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Tight interval inclusions with compensated
algorithms

Stef Graillat and Fabienne Jézéquel

Abstract—Compensated algorithms consist in computing the rounding errors of individual operations and then adding them later on to
the computed result. This makes it possible to increase the accuracy of the computed result efficiently. Computing the rounding error of
an individual operation is possible through the use of a so-called error-free transformation. In this article, we show that it is possible to
use compensated algorithms for having tight interval inclusion. We study compensated algorithms for summation, dot product and
polynomial evaluation. We prove that the use of directed rounding makes it possible to get narrow inclusions with compensated
algorithms. This is due to the fact that error-free transformations are no more exact but still sufficiently accurate to improve the
numerical quality of results.

Index Terms—interval arithmetic, directed rounding, compensated algorithms, error-free transformations, floating-point arithmetic,
numerical validation, rounding errors, summation algorithms, dot product, Horner scheme.

F

1 INTRODUCTION

IN June 2018, researchers at the US Department of En-
ergy’s Oak Ridge National Laboratory broke the exascale

barrier, achieving on the Summit supercomputer1 a peak
throughput of 1.88 exaflops (i.e. 1.88 1018 floating-point op-
erations per second). Unfortunately, with exascale comput-
ing, or more generally with high performance computing, a
large number of rounding errors may be generated. Indeed,
nearly all floating-point operations imply a small rounding
which can accumulate along the computation and finally
an incorrect result may be produced. As a consequence,
it is crucial to propose methods and tools for numerical
validation and accurate computation.

To improve the numerical quality of results, one can
increase the working precision. In addition to the widely
used binary32 and binary64 formats, the IEEE 754-2008 stan-
dard [1] defines the binary128 format, also called quadruple
precision, that is implemented in compilers such as the
GNU compiler gcc and the Intel compiler icc. Moreover
arbitrary precision libraries exist: one can cite ARPREC [2]
and MPFR [3]. The computing precision can also be ex-
tended thanks to expansions, unevaluated sums of standard
floating-point numbers. The QD package [4] provides the
double-double and the quad-double data types, that consist of
respectively two and four binary64 floating-point numbers.
One can also use arbitrary length expansions [5], [6], [7]. If a
simple enough computation is performed, its accuracy can
be improved thanks to compensated algorithms [8], [9], [10].
These algorithms are based on error-free transformations
(EFTs) that make it possible to compute the rounding errors
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of some elementary operations like addition and multiplica-
tion exactly.

Interval arithmetic [11], [12] is a well known approach to
control the validity of numerical results. It briefly consists
in performing floating-point operations on intervals instead
of scalars. These operations give a 100% certain result,
represented as an interval containing the exact result. The
main advantage of this approach lies in the guaranteed error
bounds it provides.

In this paper we show how to compute tight interval
inclusions with compensated algorithms. To obtain garan-
teed interval bounds, directed rounding should be used.
However EFTs are intended to be used with rounding to
nearest. Therefore we study the behaviour of EFTs with
directed rounding. Results presented in [13], [14], [15] are
completed in this paper. In particular, concerning the EFT
for the multiplication without FMA (Fused-Multiply-and-Add
operator) we bound the difference between the rounding
error and the correction computed with directed rounding.
In this paper we also show that EFTs executed with directed
rounding provide garanteed bounds on the results of addi-
tions and multiplications. We complete results established
in [13], [15] on the behaviour with directed rounding of
compensated algorithms based on these EFTs. Then we
show that, thanks to compensated algorithms executed with
directed rounding, tight interval inclusions can be computed
for summation, dot product, and polynomial evaluation
with Horner scheme.

The outline of this article is as follows. In Sect. 2 we give
some definitions and notations used in the sequel. In Sect. 3
we show the impact on a directed rounding mode on EFTs
and prove that garanteed interval bounds can be obtained
thanks to EFTs executed with directed rounding. In Sect. 4,
5, and 6 we study the behaviour with directed rounding
of compensated algorithms for respectively summation, dot
product, and polynomial evaluation and show how they can
provide narrow inclusions. Numerical experiments carried
out using INTLAB [16] are presented in Sect. 7. Finally,
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conclusions and perspectives on this work are given in
Sect. 8.

2 DEFINITIONS AND NOTATIONS

In this paper, we assume to work with a binary floating-
point arithmetic adhering to IEEE 754-2008 floating-point
standard [1] and we suppose that no overflow occurs. The
error bounds for the compensated summation that are pre-
sented in Sect. 4 remain valid in the presence of underflow.
For the other compensated algorithms considered in this
article (dot product and Horner scheme) we assume that
no underflow occurs so as to present simpler error bounds.

The set of floating-point numbers is denoted by F, the
bound on relative error for round to nearest by u. With the
IEEE 754 binary64 format (double precision), we have u =
2−53 and with the binary32 format (single precision), u =
2−24.

We denote by fl*(·) the result of a floating-point compu-
tation, where all operations inside parentheses are done in
floating-point working precision with a directed rounding
(that is to say toward−∞ or +∞). Floating-point operations
in IEEE 754 satisfy [17]
For ◦ = {+,−}, ∃ ε1 ∈ R, ε2 ∈ R such that

fl*(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) with |εν | ≤ 2u.

As a consequence, for ◦ = {+,−},

|a◦b−fl*(a◦b)| ≤ 2u|a◦b| and |a◦b−fl*(a◦b)| ≤ 2u|fl*(a◦b)|.

We use standard notations for error estimations. The quan-
tities γn are defined as usual [17] by

γn(u) :=
nu

1− nu
for n ∈ N,

where it is implicitly assumed that nu < 1.

Remark 1. We give the following relations on γn, that will be
frequently used in the sequel of the paper. For any positive inte-
ger n, nu ≤ γn(u), γn(u) ≤ γn+1(u), (1 + u)γn(u) ≤
γn+1(u), 2nu(1 + γ2n−2(u)) ≤ γ2n(u).

Remark 2. Recently, it has been shown that classic Wilkinson-
type error bounds for summation, dot product and polynomial
evaluation [18], [19], [20] can be slightly improved by replacing
the factor γn(u) by nu with no condition on n (for summation,
dot product and Horner scheme). It is likely that the error bounds
gien in this paper could also be slightly improved by replacing all
the γn(u) by nu. However the proofs for improving the bounds
would be more complicated and tricky, and would not be useful
for this paper. We just aim at showing that the relative accuracy
is in O(u) for classic algorithms and in O(u2) for compensated
algorithms with directed roundings.

3 ERROR-FREE TRANSFORMATIONS WITH
DIRECTED ROUNDING

3.1 Error-free transformations for addition
EFTs exist for the sum of two floating-point numbers
with rounding to nearest: FastTwoSum [21], given as Algo-
rithm 1, which requires a test and 3 floating-point opera-
tions, and TwoSum [22], given as Algorithm 2, which requires
6 floating-point operations. These algorithms compute both

the floating-point sum x of two numbers a and b and
the associated rounding error y such that x + y = a + b
when using rounding to the nearest. This is no more true
with directed rounding. Indeed, with directed rounding, the
rounding error may not be exactly representable (see [23]
page 125).

We will study the behaviour of FastTwoSum and TwoSum
with directed rounding. In the rest of this section, any arith-
metic operation is rounded using the fl* function defined
in Sect. 2. In the Propositions presented in this section, and
also in Sect. 4.2, we assume underflow may occur because,
in this case, additions or subtractions generate no rounding
error if subnormal numbers are available [24].

3.1.1 FastTwoSum with directed rounding
With rounding to nearest, the FastTwoSum EFT, given in
Algorithm 1, computes the floating-point sum x of two
numbers a and b and its associated rounding error y.

function [x, y] = FastTwoSum(a, b)

1: if |b| > |a| then
2: exchange a and b
3: end if
4: x← a+ b
5: z ← c− a
6: y ← b− z

Algorithm 1: Error-free transformation for the sum of
two floating-point numbers with rounding to nearest

In [25], it is shown that the floating-point number z in
Algorithm 1 is computed exactly with directed rounding.
This property is recalled as Proposition 3.1.

Proposition 3.1. The floating-point number z provided by
Algorithm 1 using directed rounding is computed exactly, i.e.
z = x− a.

In general the correction y computed by Algorithm 1
using directed rounding is different from the rounding error
e on the sum of a and b. In Proposition 3.2, we bound the
difference between e and y.

Proposition 3.2. Let x and y be the floating-point addition of
a and b and the correction both computed by Algorithm 1 using
directed rounding. Let e be the error on x: a+ b = x+ e. Then

|e− y| ≤ 4u2|a+ b| and |e− y| ≤ 4u2|x|.

Proof. From Proposition 3.1, z is computed exactly. However
with directed rounding, y may not be computed exactly. So
δ ∈ R exists such that

y = b− z + δ (1)

and
|δ| ≤ 2u|b− z|. (2)

From Proposition 3.1, we deduce

|δ| ≤ 2u|a+ b− x| (3)

Let e be the error on the floating-point addition of a
and b, then

a+ b = x+ e (4)
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with

|e| ≤ 2u|a+ b| and |e| ≤ 2u|x|. (5)

From Equations 3 and 4, we deduce a bound on |δ| =
|e− y|:

|δ| ≤ 4u2|a+ b| and |δ| ≤ 4u2|x|. (6)

In Proposition 3.3 we establish a relation between the
error e and the correction y if Algorithm 1 is executed with
directed rounding.

Proposition 3.3. Let x and y be the floating-point addition of
a and b and the correction both computed by Algorithm 1 using
directed rounding. Let e be the error on x: a+ b = x+ e.

• If computations are performed with rounding toward +∞
then e ≤ y.

• If computations are performed with rounding toward −∞
then y ≤ e.

Proof. We always have by definition a+ b = x+ e.

• Let us assume computations are performed with
rounding toward +∞.
In this case, we have a + b ≤ x. Moreover from
Proposition 3.1, we know that z = x − a and still
with rounding toward +∞, we have b − z ≤ y. As
a consequence, we have b − (x − a) ≤ y and so
a+ b− x ≤ y which means that e ≤ y.

• Let us assume computations are performed with
rounding toward −∞.
In this case, we have x ≤ a + b. Moreover from
Proposition 3.1, we know that z = x − a and still
with rounding toward −∞, we have y ≤ b − z. As
a consequence, we have y ≤ b − (x − a) and so
y ≤ a+ b− x which means that y ≤ e.

3.1.2 TwoSum with directed rounding
With rounding to nearest, the TwoSum EFT, given in Algo-
rithm 2, computes the floating-point sum x of two numbers
a and b and its associated rounding error y.

function [x, y] = TwoSum(a, b)

1: x← a+ b
2: d← x− a
3: f ← b− d
4: g ← x− d
5: h← a− g
6: y ← f + h

Algorithm 2: Error-free transformation for the sum of
two floating-point numbers with rounding to nearest

We recall here a result of [14].

Theorem 3.4 ( [14, Thm. 4.1]). Let x and y be the floating-
point addition of a and b and the correction both computed by
Algorithm 2 using directed rounding. Let e be the error on x:
a+ b = x+ e. Then

|e− y| ≤ 4u2|a+ b| and |e− y| ≤ 4u2|x|.

Proposition 3.6 has been established using Sterbenz’s
lemma [26] which is recalled below. As a remark, Sterbenz’s
lemma is valid with directed rounding.

Lemma 3.5 (Sterbenz). In a floating-point system with subnor-
mal numbers available, if c and d are finite floating-point numbers
such that d/2 ≤ c ≤ 2d, then c− d is exactly representable.

In Proposition 3.6 we establish a relation between the
error e and the correction y if Algorithm 2 is executed with
directed rounding.

Proposition 3.6. Let x and y be the floating-point addition of
a and b and the correction both computed by Algorithm 2 using
directed rounding. Let e be the error on x: a+ b = x+ e.

• If computations are performed with rounding toward +∞
then e ≤ y.

• If computations are performed with rounding toward −∞
then y ≤ e.

Proof. Without loss of generality, we can assume that a ≥ 0.
We will separate the proof into three different cases: |b| ≥ a,
−a < b ≤ −a/2 and −a/2 < b < a.

• case 1: |b| ≥ a
In this case, the lines 1, 2 and 3 correspond exactly to
FastTwoSum (Algorithm 1). It follows that d = x− a
and so f = fl(a+b−x), g = a, h = 0 and y = f . As a
consequence, y = fl(e). So if we use rounding toward
+∞ then e ≤ y and if we use rounding toward −∞
then y ≤ e.

• case 2: −a < b ≤ −a/2
Using Sterbenz’s lemma, it follows that x = a+b and
so d = b, f = 0, g = a, h = 0 and y = 0. So in this
case, we have e = y = 0.

• case 3: −a/2 < b < a
It follows from [14, Thm 4.1] that computations in
lines 3 and 4 are exact due to Sterbenz’s lemma.
As a consequence, f = b − d and g = x − d. Let
us now assume we use rounding toward +∞. As a
consequence, f+h ≤ y and a−g ≤ h so f+a−g ≤ y.
Using the fact that f = b−d and g = x−d, we obtain
that e = a+ b− x ≤ y.
Let us now assume we use rounding toward−∞. We
have y ≤ f+h and h ≤ a−g so y ≤ f+a−g. Using
the fact that f = b− d and g = x− d, we obtain that
y ≤ a+ b− x = e.

This concludes the proof.

3.2 Error-free transformations for multiplication

3.2.1 TwoProdFMA with directed rounding
With any rounding mode, the TwoProdFMA EFT, given in
Algorithm 3, computes both the floating-point product x
of two numbers a and b and the associated rounding er-
ror y, provided that no underflow occurs. If this property
holds, the floating-point numbers x and y computed by the
TwoProdFMA algorithm satisfy: x+ y = a× b.

The TwoProdFMA algorithm is based on the Fused-
Multiply-and-Add (FMA) operator that enables a floating-
point multiplication followed by an addition to be per-
formed as a single floating-point operation. For a, b, c ∈ F,
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function [x, y] = TwoProdFMA(a, b)

1: x← a× b
2: y ← FMA(a, b,−x)

Algorithm 3: Error-free transformation for the prod-
uct of two floating-point numbers using an FMA

FMA(a, b, c) is an approximation of a×b+c ∈ R that satisfies,
if no underflow occurs:

FMA(a, b, c) = (a× b+ c)(1 + ε1) = (a× b+ c)/(1 + ε2)

where |εν | ≤ u with rounding to nearest and |εν | ≤ 2u
with directed rounding. The FMA operation is supported
by numerous processors such as AMD or Intel processors
starting with respectively the Bulldozer or the Haswell
architecture and by the Intel Xeon Phi coprocessor. It is also
supported by AMD and NVidia GPUs (Graphics Processing
Units) since 2010.

3.2.2 TwoProduct with directed rounding
If no FMA is available, with rounding to nearest, the
TwoProduct EFT from Veltkamp (see [21]), given in Al-
gorithm 5, computes the product x of two floating-point
numbers a and b and its associated rounding error y. The
TwoProduct algorithm requires the Split algorithm [21],
given in Algorithm 4. Let p be given by u = 2−p and let us
define s = dp/2e. For example, if the working precision
is IEEE 754 double precision, then p = 53 and s = 27.
Algorithm 4 splits a floating-point number a ∈ F into two
parts x and y such that

a = x+ y with |y| ≤ |x|. (7)

Both parts x and y have at most s− 1 non-zero bits.
We present here the behaviour of Algorithms 4 and 5

with directed rounding. Let r ∈ R be positive and fl(r) be
a faithful correct rounding (to nearest, toward +∞ or −∞).
We denote ufp(r) = 2blog2(r)c if r 6= 0 and ufp(0) = 0
as introduced in [27]. As a consequence, ufp(r) = 2k with
k ∈ N. It is easy to show that if σ = 2k, k ∈ Z and r ∈ R
such that r ∈ 2uσZ and |r| ≤ 2σ then r ∈ F. If r ∈ R and
r̃ := fl(r) ∈ F then we always have ufp(r) ≤ ufp(r̃) and
|r̃ − r| ≤ 2u ufp(r) ≤ 2u ufp(r̃).

function [x, y] = Split(a)

1: c← (2s + 1)× a
2: d← c− a
3: x← c− d
4: y ← a− x

Algorithm 4: Error-free split of a floating-point num-
ber into two parts

Lemma 3.7. Assume that computations are done with a directed
rounding mode (either toward +∞ or −∞). Let a ∈ F and
[x, y] = Split(a). Then we have a = x+ y and

• the significand of x fits in p− s bits;
• the significand of y fits in s bits.

Proof. We can assume that a is not a power of 2 and a > 0.
Otherwise, all the operations are exact and the result is clear.
Let us define σ = ufp(a) so that ufp(a) < a < 2 ufp(a) that
is to say σ < a < 2σ. As a is a floating-point number, we
also have σ(1 + 2u) ≤ a ≤ 2σ(1 − u). It implies that a ∈
2uσZ and ufp(2sa) = 2sσ. By definition, we have that 2sa
is a floating-point number and c = fl((2sa) + a). As s ≥ 2
and a > 0, we either have ufp(c) = 2sσ or ufp(c) = 2s+1σ.

1) ufp(c) = 2sσ
As c − a < c since a > 0, we know that d ≤ c and
so ufp(d) ≤ ufp(c) = 2sσ. Moreover since σ(1 +
2u) ≤ a ≤ 2σ(1 − u), we have 2sσ(1 + 2u) + a ≤
2sa + a. As c = fl((2sa) + a), it follows that c ≥
2sa+a−2u ufp(c) = 2sa+a−2s+1uσ. Combining
the two previous inequalities implies c ≥ 2sσ+a. As
a consequence, d = fl(c−a) ≥ 2sσ. We can conclude
that necessarily ufp(d) = 2sσ.
As c = fl((2sa) + a), we also have c = (2s + 1)a +
e1 with |e1| ≤ 2u ufp(c) ≤ 2s+1uσ. Moreover, c ∈
2uufp(c)Z and so c ∈ 2s+1uσZ. As d = fl(c − a)
and ufp(d) = 2sσ then necessarily d = c − a + e2
with |e2| ≤ 2uufp(d) = 2s+1uσ. We also have d ∈
2uufp(d)Z and so d ∈ 2s+1uσ.
As long as s ≥ 2, d = 2sa + e1 + e2 and c = 2sa +
a + e1 are within a factor 2 and so using Sterbenz’s
lemma yields to the fact that x = c−d (no rounding
error during the addition). As a consequence, x =
a−e2. We know that c ∈ 2s+1uσZ and d ∈ 2s+1uσZ
so x = c − d ∈ 2s+1uσZ. Moreover |x| ≤ |a| +
|e2| < 2σ + 2s+1uσ. As x ∈ 2s+1uσZ and |x| <
2σ + 2s+1uσ implies that |x| ≤ 2σ.
Since x = a − e2 and a are very close, Sterbenz’s
lemma says that y = a−x is exact and so y = a−x =
e2. It follows that |y| ≤ 2s+1uσ and y ∈ 2uσZ since
a, x ∈ 2uσZ.
Thus we have x + y = a and since x ≤ 2σ and
x ∈ 2s+1uσZ, this implies that x fits in p − s bits.
Besides, |y| ≤ 2s+1uσ and y ∈ 2uσZ implies that y
fits in s bits.

2) ufp(c) = 2s+1σ
In that case, we either have ufp(d) = 2s+1σ or
ufp(d) = 2sσ. If ufp(d) = 2sσ then d ∈ 2s+1uσ
and as c ∈ 2u ufp(c)Z and 2sσ ≤ ufp(c) then
c ∈ 2s+1uσZ and the proof is similar to the previous
case. Let us assume that a ≤ 2σ(1 − 3u). As c ≤
2sa+a+2uufp(c) so c−a ≤ 2s+1σ(1−3u)+2s+2uσ
which can be rewritten into c − a ≤ 2s+1σ(1 − u).
As d = fl(c − a) then d ≤ 2s+1σ(1 − u) and
so ufp(d) < 2s+1σ. As a consequence, the case
ufp(d) = 2s+1σ can only happen if a = 2σ(1 − 2u)
or a = 2σ(1− u).
If we use rounding toward −∞:
If a = 2σ(1 − u) then 2sa + a = 2σ(2s + 1)(1 − u)
and so c = 2σ(2s + 1 − 2s+1u) and so c − a =
2σ(2s − (2s+1 − 1)u) so ufp(d) = 2sσ and this has
been proved before.
If a = 2σ(1−2u) then 2sa+a = 2σ(2s+ 1)(1−2u)
and so c = 2σ(2s + 1 − 2s+2u) and so c − a =
2σ(2s − (2s+2 − 2)u) so ufp(d) = 2sσ and this has
been proved before.



5

If we use rounding toward +∞:
If a = 2σ(1−u) then 2sa+a = 2σ(2s+1)(1−u) and
so c = 2σ(2s + 1) and so c− a = 2σ(2s + u) and so
d = 2σ2s(1 + 2u). It follows that x = 2σ(1−2s+1u)
and y = 2σ(2s+1 − 1)u
If a = 2σ(1−2u) then 2sa+a = 2σ(2s+ 1)(1−2u)
and so c = 2σ(2s + 1 − 2s+1u) and so c − a =
2σ(2s − 2s+1u + 2u) and so ufp(d) = 2sσ and this
has been proved before.

This concludes the proof.

With rounding to nearest, Algorithm 5 computes the
product x of two floating-point numbers a and b and its
associated rounding error y, i. e. such that a× b = x+ y.

function [x, y] = TwoProduct(a, b)

1: x← a× b
2: [a1, a2]← Split(a)
3: [b1, b2]← Split(b)
4: t1 ← −x+ (a1 × b1)
5: t2 ← t1 + (a1 × b2)
6: t3 ← t2 + (a2 × b1)
7: y ← t3 + (a2 × b2)

Algorithm 5: Error-free transformation of the prod-
uct of two floating-point numbers with rounding to
nearest

With directed rounding, TwoProduct does not necessar-
ily return the generated rounding error even if this one is
always a floating-point number. Indeed, a counter-example
in rounding toward −∞ can be chosen as follows. Let
a = 1+2u and b = 1+2u, then x = 1+4u and the rounding
error is 4u2 but TwoProduct(a, b) returns y = 0. In Propo-
sition 3.8, we bound the difference between the rounding
error e and the correction y computed by Algorithm 5 with
directed rounding.

Proposition 3.8. Let x and y be the floating-point product of
a and b and the correction both computed by Algorithm 5 using
directed rounding. Let e be the error on x: a× b = x+ e. Then

|e− y| ≤ 8u2|a× b| and |e− y| ≤ 8u2|x|.

Proof. Let us denote σ1 := ufp(a) and σ2 := ufp(b). By
definition of the splitting, the products a1b1, a1b2, a2b1 are
exactly representable but this is not necessarily the case
for a2b2. From Split algorithm, we have that |a − a1| ≤
2s+1uσ1, |b − b1| ≤ 2s+1uσ2 and |a1| ≤ 2σ1, |b1| ≤ 2σ2.
From

(ab− a1b1) = (a− a1)b+ (b− b1)a1,

we get that |ab − a1b1| ≤ 2s+3uσ1σ2. Moreover, it is clear
that |ab − x| ≤ 2uufp(ab). As ufp(ab) ≤ 2σ1σ2 then |ab −
x| ≤ 4uσ1σ2. As a consequence, |a1b1 − x| ≤ 4uσ1σ2 +
2s+3uσ1σ2. It follows that a1b1 and x are very close and so
by Sterbenz’s lemma, we know that t1 = −x+a1b1 is exact.

As ab = a1b1 + a1b2 + a2b1 + a2b2, we have

|t1 + a1b2| = | − x+ a1b1 + a1b2|
= | − x+ ab+ (a1b1 + a1b2 − ab)|
≤ |ab− x|+ |a2b2 + a2b1|.

As |ab − x| ≤ 4uσ1σ2 and |a2b2 + a2b1| ≤ |a2||b| ≤
2s+2uσ1σ2, it follows that

|t1 + a1b2| ≤ 2s+2uσ1σ2 + 4uσ1σ2 < 2s+3uσ1σ2.

Since a1 ∈ 2s+1uσ1Z and b2 ∈ 2uσ2Z, it follows that
a1b2 ∈ 2s+2u2σ1σ2Z and so t1 + a1b2 ∈ 2s+2u2σ1σ2. This
and |t1 +a1b2| < 2s+3uσ1σ2 implies that t1 +a1b2 is exactly
representable.

It follows that t2 = −x + a1b1 + a1b2 so t2 + a2b1 =
−x+ ab− a2b2. As a consequence,

|t2 + a2b1| ≤ |ab− x|+ |a2b2| ≤ 4uσ1σ2 + 22s+2u2σ1σ2.

As s = dp/2e and u = 2−p, it follows that 22su ≤ 2, it
follows that |t2 +a2b1| ≤ 4uσ1σ2 +23uσ1σ2 ≤ 12uσ1σ2. As
t2 + a2b1 ∈ 2s+2u2σ1σ2Z, implies that t2 + a2b1 is exactly
representable.

It follows that t3 = t2+a2b1 = −x+a1b1+a1b2+a2b1 =
−x+ ab− a2b2 and so

t3 + a2b2 = ab− x.

So the error on the floating-point product (which is a
floating-point number) is bounded by fl(t3 + a2b2) if we
used rounding toward +∞. Moreover a2b2 have at most
p+ 1 bits and a2b2 ∈ 4u2σ1σ2Z so r = fl(a2b2) ∈ 8u2σ1σ2Z
and so t3 + r ∈ 8u2σ1σ2Z and |t3 + r| ≤ 4uσ1σ2. So t3 + r
is exactly representable. So it follows that

|(ab− x)− y| = |a2b2 − r| ≤ 2u|a2b2|.

As |a2b2| ≤ 2s+2u2σ1σ2 and as 22s ≤ 2, we obtain that

|(ab− x)− y| = |a2b2 − r| ≤ 8u2σ1σ2.

As we know that σ1σ2 ≤ ufp(ab) ≤ 2σ1σ2, it follows that

|(ab− x)− y| ≤ 8u2 ufp(ab).

In Proposition 3.9 we establish a relation between the
error e and the correction y if Algorithm 5 is executed with
directed rounding.

Proposition 3.9. Let x and y be the floating-point product of
a and b and the correction both computed by Algorithm 5 using
directed rounding. Let e be the error on x: a× b = x+ e.

• If computations are performed with rounding toward +∞
then e ≤ y.

• If computations are performed with rounding toward −∞
then y ≤ e.

Proof. From the previous theorem, we know that e =
t3 + a2b2 and y = fl(t3 + fl(a2b2)). As a consequence, if
we perform computations with rounding toward +∞ then
e ≤ y and if we perform computations with rounding
toward −∞ then y ≤ e.

4 ACCURATE SUMMATION

In this section we recall how to obtain interval inclusions
for summation using the classical iterative algorithm. Then
we present how to compute narrow inclusions thanks to
compensated algorithms.
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function res = Sum(p)
1: s1 ← p1
2: for i = 2 to n do
3: si ← si−1 + pi
4: end for
5: res← sn

Algorithm 6: Summation of n floating-point numbers
p = {pi}

4.1 Classic summation
The classic algorithm for summation is the iterative Algo-
rithm 6.

The error generated by Algorithm 6 with directed round-
ing is given in [17] and is recalled in Proposition 4.1.

Proposition 4.1. Let us suppose Algorithm 6 is applied to
floating-point numbers pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi

and S :=
∑
|pi|.

With directed rounding, if nu < 1
2 , then

|res− s| ≤ γn−1(2u)S. (8)

In Corollary 4.2 Equation 8 is rewritten in terms of the
condition number on

∑
pi:

cond
(∑

pi
)

=
S

|s|
.

Corollary 4.2. With directed rounding, if nu < 1
2 , the result

res of Algorithm 6 satisfies

|res− s|
|s|

≤ γn−1(2u) cond
(∑

pi
)
.

Because γn−1(2u) ≈ 2(n−1)u, the bound for the relative
error is essentially 2nu times the condition number. If the
condition number is large (greater than 1/u) then the result
of Algorithm 6 has no more correct digits. Compensated al-
gorithms, that evaluate more accurately the sum of floating-
point numbers, are presented in Sect. 4.2.

Algorithm 7 shows how to compute an inclosure of∑n
i=1 pi. It is given with the MATLAB syntax. With the

argument −1 (resp. 1), the setround function enables one
to perform the next instructions with rounding to −∞
(resp. +∞). The same algorithm could also be writtten in a
programming language sush as C++ using the fesetround
function to change the rounding mode.

setround(-1)
Sinf = Sum(p)
setround(1)
Ssup = Sum(p)

Algorithm 7: Computation of interval bounds Sinf
and Ssup with the classic summation algorithm Sum

As shown for example in [28], we have the following
enclosure.

Proposition 4.3. Let p = {pi} be a vector of n floating-point
numbers. If Sinf and Ssup are computed using Algorithm 7,
then we have

Sinf ≤
n∑
i=1

pi ≤ Ssup.

4.2 Compensated summation with directed rounding

A compensated algorithm to evaluate accurately the sum
of n floating-point numbers is presented as Algorithm 8
(FastCompSum) [29], [30]. This sum is corrected thanks to
an error-free transformation used for each individual sum-
mation. Although FastTwoSum is called in Algorithm 8, with
rounding to nearest the same result can be obtained using
another error-free transformation (TwoSum).

function res = FastCompSum(p)

1: π1 ← p1
2: σ1 ← 0
3: for i = 2 to n do
4: [πi, qi]← FastTwoSum(πi−1, pi)
5: σi ← σi−1 + qi
6: end for
7: res← πn + σn

Algorithm 8: Compensated summation of n floating-
point numbers p = {pi} using FastTwoSum

With directed rounding, Algorithm 1 (FastTwoSum) is
not an error-free transformation. The error generated by
Algorithm 8 with directed rounding is given in [13] and
is recalled in Proposition 4.4.

Proposition 4.4. Let us suppose Algorithm FastCompSum is
applied, with directed rounding, to floating-point numbers pi ∈ F,
1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2 , then

|res− s| ≤ 2u|s|+ 2(1 + 2u)γ2n(2u)S. (9)

From Proposition 4.4, a bound for the relative error
on the result of Algorithm 8 (FastCompSum) obtained with
directed rounding is deduced in Corollary 4.5.

Corollary 4.5. With directed rounding, if nu < 1
2 , then, the

result res of Algorithm 8 (FastCompSum) satisfies

|res− s|
|s|

≤ 2u + 2(1 + 2u)γ2n(2u) cond
(∑

pi
)
.

From Corollary 4.5, because γn(2u) ≈ 2nu, the relative
error bound is essentially (nu)2 times the condition number
plus the unavoidable rounding 2u due to the working
precision. The computation is carried out almost as with
twice the working precision (u2).

Algorithm 9 shows how to compute with MATLAB the
FastCompSum algorithm with rounding to −∞, and then
with rounding to +∞.

setround(-1)
Sinf = FastCompSum(p)
setround(1)
Ssup = FastCompSum(p)

Algorithm 9: Computation of interval bounds Sinf
and Ssup with the compensated summation algo-
rithm FastCompSum

In Proposition 4.6 we show that Algorithm 9 provides an
inclosure of

∑n
i=1 pi. Thanks to the FastCompSum algorithm,
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the results provided by Algorithm 9 are almost as accurate
as if the classical summation was computed in twice the
working precision.

Proposition 4.6. Let p = {pi} be a vector of n floating-point
numbers. If Sinf and Ssup are computed using Algorithm 9,
then we have

Sinf ≤
n∑
i=1

pi ≤ Ssup.

Proof. Let ei be the error on the floating-point addition of
πi−1 and pi (i = 2, ..., n). We know that s =

∑n
i=1 pi =

πn +
∑n
i=1 ei where πi + ei = πi−1 + pi.

• Let us assume computations are performed with
rounding toward +∞.
From Proposition 3.2, it follows that ei ≤ qi. As a
consequence, we have s ≤ πn +

∑n
i=1 qi. As we use

rounding toward +∞, we have
∑n
i=1 qi ≤ σn so

s ≤ πn + σn. As we always use rounding toward
+∞, we also have s ≤ res := Ssup.

• Let us assume computations are performed with
rounding toward −∞.
From Proposition 3.2, it follows that qi ≤ ei. As a
consequence, we have πn +

∑n
i=1 qi ≤ s. As we use

rounding toward −∞, we have σn ≤
∑n
i=1 qi so

πn + σn ≤ s. As we always use rounding toward
−∞, we also have Sinf := res ≤ s.

A compensated summation algorithm based on TwoSum
is given in Algorithm 10 (CompSum). This algorithm was
introduced in [9].

function res = CompSum(p)

1: π1 ← p1
2: σ1 ← 0
3: for i = 2 to n do
4: [πi, qi]← TwoSum(πi−1, pi)
5: σi ← σi−1 + qi
6: end for
7: res← πn + σn

Algorithm 10: Compensated summation of n
floating-point numbers p = {pi} using TwoSum

Proposition 4.7 shows that the error bound established
for the FastCompSum algorithm is also valid for CompSum.

Proposition 4.7. Let us suppose Algorithm CompSum is applied,
with directed rounding, to floating-point numbers pi ∈ F, 1 ≤
i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2 , then

|res− s| ≤ 2u|s|+ 2(1 + 2u)γ2n(2u)S. (10)

Proof. The error bounds for FastTwoSum and TwoSum are the
same as shown in Propositions 3.2 and 3.6. As the conse-
quence, the proof is similar to the one for FastCompSum (see
Proposition 4.4).

Algorithm 11 shows how to compute the CompSum al-
gorithm with rounding to −∞, and then with rounding
to +∞.

setround(-1)
Sinf = CompSum(p)
setround(1)
Ssup = CompSum(p)

Algorithm 11: Computation of interval bounds Sinf
and Ssup with the compensated summation algo-
rithm CompSum

Proposition 4.8 shows that Algorithm 11 provides an
inclosure of

∑n
i=1 pi. The results of Algorithm 11, like those

of Algorithm 9, are almost as accurate as if the classical
summation was computed in twice the working precision.

Proposition 4.8. Let p = {pi} be a vector of n floating-point
numbers. If Sinf and Ssup are computed using Algorithm 11,
then we have

Sinf ≤
n∑
i=1

pi ≤ Ssup.

Proof. The proof is similar to the one of Proposition 4.6.

5 ACCURATE DOT PRODUCT

In this section we recall how to obtain inclusions of dot
products using the classic dot product algorithm. Then
we show that tighter inclusions can be computed using
compensated dot product algorithms executed with directed
rounding. In this section, we assume that no underflow
occurs.

5.1 Classic dot product
The classic algorithm for computing a dot product is Algo-
rithm 12.

function res = Dot(x, y)

1: s1 ← x1y1
2: for i = 2 to n do
3: si ← xi × yi + si−1
4: end for
5: res← sn

Algorithm 12: Classic dot product of x = {xi} and
y = {yi}, 1 ≤ i ≤ n

The error generated by Algorithm 12 with directed
rounding is recalled in Proposition 5.1.

Proposition 5.1. Let floating point numbers xi, yi ∈ F, 1 ≤
i ≤ n, be given and denote by res ∈ F the result computed by
Algorithm 12 (Dot). With directed rounding, if nu < 1

2 , we have

|res− xT y| ≤ γn(2u)|xT ||y|. (11)

Proof. The proof can be found in Higham [17, p.63].

We can rewrite the previous inequality in terms of the
condition number of the dot product defined by

cond(xT y) = 2
|x|T |y|
|xT y|

.
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Corollary 5.2. With directed rounding, if nu < 1
2 , the result

res of Algorithm 12 satisfies

|res− xT y|
|xT y|

≤ 1

2
γn(2u) cond(xT y).

Because γn(2u) ≈ 2nu, the bound for the relative error
is essentially nu times the condition number.

Algorithm 13 shows how to compute the Dot algorithm
with rounding to −∞, and then with rounding to +∞.

setround(-1)
Dinf = Dot(x,y)
setround(1)
Dsup = Dot(x,y)

Algorithm 13: Computation of interval bounds Dinf
and Dsup with the classic dot product algorithm Dot

As shown for example in [28], we have the following
enclosure.

Proposition 5.3. Let floating-point numbers xi, yi ∈ F, 1 ≤ i ≤
n, be given. If Dinf and Dsup are computed using Algorithm 13,
then we have

Dinf ≤ xT y ≤ Dsup.

5.2 Compensated dot product with directed rounding
and FMA
A compensated dot product algorithm [9] that uses the
TwoProdFMA EFT is recalled as Algorithm 14 (CompDotFMA).

function res = CompDotFMA(x, y)

1: [p, s]← TwoProdFMA(x1, y1)
2: for i = 2 to n do
3: [h, r]← TwoProdFMA(xi, yi)
4: [p, q]← TwoSum(p, h)
5: s← s+ (q + r)
6: end for
7: res← p+ s

Algorithm 14: Compensated dot product of x = {xi}
and y = {yi}, 1 ≤ i ≤ n with FMA.

A bound for the absolute error on the result res of Algo-
rithm 14 with directed rounding is given in Proposition 5.4.

Proposition 5.4. Let floating-point numbers xi, yi ∈ F, 1 ≤
i ≤ n, be given and denote by res ∈ F the result computed by
Algorithm 14 with directed rounding. If (n+ 1)u < 1

2 , then,

|res− xT y| ≤ 2u|xT y|+ 2γ2n+1(2u)|xT ||y|.

Proof. In [15], a similar algorithm has been analyzed with
directed rounding, except FastTwoSum was used instead
of TwoSum here. Because the error bounds are the same
in Proposition 3.2 and Theorem 3.4, the error bound in
Proposition 5.4 is the same as in [15].

From Proposition 5.4, a bound for the relative error on
the result of Algorithm 14 obtained with directed rounding
is deduced in Corollary 5.5.

Corollary 5.5. With directed rounding, if (n + 1)u < 1
2 , then,

the result res of Algorithm 14 satisfies

|res− xT y|
|xT y|

≤ 2u + γ2n+1(2u) cond
(
xT y

)
.

From Corollary 5.5, the relative error bound on the result
of Algorithm 14 computed with directed rounding is essen-
tially (nu)2 times the condition number plus the rounding
2u due to the working precision. The result obtained with
Algorithm 14 is almost as accurate as if the classic dot
product was computed in twice the working precision.

Algorithm 15 shows how to compute with MATLAB the
CompDotFMA algorithm with rounding to−∞, and then with
rounding to +∞.

setround(-1)
Dinf = CompDotFMA(x,y)
setround(1)
Dsup = CompDotFMA(x,y)

Algorithm 15: Computation of interval bounds Dinf
and Dsup with the compensated dot product algo-
rithm CompDotFMA

In Proposition 5.6 we show that Algorithm 15 provides
an inclosure of the dot product. For the proof we rewrite
this algorithm into the following equivalent one.

function res=CompDotFMA(x, y)

1: [p1, s1]← TwoProdFMA(x1, y1)
2: for i = 2 to n do
3: [hi, ri]← TwoProdFMA(xi, yi)
4: [pi, qi]← TwoSum(pi−1, hi)
5: si ← si−1 + (qi + ri)
6: end for
7: res← pn + sn

Algorithm 16: Equivalent formulation of Algo-
rithm 14

Proposition 5.6. Let floating-point numbers xi, yi ∈ F, 1 ≤ i ≤
n, be given. If Dinf and Dsup are computed using Algorithm 15,
then we have

Dinf ≤ xT y ≤ Dsup.

Proof. Let ei be the error on the floating-point addition of
pi−1 and hi (i = 2, ..., n). We know that xT y = pn + s1 +∑n
i=2(ei + ri) where pi + ei = pi−1 +hi (see Proposition 4.5

in [15]).

• Let us assume computations are performed with
rounding toward +∞.
From Proposition 3.6, it follows that ei ≤ qi. As a
consequence, we have xT y ≤ pn+s1+

∑n
i=2(qi+ri).

As we use rounding toward +∞, we have s1 +∑n
i=2(qi + ri) ≤ sn so xT y ≤ pn + sn. As we

always use rounding toward +∞, we also have
xT y ≤ res := Dsup.

• Let us assume computations are performed with
rounding toward −∞.
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From Proposition 3.6, it follows that qi ≤ ei. As a
consequence, we have pn + s1 +

∑n
i=2(qi + ri) ≤

xT y. As we use rounding toward −∞, we have
sn ≤ s1 +

∑n
i=2(qi + ri) so pn + sn ≤ xT y. As

we always use rounding toward −∞, we also have
Dinf := res ≤ xT y.

5.3 Compensated dot product with directed rounding
without FMA
If an FMA is not easily available, as it is the case with
MATLAB, a compensated dot product algorithm similar
to Algorithm 14 can be written by replacing TwoProdFMA
by TwoProduct. This compensated dot product algorithm
with no FMA is given as Algorithm 17 in a formulation
convenient for the proofs of Propositions 5.7 and 5.8.

function res = CompDot(x, y)

1: [p1, s1]← TwoProduct(x1, y1)
2: for i = 2 to n do
3: [hi, ri]← TwoProduct(xi, yi)
4: [pi, qi]← TwoSum(pi−1, hi)
5: si ← si−1 + (qi + ri)
6: end for
7: res← pn + sn

Algorithm 17: Compensated dot product of x = {xi}
and y = {yi}, 1 ≤ i ≤ n without FMA.

Proposition 5.7. Let floating-point numbers xi, yi ∈ F, 1 ≤
i ≤ n, be given and denote by res ∈ F the result computed by
Algorithm 17 (CompDot) with directed rounding. If (n + 1)u <
1
2 , then,

|res− xT y| ≤ 2u|xT y|+ 2(1 + 2u)γ2n+1(2u)|xT ||y|.

Proof. Thanks to the TwoProduct algorithm, we have

p1 + t1 = x1y1, (12)

with |t1 − s1| ≤ 4u2|x1y1| and for i ≥ 2,

hi + ti = xiyi, (13)

with |ti − ri| ≤ 4u2|xiyi|. From Proposition 3.2, it follows
that

pi + ei = pi−1 +hi with |qi− ei| ≤ 4u2|pi−1 +hi|. (14)

Therefore from Equation 13, we deduce that

ei + ti = (pi−1 + hi − pi) + (xiyi − hi) = xiyi + pi−1 − pi.

Then from Equation 12, we derive

s1+
n∑
i=2

(ei+ti) = (x1y1−p1)+

(
n∑
i=2

xiyi + p1 − pn

)
= xT y−pn.

(15)
We know that |ti| ≤ 2u|xiyi| and |ti−ri| ≤ 4u2|xiyi| for

i ≥ 2. As a consequence, for i ≥ 2,

|ri| ≤ [2u + 8u2]|xiyi|.

Therefore, we have
n∑
i=2

|ri| ≤ [2u + 8u2]
n∑
i=2

|xiyi|,

and

|s1|+
n∑
i=2

|ri| ≤ [2u + 8u2]|xT ||y|. (16)

Let us denote αi := ei − qi so that

|αi| ≤ 4u2|πi−1 + pi|. (17)

Let us first evaluate an upper bound on
∑n
i=2 |αi| and

an upper bound for
∑n
i=2 |ei| and then an upper bound on∑n

i=2 |qi|. Let us show by induction that

n∑
i=2

|αi| ≤ 2uγn−1(2u)
n∑
i=1

|hi|. (18)

By convention, we define h1 := p1. We know that if
n = 2,

p2 + e2 = p1 + h2 = h1 + h2. (19)

Therefore

|α2| ≤ 4u2 (|h1|+ |h2|) ≤ 2uγ1(2u) (|h1|+ |h2|) (20)

Let us assume that Equation 18 is true for n and that an
extra floating-point number hn+1 is added. Then

pn+1 = fl*(pn + hn+1), (21)

pn+1 = fl*

(
n+1∑
i=1

hi

)
. (22)

From [17],

|pn+1| ≤ (1 + γn(2u))
n+1∑
i=1

|hi|. (23)

Let en+1 be the error on the floating-point addition of pn
and hn+1:

pn+1 + en+1 = pn + hn+1. (24)

From Proposition 3.8,

|αn+1| ≤ 4u2|pn+1| ≤ 4u2 (1 + γn(2u))
n+1∑
i=1

|hi| (25)

Hence, assuming that Equation 18 is true for n,

n+1∑
i=2

|αi| ≤
(
2uγn−1(2u) + 4u2(1 + γn(2u))

) n+1∑
i=1

|hi| (26)

From the fact that a direct calculation shows that
γn−1(2u) + 2u(1 + γn(2u)) ≤ γn(2u), we can deduce

n+1∑
i=2

|αi| ≤ 2uγn(2u)
n+1∑
i=1

|hi| (27)

Therefore by induction Equation 18 is true.

Let us now find an upper bound for
∑n
i=2 |ei|. Let us

show by induction that
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n∑
i=2

|ei| ≤ γn−1(2u)
n∑
i=1

|hi| (28)

We know that if n = 2,

p2 + e2 = p1 + h2 = h1 + h2. (29)

Therefore

|e2| ≤ γ1(2u) (|h1|+ |h2|) (30)

Let us assume that Equation 28 is true for n and that an
extra floating-point number hn+1 is added.

From Equations 21 to 24,

|en+1| ≤ 2u|pn+1| ≤ 2u (1 + γn(2u))
n+1∑
i=1

|hi| (31)

Hence, assuming that Equation 28 is true for n,

n+1∑
i=2

|ei| ≤ (γn−1(2u) + 2u(1 + γn(2u)))
n+1∑
i=1

|hi| (32)

By a calculation, we deduce
n+1∑
i=2

|ei| ≤ γn(2u)
n+1∑
i=1

|hi| (33)

Therefore by induction Equation 28 is true.

Let us evaluate an upper bound on
∑n
i=2 |qi|:

n∑
i=2

|qi| ≤
n∑
i=2

|ei|+
n∑
i=2

|qi − ei| =
n∑
i=2

|ei|+
n∑
i=2

|αi| (34)

From Equations 17 and 28,
n∑
i=2

|qi| ≤ γn−1(2u)
n∑
i=1

|hi|+ 2uγn−1(2u)
n∑
i=1

|hi| (35)

Therefore
n∑
i=2

|qi| ≤ (γn−1(2u) + 2uγn−1(2u))
n∑
i=1

|hi| (36)

We then deduce
n∑
i=2

|qi| ≤ γn(2u)
n∑
i=1

|hi| (37)

As a consequence, we have
n∑
i=2

|ei| ≤ γn(2u)|xT ||y|. (38)

and
n∑
i=2

|qi| ≤ γn+1(2u)|xT ||y|. (39)

For later use, we evaluate an upper bound on the follow-
ing expression

|s1 +
n∑
i=2

(qi + ri)− sn|

=

∣∣∣∣∣s1 +
n∑
i=2

(qi + ri)− fl*

(
s1 +

n∑
i=2

(qi + ri)

)∣∣∣∣∣ .

From Proposition 4.1, it follows that

|s1+
n∑
i=2

(qi+ri)−sn| ≤ γn−1(2u)

(
|s1|+

n∑
i=2

|fl* (qi + ri)|
)
.

(40)
Furthermore, because a directed rounding mode is used,

we have
n∑
i=2

|fl* (qi + ri)| ≤ (1 + 2u)
n∑
i=2

|qi + ri| .

Therefore from Equation 40, we deduce that

|s1+
n∑
i=2

(qi+ri)−sn| ≤ (1+2u)γn−1(2u)

(
|s1|+

n∑
i=2

|qi + ri|
)
,

and, so

|s1 +
n∑
i=2

(qi + ri)− sn| ≤ γn(2u)

(
|s1|+

n∑
i=2

|qi + ri|
)
.

From Equations 16 and 39, it follows that

|s1+
n∑
i=2

(qi+ri)−sn| ≤ γn(2u)
(
2u + 8u2 + γn+1(2u)

)
|xT ||y|.

(41)
We deduce from Equation 15 that

|
(
xT y − pn

)
− sn| =

∣∣∣∣∣s1 +
n∑
i=2

(ei + ti)− sn

∣∣∣∣∣ .
As a consequence, it yields

|xT y − pn − sn|

=

∣∣∣∣∣s1 +
n∑
i=2

(qi + ri)− sn +
n∑
i=2

(ei − qi) +
n∑
i=2

(ti − ri)
∣∣∣∣∣ ,

and
|xT y − pn − sn|

≤
∣∣∣∣∣s1 +

n∑
i=2

(qi + ri)− sn

∣∣∣∣∣+
n∑
i=2

|ei − qi|+
n∑
i=2

|ti − ri| .

Therefore, we deduce that

|xT y−pn−sn| ≤ [γn(2u)(4u+γn+1(2u)+8u2)+4u2]|xT ||y|.
(42)

Because n > 2 and u is small,

|xT y − pn − sn| ≤ 2γn+1(2u)2|xT ||y|. (43)

Because Algorithm 16 is executed with a directed round-
ing mode, it follows that

|res− xT y| = |(1 + ε)(pn + sn)− xT y| with |ε| ≤ 2u.

Therefore, we have

|res− xT y| = |εxT y + (1 + ε)(pn + sn − xT y)|,

and

|res− xT y| ≤ 2u|xT y|+ (1 + 2u)|pn + sn − xT y|.

Then from Equation 43, it follows that

|res− xT y| ≤ 2u|xT y|+ 2(1 + 2u)γn+1(2u)2|xT ||y|.
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setround(-1)
Dinf = CompDot(x,y)
setround(1)
Dsup = CompDot(x,y)

Algorithm 18: Computation of interval bounds Dinf
and Dsup with the compensated dot product algo-
rithm CompDot

Algorithm 18 shows how to compute with MATLAB the
CompDotFMA algorithm with rounding to −∞ , and then
with rounding to +∞.

In Proposition 5.8, we show that Algorithm 17 provides
an inclosure of the dot product.

Proposition 5.8. Let floating-point numbers xi, yi ∈ F, 1 ≤ i ≤
n, be given. If Dinf and Dsup are computed using Algorithm 18,
then we have

Dinf ≤ xT y ≤ Dsup.

Proof. Let ei be the error on the floating-point addition of
πi−1 and hi (i = 2, ..., n). We know that xT y = pn + s1 +∑n
i=2(ei+ti) where πi+ei = πi−1 +hi and hi+ti = xi×yi

(see Proposition 4.5 in [15]).

• Let us assume computations are performed with
rounding toward +∞.
From Proposition 3.6, it follows that ei ≤ qi. From
Propisition 3.9 it follows that ti ≤ ri. As a conse-
quence, we have xT y ≤ pn+s1+

∑n
i=2(qi+ri). As we

use rounding toward +∞, we have s1 +
∑n
i=2(qi +

ri) ≤ sn so xT y ≤ pn+ sn. As we always use round-
ing toward +∞, we also have xT y ≤ res := Dsup.

• Let us assume computations are performed with
rounding toward −∞.
From Proposition 3.6, it follows that qi ≤ ei. rom
Propisition 3.9 it follows that ri ≤ ti. As a conse-
quence, we have pn + s1 +

∑n
i=2(qi + ri) ≤ xT y.

As we use rounding toward −∞, we have sn ≤
s1 +

∑n
i=2(qi + ri) so pn + sn ≤ xT y. As we

always use rounding toward −∞, we also have
Dinf := res ≤ xT y.

6 ACCURATE HORNER SCHEME

In this section we recall how to obtain inclusions of a
polynomial evaluation using the classic Horner scheme.
Then we show that tighter inclusions can be computed
using a compensated Horner scheme executed with directed
rounding. In this section, we assume that no underflow
occurs.

6.1 Classic Horner scheme

The classical method for evaluating a polynomial

p(x) =
n∑
i=0

aix
i

function res = Horner(p, x)

1: sn ← an
2: for i = n− 1 downto 0 do
3: si ← si+1 × x+ ai
4: end for
5: res← s0

Algorithm 19: Polynomial evaluation with Horner’s
scheme

is the Horner scheme which consists of Algorithm 19.
Whatever the rounding mode, a forward error bound on

the result of Algorithm 19 is (see [17, p. 95]):

|p(x)− res| ≤ γ2n(2u)
n∑
i=0

|ai||x|i = γ2n(2u)p̃(|x|)

where p̃(x) =
∑n
i=0 |ai|xi. The relative error on the result

can be expressed in terms of the condition number of the
polynomial evaluation defined by

cond(p, x) =

∑n
i=0 |ai||x|i

|p(x)|
=
p̃(|x|)
|p(x)|

. (44)

Thus we have
|p(x)− res|
|p(x)|

≤ γ2n(2u) cond(p, x).

If an FMA instruction is available, then the statement
si ← si+1 × x + ai in Algorithm 19 can be rewritten as
si ← FMA(si+1, x, ai) which slightly improves the error
bound (see [17]).

Algorithm 20 presents how to compute an inclosure of
p(x) if x ≥ 0. If x ≤ 0, Horner(p̄,−x) is computed with
p̄(x) =

∑n
i=0 ai(−1)ixi.

setround(-1)
Einf = Horner(p,x)
setround(1)
Esup = Horner(p,x)

Algorithm 20: Computation of interval bounds Einf
and Esup with the classic Horner scheme for x ≥ 0

As for dot product and summation with directed round-
ing ( [28]), the following enclosure holds.

Proposition 6.1. Consider a polynomial p of degree n with
floating-point coefficients, and a floating-point value x. If Einf
and Esup are computed using Algorithm 20, then

Einf ≤ p(x) ≤ Esup.

6.2 Compensated Horner scheme with directed round-
ing
A compensated Horner scheme [10], [31] is recalled as
Algorithm 21 (CompHorner).

The error generated by Algorithm 21 with directed
rounding is given in [15] and is recalled in Proposition 6.2.
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function res = CompHorner(p, x)

1: sn ← an
2: rn ← 0
3: for i = n− 1 down to 0 do
4: [pi, πi]← TwoProdFMA(si+1, x)
5: [si, σi]← FastTwoSum(pi, ai)
6: ri ← ri+1 × x+ (πi + σi)
7: end for
8: res← s0 + r0

Algorithm 21: Polynomial evaluation with a compen-
sated Horner scheme

Proposition 6.2. Consider a polynomial p of degree n with
floating-point coefficients, and a floating-point value x. With
directed rounding, the forward error in the compensated Horner
algorithm is such that

|CompHorner(p, x)− p(x)| ≤ 2u|p(x)|+ 2γ2n+1(2u)2p̃(|x|).

Combining this error bound with the condition num-
ber (44) for the polynomial evaluation gives

|CompHorner(p, x)− p(x)|
|p(x)|

≤ 2u + 2γ2n+1(2u)2 cond(p, x).

Because γ2n+1(2u) ≈ 4nu, the bound for the relative
error of the computed result is essentially (nu)2 times the
condition number of the polynomial evaluation, plus the
unavoidable term 2u for rounding the result to the working
precision. The computed result is almost as accurate as if it
was computed by the classic Horner algorithm with twice
the working precision, and then rounded to the working
precision.

Algorithm 22 presents how to compute an inclo-
sure of p(x) if x ≥ 0. Like with Algorithm 20, if
x ≤ 0, CompHorner(p̄,−x) is computed with p̄(x) =∑n
i=0 ai(−1)ixi.

setround(-1)
Einf = CompHorner(p,x)
setround(1)
Esup = CompHorner(p,x)

Algorithm 22: Computation of interval bounds Einf
and Esup with the compensated Horner scheme
CompHorner for x ≥ 0

In Proposition 6.3 we show that Algorithm 22 provides
an inclosure of p(x). The results of Algorithm 22 are almost
as accurate as if the classical Horner scheme was computed
in twice the working precision.

Proposition 6.3. Consider a polynomial p of degree n with
floating-point coefficients, and a floating-point value x. If Einf
and Esup are computed using Algorithm 22, then

Einf ≤ p(x) ≤ Esup.

Proof. We analyze the impact of a directed rounding mode
on Algorithm 21 (CompHorner).

Let τi be the rounding error in the floating-point addition
of pi and ai (τi is not necessarily a floating-point number):

si + τi = pi + ai.

It follows that si+1 × x = pi + πi and pi + ai = si + τi with
|τi − σi| ≤ 2uτi. As a consequence, we have

si = si+1 × x− πi − τi for i = 0, . . . , n− 1.

By induction, we deduce that

p(x) = s0 + pπ(x) + pτ (x),

with

s0 = fl*(p(x)), pπ(x) =
n−1∑
i=0

πix
i, and pτ (x) =

n−1∑
i=0

τix
i.

• Let us assume computations are performed with
rounding toward +∞.
From Proposition 3.2, it follows that τi ≤ σi. As a
consequence, we have

p(x) ≤ s0 +
n−1∑
i=0

πix
i +

n−1∑
i=0

σix
i.

As we use rounding toward +∞, we have p(x) ≤
s0 + r0 = res := Esup.

• Let us assume computations are performed with
rounding toward −∞.
From Proposition 3.2, it follows that σi ≤ τi. As a
consequence, we have

s0 +
n−1∑
i=0

πix
i +

n−1∑
i=0

σix
i ≤ p(x).

As we use rounding toward −∞, we have Einf :=
res = s0 + r0 ≤ p(x).

A similar result can be obtained with CompHorner2
(Algorithm 23) by using TwoProduct instead of TwoProdFMA
and TwoSum instead of FastTwoSum.

function res = CompHorner2(p, x)

1: sn ← an
2: rn ← 0
3: for i = n− 1 down to 0 do
4: [pi, πi]← TwoProduct(si+1, x)
5: [si, σi]← TwoSum(pi, ai)
6: ri ← ri+1 × x+ (πi + σi)
7: end for
8: res← s0 + r0

Algorithm 23: Polynomial evaluation with a compen-
sated Horner scheme without FMA
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Fig. 1: Classic and compensated summation computed with
interval arithmetic
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Fig. 2: Classic and compensated dot product computed with
interval arithmetic

7 NUMERICAL RESULTS

In this section, we present results computed with interval
arithmetic using the classic and the compensated algorithms
for summation, dot product and Horner scheme. With the
compensated algorithms, the interval bounds have been
computed as described in the previous sections. The nu-
merical experiments have been carried out on a laptop
with an Intel Core i5 processor at 2.9 GHz with 16 Gb of
RAM. We used MATLAB R2016b with INTLAB v10 [16]. The
computation has been performed with the binary64 (double
precision) format of the IEEE 754-2008 standard [1]. Figures
1 to 3 display the radius over the midpoint of interval results
obtained for various condition numbers.

From Figures 1 to 3, with the classic algorithms, if the
condition number increases, the radius over the midpoint of
the computed interval also increases, which means that the
numerical quality of the result decreases. If the condition
number reaches about 1015, the computed result has no
more correct digits. With the compensated algorithms, if
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Fig. 3: Classic and compensated Horner scheme computed
with interval arithmetic

the condition number remains less than about 1015, the
numerical quality of the computed result is very satisfactory.
If the condition number increases from about 1015 to 1030,
the numerical quality of the result decreases. If the condition
number reaches about 1030, the result has no more correct
digits. As expected, the interval results obtained with the
compensated algorithms are almost as accurate as if they
were computed in twice the working precision. Tight inter-
val inclusions have been computed thanks to compensated
algorithms.

8 CONCLUSION AND PERSPECTIVES

In this paper we have shown that tight inclusions can be
computed for summation, dot product, and polynomial
evaluation thanks to compensated algorithms executed with
directed rounding. The results obtained are almost as ac-
curate as if they were computed using twice the working
precision. The approach chosen in this paper consists in
executing the compensated algorithms entirely with round-
ing toward −∞, and then with rounding toward +∞. An
advantage of this approach lies in the fact that the origi-
nal compensated algorithms can be used, possibly from a
library usually executed with rounding to nearest.

Another approach would consist in computing the re-
sults once with rounding to nearest and the corrections with
rounding toward−∞, and then with rounding toward +∞.
This approach would be more memory consuming than
the approach presented in this paper. However it would
perform better in terms of execution time. It would be
interesting to compare the two approaches.

K-fold compensated algorithms enable one to compute
summation and dot product as in K-fold precision [9].
Priest’s EFT [8] for the addition and TwoProdFMA both
compute the generated rounding error whatever the round-
ing mode. The impact of a directed rounding mode on
K-fold compensated algorithms based on these EFTs has
been shown in [15]. Another perspective would consist in
studying K-fold compensated algorithms to see if they can
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provide for summation and dot product narrow inclusions,
as in K-fold precision.

As a future work, we could also determine of it would
be possible to obtain tight inclusions using other compen-
sated algorithms, such as compensated exponentiation [32],
compensated Newton’s scheme [33], [34], the compensated
evaluation of elementary symmetric functions [35], or the
compensated algorithm for solving triangular systems [36].
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