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Abstract. We present the ∆-calculus, an explicitly typed λ-calculus with strong pairs,
projections and explicit type coercions. The calculus can be parametrized with different
intersection type theories T , e.g. the Coppo-Dezani, the Coppo-Dezani-Sallé, the Coppo-
Dezani-Venneri and the Barendregt-Coppo-Dezani ones, producing a family of ∆-calculi
with related intersection typed systems. We prove the main properties like Church-Rosser,
unicity of type, subject reduction, strong normalization, decidability of type checking and
type reconstruction. We state the relationship between the intersection type assignment
systems à la Curry and the corresponding intersection typed systems à la Church by means
of an essence function translating an explicitly typed ∆-term into a pure λ-term one. We
finally translate a ∆-term with type coercions into an equivalent one without them; the
translation is proved to be coherent because its essence is the identity. The generic ∆-
calculus can be parametrized to take into account other intersection type theories as the
ones in the Barendregt et al. book.

1. Introduction

Intersection type theories T were first introduced as a form of ad hoc polymorphism in
(pure) λ-calculi à la Curry. The paper by Barendregt, Coppo, and Dezani [BCDC83] is a
classic reference, while [BDS13] is a definitive reference.
Intersection type assignment systems λT∩ have been well-known in the literature for al-
most 40 years for many reasons: among them, characterization of strongly normalizing
λ-terms [BDS13], λ-models [ABD06], automatic type inference [KW04], type inhabitation
[Urz99, RU12], type unification [DMR17]. As intersection had its classical development
for type assignment systems, many papers tried to find an explicitly typed λ-calculus à la
Church corresponding to the original intersection type assignment systems à la Curry. The
programming language Forsythe, by Reynolds [Rey88], is probably the first reference, while
Pierce’s Ph.D. thesis [Pie91a] combines also unions, intersections and bounded polymor-
phism. In [WDMT02] intersection types were used as a foundation for typed intermediate
languages for optimizing compilers for higher-order polymorphic programming languages;
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implementations of typed programming language featuring intersection (and union) types
can be found in SML-CIDRE [Dav05] and in StardustML [Dun07, Dun14].
Annotating pure λ-terms with intersection types is not simple: a classical example is the
difficulty to decorate the bound variable of the explicitly typed polymorphic identity λx:?.x
such that the type of the identity is (σ → σ)∩ (τ → τ): previous attempts showed that the
full power of the intersection type discipline can be easily lost.
In this paper, we define and prove the main properties of the ∆-calculus, a generic intersec-
tion typed system for an explicitly typed λ-calculus à la Church enriched with strong pairs,
denoted by 〈∆1 ,∆2〉, projections, denoted by pri ∆, and type coercions, denoted by ∆σ.
A strong pair 〈∆1 ,∆2〉 is a special kind of cartesian product such that the two parts of a
pair satisfies a given property R on their “essence”, that is o∆1 o R o∆2 o.
An essence o∆ o of a ∆-term is a pure λ-term obtained by erasing type decorations, projec-
tions and choosing one of the two elements inside a strong pair. As examples,

o 〈λx:σ ∩ τ.pr2 x , λx:σ ∩ τ.pr1 x〉 o = λx.x

oλx:(σ → τ) ∩ σ.(pr1 x)(pr2 x) o = λx.x x

oλx:σ ∩ (τ ∩ ρ).〈〈pr1 x , pr2 pr1 x〉 , pr2 pr2 x〉 o = λx.x

and so on. Therefore, the essence of a ∆-term is its untyped skeleton: a strong pair 〈∆1 ,∆2〉
can be typechecked if and only if o∆1 o R o∆2 o is verified, otherwise the strong pair will
be ill-typed. The essence also gives the exact mapping between a term and its typing
à la Church and its corresponding term and type assignment à la Curry. Changing the
parameters T and R results in defining a totally different intersection typed system. For
the purpose of this paper, we study the four well-known intersection type theories T , namely
Coppo-Dezani TCD [CDC80], Coppo-Dezani-Sallé TCDS [CDCS79], Coppo-Dezani-Venneri
TCDV [CDCV81] and Barendregt-Coppo-Dezani TBCD [BCDC83]. We will inspect the above
type theories using three equivalence relations R on pure λ-terms, namely ≡,=β and =βη.
The combination of the above T andR allows to define ten meaningful typed systems for the
∆-calculus that can be pictorially displayed in a “∆-chair” (see Definition 2.9). Following
the same style as in the Barendrengt et al. book [BDS13], the edges in the chair represent
an inclusion relation over the set of derivable judgments.
A type coercion ∆τ is a term of type τ whose type-decoration denotes an application of a
subsumption rule to the term ∆ of type σ such that σ 6T τ : if we omit type coercions,
then we lose the uniqueness of type property.
Section 3 shows a number of typable examples in the systems presented in the ∆-chair:
each example is provided with a corresponding type assignment derivation of its essence.
Some historical examples of Pottinger [Pot80], Hindley [Hin82] and Ben-Yelles [BY79] are
essentially re-decorated and inhabited (when possible) in the ∆-calculus. The aims of this
section is both to make the reader comfortable with the different intersection typed systems,
and to give a first intuition of the correspondence between Church-style and Curry-style
calculi.
Section 4 proves the metatheory for all the systems in the ∆-chair: Church-Rosser, unicity
of type, subject reduction, strong normalization, decidability of type checking and type
reconstruction.



Section 5 studies the relations between intersection type assignment systems à la Curry and
the corresponding intersection typed systems à la Church. Notions of soundness, complete-
ness and isomorphism will relate type assignment and typed systems. We also show how
to get rid of type coercions ∆τ defining a translation function, denoted by ‖ ‖, inspired by
the one of Tannen et al. [TCGS91]: the intuition of the translation is that if ∆ has type σ
and σ 6T τ , then ‖σ 6T τ‖ is a ∆-term of type σ → τ , (‖σ 6T τ‖ ‖∆‖) has type τ and
o ‖σ 6T τ‖ o is the identity λx.x.

1.1. λ-calculi with intersection types à la Church.
Several calculi à la Church appeared in the literature: they more or less capture the power
of intersection types; we briefly review them.
The Forsythe programming language by Reynolds [Rey88] annotates a λ-abstraction with
types as in λx:σ1|· · ·|σn.M . However, we cannot type a typed term, whose type erasure is
the combinator K ≡ λx.λy.x, with the type (σ → σ → σ) ∩ (τ → τ → τ).
Pierce [Pie91b] improves Forsythe by using a for construct to build ad hoc polymorphic
typing, as in forα ∈ {σ, τ}.λx:α, λy:α.x. However, we cannot type a typed term, whose
type erasure is λx.λy.λz.(x y , x z), with the type

((σ → ρ) ∩ (τ → ρ′)→ σ → τ → ρ× ρ′) ∩ ((σ → σ) ∩ (σ → σ)→ σ → σ → σ × σ).

Freeman and Pfenning [FP91] introduced refinement types, that is types that allow ad hoc
polymorphism for ML constructors. Intuitively, refinement types can be seen as subtypes
of a standard type: the user first defines a type and then the refinement types of this
type. The main motivation for these refinement types is to allow non-exhaustive pattern
matching, which becomes exhaustive for a given refinement of the type of the argument. As
an example, we can define a type boolexp for boolean expressions, with constructors True,
And, Not and Var, and a refinement type ground for boolean expressions without variables,
with the same constructors except Var: then, the constructor True has type boolexp∩ground,
the constructor And has type (boolexp∗boolexp→ boolexp)∩ (ground∗ground→ ground) and
so on. However, intersection is meaningful only when using constructors.
Wells et al. [WDMT02] introduced λCIL, a typed intermediate λ-calculus for optimizing
compilers for higher-order programming languages. The calculus features intersection, union
and flow types, the latter being useful to optimize data representation. λCIL can faithfully
encode an intersection type assignment derivation by introducing the concept of virtual
tuple, i.e. a special kind of pair whose type erasure leads to exactly the same untyped λ-
term. A parallel context and parallel substitution, similar to the notion of [LR05, LR07], is
defined to reduce expressions in parallel inside a virtual tuple. Subtyping is defined only on
flow types and not on intersection types: this system can encode the λCD

∩ type assignment
system.
Wells and Haak [WH02] introduced λB, a more compact typed calculus encoding of λCIL:
in fact, by comparing Fig. 1 and Fig. 2 of [WH02] we can see that the set of typable
terms with intersection types of λCIL and λB are the same. In that paper, virtual tuples are
removed by introducing branching terms, typable with branching types, the latter repre-
senting intersection type schemes. Two operations on types and terms are defined, namely
expand, expanding the branching shape of type annotations when a term is substituted into
a new context, and select, to choose the correct branch in terms and types. As there are



no virtual tuples, reductions do not need to be done in parallel. As in [WDMT02], the λCD
∩

type assignment system can be encoded.
Frisch et al. [FCB08] designed a typed system with intersection, union, negation and re-
cursive types whose semantics are loosely the corresponding set-theoretical constructs. The
authors inherit the usual problem of having a domain space D that contains all the terms
and, at the same time, all the functions from D to D. They prevent this by forbidding
nested arrows, and by having an auxiliary domain space which is the disjoint union of D2

and P(D2). The subtyping relation is a relation on the set-theoretical interpretation J K of
the types. For instance, the problem σ∩ τ 6 σ will be interpreted as JσK∩ JτK ⊆ JσK, where
∩ becomes the set intersection operator, and the decision program actually decides whether
(JσK ∩ JτK) ∩ JσK is the empty set.
Bono et al. [BVB08] introduced a relevant and strict parallel term constructor to build
inhabitants of intersections and a simple call-by-value parallel reduction strategy. An infinite
number of constants cσ⇒τ is applied to typed variables xσ such that cσ⇒τ xσ is upcasted to
type τ . It also uses an unusual local renaming typing rule, which changes type decoration in
λ-abstractions, as well as coercions. Term synchronicity in the tuples is guaranteed by the
typing rules. The calculus uses van Bakel’s strict version [Bak04] of the TCD intersection
type theory.

1.2. Logics for intersection types. Proof-functional (or strong) logical connectives, in-
troduced by Pottinger [Pot80], take into account the shape of logical proofs, thus allowing
for polymorphic features of proofs to be made explicit in formulæ. This differs from classical
or intuitionistic connectives where the meaning of a compound formula is only dependent
on the truth value or the provability of its subformulæ.
Pottinger was the first to consider the intersection ∩ as a proof-functional connective. He
contrasted it to the intuitionistic connective ∧ as follows: “The intuitive meaning of ∩ can
be explained by saying that to assert A ∩B is to assert that one has a reason for asserting
A which is also a reason for asserting B, while to assert A ∧ B is to assert that one has a
pair of reasons, the first of which is a reason for asserting A and the second of which is a
reason for asserting B”.
A simple example of a logical theorem involving intuitionistic conjunction which does not
hold for proof-functional conjunction is (A ⊃ A) ∧ (A ⊃ B ⊃ A). Otherwise there would
exist a term which behaves both as I and as K. Later, Lopez-Escobar [LE85] and Mints
[Min89] investigated extensively logics featuring both proof-functional and intuitionistic
connectives especially in the context of realizability interpretations.
It is not immediate to extend the judgments-as-types Curry-Howard paradigm to logics
supporting proof-functional connectives. These connectives need to compare the shapes of
derivations and do not just take into account their provability, i.e. the inhabitation of the
corresponding type.
There are many proposals to find a suitable logics to fit intersection types; among them
we cite [Ven94, RR01, Miq01, CLV01, BVB08, PRR12], and previous papers by the au-
thors [DdLS16, LS17, SLHS17]. All logical aspects of the ∆-calculus will be treated in a
companion paper [LS18].



Minimal type theory 6min

(refl) σ 6 σ (incl) σ ∩ τ 6 σ, σ ∩ τ 6 τ

(glb) ρ 6 σ, ρ 6 τ ⇒ ρ 6 σ ∩ τ (trans) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

Axiom schemes
(Utop) σ 6 U (U→) U 6 σ → U

(→∩) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)
Rule scheme
(→) σ2 6 σ1, τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

Figure 1: Minimal type theory 6min, axioms and rule schemes (see Fig. 13.2 and 13.3 of
[BDS13])

1.3. Raising the ∆-calculus to a ∆-framework. In the future, we plan to extend the
generic typed system for the ∆-calculus with union types, relevant arrow types and de-
pendent types: some preliminary results can be found in [DdLS16, LS17, SLHS17] by the
authors. In a nutshell:
Strong disjunction is a proof-functional connective that can be interpreted as the union
type ∪ [DdLS16, SLHS17]: it contrasts with the intuitionistic connective ∨. As Pottinger
did for intersection, we could say that asserting (A ∪ B) ⊃ C is to assert that one has a
reason for (A ∪ B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. A simple
example of a logical theorem involving intuitionistic disjunction which does not hold for
strong disjunction is ((A ⊃ B) ∪ B) ⊃ A ⊃ B. Otherwise there would exist a term which
behaves both as I and as K.
Strong (relevant) implication is yet another proof-functional connective that was interpreted
in [BM94] as a relevant arrow type →r. As explained in [BM94], it can be viewed as a
special case of implication whose related function space is the simplest one, namely the one
containing only the identity function. Because the operators ⊃ and→r differ, A→r B →r A
is not derivable.
Dependent types, as introduced in the Edinburgh Logical Framework [HHP93] by Harper
et al., allows considering proofs as first-class citizens albeit differently with respect to
proof-functional logics. The interaction of both dependent and proof-functional opera-
tors is intriguing: the former mentions proofs explicitly, while the latter mentions proofs
implicitly. Their combination therefore opens up new possibilities of formal reasoning on
proof-theoretic semantics.

2. Syntax, Reduction and Types

Definition 2.1 (Type atoms, type syntax, type theories and type assignment systems).
We briefly review some basic definition from Subsection 13.1 of [BDS13], in order to define
type assignment systems. The set of atoms, intersection types, intersection type theories
and intersection type assignment systems are defined as follows:

(1) (Atoms). Let A denote a set of symbols which we will call type atoms, and let
U be a special type atom denoting the universal type. In particular, we will use
A∞ = {ai | i ∈ N} with ai being different from U and AU

∞ = A∞ ∪ {U}.



x:σ ∈ B
B `T∩ x : σ

(ax)
B, x:σ `T∩ M : τ

B `T∩ λx.M : σ → τ
(→I)

B `T∩ M : σ B `T∩ M : τ
B `T∩ M : σ ∩ τ

(∩I)
B `T∩ M : σ → τ B `T∩ N : σ

B `T∩ M N : τ
(→E)

B `T∩ M : σ ∩ τ
B `T∩ M : σ

(∩E1)
B `T∩ M : σ ∩ τ
B `T∩ M : τ

(∩E2)

U ∈ A
B `T∩ M : U

(top)
B `T∩ M : σ σ 6T τ

B `T∩ M : τ
(6T )

Figure 2: Generic intersection type assignment system λT∩ (see Figure 13.8 of [BDS13])

λT∩ T A 6min plus ref.
λCD
∩ TCD A∞ − [CDC80]
λCDS
∩ TCDS AU

∞ (Utop) [CDCS79]
λCDV
∩ TCDV A∞ (→), (→∩) [CDCV81]
λBCD
∩ TBCD AU

∞ (→), (→∩), (Utop), (U→) [BCDC83]

Figure 3: Type theories λCD
∩ , λCDS

∩ , λCDV
∩ , and λBCD

∩ . The ref. column refers to the original
article these theories come from.

(2) (Syntax). The syntax of intersection types, parametrized by A, is:
σ ::= A | σ → σ | σ ∩ σ

(3) (Intersection type theories T ). An intersection type theory T is a set of sen-
tences of the form σ 6 τ satisfying at least the axioms and rules of the minimal
type theory 6min defined in Figure 1. The type theories TCD, TCDV, TCDS, and TBCD
are the smallest type theories over A satisfying the axioms and rules given in Figure
3. We write T1 v T2 if, for all σ, τ such that σ 6T1 τ , we have that σ 6T2 τ . In
particular TCD v TCDV v TBCD and TCD v TCDS v TBCD. We will sometime note,
for instance, BCD instead of TBCD.

(4) (Intersection type assignment systems λT∩). We define in Figure 2§ an infinite
collection of type assignment systems parametrized by a set of atoms A and a type
theory T . We name four particular type assignment systems in the table below,
which is an excerpt from Figure 13.4 of [BDS13].
B `T∩ M : σ denotes a derivable type assignment judgment in the type assignment
system λT∩. Type checking is not decidable for λCD

∩ , λCDV
∩ , λCDS

∩ , and λBCD
∩ .

2.1. The ∆-calculi. Intersection type assignment systems and ∆-calculi have in common
their type syntax and intersection type theories. The generic syntax of the ∆-calculus is
defined as follows.

§Although rules (∩Ei) are derivable with 6min, we add them for clarity.



Definition 2.2 (Generic ∆-calculus syntax).
∆ ::= u∆ | x | λx:σ.∆ | ∆ ∆ | 〈∆ ,∆〉 | pri ∆ | ∆σ i ∈ {1, 2}

u∆ denotes an infinite set of constants, indexed with a particular untyped ∆-term. ∆σ

denotes an explicit coercion of ∆ to type σ. The expression 〈∆ ,∆〉 denotes a pair that,
following the Lopez-Escobar jargon [LE85], we call “strong pair” with respective projections
pr1 and pr2 .
The essence function o o is an erasing function mapping typed ∆-terms into pure λ-terms.
It is defined as follows.

Definition 2.3 (Essence function).

ox o def= x o∆σ o def= o∆ o

oλx:σ.∆ o def= λx.o∆ o o∆1 ∆2 o
def= o∆1 o o∆2 o

o 〈∆1 ,∆2〉 o
def= o∆1 o o pri ∆ o def= o∆ o i ∈ {1, 2}

ou∆ o
def= o∆ o

One could argue that the choice of o 〈∆1 ,∆2〉 o
def= o∆1 o is arbitrary and could have been

replaced with o 〈∆1 ,∆2〉 o
def= o∆2 o. However, the typing rules will ensure that, if 〈∆1 ,∆2〉 is

typable, then, for some suitable equivalence relation R, we have that o∆1 o R o∆2 o. Thus,
strong pairs can be viewed as constrained cartesian products.
The generic reduction semantics reduces terms of the ∆-calculus as follows.

Definition 2.4 (Generic reduction semantics).
Syntactical equality is denoted by ≡.

(1) (Substitution) Substitution on ∆-terms is defined as usual, with the additional
rules:

u∆1 [∆2/x] def= u(∆1[∆2/x])

∆σ
1 [∆2/x] def= (∆1[∆2/x])σ

(2) (One-step reduction). We define three notions of reduction:
(λx:σ.∆1) ∆2 −→ ∆1[∆2/x] (β)
pri 〈∆1 ,∆2〉 −→ ∆i i ∈ {1, 2} (pri )

λx:σ.∆x −→ ∆ x 6∈ FV(∆) (η)
Observe that (λx:σ.∆1)σ ∆2 is not a redex, because the λ-abstraction is coerced.
The contextual closure is defined as usual except for reductions inside the index of
u∆ that are forbidden (even though substitutions are propagated). We write −→βpri
for the contextual closure of the (β) and (pri ) notions of reduction, −→η for the
contextual closure of (η). We also define a synchronous contextual closure, which is
like the usual contextual closure except for the strong pairs, as defined in point (3).
Synchronous contextual closure of the notions of reduction generates the reduction
relations −→‖βpri and −→‖η.



U ∈ A
B `TR u∆ : U

(top) x:σ ∈ B
B `TR x : σ

(ax)
B, x:σ `TR ∆ : τ

B `TR λx:σ.∆ : σ → τ
(→I)

B `TR ∆1 : σ B `TR ∆2 : τ o∆1 o R o∆2 o
B `TR 〈∆1 ,∆2〉 : σ ∩ τ

(∩I)
B `TR ∆1 : σ → τ B `TR ∆2 : σ

B `TR ∆1 ∆2 : τ
(→E)

B `TR ∆ : σ ∩ τ
B `TR pr1 ∆ : σ

(∩E1)
B `TR ∆ : σ ∩ τ
B `TR pr2 ∆ : τ

(∩E2)
B `TR ∆ : σ σ 6T τ

B `TR ∆τ : τ
(6T )

Figure 4: Generic intersection typed system ∆TR

(3) (Synchronous closure of −→‖). Synchronous closure is defined on the strong
pairs with the following constraint:

∆1 −→‖ ∆′1 ∆2 −→‖ ∆′2 o∆′1 o ≡ o∆′2 o
〈∆1 ,∆2〉 −→‖ 〈∆′1 ,∆′2〉

(Clos‖)

Note that we reduce in the two components of the strong pair;
(4) (Multistep reduction). We write −→−→βpri (resp. −→−→‖βpri ) as the reflexive and

transitive closure of −→βpri (resp. −→‖βpri );
(5) (Congruence). We write =βpri as the symmetric, reflexive, transitive closure of
−→−→βpri .

We mostly consider βpri -reductions, thus to ease the notation we omit the subscript in
βpri -reductions.
The next definition introduces a notion of synchronization inside strong pairs.
Definition 2.5 (Synchronization).
A ∆-term is synchronous if and only if, for all its subterms of the shape 〈∆1 ,∆2〉, we have
that o∆1 o ≡ o∆2 o.
It is easy to verify that −→‖ preserves synchronization, while it is not the case for −→.
The next definition introduces a generic intersection typed system for the ∆-calculus that
is parametrizable by suitable equivalence relations on pure λ-terms R and type theories T
as follows.
Definition 2.6 (Generic intersection typed system).
The generic intersection typed system is defined in Figure 4. We denote by ∆TR a particular
typed system with the type theory T and under an equivalence relationR and byB `TR ∆ : σ
a corresponding typing judgment.
The typing rules are mostly intuitive for a calculus à la Church except rules (∩I), (top) and
(6T ).
The typing rule for a strong pair (∩I) is similar to the typing rule for a cartesian product,
except for the side-condition o∆1 o R o∆2 o, forcing the two parts of the strong pair to have
essences compatible under R, thus making a strong pair a special case of a cartesian pair.
For instance, 〈λx:σ.λy:τ.x , λx:σ.x〉 is not typable in ∆T≡; 〈(λx:σ.x) y , y〉 is not typable in
∆T≡ but it is in ∆T=β ; 〈x , λy:σ.((λz:τ.z)x) y〉 is not typable in ∆T≡ nor ∆T=β but it is in ∆T=βη .
In the typing rule (top), the subscript ∆ in u∆ is not necessarily typable so ou∆ o can easily
be any arbitrary λ-term.



The typing rule (6T ) allows to change the type of a ∆-term from σ to τ if σ 6T τ : the term
in the conclusion must record this change with an explicit type coercion τ , producing the
new term ∆τ : explicit type coercions are important to keep the unicity of typing derivations.
The next definition introduces a partial order over equivalence relations on pure λ-terms
and an inclusion over typed systems as follows.

Definition 2.7 (R and v).
(1) Let R ∈ {≡,=β,=βη}. R1 v R2 if, for all pure λ-terms M,N such that M R1 N ,

we have that M R2 N ;

(2) if B `T1
R1

∆ : σ and ∆T1
R1 v ∆T2

R2 , then B `T2
R2

∆ : σ.

Fact 2.8.
(1) ∆CD

R v ∆CDS
R v ∆BCD

R and ∆CD
R v ∆CDV

R v ∆BCD
R ;

(2) ∆T1
R1 v ∆T2

R2 if T1 v T2 and R1 v R2.

2.2. The ∆-chair. The next definition classifies ten typed systems for the ∆-calculus:
some of them already appeared (sometime with a different notation) in the literature by
the present authors.

Definition 2.9 (∆-chair).
Ten typed systems ∆TR can be drawn pictorially in a ∆-chair, where the arrows represent
an inclusion relation.

∆CD
≡

∆CD
=β

∆CDV
≡

∆CDV
=β

∆CDS
≡

∆CDS
=β

∆BCD
≡

∆BCD
=β

∆CDV
=βη

∆BCD
=βη

∆CD
≡ corresponds roughly to [LR05, LR07] (in the expression M@∆, M is the essence of

∆) and in its intersection part to [SLHS17]; ∆CDS
≡ corresponds roughly in its intersection

part to [DL10], ∆BCD
≡ corresponds in its intersection part to [LS17], ∆CD

=βη
corresponds in

its intersection part to [DdLS16]. The other typed systems are basically new. The main
properties of these systems are:

(1) All the ∆T≡ systems enjoys the synchronous subject reduction property, the other
systems also enjoy ordinary subject reduction (Theorem 4.12);

(2) All the systems strongly normalize (Theorem 4.17);



(3) Type checking and type reconstruction are decidable for all the systems, except
∆CDS

=β
, ∆BCD

=β
, and ∆BCD

=βη
(Theorem 5.4);

(4) All the systems correspond to the to original type assignment systems except ∆CDV
=βη

and ∆BCD
=βη

(Theorem 5.2).

3. Examples

This section shows suitable examples of typed derivations ∆TR and highlights the corre-
sponding pure type assignment judgment in λT∩ they correspond to, in the sense that we
have a derivation B `TR ∆ : σ and another derivation B `T∩ o∆ o : σ. The correspondence
between intersection typed systems ∆TR and intersection type assignment λT∩ will be clearly
defined in Subsection 5.1.

Example 3.1 (Polymorphic identity).
In all of the intersection type assignment systems λT∩ we can derive

`T∩ λx.x : (σ → σ) ∩ (τ → τ)
A corresponding ∆-term is:

〈λx:σ.x , λx:τ.x〉
that can be typed in all of the typed systems of the ∆-chair as follows

x:σ `TR x : σ
`TR λx:σ.x : σ → σ

x:τ `TR x : τ
`TR λx:τ.x : τ → τ λx.x R λx.x

`TR 〈λx:σ.x , λx:τ.x〉 : (σ → σ) ∩ (τ → τ)

Example 3.2 (Auto application).
In all of the intersection type assignment systems we can derive

`T∩ λx.x x : ((σ → τ) ∩ σ)→ τ

A corresponding ∆-term is:
λx:(σ → τ) ∩ σ.(pr1 x)(pr2 x)

that can be typed in all of the typed systems of the ∆-chair as follows
x:(σ → τ) ∩ σ `TR x : (σ → τ) ∩ σ
x:(σ → τ) ∩ σ `TR pr1 x : σ → τ

x:(σ → τ) ∩ σ `TR x : (σ → τ) ∩ σ
x:(σ → τ) ∩ σ `TR pr2 x : σ

x:(σ → τ) ∩ σ `TR (pr1 x)(pr2 x) : τ
`TR λx:(σ → τ) ∩ σ.(pr1 x)(pr2 x) : (σ → τ) ∩ σ → τ

Example 3.3 (Some examples in ∆CDS
R ).

In λCDS
∩ we can derive

`TCDS
∩ (λx.λy.x) : σ → U→ σ

and using this type assignment, we can derive z:σ `TCDS
∩ (λx.λy.x) z z : σ. A corresponding

∆-term is:
(λx:σ.λy:U.x) z zU



that can be typed in ∆CDS
R as follows

z:σ, x:σ, y:U `TCDS
R x : σ

z:σ, x:σ `TCDS
R λy:U.x : U→ σ

z:σ `TCDS
R λx:σ.λy:U.x : σ → U→ σ z:σ `TCDS

R z : σ
z:σ `TCDS

R (λx:σ.λy:U.x) z : U→ σ

z:σ `TCDS
R z : σ σ 6TCDS U

z:σ `TCDS
R zU : U

z:σ `TCDS
R (λx:σ.λy:U.x) z zU : σ

As another example, we can also derive
`TCDS
∩ λx.x : σ → σ ∩ U

A corresponding ∆-term is:
λx:σ.〈x , xU〉

that can be typed in ∆CDS
R as follows

x:σ `TCDS
R x : σ

x:σ `TCDS
R x : σ σ 6TCDS U

x:σ `TCDS
R xU : U x R x

x:σ `TCDS
R 〈x , xU〉 : σ ∩ U

`TCDS
R λx:σ.〈x , xU〉 : σ → σ ∩ U

Example 3.4 (An example in ∆CDV
R ).

In λCDV
∩ we can prove the commutativity of intersection, i.e.

`TCDV
∩ λx.x : σ ∩ τ → τ ∩ σ

A corresponding ∆-term is:
〈λx:σ ∩ τ.pr2 x , λx:σ ∩ τ.pr1 x〉(σ∩τ)→(τ∩σ)

that can be typed in ∆CDV
R as follows

x:σ ∩ τ `TCDS
R x : σ ∩ τ

x:σ ∩ τ `TCDS
R pr2 x : τ

`TCDS
R λx:σ ∩ τ.pr2 x : (σ ∩ τ)→ τ

x:σ ∩ τ `TCDS
R x : σ ∩ τ

x:σ ∩ τ `TCDS
R pr1 x : σ

`TCDS
R λx:σ ∩ τ.pr1 x : (σ ∩ τ)→ σ λx.x R λx.x

`TCDS
R 〈λx:σ ∩ τ.pr2 x , λx:σ ∩ τ.pr1 x〉 : ((σ ∩ τ)→ τ) ∩ ((σ ∩ τ)→ σ) ∗

`TCDS
R 〈λx:σ ∩ τ.pr2 x , λx:σ ∩ τ.pr1 x〉(σ∩τ)→(τ∩σ) : (σ ∩ τ)→ (τ ∩ σ)

where ∗ is ((σ ∩ τ)→ τ) ∩ ((σ ∩ τ)→ σ) 6TCDV (σ ∩ τ)→ (τ ∩ σ).

Example 3.5 (Another polymorphic identity in ∆T=β ).
In all the ∆T=β you can type this ∆-term:

〈λx:σ.x , (λx:τ→τ.x) (λx:τ.x)〉



The typing derivation is thus:

x:σ `T=β x : σ

`T=β λx:σ.x : σ → σ

x:τ → τ `T=β x : τ → τ

`T=β λx:τ→τ.x : (τ → τ)→ (τ → τ)

x:τ `T=β x : τ

`T=β λx:τ.x : τ → τ

`T=β (λx:τ→τ.x) (λx:τ.x) : τ → τ λx.x =β (λx.x) (λx.x)

`T=β 〈λx:σ.x , (λx:τ→τ.x) (λx:τ.x)〉 : (σ → σ) ∩ (τ → τ)

Example 3.6 (Two examples in ∆BCD
≡ and ∆BCD

=βη
).

In λBCD
∩ we can can type any term, including the non-terminating term

Ω def= (λx.x x) (λx.x x)
More precisely, we have:

`TBCD
∩ Ω : U

A corresponding ∆-term whose essence is Ω is:
(λx:U.xU→U x) (λx:U.xU→U x)U

that can be typed in ∆BCD
R as follows

∗
`TBCD
R λx:U.xU→U x : U→ U

∗
`TBCD
R λx:U.xU→U x : U→ U U→ U 6TBCD U

`TBCD
R (λx:U.xU→U x)U : U

`TBCD
R (λx:U.xU→U x) (λx:U.xU→U x)U : U

where ∗ is
x:U `TBCD

R x : U U 6TBCD U→ U

x:U `TBCD
R xU→U : U→ U x:U `TBCD

R x : U

x:U `TBCD
R xU→U x : U

In λBCD
∩ we can type

x:U→ U `TBCD
∩ x : (U→ U) ∩ (σ → U)

A corresponding ∆-term whose essence is x is:
〈x , λy:σ.x yU〉

that can be typed in ∆BCD
=βη

as follows:

x:U→ U `TBCD=βη x : U→ U

x:U→ U, y:σ `TBCD=βη x : U→ U

x:U→ U, y:σ `TBCD=βη y : σ σ 6 U

x:U→ U, y:σ `TBCD=βη yU : U

x:U→ U, y:σ `TBCD=βη x yU : U

x:U→ U `TBCD=βη λy:σ.x yU : σ → U x =βη λy.x y

x:U→ U `TBCD=βη 〈x , λy:σ.x yU〉 : (U→ U) ∩ (σ → U)

Note that the =βη condition has an interesting loophole, as it is well-known that λBCD
∩

does not enjoy =η-conversion property. Theorem 5.1(1) will show that we can construct a
∆-term which does not correspond to any λBCD

∩ derivation.



Example 3.7 (Pottinger).
The following examples can be typed in all the type theories of the ∆-chair (we also display
in square brackets the corresponding pure λ-terms typable in λT∩). These are encodings
from the examples à la Curry given by Pottinger in [Pot80].

[λx.λy.x y]
`TR λx:(σ → τ) ∩ (σ → ρ).λy:σ.〈(pr1 x) y) , (pr2 x) y〉 : (σ → τ) ∩ (σ → ρ)→ σ → τ ∩ ρ
[λx.λy.x y]
`TR λx:σ → τ ∩ ρ.〈λy:σ.pr1 (x y) , λy:σ.pr2 (x y)〉 : (σ → τ ∩ ρ)→ (σ → τ) ∩ (σ → ρ)
[λx.λy.x y]
`TR λx:σ → ρ.λy:σ ∩ τ.x (pr1 y) : (σ → ρ)→ σ ∩ τ → ρ

[λx.λy.x]
`TR λx:σ ∩ τ.λy:σ.pr2 x : σ ∩ τ → σ → τ

[λx.λy.x y y]
`TR λx:σ → τ → ρ.λy:σ ∩ τ.x (pr1 y) (pr2 y) : (σ → τ → ρ)→ σ ∩ τ → ρ

[λx.x]
`TR λx:σ ∩ τ.pr1 x : σ ∩ τ → σ

[λx.x]
`TR λx:σ.〈x , x〉 : σ → σ ∩ σ
[λx.x]
`TR λx:σ ∩ (τ ∩ ρ).〈〈pr1 x , pr1 pr2 x〉 , pr2 pr2 x〉 : σ ∩ (τ ∩ ρ)→ (σ ∩ τ) ∩ ρ

In the same paper, Pottinger lists some types that cannot be inhabited by any intersection
type assignment in an empty context, namely:

6`T∩ σ → (σ ∩ τ)

6`T∩ (σ → τ)→ (σ → ρ)→ σ → τ ∩ ρ

6`T∩ ((σ ∩ τ)→ ρ)→ σ → τ → ρ

It is not difficult to verify that the above types cannot be inhabited by any of the type
systems of the ∆-chair because of the failure of the essence condition in the strong pair
type rule.

Example 3.8 (Intersection is not the conjunction operator).
This counter-example is from the corresponding counter-example à la Curry given by Hind-
ley [Hin84] and Ben-Yelles [BY79]. The intersection type

(σ → σ) ∩ ((σ → τ → ρ)→ (σ → τ)→ σ → ρ)
where the left part of the intersection corresponds to the type for the combinator I and the
right part for the combinator S cannot be assigned to a pure λ-term. Analogously, the same
intersection type cannot be assigned to any ∆-term.



3.1. On synchronization and subject reduction. For the typed systems ∆T≡, strong
pairs have an intrinsic notion of synchronization: some redexes need to be reduced in a
synchronous fashion unless we want to create meaningless ∆-terms that cannot be typed.
Consider the ∆-term 〈(λx:σ.x) y , (λx:σ.x) y〉. If we use the −→ reduction relation, then the
following reduction paths are legal:

〈(λx:σ.x) y , (λx:σ.x) y〉
1β 〈(λx:σ.x) y , y〉 %β

%β 〈y , (λx:σ.x) y〉 1β
〈y , y〉

More precisely, the first and second redexes are rewritten asynchronously, thus they cannot
be typed in any typed system ∆T≡, because we fail to check the left and the right part of the
strong pair to be the same: the −→‖ reduction relation prevents this loophole and allows
to type all redexes. In summary, −→‖ can be thought of as the natural reduction relation
for the typed systems ∆T≡.

4. Metatheory of ∆TR

4.1. General properties. Unless specified, all properties applies to the intersection typed
systems ∆TR.
The Church-Rosser property is proved using the technique of Takahashi [Tak95]. The
parallel reduction semantics extends Definition 2.4 and it is inductively defined as follows.

Definition 4.1 (Parallel reduction semantics).
x =⇒ x

u∆ =⇒ u∆

∆σ =⇒ (∆′)σ if ∆ =⇒ ∆′

∆1 ∆2 =⇒ ∆′1 ∆′2 if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2
λx:σ.∆ =⇒ λx:σ.∆′ if ∆ =⇒ ∆′

(λx:σ.∆1) ∆2 =⇒ ∆′1[∆′2/x] if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2
〈∆1 ,∆2〉 =⇒ 〈∆′1 ,∆′2〉 if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2

pri ∆ =⇒ pri ∆′ if ∆ =⇒ ∆′ and i ∈ {1, 2}
pri 〈∆1 ,∆2〉 =⇒ ∆′i if ∆i =⇒ ∆′i and i ∈ {1, 2}

Intuitively, ∆ =⇒ ∆′ means that ∆′ is obtained from ∆ by simultaneous contraction of some
βpri -redexes possibly overlapping each other. Church-Rosser can be achieved by proving a
stronger statement, namely

∆ =⇒ ∆′ implies ∆′ =⇒ ∆∗ (4.1)
where ∆∗ is a ∆-term determined by ∆ and independent from ∆′. The statement (4.1) is
satisfied by the term ∆∗ which is obtained from ∆ by contracting all the redexes existing
in ∆ simultaneously.



Definition 4.2 (The map ∗).

x∗
def= x

u∗∆
def= u∆

(∆σ)∗ def= (∆∗)σ

〈∆1 ,∆2〉∗
def= 〈∆∗1 ,∆∗2〉

(λx:σ.∆)∗ def= λx:σ.∆∗

(∆1 ∆2)∗ def= ∆∗1 ∆∗2 if ∆1 ∆2 is not a β-redex

((λx:σ.∆1) ∆2)∗ def= ∆∗1[∆∗2/x]

(pri ∆)∗ def= pri ∆∗ if ∆ is not a strong pair

(pri 〈∆1 ,∆2〉)∗
def= ∆∗i i ∈ {1, 2}

The next technical lemma will be useful in showing that Church-Rosser for −→−→ can be
inherited from Church-Rosser for =⇒.

Lemma 4.3.
(1) If ∆1 −→ ∆′1, then ∆1 =⇒ ∆′1;
(2) if ∆1 =⇒ ∆′1, then ∆1−→−→∆′1;
(3) if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2, then ∆1[∆2/x] =⇒ ∆′1[∆′2/x];
(4) ∆1 =⇒ ∆∗1.

Proof. (1 ) can be proved by induction on the context of the redexes, while (2 ), (3 ), and
(4 ) can be proved by induction on the structure of ∆1.

Now we have to prove the Church-Rosser property for the parallel reduction.

Lemma 4.4 (Confluence property for =⇒).
If ∆ =⇒ ∆′, then ∆′ =⇒ ∆∗.

Proof. By induction on the shape of ∆.
• if ∆ ≡ x, then ∆′ ≡ x =⇒ x ≡ ∆∗;
• if ∆ ≡ u∆, then ∆′ ≡ u∆ =⇒ u∆ ≡ ∆∗;
• if ∆ ≡ ∆σ

1 , then, for some ∆′1, we have that ∆1 =⇒ ∆′1 and ∆′ ≡ (∆′1)σ, therefore,
by induction hypothesis, ∆′ =⇒ (∆∗1)σ ≡ ∆∗;
• if ∆ ≡ 〈∆1 ,∆2〉, then, for some ∆′1 and ∆′2, we have that ∆1 =⇒ ∆′1, ∆2 =⇒ ∆′2

and ∆′ ≡ 〈∆′1 ,∆′2〉. By induction hypothesis, ∆′ =⇒ 〈∆∗1 ,∆∗2〉 ≡ ∆∗;
• if ∆ ≡ λx:σ.∆1, then, for some ∆′1, we have that ∆1 =⇒ ∆′1 and ∆′ ≡ λx:σ.∆′1. By

induction hypothesis, λx:σ.∆′1 =⇒ λx:σ.∆∗1 ≡ ∆∗;
• if ∆ ≡ ∆1 ∆2 and ∆ is not a β-redex, then, for some ∆′1 and ∆′2, we have that

∆1 =⇒ ∆′1, ∆2 =⇒ ∆′2 and ∆′ ≡ ∆′1 ∆′2. By induction hypothesis, ∆′ =⇒ ∆∗1 ∆∗2 ≡
∆∗;
• if ∆ ≡ (λx:σ.∆1) ∆2, then, for some ∆′1 and ∆′2, we have that ∆1 =⇒ ∆′1, ∆2 =⇒ ∆′2

and we have 2 subcases:
– ∆′ ≡ (λx:σ.∆′1) ∆′2: by induction hypothesis, ∆′ =⇒ ∆∗1[∆∗2/x] ≡ ∆∗;



– ∆′ ≡ ∆′1[∆′2/x]: we also have ∆′ =⇒ ∆∗1[∆∗2/x], thanks to point (3) of Lemma
4.3;

• if ∆ ≡ pri ∆1 and ∆1 is not a strong pair, then, for some ∆′1, we have that ∆1 =⇒ ∆′1
and ∆′ ≡ pri ∆′1, therefore, by induction hypothesis, ∆′ =⇒ pri ∆∗1 ≡ ∆∗;
• if ∆ ≡ pri 〈∆1 ,∆2〉, then, for some ∆′1 and ∆′2, we have that ∆1 =⇒ ∆′1, ∆2 =⇒ ∆′2

and we have 2 subcases:
– ∆′ ≡ pri 〈∆′1 ,∆′2〉: by induction hypothesis, ∆′ =⇒ ∆∗i ≡ ∆∗;
– ∆′ ≡ ∆′i: we also have, by induction hypothesis, ∆′ =⇒ ∆∗i ≡ ∆∗.

The Church-Rosser property follows.

Theorem 4.5 (Confluence).
If ∆1−→−→∆2 and ∆1−→−→∆3, then there exists ∆4 such that ∆2−→−→∆4 and ∆3−→−→∆4.

Proof. Thanks to the first two points of Lemma 4.3, we know that −→−→ is the transitive
closure of =⇒, therefore we can deduce the confluence property of −→−→ with the usual
diagram chase, as suggested below.

∆0,0

∆0,1

∆0,2

∆1,0

∆1,1

∆1,2

∆2,0

∆2,1

∆2,2

∆3,0

∆3,1

∆3,2

The next lemma says that all type derivations for ∆ have an unique type.

Lemma 4.6 (Unicity of typing).
If B `TR ∆ : σ, then σ is unique.

Proof. By induction on the shape of ∆.

The next lemma proves inversion properties on typable ∆-terms.

Lemma 4.7 (Generation).
(1) If B `TR x : σ, then x:σ ∈ B;
(2) if B `TR λx:σ.∆ : ρ, then ρ ≡ σ → τ for some τ and B, x:σ `TR ∆ : τ ;
(3) if B `TR ∆1 ∆2 : τ , then there is σ such that B `TR ∆1 : σ → τ and B `TR ∆2 : σ;
(4) if B `TR 〈∆1 ,∆2〉 : ρ, then there is σ, τ such that ρ ≡ σ ∩ τ and B `TR ∆1 : σ and

B `TR ∆2 : τ and o∆1 o R o∆2 o;
(5) if B `TR pr1 ∆ : σ, then there is τ such that B `TR ∆ : σ ∩ τ ;
(6) if B `TR pr2 ∆ : τ , then there is σ such that B `TR ∆ : σ ∩ τ ;
(7) if B `TR u∆ : σ, then σ ≡ U;
(8) if B `TR ∆τ : ρ, then ρ ≡ τ and there is σ such that σ 6T τ and B `TR ∆ : σ.

Proof. The typing rules are uniquely syntax-directed, therefore we can immediately con-
clude.



The next lemma says that all subterms of a typable ∆-term are typable too.

Lemma 4.8 (Subterms typability).
If B `TR ∆ : σ, and ∆′ is a subterm of ∆, then there exists B′ and τ such that B′ ⊇ B and
B′ `TR ∆′ : τ .

Proof. By induction on the derivation of B `TR ∆ : σ.

As expected, the weakening and strengthening properties on contexts are verified.

Lemma 4.9 (Free-variable properties).
(1) If B `TR ∆ : σ, and B′ ⊇ B, then B′ `TR ∆ : σ;
(2) if B `TR ∆ : σ, then FV(∆) ⊆ Dom(B);
(3) if B `TR ∆ : σ, B′ ⊆ B and FV(∆) ⊆ Dom(B′), then B′ `TR ∆ : σ.

Proof. By induction on the derivation of B `TR ∆ : σ.

The next lemma also says that essence is closed under substitution.

Lemma 4.10 (Substitution).
(1) o∆1[∆2/x] o ≡ o∆1 o[o∆2 o/x];
(2) If B, x:σ `TR ∆1 : τ and B `TR ∆2 : σ, then B `TR ∆1[∆2/x] : τ .

Proof.
(1) by induction on the shape of ∆1;
(2) by induction on the derivation. As an illustration, we show the case when the last

applied rule is (∩I). Then we have that B, x:σ `TR 〈∆1 ,∆′1〉 : τ∩τ ′ and B `TR ∆2 : σ;
by induction hypothesis we have B `TR ∆1[∆2/x] : τ and B `TR ∆′1[∆2/x] : τ ′.
Moreover, thanks to point (1), we can show that o∆1[∆2/x] o R o∆′1[∆2/x] o. As a
consequence:
B `TR ∆1[∆2/x] : τ B `TR ∆′1[∆2/x] : τ ′ o∆1[∆2/x] o R o∆′1[∆2/x] o

B `TR 〈∆1 ,∆′1〉[∆2/x] : τ ∩ τ ′
(∩I)

In order to prove subject reduction, we need to prove that reducing ∆-terms preserve the
side-condition o∆1 o R o∆2 o when typing the strong pair 〈∆1 ,∆2〉. We prove this in the
following lemma.

Lemma 4.11 (Essence reduction).
(1) If B `T≡ ∆1 : σ and ∆1 −→ ∆2, then o∆1 o =β o∆2 o;
(2) for R ∈ {=β,=βη}, if B `TR ∆1 : σ and ∆1 −→ ∆2, then o∆1 o R o∆2 o;
(3) if B `T=βη ∆1 : σ and ∆1 −→η ∆2, then o∆1 o =η o∆2 o.

Proof. If ∆1 is a redex, then we have three cases:
• if ∆1 ≡ (λx:σ.∆′1) ∆′′1 and ∆2 is ∆′1[∆′′1/x], then, thanks to Lemma 4.10(1) we have

that o∆2 o ≡ o∆′1 o[o∆′′1 o/x], therefore o∆1 o =β o∆2 o;
• if ∆1 ≡ pri 〈∆′1 ,∆′2〉 and ∆2 is ∆′i, we know that ∆1 is typable in ∆TR, and thanks

to Lemma 4.7(4), we have that o∆′1 o R o∆′2 o. As a consequence, o∆1 o R o∆2 o;
• if ∆1 ≡ λx:σ.∆′ x with x 6∈ FV(∆′), and ∆2 is ∆′, then o∆1 o =η o∆2 o.



For the contextual closure, we have that ∆1 ≡ ∆[∆′/x], where ∆[ ] is a surrounding context
and ∆′ is a redex, and ∆2 is ∆[∆′′/x] where ∆′′ is the contractum of ∆′. Then, by Lemma
4.8 we know that ∆′ is typable and then we conclude by Lemma 4.10.

The next theorem states that all the ∆T≡ typed systems preserve synchronous βpri -reduction,
and all the ∆T=β and ∆T=βη typed systems preserve βpri -reduction.

Theorem 4.12 (Subject reduction for βpri ).
(1) If B `T≡ ∆1 : σ and ∆1 −→‖ ∆2, then B `T≡ ∆2 : σ;
(2) for R ∈ {=β,=βη}, if B `TR ∆1 : σ and ∆1 −→ ∆2, then B `TR ∆2 : σ.

Proof. If ∆1 is a βpri -redex, then we proceed as usual using Lemmas 4.7 and 4.10. For
the contextual closure, we proceed by induction on the derivation: we illustrate the most
important case, namely (∩I) where we have to check that the essence condition is preserved.
According to R we distinguish two cases:

(1) (Case where R is ≡). If B `T≡ 〈∆1 ,∆2〉 : σ ∩ τ and 〈∆1 ,∆2〉 −→‖ 〈∆′1 ,∆′2〉, then
o∆′1 o ≡ o∆′2 o and, by induction hypothesis, B `T≡ ∆′1 : σ and B `T≡ ∆′2 : τ , therefore
B `T≡ 〈∆′1 ,∆′2〉 : σ ∩ τ ;

(2) (Case where R ∈ {=β,=βη}). If B `TR 〈∆1 ,∆2〉 : σ∩ τ and 〈∆1 ,∆2〉 −→ 〈∆′1 ,∆′2〉,
then:
• o∆1 o R o∆2 o;
• by Lemma 4.11 we have that o∆′1 o R o∆1 o and o∆2 o R o∆′2 o;
• by induction hypothesis we have that B `TR ∆′1 : σ and B `TR ∆′2 : τ ;

therefore o∆′1 o R o∆′2 o and B `TR 〈∆′1 ,∆′2〉 : σ ∩ τ .

The next theorem states that some of the typed systems on the back of the ∆-chair preserve
η-reduction.

Theorem 4.13 (Subject reduction for η for TCDV, TBCD).
Let T ∈ {TCDS, TBCD}. If B `T=βη ∆1 : σ and ∆1 −→η ∆2, then B `T=βη ∆2 : σ.

Proof. If ∆1 is a η-redex, then we proceed as usual using Lemmas 4.7 and 4.9. For the
contextual closure the proof proceeds exactly as in Theorem 4.12.

Remark 4.14 (About subject expansion).
We know that some of the intersection type assignment systems à la Curry (viz. λBCD

∩ and
λCDS
∩ ) satisfy the subject β-expansion property: one may ask whether this property can also

be meaningful in typed systems à la Church. It is not surprising to see that the answer is
negative because type-decorations of bound variables are hard-coded in the λ-abstraction
and cannot be forgotten. As a trivial example of the failure of the subject-expansion in all
the typed systems, consider the following reduction:

(λx:σ.x) (λx:σ.x) −→ (λx:σ.x)
Obviously we can type `TR (λx:σ.x) : σ → σ but 6 `TR (λx:σ.x) (λx:σ.x) : σ → σ.



4.2. Strong normalization. The idea of the strong normalization proof is to embed ty-
pable terms of the ∆-calculus into Church-style terms of a target system, which is the
simply-typed λ-calculus with pairs, in a structure-preserving way (and forgetting all the
essence side-conditions). The translation is sufficiently faithful so as to preserve the num-
ber of reductions, and so strong normalization for the ∆-calculus follows from strong nor-
malization for simply-typed λ-calculus with pairs. A similar technique has been used in
[HHP93] to prove the strong normalization property of LF and in [BPS03] to prove the
strong normalization property of a subset of λCD

∩ .
The target system has one atomic type called ◦, a special constant term u◦ of type ◦ and
an infinite number of constants cσ of type σ for any type of the target system. We denote
by B `× M : σ a typing judgment in the target system.

Definition 4.15 (Forgetful mapping).
• On intersection types.

|ai|
def= ◦ ∀ai ∈ A

|σ ∩ τ | def= |σ| × |τ |

|σ → τ | def= |σ| → |τ |
The map can be easily extended to basis B.
• On ∆-terms.

|x|B
def= x

|u∆|B
def= u◦

|λx:σ.∆|B
def= λx.|∆|B,x:σ

|∆1 ∆2|B
def= |∆1|B |∆2|B

|〈∆1 ,∆2〉|B
def= (|∆1|B , |∆2|B)

|pri ∆|B
def= pri |∆|B

|∆τ |B
def= c|σ|→|τ | |∆|B if B `TR ∆ : σ

The following technical lemma states some properties of the forgetful function.

Lemma 4.16.
(1) If B `TR ∆ : σ, then |∆|B is defined, and, for all B′ ⊇ B, |∆|B ≡ |∆|B′;
(2) |∆1[∆2/x]|B ≡ |∆1|B[|∆2|B/x];
(3) If ∆1 −→ ∆2, then |∆1|B −→ |∆2|B;
(4) If B `TR ∆ : σ then |B| `× |∆|B : |σ|.

Proof.
(1) by induction on the derivation;
(2) by induction on ∆1. The only interesting part is ∆1 ≡ λy:σ.∆′1: by induction

hypothesis, we have that |∆′1[∆2/x]|B,x:σ ≡ |∆′1|B,x:σ[|∆2|B,x:σ/x]. Therefore, we
see that |(λy:σ.∆′1)[∆2/x]|B ≡ λy:σ.|∆′1[∆2/x]|B,x:σ ≡ λy:σ.|∆′1|B,x:σ[|∆2|B,x:σ/x],
but, from point (1), we know that |∆2|B,x:σ ≡ |∆2|B, and we conclude;



(3) by induction on the context of the redex;
(4) by induction on the derivation.

Strong normalization follows easily from the above lemmas.
Theorem 4.17 (Strong normalization).
If B `TR ∆ : σ, then ∆ is strongly normalizing.

Proof. Using Lemma 4.16 and the strong normalization of the simply typed λ-calculus with
cartesian pairs.

5. Typed systems à la Church vs. type assignment systems à la Curry

5.1. Relation between type assignment systems λT∩ and typed systems ∆TR. It is
interesting to state some relations between type assignment systems à la Church and typed
systems à la Curry. An interesting property is the one of isomorphism, namely the fact
that whenever we assign a type σ to a pure λ-term M , the same type can be assigned to a
∆-term such that the essence of ∆ is M . Conversely, for every assignment of σ to a ∆-term,
a valid type assignment judgment of the same type for the essence of ∆ can be derived.
Soundness, completeness and isomorphism between intersection typed systems for the ∆-
calculus and the corresponding intersection type assignment systems for the λ-calculus are
defined as follows.
Definition 5.1 (Soundness, completeness and isomorphism).
Let ∆TR and λT∩.

(1) (Soundness, ∆TR / λT∩). B `TR ∆ : σ implies B `T∩ o∆ o : σ;

(2) (Completeness, ∆TR . λT∩). B `T∩ M : σ implies there exists ∆ such that M ≡ o∆ o
and B `TR ∆ : σ;

(3) (Isomorphism, ∆TR ∼ λT∩). ∆TR . λT∩ and ∆TR / λT∩.
The following properties and relations between typed and type assignment systems can be
verified.
Theorem 5.2 (Soundness, completeness and isomorphism).
The following properties between ∆-calculi and type assignment systems λT∩ are verified.

∆TR ∆TR / λT∩ ∆TR . λT∩
∆CD
≡

√ √

∆CDV
≡

√ √

∆CDS
≡

√ √

∆BCD
≡

√ √

∆CD
=β

√ √

∆CDV
=β

√ √

∆CDS
=β

√ √

∆BCD
=β

√ √

∆CDV
=βη

×
√

∆BCD
=βη

×
√



Proof.
(/) Soundness for ∆T≡. Let ∆ be such that B `T≡ ∆ : σ. We proceed by induction on the

derivation. All cases proceed straightforwardly since all rules of the type and subtype
system `T≡ correspond exactly to the rules of the same name in the corresponding
type assignment system `T∩ and in the same type theory T . Therefore M ≡ o∆ o
can be easily be defined and derived with type σ.
Soundness for ∆T=β . We first show the admissibility of the following type assignment
rule

B `T∩ M : σ B `T∩ N : τ M =β N

B `T∩ M : σ ∩ τ
(∩I)adm

in all λT∩ as follows: we know these type assignment systems have the subject re-
duction and the typed-expansion property for β (see Corollary 14.2.3 and Propo-
sition 14.2.4(i) of [BDS13], respectively). As a consequence, if B `T∩ M : σ, and
B `T∩ N : τ , and M =β N , then B `T∩ M : τ . Then the proof proceeds by induc-
tion on the derivation of B `T=β ∆ : σ. The most important case is when the last
used rule is (∩I): by induction we get B `T∩ o∆1 o : σ, and B `T∩ o∆2 o : τ , and
o∆1 o =β o∆2 o, and, by the essence definition, o 〈∆1 ,∆2〉 o =β o∆1 o. Apply rule
(∩I)adm and conclude with B `T∩ o∆1 o : σ ∩ τ .

(6/) Loss of soundness in ∆CDV
=βη

is proved via the following counterexample, where

B
def= {x:(σ → τ) ∩ ρ}.

B, y:σ `TCDV=βη x : (σ → τ) ∩ ρ

B, y:σ `TCDV=βη pr1 x : σ → τ B, y:σ `TCDV=βη y : σ

B, y:σ `TCDV=βη (pr1 x) y : τ

B `TCDV=βη λy:σ.(pr1 x) y : σ → τ

B `TCDV=βη x : (σ → τ) ∩ ρ

B `TCDV=βη pr2 x : ρ λy.x y =βη x

B `TCDV=βη 〈λy:σ.(pr1 x) y , pr2 x〉 : (σ → τ) ∩ ρ

B `TCDV=βη pr2 〈λy:σ.(pr1 x) y , pr2 x〉 : ρ

The essence of pr2 〈λy:σ.(pr1 x) y , pr2 x〉 is λy.x y, but, if ρ is an atomic type:
x:(σ → τ) ∩ ρ 6 `TCDV

∩ λy.x y : ρ
Loss of soundness in ∆BCD

=βη
is proved via the following counterexample:

x:σ, y:U `TBCD=βη x : σ σ 6T U→ U

x:σ, y:U `TBCD=βη xU→U : U→ U x:σ, y:U `TBCD=βη y : U

x:σ, y:U `TBCD=βη xU→U y : U

x:σ `TBCD=βη λy:U.xU→U y : U→ U x:σ `TBCD=βη x : σ λy.x y =βη x

x:σ `TBCD=βη 〈λy:U.xU→U y , x〉 : (U→ U) ∩ σ

x:σ `TBCD=βη pr2 〈λy:U.xU→U y , x〉 : σ



The essence of pr2 〈λy:U.xU→U y , x〉 is λy.x y, but, if σ is an atomic type (different
than U):

x:σ 6 `TBCD
∩ λy.x y : σ

(.) Let M be such that B `T∩ M : σ for a given B. We proceed by induction on
the derivation. All cases proceed straightforwardly since all rules of the type and
subtype assignment system `T∩ correspond exactly to the rules of the same name in
the corresponding typed system `TR and in the same type theory T . Therefore a
∆-term can be easily be constructed and derived with type σ;

The last theorem characterizes the class of strongly normalizing ∆-terms.

Theorem 5.3 (Characterization).
Every strongly normalizing λ-term can be type-annotated so as to be the essence of a typable
∆-term.

Proof. We know that every strongly normalizing λ-term M is typable in λT∩. By Theorem
5.2 we have that ∆TR . λT∩, therefore there exists some typable ∆, such that M ≡ o∆ o.

We can finally state decidability of type checking (TC) and type reconstruction (TR).

Theorem 5.4 (Decidability of type checking and type reconstruction).

∆TR TC/TR
∆CD
≡

√

∆CDV
≡

√

∆CDS
≡

√

∆BCD
≡

√

∆CD
=β

√

∆CDV
=β

√

∆CDS
=β

×
∆BCD

=β
×

∆CDV
=βη

√

∆BCD
=βη

×

Proof. Both type checking and type reconstruction can be proved by induction on the struc-
ture of ∆, using the decidability of TBCD proved by Hindley [Hin82] (see also [LS17]). By
Theorem 5.2, the essences of all the ∆-terms, which are typable in ∆CD

=β
, ∆CDV

=β
, or ∆CDV

=βη
, are

typable in λCD
∩ or λCDV

∩ , therefore they are strongly normalizing. As a consequence, the side-
condition o∆1 o R o∆2 o is decidable for ∆CD

=β
, ∆CDV

=β
, and ∆CDV

=βη
and so type reconstruction

and type checking are decidable too.
Type reconstruction and type checking are not decidable in ∆CDS

=β
, ∆BCD

=β
, and ∆BCD

=βη
, because

〈u∆1 , u∆2〉 is typable if and only if o∆1 o =β o∆2 o (resp. o∆1 o =βη o∆2 o). However, o∆1 o
and o∆2 o are arbitrary pure λ-terms, and both β-equality and βη-equality are undecidable.



5.2. Subtyping and explicit coercions. The typing rule (6T ) in the general typed sys-
tem introduces type coercions: once a type coercion is introduced, it cannot be eliminated,
so de facto freezing a ∆-term inside an explicit coercion. Tannen et al. [TCGS91] showed a
translation of a judgment derivation from a “Source” system with subtyping (Cardelli’s Fun
[CW85]) into an “equivalent” judgment derivation in a “Target” system without subtyping
(Girard system F with records and recursion). In the same spirit, we present a translation
that removes all explicit coercions. Intuitively, the translation proceeds as follows: every
derivation ending with rule

B `TR ∆ : σ σ 6T τ

B `TR ∆τ : τ
(6T )

is translated into the following (coercion-free) derivation
B `TR′ ‖σ 6T τ‖ : σ → τ B `TR′ ‖∆‖B : σ

B `TR′ ‖σ 6T τ‖ ‖∆‖B : τ
(→E)

where R′ is a suitable relation such that R v R′. Note that changing of the type theory
is necessary to guarantee well-typedness in the translation of strong pairs. Summarizing,
we provide a type preserving translation of a ∆-term into a coercion-free ∆-term such that
o∆ o =βη o∆′ o.
The following example illustrates some trivial compilations of axioms and rule schemes of
Figure 1.

Example 5.5 (Translation of axioms and rule schemes of Figure 1).
(refl) the judgment x:σ `TR 〈x , xσ〉 : σ ∩ σ is translated to a coercion-free judgment

x:σ `T=β 〈x , (λy:σ.y)x〉 : σ ∩ σ

(incl) the judgment x:σ∩τ `TR 〈x, xτ 〉 : (σ∩τ)∩τ is translated to a coercion-free judgment
x:σ ∩ τ `T=β 〈x , (λy:σ ∩ τ.pr2 y)x〉 : (σ ∩ τ) ∩ τ

(glb) the judgment x:σ `TR 〈x, xσ∩σ〉 : σ∩(σ∩σ) is translated to a coercion-free judgment
x:σ `T=β 〈x , (λy:σ.〈y , y〉)x〉 : σ ∩ (σ ∩ σ)

(Utop) the judgment x:σ `TR 〈x , xU〉 : σ ∩ U is translated to a coercion-free judgment
x:σ `T=β 〈x , (λy:σ.uy)x〉 : σ ∩ U

(U→) the judgment x:U `TR 〈x, xσ→U〉 : U∩(σ → U) is translated to a coercion-free judgment
x:U `T=βη 〈x , (λf :U.λy:σ.u(f y))x〉 : U ∩ (σ → U)

(→∩) the judgment x:(σ → τ) ∩ (σ → ρ) `TR xσ→τ∩ρ : σ → τ ∩ ρ is translated to a
coercion-free judgment

x:(σ → τ) ∩ (σ → ρ) `T=βη (λf :(σ → τ) ∩ (σ → ρ).λy:σ.〈(pr1 f) y , (pr2 f) y〉)x : σ → τ ∩ ρ

(→) the judgment x:σ → τ ∩ ρ `TR 〈x , xσ∩ρ→τ 〉 : (σ → τ ∩ ρ) ∩ (σ ∩ ρ→ τ) is translated
to a coercion-free judgment

x:σ → τ ∩ ρ `T=βη 〈x , (λf :σ → τ ∩ ρ.λy:σ ∩ ρ.pr1 (f (pr1 y)))x〉 : (σ → τ ∩ ρ) ∩ (σ ∩ ρ→ τ)



(trans) the judgment x:σ `TR 〈x , (xU)σ→U〉 : σ ∩ (σ → U) is translated to a coercion-free
judgment

x:σ `T=βη 〈x , (λf :U.λy:σ.u(f y)) ((λy:σ.uy)x)〉 : σ ∩ (σ → U)

The next definition introduces two maps translating subtype judgments into explicit coer-
cions functions and ∆-terms into coercion-free ∆-terms.

Definition 5.6 (Translations ‖−‖ and ‖−‖B).
(1) The minimal type theory 6min and the extra axioms and schemes are translated as

follows.

(refl) ‖σ 6T σ‖
def= `T=β λx:σ.x : σ → σ

(incl1) ‖σ ∩ τ 6T σ‖
def= `T=β λx:σ ∩ τ.pr1 x : σ ∩ τ → σ

(incl2) ‖σ ∩ τ 6T τ‖
def= `T=β λx:σ ∩ τ.pr2 x : σ ∩ τ → τ

(glb)
∥∥∥∥ρ 6T σ ρ 6T τ

ρ 6T σ ∩ τ

∥∥∥∥ def= `T=β λx:ρ.〈‖ρ 6T σ‖x , ‖ρ 6T τ‖x〉 : ρ→ σ ∩ τ

(trans)
∥∥∥∥σ 6T τ τ 6T ρ

σ 6T ρ

∥∥∥∥ def= `T=β λx:σ. ‖τ 6T ρ‖ (‖σ 6T τ‖ x) : σ → ρ

(Utop) ‖σ 6T U‖ def= `T=β λx:σ.ux : σ → U

(U→) ‖U 6T σ → U‖ def= `T=βη λf :U.λx:σ.u(f x) : U→ (σ → U)

Let ξ1
def= (σ → τ) ∩ (σ → ρ) and ξ2

def= σ → τ ∩ ρ

(→∩) ‖ξ1 6T ξ2‖
def= `T=βη λf :ξ1.λx:σ.〈(pr1 f)x , (pr2 f)x〉 : ξ1 → ξ2

Let ξ1
def= σ1 → τ1 and ξ2

def= σ2 → τ2

(→)
∥∥∥∥σ2 6T σ1 τ1 6T τ2
σ1 → τ1 6T σ2 → τ2

∥∥∥∥ def= `T=βη λf :ξ1.λx:σ2. ‖τ1 6T τ2‖ (f (‖σ2 6T σ1‖x)) : ξ1 → ξ2

(2) The translation ‖−‖B is defined on ∆ as follows.

‖u∆‖B
def= u‖∆‖B

‖x‖B
def= x

‖λx:σ.∆‖B
def= λx:σ. ‖∆‖B,x:σ

‖∆1 ∆2‖B
def= ‖∆1‖B ‖∆2‖B

‖〈∆1 ,∆2〉‖B
def= 〈‖∆1‖B , ‖∆2‖B〉

‖pri ∆‖B
def= pri ‖∆‖B i ∈ {1, 2}

‖∆τ‖B
def= ‖σ 6T τ‖ ‖∆‖B if B `TR ∆ : σ.



Source Target
∆CD
≡ ∆CD

=β
∆CDV
≡ ∆CDV

=βη
∆CDS
≡ ∆CDS

=β
∆BCD
≡ ∆BCD

=βη

∆CD
=β

∆CD
=β

∆CDV
=β

∆CDV
=βη

∆CDS
=β

∆CDS
=β

∆BCD
=β

∆BCD
=βη

∆CDV
=βη

∆CDV
=βη

∆BCD
=βη

∆BCD
=βη

Figure 5: On the left: source systems. On the right: target systems without the (6T ) rule.

By looking at the above translation functions we can see that if B `TR ∆ : σ, then ‖∆‖B is
defined and it is coercion-free.
The following lemma states that a coercion function is always typable in ∆T=βη , that it is
essentially the identity and that, without using the rule schemes (→∩), (U→), and (→) the
translation can even be derivable in ∆T=β .

Lemma 5.7 (Essence of a coercion is an identity).
(1) If σ 6T τ , then `T=βη ‖σ 6T τ‖ : σ → τ and o ‖σ 6T τ‖ o =βη λx.x;
(2) If σ 6T τ without using the rule schemes (→∩), (U→), and (→), then `T=β ‖σ 6T τ‖ :

σ → τ and o ‖σ 6T τ‖ o =β λx.x.

Proof. The proofs proceed in both parts by induction on the derivation of σ 6T τ . For
instance, in case of (glb), we can verify that `T=β λx:ρ.〈‖ρ 6T σ‖x , ‖ρ 6T τ‖x〉 : ρ→ σ∩ τ
using the induction hypotheses that ‖ρ 6T σ‖ (resp. ‖ρ 6T τ‖) has type ρ → σ (resp.
ρ→ τ) and has an essence convertible to λx.x.

We can now prove the coherence of the translation as follows.

Theorem 5.8 (Coherence).
If B `TR ∆ : σ, then B `TR′ ‖∆‖B : σ and o ‖∆‖B o R′ o∆ o, where ∆TR and ∆TR′ are
respectively the source and target intersection typed systems given in Figure 5.

Proof. By induction on the derivation. We illustrate the most important case, namely when
the last type rule is (6T ). In this case ‖∆τ‖B is translated to ‖σ 6T τ‖ ‖∆‖B. By induction
hypothesis we have that B `TR ∆ : σ, and by Lemma 5.7 we have that B `TR′ ‖σ 6T τ‖ :
σ → τ ; therefore B `TR′ ‖∆τ‖B : τ . Moreover, we know that o ‖σ 6T τ‖ o R′ λx.x, and this
gives o ‖∆τ‖B o R′ o ‖∆‖B o. Again by induction hypothesis we have that o ‖∆‖B o R′ o∆ o,
and this gives the thesis o ‖∆τ‖B o R′ o∆τ o.
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