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Trace metals are bioavailable, persistent and potentially harmful chemicals 
commonly found in cities. In metal-polluted habitats, natural populations may evolve 
adaptations and may be composed of individuals exhibiting detoxification 
mechanisms, in particular through melanization, dispersal or dormancy abilities. 
Interestingly, Daphnia cyclically produce chitinous melanized envelopes called 
‘ephippia’ encasing the resting eggs, which allow dispersal in space and in time 
(dormancy). Moreover, the success of dispersal decreases with increasing ephippial 
size. We hypothesized that populations living in polluted ponds produce more, darker 
and smaller ephippia than populations from unpolluted ponds. We sampled 51 ponds 
distributed in the Paris region and investigated the link between concentrations of 
seven trace metals and the presence of Daphnia and ephippia, and the size and 
pigmentation of ephippia. First, the presence of Daphnia was not linked to local metal 
concentrations, which ranged gradually from low to high values. Second, the 
probability of the presence of ephippia in sediments increased with metal 
concentrations, suggesting a selective advantage of Daphnia in producing dormancy 
stages in polluted habitats. Third, although ephippial pigmentation was not linked to 
metal concentrations, ephippial size decreased with increasing metal concentrations, 
suggesting a selection for increased dispersal in polluted habitats. Overall, our 
results show that anthropogenic pollution may have important microevolutionary 
consequences in urban populations, which are generally overlooked.
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Introduction 

Urban areas are environments that concentrate human activities and 

associated forms of pollution, such as trace metals (Azimi et al., 2003). These 

chemical pollutants are bioavailable, bioaccumulative and persistent and have 

various and often toxic effects on reproductive output and survival (Møller, Forbes & 

Depledge, 1996; Žaltauskaitė & Sodienė, 2014; Rogalski, 2015). It is thus likely that 

they will affect the functioning and eco-evolutionary dynamics of ecosystems and that 

they may exert selective pressures leading to adaptations by organisms living in 

polluted environments (Klerks & Weis, 1987; Medina, Correa & Barata, 2007; 

Chatelain, Gasparini & Frantz, 2016). 

Among potential adaptive phenotypic traits, melanin pigmentation may present 

an advantage owing to its detoxification properties. The chelation of metal ions by the 

several negative charges of melanin (McGraw, 2003) may promote organism 

detoxification by sequestering trace metals in melanized inert parts. Accordingly, a 

positive link between melanin pigmentation and trace metal pollution has been 

documented in several taxa (Loumbourdis & Vogiatzis, 2002; Fenoglio et al., 2005; 

Marques, Gonçalves & Pereira, 2008; Chatelain et al., 2014, 2016; Goiran, 

Bustamante & Shine, 2017). Therefore, more melanized individuals would have 

greater fitness than paler ones in the presence of toxic trace metals. Accordingly, 

previous studies in feral pigeons have shown that darker pigeons sequester more 

metals in their feathers and have higher juvenile survival when exposed to metals 

than less melanic ones (Chatelain et al., 2014, 2016). Thus, darker phenotypes may 

be more prevalent in habitats polluted by trace metals. 

Adaptations to metal pollution may also include the ability to invest in the 

production of dispersal forms and/or dormancy stages. Dispersal is known to be 

selected when environmental variability in habitat quality is mainly spatial (Wiener & 
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Tuljapurkar, 1994; Bowler & Benton, 2005) and would make it possible to leave 

polluted habitats in favour of less polluted ones. Dormancy is favoured when 

temporal variability in habitat quality prevails (Hairston & Cáceres, 1996) and would 

make it possible to avoid pronounced pollution events until the return of optimal living 

conditions. Although the precise relative investment in dispersal or dormancy would 

thus depend on the spatial vs. temporal variability in pollution, the general feature of 

spatio-temporal heterogeneity of environmental pollution may therefore favour high 

dispersal and/or dormancy in polluted habitats. 

In this study, we investigated whether metal concentrations were positively 

associated with the following: (1) the presence of dispersing and dormant stages; 

and (2) the intensity of melanin-based coloration of these stages in Daphnia. During 

its life cycle, this crustacean switches from parthenogenesis (clonal female 

reproduction) to sexual reproduction involving sexual females and males and 

resulting in up to two eggs. These eggs are protected by a chitinous envelope called 

the ‘ephippium’, which exhibits several interesting characteristics, such as variation in 

dispersal propensity, dormancy ability and melanin-based coloration. Indeed, 

ephippia can be dispersed by wind and by animals (‘dispersal in space’; Maguire, 

1963; Cáceres & Soluk, 2002; van de Meutter, Stoks & de Meester, 2008), and 

dispersal propensity decreases with ephippium size and buoyancy (van de Meutter et 

al., 2008). They can also remain dormant for several years or even decades 

(‘dispersal in time’; Hairston et al., 1995; Cáceres, 1997, 1998). Finally, the 

ephippium is the only melanized stage in Daphnia (except in alpine and arctic 

populations, where active individuals are also melanic; Hebert & Emery, 1990), and 

this pigmentation is variable and heritable (Gerrish & Cáceres, 2003). Altogether, this 

set of traits offers a unique opportunity to test our hypotheses. 
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To this end, we sampled 51 ponds in the Paris region, measured the 

concentrations of seven trace metals (arsenic, cadmium, chromium, copper, nickel, 

lead and zinc) and correlated them with the presence of both Daphnia individuals and 

ephippia, and with the size and melanin pigmentation of the ephippia. According to 

the ‘dispersal in space’ and ‘dispersal in time’ hypotheses (Pietrzak & Ślusarczyk, 

2006) and to the melanin ‘detoxification’ hypothesis (Chatelain et al., 2014, 2016), we 

predicted a higher production of ephippia and smaller, more melanized ephippia in 

more heavily polluted ponds. 

Material & Methods 

Sampling design 

Fifty-one non-interconnected freshwater ponds and lakes were sampled on 

one occasion each in the Île- de-France (Paris region) between November 2015 and 

April 2016. Natural and artificial ponds were randomly chosen, according to their 

position and distance from the centre of Paris (Point Zéro des routes de France, 48° 

51′ 12,24845′′ N, 2° 20′ 55,62563′′ E), to the elevation and to their depth and 

volume (calculated as half of an ellipsoid). Although we do not have information on 

either zooplankton assemblages or sedimentation rates, the high number of ponds (N 

= 51) sampled ensures that these factors are randomized and not confounded with 

the factors of interest in our study, making their influence on the variables very 

unlikely. For each pond, the presence of Daphnia individuals was recorded by 

vertically passing a net with a mesh size of 570 μm in the deepest part of the pond 

up to 50 cm. Regardless of the presence of Daphnia individuals in the water and at 

the same pond locations, we collected the top 3 cm of sediment in a circular area of 

12 cm in diameter from each pond, representing ~3 years of egg accumulation in 

sediments (Hairston et al., 1995; Francis, 1997). To retrieve ephippia from the 
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sediments, we used the sugar centrifugal flotation method (Onbé, 1978; Cromar & 

Williams, 1991), which allows > 90% of the sampled eggs to be retrieved with one 

treatment (Onbé, 1978) without affecting egg via- bility (Onbé, 1978; Cromar & 

Williams, 1991), making it useful for future studies on these eggs. 

Trace metal measurements 

A sample of water was taken from each pond and filtered (0.45 μm mesh) in 

order to measure concentrations in seven trace metals [arsenic (As), cadmium (Cd), 

chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn)] considered to be 

primary freshwater micropollutants in the Île-de-France region (Nriagu & Pacyna, 

1988; DRIEE, 2013). These metals originate both from industrial and urban direct 

effluent discharges and from total (wet and dry) atmospheric deposition (Nriagu & 

Pacyna, 1988; Azimi et al., 2003, 2005; DRIEE, 2013). This was a first-time sampling; 

therefore, we do not have historical data on metal pollution in the ponds, but we 

sampled ponds at increasing distance from the centre of Paris in order to obtain a 

pollution gradient that represents the variability of the Île-de-France region. We 

assumed that, despite their temporal variation, concentrations in water reflect recent 

exposure, including the period of release of ephippia. Concentrations were 

determined by mass spectrometry (ICP-MS Agilent 7500 cx) as described by 

Chatelain et al., 2016. All materials were cleaned and sanitized in 10% nitric acid 

baths to avoid trace metal contamination. 

Characteristics of ephippia 

For each ephippium, the area and the intensity score of melanin pigmentation 

(grey level of the ephippial surface) were measured via photographic analysis with 

ImageJ software (Gerrish & Cáceres, 2003). Photographs were taken with a 
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motorized microscope (SteREO Discovery.V12 Zeiss). Each ephippium was assigned 

to one of two Daphnia species groups, according to its shape and size 

characteristics: the Daphnia galeata and Daphnia pulex group (larger ephippia and 

‘narrowing sharply at posteroventral side’) or the Daphnia ambigua and Daphnia 

parvula group (smaller ephippia and ‘more or less symmetrical’; Vandekerkhove et 

al., 2004). 

Statistical analyses

We investigated associations between pond characteristics (metal 

concentrations, longitude, latitude, elevation, distance from the centre of Paris, and 

pond volume) with a Pearson correlation matrix. Given that the concentrations of 

several metals appeared to be highly correlated, we performed all further statistics for 

each metal separately in order to avoid collinearity issues. We first used generalized 

linear models for binomial data to investigate the effects of metal concentration 

presence of Daphnia individuals and ephippia. Second, we used linear mixed models 

to test the effect of the metal concentration on ephippial size and melanin coloration, 

adding groups of species as a fixed effect and pond as a random effect to take 

pseudo-replication issues into account. For all analyses, metal concentration, 

ephippial size and melanin coloration were log10-transformed. Statistical analyses 

were performed with R version 3.3.1. We did not correct P-values for multiple testing, 

as suggested by García (2004), Moran (2003) and Nakagawa (2004). 

Results 

Environmental variables linked to metal concentrations

There was an important variability in concentrations of trace metals among 

ponds (Table 1). Concentrations of these seven trace metals in the ponds were 
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positively and significantly correlated (all P ≤ 0.03, 0.31 ≤ ρ ≤ 0.76), except between 

Zn and As (P = 0.17; Table 2). We found interesting correlations between 

environmental variables and metal concentrations. First, concentrations of Cr, Ni, Cu, 

Zn and Cd in water were lower when pond volume was high (Table 2). Second, 

concentrations of Cd, Cr and Ni were higher at higher elevation (Table 2).

Probability of the presence of Daphnia and ephippia 

The probability of the presence of ephippia in pond sediments increased 

significantly with the concentration of Pb (logistic regression (LR) χ21 = 7.55, d.f. = 1, 

P = 0.006; Fig. 1A), Cd (LR χ21 = 6.59, d.f. = 1, P = 0.01; Fig. 1B) and Ni (LR χ21 = 

4.50, d.f. = 1, P = 0.03; Fig. 1C) but was not related to the concentrations of other 

metals (all P > 0.32). There appeared to be threshold concentrations in Ni, Cd and Pb 

(Ni, 3.61 μg/L; Cd, 0.056 μg/L; Pb, 1.45 μg/L) above which ephippia were 

systematically found in the ponds. The presence of Daphnia individuals was not 

dependent on trace metal concentrations (all P > 0.29). Pond size characteristics 

were not linked to the presence of ephippia and Daphnia individuals in ponds (all P > 

0.11).

Ephippial characteristics 

We did not find any statistical link between ephippial pigmentation and any of 

the metal concentrations (all P > 0.07). However, as the species group effect was 

significant for all metals (all P ≤ 0.0008) we analysed ephippial size separately for 

each group species. In the D. galeata and D. pulex group, ephippia size decreased 

significantly with increasing concentrations of Pb (χ21 = 12.35, d.f. = 1, P = 0.0004), 

Zn (χ21 = 5.96, d.f. = 1, P=0.015),Cu(χ21 =5.63,d.f.=1,P=0.018)andCr (χ21 = 4.32, 

d.f. = 1, P = 0.038; Fig. 2B–E), and such a tendency was observed for As (χ21 = 
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3.28, d.f. = 1, P = 0.070) and Cd (χ21 = 2.83, d.f. = 1, P = 0.093; Fig. 2A, F). In the D. 

ambigua and D. parvula species group, a significant decrease in ephippial size with 

increasing concentrations of As (χ21 = 5.44, d.f. = 1, P = 0.019) and Pb (χ21 = 5.65, 

d.f. = 1, P = 0.017) was observed (Fig. 2A, B). Pond size characteristics were not 

linked to the size and pigmentation of ephippia (all P > 0.14). 

Discussion 

First, we found that concentrations of metals in ponds were variable at a local 

scale (Parisian region; Table 1, Fig. 3) and were positively correlated with one 

another (Table 2), as previously observed in various other environmental 

compartments [e.g. urban atmospheric deposition (Azimi et al., 2005), street dust 

(Charlesworth et al., 2003; Yongming et al., 2006)], suggesting common sources of 

these metals. Furthermore, these concentrations depended on the geographical and 

abiotic environmental factors measured (i.e. longitude, latitude, elevation, distance 

from the centre of Paris, and pond volume). This high heterogeneity in environmental 

pollution is likely to impact on populations and ecosystems. 

In this context, we investigated whether the presence of both Daphnia 

individuals and ephippia was related to the levels of metallic pollution in ponds. 

Daphnia individuals were present all along the pollution gradient, even at the highest 

measured concentrations of metals (higher than the no observed effect 

concentration; Table 1). This is surprising given that Daphnia are considered to be 

highly sensitive to pollutants and are used as bioindicators (Tomasiks & Warren, 

1996). This result suggests that Daphnia might have evolved the ability to survive 

sustainably in elevated concentrations (higher than the no observed effect 

concentration; Table 1) of metallic pollution; accordingly, cases of natural Daphnia 

populations adapted to elevated concentrations of metals have been documented 
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previously (Barata et al., 2002; Lopes, Baird & Ribeiro, 2006; Coors et al., 2009; 

Agra, Soares & Barata, 2011). Moreover, experimental evolution approaches have 

shown that Daphnia are able to adapt rapidly to elevated concentrations of metals 

(LeBlanc, 1982; Bodar et al., 1990; Hochmuth et al., 2015; Haap, Schwarz & Köhler, 

2016). For instance, adaptation could involve the production of metallothionein, which 

binds metal ions and thus detoxifies the organism (Klaassen, Liu & Choudhuri, 1999; 

Haap et al., 2016). However, the precise phenotypic adaptations to elevated 

concentrations of trace metals remain unknown, and future studies should focus on 

their identification. 

According to our predictions, we expected Daphnia to invest more in the 

production of diapausing (‘dispersal in time’ hypothesis) and dispersing stages, i.e. 

smaller ephippia (‘dispersal in space’ hypothesis), and in more melanized ephippia 

(‘detoxification’ hypothesis). 

In agreement with our first prediction, the presence of ephippia in sediments 

was positively linked with the concentrations of three of the seven metals measured 

(Pb, Ni and Cd; Fig. 1). This result could be explained by various causes. First, as we 

hypothesized, higher production of ephippia could itself constitute an adaptation to 

adverse environments. Ephippia represent a diapausing stage that make it potentially 

possible to escape unfavourable conditions, such as temporarily dry (Roulin et al., 

2013) or polluted ponds, until the return of optimal life conditions (‘dispersal in time’ 

hypothesis) and to maximize fitness in local habitats where the mortality rate of 

Daphnia individuals is high. This advantage of producing a dormancy stage in harsh 

environments has been proposed to account for a higher production of resting frost-

resistant eggs by aphids in regions where low winter temperatures do not allow adult 

survival (Rispe et al., 1998). Second, the higher production of ephippia may allow 

them to leave a polluted patch, because the ephippium is the only dispersal stage in 
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Daphnia (‘dispersal in space’ hypothesis; Wiener & Tuljapurkar, 1994; Bowler & 

Benton, 2005). Alternatively, the higher production of ephippia in metal-polluted 

habitats could be adaptive, because the ability of ephippia to accumulate some 

metals (Wyn et al., 2007) could participate in pollutant sequestration out of the living 

tissues. However, our study is correlative, and we cannot exclude confounding 

effects in this positive association between ephippia and metal concentrations. 

Indeed, smaller ponds are more polluted (Table 2) but are also more temporal ponds 

that favour ephippial production (Roulin et al., 2013). Moreover, other non-tested 

factors are known to favour and/or initiate sexual reproduction in Daphnia, including 

exposure to solvents or endocrine disruptive compounds, pond temporality, parasite 

infection or predation (Hairston & Olds, 1984; Ślusarczyk, 1999; Zhang & Baer, 2000; 

Haeba et al., 2008; Roth et al., 2008; Baer, McCoole & Overturf, 2009; Roulin et al., 

2013). Additionally, more ephippia could be found in more polluted habitats owing to 

the metal toxicity that would lower the hatching rate (Rogalski, 2015). Experimental 

approaches involving manipulation of metal concentrations are now called for. 

Contrary to our second prediction, there was no relationship between the 

melanin coloration of ephippia and the concentrations of metals. However, we found 

that ephippia were smaller in more polluted ponds. This relationship could simply 

reflect the negative direct ecotoxicological effects of metals on the body length of 

adult Daphnia (van Leeuwen, Luttmer & Griffioen, 1985; Münzinger, 1990; Ward & 

Robinson, 2005; Agra et al., 2011) or an indirect ecotoxicological effect (e.g. through 

the food chain; Yan & Pan, 2002; Prosnier, Loreau & Hulot, 2015) and, subsequently, 

on the size of the ephippia they produce. More interestingly, as smaller ephippia have 

better success in dispersal (van de Meutter et al., 2008), the production of smaller 

ephippia could be selected in polluted habitats because it allows greater dispersal 

success. The differences we observed between metals in their relationships with life-
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history traits of Daphnia might suggest that not all trace metals are in a toxic range of 

concentrations in these localities. 

Altogether, our correlative work suggests that urban metal pollution may 

constitute an important environmental factor influencing natural populations, with 

regard to both ecotoxicological and microevolutionary aspects that need to be 

confirmed and investigated further through experimental approaches. 
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Table 1. Trace metal concentrations in the sampled ponds of Ile-de-France, No-Observed Effect Concentrations 
(NOEC) and references.

Element Range Mean (µg/L) SEa NOECb (µg/L) References

Arsenic (As) 0.109 - 9.466 1.612 0.248 260 Biesinger and Christensen, 1972

Cadmium (Cd) 0.005 - 0.124 0.027 0.004 0.6 Kühn et al., 1989
Chromium (Cr) 0.063 - 3.095 0.623 0.099 0.00006 van Leeuwen et al., 1987

Copper (Cu) 0.041 - 56.560 4.136 1.182 11 Biesinger and Christensen, 1972

Nickel (Ni) 0.214 - 10.450 2.496 0.271 13 Kszos et al., 1992
Lead (Pb) 0.053 - 7.904 1.183 0.269 15 Biesinger and Christensen, 1972

Zinc (Zn) 0.658- 147.360 25.050 4.780 74 Biesinger et al., 1986
a SE indicates the standard error 
b NOEC (21 days) determined on Daphnia magna
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Although relationships between ephippia presence probability and concentration of metals were tested 
using GLM with binary distribution, we present boxplots of metals concentrations among ponds according to 
ephippia presence/absence for better illustration purposes. Central bars represent median, boxes represent 
interquartile range, dots are outliers (> 1.5 ✕ interquartile range).
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Fig. 2 Ephippial area (mm2) according to metals concentrations (µg/L) in water ponds. 

Continuous lines show significant relationships; dashed lines show trend. Data for D. ambigua & D. parvula species group are in grey; data 
for D. galeata & D. pulex species group are in black. 

Note that axes scales are log-transformed and that X axis has different scales for each metal.

A Arsenic (As) B Lead (Pb)

C Zinc (Zn) D Copper (Cu)

E Chromium (Cr) F Cadmium (Cd)

G Nickel (Ni)
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Fig. 3 Maps of Île-de-France region (bottom left) and Paris (top right) 
showing water trace metals concentrations (µg/L) in the 51 sampled 
ponds for the 7 trace metals.
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