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Abstract -- The use of artemisinin-based combination therapies (ACTs), which combine an artemisinin
derivative with a partner drug, in the treatment of uncomplicated malaria has largely been responsible for the
significant reduction in malaria-related mortality in tropical and subtropical regions. ACTs have also played a
significant role in the 18% decline in the incidence of malaria cases from 2010 to 2016. However, this progress is
seriously threatened by the reduced clinical efficacy of artemisinins, which is characterised by delayed parasitic
clearance and a high rate of recrudescence, as reported in 2008 inWestern Cambodia. Resistance to artemisinins
has already spread to several countries in Southeast Asia. Furthermore, resistance to partner drugs has been
shown in some instances to be facilitated by pre-existing decreased susceptibility to the artemisinin component
of the ACT. Amajor concern is not only the spread of these multidrug-resistant parasites to the rest of Asia but
also their possible appearance in Sub-Saharan Africa, the continent most affected by malaria, as has been the
case in the past with parasite resistance to other antimalarial treatments. It is therefore essential to understand
the acquisition of resistance to artemisinins by Plasmodium falciparum to adapt malaria treatment policies and
to propose new therapeutic solutions.
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Résumé -- Résistance de Plasmodium falciparum aux combinaisons thérapeutiques à base
d’artémisinine : une épée de Damoclès sur les stratégies d’éradication du paludisme. L’utilisation,
dans le traitement du paludisme simple, de combinaisons thérapeutiques associant un dérivé de
l’artémisinine et une molécule partenaire a largement contribué à une réduction significative de la mortalité
due à cette pathologie dans les régions tropicales et subtropicales ainsi qu’une diminution de 18% de nombre
de cas de 2010 à 2016. Cependant, ces progrès sont sérieusement menacés par la diminution de l’efficacité
clinique des artémisinines caractérisées par des clairances parasitaires retardées et un taux de recrudescence
élevé, signalés en 2008 à l’ouest du Cambodge. La résistance aux artémisinines s’est déjà étendue à plusieurs
pays d’Asie du Sud-Est. De plus, il a été montré que la résistance aux molécules partenaires des artémisinines
dans ces combinaisons thérapeutiques (ACT) a été facilitée suite à une diminution de la sensibilité à
l’artémisinine. L’une des principales préoccupations est non seulement la propagation de ces parasites multi-
résistants dans le reste de l’Asie, mais aussi leur apparition possible en Afrique subsaharienne, continent le
plus touché par le paludisme, comme cela a été le cas dans le passé avec la résistance de parasites à d’autres
traitements antipaludiques. Il est donc essentiel de comprendre l’acquisition de la résistance de Plasmodium
falciparum aux artémisinines afin d’adapter les politiques de santé face au paludisme et de proposer de
nouvelles solutions thérapeutiques.
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Main mechanisms of Plasmodium
falciparum resistance

Two main mechanisms of resistance drive Plas-
modium resistance to antimalarial drugs. The first
one is an efflux of the drug away from its action site
due to mutations in different transporter genes (like
pfcrt in chloroquine resistance) or an increased
number of the gene copies (like pfmdr1 copy number
in mefloquine resistance). The second is a change in
the parasite target due to mutations in corresponding
genes (like, at the cytosol level, dhfr and dhps in
sulfadoxine-pyrimethamine resistance or, at the
mitochondrion level, cytochrome b in atovaquone
resistance). Surprisingly, resistance of falciparum
malaria to the new artemisinin compounds involves a
novel mechanism corresponding to a quiescence
phenomenon.

Introduction

Malaria is widespread in countries located in tropical
and sub-tropical regions, where an estimated 3.2 billion
people, nearly half of the world’s population, are at risk of
infection [79]. Among the five species of Plasmodium that
infect humans, Plasmodium falciparum is the most
virulent, with the highest rates of complications and
mortality as well as the most frequent incidence of red
blood cell disorders worldwide [12]. Of the estimated
216million cases in 2016, falciparum malaria accounted
for 99% of cases in Africa, 77% of cases in the Western
Pacific Region, 66% of cases in Southeast Asia, 58% of
cases in the Eastern Mediterranean Region, and 36% of
cases in America [79]. Over 91% of the estimated
445 000 global deaths from malaria in 2016 occurred in
Sub-Saharan Africa, primarily among children less than
five years of age [13,79]. Over the last 17 years, important
measures have been put in place to prevent malaria,
leading to a 60% reduction in its worldwide death toll. A
decrease of 18% in the incidence of malaria cases was also
reported from 2010 to 2016 [79]. This significant decrease in
malaria incidence is the result of both preventivemeasures,
such as themassive distribution of insecticide-treated nets,
vector control strategies, and rapid diagnostic tests, as well
as the use of artemisinin-based combination therapies
(ACTs) in curative therapy. ACTs, recommended by the
World Health Organization (WHO), are currently used as
the first-line antimalarial treatment worldwide [79].
However, the current efforts to reduce the global burden
of malaria are threatened by the rapid emergence and
spread of P. falciparum resistance to ACTs including
artemisinin derivatives and their partner drugs.
Artemisinin and ACTs

The 2015 Nobel Prize in Medicine was awarded to
Professor Tu Youyou for her key contribution to the
discovery of artemisinin. Artemisinin, isolated from the
plant Artemisia annua, and its semi-synthetic derivatives
(artemether, artesunate, dihydroartemisinin) are power-
ful medicines known for their ability to swiftly reduce the
number of Plasmodium parasites in the blood of patients
suffering from malaria [2]. The unique characteristic of
artemisinins is that they clear parasitemia more rapidly
than all other antimalarials, including quinine [21]. Their
efficacy can be ascribed to the fact that these compounds
target not only the late erythrocytic parasite stages, like
most antimalarial drugs, but also the early stages.
Artemisinins, by killing the ring stage forms, allow the
parasite to be pitted out of the host red blood cells, hence
removing them from circulation [12,51,78] and preventing
these parasite stages from maturing and sequestering in
the vessels. This phenomenon is important in the
pathogenesis because mature parasites are able to adhere
to endothelial cells, blood cells and platelets which prevent
their circulation in the bloodstream and theywill therefore
be able to escape retention by the spleen [12].

In the parasitic food vacuole, artemisinins react with
haem that is generated from the digestion of haemoglobin
and is toxic to the parasite, to form haem-artemisinin
adducts [67]. These adducts seem to interact with P.
falciparum haem detoxification proteins and inhibit
haemozoin polymerisation leading to haem accumulation.
Artemisinins are also responsible for alkylation of parasite
proteins. Together, these events cause oxidative stress,
leading to irreversible parasite damage and parasite death
[17]. This explains the life-saving benefit of artemisinins
and elucidates the mechanism underlying their superior
efficacy for the treatment of malaria [21]. Artemisinins
also reduce the number of gametocytes (sexual-stage
parasites) responsible for its transmission to the vector,
the Anopheles mosquito [2], both with direct anti-
gametocyte activity and indirect action via the reduction
of the asexual parasite population, which is the source of
new gametocytes [18].

Since 1994, artemisinins have been used in ACTs to
treat uncomplicated malaria. ACTs combine 2 active
ingredients, artemisinins and another antimalarial drug,
with different mechanisms of action. It has been reasoned
that in ACTs, the partner drugs are chosen on the basis of
their pharmacokinetic properties, which include much
longer plasma half-lives (days to weeks) than those of
artemisinins (1 to 2 h). While artemisinins are eliminated
very rapidly from the body, the remaining parasites are
exposed to the associated long-acting drug well after the
end of the usual 3-dayACT course [80]. ACTs are themost
effective antimalarial medicines available today, and they
have replaced quinolines and antifolates as the first-line
treatment for uncomplicated P. falciparummalaria in
most endemic countries.

Five ACTs are currently used (Table 1), namely,
artemether/lumefantrine (AL), artesunate/amodiaquine
(ASAQ), artesunate/mefloquine (ASMQ), artesunate/
sulfadoxine/pyrimethamine (AS+SP) and dihydroarte-
misinin/piperaquine (DHA/PPQ) [80]. A sixth ACT,
artesunate/pyronaridine [47], was recently approved, and
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Figure 1. Mutations in the PfK13 protein involved in artemisinin resistance (WHO) [80].
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unfortunately, its current efficacy on day 42 was below
90% inWestern Cambodia, an artemisinin-resistance area
[38]. In 2016, 409million ACT-based treatments were
applied worldwide [79].

Malaria treatment in pregnant women presents
substantial risks for the mother and the unborn child.
The risk-free use of artemisinin derivatives has not been
well established in the first trimester of pregnancy [27],
which is why the WHO does not recommend the use of
these drugs during this period. Nevertheless, treatment
with artemisinins during the second and third trimesters
has been shown to be safe and does not have greater risks
than other antimalarial drugs during these periods [32].

Artemisinin resistance: definition

Artemisinin resistance was documented in 2008 on the
Thailand-Cambodia border after artesunatemonotherapy
[22,53]. However, retrospective analysis indicates that
artemisinin resistance likely emerged in 2001, before the
widespread deployment of ACTs in Cambodia [81].
Artemisinin resistance was first correlated with delayed
parasitic clearance after the first 3 days of treatment
following artemisinin monotherapy or ACTs and higher
rates of clinical failures due to increased parasitic
recrudescence [22,53]. Increased clearance half-life was
highly correlated with greater recrudescence rates in vivo
after artemisinin elimination, which means that the
parasites survive artemisinin treatment and are able to
continue their development after the elimination of
artemisinin from the body. Parasite clearance half-life is
the time required to physiologically reduce the para-
sitemia by 50% following an administered antimalarial
dose. Nevertheless, most patients who have delayed
parasite clearance following treatment with an ACT are
still able to clear their infection, as long as the partner drug
remains effective. That is why delayed parasite clearance
does not necessarily lead to treatment failure, even though
artemisinin resistance can promote selection of the
concomitant resistance to the partner drug.

Usually, in the resistance to other malaria drugs, the
parasites are able to proliferate and multiply during
treatment, but the same is not true in the case of
artemisinin resistance. The resistance to artemisinin is
based on a mechanism of entry into quiescence that occurs
only at the ring stage. This finding was revealed by an
experimental model, the F32-ART5 parasite line (a highly
artemisinin-resistant strain established in vitro after
5 years of exposure to sequential and escalating concen-
trations of artemisinin reaching 7000-fold the IC50 value of
the parental and sensitive F32-Tanzania strain) and was
confirmed with Cambodian P. falciparum isolates [84,85].
As artemisinin resistance is due to the quiescent state of
parasites in the presence of artemisinins [55], the standard in
vitro chemosensitivity assays recommended by the WHO
[19,22] to evaluate the antimalarial drug inhibition of
parasite growth are not reliable tools for monitoring
artemisinin resistance. The resistance to artemisinin is
evidenced ex vivoor in vitroby theRing stageSurvivalAssay
(RSA0-3h), which is based on 6h of 700nM dihydroartemi-
sinin exposure in highly synchronised P. falciparum para-
sites at the ring stage and is followed by culture in drug-free
conditions until the microscopic read-out at 72h [84].

At amolecular level, a comparison of the whole genome
sequence of F32-ART5 and of its twin sensitive parasite
line, F32-TEM, demonstrated that a mutation in the
propeller domain of the gene encoding Kelch protein 13
(K13) was associated with artemisinin resistance [6]. The
exact function of this protein is not yet known, but it
shares homologies with the human Keap1 protein,
involved in the cell response to oxidative stress
[6,1]. K13 is localised in the reticulum endoplasmic of
the parasite [9].

Other non-synonymous mutations, all present after
position 440 in the propeller domain of the pfk13 gene
(Figure 1), were also associated with artemisinin resis-
tance in the field and were confirmed in laboratory
experiments [80]. Only one of these mutations is sufficient
to confer this resistance. However, not all reported non-
synonymous propeller-domain K13 mutants indicate the
emergence of artemisinin resistance [26]. That is why the
relevance of a new pfk13mutation as amolecularmarker of
artemisinin resistance must be validated by clinical data
and genetic engineering [79]. The high survival rate of
parasites in RSA0-3h correlates with both pfk13 polymor-
phisms and clinical outcomes [6,74,80].
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In summary, according to the WHO, artemisinin
resistance is currently defined by delayed parasite
clearance time at a clinical level, by a high survival rate
of parasites in the Ring stage Survival Assay (RSA0-3h) ex
vivo or in vitro, and by polymorphismof the pfk13 gene [80].
Current situation of P. falciparum resistance
to artemisinins and to ACTs

At the present time, artemisinin resistance is limited to
the Greater Mekong subregion, i.e., Cambodia, Thailand,
Lao People’s Democratic Republic (Lao PDR), Myanmar,
Viet Nam, and the Myanmar-China-India border area
[77,80]. It has been demonstrated that artemisinin resis-
tance has not only spread across this region but has also
arisen independently several times in different locations
[43,75]. ACTs were implemented to contain clinical
resistance after artemisinin monotherapy, based on the
different mechanistic and pharmacokinetic properties of
the two combined antimalarials. Unfortunately, even
though artemisinin resistance leads to few real clinical
failures, it promotes selection for partner-drug resistance
mainly due to mismatches in the pharmacokinetics of the
two drugs, causing frequent treatment failure of ACTs [3].
An increase in concomitant artemisinin and partner drug
resistances has been observed in recent years and, as a
consequence, treatment failures after ACTs are becoming
more widespread in Southeast Asia [24,39,50]. However,
outside the Greater Mekong subregion, treatment failure
with ACTs has occurred in the absence of artemisinin
resistance mainly due to partner drug resistance [80].

In Southeast Asia, the first ACT was implemented in
1994 (artesunate-mefloquine (ASMQ) introduction in a
refugee camp at the Thailand-Myanmar border [60]), before
the WHO started recommending the use of ACTs as first-
line antimalarial treatment in 2001. In 2006, the declining
efficacy of ASMQ was suspected for the first time on the
Cambodia-Thailand border [86]. Thereafter, ASMQ clinical
failures were reported on the Thailand-Myanmar border in
correlationwith delayed parasite clearance time [50] and the
amplification of pfmdr1 gene copy numbers [48,58]. In
addition, a prospective study conducted between 2003 and
2013 showed that the increasing prevalence of pfk13
mutations was the decisive factor for the rapid decline in
the efficacyofASMQon theThailand-Myanmarborder [60].

Clinical failures after dihydroartemisinin-piperaquine
(DHA/PPQ) treatment have also been reported, first in
Cambodia in 2013 [37] and later in Vietnam in 2017
[59,76], five and twelve years, respectively, after DHA/
PPQ treatment introduction. DHA/PPQ resistance was
confirmed by several reports and correlated with pfk13
polymorphism, plasmepsin 2-3 gene amplification and
single copies of the pfmdr1 gene [4,83]. Recent data suggest
that piperaquine resistance has developed in a background
of artemisinin resistance [3,29,60,68,71].

It is of concern that the emergence of artemisinin
resistance in Southeast Asia involves severe malaria.
Recently, two patients treated with artesunate, the
treatment of choice for severe falciparum malaria, showed
poor responses, and one patient died [63].

According to the latest WHO Malaria Report [79], an
ACT is considered to present high risk of failure if high
treatment failures for any partner drug in the correspond-
ing ACTs are reported. Clinical failure rates greater than
10% have now been reported for the 5 ACTs in Cambodia,
for 2 ACTs in Thailand and Lao PDR and for 1 ACT in
Viet Nam, Myanmar, and in the Chinese and Indian
border regions with Myanmar.

In such cases, the treatment must be replaced by
another one, which will be evaluated every two years to
adapt the treatment as quickly as possible [79]. A triple
combination therapy regimen is one of the iterations of the
Tracking Resistance to Artemisinin Collaboration proj-
ect, known as TRAC II. This project is the first of its kind
to investigate the safety, tolerability and efficacy of triple
artemisinin-based combination therapies (TACTs) in
clinical trials in Southeast Asia. In TACTs, the third
partner drug should have an intermediate half-life so that
it can provide an associative protective effect over both the
fast-acting artemisinin drug and the long-acting partner
drug [20,23,77].
Is drug cycling an option for artemisinin
resistance?

Susceptibility to chloroquine has been restored in
Malawi and Zambia, and its re-introduction long after its
withdrawal will show its efficacy in the field [33–35,49].
However, this recovered sensitivity is not systematic, as
shown in Venezuela, where parasites remained resistant to
chloroquine more than 15 years after the cessation of the
use of chloroquine [16]. Thus, the use of drug “cycling”,
based on alternative introductions of antimalarials to
reduce the selective pressure on the parasite, has also been
considered [20]. This raises several questions. Is the risk of
drug resistance re-emergence too high? For how long
should these cycles last, long enough so that resistance re-
emergence is observed? Should these drugs be recycled on
a regular basis? [20]. It has been demonstrated that
plasmepsin 2-3 gene amplification in DHA/PPQ resistant
parasites is associated with pfmdr1 gene single copies, so
these resistant parasites are sensitive to mefloquine [4,83].
In contrast, ASMQ-resistant parasites with pfmdr1 gene
amplification are sensitive to piperaquine [3,4,24,83].
Based on the amplification of pfmdr1 gene copy numbers
of ACT-resistant parasites, the alternating use of ASMQ
and DHA/PPQ is under consideration.
Cross-resistance extension with other
antimalarials

Artemisinin resistance is a major threat to global
public health, and there is an urgent need to accelerate the
elimination of P. falciparum in the greater Mekong
subregion, where standard courses of ACTs are failing
[77]. That is why malaria elimination requires, among
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other things, new, highly effective medicines. The global
portfolio of antimalarial medicines contains 33 new
medicines composed of various chemical entities with
manymechanisms of action that have been evaluated from
preclinical research to regulatory review [47]. However,
new antimalarial drugs studies are highly challenged by
the risk of cross-resistance with artemisinins.

How could extended artemisinin pressure affect the
response of artemisinin-resistant P. falciparum to other
antimalarial drugs in the field? It has recently been
demonstrated in vitro that prolonged exposure to
artemisinin induced a novelmultidrug-tolerant phenotype
in previously artemisinin-resistant parasites. After 5 years
of artemisinin pressure, the resistant strain F32-ART5
was able to stop multiplying by entering into a quiescent
state following treatment with artemisinin [85] as well as
with other antimalarial drugs alone such as quinolines
(amodiaquine, mefloquine, chloroquine, quinine) or pyri-
methamine. Surprisingly, this pluri-resistance was not
associated with any of the known genes involved in
resistance to these drugs, except pfk13 [44]. Only
atovaquone escaped this multi-tolerance by remaining
effective in the F32-ART5 parasite line [44]. This could be
explained by its mode of action, which is based on the
inhibition of mitochondrial electron transfer, which is
actively maintained in quiescent parasites [15,57]. Unfor-
tunately, resistance to atovaquone is easily and quickly
selected in the field, independent of artemisinin use [31].

Froma pharmacological point of view, compounds with
similar chemical structures and modes of action (namely,
ozonides and trioxaquines) raise concerns about cross-
resistance. In fact, a recent laboratory study showed that
artemisinin-resistant strains as well as resistant Cambodian
isolates presented cross-resistance with trioxaquines (endo-
peroxide-based hybrid antimalarial molecules). Moreover,
trioxaquine drug pressure selected in vitro a new lineage
that was resistant to both trioxaquines and artemisinins,
in a manner supported by pfk13 polymorphism [56].

Moreover, among the most promising medicines of the
antimalarial portfolio are two ozonide compounds OZ439
and OZ277, respectively known as artefenomel and
arterolane, both of which contain an endoperoxide bridge,
a chemical function also found in artemisinins. Although
OZ439 has shown a good safety profile in a clinical trial and
rapid parasitemia clearance in P. falciparum (and in P.
vivax) [61], it was recently reported that this is not the case
for artemisinin-resistant strains in vitro. In fact, resistant
parasites can exhibit reduced in vitro sensitivity to the
ozonide antimalarials, depending on the exposure time
[89]. Moreover, it has been shown that ozonide OZ277
demonstrates significantly limited in vitro activity against
artemisinin-resistant parasites, while OZ439 seems effec-
tive against most pfk13-mutated, artemisinin-resistant
parasite lines, except for those harbouring the mutation
I543T [72].

Therefore, all these data raise concerns about the
risks of parasite cross-resistance between artemisinins
and other endoperoxide-based antimalarials, including
ozonides. Field-based resistance monitoring is indispens-
able to detect any cross-resistance in artemisinin-resis-
tance areas. Furthermore, these results highlight the
importance of investigating the ability of newly developed
antimalarial drugs to select for resistance based on a
quiescence mechanism.

Risk of worldwide spread of artemisinin
resistance

The greater Mekong subregion is the epicentre of the
emergence of P. falciparum resistance, with the potential
for it to spread to other malaria-endemic continents [46].
This regional specificity could be explained by many
factors, such as host immunity levels leading to the regular
use of antiplasmodial drugs, genetic parasite factors due to
Plasmodium origins, poor access to drugs, and the
continued use of monotherapy. Moreover, low quality
and counterfeit antimalarial drugs are widespread. Recent
estimates from Southeast Asia suggest that up to 50% of
the artesunate sold is fake. This situation is expected to
worsen in other endemic malaria countries with the
implementation of ACTs, which are more expensive [30].
ACTs sold without any quality control are ubiquitous in
Sub-Saharan Africa, both in the private and the public
sectors. Kenya is a telling example since fake ACTs
represent 20% and 5% of the antimalarial treatments sold
by the country’s private sector and public sector,
respectively [10]. In the seven African countries audited
under the ACTwatch project (Benin, Democratic Repub-
lic of Congo, Kenya, Nigeria, Tanzania, Uganda and
Zambia), non-quality-assured ACTs accounted for 32% to
89% of the total ACTs used, and, surprisingly, non-
quality-assured ACTs were more expensive than the
quality-assured drugs [52].

The consumption of poor-quality antimalarials in Sub-
Saharan Africa has also affected children under five years
of age, with an estimated 122,350 avoidable deaths in 2013
[66]. On the other hand, the continued use of monotherapy
is widely considered to be one of the main factors
contributing to the development and spread of resistance.
Until December 2014, eight countries, mainly in Africa
(Angola, Cape Verde, Colombia, Equatorial Guinea,
Gambia, SaoTome andPrincipe, Somalia, and Swaziland)
still offered artemisinins in monotherapy as part of their
health policy, despite their ban by the WHO [82].

The grave concern of artemisinin resistance spreading
from Asia is further aggravated by the history of
antiplasmodial drug resistance, such as the emergence of
chloroquine resistance and its spread in the 1970s [46], and
by the recent report of the ability of artemisinin-resistant
parasites originating from Asia to infect and be transmit-
ted by a wide range of Anopheles species, including the
main African malaria vector, Anopheles gambiae [36].

From a molecular point of view, the independent
emergence of artemisinin resistance outside Asia is
dependent on the role of the genetic background of the
parasite. Resistance to artemisinins is heritable and
therefore has a clear genetic basis [5,62]. Genome
modification studies have shown that the impact of
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various pfk13 mutations on parasitic clearance and the
survival rates of ring stage parasites is dependent on the
genetic background of the parasites [73]. Artemisinin
resistance appears to have been selected from a population
of predisposed parasites with polymorphisms of the fd
(ferredoxin), arps10 (apicoplast ribosomal protein S10),
mdr2 (multidrug resistance protein 2) and crt (chloro-
quine resistance transporter) genes [45]. Another study
suggested thatmutations in a number of DNA repair genes
such as mlh1, pms1 and exo1, are overexpressed in
artemisinin-resistant parasites [40]. Together, these data
indicate that the risk of emergence of new mutations
causing resistance to artemisinins is promoted by specific
genetic factors in a parasite population [14,45].

However, no correlation between drug resistance
emergence and increased mutation rates of the parasite’s
genome was found in Southeast Asia, invalidating the
hypothesis of a "hypermutator" parasite [11]. In contrast,
evidence of a "mildmutator" phenotype has been shown in
two artemisinin-resistant Cambodian isolates [40].

Spatiotemporal analysis of many isolates collected in
Cambodia over the past decade has shown a gradual
increase in the frequency of mutant K13 parasites in
resistance-affected provinces [4,6]. However, to date, the
KARMA (K13 Artemisinin Resistance Multicenter As-
sessment) study, analysing more than 14,000 parasite
samples from 59 countries in which malaria is endemic,
determined, on the basis of pfk13 monitoring, that
artemisinin resistance is confined to Southeast Asia and
has not yet spread and/or emerged in other endemic
malaria areas, i.e., Sub-Saharan Africa, South America
and Oceania [43]. Only one suspected case of artemisinin
resistance (associated with a non-synonymous single
nucleotide polymorphism (M579I) K13 mutation) has
been reported in Africa in a man who returned to China
after having worked for 20months in Guinea [41]. So far,
there has been no confirmed resistance to ACTs or delayed
parasite clearance during routine therapeutic efficacy
studies conducted in Africa [54,70]. One study suggested
that a threshold of 5% of cases on day 3 with parasite
positivity is more suited to artemisinin resistance
monitoring in Sub-Saharan Africa due to the higher levels
of acquired immunity against Plasmodium in African
populations, which contributes to faster parasite clearance
[87]. Furthermore, for ACT treatments, several factors
could also influence parasite clearance time values such as
initial parasite biomass and partner drug efficacy, as well
as, for artemisinin-sensitive areas, patient age, health
status (i.e., fever with a possible relation with schizont
rupture) and artemisinin dose [88]. All these data could be
integrated in artemisinin-resistance emergence monitor-
ing. Indeed, recent studies showed that low levels of
immunity are correlated with a high prevalence of pfk13
mutations across the greater Mekong subregion. This may
be due to a drug pressure-independent mechanism that
could be linked to the fitness of resistant or wild-type
parasitic populations, depending on levels of immunity
and transmission [7,8]. Moreover, the emergence of pfk13
mutations in Asia was preceded by a gradual decrease in
both transmission and immunity in the previous 6 years
[8]. In South America and Oceania, the absence of
artemisinin resistance may also be explained by the more
recent introduction of ACTs.

To date, Africa is an area with a high malaria
transmission rate and high naturally acquired immunity.
However, with the support of the WHO programme
(Global Technical Strategy for Malaria 2016–2030), the
progress made by countries in malaria elimination and the
decrease inmalaria incidence are expected to be associated
with a decrease in immunity levels, which may provide
conditions conducive to the emergence of artemisinin
resistance. If resistance to artemisinin and ACTs were to
emerge in Africa, where 90% of deaths occur [79], this
could have a devastating impact on malaria-related
morbidity and mortality.

Across Africa, it is estimated that if ACT resistance
were similar to the highest levels of artemisinin and
partner drug resistance currently observed in Cambodia,
there would be 78million additional clinical malaria cases
between 2016 and 2020 [69]. Medical costs for the
treatment of clinical failures and for the management of
severe malaria will also increase. The spread and/or
emergence of artemisinin and ACTs resistance will also
lead to a loss of productivity resulting from excess
morbidity and mortality [42].

Based on these results, it is important to pay
considerably more attention to control of the emergence
of artemisinin resistance and to invest greater resources
than those currently being made available.

Conclusion

The emergence of resistant parasites to both artemi-
sinins and partner drugs, as well as the lack of the short-
term availability of effective alternative antimalarial
drugs, are of great concern in the fight against malaria.
Furthermore, the development of multi-tolerance by P.
falciparum in the field, which has also been demonstrated
in vitro after several years of drug pressure with
artemisinin alone, should be a major concern for govern-
ment and international authorities. Although there is no
current evidence that artemisinin resistance has emerged
outside Asia, this finding reinforces the need for routine
monitoring and surveillance of the therapeutic efficacy
and safety of artemisinins and ACTs, as recommended by
the WHO, for effective case management and early
detection of resistance. This artemisinin resistance
monitoring should include the proportion of patients with
early treatment failure, late clinical failure or any
inadequate clinical response, the differentiation between
recrudescence and new infection, the polymorphism of the
molecular marker K13, and the in vitro susceptibility ofP.
falciparum isolates to artemisinins by relevant assays.
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