Luigi Liquori
email: luigi.liquori@inria.fr

Claude Stolze
email: claude.stolze]@inria.fr

THE ∆-CALCULUS: SYNTAX AND TYPES

Keywords: 1998 ACM Subject Classification: F.3.2 Semantics of Programming Languages, F.4.1 Mathematical logic ad hoc polymorphism, Logic and λ-calculus, intersection types, subtyping

published or not. The documents may come

Introduction

Intersection type theories T were first introduced as a form of ad hoc polymorphism in (pure) λ-calculi à la Curry. The paper by Barendregt,Coppo,and Dezani [BCDC83] is a classic reference, while [START_REF] Henk | Lambda calculus with types[END_REF] is a definitive reference. Intersection type assignment systems λ T ∩ have been well-known in the literature for almost 40 years for many reasons: among them, characterization of strongly normalizing λ-terms [START_REF] Henk | Lambda calculus with types[END_REF], λ-models [START_REF] Alessi | Intersection types and lambda models[END_REF], automatic type inference [START_REF] Assaf | Principality and type inference for intersection types using expansion variables[END_REF], type inhabitation [Urz99, RU12], type unification [START_REF] Dudenhefner | The algebraic intersection type unification problem[END_REF]. As intersection had its classical development for type assignment systems, many papers tried to find an explicitly typed λ-calculus à la Church corresponding to the original intersection type assignment systems à la Curry. The programming language Forsythe, by Reynolds [START_REF] Reynolds | Preliminary design of the programming language Forsythe[END_REF], is probably the first reference, while Pierce's Ph.D. thesis [START_REF] Pierce | Programming with intersection types, union types, and bounded polymorphism[END_REF] combines also unions, intersections and bounded polymorphism. In [START_REF] Wells | A calculus with polymorphic and polyvariant flow types[END_REF] intersection types were used as a foundation for typed intermediate languages for optimizing compilers for higher-order polymorphic programming languages; implementations of typed programming language featuring intersection (and union) types can be found in SML-CIDRE [START_REF] Davies | Practical Refinement-Type Checking[END_REF] and in StardustML [START_REF] Dunfield | Refined typechecking with stardust[END_REF][START_REF] Dunfield | Elaborating intersection and union types[END_REF]. Annotating pure λ-terms with intersection types is not simple: a classical example is the difficulty to decorate the bound variable of the explicitly typed polymorphic identity λx:?.x such that the type of the identity is (σ → σ) ∩ (τ → τ): previous attempts showed that the full power of the intersection type discipline can be easily lost.

In this paper, we define and prove the main properties of the ∆-calculus, a generic intersection typed system for an explicitly typed λ-calculus à la Church enriched with strong pairs, denoted by ∆ 1 , ∆ 2 , projections, denoted by pr i ∆, and type coercions, denoted by ∆ σ . A strong pair ∆ 1 , ∆ 2 is a special kind of cartesian product such that the two parts of a pair satisfies a given property R on their "essence", that is ∆ 1 R ∆ 2 . An essence ∆ of a ∆-term is a pure λ-term obtained by erasing type decorations, projections and choosing one of the two elements inside a strong pair. As examples, λx:σ ∩ τ.pr 2 x , λx:σ ∩ τ.pr 1 x = λx.x λx:(σ → τ) ∩ σ.(pr 1 x)(pr 2 x) = λx.x x λx:σ ∩ (τ ∩ ρ). pr 1 x , pr 2 pr 1 x , pr 2 pr 2 x = λx.x and so on. Therefore, the essence of a ∆-term is its untyped skeleton: a strong pair ∆ 1 , ∆ 2 can be typechecked if and only if ∆ 1 R ∆ 2 is verified, otherwise the strong pair will be ill-typed. The essence also gives the exact mapping between a term and its typing à la Church and its corresponding term and type assignment à la Curry. Changing the parameters T and R results in defining a totally different intersection typed system. For the purpose of this paper, we study the four well-known intersection type theories T , namely Coppo-Dezani T CD [START_REF] Coppo | An extension of the basic functionality theory for the λ-calculus[END_REF], Coppo-Dezani-Sallé T CDS [START_REF] Coppo | Functional characterization of some semantic equalities inside λ-calculus[END_REF], Coppo-Dezani-Venneri T CDV [START_REF] Coppo | Functional characters of solvable terms[END_REF] and Barendregt-Coppo-Dezani T BCD [START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF]. We will inspect the above type theories using three equivalence relations R on pure λ-terms, namely ≡, = β and = βη . The combination of the above T and R allows to define ten meaningful typed systems for the ∆-calculus that can be pictorially displayed in a "∆-chair" (see Definition 2.9). Following the same style as in the Barendrengt et al. book [START_REF] Henk | Lambda calculus with types[END_REF], the edges in the chair represent an inclusion relation over the set of derivable judgments. A type coercion ∆ τ is a term of type τ whose type-decoration denotes an application of a subsumption rule to the term ∆ of type σ such that σ T τ : if we omit type coercions, then we lose the uniqueness of type property.

Section 3 shows a number of typable examples in the systems presented in the ∆-chair: each example is provided with a corresponding type assignment derivation of its essence.

Some historical examples of Pottinger [START_REF] Pottinger | A type assignment for the strongly normalizable λ-terms[END_REF], Hindley [START_REF] Hindley | The simple semantics for Coppo-Dezani-Sallé types[END_REF] and Ben-Yelles [START_REF] Ben-Yelles | Type assignment in the lambda-calculus: syntax and semantics[END_REF] are essentially re-decorated and inhabited (when possible) in the ∆-calculus. The aims of this section is both to make the reader comfortable with the different intersection typed systems, and to give a first intuition of the correspondence between Church-style and Curry-style calculi.

Section 4 proves the metatheory for all the systems in the ∆-chair: Church-Rosser, unicity of type, subject reduction, strong normalization, decidability of type checking and type reconstruction.

Section 5 studies the relations between intersection type assignment systems à la Curry and the corresponding intersection typed systems à la Church. Notions of soundness, completeness and isomorphism will relate type assignment and typed systems. We also show how to get rid of type coercions ∆ τ defining a translation function, denoted by , inspired by the one of Tannen et al. [START_REF] Tannen | Inheritance as implicit coercion[END_REF]: the intuition of the translation is that if ∆ has type σ and σ T τ , then σ T τ is a ∆-term of type σ → τ , (σ T τ ∆) has type τ and σ T τ is the identity λx.x.

→ σ → σ) ∩ (τ → τ → τ).
Pierce [START_REF] Pierce | Programming with intersection types, union types, and polymorphism[END_REF] improves Forsythe by using a for construct to build ad hoc polymorphic typing, as in for α ∈ {σ, τ }.λx:α, λy:α.x. However, we cannot type a typed term, whose type erasure is λx.λy.λz.(x y , x z), with the type

((σ → ρ) ∩ (τ → ρ) → σ → τ → ρ × ρ) ∩ ((σ → σ) ∩ (σ → σ) → σ → σ → σ × σ).
Freeman and Pfenning [START_REF] Freeman | Refinement types for ML[END_REF] introduced refinement types, that is types that allow ad hoc polymorphism for ML constructors. Intuitively, refinement types can be seen as subtypes of a standard type: the user first defines a type and then the refinement types of this type. The main motivation for these refinement types is to allow non-exhaustive pattern matching, which becomes exhaustive for a given refinement of the type of the argument. As an example, we can define a type boolexp for boolean expressions, with constructors True, And, Not and Var, and a refinement type ground for boolean expressions without variables, with the same constructors except Var: then, the constructor True has type boolexp∩ground, the constructor And has type (boolexp * boolexp → boolexp) ∩ (ground * ground → ground) and so on. However, intersection is meaningful only when using constructors.

Wells et al. [START_REF] Wells | A calculus with polymorphic and polyvariant flow types[END_REF] introduced λ CIL , a typed intermediate λ-calculus for optimizing compilers for higher-order programming languages. The calculus features intersection, union and flow types, the latter being useful to optimize data representation. λ CIL can faithfully encode an intersection type assignment derivation by introducing the concept of virtual tuple, i.e. a special kind of pair whose type erasure leads to exactly the same untyped λterm. A parallel context and parallel substitution, similar to the notion of [START_REF] Liquori | Towards an intersection typed system à la Church[END_REF][START_REF] Liquori | Intersection typed system à la Church[END_REF], is defined to reduce expressions in parallel inside a virtual tuple. Subtyping is defined only on flow types and not on intersection types: this system can encode the λ CD ∩ type assignment system. [START_REF] Wells | Branching types[END_REF] introduced λ B , a more compact typed calculus encoding of λ CIL : in fact, by comparing Fig. 1 and Fig. 2 of [START_REF] Wells | Branching types[END_REF] we can see that the set of typable terms with intersection types of λ CIL and λ B are the same. In that paper, virtual tuples are removed by introducing branching terms, typable with branching types, the latter representing intersection type schemes. Two operations on types and terms are defined, namely expand, expanding the branching shape of type annotations when a term is substituted into a new context, and select, to choose the correct branch in terms and types. As there are no virtual tuples, reductions do not need to be done in parallel. As in [START_REF] Wells | A calculus with polymorphic and polyvariant flow types[END_REF], the λ CD ∩ type assignment system can be encoded.

Wells and Haak

Frisch et al. [START_REF] Frisch | Semantic subtyping: Dealing set-theoretically with function, union, intersection, and negation types[END_REF] designed a typed system with intersection, union, negation and recursive types whose semantics are loosely the corresponding set-theoretical constructs. The authors inherit the usual problem of having a domain space D that contains all the terms and, at the same time, all the functions from D to D. They prevent this by forbidding nested arrows, and by having an auxiliary domain space which is the disjoint union of D 2 and P(D 2). The subtyping relation is a relation on the set-theoretical interpretation of the types. For instance, the problem σ ∩ τ σ will be interpreted as σ ∩ τ ⊆ σ , where ∩ becomes the set intersection operator, and the decision program actually decides whether (σ ∩ τ) ∩ σ is the empty set.

Bono et al. [START_REF] Bono | A typed lambda calculus with intersection types[END_REF] introduced a relevant and strict parallel term constructor to build inhabitants of intersections and a simple call-by-value parallel reduction strategy. An infinite number of constants c σ⇒τ is applied to typed variables x σ such that c σ⇒τ x σ is upcasted to type τ . It also uses an unusual local renaming typing rule, which changes type decoration in λ-abstractions, as well as coercions. Term synchronicity in the tuples is guaranteed by the typing rules. The calculus uses van Bakel's strict version [START_REF] Van Bakel | Cut-elimination in the strict intersection type assignment system is strongly normalizing[END_REF] of the T CD intersection type theory. 1.2. Logics for intersection types. Proof-functional (or strong) logical connectives, introduced by Pottinger [Pot80], take into account the shape of logical proofs, thus allowing for polymorphic features of proofs to be made explicit in formulae. This differs from classical or intuitionistic connectives where the meaning of a compound formula is only dependent on the truth value or the provability of its subformulae. Pottinger was the first to consider the intersection ∩ as a proof-functional connective. He contrasted it to the intuitionistic connective ∧ as follows: "The intuitive meaning of ∩ can be explained by saying that to assert A ∩ B is to assert that one has a reason for asserting A which is also a reason for asserting B, while to assert A ∧ B is to assert that one has a pair of reasons, the first of which is a reason for asserting A and the second of which is a reason for asserting B". A simple example of a logical theorem involving intuitionistic conjunction which does not hold for proof-functional conjunction is (A ⊃ A) ∧ (A ⊃ B ⊃ A). Otherwise there would exist a term which behaves both as I and as K. Later, Lopez-Escobar [START_REF] Edgar | Proof functional connectives[END_REF] and Mints [START_REF] Mints | The completeness of provable realizability[END_REF] investigated extensively logics featuring both proof-functional and intuitionistic connectives especially in the context of realizability interpretations. It is not immediate to extend the judgments-as-types Curry-Howard paradigm to logics supporting proof-functional connectives. These connectives need to compare the shapes of derivations and do not just take into account their provability, i.e. the inhabitation of the corresponding type. There are many proposals to find a suitable logics to fit intersection types; among them we cite [Ven94, RR01, Miq01, CLV01, BVB08, PRR12], and previous papers by the authors [START_REF] Daniel | A realizability interpretation for intersection and union types[END_REF][START_REF] Liquori | A decidable subtyping logic for intersection and union types[END_REF][START_REF] Stolze | Towards a Logical Framework with Intersection and Union Types[END_REF]. All logical aspects of the ∆-calculus will be treated in a companion paper [START_REF] Liquori | The ∆-calculus: logics[END_REF]. 1.3. Raising the ∆-calculus to a ∆-framework. In the future, we plan to extend the generic typed system for the ∆-calculus with union types, relevant arrow types and dependent types: some preliminary results can be found in [DdLS16, LS17, SLHS17] by the authors. In a nutshell:

Minimal type theory min

(refl) σ σ (incl) σ ∩ τ σ, σ ∩ τ τ (glb) ρ σ, ρ τ ⇒ ρ σ ∩ τ (trans) σ τ, τ ρ ⇒ σ ρ Axiom schemes (U top) σ U (U →) U σ → U (→∩) (σ → τ) ∩ (σ → ρ) σ → (τ ∩ ρ) Rule scheme (→) σ 2 σ 1 , τ 1 τ 2 ⇒ σ 1 → τ 1 σ 2 → τ 2
Strong disjunction is a proof-functional connective that can be interpreted as the union type ∪ [DdLS16, SLHS17]: it contrasts with the intuitionistic connective ∨. As Pottinger did for intersection, we could say that asserting (A ∪ B) ⊃ C is to assert that one has a reason for (A ∪ B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. A simple example of a logical theorem involving intuitionistic disjunction which does not hold for strong disjunction is ((

A ⊃ B) ∪ B) ⊃ A ⊃ B.
Otherwise there would exist a term which behaves both as I and as K.

Strong (relevant) implication is yet another proof-functional connective that was interpreted in [START_REF] Barbanera | Proof-functional connectives and realizability[END_REF] as a relevant arrow type → r . As explained in [START_REF] Barbanera | Proof-functional connectives and realizability[END_REF], it can be viewed as a special case of implication whose related function space is the simplest one, namely the one containing only the identity function. Because the operators ⊃ and → r differ, A → r B → r A is not derivable. Dependent types, as introduced in the Edinburgh Logical Framework [HHP93] by Harper et al., allows considering proofs as first-class citizens albeit differently with respect to proof-functional logics. The interaction of both dependent and proof-functional operators is intriguing: the former mentions proofs explicitly, while the latter mentions proofs implicitly. Their combination therefore opens up new possibilities of formal reasoning on proof-theoretic semantics.

Syntax, Reduction and Types

Definition 2.1 (Type atoms, type syntax, type theories and type assignment systems).

We briefly review some basic definition from Subsection 13.1 of [START_REF] Henk | Lambda calculus with types[END_REF], in order to define type assignment systems. The set of atoms, intersection types, intersection type theories and intersection type assignment systems are defined as follows:

(1) (Atoms). Let A denote a set of symbols which we will call type atoms, and let U be a special type atom denoting the universal type. In particular, we will use

A ∞ = {a i | i ∈ N} with a i being different from U and A U ∞ = A ∞ ∪ {U}. x:σ ∈ B B T ∩ x : σ (ax) B, x:σ T ∩ M : τ B T ∩ λx.M : σ → τ (→I) B T ∩ M : σ B T ∩ M : τ B T ∩ M : σ ∩ τ (∩I) B T ∩ M : σ → τ B T ∩ N : σ B T ∩ M N : τ (→E) B T ∩ M : σ ∩ τ B T ∩ M : σ (∩E 1) B T ∩ M : σ ∩ τ B T ∩ M : τ (∩E 2) U ∈ A B T ∩ M : U (top) B T ∩ M : σ σ T τ B T ∩ M : τ (T)
Figure 2: Generic intersection type assignment system λ T ∩ (see Figure 13.8 of [START_REF] Henk | Lambda calculus with types[END_REF]) (2) (Syntax). The syntax of intersection types, parametrized by A, is:

λ T ∩ T A min plus ref. λ CD ∩ T CD A ∞ - [CDC80] λ CDS ∩ T CDS A U ∞ (U top) [CDCS79] λ CDV ∩ T CDV A ∞ (→), (→∩) [CDCV81] λ BCD ∩ T BCD A U ∞ (→), (→∩), (U top), (U→) [BCDC83]
σ ::= A | σ → σ | σ ∩ σ
(3) (Intersection type theories T). An intersection type theory T is a set of sentences of the form σ τ satisfying at least the axioms and rules of the minimal type theory min defined in Figure 1. The type theories T CD , T CDV , T CDS , and T BCD are the smallest type theories over A satisfying the axioms and rules given in Figure 3. We write T 1 T 2 if, for all σ, τ such that σ T 1 τ , we have that σ T 2 τ . In particular T CD T CDV T BCD and T CD T CDS T BCD . We will sometime note, for instance, BCD instead of T BCD . (4) (Intersection type assignment systems λ T ∩). We define in Figure 2 § an infinite collection of type assignment systems parametrized by a set of atoms A and a type theory T . We name four particular type assignment systems in the table below, which is an excerpt from Figure 13.4 of [START_REF] Henk | Lambda calculus with types[END_REF]. B T ∩ M : σ denotes a derivable type assignment judgment in the type assignment system λ T ∩ . Type checking is not decidable for λ CD ∩ , λ CDV ∩ , λ CDS ∩ , and λ BCD ∩ .

2.1. The ∆-calculi. Intersection type assignment systems and ∆-calculi have in common their type syntax and intersection type theories. The generic syntax of the ∆-calculus is defined as follows. § Although rules (∩Ei) are derivable with min, we add them for clarity.

Definition 2.2 (Generic ∆-calculus syntax).

∆ ::= u ∆ | x | λx:σ.∆ | ∆ ∆ | ∆ , ∆ | pr i ∆ | ∆ σ i ∈ {1, 2}
u ∆ denotes an infinite set of constants, indexed with a particular untyped ∆-term. ∆ σ denotes an explicit coercion of ∆ to type σ. The expression ∆ , ∆ denotes a pair that, following the Lopez-Escobar jargon [START_REF] Edgar | Proof functional connectives[END_REF], we call "strong pair" with respective projections pr 1 and pr 2 . The essence function is an erasing function mapping typed ∆-terms into pure λ-terms. It is defined as follows.

Definition 2.3 (Essence function).

x def = x ∆ σ def = ∆ λx:σ.∆ def = λx. ∆ ∆ 1 ∆ 2 def = ∆ 1 ∆ 2 ∆ 1 , ∆ 2 def = ∆ 1 pr i ∆ def = ∆ i ∈ {1, 2} u ∆ def = ∆
One could argue that the choice of ∆ 1 , ∆ 2 def = ∆ 1 is arbitrary and could have been

replaced with ∆ 1 , ∆ 2 def = ∆ 2 .
However, the typing rules will ensure that, if ∆ 1 , ∆ 2 is typable, then, for some suitable equivalence relation R, we have that ∆ 1 R ∆ 2 . Thus, strong pairs can be viewed as constrained cartesian products. The generic reduction semantics reduces terms of the ∆-calculus as follows.

Definition 2.4 (Generic reduction semantics). Syntactical equality is denoted by ≡.

(1) (Substitution) Substitution on ∆-terms is defined as usual, with the additional rules:

u ∆ 1 [∆ 2 /x] def = u (∆ 1 [∆ 2 /x]) ∆ σ 1 [∆ 2 /x] def = (∆ 1 [∆ 2 /x]) σ
(2) (One-step reduction). We define three notions of reduction:

(λx:σ.∆ 1) ∆ 2 -→ ∆ 1 [∆ 2 /x] (β) pr i ∆ 1 , ∆ 2 -→ ∆ i i ∈ {1, 2} (pr i) λx:σ.∆ x -→ ∆ x ∈ FV(∆) (η)
Observe that (λx:σ.∆ 1) σ ∆ 2 is not a redex, because the λ-abstraction is coerced. The contextual closure is defined as usual except for reductions inside the index of u ∆ that are forbidden (even though substitutions are propagated). We write -→ βpr i for the contextual closure of the (β) and (pr i) notions of reduction, -→ η for the contextual closure of (η). We also define a synchronous contextual closure, which is like the usual contextual closure except for the strong pairs, as defined in point (3). Synchronous contextual closure of the notions of reduction generates the reduction relations -→ βpr i and -→ η .

U ∈ A B T R u ∆ : U (top) x:σ ∈ B B T R x : σ (ax) B, x:σ T R ∆ : τ B T R λx:σ.∆ : σ → τ (→I) B T R ∆ 1 : σ B T R ∆ 2 : τ ∆ 1 R ∆ 2 B T R ∆ 1 , ∆ 2 : σ ∩ τ (∩I) B T R ∆ 1 : σ → τ B T R ∆ 2 : σ B T R ∆ 1 ∆ 2 : τ (→E) B T R ∆ : σ ∩ τ B T R pr 1 ∆ : σ (∩E 1) B T R ∆ : σ ∩ τ B T R pr 2 ∆ : τ (∩E 2) B T R ∆ : σ σ T τ B T R ∆ τ : τ (T)
Figure 4: Generic intersection typed system ∆ T R

(3) (Synchronous closure of -→). Synchronous closure is defined on the strong pairs with the following constraint:

∆ 1 -→ ∆ 1 ∆ 2 -→ ∆ 2 ∆ 1 ≡ ∆ 2 ∆ 1 , ∆ 2 -→ ∆ 1 , ∆ 2 (Clos)
Note that we reduce in the two components of the strong pair; (4) (Multistep reduction). We write -→ -→ βpr i (resp. -→ -→ βpr i) as the reflexive and transitive closure of -→ βpr i (resp. -→ βpr i);

(5) (Congruence). We write = βpr i as the symmetric, reflexive, transitive closure of -→ -→ βpr i . We mostly consider βpr i -reductions, thus to ease the notation we omit the subscript in βpr i -reductions.

The next definition introduces a notion of synchronization inside strong pairs.

Definition 2.5 (Synchronization).

A ∆-term is synchronous if and only if, for all its subterms of the shape ∆ 1 , ∆ 2 , we have that ∆ 1 ≡ ∆ 2 .

It is easy to verify that -→ preserves synchronization, while it is not the case for -→. The next definition introduces a generic intersection typed system for the ∆-calculus that is parametrizable by suitable equivalence relations on pure λ-terms R and type theories T as follows.

Definition 2.6 (Generic intersection typed system). The generic intersection typed system is defined in Figure 4. We denote by ∆ T R a particular typed system with the type theory T and under an equivalence relation R and by B T R ∆ : σ a corresponding typing judgment.

The typing rules are mostly intuitive for a calculus à la Church except rules (∩I), (top) and (T). The typing rule for a strong pair (∩I) is similar to the typing rule for a cartesian product, except for the side-condition ∆ 1 R ∆ 2 , forcing the two parts of the strong pair to have essences compatible under R, thus making a strong pair a special case of a cartesian pair. For instance, λx:σ.λy:τ.x , λx:σ.x is not typable in ∆ T ≡ ; (λx:σ.x) y , y is not typable in ∆ T ≡ but it is in ∆ T = β ; x , λy:σ.((λz:τ.z) x) y is not typable in ∆ T ≡ nor ∆ T = β but it is in ∆ T = βη . In the typing rule (top), the subscript ∆ in u ∆ is not necessarily typable so u ∆ can easily be any arbitrary λ-term.

The typing rule (T) allows to change the type of a ∆-term from σ to τ if σ T τ : the term in the conclusion must record this change with an explicit type coercion τ , producing the new term ∆ τ : explicit type coercions are important to keep the unicity of typing derivations. The next definition introduces a partial order over equivalence relations on pure λ-terms and an inclusion over typed systems as follows.

Definition 2.7 (R and).

(

1) Let R ∈ {≡, = β , = βη }. R 1 R 2 if, for all pure λ-terms M, N such that M R 1 N , we have that M R 2 N ; (2) if B T 1 R 1 ∆ : σ and ∆ T 1 R 1 ∆ T 2 R 2 , then B T 2 R 2 ∆ : σ. Fact 2.8. (1) ∆ CD R ∆ CDS R ∆ BCD R and ∆ CD R ∆ CDV R ∆ BCD R ; (2) ∆ T 1 R 1 ∆ T 2 R 2 if T 1 T 2 and R 1 R 2 .
2.2. The ∆-chair. The next definition classifies ten typed systems for the ∆-calculus: some of them already appeared (sometime with a different notation) in the literature by the present authors. Definition 2.9 (∆-chair). Ten typed systems ∆ T R can be drawn pictorially in a ∆-chair, where the arrows represent an inclusion relation. [START_REF] Liquori | Towards an intersection typed system à la Church[END_REF][START_REF] Liquori | Intersection typed system à la Church[END_REF] (in the expression M @∆, M is the essence of ∆) and in its intersection part to [START_REF] Stolze | Towards a Logical Framework with Intersection and Union Types[END_REF]; ∆ CDS ≡ corresponds roughly in its intersection part to [START_REF] Daniel | Logic and computation in a lambda calculus with intersection and union types[END_REF], ∆ BCD ≡ corresponds in its intersection part to [START_REF] Liquori | A decidable subtyping logic for intersection and union types[END_REF], ∆ CD = βη corresponds in its intersection part to [START_REF] Daniel | A realizability interpretation for intersection and union types[END_REF]. The other typed systems are basically new. The main properties of these systems are:

∆ CD ≡ ∆ CD = β ∆ CDV ≡ ∆ CDV = β ∆ CDS ≡ ∆ CDS = β ∆ BCD ≡ ∆ BCD = β ∆ CDV = βη ∆ BCD = βη ∆ CD ≡ corresponds roughly to
(1) All the ∆ T ≡ systems enjoys the synchronous subject reduction property, the other systems also enjoy ordinary subject reduction (Theorem 4.12);

(2) All the systems strongly normalize (Theorem 4.17);

(3) Type checking and type reconstruction are decidable for all the systems, except ∆ CDS = β , ∆ BCD = β , and ∆ BCD = βη (Theorem 5.4); (4) All the systems correspond to the to original type assignment systems except ∆ CDV = βη and ∆ BCD = βη (Theorem 5.2).

Examples

This section shows suitable examples of typed derivations ∆ T R and highlights the corresponding pure type assignment judgment in λ T ∩ they correspond to, in the sense that we have a derivation B T R ∆ : σ and another derivation B T ∩ ∆ : σ. The correspondence between intersection typed systems ∆ T R and intersection type assignment λ T ∩ will be clearly defined in Subsection 5.1.

Example 3.1 (Polymorphic identity).

In all of the intersection type assignment systems λ T ∩ we can derive

T ∩ λx.x : (σ → σ) ∩ (τ → τ) A corresponding ∆-term is: λx:σ.
x , λx:τ.x that can be typed in all of the typed systems of the ∆-chair as follows

x:σ T R x : σ T R λx:σ.x : σ → σ x:τ T R x : τ T R λx:τ.x : τ → τ λx.x R λx.x T R λx:σ.x , λx:τ.x : (σ → σ) ∩ (τ → τ) Example 3.

(Auto application).

In all of the intersection type assignment systems we can derive

T ∩ λx.x x : ((σ → τ) ∩ σ) → τ A corresponding ∆-term is: λx:(σ → τ) ∩ σ.(pr 1 x)(pr 2 x)
that can be typed in all of the typed systems of the ∆-chair as follows As another example, we can also derive

x:(σ → τ) ∩ σ T R x : (σ → τ) ∩ σ x:(σ → τ) ∩ σ T R pr 1 x : σ → τ x:(σ → τ) ∩ σ T R x : (σ → τ) ∩ σ x:(σ → τ) ∩ σ T R pr 2 x : σ x:(σ → τ) ∩ σ T R (pr 1 x)(pr 2 x) : τ T R λx:(σ → τ) ∩ σ.(pr 1 x)(pr 2 x) : (σ → τ) ∩ σ → τ Example 3.3 (Some examples in ∆ CDS R). In λ CDS
T CDS ∩ λx.x : σ → σ ∩ U A corresponding ∆-term is: λx:σ. x , x U that can be typed in ∆ CDS R as follows x:σ T CDS R x : σ x:σ T CDS R x : σ σ T CDS U x:σ T CDS R x U : U x R x x:σ T CDS R x , x U : σ ∩ U T CDS R λx:σ. x , x U : σ → σ ∩ U Example 3.4 (An example in ∆ CDV R
). In λ CDV ∩ we can prove the commutativity of intersection, i.e.

T CDV ∩ λx.x : σ ∩ τ → τ ∩ σ A corresponding ∆-term is: λx:σ ∩ τ.pr 2 x , λx:σ ∩ τ.pr 1 x (σ∩τ)→(τ ∩σ)
that can be typed in ∆ CDV R as follows

x:σ ∩ τ T CDS R x : σ ∩ τ x:σ ∩ τ T CDS R pr 2 x : τ T CDS R λx:σ ∩ τ.pr 2 x : (σ ∩ τ) → τ x:σ ∩ τ T CDS R x : σ ∩ τ x:σ ∩ τ T CDS R pr 1 x : σ T CDS R λx:σ ∩ τ.pr 1 x : (σ ∩ τ) → σ λx.x R λx.x T CDS R λx:σ ∩ τ.pr 2 x , λx:σ ∩ τ.pr 1 x : ((σ ∩ τ) → τ) ∩ ((σ ∩ τ) → σ) * T CDS R λx:σ ∩ τ.pr 2 x , λx:σ ∩ τ.pr 1 x (σ∩τ)→(τ ∩σ) : (σ ∩ τ) → (τ ∩ σ) where * is ((σ ∩ τ) → τ) ∩ ((σ ∩ τ) → σ) T CDV (σ ∩ τ) → (τ ∩ σ).
Example 3.5 (Another polymorphic identity in ∆ T = β). In all the ∆ T = β you can type this ∆-term: λx:σ.x , (λx:τ →τ.x) (λx:τ.x)

The typing derivation is thus:

x:σ T = β x : σ T = β λx:σ.x : σ → σ x:τ → τ T = β x : τ → τ T = β λx:τ →τ.x : (τ → τ) → (τ → τ)
x:τ T = β x : τ More precisely, we have:

T BCD ∩ Ω : U A corresponding ∆-term whose essence is Ω is: (λx:U.x U→U x) (λx:U.x U→U x) U that can be typed in ∆ BCD R as follows * T BCD R λx:U.x U→U x : U → U * T BCD R λx:U.x U→U x : U → U U → U T BCD U T BCD R (λx:U.x U→U x) U : U T BCD R (λx:U.x U→U x) (λx:U.x U→U x) U : U where * is x:U T BCD R x : U U T BCD U → U x:U T BCD R x U→U : U → U x:U T BCD R x : U x:U T BCD R x U→U x : U In λ BCD ∩ we can type x:U → U T BCD ∩ x : (U → U) ∩ (σ → U) A corresponding ∆-term whose essence is x is:
x , λy:σ.x y U that can be typed in ∆ BCD = βη as follows:

x:U → U T BCD = βη x : U → U x:U → U, y:σ T BCD = βη x : U → U x:U → U, y:σ T BCD = βη y : σ σ U x:U → U, y:σ T BCD = βη y U : U x:U → U, y:σ T BCD = βη x y U : U x:U → U T BCD = βη λy:σ.x y U : σ → U x = βη λy.x y x:U → U T BCD = βη x , λy:σ.x y U : (U → U) ∩ (σ → U)
Note that the = βη condition has an interesting loophole, as it is well-known that λ BCD ∩ does not enjoy = η -conversion property. Theorem 5.1(1) will show that we can construct a ∆-term which does not correspond to any λ BCD ∩ derivation.

Example 3.7 (Pottinger).

The following examples can be typed in all the type theories of the ∆-chair (we also display in square brackets the corresponding pure λ-terms typable in λ T ∩). These are encodings from the examples à la Curry given by Pottinger in [START_REF] Pottinger | A type assignment for the strongly normalizable λ-terms[END_REF].

[λx.λy.

x y] T R λx:(σ → τ) ∩ (σ → ρ).λy:σ. (pr 1 x) y) , (pr 2 x) y : (σ → τ) ∩ (σ → ρ) → σ → τ ∩ ρ [λx.λy.x y] T R λx:σ → τ ∩ ρ. λy:σ.pr 1 (x y) , λy:σ.pr 2 (x y) : (σ → τ ∩ ρ) → (σ → τ) ∩ (σ → ρ) [λx.λy.x y] T R λx:σ → ρ.λy:σ ∩ τ.x (pr 1 y) : (σ → ρ) → σ ∩ τ → ρ [λx.λy.x] T R λx:σ ∩ τ.λy:σ.pr 2 x : σ ∩ τ → σ → τ [λx.λy.x y y] T R λx:σ → τ → ρ.λy:σ ∩ τ.x (pr 1 y) (pr 2 y) : (σ → τ → ρ) → σ ∩ τ → ρ [λx.x] T R λx:σ ∩ τ.pr 1 x : σ ∩ τ → σ [λx.x] T R λx:σ. x , x : σ → σ ∩ σ [λx.x] T R λx:σ ∩ (τ ∩ ρ). pr 1 x , pr 1 pr 2 x , pr 2 pr 2 x : σ ∩ (τ ∩ ρ) → (σ ∩ τ) ∩ ρ
In the same paper, Pottinger lists some types that cannot be inhabited by any intersection type assignment in an empty context, namely:

T ∩ σ → (σ ∩ τ) T ∩ (σ → τ) → (σ → ρ) → σ → τ ∩ ρ T ∩ ((σ ∩ τ) → ρ) → σ → τ → ρ
It is not difficult to verify that the above types cannot be inhabited by any of the type systems of the ∆-chair because of the failure of the essence condition in the strong pair type rule.

Example 3.8 (Intersection is not the conjunction operator). This counter-example is from the corresponding counter-example à la Curry given by Hindley [START_REF] Hindley | Coppo-Dezani types do not correspond to propositional logic[END_REF] and Ben-Yelles [START_REF] Ben-Yelles | Type assignment in the lambda-calculus: syntax and semantics[END_REF]. The intersection type

(σ → σ) ∩ ((σ → τ → ρ) → (σ → τ) → σ → ρ)
where the left part of the intersection corresponds to the type for the combinator I and the right part for the combinator S cannot be assigned to a pure λ-term. Analogously, the same intersection type cannot be assigned to any ∆-term.

3.1. On synchronization and subject reduction. For the typed systems ∆ T ≡ , strong pairs have an intrinsic notion of synchronization: some redexes need to be reduced in a synchronous fashion unless we want to create meaningless ∆-terms that cannot be typed. Consider the ∆-term (λx:σ.x) y , (λx:σ.x) y . If we use the -→ reduction relation, then the following reduction paths are legal:

(λx:σ.x) y , (λx:σ.x) y β (λx:σ.x) y , y β β y , (λx:σ.x) y β y , y

More precisely, the first and second redexes are rewritten asynchronously, thus they cannot be typed in any typed system ∆ T ≡ , because we fail to check the left and the right part of the strong pair to be the same: the -→ reduction relation prevents this loophole and allows to type all redexes. In summary, -→ can be thought of as the natural reduction relation for the typed systems ∆ T ≡ .

4. Metatheory of ∆ T R 4.1. General properties. Unless specified, all properties applies to the intersection typed systems ∆ T R . The Church-Rosser property is proved using the technique of Takahashi [START_REF] Takahashi | Parallel reductions in λ-calculus[END_REF]. The parallel reduction semantics extends Definition 2.4 and it is inductively defined as follows.

Definition 4.1 (Parallel reduction semantics).

x =⇒ x u ∆ =⇒ u ∆ ∆ σ =⇒ (∆) σ if ∆ =⇒ ∆ ∆ 1 ∆ 2 =⇒ ∆ 1 ∆ 2 if ∆ 1 =⇒ ∆ 1 and ∆ 2 =⇒ ∆ 2 λx:σ.∆ =⇒ λx:σ.∆ if ∆ =⇒ ∆ (λx:σ.∆ 1) ∆ 2 =⇒ ∆ 1 [∆ 2 /x] if ∆ 1 =⇒ ∆ 1 and ∆ 2 =⇒ ∆ 2 ∆ 1 , ∆ 2 =⇒ ∆ 1 , ∆ 2 if ∆ 1 =⇒ ∆ 1 and ∆ 2 =⇒ ∆ 2 pr i ∆ =⇒ pr i ∆ if ∆ =⇒ ∆ and i ∈ {1, 2} pr i ∆ 1 , ∆ 2 =⇒ ∆ i if ∆ i =⇒ ∆ i and i ∈ {1, 2}
Intuitively, ∆ =⇒ ∆ means that ∆ is obtained from ∆ by simultaneous contraction of some βpr i -redexes possibly overlapping each other. Church-Rosser can be achieved by proving a stronger statement, namely

∆ =⇒ ∆ implies ∆ =⇒ ∆ * (4.1)
where ∆ * is a ∆-term determined by ∆ and independent from ∆ . The statement (4.1) is satisfied by the term ∆ * which is obtained from ∆ by contracting all the redexes existing in ∆ simultaneously.

Strong normalization.

The idea of the strong normalization proof is to embed typable terms of the ∆-calculus into Church-style terms of a target system, which is the simply-typed λ-calculus with pairs, in a structure-preserving way (and forgetting all the essence side-conditions). The translation is sufficiently faithful so as to preserve the number of reductions, and so strong normalization for the ∆-calculus follows from strong normalization for simply-typed λ-calculus with pairs. A similar technique has been used in [START_REF] Harper | A framework for defining logics[END_REF] to prove the strong normalization property of LF and in [START_REF] Bucciarelli | Intersection types and λ-definability[END_REF] to prove the strong normalization property of a subset of λ CD ∩ . The target system has one atomic type called •, a special constant term u • of type • and an infinite number of constants c σ of type σ for any type of the target system. We denote by B × M : σ a typing judgment in the target system. Definition 4.15 (Forgetful mapping).

• On intersection types.

|a i | def = • ∀a i ∈ A |σ ∩ τ | def = |σ| × |τ | |σ → τ | def = |σ| → |τ |
The map can be easily extended to basis B.

• On ∆-terms. |x| B def = x |u ∆ | B def = u • |λx:σ.∆| B def = λx.|∆| B,x:σ |∆ 1 ∆ 2 | B def = |∆ 1 | B |∆ 2 | B | ∆ 1 , ∆ 2 | B def = (|∆ 1 | B , |∆ 2 | B) |pr i ∆| B def = pr i |∆| B |∆ τ | B def = c |σ|→|τ | |∆| B if B T R ∆ : σ
The following technical lemma states some properties of the forgetful function.

Lemma 4.16.

(1) If B T R ∆ : σ, then |∆| B is defined, and, for all

B ⊇ B, |∆| B ≡ |∆| B ; (2) |∆ 1 [∆ 2 /x]| B ≡ |∆ 1 | B [|∆ 2 | B /x]; (3) If ∆ 1 -→ ∆ 2 , then |∆ 1 | B -→ |∆ 2 | B ; (4) If B T R ∆ : σ then |B| × |∆| B : |σ|. Proof.
(1) by induction on the derivation;

(2) by induction on ∆ 1 . The only interesting part is ∆ 1 ≡ λy:σ.∆ 1 : by induction hypothesis, we have that

|∆ 1 [∆ 2 /x]| B,x:σ ≡ |∆ 1 | B,x:σ [|∆ 2 | B,x:σ /x]. Therefore, we see that |(λy:σ.∆ 1)[∆ 2 /x]| B ≡ λy:σ.|∆ 1 [∆ 2 /x]| B,x:σ ≡ λy:σ.|∆ 1 | B,x:σ [|∆ 2 | B,x:σ /x],
but, from point (1), we know that |∆ 2 | B,x:σ ≡ |∆ 2 | B , and we conclude;

(3) by induction on the context of the redex;

(4) by induction on the derivation.

Strong normalization follows easily from the above lemmas.

Theorem 4.17 (Strong normalization). If B T R ∆ : σ, then ∆ is strongly normalizing. Proof. Using Lemma 4.16 and the strong normalization of the simply typed λ-calculus with cartesian pairs. 5. Typed systems à la Church vs. type assignment systems à la Curry

Relation between type assignment systems λ T

∩ and typed systems ∆ T R . It is interesting to state some relations between type assignment systems à la Church and typed systems à la Curry. An interesting property is the one of isomorphism, namely the fact that whenever we assign a type σ to a pure λ-term M , the same type can be assigned to a ∆-term such that the essence of ∆ is M . Conversely, for every assignment of σ to a ∆-term, a valid type assignment judgment of the same type for the essence of ∆ can be derived. Soundness, completeness and isomorphism between intersection typed systems for the ∆calculus and the corresponding intersection type assignment systems for the λ-calculus are defined as follows.

(3) (Isomorphism, ∆ T R ∼ λ T ∩). ∆ T R λ T ∩ and ∆ T R λ T ∩ .
The following properties and relations between typed and type assignment systems can be verified.

Theorem 5.2 (Soundness, completeness and isomorphism).

The following properties between ∆-calculi and type assignment systems λ T ∩ are verified.

∆ T R ∆ T R λ T ∩ ∆ T R λ T ∩ ∆ CD ≡ √ √ ∆ CDV ≡ √ √ ∆ CDS ≡ √ √ ∆ BCD ≡ √ √ ∆ CD = β √ √ ∆ CDV = β √ √ ∆ CDS = β √ √ ∆ BCD = β √ √ ∆ CDV = βη × √ ∆ BCD = βη × √ Proof.
() Soundness for ∆ T ≡ . Let ∆ be such that B T ≡ ∆ : σ. We proceed by induction on the derivation. All cases proceed straightforwardly since all rules of the type and subtype system T ≡ correspond exactly to the rules of the same name in the corresponding type assignment system T ∩ and in the same type theory T . Therefore M ≡ ∆ can be easily be defined and derived with type σ. Soundness for ∆ T = β . We first show the admissibility of the following type assignment rule

B T ∩ M : σ B T ∩ N : τ M = β N B T ∩ M : σ ∩ τ (∩I) adm
in all λ T ∩ as follows: we know these type assignment systems have the subject reduction and the typed-expansion property for β (see Corollary 14.2.3 and Proposition 14.2.4(i) of [START_REF] Henk | Lambda calculus with types[END_REF] The essence of pr 2 λy:U.x U→U y , x is λy.x y, but, if σ is an atomic type (different than U):

x:σ T BCD ∩ λy.x y : σ () Let M be such that B T ∩ M : σ for a given B. We proceed by induction on the derivation. All cases proceed straightforwardly since all rules of the type and subtype assignment system T ∩ correspond exactly to the rules of the same name in the corresponding typed system T R and in the same type theory T . Therefore a ∆-term can be easily be constructed and derived with type σ;

The last theorem characterizes the class of strongly normalizing ∆-terms.

Theorem 5.3 (Characterization).

Every strongly normalizing λ-term can be type-annotated so as to be the essence of a typable ∆-term.

Proof. We know that every strongly normalizing λ-term M is typable in λ T ∩ . By Theorem 5.2 we have that ∆ T R λ T ∩ , therefore there exists some typable ∆, such that M ≡ ∆ . We can finally state decidability of type checking (TC) and type reconstruction (TR).

Theorem 5.4 (Decidability of type checking and type reconstruction).

∆ T R TC/TR ∆ CD ≡ √ ∆ CDV ≡ √ ∆ CDS ≡ √ ∆ BCD ≡ √ ∆ CD = β √ ∆ CDV = β √ ∆ CDS = β × ∆ BCD = β × ∆ CDV = βη √ ∆ BCD = βη × Proof.
Both type checking and type reconstruction can be proved by induction on the structure of ∆, using the decidability of T BCD proved by Hindley [START_REF] Hindley | The simple semantics for Coppo-Dezani-Sallé types[END_REF] (see also [START_REF] Liquori | A decidable subtyping logic for intersection and union types[END_REF]). By Theorem 5.2, the essences of all the ∆-terms, which are typable in ∆ CD = β , ∆ CDV = β , or ∆ CDV = βη , are typable in λ CD ∩ or λ CDV ∩ , therefore they are strongly normalizing. As a consequence, the sidecondition ∆ 1 R ∆ 2 is decidable for ∆ CD = β , ∆ CDV = β , and ∆ CDV = βη and so type reconstruction and type checking are decidable too. Type reconstruction and type checking are not decidable in ∆ CDS = β , ∆ BCD = β , and ∆ BCD = βη , because u ∆ 1 , u ∆ 2 is typable if and only if ∆ 1 = β ∆ 2 (resp. ∆ 1 = βη ∆ 2). However, ∆ 1 and ∆ 2 are arbitrary pure λ-terms, and both β-equality and βη-equality are undecidable. 5.2. Subtyping and explicit coercions. The typing rule (T) in the general typed system introduces type coercions: once a type coercion is introduced, it cannot be eliminated, so de facto freezing a ∆-term inside an explicit coercion. Tannen et al. [START_REF] Tannen | Inheritance as implicit coercion[END_REF] showed a translation of a judgment derivation from a "Source" system with subtyping (Cardelli's Fun [START_REF] Cardelli | On understanding types, data abstraction, and polymorphism[END_REF]) into an "equivalent" judgment derivation in a "Target" system without subtyping (Girard system F with records and recursion). In the same spirit, we present a translation that removes all explicit coercions. Intuitively, the translation proceeds as follows: every derivation ending with rule

B T R ∆ : σ σ T τ B T R ∆ τ : τ (T)
is translated into the following (coercion-free) derivation

B T R σ T τ : σ → τ B T R ∆ B : σ B T R σ T τ ∆ B : τ (→E)
where R is a suitable relation such that R R . Note that changing of the type theory is necessary to guarantee well-typedness in the translation of strong pairs. Summarizing, we provide a type preserving translation of a ∆-term into a coercion-free ∆-term such that ∆ = βη ∆ .

The following example illustrates some trivial compilations of axioms and rule schemes of Figure 1.

Example 5.5 (Translation of axioms and rule schemes of Figure 1). (refl) the judgment x:σ T R x , x σ : σ ∩ σ is translated to a coercion-free judgment x:σ T = β x , (λy:σ.y) x : σ ∩ σ (incl) the judgment x:σ ∩τ T R x, x τ : (σ ∩τ)∩τ is translated to a coercion-free judgment x:σ ∩ τ T = β x , (λy:σ ∩ τ.pr 2 y) x : (σ ∩ τ) ∩ τ (glb) the judgment x:σ T R x , x σ∩σ : σ ∩ (σ ∩ σ) is translated to a coercion-free judgment x:σ T = β x , (λy:σ. y , y (2) The translation -B is defined on ∆ as follows. By looking at the above translation functions we can see that if B T R ∆ : σ, then ∆ B is defined and it is coercion-free. The following lemma states that a coercion function is always typable in ∆ T = βη , that it is essentially the identity and that, without using the rule schemes (→∩), (U →), and (→) the translation can even be derivable in ∆ T = β . Lemma 5.7 (Essence of a coercion is an identity).

) x : σ ∩ (σ ∩ σ) (U top) the judgment x:σ T R x , x U : σ ∩ U is translated to a coercion-free judgment x:σ T = β x , (λy:σ.u y) x : σ ∩ U (U →) the judgment x:U T R x, x σ→U : U∩(σ → U) is translated to a coercion-free judgment x:U T = βη x , (λf :U.λy:σ.u (f y)) x : U ∩ (σ → U) (→∩) the judgment x:(σ → τ) ∩ (σ → ρ) T R x σ→τ ∩ρ : σ → τ ∩ ρ is translated to a coercion-free judgment x:(σ → τ) ∩ (σ → ρ) T = βη (λf :(σ → τ) ∩ (σ → ρ).
u ∆ B def = u ∆ B x B def = x λx:σ.∆ B def = λx:σ. ∆ B,x:σ ∆ 1 ∆ 2 B def = ∆ 1 B ∆ 2 B ∆ 1 , ∆ 2 B def = ∆ 1 B , ∆ 2 B pr i ∆ B def = pr i ∆ B i ∈ {1, 2} ∆ τ B def = σ T τ ∆ B if B T R ∆ : σ.
(1) If σ T τ , then T = βη σ T τ : σ → τ and σ T τ = βη λx.x; (2) If σ T τ without using the rule schemes (→∩), (U →), and (→), then T = β σ T τ : σ → τ and σ T τ = β λx.x.

Proof. The proofs proceed in both parts by induction on the derivation of σ T τ . For instance, in case of (glb), we can verify that T = β λx:ρ. ρ T σ x , ρ T τ x : ρ → σ ∩ τ using the induction hypotheses that ρ T σ (resp. ρ T τ) has type ρ → σ (resp. ρ → τ) and has an essence convertible to λx.x.

We can now prove the coherence of the translation as follows.

Figure 1 :

 1 Figure 1: Minimal type theory min , axioms and rule schemes (see Fig. 13.2 and 13.3 of [BDS13])

Figure 3 :

 3 Figure 3: Type theories λ CD ∩ , λ CDS ∩ , λ CDV ∩ , and λ BCD ∩ . The ref. column refers to the original article these theories come from.

∩

 we can derive T CDS ∩ (λx.λy.x) : σ → U → σ and using this type assignment, we can derive z:σ T CDS ∩ (λx.λy.x) z z : σ. A corresponding ∆-term is: (λx:σ.λy:U.x) z z U that can be typed in ∆ CDS R as follows z:σ, x:σ, y:U T CDS R x : σ z:σ, x:σ T CDS R λy:U.x : U → σ z:σ T CDS R λx:σ.λy:U.x : σ → U → σ z:σ T CDS R z : σ z:σ T CDS R (λx:σ.λy:U.x) z : U → σ z:σ T CDS R z : σ σ T CDS U z:σ T CDS R z U : U z:σ T CDS R (λx:σ.λy:U.x) z z U : σ

T=

 β λx:τ.x : τ → τ T = β (λx:τ →τ.x) (λx:τ.x) : τ → τ λx.x = β (λx.x) (λx.x) T = β λx:σ.x , (λx:τ →τ.x) (λx:τ.x) : (σ → σ) ∩ (τ → τ) Example 3.6 (Two examples in ∆ BCD ≡ and ∆ BCD = βη). In λ BCD ∩ we can can type any term, including the non-terminating term Ω def = (λx.x x) (λx.x x)

Definition 5. 1

 1 (Soundness, completeness and isomorphism).Let ∆ T R and λ T ∩ . (1) (Soundness, ∆ T R λ T ∩). B T R ∆ : σ implies B T ∩ ∆ : σ; (2) (Completeness, ∆ T R λ T ∩). B T ∩ M : σ implies there exists ∆ such that M ≡ ∆ and B T R ∆ : σ;

 , respectively). As a consequence, if B T ∩ M : σ, and B T ∩ N : τ , and M = β N , then B T ∩ M : τ . Then the proof proceeds by induction on the derivation of B T = β ∆ : σ. The most important case is when the last used rule is (∩I): by induction we get B T ∩ ∆ 1 : σ, and B T ∩ ∆ 2 : τ , and ∆ 1 = β ∆ 2 , and, by the essence definition, ∆ 1 , ∆ 2 = β ∆ 1 . Apply rule (∩I) adm and conclude with B T ∩ ∆ 1 : σ ∩ τ . () Loss of soundness in ∆ CDV = βη is proved via the following counterexample, where B def = {x:(σ → τ) ∩ ρ}. B, y:σ T CDV = βη x : (σ → τ) ∩ ρ B, y:σ T CDV = βη pr 1 x : σ → τ B, y:σ T CDV = βη y : σ B, y:σ T CDV = βη (pr 1 x) y : τ B T CDV = βη λy:σ.(pr 1 x) y : σ → τ B T CDV = βη x : (σ → τ) ∩ ρ B T CDV = βη pr 2 x : ρ λy.x y = βη x B T CDV = βη λy:σ.(pr 1 x) y , pr 2 x : (σ → τ) ∩ ρ B T CDV = βη pr 2 λy:σ.(pr 1 x) y , pr 2 x : ρ The essence of pr 2 λy:σ.(pr 1 x) y , pr 2 x is λy.x y, but, if ρ is an atomic type: x:(σ → τ) ∩ ρ T CDV ∩ λy.x y : ρ Loss of soundness in ∆ BCD = βη is proved via the following counterexample: x:σ, y:U T BCD = βη x : σ σ T U → U x:σ, y:U T BCD = βη x U→U : U → U x:σ, y:U T BCD = βη y : U x:σ, y:U T BCD = βη x U→U y : U x:σ T BCD = βη λy:U.x U→U y : U → U x:σ T BCD = βη x : σ λy.x y = βη x x:σ T BCD = βη λy:U.x U→U y , x : (U → U) ∩ σ x:σ T BCD = βη pr 2 λy:U.x U→U y , x : σ

=T=T=T=

 λy:σ. (pr 1 f) y , (pr 2 f) y) x : σ → τ ∩ ρ (→) the judgment x:σ → τ ∩ ρ T R x , x σ∩ρ→τ : (σ → τ ∩ ρ) ∩ (σ ∩ ρ → τ) is translated to a coercion-free judgment x:σ → τ ∩ ρ T = βη x , (λf :σ → τ ∩ ρ.λy:σ ∩ ρ.pr 1 (f (pr 1 y))) x : (σ → τ ∩ ρ) ∩ (σ ∩ ρ → τ) (trans) the judgment x:σ T R x , (x U) σ→U : σ ∩ (σ → U) is translated to a coercion-free judgment x:σ T = βη x , (λf :U.λy:σ.u (f y)) ((λy:σ.u y) x) : σ ∩ (σ → U)The next definition introduces two maps translating subtype judgments into explicit coercions functions and ∆-terms into coercion-free ∆-terms. Definition 5.6 (Translationsand -B).(1) The minimal type theory min and the extra axioms and schemes are translated as follows. β λx:σ.x : σ → σ(incl 1) σ ∩ τ T σ def = T = β λx:σ ∩ τ.pr 1 x : σ ∩ τ → σ (incl 2) σ ∩ τ T τ def = T = β λx:σ ∩ τ.pr 2 x : σ ∩ τ → τ (glb) ρ T σ ρ T τ ρ T σ ∩ τ def = T = β λx:ρ. ρ T σ x , ρ T τ x : ρ → σ ∩ τ (trans) σ T τ τ T ρ σ T ρ def = T = β λx:σ. τ T ρ (σ T τ x) : σ → ρ (U top) σ T U def = T = β λx:σ.u x : σ → U (U →) U T σ → U def = βη λf :U.λx:σ.u (f x) : U → (σ → U) Let ξ 1 def = (σ → τ) ∩ (σ → ρ) and ξ 2 def = σ → τ ∩ ρ (→∩) ξ 1 T ξ 2 def = βη λf :ξ 1 .λx:σ. (pr 1 f) x , (pr 2 f) x : ξ 1 → ξ 2 Let ξ 1 def = σ 1 → τ 1 and ξ 2 def = σ 2 → τ 2 (→) σ 2 T σ 1 τ 1 T τ 2 σ 1 → τ 1 T σ 2 → τ 2 def = βη λf :ξ 1 .λx:σ 2 . τ 1 T τ 2 (f (σ 2 T σ 1 x)) : ξ 1 → ξ 2

Figure 5 :

 5 Figure 5: On the left: source systems. On the right: target systems without the (T) rule.

Theorem 5. 8 (

 8 Coherence). If B T R ∆ : σ, then B T R ∆ B : σ and ∆ B R ∆ , where ∆ T R and ∆ T R are respectively the source and target intersection typed systems given in Figure 5.Proof. By induction on the derivation. We illustrate the most important case, namely when the last type rule is (T). In this case ∆ τ B is translated to σ T τ ∆ B . By induction hypothesis we have that B T R ∆ : σ, and by Lemma 5.7 we have thatB T R σ T τ : σ → τ ; therefore B T R ∆ τ B : τ .Moreover, we know that σ T τ R λx.x, and this gives ∆ τ B R ∆ B . Again by induction hypothesis we have that ∆ B R ∆ , and this gives the thesis ∆ τ B R ∆ τ .

 Several calculi à la Church appeared in the literature: they more or less capture the power of intersection types; we briefly review them.

1.1. λ-calculi with intersection types à la Church.

The Forsythe programming language by Reynolds

[START_REF] Reynolds | Preliminary design of the programming language Forsythe[END_REF]

annotates a λ-abstraction with types as in λx:σ 1 |• • •|σ n .M . However, we cannot type a typed term, whose type erasure is the combinator K ≡ λx.λy.x, with the type (σ

Definition 4.2 (The map *).

The next technical lemma will be useful in showing that Church-Rosser for -→ -→ can be inherited from Church-Rosser for =⇒.

Lemma 4.3.

(1

(1) can be proved by induction on the context of the redexes, while (2), (3), and (4) can be proved by induction on the structure of ∆ 1 . Now we have to prove the Church-Rosser property for the parallel reduction.

Lemma 4.4 (Confluence property for =⇒).

Proof. By induction on the shape of ∆.

∆ is not a β-redex, then, for some ∆ 1 and ∆ 2 , we have that

then, for some ∆ 1 and ∆ 2 , we have that ∆ 1 =⇒ ∆ 1 , ∆ 2 =⇒ ∆ 2 and we have 2 subcases:

thanks to point (3) of Lemma 4.3; • if ∆ ≡ pr i ∆ 1 and ∆ 1 is not a strong pair, then, for some ∆ 1 , we have that ∆ 1 =⇒ ∆ 1 and ∆ ≡ pr i ∆ 1 , therefore, by induction hypothesis, ∆ =⇒

and we have 2 subcases:

The Church-Rosser property follows.

Theorem 4.5 (Confluence).

Proof. Thanks to the first two points of Lemma 4.3, we know that -→ -→ is the transitive closure of =⇒, therefore we can deduce the confluence property of -→ -→ with the usual diagram chase, as suggested below.

∆ 0,0

The next lemma says that all type derivations for ∆ have an unique type.

Lemma 4.6 (Unicity of typing).

If B T R ∆ : σ, then σ is unique. Proof. By induction on the shape of ∆.

The next lemma proves inversion properties on typable ∆-terms.

Lemma 4.7 (Generation).

(1

R ∆ τ : ρ, then ρ ≡ τ and there is σ such that σ T τ and B T R ∆ : σ. Proof. The typing rules are uniquely syntax-directed, therefore we can immediately conclude.

The next lemma says that all subterms of a typable ∆-term are typable too. Lemma 4.9 (Free-variable properties).

(1) If B T R ∆ : σ, and B ⊇ B, then

By induction on the derivation of B T R ∆ : σ. The next lemma also says that essence is closed under substitution.

Lemma 4.10 (Substitution).

(1)

(1) by induction on the shape of ∆ 1 ;

(2) by induction on the derivation. As an illustration, we show the case when the last applied rule is (∩I). Then we have that B, x:σ T R ∆ 1 , ∆ 1 : τ ∩τ and B T R ∆ 2 : σ; by induction hypothesis we have

In order to prove subject reduction, we need to prove that reducing ∆-terms preserve the side-condition ∆ 1 R ∆ 2 when typing the strong pair ∆ 1 , ∆ 2 . We prove this in the following lemma.

Lemma 4.11 (Essence reduction).

(1

If ∆ 1 is a redex, then we have three cases:

R , and thanks to Lemma 4.7(4), we have that

For the contextual closure, we have that ∆ 1 ≡ ∆[∆ /x], where ∆[] is a surrounding context and ∆ is a redex, and ∆ 2 is ∆[∆ /x] where ∆ is the contractum of ∆ . Then, by Lemma 4.8 we know that ∆ is typable and then we conclude by Lemma 4.10.

The next theorem states that all the ∆ T ≡ typed systems preserve synchronous βpr i -reduction, and all the ∆ T = β and ∆ T = βη typed systems preserve βpr i -reduction. Theorem 4.12 (Subject reduction for βpr i).

(1

If ∆ 1 is a βpr i -redex, then we proceed as usual using Lemmas 4.7 and 4.10. For the contextual closure, we proceed by induction on the derivation: we illustrate the most important case, namely (∩I) where we have to check that the essence condition is preserved. According to R we distinguish two cases:

(1) (Case where R is ≡).

• by Lemma 4.11 we have that ∆ 1 R ∆ 1 and ∆ 2 R ∆ 2 ;

• by induction hypothesis we have that

The next theorem states that some of the typed systems on the back of the ∆-chair preserve η-reduction.

Theorem 4.13 (Subject reduction for η for T CDV , T BCD).

then we proceed as usual using Lemmas 4.7 and 4.9. For the contextual closure the proof proceeds exactly as in Theorem 4.12.

Remark 4.14 (About subject expansion). We know that some of the intersection type assignment systems à la Curry (viz. λ BCD ∩ and λ CDS ∩) satisfy the subject β-expansion property: one may ask whether this property can also be meaningful in typed systems à la Church. It is not surprising to see that the answer is negative because type-decorations of bound variables are hard-coded in the λ-abstraction and cannot be forgotten. As a trivial example of the failure of the subject-expansion in all the typed systems, consider the following reduction:

(λx:σ.x) (λx:σ.x) -→ (λx:σ.x) Obviously we can type T R (λx:σ.x) : σ → σ but T R (λx:σ.x) (λx:σ.x) : σ → σ.