) and to a fourth-order problem;
it has been applied to the Stokes equations in Badia et al. [3] and to the linear elastic-
ity equations in Carstensen and Schedensack [12]. One problem with methods using
the trimming operator, though, is that they require constructing H'-conforming dis-
crete quasi-approximation operators that do not account for the diffusivity contrast.
In general, this entails error estimates with constants that depend on the diffusiv-
ity contrast, i.e., these error estimates are not robust. One specific situation where
robustness can be achieved though is under the ad hoc assumption of monotonicity
around vertices for the diffusivity in the two-dimensional setting; see Bernardi and
Verfurth [6, Hyp. 2.7].

It is shown in [25] in the case of Nitsche’s boundary penalty method that the
dependency of the constants with respect to the diffusivity contrast can be eliminated
by introducing an alternative technique based on mollification and an extension of the
notion of the normal derivative. The objective of the present paper is to revisit and
extend [25]. The analysis presented here is significantly simplified and modified to in-
clude the Crouzeix—Raviart approximation, the IPDG approximation, and the HHO
approximation. Omne key novelty is the introduction of the weighted bilinear form
(3.12) that accounts for the consistency default in all the cases. The present analysis
hinges on two key ideas which are now part of the numerical analysis folklore. To
the best of our knowledge, these ideas have been introduced/used in Lemma 4.7 in
Amrouche et al. [1], Lemma 2.3 and Corollary 3.1 in Bernardi and Hecht [5] and
Lemma 8.2 in Buffa and Perugia [9]. However, as we believe that detailed and con-
vincing proofs of these results are missing in the literature, another purpose of this
paper is to fill this gap.

The first key idea is a face-to-cell lifting operator. Such an operator is mentioned
in Lemma 4.7 in [1], and its construction is briefly discussed. The weights used in
the norms therein, though, cannot give estimates that are uniform with respect to
the mesh size. This operator is also mentioned in Lemma 2.3 in [5]. The authors
claim that the face-to-cell operator has been constructed in Bernardi and Girault [4,
Eq. (5.1)], which is unclear to us. A similar operator is invoked in Lemma 8.2 in
[9]. The operator therein is constructed on the reference element K and its stability
properties are proved in the Sobolev scale (H*® (I? ))se(0,1)- The authors invoke also
the Sobolev scale (H*(K))sc(0,1) for arbitrary cells K in a mesh 7, belonging the
shape-regular sequence (73 )ne. The norm equipping H*(K) is not explicitly defined
therein, which leads to one statement that looks questionable (see e.g., Eq. (8.11)
therein; a fix has been proposed in [8, Lem. A.3]). In particular, it is unclear how
to keep track of constants that depend on K when one uses the real interpolation
method to define H*(K). In order to unambiguously clarify the status of this face-
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to-cell operator, which is essential for our analysis, and without claiming originality,
we give (recall) all the details of its construction in the proof of Lemma 3.1. As in [1,
Lem. 4.7], we use the Sobolev—Slobodeckij norm to equip the fractional-order Sobolev
spaces; this allows us to track all the constants easily.

The second key idea introduced in the papers referred to above is that of extending
the notion of face integrals by using a duality argument together with the face-to-cell
operator. The argument is deployed in Corollary 3.3 in [5], but the sketch of the
proof has typos (e.g., an average has to be removed to make the inverse estimate in
step (1) correct). This corollary is quoted and invoked in Cai et al. [11, Lem. 2.1];
it is the cornerstone of the argumentation therein. This argument is also deployed
in Lemma 8.2 in [9]. A similar argument is invoked in [1, Lem. 4.7] in a slightly
different context. In all the cases one must use a density argument to complete the
proofs, but this argument is omitted and implicitly assumed to hold true in all the
above references. We fill this gap in Lemma 3.3 and provide the full argumentation in
the proof, including the passage to the limit by density. The proof invokes mollifiers
that commute with differential operators and behave properly at the boundary of the
domain; these tools have been recently revisited in [22] elaborating on seminal ideas
from Schéberl [33].

2. Preliminaries. In this section, we introduce the model problem and the
discrete setting for the approximation.

2.1. Model problem. Let D be a Lipschitz domain in R?, which we assume for
simplicity to be a polyhedron. We consider the following scalar model problem:

(2.1) —V-(A\Vu)=f inD, v8(u) =g on 0D,

where 48 : HY(D) — H=(dD) is the usual trace map (the superscript & refers to
the gradient), and g € Hz(AD) is the Dirichlet boundary data. The scalar-valued
diffusion coefficient A € L*°(D) is assumed to be uniformly bounded from below away
from zero. For simplicity, we also assume that A is piecewise constant in D, i.e., there is
a partition of D into M disjoint Lipschitz polyhedra Dy, -+, Dps s.t. A|p, is a positive
real number for all ¢ € {1: M}. To formalize this structure, we set IT := {Dy,--- , Dy}
and A(IT) := {X € L>=(D) | A\|p, > 0, A|p,is constant, Vi € {1: M} }.

It is standard in the literature to assume that f € L?(D). We are going to relax
this hypothesis in this paper by only assuming that f € L9(D) with ¢ > 22+7dd' Note
that ¢ > 1 since d > 2. Note also that L(D) < H~'(D) since H}(D) < L7 (D)
with the convention that % + % = 1. Since 22+7dd < 2, we are going to assume without
loss of generality that ¢ < 2.

In the case of the homogeneous Dirichlet condition (g = 0), the weak formulation
of the model problem (2.1) is as follows:

(2.2) Find u € V := H}(D) such that
' a(u,w) =4Ll(w), YweV,

with the bilinear and linear forms

(2.3) a(v,w) ::/D)\Vv~dex, l(w) ::/wadx.

The bilinear form a is coercive in V' owing to the Poincaré-Steklov inequality, and it
is also bounded on V' xV owing to the Cauchy-Schwarz inequality. The linear form /¢
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is bounded on V since the Sobolev embedding theorem and Hélder’s inequality imply
2d

that [((w)| < [|fllzepyllwllpe(py < el fllLapyllwllmr(p). Note that ¢ > 757 is the
minimal integrability requirement on f for this boundedness property to hold true.
The above coercivity and boundedness properties combined with the Lax—Milgram
Lemma imply that (2.2) is well-posed. For the non-homogeneous Dirichlet boundary
condition, one invokes the surjectivity of the trace map & to infer the existence of a
lifting of g, say u, € H'(D) s.t. v8(uy) = g, and one decomposes the exact solution
as u = ug + ug where ug € H} (D) solves the weak problem (2.2) with ¢(w) replaced
by £y(w) = ¢(w) — a(ug,w). The weak formulation thus modified is well-posed since
{4 is bounded on Hj (D).

The notion of diffusive flux, which is defined as follows, will play an important
role in the paper:

(2.4) o(v) == -A\Vv € L*(D), Yve HY(D).

We use boldface notation to denote vector-valued functions and vectors in R%.

AssumMpPTION 2.1 (Elliptic regularity). We assume in the entire paper that for
allq € (%, 2], there is r > 0 so that for all f € LY(D) and all A € A(II), the unique
solution to (2.1) satisfies u € HT"(D). O

Assumption 2.1 is reasonable owing to the elliptic regularity theory (see Theo-
rem 3 in Jochmann [30], Lemma 3.2 in Bonito et al. [7] or Bernardi and Verfiirth
[6]). In general, r € (0, 1] when u is supported on at least two contiguous subdomains
where \ takes different values; otherwise the normal derivative of u would be continu-
ous across the interface separating the two subdomains in question, and owing to the
discontinuity of A, the normal component of the diffusive flux o (u) would be discon-
tinuous across the interface, which would contradict the fact that o (u) has a weak
divergence. It is, however, possible that r > % when the exact solution is supported
on one subdomain only. If » > 1, we notice that one necessarily has f € L?(D) (since
fip: = A\p,(Au)p, for all i € {1:M}), i.e., it is legitimate to assume that ¢ = 2 if
r > 1. The paper focuses on the case r € (0, %]

LEMMA 2.2 (Exact solution). Assume that Assumption 2.1 holds true. Then,
there exists p > 2 so that, for all f € L1(D) and all A € A(IT), the unique solution to
(2.2) satisfies

(2.5) u € Vy:={ve H}(D)| o) e LP(D), V-a(v) € L1(D)}. O

Proof. The Sobolev embedding theorem implies that there is p > 2 s.t. H"(D) —

L?(D). Indeed, if 2r < d, we have H"(D) < L*(D) for all s € 2, 72%-] and we can
take p = 24~ > 2, whereas if 2r > d, we have H"(D) — H% (D) < L*(D) for all

s € [2,00), and we can take any p > 2. Since u € H'*"(D), the above argument

implies that Vu € LP(D), and since A is piecewise constant and o(u) = —AVu,
we have o(u) € LP(D). Moreover, since V-o(u) = f and f € LY(D), we have
V-o(u) € LYD,). d

Remark 2.3 (Extensions). One could also consider lower-order terms in (2.1),
e.g., —V-(AVu)+B-Vutpu = f with 3 € W1>°(D) and p € L*(D) s.t. p—2V-3 >0
a.e. in D (for simplicity). The error analysis presented in this paper still applies pro-
vided the lower-order terms are not too large, e.g., A > max(h|| 8| L (q), 2*||il| L (D)),
where h denotes the mesh-size. Standard stabilization techniques have to be invoked
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if the lower-order terms are large when compared to the second-order diffusion op-
erator. Furthermore, the error analysis can be extended to account for a piecewise
constant tensor-valued diffusivity d; then, the various constants in the error estimate
depend on the square-root of the anisotropy ratios measuring the contrast between
the largest and the smallest eigenvalue of d in each subdomain D;. Finally, one can
consider that the diffusion tensor d is piecewise smooth instead of being piecewise
constant; a reasonable requirement is that d|p, is Lipschitz for all i € {1: M}. This
last extension is, however, less straightforward because the discrete diffusive flux is
no longer a piecewise polynomial function. O

2.2. Discrete setting. We introduce in this section the discrete setting that we
are going to use to approximate the solution to (2.2). Let T be a mesh from a shape-
regular sequence (Tp)pep. Here, H is a countable set with 0 as unique accumulation
point. A generic mesh cell is denoted K € T, and is conventionally assumed to be an
open set. We also assume that 7, covers each of the subdomains {D; };c(1: 1} exactly

so that A\g = Ak is constant for all K € Tp,. Let (I?,ﬁ, E’) be the reference finite

element; we assume that Py 4 C Pc WkH’OO(I/(\') for some k > 1. Here, Py, 4 is the
(real) vector space composed of the d-variate polynomials of degree at most k. For all
K e Ty, let Tk : K — K be the geometric mapping and let ¢% (v) = v o Tk be the
pullback by the geometric mapping. We introduce the broken finite element space

(2.6) PY(Ty) = {vn € L®(D) | vpx € Pk, VK € Tp},

where Px = (wi)’l(ﬁ) C Wktleo(K). For any function vy, € PP(Th), we define
the broken diffusive flux o(vs) € L?(D) by setting o (vs)|x = —Ax V(vy i) for all
K € Tp. Let WHP(Ty,) := {v € L?(D) | V(v k) € LP(K), VK € T} and let V, :
W2(T,) — L*(D) be the broken gradient operator defined by setting (Vjv)x =
V(vk) for all K € Tj, and all v € W?(T;,). Then, we have o (vj) = —AV 0.

For any cell K € Ty, ng denotes the unit normal vector on K pointing outward.
The symbol F; denotes the collection of the mesh interfaces and ]—',‘3 denotes the
collection of the mesh faces at the boundary of D. We assume that 7}, is oriented in
a generation-compatible way, and for each mesh face F' € F; U .7-",? , np denotes the
unit vector orienting F'. For all F' € Fp, the symbols K, K, € T;, denote the two cells
s.t. F'= 0K;NJK, and the unit normal vector ng orienting F' points from K to K.,
ie, np = ng p = —ng, p. Forall F € Fp, let Tr be the collection of the one or
two mesh cells sharing F'. For all K € Ty, let Fx be the collection of the faces of K.
For all K € T, and all F' € Fk, let ex  := np-ngp = £1. The jump across I € Fj,
of any function v € W (Ty) is defined by setting [v]p(x) := vk, (&) — vk, (2) for
ae x € F. If Fe ]-'}?, this jump is conventionally defined as the trace on F, i.e.,
[v]r(x) == vk, () where FF = 0K; N 0D. We omit the subscript r in the jump
whenever the context is unambiguous.

3. The bilinear form n;. In this section, we give a proper meaning to the
normal trace of the diffusive flux of the solution to (2.2) over each mesh face. The
material presented in §3.1 and §3.2 has been introduced in [25, §5.3] and is inspired
from Amrouche et al. [1, Lem. 4.7], Bernardi and Hecht [5, Cor 3.3], and Buffa and
Perugia [9, Lem. 8.2]; it is included here for the sake of completeness. The reader
familiar with these techniques is invited to jump to §3.3 where the weighted bilinear
form ny is introduced. This bilinear form is the main tool for the error analysis
presented in §4.
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3.1. Face-to-cell lifting operator. Let us first motivate our approach infor-
mally. Let K € 7T, be a mesh cell, let Fx be the collection of all the faces of K,
and let F € Fi be a face of K. Let v be a vector field defined on K. We are
looking for (mild) regularity requirements on the field v to give a meaning to the
quantity [,.(v-ng)dds, where ¢ is a smooth function on F (e.g., a polynomial func-
tion). It is well established that it is possible to give a weak meaning in H~ 2 (9K)
to the normal trace of v on K by means of an integration by parts formula if
v € H(div; K) := {v € L*(K) | V-v € L?>(K)}. In this situation, one can define the
normal trace 73, (v) € H~2(0K) by setting

(3.1) (ke (0), Whox == /

K

(v-V(w) + (Vo)) da.

for all ¢ € H3 (OK), where w(y) € H'(K) is a lifting of ¢, i.e., ¥4, (w(e)) = ¢, and
Vot HY(K) — Hz(OK) is the trace map locally in K. Then, one has Y (v) =
v|gk MKk Whenever v is smooth, e.g., if v € H(div; K) N C°(K). However, the above
meaning is too weak for our purpose because we need to localize the action of the
normal trace to functions ¢ only defined on a face F, i.e., ¢ may not be defined over
the whole boundary K. The key to achieve this is to extend ¢ by zero from F' to
OK. This obliges us to change the functional setting since the extended function is
no longer in H %(6[( ). In what follows, we are going to use that the zero-extension
of a smooth function defined on a face F of dK is in W= t1(9K) if ¢t € [1,2), i.e.,
t(1 — 1) < 1. Let us now present a rigorous construction.
Let p, g be two real numbers such that

2d

3.2 2 =
(3.2) p=2 425y

Notice that ¢ > 1 since d > 2. Let ¢ € (2,p] be such that ¢ > QQTdd; this is indeed
2d

possible since p > 2, ¢ > S1d and the function z — szd is increasing over R,.
Lemma 3.1 shows that there exists a bounded lifting operator

(3.3) LE  we? (F) — wh(K),

with conjugate number ¢ s.t. % + é =1, so that for any ¢ € Wé’g,(F), LE () is a
lifting of the zero-extension of ¢ to dK, i.e.,

(3.4) Vo (LE (@) ormr =0, B (LE(D)r = 9.

Notice that the domain of LE is of the form W1~ (F) with ¢ := ¢’ < 2, which is
consistent with the above observation regarding the zero-extension to 0K of functions
defined on F'. We also observe that

(3:5) Li(¢) € WHP(K) N L7 (K),
with conjugate numbers p/, ¢’ s.t. % + ; =1, % + % = 1. Indeed, L (¢) € W' (K)
just follows from p’ < o (i.e., 0 < p), whereas LE(¢) € LY (K) follows from

Whe'(K) < LY (K) owing to the Sobolev embedding theorem (since ¢ < d"_l‘z,,

ascanbeveriﬁedfromd22>g’andﬁ—ézl—(%+é)Sl—éz%because

q> Q"Tdd) We now state our main result on the lifting operator L.



8 A. ERN, J.-L. GUERMOND

LEMMA 3.1 (Face—to—cell lifting).  Let p and q satisfy (3.2). Let o € (2,p] be
such that q > +d For all K € Ty, and all F € Fy, there exists a lifting operator

LE . Wee (F (F) — WY (K) satisfying (3.4). Moreover, there exists ¢ so that for all
heH, al K €Ty, and oll F € Fg, the following bound holds true:

7K g K -5t
(3.6) hilLF D) lwror ey + hxe " ILF (D)l (i) < chg” “lloll 1

1/ i
for all ¢ € We? (F) with the norm ||¢|| =@l e (ry + hfy|¢>|W%79/ . O

we? (F) (F)
Proof. (1) The face-to-cell lifting operator LE is constructed from a lifting op-

erator L%{ on the reference cell. Let K be the reference cell and let F be one of
its faces. Let us define the operator L;:( : W%’@,(ﬁ) — wte (l?) For any func-

tion ¥ € Wwed (ﬁ), let {/)v denote the zero-extension of v to oK. Owing to Gris-
vard [28, Thm. 1.4.2.4, Cor. 1.4.4.5], ¢ is in W+ ¢ (9K) since £ = ﬁ <1 (ie.,

0 > 2), and we have ||¢||W%,Q,(8A < 1||w|| L' ) with the norm ||w|| L gy

||¢HLQ,(13) +€R|1/)\ N where £z = 11is a length scale associated with K. Then we

w
use the surjectivity of the trace map 'yf? : WLQ/(I/(\') S Wed (BI?) (see Gagliardo [27

Thin. 1.1)) to define L (1) € WL@’(I?) 5.t 7% (LIS(1/))) = ¢ and |LE (@) | yre (z) <
G T e 07

tion, we have ’ygg(Lg(dz))lﬁ =1 and 'yaI?(LIFf(@/J))laK\F =0.
(2) We define the lifting operator L¥ : We? (F) — Whe'(K) by setting

ie., ||LK( )le o A\WH o By’ with ¢ = ¢1¢2. By construc-

(37)  LE(@)(x) = LE(6o Ty p) (T (x)), Vo e K, Voe W (F),

where Ty : K — K is the geometric mapping and F = Tgl(F). By definition, if

x € F, then 7 := T\ (zx )EFandTKlF( Z) = x, so that

Vi (LE6)(@) = 12 (LE (60 Ty 1)) (@) = 6(Ty (@) = d(a),

W)

whereas if ¢ € 0K \ F, then Z € 9K \ F, so that 'ng(

above argument shows that (3.4) holds true.
(3) It remains to prove (3.6). Let us first bound |LE(®)|y1.. (- Notice that

the definition of L% is equivalent to LE(¢) o Tk (Z) = LK(¢ o Ty 7)(&); that is,

V5(LE(9)) == LI?<’(/JF(¢>) where 9%, is the pullback by Tk, and 9% is the pullback
by T K| P Denotmg by Jx the Jacobian of the geometric mapping Tk, we infer that

(60 Ty, 2))(@) = 0. The

1
Y

ILE @)lwrw () < el el det @I |LE W50y 7y
< Ix el det (T ILE (WE(0)) lyor ()

< Ix el det(JK)IFHwF(ﬂé)IIW

where the first inequality follows from the chain rule, the second is a consequence of
o > p' (since ¢ < p), and the third follows from the stability of the reference lifting
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operator L;:( . Using now the chain rule and the shape-regularity of the mesh sequence,
i g —or
we infer that [VE(O)], 3.0 5 < el det@e)l ¥ ol 3.

of the mapping TK‘ R F>F. Combining these bounds, we obtain

, where J g is the Jacobian

’

ILE (D)l () < el ezl det(T ) 7 | det(Tp) L e

A=)
S c hK ||¢||W%,Q’(F)7

where the second bound follows from the shape-regularity of the mesh sequence.
This proves the bound on |L§(¢))|W1,p/(m in (3.6). The proof of the bound on

HLﬁf((b)HLq/(K) uses similar arguments together with W€ (K) < L9 (K) owing to

the Sobolev embedding theorem and ¢’ < dg_/ ‘Z), (as already shown above). |

3.2. Face localization of the normal diffusive flux. Let K € 7; be a mesh
cell, F € Fk be a face of K, and consider the following functional space:

(3.8) SYK):={r e L’(K) | V-T € LYK)},

equipped with the following dimensionally-consistent norm:
L)

(3.9) [T lsaxy = I TllLr () + Py V-7 Lax)-

With the lifting operator L in hand, we now define the normal trace on the face F' of
K of any field 7 € S4(K) to be the linear form in (W%’Ql (F))" denoted by (T-nk)|p

and whose action on any function ¢ € W%’Q,(F) is

(3.10) (T e B = /

(7-VLE@©) + (V) LE(9)) da.
K

Here, (-,-)r denotes the duality pairing between (W%’Ql (F)) and e (F). Notice
that the right-hand side of (3.10) is well-defined owing to Holder’s inequality and (3.6).
Owing to (3.4), we readily verify that we have indeed defined an extension of the
normal trace since we have ((7-nk)p,¢)r = [n(T-nK)¢dds whenever the field 7 is
smooth. Let us now derive an important bound on the linear form (7-ng) p when
it acts on a function from the space Pr, which we define to be composed of the
restrictions to F' of the functions in Px. Note that Pp C W%’@,(F).

LEMMA 3.2 (Bound on normal component). Let p and q satisfy (3.2). There
exists ¢ so that the following holds true:

d(3-%) -1
(3.11) ((TnK)ip, on)rl < chp® "\ Tllsaxyhp? [|0nll L2 (F)s
or all T € , a nE L, a € Jh, a € SK, and a c .
for all SYK), all ¢ P, WK €Ty, all F € F dallh et O

Proof. A direct consequence of (3.10), Holder’s inequality, and Lemma 3.1 is that

+d(3—3)
© Plrllsaaolldll 5

)

[{((TnK)|p @) F| < chy ")

1 . i
for all ¢ € We¢ (F). Recalling that Hd)HW%’Q/(F) = ||l e () + hl?‘(/)'W%‘Q’(F)

shape-regularity of the mesh sequence implies that the following inverse inequality
(d=1)(3-3)

wh (o) <chp * ?"||énllL2(#) holds true for all ¢, € Pp (note that i- % =

). The estimate (3.11) follows readily. d

, the
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3.3. Definition of ny and key identities. Let us consider the functional space
Vs defined in (2.5), where we recall that the real numbers p and ¢ involved in the
definition of Vg satisfy (3.2) and ¢ < 2. For all v € V;, Lemma 2.2 shows that
o(v)|x € SYK) for all K € Tj, and Lemma 3.2 implies that it is possible to give a
meaning by duality to the normal component of & (v)|x on all the faces of K separately.
Moreover, since we have set o (vy)|x := —Ax V(vp k) for all vy, € PP(T3), and since
we have P C WHT1°(K) with k > 1, we infer that o (vs)|x € S4(K) as well. Thus,
o(v)x € SYK) for all v € (Vs + PP(Ty)). Let us now introduce the bilinear form
ng : (Vs + PP(Th)) x PP(Th) — R defined as follows:

(3.12) ny(v, wp) Z Z ex, FOr F((o(v)| k1K) Fs [wh]) F,

FeFn KETF

where the weights 0k r are still unspecified but are assumed to satisfy
(3.13) 9}(!71:',91(“17 S [0, 1] and 9K17F+0KT,F:17 VFGI‘}CL),

whereas for all F' € .7-',? with F' = 0K; N 90D, we set Ok, p := 1, O, =: 0. We
will see in (3.19) below how these weights must depend on the diffusion coefficient
to get a robust boundedness estimate on ny. The definition (3.12) is meaningful
since [wp]r € Pr C W%79/(F) for all w, € PP(T,). The purpose of the factor
€K, F = MpNg|pin (3.12) is to handle the relative orientation of nyx and ng. For all
v € WH(Ty), we define weighted averages as follows for a.e. x € F € Fp:

(314&) {’U}F,g(x) = eKz,FU\Kl (.’1}) + HKT,FU\KT(x)a
(3.14b) {U}F,§($) = HKT,FU|KZ (il?) + HKI,FU\KT (:B)
Whenever Ok, p =0k, r = %, these two definitions coincide with the usual arithmetic
average. On boundary faces F' € .7-',?, we set {v}ro(x) := vk, (), and {U}F,g(il:) =0

for a.e. © € F. We omit the subscript p whenever the context is unambiguous. The
following identity will be useful:

(3.15) [vw] = {v}e[w] + [v]{w}s.
The following lemma is fundamental to understand the role that the bilinear form

ny will play in the next section in the analysis of various nonconforming approximation
methods.

LEMMA 3.3 (Identities for ng). The following holds true for any choice of weights
{0k FYrer, Kete and for all wy, € PP(Ty), all vy, € PP(Th), and all v € Vy:

(3.16a) ng(vp, w {o(v)}ompws] ds
1 (Vn, wh) Feﬁ/ h) o TE [Wh
(3.16b) (v, wp) Z / v)-Vwp g + (V-o(v ))wh‘K) dz. O
KeTn

Proof. (1) Proof of (3.16a). Let vy, wy, € PP(Tp). Since the restriction of o (vy,)
to each mesh cell is smooth, and since the restriction of L¥ ([wy]) to K is nonzero
only on the face F' € Fi where it coincides with [wy,], we have

(o (vn) e mic) s [eon e = /K (o) s VLE (Lwnl) + (T-0(on) o) LE ([wn) ) do
:/ a(yh)lK.nKLg([[wh]])ds=/ o (on)y e [on] ds
oK F
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where we used the divergence formula in K. Therefore, after using the definitions of
ex,r and of Ok r, we obtain

4 (Vn, wp) Z Z 6KF9KF/ o(vp)|x nk[wp] ds

FeF, KeTr

Z /{0' vp) Yomp[ws] ds.

FeFn
(2) Proof of (3.16b). Let v € Vi and wy, € PP(Ts). Let K¢ : LY(D) — C°°(D) and

K2 : LY (D) — C*(D) be the mollification operators introduced in [22, §3.2]. These
two operators satisfy the following key commuting property:

(3.17) V-(K§(7)) = K3(V-1),

for all 7 € LY(D) s.t. V-7 € L1(D). It is important to realize that this property can
be applied to o (v) for all v € V; since V-o(v) € L'(D) by definition of V. (Note
that this property cannot be applied to o (vj,) with v, € PP(Ty), since the normal
component of o(vy,) is in general discontinuous across the mesh interfaces, i.e., o(vy,)
does not have a weak divergence.) Let us consider the mollified bilinear form

ngs(v,wp) == Y Y expli p((KS(0(0) - ni) ey [wi]) p-

FeFn, KETr

Owing to the commuting property (3.17), we infer that

(K§ (o) 1k 1K) [wi]) p =
| (k3oL (D) + K5 ()L (fon]) ) da

Then Theorem 3.3 from [22] implies that

lim [ (K3(e(0)-LE ([wa]) + K3(V-o @) LE ([wn]) ) do =

d—0 K
/K (e()-LE (Lwn) + (V-o @) LE ([wn]) ) do = (@) enic)is [wnl) -
Summing over the mesh faces and the associated mesh cells, we infer that

li = .
lim ngs (v, wp) = ng(v, wp)

Moreover, since the mollified function K§(o(v)) is smooth, by repeating the calcula-
tion done in Step (1), we also have

’rlm; v, wh Z /{’Cd }9 nF[[wh]]

FeFy

Using the identity (3.15) with [K$(o(v))]'nr = 0 for all F € Fy, recalling that
[wiK§ (o (v)] = wnK§(o(v))p for all F e F2 and using the divergence formula in
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K and the commuting property (3.17), we obtain

ngs (v, wp) Z /{ICd )}enplwy]ds + Z / [Kd (e (v)] nr{wn}sds

FEFn FeFy
= Z / ’LUhIC(; ’I’LF ds = Z ) anh\K ds
FeF, KeT, 6K
= / Ké(o ))-Vwp g + K (V-o(v ))wh|K) dz.
KeTn

Invoking again Theorem 3.3 from [22] leads to the assertion since

hm nﬁ(s v, W) Z / th|K + (V-o(v ))wh|K) dx.
KeTn 0

Remark 3.4 (Identity (3.16b)). The identity (3.16b) is the key tool to assert in
a weak sense that o(v)-n is continuous across the mesh interfaces without the need
to assume that v is smooth, say v € H'*"(D) with r > 1. O

We now establish an important boundedness estimate on the bilinear form 7.
Since o (v)|x € SY(K) for all K € T;, and all v € Vi + PP(Ty), we can equip the space
Vs + PP(T) with the seminorm

_1(,2d(3-%)
(318) P2, == > A& (hie * Do @)l + b
KeT,

2d(35 - 1)
VIV ) k) )

We notice that this seminorm is dimensionally-consistent with the classical energy-
norm defined as ) e 7 )\KHV’U|K||%2(K). Straightforward algebra shows that [v],, <

1
e, ? (5 Ny ||U( v)|lLr 0y + €p s _q)HV'U(v)”Lq(D)), for all v € Vg; here {p de-
notes a characteristic length of D. (For the first term, use Holder’s inequality and
> KeT, h$ < c|Q|, whereas for the second term, use that hx < ¢p and |lall;2(z) <
llall¢a(z) for any finite sequence (a;);cz since ¢ < 2.)

In order to get robust error estimates, one should avoid any dependency on the
ratio of the values taken by A in two adjacent subdomains. To avoid such depen-
dencies, we introduce the following diffusion-dependent weights for all F' € F} with
F =0K;NOK,:

AK,
Ak, + Ak,

Ak,

3.19 0 = —T
( ) KiF Ak, + Ak,

GK,.,F =

We also define

20K, MK,

Ak, + Ak,
Recall that we have already defined Ok, r := 1, 0k, r =: 0 for all F' € ]-",?. The

two properties we are going to use are that |Trp|Axfx r = Ap for all K € Tp, and
Ar < minge7. Ag. (Here, |Tr| denotes the cardinality of Tx.)

(3.20) Ap = if FeFp and \p:= Mg, if F € Fp.

LEMMA 3.5 (Boundedness of ny). Let the weights {0k r}reT, and the coeffi-
cients {\r} reF be defined in (3.19) and (3.20). There is ¢ so that the following holds
for allh € H, all X € A(I), all v € Vs + PP(Th), and all wy, € PP(Th):

%
(3.21) Ing(o, wn)| < |( 3 AFhFl[[whﬂniz(F)) | O

FeFy,
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Proof. Let v € Vg + PP(Ty) and wy, € PP(Ty). Owing to the definition of ny in
(3.12) and the estimate (3.11) from Lemma 3.2, we infer that

at-1) 1
Ing(v,wi)| < e > > Ok rh’ 7 llo@)kllsa i 1Twall 2

FeF, KeTr
—1,d(-1) 111
Sc( S S A e o) e oo | T AR [ Lndll e
FeF, KETr
—1 d(3E-1) 111
EY Y A 90 0) e | T %A;hﬁnﬂwhnnm(m),

FeFn KETF

1
where we used that 0 r < 07 1 (since O p < 1), |Tr| k0K, F = Ar, the definition of

||| sa (s, and 14+d(2 — %) = d(% - %) Owing to the Cauchy—Schwarz inequality, we

infer that Y pcz > et ag|Tr|"2bp < ke, \fﬂa%)%(ZFeﬂ b2z, for all real
numbers {ax}ke7,, {bF}rerF,, where we used ZFE}-h ke, = KeTn Do Feri
for the term involving the ax’s. Since |Fg| is uniformly bounded (|Fg| = d+1

for simplicial meshes), applying this bound to the two terms composing the above
estimate on |ny(v,wy,)| leads to (3.21). |

Remark 3.6 (Literature). Diffusion-dependent averages have been introduced in
Dryja [19] for discontinuous Galerkin methods and have been analyzed, e.g., in Bur-
man and Zunino [10], Dryja et al. [20], Di Pietro et al. [17], Ern et al. [26]. O

4. Applications. The goal of this section is to perform a unified error analysis
for the approximation of the model problem (2.1) with various nonconforming meth-
ods: Crouzeix—Raviart finite elements, Nitsche’s boundary penalty, interior penalty
discontinuous Galerkin, and hybrid high-order methods. We assume in the entire sec-
tion that Assumption 2.1 holds true. Recall that this implies that, for all f € L1(D),
q € (22+—dd7 ], the exact solution is in the functional space Vi N H*"(D), with Vg
defined in (2.5), » > 0, and p > 2 (see (3.2)). Our unified analysis hinges on the
dimensionally-consistent seminorm

(4.1) W0 0 = INVRol3op) + W2, Vo€ Vit PR(Th),

with |-|,, defined in (3.18). Since X is piecewise constant, we have

2d(1—1)
0B = D A (V0 lagaey + i * 2 190k I
KeTn

d+2
d

2d(%E2 1)
(42) +h Ay )-

Invoking inverse inequalities shows that there is ¢, uniform w.r.t. h € H, but depending
on p and ¢, s.t.

(4.3) 0nlapa < N VaonllLzy,  Von € PP(Th).

4.1. Abstract approximation result. We start by recalling a general approx-
imation result established in [25, Lem. 4.4]. Let V and W be two real Banach spaces.
Let a(-,-) be a bounded bilinear form on V' xW, and let £(-) be a bounded linear form
on W, ie., £ € W. We consider the following abstract model problem:

{ Find u € V such that

(44) a(u,w) = (w), YweW,
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which we assume to be well-posed in the sense of Hadamard; that is to say, there is a
unique solution and this solution depends continuously on the data.

We now formulate a discrete version of the problem (4.4) by using the Galerkin
method. We replace the infinite-dimensional spaces V' and W by finite-dimensional
spaces Vj, and W), that are members of sequences of spaces (Vi)ner, (Wh)hen en-
dowed with some approximation properties as h — 0. The norms in V}, and W}, are
denoted by |||y, and ||-||w,, respectively. The discrete version of (4.4) is formulated
as follows:

(4.5) { Find uj € V}, such that

ah(u;“wh) = éh(wh), Ywy, € Wh,

where ay,(+, -) is a bounded bilinear form on Vj, xW}, and £5,(-) is a bounded linear form
on Wy; note that ay(-,-) and €,(-) possibly differ from a(-,-) and £(-), respectively.
We henceforth assume that dim(V},) = dim(W}) and that

(4.6) inf sup M =:ap >0, Vh > 0,

00 €Vi 0wy ews, 10k [V [lwnllw,

so that the discrete problem (4.5) is well-posed.

We formalize the fact that the error analysis requires the solution to (4.4) to be
slightly more regular than just being a member of V' by introducing a functional space
Vs such that uw € Vg C V. Our setting for the error analysis is therefore as follows:

=

(4.7) ueVy CV, u—up € Vg i= Vs + WV,

=

with the norm in V4 denoted by ||-||y,. Since V}, is finite-dimensional, we have

v
(4.8) Cip = sup lonllvs
0#vp €V ”vh”Vh

Recalling that uj, denotes the unique solution to (4.5), we now define the consis-
tency error as the mapping oy, : Vi, = W} := L(W},; R) so that the following holds for
all v, € V3, and all wy, € Wy,:

(4.9) (On(vn), wa)wy w, = Cn(wn) — an (v, wp) = an(un — v, wp).

We further assume that

on(v ’
(4'10) Wyp = Sup sup M
veVs vnevi{u} IV —vnllv,

The main result we are going to invoke later in the error analysis of nonconforming
approximation methods is the following. It can be viewed as a generalization of
Strang’s second lemma that avoids using the exact solution as an argument of the
discrete bilinear form.

LEMMA 4.1 (Quasi-optimal error estimate). If u € Vg, then

Wih .
4.11 — < (1 — f — . O
( ) Hu Uh”w N ( * Cth Qp, ) ’U;}IEIV;L HU Uh”W
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Proof. The proof is classical; we sketch it for completeness. For all v, € V},, we
have

Cin an(up, — v, wy,
lun — vnllv, < csnllun —onllv, < =2 s lan )|
Qh 0£wreW), ||wh||Wh
Cih CinWih
= G < G
o [[0n (v llw; < - [u —vnllv,

We conclude by using the triangle inequality and taking the infimum over vy, € V},. O

When the constants cy, and wy, can be bounded from above uniformly w.r.t.
h € H, we denote by c; and wy any constant such that c; > sup;cq cyn and wy >
Suppcqy win. Notice that Lemma 4.1 does not say anything on how to choose the

norms |- [[v,, | - llw,, || - lv; to minimize L’:;“

Ezample 4.2 (Conforming setting). Assume conformity, a, = a, and ¢, = /.
Take Vs 1=V, so that V3 =V, and take [|-[|y; := ||-|y-. The consistency error (4.9) is
such that

(0n(vn)s wr)wy wy, = €(wn) — alvn, wp) = a(u — vy, wy),

where we used that £(wp,) = a(u,wp,) (i-e., the Galerkin orthogonality property). Since
a is bounded on V' xW, (4.10) holds true with wy, = ||a||; moreover, ¢y, = 1. Then
Lemma 4.1 is just Céa’s lemma. O

4.2. Crouzeix—Raviart approximation. We consider in this section the ap-
proximation of the model problem (2.2) with a homogeneous Dirichlet condition (for
simplicity) using the Crouzeix—Raviart finite element space

(4.12) PE(T) = {un € PP(T) | / [on] s ds = 0, VF € Fr}.
F
The discrete problem (4.5) is formulated with V}, := P{§(75) and the following forms:
(4.13) ap(vp, wp) == / AVpop-Viywy, dz, Ly (wy) = / Fwy, dz.
D D

We equip V}, with the norm ||vg]|v;, = ||A%thh||Lz(D). The following result is stan-
dard.

LEMMA 4.3 (Coercivity, well-posedness). The bilinear form ay, is coercive on Vj,
with coercivity constant o = 1, and the discrete problem (4.5) is well-posed. O

Let Vj := V5 +V}, be equipped with the norm [|v||y, := [v|x p,q With [v]x ;4 defined
in (4.2) (this is indeed a norm on Vj since |v|x,, = 0 implies that v is piecewise
constant and hence vanishes identically owing to the definition of V},). Owing to (4.3),
there is ¢y, uniform w.r.t. h € H, but depending on p and ¢, s.t. |lvn|lv, < csllonllvs,
for all vy, € Vj.

LEMMA 4.4 (Consistency/boundedness). Let oy, be defined in (4.9) with apn, and
L defined in (4.13). Then, there is wy such that ([0 (vn)|lv; < wyllu — vnllv, for all
heH, allvy, € Vi, all f € LYD), and all X € A(I), where u is the unique solution
to (2.2). O

Proof. Let vy, wy, € Vi, Since Vi, C PP(T3), the identity (3.16a) implies that

ny(vp, wp) = Z /F{O'(vh)}g-np[[wh]] ds =0,

FeFy
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because {0 (vp,) }o-np is constant over F. Moreover, invoking the identity (3.16b) with
v = u and since f = V-o(u), we have

Eh(wh) = nu(u,wh) - /D o'(u)~Vhwh dx.

Combining the above two identities and letting 1 := u — vy, we obtain

(6n(vn)s wh)vy v, = ng(u, wp) —i—/
D

AVn-Viywy dz = ng(n, wy) + / AV -V pwy, dz.
D

The first term on the right-hand side is estimated by invoking the boundedness of

ny (Lemma 3.5), the inequality Ap < minge7. Ax (see (3.20)), and the bound

Y orer, )\thlﬂ[[wh]]H%Z(F) < c|jwy ]l , which is standard for CrouzeixRaviart el-

ements. The second term is estimated by using the Cauchy—Schwarz inequality. ]

THEOREM 4.5 (Error estimate). For all f € LY(D) and all X € A(IT), let u denote
the solution to (2.2), and let up € Vi, denote the solution to (4.5) with ap and ¢y
defined in (4.13). Then, there is ¢ so that the following quasi-optimal error estimate
holds true for all h € H, all f € LY(D), and all X € A(II):

4.14 — < inf - .
(4.14) lu —unllv, <ec inf lu —vnllv,

Moreover, letting t := min(1,r), where 1 = k is the degree of the Crouzeiz—Raviart
finite element, we have
212 _1, 24057~ 2 :
(4.15) [u—unlv, <c Z )‘KhK|u|H1+t(K) + Mg hg Hf”La(K) -0
KeTh

Proof. The error estimate (4.14) follows from Lemma 4.1 combined with stability
(Lemma 4.3) and consistency/boundedness (Lemma 4.4). We now bound the infimum
in (4.14) by considering 7 := u — Zp®(u), where Z;® is the Crouzeix-Raviart interpo-
lation operator using averages over the faces as degrees of freedom. It is a standard
approximation result that there is ¢, uniform w.r.t. u € H***(K), ¢t > 0, and h € H,
st IV kllp2 () < chlul mive iy for all K € Tp,. Moreover, invoking the embedding

~ ~

H'(K) — LP(K) and classical results on the transformation of Sobolev norms by the
geometric mapping, we obtain the bound

Ad(z-3)
(4.16) hy IV ke ) < ¢ (IVnxllL2ce) + hie Vg e i) -
Observing that |Vnx|mi (k) = |ulgi+e(k) since Zp"(u) is affine on K and using

) . (31
again the approximation properties of Z;®, we infer that hK(2 ’7)||V77\K||Lp(;() <

chiy|ul g+ (iy. Finally, we have Anyx = A fin K. |

Remark 4.6 (Convergence). The rightmost term in (4.15) converges as O(h)
when g = 2. Moreover, convergence is lost when g < %, which is somewhat natural
since in this case the linear form w — fD fwdzx is no longer bounded on H'(D). O

Remark 4.7 (Weights). Although the weights introduced in (3.19) are not ex-
plicitly used in the Crouzeix—Raviart discretization, they play a role in the error
analysis. More precisely, we used the boundedness of the bilinear form ny together
with Ap < minge7,. Ak in the proof of Lemma 4.4. The present approach is some-
what more general than that in Li and Mao [31] since it delivers error estimates that
are robust with respect to the diffusivity contrast. The trimming operator invoked in
[31, Eq. (5)—(7)] cannot account for the diffusivity contrast. O
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4.3. Nitsche’s boundary penalty method. We consider in this section the
approximation of the model problem (2.1) by means of Nitsche’s boundary penalty
method. Now we set

(4.17) Vi, i= PE(Th) := {vn € P2(Th) | [on]r = 0, VF € Fy}, k>1,

i.e., Vj, is H'-conforming. The discrete problem (4.5) is formulated with V}, :== P¢(Ty,)
and the following forms:

A
(4.18a) an(vp, wp) = a(vp, wp) Z / ( )n + wo hl; Uh)wh ds,

FeF?

(418b) Eh(wh —f wh Z wo—/ gwp dS,
F

FeFp

where the exact forms @ and ¢ are defined in (2.3), K is the unique mesh cell s.t.
F = 0K;NOD, and the user-specified penalty parameter wy is yet to be chosen large
enough. It is possible to add a symmetrizing term to the discrete bilinear form ay,.

We equip Vi, with the norm |[jva[|3, = ||)\%VvhH%2(D) + |vpl3 with |vp|3 =
Zpefa s ||vhHL2(F) Owing to the shape-regularity of the mesh sequence, there
is ¢y, umform w.rt. h e H, s.t.

_1
(4.19) lvnllLzry < crhp® |vnllLz (k)

for all v, € Vj, and all F € ]—'g. Let ny denote the maximum number of boundary
faces that a mesh cell can have (ng < d for simplicial meshes). The proof of the
following result uses standard arguments.

LEMMA 4.8 (Coercivity, well-posedness).  Assume that the penalty parameter
satisfies wqy > %nac% Then, ay, is coercive on Vi, with constant o := To—jnoc > 0,
and the discrete problem (4.5) is well-posed. O

Let V; := Vi + Vi We equip the space V; with the norm [[v][3, := [v[3 , , +[v[3
where the definition of the seminorm ||y , 4 is slightly changed as follows:

|’U|?\,p,q = Z )‘KHVU|KH%2(K)
KeTh,

2d(
(4.20) + ZAK( S
KeTh

2d(d+2— 1y
lavklEam )

where 72 is the collection of the mesh cells having at least one boundary face, and
lv| = ZFE}-a e ||v||L2(F) (The second summation in (4.20) is restricted to K € 7’2
since only those cells are concerned by the bound on the consistency error for Nitsche’s
boundary penalty method.) Owing to (4.3), there is ¢4, uniform w.r.t. h € H, but
depending on p and g, s.t. ||vn|lv; < cyflvnllv;, for all vy € V.

LEMMA 4.9 (Consistency/boundedness). Let §p, be defined in (4.9) with ap, and
C defined in (4.18). Then, there is wy such that |[0n(vn)|lv; < wyllu — vnllv, for all
heH, allv, € Vi, all f € LYD), and all X € A(I), where w is the unique solution
o (2.2). O
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Proof. Let vy, wy, € V3. Using the identity (3.16a) for ng, [wp]r = 0 for all
F € F} (since Vj, is H'-conforming), and the definition of the weights at the bound-
ary faces, we infer that ny(vp, ws) = ZFE]_-a fF o(v,)-nwy ds. Hence, ap,(vp, wp) =

a(vp, wn) + ng(ve, wp) + ZFEFE woﬁ fF vpwy ds.  Therefore, invoking the iden-
tity (3.16b) for the exact solution u and observing that f = V-o(u), we infer the
important identity [;, fws dz = a(u, wp) +ng(u, wy). Then, recalling that v&(u) = g,
and letting 7 := u — vy, we obtain

<5h(1}h) wh>V’ WV — nu(nvwh) +a 7’]7’LU}1 Z wo*/ NWh ds.
FeF?

We conclude by using the boundedness of ny from Lemma, 3.5 and the Cauchy—-Schwarz
inequality. ]

THEOREM 4.10 (Error estimate). For all f € L1(D) and all A € A(II), let u
denote the solution to (2.2), and let up € Vj, denote the solution to (4.5) with ap
and ¢y, defined in (4.18). Then, there is ¢ so that the following quasi-optimal error
estimate holds true for all h € H, all f € LY(D), and all X € A(II):

(4.21) lu —unlly, <c vigf lu —vnlv,-

h

Moreover, letting t := min(r, k), x¢ =1 ift <1 and x¢ :=0 if t > 1, we have

1

Xt ,2d(5F 1) 2

(4.22) [l —unlly, < ¢ ( Z )‘Kh%“ﬁ{w(n) + Eh’K * ||f||2Lq(K)> )
KE,Y-}L

where T is the collection of the mesh cells having at least a common vertex with K.
The broken Sobolev norm || g1+t (7, can be replaced by |-|gi+e(ry if 1+ > 4. O

Proof. The error estimate (4.21) follows from Lemma 4.1 combined with stabil-
ity (Lemma 4.8) and consistency/boundedness (Lemma 4.9). We now bound the
infimum in (4.21) by using 7 := u — Z;*" (u), where Z}"® is the quasi-interpolation
operator introduced in [23, §5]. We take the polynomial degree of Z3"™ to be £ := [t],
where [t] denotes the smallest integer n € N s.t. n > t. Notice that £ > 1 be-
cause r > 0 and k > 1, and ¢ < k because ¢t < k; hence, I (u) € V;. We
need to bound all the terms composing the norm ||7[|y,. Owing to [23, Thm. 5.2]
with m = 1, we have [|Vnlr2x) < chiclulgiresyy for all K € T,. Moreover,

_1
we have hp?nll2ry < chtKl|u|H1+t(»r y for all F' € F2. Tt remains to estimate

d(2 B d 271)

hy ||V77‘K||Lp (k) and h |An k|| Loy for all K € Ti Using (4.16), the
above bound on \|Vn||L2 and IVl (k) = [Vulge (k) = [ulgie k) since £ < 1+,

(5 -

we infer that h . HV77||Lp y < chK\u|H1+f(T ) Moreover ift <1, we have £ =1

so that ||AnkllLex) = ||Au||Lq(K = A IIfllna(x)- Instead, if ¢ > 1, we infer that
r > 1 so that we can set ¢ = 2 (recall that fip: = A\p, (Au)p, for all i € {1: M}, and
u € H*(D) if r > 1), and we estimate || A7 x||12 (k) using [23, Thm. 5.2] with m = 2.
Finally, if 1 +¢ > %7 we can use the canonical Lagrange interpolation operator Z
instead of Z;"™, and this allows us to replace || gise( 5y by [|mive(x) in (4.22). O

4.4. Discontinuous Galerkin. We consider in this section the approximation
of the model problem (2.1) by means of the symmetric interior penalty discontinuous
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Galerkin method. The discrete problem (4.5) is formulated with Vj, := PP(T3,), k > 1,
the bilinear forms

ap(vp, wp) == /D)\thh.vhwhdz+ Z /F{o'(uh)}g.np[[wh]]ds

FeFy

(4.23a) + Z /F[[vh]]{a'(wh)}9~np ds + Z woz—i/F[[vh]][[wh]] ds,

FeFy FeF,

A
(4.23b) O (wp) = Llwp) + Y woh—fj / gwy, ds,

FeF? E

where £ is defined in (2.3), Ar in (3.20), and the user-specified penalty parame-
ter @ is yet to be chosen large enough. We equip Vj, with the norm [[vp[[3, =
||)\%thh||2Lz(D) +|vp|? with |vp|3 = > Fer, %”H”h]mzm(m' Recall the discrete trace
inequality (4.19) and let ng denote the maximum number of faces that a mesh cell
can have (ng < d+ 1 for simplicial meshes). The proof of the following result uses
standard arguments.

LEMMA 4.11 (Coercivity, well-posedness). Assume that the penalty parameter

a2

satisfies wg > nac%. Then, ay, is coercive on Vi, with constant o := w‘;;‘;c’ > 0, and
the discrete problem (4.5) is well-posed. O

Let Vj := Vi + V3. We equip the space V; with the norm Hv||%,ﬁ = [ol3 ,q + VI3
with [v]x p,q defined in (4.2) and |v]} = Y pc 7, %”[[”]]HQB(F)' Owing to (4.3), there
is ¢4, uniform w.r.t. h € H, but depending on p and ¢, s.t. |lva|lv, < csllvn|ly;, for all
vy, € Vi

LEMMA 4.12 (Consistency/boundedness). Let 6y, be defined in (4.9) with ap, and
C defined in (4.23). Then, there is wy such that [|0n(vn)llv; < wyllu — vrlly, for all
heH, allv, € V3, all f € LYUD), and all X € A1), where u is the unique solution

to (2.2). O
Proof. Let vy, wp € V3. Owing to (3.16b) and since f = V-o(u), we infer that
Jp fwndz = 3 pcq ax (u,wn) + ng(u, wy) with ag (u,wy) = —(o(u), Vawn) L2 (k)

Using the identity (3.16a), we obtain

A
O (wp,) znu(u,wh)—/ o(u)-Vywy, de + Z wO—F/ gwy, ds,
b FeFp hr

ah(w“wh): / —a(vh)~Vhwhdm+nﬁ(vh,wh)
D

A
-y / [onl{o (wi)}onpds + > wohi / [vn][wn] ds.
Fer, ' F rer, EIF
Then, setting 7 := u— v, and using that [u]p = 0 for all F € 7} and [u]r = g for all
FeF E , we obtain the following representation of the consistency linear form & (vp,):

<5h(vh), wh>V}:,Vh = nﬁ(n, wh) + / AVn-Vywy do
D

-y /F[W]]{U(wh)}aﬂFdS-F > woz—i/F[[n]][[wh]] ds.

FeFy FeFn
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Bounding the second, third and fourth terms uses standard arguments (see, e.g., [15]),
whereas we invoke the boundedness estimate on ny from Lemma 3.5 for the first term.0

THEOREM 4.13 (Error estimate). For all f € LY(D) and all A € A(IT), let u
denote the solution to (2.2), and let up € Vi, denote the solution to (4.5) with ap
and Cy, defined in (4.23). Then, there is ¢ so that the following quasi-optimal error
estimate holds true for all h € H, all f € LY(D), and all X € A(II):

4.24 - < inf - .
(4.24) lu — unllv, <c inf lu —vnllv,

Moreover, letting t := min(r, k), x; =1 ift <1 and x; :=0 if t > 1, we have

1
Xt 5 2d(5F—3) ?
429) - < X awilufipe + i Vg ) O
KeTh

Proof. We proceed as in the proof of Theorem 4.10, where we now use the L!-
stable interpolation operator I,ﬁl : LY(D) — PP(Th) from [23, §3] to estimate the
best-approximation error. 0

4.5. Hybrid high-order methods. We consider in this section the approxi-
mation of the model problem (2.1) with a homogeneous Dirichlet condition (for sim-
plicity) by means of the hybrid high-order (HHO) method introduced in [16, 18]. We
consider the discrete product space V,ﬁo =V x VE with k > 0, where

(4.26a)  VF = {vy, € L*(D) | vk = vy, |k € VE, VK € T},
(4.26b) V= {vg, € L*(Fn) | vor = vr, ok € Vox, VK € Th; vg, 70 = 0},

with Vllg = ]P)k,d and VakK = {9 € L2(6K) | 0o TKngl(F) € Pk’dfl, VF € fK}

Thus, for any pair 0, = (vf,,vF,) € V,{fo, v, a collection of cell polynomials of
degree at most k, and vz, is a collection of face polynomials of degree at most k
which are single-valued at the mesh interfaces and vanish at the boundary faces (so
as to enforce strongly the homogeneous Dirichlet condition). We use the notation
bk = (vK,vor) € VE = VE x VI for all K € T,. We equip the local space Vi
with the H!-like seminorm

(4.27)  |oxlfy = [Vorllze) + hic llve = vor|T20k),  Vox = (vi,vax) € Vi,

and the global space V,ﬁo with the norm

(4.28) ”ﬁh”%o = ) Aklix
KeTy

2
Vi

We introduce locally in each mesh cell K € T} a reconstruction operator and a
stabilization operator. The reconstruction operator R’;{H : V}g — Piy1,q is defined
such that, for any pair 9 = (vk,vax) € VE, the polynomial function R’;;rl(f}K) €
Pj41,4 solves

(4.29) (VR (05), Va) 2 () = — (s AQ) p2(0) + (vorc, mx-Va) 12 (a5).

for all ¢ € Pgy1.4, with the mean-value condition fK(R’;(“(ﬁK) —vg)dx = 0. This
local Neumann problem makes sense since the right-hand side of (4.29) vanishes when
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the test function ¢ is constant. The stabilization operator S : Vi — Vi is defined
s.t. for any pair 9x = (vi,vor) € VE,

(4.30) Shi (0k) := i (vijox — vax + (I — )R (k) 0k ) -

where [ is the identity, H’gK : L2(0K) — VéfK is the L2-orthogonal projection onto
Vhe and TI% : L?(K) — V£ is the L?-orthogonal projection onto V. Elementary
algebra shows that the stabilization operator can be rewritten as

(4.31) Shi (o) = e (Sor — (I — I )RET(0, 60k )) 1ok ) »

with dpx = vk|ox — Vor is a measure of the discrepancy between the trace of the
cell unknown and the face unknown.
We now introduce the local bilinear form ax on VE x VE s.t.

(4.32)  ax (b, 0K) == (VR (0k), VRE (k) 2 (k)
+ hi (S5 (), She (0K)) 2 (o) -

Then we set

(4.33) dh(’f}h,’lf)h) = Z )\K&K(ﬁKawK); gh(wh) = Z /wade

KeTy KeTh

The discrete problem is formulated as follows: Find 4y, € Vh]io s.t.
(434) dh(ﬁha ’uA)h) = gh(’lf}h), Yy, € Vh{i(]‘

Notice that HHO methods are somewhat simpler than dG methods when it comes
to solving problems with contrasted coefficients. For HHO methods, one assembles
cellwise the local bilinear forms ax weighted by the local diffusion coefficient Ag,
whereas, for dG methods one has to invoke interface-based values of the diffusion
coefficient to construct the penalty term.

The following result is proved in [16, 18].

LEMMA 4.14 (Stability, boundedness, well-posedness). There exist two positive
numbers, 0 < a < w, so that the following holds:

alorc 3y < IVREF 000) a0, + R 1S5 (010) [2agome) = e (0rc, ) < ol

for all vk € VK, all K € T, and all h € H. Moreover, the discrete problem (4.34) is
well-posed. O

The two key tools in the error analysis of HHO methods are a local reduction
operator and the local elliptic projection. For all K € T, the local reduction operator
7t HY(K) — VE is defined by Zk(v) = (I (v), 5, (15, (v)) € VE, for all
v € H'(K). The local elliptic projection £ : HY(K) — Pry1.q is s.t. (V(EET (v) —
v),Vq)r2(x) = 0, for all ¢ € Pryq4, and (8?'1(11) —v,1)12(x) = 0. The following
result is established in [16, 18].

LEMMA 4.15 (Polynomial invariance). The following holds true:

(4.35a) REFL o Th = ghtl)
(4.35D) St 0 Tie = (Vg o Wi — T 0 ) o (I — ER).

In particular, RETY(ZE(p) = p and S5 (Z5-(p)) = 0 for all p € Pyyy.a. O
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Recalling the duality pairing (-,-)r defined in (3.10), the generalization of the
bilinear form ny in the context of HHO methods is the bilinear form defined on

(Vs + P2 (Th)) x tho that acts as follows:
(4.36) (v,p,) Z Z ) 1) Fy (W — Wok)|F) F-
KeT, FEFK

LEMMA 4.16 (Identities and boundedness for ng). The following holds true for
all y, € ViFq, all vy, € PP, (Th) and all v € Vy:

(4.37a) g (o, i) = /AKWW V(REF (i) — wic) da,
KeTy,

(4.37b) )-Vwg + (V-o(v))wk | dz.
= % (oot eoti)

Moreover, there is ¢ so that the following holds for all h € H, all X € A(I), all
veVs+ P,?+1(77L), and all wy, € th,o’

1
2
(4.38) g (v, dn)| < C|‘U|nﬁ< > dchitlwi — waKH%z(ax)) ;
KeTy,
with the |-|,,-seminorm defined in (3.18). O

Proof. (i) We first prove (4.37a). Let vy, € PP ,(Ts) and wy, € Vh]iO' Since the
restriction of o (vy) to each mesh cell is smooth and since the trace on K of the
face-to-cell lifting operator L% is nonzero only on F, for all F' € Fi, we have

((o(vn)nK)F, (Wk —wok)|F)F

= /K o(vn) |k VLE (W — wor) ) + (Voo (v) ) L (wx — waK)|F)) dz

= / U(Uh)\K'nKLfv(((wK - waK)|F) ds = / U'(Uh)|K'nK(wK — war) ds,
oK F

where we used the divergence formula in K. Therefore, we obtain

4 (Un, Wn)) Z/ o(vp) ki (Wi — wok ) ds

KeTy

= — Z )\K/ VUMK nK(wK waK)d
KeTn

Z )\K/ Vvh|K'V(R];<H(wK) — wg)) d,

KeTy,

where we used the definition (4.29) of the local reconstruction operator R];(H with the
test function vy g € Pry1,4-
(ii) Let us now prove (4.37b). Let v € Vi and wy, € V,{fo. We are going to proceed as in

the proof of (3.16b). We consider the mollification operators K : L*(D) — C*>(D)
and K? : LY(D) — C°°(D) introduced in [22, §3.2]. Let us consider the mollified
bilinear form

ngs(v,bn) = > Y ((K§(e(v)nk)ip, (wk — wok) F)F
KeT, FEFK
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By using (3.10) and invoking the approximation properties of the mollification opera-
tors and the commuting property (3.17), we infer that lims_,o nys(v, Wn) = ng(v, wp).
Since the restriction of K¢(o(v)) to each mesh cell is smooth and since K§(o(v)) €
C°(D), we infer that

nys(v, W) = Z /8K K§(o(v)nk(wg —war)ds = Z /{)K K§(o(v))nrwk ds

KeTy KeT,

-3 /K (K3(o(0)) Vg + K3(V-0(v))wye) de,
KeTy

where we used the divergence formula and the commuting property (3.17) in the last
line. Letting § — 0, we conclude that nys(v, W) also tends to the right-hand side
of (4.37b) as § — 0. Hence, (4.37b) holds true.

(iii) The proof of (4.38) uses the same arguments as the proof of Lemma 3.5. 0

Remark 4.17 ((4.37b)). The right-hand side of (4.37b) does not depend on the
face-based functions wgk . This identity will replace the argument in [16, 18] invoking
the continuity of the normal component of o (u) at the mesh interfaces, which makes
sense only when the exact solution is smooth enough, say o (u) € H"(D) with r > 1.0

Let Vi := Vi + PP, (Th) be equipped with the seminorm [[v[|y, := |v| p,q defined
in (4.2). Notice that [[vy, = 0 implies that v = 0 if v has zero mean-value in each
mesh cell K € 7Tp; this is the case for instance if one takes v = u — 5,’f+1(u). We define
the consistency error ¢y, : th,o — (th,o)/ by setting, for all Wy, € V}ﬁo,

(4.39) (O (0n)s 0n) (g yr vy, 1= On(tbn) — an (B, bn)-

[/ k
0/ 2"h,0

We define global counterparts of the local operators RI;<+17 f}“o and Sf(ﬂ, namely
R - Viky — PP (Th), IF - H&A(D) - Vh’fq, and &1« HY(D) — PP, (Th), by
setting RZH(@h)u{ = REF (o), IF(v) |k = L} (vk), and 55+1(v)|K = E?'l(vm),
for all &, € V¥, all v € HY(D), and all K € Ty,

LEMMA 4.18 (Consistency/boundedness). Let 0y, be defined in (4.39) with ay
and £y, defined in (4.33). Then, there is wy such that

(4.40) 16m (L ()l gy < w [l = 57 (w)llve O

for all h e H, all f € LY(D), and all A € A(I1), where u is the unique solution to
(2.2).

Proof. Since o(u) = =AVu, V-o(u) = f, and u € Vg, the identity (4.37b) yields
0 (ip) = Yoker, Jx fok de = 3 g cq ar(u, wi) + ny(u, ), where ag (u, wi) =
[ —o(u)-Vwy dz. Using the definition of a, in (4.33), then the identity Ri ' oZF =
ERFL (see (4.35a)), and finally (4.37a) with vy, = 77 (u), we obtain

an(Ty(u),in) = ) ax (€ (W), wic) +ng(E (w), o)
KeTy

+ Z A (e S (ke (w), Sh g () L2 (010) -
KeTy
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Subtracting these two identities and using the definition of £ f(“ (u), which implies that
ar (u—EX (), wi) = 0, for all K € T, leads to (5, (ZF (u)), wwwo),’m =T1+%
with 1 ’

Tyi=ng(u—EF (W), in),  Toi=— Y Ak (i Sk (T (w), SEr (0x) 2(ox) -
KeTy

We invoke (4.38) to bound Ty and observe that >, Mchit lwre — wﬁK”%z(ax) <

||1Z)h||%/h,‘,0 owing to (4.28). For the bound on To, we proceed as in [16, 18]. |

THEOREM 4.19 (Error estimate). For all f € L9(D) and all X € A(II), let u
denote the solution to (2.2), and let 4y, € V,f’o denote the solution to (4.34) with ap

and 0y, defined in (4.33). Then, there is ¢ so that the following quasi-optimal error
estimate holds true for all h € H, all f € LY(D), and all X\ € A(II):

(4.41) lu =Ry (an)llvy < ellu = 7 (w) ;.-
Moreover, letting t := min(r,k+ 1), x; :=1ift <1 and x; := 0 if t > 1, we have

(442) [Ju — Ry (@) lv,
Xt 5 2d(5E~1)

KeTy, K

1
2
||f||%q<K>) O

Proof. (1) We adapt the proof of Lemma 4.1 to exploit the convergence order of the
reconstruction operator. Let us set (A;f =, —1If (u) € V}ﬁo so that (k. = i —i’f((u‘K)
for all K € T,. The coercivity property from Lemma 4.14 and the definition of the
consistency error imply that

allChIZ, < an(GEE) = On@E@) By v, < IR g, 1 g

which implies that ||§A}’f||v/c < cfu — & (u)||v, owing to Lemma 4.18. Invoking
h,0
the inverse inequality (4.3) in PP, (75) and using the definition of the ””V,f -norm
,0

implies that [[RET(CF)[|v, < cl|A2 VRREFT(CF)| L2(py < c||§;§||m. Hence, we have
IR (EM)llv, < ellu—E5H (w)ly,-
Moreover, since RE (ZE (u)) = EX (u) for all K € Ty, see (4.35a), we have
u— Ry (an) = u— & (w) = RyFHE).

The estimate (4.41) is now a consequence of the triangle inequality.
(i) We now prove (4.42). Let us set n**! := u — £ (u). We need to bound
. . d(z—3)
||77k+1”Vu = |77k+1|>\7p7qv Le., we must estimate ||V77k+1||L2(K), hK2 v HVUICHHLP(K);
d(ét2 _1
and hy ** q)\

elliptic projection and the approximation properties of H’;(H, we have

\Ank‘*‘lHLq(K) (see (4.2)). Owing to the optimality property of the

IV H |2y < 1V (w = TG () 220y < e higlulme i),
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for t = min(r,k + 1). Let us now consider the other two terms. Let ¢ := [t], so that
t < ¢ <1+4t. Notice also that £ < k+ 1, and £ > 1 since we assumed that r > 0. Let
us set 1’ := u — &f(u), so that | Vn'||r2(x) < chic|u|gi+e (k). Invoking the triangle
inequality, an inverse inequality, and the triangle inequality again, we infer that
A3-3) o, ktl A5=3) o, k+1 ‘
hy V0™ e (k) < b IV0 | ey + ¢ (V0" L2y + V0 1 L20x))

and the two terms between the parentheses are bounded by chb|u| H+t (k). Moreover,
invoking (4.16), we obtain

A1)
Ry PV lLe ey < e (V0 llpecry + R V0 e (6

=c (HVT)Z”L‘Z(K) —+ h%|u|H1+t(K)) < c htI(|U‘H1+t(K),

since t < . Similarly, we have

ACSE =D A, B+ A5 =D ) A k+1 ¢
P 1A7 Nl Lax) < hge A7 Loy + e (V0™ L2y + V0 22 (x0)) -
d ﬁ_l)
It remains to estimate hy > 7' ||An®||La(x). We proceed as in the end of the proof
of Theorem 4.10. If t < 1 (so that x; = 1), we have £ = 1, and we infer that

2d l —1;4 %*%)
by |An ||Lq(K) =Ag hg ||f||L'1(K)~

Otherwise, we have t > 1 (so that x; = 0) and ¢ > 2. Since ¢ > 1 implies that
necessarily ¢ > 2, we then take ¢ = 2. Then, using the triangle inequality, an inverse
inequality, and the triangle inequality again, we obtain

hic| AN || Lo (i) < Pcl|A(uw — T (w)|| pacre)
+c(IV(u = % (W)l p2(ry + 1V0 | L2(r0))

where H‘j( is the L%-orthogonal projection onto Py 4. We conclude by invoking the
approximation properties of IT%, recalling that HVT]ZHLz(K) < chlelul g k). d

5. Extensions to Maxwell’s equations. The various techniques presented in
this paper can be extended to the context of Maxwell’s equations, since arguments
similar to those exposed in §3 can be deployed to define the tangential trace of vectors
fields on a face of K. Without going into the details, we show in this section how that
can be done.

5.1. Lifting and tangential trace. Let p, ¢ be real numbers satisfying (3.2),
and let o € (2,p] be such that ¢ > ;’Tdd. Let K be a cell in Ty, and let F' € Fk be a
face of K. Following [25], we introduce the space

(5.1) Y(F) = {p € We ' (F) | pnp =0},
1
which we equip with the norm [@[ly<(r) = |9l por(p) + h;|¢|W%’9'(F)' Then the

following result can be established by proceeding as in the proof of Lemma 3.1.

LEMMA 5.1 (Face-to-cell lifting). Let p,q satisfy (3.2). Let o € (2,p] be s.t. ¢ >

Q"Tdd. For all K € Ty, and all F € Fg, there exists a lifting operator EE : Y°(F) —

WLe'(K) s.t. EF(@)lox\r = 0 and EE(p)|p = ¢, for all ¢ € Y(F). Moreover,
there exists ¢ so that the following holds for all h € H, all K € Ty, and all F € Fi:

—1+d(5—3

) —g+d(
(5.2) |E§(¢)|W1m’(1{) + hy ”E{W(((b)HLQ'(K) <chg
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With this lifting operator in hand, we can define an extension to the notion of
the tangential trace on F' of a vector field. To this end, we introduce the functional
space

(5.3) S°(K) = {r € L’(K) | VxT € LY(K)},

where the superscript © refers to the fact that the tangential trace is related to the
curl operator. We equip S¢(K) with the following dimensionally-consistent norm:

1

4d(5 -+

)
(5.4) |7 llsex) = TNl ey + g VXTI Lak)-

We now define the tangential trace of any field 7 in S¢(K) on the face F' of K to be
the linear form (7xng)r € Y°(F)" such that

(5.5) «ran»n¢»F::/'(rvXE%K¢>—<vXT>E50m)da

K
for all ¢ € Y°(F), where (-,-)p now denotes the duality pairing between Y °(F)’
and Y°(F). Note that the right-hand side of (5.5) is well-defined owing to Holder’s
inequality and (5.2).

The discretization now involves the vector-valued broken finite element space

(5.6) Py (Ty) = {vp € L®(D) | vy i € P, VK € Ty},

where Py := (1/JK)’1(13) C Whtlheo(K)), (I/(\',ﬁ, 2’) is the reference element, and
Y is an appropriate transformation. For instance, one can take ¢ (v) = 9% (v) =
v o Tx for continuous Lagrange elements and for dG approximation; one can also
take Vi (v) = ¥S (v) := Jk(v o Tk) for edge elements (15 is the covariant Piola
transformation and Jx the Jacobian of the geometric mapping). For any face F' € F,
we denote by Pr the trace of Px on F. The following result is the counterpart of
Lemma 3.2.

LEMMA 5.2 (Bound on tangential component). Let p, q satisfy (3.2). There exists
¢ so that the following estimate holds true for allv € S¢(K), all K € Ty, all F € Fg,
and all h € H:

prat-b)
(57) H(’UX’I’I,K)lF'”Yc(F)/ SChK ||’U||Sc(K)

Moreover, we have

d(z—3) -1
(5.8) ((vxng)p, @n)| < chy® "llvllse)hp? |@nllL2r),
for all ¢, € Pp s.t. pnp =0, all K €Ty, all F € Fi, and all h € H. O

Lemma 5.2 is essential for the error analysis of nonconforming approximation
techniques of Maxwell’s equations. It is a generalization of Bonito et al. [8, Lem. A3]
and Buffa and Perugia [9, Lem. 8.2].

5.2. Definition of n§ and key identities. The consistency analysis of Nitsche’s
boundary penalty method and of the dG approximation applied to Maxwel’s equations
can be done by introducing a bilinear form ny as in §3. We henceforth assume that
the space dimension is either d = 2 or d = 3.

We define the notion of diffusive flux by introducing o : H(curl; D) — L?(D)
such that o(v) := A\Vxw, for any v € H(curl; D). Here, the diffusivity A is either
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the reciprocal of the magnetic permeability or the reciprocal of the electrical conduc-
tivity, depending whether one works with the electric field or the magnetic field. The
diffusivity is assumed to satisfy the hypotheses introduced in Section 2. We further
define

(5.9) Vs :i={v € H(cwl; D) | o(v) € L?(D), Vxo(v) € LI(D)},

and set V; := Vi + PP(Tp).

We adopt the same notation as in §3. Recall that for any K € T, and any F' € Fp,
we have defined ex p = np-ng = 1. We consider arbitrary weights 0k r satisfying
(3.13). We introduce the bilinear form ng : (Vs + PH(Th)) x PP(T) — R defined as
follows:

(5.10) (v, wp,) Z Z ex, Ok, p((0(V) xXnK) F, [ILr(wa)]) F,

FeF, KeETr
where IIr is the ¢2-orthogonal projection onto the hyperplane tangent to F, i.e.,
Ip(by) == by, — (bpng)ng = ngx(bpxng). Notice that (5.10) is meaningful since
p(by)p is in W%’QI(F) and IIp(by) np =0, ie., lIp(by) € Y(F) for any F' € Fp,.
The following result is the counterpart of Lemma 3.3.
LEMMA 5.3 (Identities for n§) The following holds true for any choice of weights
{0k r}rer, Kete and for all wy, € PP(Ty,), all vy, € PP(Ty), and all v € Va:

(5.11a) n§(vn,wp) = Y / ({o(vn)toxnp) [r(wy)] ds
Fer,

(5.11b) (v, wh) Z/ 0)V X whx — (VXO’(U))-’wh‘K)dx. 0
KeTy

Proof. The proof is similar to that of Lemma 3.3. The proof of (5.11a) is quasi-
identical to that of (3.16a). For the proof of (5.11b), one invokes the mollifying
operators K§ : L'(D) — C°°(D) and K§ : L'(D) — C°°(D) introduced in [22, §3.2].
These two operators satisfy the following key commuting property:

(5.12) Vx(K§(T)) = K§(VxT),

for all 7 € LY(D) s.t. VxT € LY(D). Then, one uses the identities [oxIg(w)]
{v}ox[IIp(w)] + [v]x{Ilp(w)}s, nxxIlp(wy) = ngxwy, and V-(wpxo(v)) =
o(v)-(Vxwy) —wp (Vxo(v)). ad

We now establish the boundedness of the bilinear form ny. Since o(v)x € S°(K)
for all K € 7, and all v € Vi + P,?('ﬁl), we equip the space Vg + P,?(ﬁ) with the

seminorm

2d(
2= 3 (i o @)l

KeTn

(5.13) |v

2d(%557-1)
i P IVx0 @)kl )
LEMMA 5.4 (Boundedness of n§). Let the weights {0 r} e, and the coefficients
{Ar}rer be defined in (3.19) and (3.20). There is ¢ so that the following holds for
allh € H, all X\ € A(I1), allv € Vs + PP(Ty), and all wy, € PP(Th):

3
(5.14) (v, 1)) < C|U|n§< 3 AFhFHmHF(wh)mizw)) - O
FeFy,
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With the above tools in hand, one can revisit Buffa and Perugia [9] and greatly

simplify the analysis of the dG approximation of Maxwell’s equations. One can also
extend the work in [24] and analyze Nitsche’s boundary penalty technique with edge
elements; one can also revisit Bonito et al. [7], where Nitsche’s boundary penalty
technique has been used in conjunction with Lagrange elements. In all the cases, one
then obtains robust error estimates.
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