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Abstract. We study the problem of designing electric vehicle (EV) charging 
infrastructure. The main decision that we consider is the location of the charging stations 
in a way that EV drivers can drive along the road network without running out of charge. 
We take into account the uncertainty of the driving range, which is the maximum 
distance that a fully charged EV can travel before its battery runs empty.  We thus 
propose a stochastic model and maximize the expected coverage of the recharging 
demand. We first formulate a new mixed-integer linear program (MILP) for the 
stochastic problem and compare it with a previously published one. We then develop a 
Tabu search heuristic method to solve large-size instances of the problem. We carry out 
our numerical experiments using randomly generated road networks and we show the 
performance of the new formulation as well as the quality of the solutions provided by 
the Tabu search heuristic approach. 

Keywords: Flow refueling location model, electric vehicle charging station network 
design, stochastic range. 

 
 

1. Introduction 
 

The problem of optimizing the design of an EV charging infrastructure is mostly related to a 
well-known problem in the Operations Research field, which is the facility location problem. 
Basically, facility location models aim at finding the best possible locations for facilities in 
order to optimize a performance criterion such as cost minimization or demand coverage 
maximization. Reviews on the academic literature on facility location can be found e.g. in 
[1].  In this paper, we study a facility location model for the design of an EV charging 
infrastructure. The aim of this model is to determine the best locations for EV charging 
stations in a way to maximize the coverage of the charging demand.  Different approaches 
have been used in the literature to model this type of demand. The first approach assumes 
that the demand is located at a set of fixed points in space, i.e. is expressed at the nodes of 
the underlying network. An example of such models can be found in [2]. These models 
implicitly consider that drivers will carry out a special-purpose round trip from their home or 
workplace to the charging station in order to recharge the battery. However, in some cases, 
drivers do not specifically travel to the station to recharge their vehicles but rather recharge it 
while on their way to another destination. For EVs, this occurs in particular during long-
distance trips exceeding the vehicle range. In this case, demand should be represented as a 
set of origin-destination paths rather than a set of nodes. Such a representation was first 
proposed by Hodgson [3] within his flow capturing location model. The main issue in this 
model is that it does not take into account the limited range of EVs, i.e. the maximum 
distance that a fully charged EV can travel before its battery runs empty. This was the 
motivation behind the development of the flow refueling location model by Kuby and Lim in 



[4]. In this model, a flow on a given path is considered as refueled if and only if there is an 
adequate number of stations on the path, allowing an EV driver to refuel his journey from 
the origin to the destination. Different extensions of this model have been proposed in the 
literature in order to study more realistic assumptions such as e.g. the capacity of charging 
stations [5] or the deviations from the shortest paths [6]. However, little attention has been 
given to studying the uncertainties on the input data of the optimization problem, in 
particular the driving range uncertainty. To the best of our knowledge, the uncertainty of the 
driving range has been introduced in only two recent works. The first work [7] uses a 
probabilistic approach to model the range uncertainty and the second work [8] introduces 
two stochastic models, one maximizing the expected EV flow covered and the other one is a 
chance constrained model. In this paper, we present a new formulation for the problem of 
locating EV charging stations under uncertainties on the driving range, with the objective of 
maximizing the expected flow coverage. 

 
 
2. Problem description and modeling 
 

We consider a road network G(N,A), where N denotes a set of nodes and A denotes a set of 
arcs linking these nodes. The charging demand to be satisfied by the stations is modeled as a 
set of flows denoted by Q. Each flow qϵQ is described by its origin Oq, its destination Dq and 
the number of EVs traveling along it fq. Drivers belonging to flow q are assumed to follow 
the shortest path between Oq and Dq. All EVs have a limited range R, which is subject to 
uncertainty due to e.g. the traffic conditions, the weather or the age of the battery. A flow q 
is said to be covered if there is an adequate number of stations on this flow that allows EVs 
to travel from Oq to Dq without running out of charge. In other words, the flow q is covered 
when the distance between each pair k,l of consecutive stations on the flow does not exceed 
the range R, otherwise, it is not covered. In order to model the problem that determines the 
best locations for a predetermined number of stations while maximizing the expected flow 
covered on the network, we use three types of decision variables. Variable xj is a binary 
variable equal to 1 if a station is opened at node j, 0 otherwise. Variable zq ∈ [0,1] is a 
continuous variable equal to the probability of covering flow q. Finally, variable wkl

q is a 
binary variable equal to 1 if a vehicle traveling along flow q is recharged at a station located 
at node k to cover the vehicle trip up to node l and 0 otherwise. The objective function of our 
MILP model can be written as follows: maximize ∑ 𝑓௤𝑧௤௤∈ொ , i.e. maximizing the sum of EV 
flows on the network, weighted by their probability of coverage. We include in the model 
different sets of constraints that link variables zq and variables wkl

q, define the relationship 
between variables w and variables x and limit the number of charging stations that must be 
opened to a predetermined number p representing the limited investment budget. We assume 
that for a given realization of the random conditions w, the value of the range R(w) is the 
same for the whole network and that R(w) is randomly distributed following the cumulative 
density function 𝐺: 𝑅 → [0,1]. By using these assumptions and the fact that G is a non-
decreasing function, we can write the range constraints as follows: 

𝑧௤ ≤ 1 − ∑ 𝐺 ቀ𝑡𝑞(𝑘, 𝑙)ቁ௞∈ே೗೜
್ 𝑤௞௟

௤
 ∀𝑞 ∈ 𝑄, 𝑙 ∈ 𝑁௤\𝑂௤, where 𝑡௤(𝑘, 𝑙) is the total length of 

arcs visited when traveling from node k to node l on flow q  and 𝑁௟௤
௕  is the set of nodes 

situated along flow q before node l on a trip from Oq to Dq. 

 
 
 
 



3. Tabu search heuristic approach 
 

For large size instances of the stochastic EV charging station location problem, the 
computation time required to get an optimal solution might become prohibitively long. 
Therefore, we propose a Tabu search procedure in order to obtain good quality solutions in 
short computation times. The algorithm starts by building an initial solution and setting the 
best feasible solution to the initial solution. Then, two different steps are alternated in the 
iterations of the algorithm. Step1 consists of selecting a station to be opened among the N-p 
closed stations. The station should not be Tabu (not recently closed) and should lead to the 
highest expected coverage among all possible openings. Step2 consists of selecting a station 
to be closed among the p + 1 opened stations. This station should not be Tabu (not recently 
opened) and should lead to the highest expected coverage among all possible closings. The 
Tabu search procedure stops when the number of iterations without improvement of the best 
objective reaches a maximum limit. 

 
4. Main conclusions from the numerical experiments 
 

In our numerical experiments, we compare the performance of the new formulation proposed 
in this paper with the one of the previously published formulation in [7] for the expected 
flow refueling location model.  We also analyze the quality of the solutions provided by the 
Tabu search heuristic approach. The road networks that we use in the tests were randomly 
generated following a procedure similar to the one proposed in [8]. We consider two 
different instances sizes: (N=100, Q=1225) and (N=200, Q=4950) and different values for 
the number of stations p. The random range R is represented using a Gamma distribution, 
with a shape parameter of 50 and a scale parameter of 5. For each instance size and each 
value of p, we generate 5 instances and consider the average output value. We employed the 
C++ language to implement the model and the commercial solver CPLEX 12.6.2 to solve it. 
All tests were carried out on a PC with Intel i5-3210M Core 2 Duo (2.50 GHz) with 8GB of 
RAM. The CPU time of CPLEX solver was limited to 10 hours. Examples of results are 
shown in Table 1. The results show that our formulation performs better than the existing 
one as it leads to significantly decreasing the CPU time. Moreover, when using the existing 
formulation, CPLEX failed at finding the optimal solution within the time limit for several 
instances. In those cases, the optimality gap went up to 13%.  

 
Table 1. Average performance of the three methods (5 replications). 

Instance New formulation 
CPU (s) 

Existing 
formulation CPU (s) 

TABU CPU 
(s) 

TABU Gap 
(%) 

N100Q1225p10 165 583 9 0.2 

N100Q1225p25 609 11008 24 0.1 

N200Q4950p10 8212 32775 58 0.8 

N200Q4950p25 26385 36000 184 0.6 

 
The last column of Table 1 reports the gap between the solution found by the Tabu Search 
heuristic and the optimal solution. It shows that the heuristic performs very well as it 
provides good quality solutions in short computation times. 
 
 
 

 



5. Conclusion 
 

In this paper, we studied the problem of EV charging infrastructure planning under range 
uncertainty. We proposed a new MILP formulation for the problem, explicitly including the 
driving range. Then we developed a Tabu search heuristic approach to solve large-size 
instances. Our numerical experiments showed the performance of the new formulation as 
well as the quality of the solutions provided by the heuristic method.  However, in our 
model, we assumed that for any realization of the random conditions, the value of the driving 
range is the same for all flows. An interesting direction for further research would thus be to 
relax this assumption and to study the more realistic case where the driving range realization 
is different on each cycle segment of a flow.  
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