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In linearized elasticity, the simplest model of damage-driven brittle fracture assumes that a scalar 0 ≤ v ≤ 1 multiplies the elasticity tensor, that is thus weakened in the damage region. At the same time, following Griffith-Bourdin-Francfort-Marigo approach [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF][START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF], a certain amount of energy is dissipated in the damage region, and one seeks the minimum of the total energy consisting of the sum of the elastic stored energy and the dissipation terms. Specifically, in [START_REF] Allaire | Damage and fracture evolution in brittle materials by shape optimization methods[END_REF] the following damage-dependent energy functional was considered1 :

J ε (u, v) := Ω vAe(u) • e(u)dx + 1 ε Ω ψ(v)dx, (1.1) 
with ψ(v) = k in the damage region ω ⊂ Ω, zero elsewhere, k a material-dependent damage coefficient, v ≥ αε with α > 0, and where ε represent the thickness of the damaged region, also related to the mesh size. Here A stands for one half the constant isotropic elasticity tensor. The numerical simulations done in [START_REF] Allaire | Damage and fracture evolution in brittle materials by shape optimization methods[END_REF] have shown that model consistency under mesh refinement strongly depended on the ratio k/ε. Indeed Eq. (1.1) was used for numerical purposes as a phase-field approximation of Griffith-like energies for crack, though, without studying any rigorous convergence result as ε → 0. The aim of this work is to study this convergence for a generalized model including low-order potentials.

The so-called Griffith energy reads

J G (u) := Ω Ae(u) • e(u) dx + kH n-1 (J u ). (1.2)
In anti-plane elasticity, though, that is, with A one half the identity tensor, e(u) replaced by ∇u where u is the vertical component of the displacement field, it is well-known that (1.2) is approximated in the sense of Γ-convergence by the Ambrosio-Tortorelli functional

AT ε (u, v) := Ω (v + η ε )|∇u| 2 + (1 -v) 2 ε + ε|∇v| 2 dx, (1.3) 
where it is crucial for the residual damage to be of order η ε = o(ε). A general case study in function of this parameter η ε with Γ-convergence results in the anti-plane case was carried out in [START_REF] Iurlano | Fracture and plastic models as γ-limits of damage models under different regimes[END_REF] as based on Ambrosio-Tortorelli approximation, whereas an approximation of the type (1.1) had been considered for the scalar case, slightly earlier by the same authors in [START_REF] Maso | Fracture models as Γ-limits of damage models[END_REF]. In real elasticity, that is, for the vectorial u and its symmetric gradient e(u) (as well as in n-dimensions), the first significant Γ-convergence convergence result is found in [START_REF] Focardi | Asymptotic analysis of ambrosio-tortorelli energies in linearized elasticity[END_REF], with an Ambrosio-Tortorelli-like approximation. Recently, existence results for the original Griffith's functional have been provided in 2D passing by Korn-type inequalities in GSBD space [START_REF] Friedrich | Quasistatic crack growth in 2d-linearized elasticity[END_REF][START_REF] Conti | Existence of strong minimizers for the griffith static fracture model in dimension two[END_REF] (see also [START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF] and [START_REF] Chambolle | Korn-poincaré inequalities for functions with a small jump set[END_REF]). In [START_REF] Chambolle | A density result in gsbd p with applications to the approximation of brittle fracture energies[END_REF][START_REF] Chambolle | Compactness and lower semicontinuity in GSBD[END_REF] the authors manage to get rid of any artificial integrability condition on the displacement field by carefully approximating the singularities, and prove some existence results by Γ-convergence with the topology of measures.

In the present paper, with the topology of L 1 , we are concerned with approximations as based on functionals of the type (1.1). Indeed, it is closer to the numerical method chosen for simulation of damage-driven fracture, in particular as far as topological sensitivity analysis is performed, already in [START_REF] Allaire | Damage and fracture evolution in brittle materials by shape optimization methods[END_REF] and more recently in [START_REF] Xavier | Topological derivativebased fracture modelling in brittle materials: A phenomenological approach[END_REF]. In particular, we stick to a simple first-order damage energy, i.e., without gradients of v in the energy functional (see [START_REF] Amstutz | Topology optimization methods with gradient-free perimeter approximation[END_REF] for other gradient-free approximations in other contexts). Note however, that the gradient constraint is found in the admissibility class, which from a technical viewpoint has the same effect. The first aim of this work was to justify from a mathematical perspective a simple model of fracking based on damage and fluid-driven fracture and the topological derivative concept [START_REF] Xavier | A simplified model of fracking based on the topological derivative concept[END_REF]. In that work, numerical simulations were performed, based on the minimization of an energy functional of the type

F ε (u, v) := J ε (u, v) -p Ω ψ(v)div udx, (1.4) 
that models a crack filled with a fluid with an imposed hydrostatic pressure p which is quasi-statically increased in order to trigger a crack opening. As a generalization of this problem, our main goal in this paper is to study the asymptotic behaviour, in ε, of general functionals with low-order potential of the form

F ε (u, v) := J ε (u, v) + Ω F (x, e(u), v)dx, (1.5) 
where F need not to be positive. In particular, fracking is recovered for F = -pψ(v)trace(e(u)), but it happens that other interesting cases can be studied as for instance (i) hydraulic fracture in porous media, (ii) plastic slip, (iii) non-interpenetration or Tresca-type conditions, just to cite some applications that we have chosen. Our main result is the Γ-convergence of F ε (u, v) to the limit cohesive functional

Φ(u) := Ω Ae(u) • e(u) dx + bH n-1 (J u ) + a Ju A([u](z) ν(z)) • ([u](z) ν(z)) dH n-1 (z) + Ω F (x, u, 1) + Ju F ∞ (z, [u] ν) dH n-1 (z),
for some appropriate coefficients a and b related to the choice of the damage potential ψ and with F ∞ denoting the recession function of the convex potential, i.e., coding the asymptotic behaviour of F as |e(u)| → ∞. Compactness and an original approach to existence results are also proposed in Section 5 (to be precise, the so-called existence of weak type), as well as some general results given in the Appendix. Let us remark that a specific such low-order potential together with a treatment of the Dirichlet boundary condition were also considered in the anti-plane case in [START_REF] Ambrosio | A variational model for plastic slip and its regularization via Γ-convergence[END_REF], with the additional condition that F ≥ 0, a restriction that we wanted to avoid in the present work. Let us emphasize that in this work, in contrast with the aforementioned results, we address and solve the complete problem that consists in avoiding any L ∞ -bound on the displacement field. Moreover, our aim is also to be entirely self-contained, in order for these computations and techniques be available for the mathematical/mechanical communities in the clearest way possible. Therefore, some known results are recalled and proven in our Appendix. Precise bibliography is always provided when cross-references applies, while otherwise our arguments and proof strategy are originals. Specific references for this topic are [START_REF] Maso | Fracture models as Γ-limits of damage models[END_REF] and [START_REF] Iurlano | Fracture and plastic models as γ-limits of damage models under different regimes[END_REF] while general and fundamental results are found in [START_REF] Temam | Functions of bounded deformation[END_REF][START_REF] Buttazzo | Semicontinuity, relaxation, and integral representation in the calculus of variations[END_REF][START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF][START_REF] Fonseca | Quasi-convex integrands and lower semicontinuity in L 1[END_REF][START_REF] Maso | Generalised functions of bounded deformation[END_REF][START_REF] Ambrosio | Corso introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime[END_REF][START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF][START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF].

Notations and preliminaries

We denote by M n×n sym the set of all symmetric matrices with real coefficient. Given an open bounded set Ω with Lipschitz boundary we say that a function u ∈ L 1 (Ω; R n ) is a function of bounded deformation if there exists a matrix-valued Radon measure ((Eu) ij ) n i,j=1 such that for all i, j = 1, . . . , n it holds

(Eu) i,j , ϕ = - 1 2 Ω u i ∂ϕ ∂x j + u j ∂ϕ ∂x i dx. for all ϕ ∈ C ∞ c (Ω; R n ). Notice that, if u k ∈ BD(Ω) and u k → u in L 1 , then Eu k * Eu.
The space of such functions is endowed with the norm

u BD := u L 1 (Ω) + |Eu|(Ω)
where, for any given Radon measure µ, |µ| stands for its total variation. For any sequence {u k } k∈N bounded in this norm, up to a subsequence, it holds u k → u in L 1 . Analogously to the behavior of the function of Bounded Variation we can identify three distinct part of the matrix valued measure Eu: the absolutely continuous part, the jump part (supported on J u , an (n -1)-rectifiable set) and a Cantor part. Namely, for a generic u ∈ BD(Ω), we can write

Eu = e(u)L n + [u] ν u H n-1 J u + E c u
where ν u (x) is any unitary vector field orthogonal to J u , [u] = u + -u -the jump of u with u ± the approximate limit of u as we approach J u and

[u] ν u := [u] ⊗ ν u + ν u ⊗ [u] 2 .
Note that in general symbol stands for the symmetric sum. Finally we define the space SBD 2 (Ω; R n ) as follows:

SBD 2 (Ω; R n ) := {u ∈ BD(Ω; R n ) | E c u = 0, e(u) ∈ L 2 (Ω; M n×n sym ), H n-1 (J u ) < +∞}.
2.1. Settings of the problem. We consider a fourth order tensor A : M n×n sym → M n×n sym such that there exist a constant κ for which

κ -1 |M | 2 ≤ AM • M ≤ κ|M | 2
where M • L := tr(M L T ) is the standard scalar product inducing the Frobenius norm which, for a generic M ∈ M n×n sym , is here denoted by |M |.

Having fixed α > 0 we define

V ε := {v ∈ W 1,∞ (Ω) | εα < v ≤ 1, |∇v| ≤ 1/ε}.
With these notation we define the sequence of energy functionals

F ε : L 1 (Ω; R n )×L 1 (Ω; [0, 1]) → R + to be F ε (u, v) :=              Ω vAe(u) • e(u)+ 1 ε Ω ψ(v)dx + Ω F (x, e(u), v) dx if (u, v) ∈ H 1 (Ω; R n ) × V ε +∞ otherwise (2.
1) where ψ is any strictly decreasing (and thus we will often use that ψ(0) > 0), convex function such that ψ(1) = 0 and F is a generic potential subject to the following hypothesis. Assumption 2.1 (On the potential F ). The function F : R n ×M n×n sym ×[0, 1] → R satisfies the following properties:

1) F (•, M, 0) is Lipschitz continuous uniformly in M ∈ M n×n sym ; 2) F (x, •, 0) and F (x, •, 1) are convex for all x ∈ Ω; 3) -σ|M | ≤ F (x, M, v) ≤ |M |, for all (x, M, v) ∈ R n × M n×n sym × [0, 1]
where > 0 can be any real constant and

0 < σ < max λ∈(0,1) 2 αψ(λ) √ κ(1 + 2 α|Ω|ψ(λ)/λ) < 2 αψ(0) κ ; (2.2) 4) having set ω F (s; 1) := sup |F (x, M, s) -F (x, M, 1)| |M | : (x, M ) ∈ R n × M n×n sym , ω F (s; 0) := sup |F (x, M, s) -F (x, M, 0)| |M | : (x, M ) ∈ R n × M n×n sym , then lim s→1 ω F (s; 1) = lim s→0 ω F (s; 0) = 0.
Remark 2.2. In particular, F can be taken as negative as we want by simply taking αψ(0) large enough.

Remark 2.3. We remark that, for any fixed x, since f (M ) = F (x, M, 0) is convex and satisfies f (M ) ≤ |M |, then f is a Lipschitz function with constant . Indeed, consider a convex function f : R n → R (with n > 1) such that f (x) ≤ |x| and notice that, for any v ∈ S n-1 , g(t) := f (x + tv) is still convex and meets the requirement g(t) ≤ |x + tv|.

In particular lim t→+∞ g(t)-g(0) t ≤ and since the map t → g(t)-g(0)

t is increasing we get

g(t)-g(0) t
≤ for all t ∈ R, leading to g (0) ≤ and thus to

∇f (x) • v ≤ for all v ∈ S n-1 ⇒ |∇f (x)| ≤ .
We are interested in the asymptotic behavior (as ε → 0) of the sequence of energies (2.1). In particular the first aim of this paper is to show that the family of functional F ε , under the assumptions in 2.1, is Γ-converging to the energy Remark 2.4. Notice that the role of the condition α > 0 is linked, at least in the present analysis, to the possibility for F to be negative. The approach here proposed seems to work also if we replace the condition v ε ≥ αε with the condition

Φ(u) := Ω Ae(u) • e(u) dx + Ω F (x, u, 1) dx + a Ju A([u](z) ν(z)) • ([u](z) ν(z)) dH n-1 (z) + bH n-1 (J u ) + Ju F ∞ (z, [u] ν) dH n-1 (z) defined for u ∈ SBD 2 (Ω; R n
v ε ≥ η ε for an η ε such that η ε /ε → 0, provided F ≥ 0. 2.2. Main Theorems. Setting, F : L 1 (Ω; R n ) × L 1 (Ω; [0, 1]) → R + to be F(u, v) :=        Φ(u), if u ∈ SBD 2 (Ω) and v = 1 L n -a.e. in Ω, +∞ otherwise (2.3)
we are able to provide the following Γ-convergence result:

Theorem 2.5. Provided the notations and the assumptions introduced in Subsection 2.1 we have

Γ-lim ε→0 F ε = F on the space H 1 (Ω; R n ) × V ε ⊂ SBD 2 (Ω) × L 1 (Ω)
with respect to the convergence induced by the L 1 topology. In particular, the following assertions hold true:

a) For any (u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε such that u ε → u, v ε → v in L 1 we have lim inf ε→0 F ε (u ε , v ε ) ≥ F(u, v);
b) Let {ε j } j∈N be a vanishing sequence. Then for any u ∈ SBD 2 (Ω) there exists a subsequence {ε

j k } k∈N ⊂ {ε j } j∈N and (u k , v k ) ∈ H 1 (Ω; R n ) × V ε j k such that u k → u, v k → 1 in L 2 , and lim k→+∞ F ε j k (u k , v k ) = F(u, 1).
Let us remark that, assertion b) allows us to recover the energy of any u ∈ SBD 2 (Ω), which consist of an important improvement of the results in [START_REF] Focardi | Asymptotic analysis of ambrosio-tortorelli energies in linearized elasticity[END_REF], where only u ∈ SBD 2 (Ω)∩ L ∞ (Ω; R n ) can be recovered. This improvement is mostly due to the recent refinement [START_REF] Crismale | On the approximation of SBD functions and some applications[END_REF] of the approximation theorem for GSBD function contained in [START_REF] Iurlano | Fracture and plastic models as γ-limits of damage models under different regimes[END_REF]. Such a theorem yields a more precise information about the lack of energy on the jump set between the function u and its (more regular) approximants (see Property d) of Theorem 4.7 below). Thank to this recent result, our solution is sharp, since the complete problem is addressed, i.e., without the L ∞ -bound, as found in most results about this problem.

Moreover, we prove that the sequences with bounded energy are compact with respect to the L 1 topology. Namely the following theorem holds true: Theorem 2.6. With the notations and the assumptions introduced in Subsection 2.1, if

(u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε are sequences such that sup ε { u ε L 1 + F ε (u ε , v ε )} < +∞ (2.4) there exists two subsequences {(u ε k , v ε k )} k∈N ⊂ {(u ε , v ε )} ε>0 and u ∈ SBD 2 (Ω) such that u ε k → u, v ε k → 1 in L 1
and Eu ε k * Eu. Moreover, for any λ ∈ (0, 1) it holds e(u k )1 {vε k ≥λ} e(u) in L 2 (Ω; M n×n sym ). The proof of Theorem 2.5 is obtained by separately proving statement a) (in Section 3, Theorem 3.1) and statement b) (in Section 4, Theorem 4.10 ). The compactness Theorem is proven in Subsection 5.1 and it is basically a consequence of Propositions 3.2 and 3.3 in Section 3. For the existence of minimizers with prescribed Dirichlet boundary condition we send the reader to Subsection 5.2 where, under specific additional hypothesis on the potential F , on the boundary data and on the domain, the relaxed problem over Ω is treated. We finally provide some examples of applications in Section 6.

Liminf inequality

This section is entirely devoted to the proof of the following theorem:

Theorem 3.1. Given (u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε such that u ε → u in L 1 and v ε → v a.e. it holds lim inf ε→0 F ε (u ε , v ε ) ≥ F(u, v).
To achieve the proof we will analyze separately what happens on the energy restricted on the sequence of sets Ω λ ε = {v ε ≥ λ} and Ω \ Ω λ ε . We start by first gaining some information on the sequences with bounded energy. To do that we will exploit the hypothesis on the nonlinear potential F . Let us denote by

W ε (u, v) :=        Ω vAe(u) • e(u) + ψ(v) ε dx if (u, v) ∈ H 1 (Ω; R n ) × V ε +∞ otherwise (3.1)
and let us observe that

F ε (u, v) = W ε (u, v) + Ω F (x, e(u), v) dx.
We underline that any bounds of the type

sup ε>0 {W ε (u ε , v ε )} < +∞
leads, as we will discuss below, to an information on the convergence of u ε , v ε . We now show how to derive such kind of control starting from the boundedness of F ε . In the sequel we adopt the notations W ε (u, v; A), F ε (u, v; A), F(u, v; A) meaning the usual energies localized to the set A.

Proposition 3.2. Under the hypothesis stated in Subsection 2.1 on A, ψ and F , there exists a constant C depending on α, A, |Ω|, ψ and σ only such that

W ε (u, v; A) < C(F ε (u, v; A) + 1) (3.2) for all (u, v) ∈ H 1 (Ω; R n ) × V ε
and for all open sets A ⊆ Ω.

Proof. The key point is the estimate

A F (x, e(u), v) dx ≥ -σ A |e(u)| dx. (3.3) 
Set

Ω λ = {v ≤ λ} and notice that A |e(u)| dx = A\Ω λ |e(u)| dx + A∩Ω λ |e(u)| dx and that A\Ω λ |e(u)| dx ≤ |A| A\Ω λ |e(u)| 2 dx 1/2 ≤ |A| λ A\Ω λ v|e(u)| 2 dx 1/2 ≤ √ κ |A| λ W ε (u, v; A). (3.4) 
On the other hand,

A∩Ω λ |e(u)| dx = √ κ 2 αψ(λ) A∩Ω λ 2 κ -1 ψ(λ) αε ε |e(u)| dx ≤ √ κ 2 αψ(λ) A∩Ω λ αεκ -1 |e(u)| 2 dx + A∩Ω λ ψ(λ) ε dx ≤ √ κ 2 αψ(λ) A∩Ω λ vAe(u) • e(u) dx + A∩Ω λ ψ(v) ε dx ≤ √ κ 2 αψ(λ) W ε (u, v; A). (3.5) 
In particular, by combining (3.3),(3.4) and (3.5) we obtain, for any (u, v)

∈ H 1 (Ω; R n )×V ε A F (x, e(u), v) dx ≥ -σ κ α α|Ω| λ W ε (u, v; A) + 1 2 ψ(λ) W ε (u, v; A) ≥ -σ κ α (1 + W ε (u, v; A)) α|Ω| λ + 1 2 ψ(λ) = -σ(1 + W ε (u, v; A)) √ κ(1 + 2 α|Ω|ψ(λ)/λ) 2 αψ(λ) , (3.6) 
where we have used the fact that W ε (u, v; A) and W ε (u, v; A) are each always bounded by (1 + W ε (u, v; A)). Moreover, inequality (3.6) holds for any λ ∈ (0, 1) and hence it holds for the minimum among λ which means that

A F (x, e(u), v) dx ≥ -σ(1 + W ε (u, v; A)) min λ∈(0,1) √ κ(1 + 2 α|Ω|ψ(λ)/λ)
2 αψ(λ) .

Notice that Assumption 1) in 2.1 requires that σ < max λ∈(0,1)

2 αψ(λ) √ κ(1 + 2 α|Ω|ψ(λ)/λ) = min λ∈(0,1) √ κ(1 + 2 α|Ω|ψ(λ)/λ) 2 αψ(λ) -1 
.

In particular for some δ > 0 depending on α, A, |Ω|, ψ and σ only we have

σ min λ∈(0,1) √ κ(1 + 2 α|Ω|ψ(λ)/λ) 2 αψ(λ) ≤ (1 -δ) leading to A F (x, e(u), v) dx ≥ -(1 -δ)(1 + W ε (u, v; A)). (3.7) 
By exploiting (3.7) we reach

F ε (u, v; A) = W ε (u, v; A) + A F (x, e(u), v) dx ≥ W ε (u, v; A) -(1 -δ)W ε (u, v; A) -(1 -δ) ≥ δW ε (u, v; A) -1
which, by setting C = δ -1 , achieves the proof.

Let us now analyze the behaviour of the part of the energy that lives on the set {v ε ≥ λ}. We set up some notation that will be repeatedly used in this subsection. Given a sequence {v ε } ε>0 ⊆ V ε and a fixed λ ∈ (0, 1) we define Ω λ ε = {v ε ≤ λ}. We also set

I 1 ε (λ) := Ω\Ω λ ε v ε Ae(u ε ) • e(u ε ) dx, I 2 ε (λ) := Ω\Ω λ ε ψ(v ε ) ε dx, I 3 ε (λ) := Ω λ ε v ε Ae(u ε ) • e(u ε ) + ψ(v ε ) ε dx.
Then

F ε (u ε , v ε ; Ω λ ε ) = I 3 ε (λ) + Ω λ ε F (x, e(u ε ), v ε )dx
is the part of the energy that will provide the jump terms in the limit, as Proposition 3.4 will show. Let us first treat the bulk part

F ε (u ε , v ε ) -F ε (u ε , v ε ; Ω λ ε ) = I 1 ε (λ) + I 2 ε (λ) + Ω\Ω λ ε F (x, e(u ε ), v ε ). Proposition 3.3. Let (u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε be such that u ε → u, v ε → v in L 1
and with

sup ε>0 {F ε (u ε , v ε )} < +∞. (3.8) Then sup ε>0 Ω |e(u ε )| dx < +∞. (3.9) Moreover u ∈ SBD 2 (Ω; R n ), v = 1 a.e.
in Ω and for any λ > 0 it holds In particular Ω ψ(v ε ) dx → 0 which implies ψ(v) = 0 a.e. in Ω and thus v = 1 a.e. in Ω. Moreover, fix λ ∈ (0, 1) and notice that

sup ε>0 Ω\Ω λ ε |e(u ε )| 2 dx, < +∞, (3.10) lim inf ε→0 Ω\Ω λ ε v ε Ae(u ε ) • e(u ε ) + ψ(v ε ) ε + F (x, e(u ε ), v ε ) dx ≥ Ω [Ae(u) • e(u) + F (x, e(u), 1))] dx + 2(h(1) -h(λ))H n-1 (J u ) (3.
I 1 ε (λ) = Ω\Ω λ ε vAe(u) • e(u) dx ≥ λκ -1 Ω\Ω λ ε |e(u)| 2 dx (3.13)
and

I 3 ε (λ) = Ω λ ε vAe(u) • e(u) + ψ(v ε ) ε dx ≥ Ω λ ε κ -1 αε|e(u)| 2 + ψ(v ε ) ε dx ≥ 2 √ α √ κ -1 Ω λ ε |e(u)| ψ(v ε ) dx ≥ κ -1 αψ(λ) Ω λ ε |e(u)| dx. (3.14)
Inequality (3.13) implies (3.10), while (3.14), after a further application of Cauchy-Schwarz inequality in (3.13), yields (3.9), that in turn establishes the weak compactness in BD. Such a compactness in the weak topology of BD, together with u ε → u in L 1 , implies u ∈ BD(Ω). The remaining part of the proof is obtained as a slight variation of the original arguments of [START_REF] Focardi | Asymptotic analysis of ambrosio-tortorelli energies in linearized elasticity[END_REF] extended in such a way as to take into account the nonlinear potential part.

Step one: proof that u ∈ SBD 2 (Ω). We start from the fact that

sup ε>0 {I 1 ε (λ) + I 2 ε (λ) + I 3 ε (λ)} = sup ε>0 {W ε (u ε , v ε )} < +∞ for every λ ∈ (0, 1)
which implies a uniform bound in ε on each I i ε for i = 1, 2, 3. Thanks to the co-area formula and to the property of v ε ∈ V ε (in particular to |∇v ε | < 1/ε) we obtain, by recalling the definition of h

I 2 ε (λ) = Ω\Ω λ ε ψ(v ε ) ε dx ≥ Ω\Ω λ ε |∇v ε |ψ(v ε ) dx = Ω\Ω λ ε |∇h(v ε )| dx = h (1) 
h(λ)

P ({h(v ε ) > t}; Ω) dt ≥ (h(1) -h(λ))P ({h(v ε ) > t ε }; Ω),
where in the last inequality we considered the mean value theorem to find t ε ∈ (h(λ), h(1)).

We now set

λ ε := h -1 (t ε ) ∈ (λ, 1)
and observe that

P (Ω \ Ω λε ε ; Ω) ≤ CI 2 ε (λ), yielding sup ε>0 {P (Ω \ Ω λε ε ; Ω)} < +∞. Consider u ε := u ε 1 Ω\Ω λε ε and notice that, since v ε → 1 (and thus |Ω \ Ω λε ε | → |Ω|), we have u ε → u in L 1 . It is easy to see that, as a consequence of the chain rule [4, Theorem 3.96] (see [4, Example 3.97], u ε is a BV function with Du ε = 1 Ω\Ω λε ε ∇u ε L n + u ε ⊗ ν Ω λε ε H n-1 ∂ * Ω λε ε .
Moreover the above formula implies that

H n-1 (J uε \∂ * Ω λε ε ) = 0. Thus u ε ∈ SBD(Ω; R n )∩ L 2 (Ω) (since also |u ε | ≤ |u ε | ∈ L 2 ). In particular sup ε>0 {H n-1 (J uε )} < +∞.
From (3.13) we also get that

u ε ∈ SBD 2 (Ω; R n ) ∩ L 2 (Ω) with sup ε>0 Ω |e(u ε )| 2 dx + H n-1 (J uε ) < +∞. ( 3.15) 
By applying [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF]Lemma 5.1] 

this gives us that u ∈ SBD 2 (Ω; R n ), since e(u ε ) e(u) weakly in L 2 (Ω; M n×n sim ). (3.16) H n-1 (J u ) ≤ lim inf ε→0 H n-1 (J uε ). (3.17)
Step two: proof of (3.11). Remark that the sequence {λ ε } ε>0 defined above lies in the interval (λ, 1). In particular Ω \ Ω λε ε ⊆ Ω \ Ω λ ε and relation (3.16), due to the convexity of the map M → AM • M and to the strong convergence of v ε to 1 almost everywhere, means that (see for instance [START_REF] Buttazzo | Semicontinuity, relaxation, and integral representation in the calculus of variations[END_REF]Theorem 2

.3.1]) lim inf ε→0 Ω\Ω λ ε v ε Ae(u ε ) • e(u ε ) dx ≥ lim inf ε→0 Ω\Ω λε ε v ε Ae(u ε ) • e(u ε ) dx = lim inf ε→0 Ω v ε Ae(u ε ) • e(u ε ) dx ≥ Ω Ae(u) • e(u) dx. (3.18) Moreover Ω\Ω λ ε F (x, e(u ε ), v ε ) dx - Ω\Ω λ ε F (x, e(u ε ), 1) dx ≤ Ω\Ω λ ε ω F (v ε ; 1)|e(u ε )| dx Ω\Ω λ ε F (x, e(u ε ), 1) dx - Ω\Ω λε ε F (x, e(u ε ), 1) dx ≤ Ω λε ε \Ω λ ε |e(u ε )| dx,
where we exploited item 3):

|F (x, M, v)| ≤ |M | of Assumption 2.1.
The above quantities are vanishing (by item 4) of Assumption 2.1 on F , thanks to the fact that |Ω λε ε \ Ω λ ε | → 0 and thanks to (3.10)) and hence this fact, together with the convexity of the map M → F (x, M, 1), implies (using once again (3.16) and the semicontinuity Theorem [10, Theorem

2.3.1]) lim inf ε→0 Ω\Ω λ ε F (x, e(u ε ), v ε ) dx = lim inf ε→0 Ω\Ω λε ε F (x, e(u ε ), 1) dx ≥ Ω F (x, e(u), 1) dx. (3.19)
To achieve the proof of (3.11) we need only to show that lim inf

ε→0 Ω\Ω λ ε ψ(v ε ) ε dx ≥ 2(h(1) -h(λ))H n-1 (J u ).
In particular we use the fact that

lim inf ε→0 P ({h(v ε ) ≥ t}; Ω) ≥ 2H n-1 (J u ) for all t ∈ (h(λ), h (1)) (3.20) 
proved in [START_REF] Focardi | Asymptotic analysis of ambrosio-tortorelli energies in linearized elasticity[END_REF] via a slicing argument as established also in [START_REF] Focardi | Variational approximation of vectorial free discontinuity problems: the discrete and continuous case[END_REF][START_REF] Ebobisse | Fine properties of functions with bounded deformation and applications in variational problems[END_REF]Lemma 3.2.1]. Relation (3.20) implies immediately that

Ω\Ω λ ε ψ(v ε ) ε dx ≥ h(1) h(λ) P ({h(v ε ) ≥ t}; Ω) dt ≥ 2(h(1) -h(λ))H n-1 (J u ) leading to lim inf ε→0 Ω\Ω λ ε ψ(v ε ) ε dx ≥ 2(h(1) -h(λ))H n-1 (J u ). (3.21) 
By collecting (3.18), (3.19) and (3.21) we deduce (3.11).

We now provide the liminf inequality for the (asymptotically equivalent) remaining part of the energy on Ω \ Ω λ ε . In order to do so, we will need to apply Proposition 7.7, stated in the Appendix, that is a well-known approach (inspired by [START_REF] Buttazzo | Integral representation and relaxation of local functionals[END_REF]) when dealing with local functionals. We will also use the blow-up technique originally designed in [START_REF] Fonseca | Quasi-convex integrands and lower semicontinuity in L 1[END_REF].

Proposition 3.4. Let (u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε be such that u ε → u, v ε → v in L 1 and with sup ε>0 {F ε (u ε , v ε )} < +∞. (3.22)
Suppose also that, at a given z ∈ J u such that

lim r→0 |Eu|(B r (z)) ω n-1 r n-1 = |[u](z) ν(z)| (3.23)
we have

lim r→0 lim inf F ε (u ε , v ε ; B r (z)) r n-1 < +∞,
then, for every λ ∈ (0, 1), it holds

lim r→0 lim inf ε→0 1 r n-1 Br(z)∩Ω λ ε [2 αψ(0) Ae(u ε ) • e(u ε ) + F (x, e(u ε ), 0)] dx ≥ 2 αψ(0) A[u](z) ν(z) • [u](z) ν(z) + F ∞ (z, [u](z) ν(z), 0). (3.24) Proof. Set G : R n × M n×n sym → R + to be G(x, M ) = 2 √ α ψ(0) √ AM • M + F (x, M, 0)
and notice, by the hypothesis on F , that G(x, •) is a positive convex functions on M n×n sym for any x ∈ Ω. In particular G satisfies the hypothesis of Proposition 7.7 and thus lim inf

ε→0 Br(z) G(x, e(u ε )) dx ≥ Br(z) G(x, e(u)) dx + Ju∩Br(z) G ∞ (y, [u] ν) dH n-1 (y) (3.25) for any B r (z) ⊂ Ω. Let ε k be the sequence achieving lim inf ε→0 Ω λ ε G(x, e(u ε )) dx = lim k→+∞ Ω λ ε k G(x, e(u ε k )) dx
and define, for every measurable set A ⊆ Ω, the Radon measures:

µ k (A) := A∩Ω λ ε k G(x, e(u ε k )) dx, ξ k (A) := A G(x, e(u ε k )) dx,
Notice that, due to the uniform bound on the energy F ε we have

sup ε {µ k (Ω)} < +∞, sup ε {ξ k (Ω)} < +∞,
and thus, up to a subsequence (not relabeled), we can find Radon measures µ, ξ such that

µ k * µ, ξ k * ξ.
Step one: We assert that the proof of (3.24) follows easily from the following fact:

lim r→0 µ(B r (z)) r n-1 = lim r→0 ξ(B r (z)) r n-1 . (3.26)
Indeed, by assuming the validity of (3.26) we conclude that, for L 1 -a.e. r > 0 it holds (because of (3.25))

ξ(B r (z)) r n-1 = 1 r n-1 lim k→+∞ ξ k (B r (z)) ≥ 1 r n-1 Ju∩Br(z) G ∞ (y, [u] ν) dH n-1 (y), implying lim r→0 µ(B r (z)) r n-1 = lim r→0 ξ(B r (z)) r n-1 ≥ G ∞ (z, [u](z) ν(z)) for H n-1 -a.e. z ∈ J u . This gives µ(A) ≥ Ju∩A G ∞ (y, [u] ν) dH n-1 (y) and since G ∞ (y, M ) = 2 αψ(0) √ AM • M + F ∞ (y, M )
we obtain, for A = Ω, relation (3.24).

Step two: Let us focus on (3.26). It suffices to check that lim

r→0 lim inf k→+∞ 1 r n-1 Br(z)∩(Ω\Ω λ ε k ) G(x, e(u ε k )) dx = 0. Set τ = max{σ, }. We claim that lim r→0 lim inf k→+∞ W ε k (u ε k , v ε k ; B r (z)) r n-1 < +∞.
Indeed, by defining for a generic Borel set A ⊆ Ω, the measures

ζ k (A) := W ε k (u ε k , v ε k ; A)
and by exploiting the uniform bounds on F ε and Proposition 3.2 we have, up to a subsequence, ζ k * ζ. Moreover, due to (3.5)

F ε k (u ε k , v ε k ; A) =ζ k (A) + A F (x, e(u ε k ), v ε k ) dx. and A F (x, e(u ε k , v ε k ) dx ≥ -σ A\Ω λ ε k |e(u ε k )| dx + A∩Ω λ ε k |e(u ε k )| dx
and by repeating the computation in (3.4), (3.5) we achieve

A\Ω λ ε k |e(u ε k )| dx ≤ κ |A|ζ k (A) λ , A∩Ω λ ε k |e(u ε k )| dx ≤ κ αψ(λ) ζ k (A).
In particular

lim k→+∞ 1 r n-1 |B r (z)|ζ(B r (z)) = √ ω n √ r ζ(B r (z))
r n-1 and this yields, still following the computation giving (3.6), (3.7), for r small enough and for some δ > 0 depending on α, A, |Ω|, ψ and σ only lim inf

k→+∞ 1 r n-1 Br(z) F (x, e(u ε k , v ε k ) dx ≥ -(1 -δ) ζ(B r (z)) r n-1 + 1 . Thus lim r→0 lim inf k→+∞ F ε k (u ε k , v ε k ; B r (z) r n-1 ≥ -1 + C lim r→+∞ ζ(B r (z)) r n-1 for a positive constant C. Thus, if lim r→0 lim inf ε→0 F ε (u ε , v ε ; B r (z)) r n-1 < +∞ then lim r→0 lim inf k→+∞ W ε k (u ε k , v ε k ; B r (z)) r n-1 < +∞. (3.27)
Clearly,

(Ω\Ω λ ε k )∩Br(z) G(x, e(u ε k )) dx ≤ (Ω\Ω λ ε k )∩Br(z) (2 αψ(0)κ + τ )|e(u ε k )| dx ≤ (2 αψ(0)κ + τ ) (Ω\Ω λ ε k )∩Br(z) |e(u ε k )| dx ≤ C|B r (z)| 1/2 Ω\Ω λ ε k ∩Br(z) |e(u ε k )| 2 dx 1/2 . Thus 1 r n-1 (Ω\Ω λ ε k )∩Br(z) G(x, e(u ε k )) dx ≤ Cr 1/2 1 r n-1 (Ω\Ω λ ε )∩Br(z) |e(u ε k )| 2 dx 1/2 ≤ Cr 1/2 λ 1/2 1 r n-1 Ω∩Br(z) v ε k |e(u ε k )| 2 dx 1/2 ≤ Cr 1/2 λ 1/2 1 r n-1 Ω∩Br(z) v ε k |e(u ε k )| 2 + ψ(v ε k ) ε k dx 1/2 = Cr 1/2 λ 1/2 1 r n-1 W ε k (u ε k , v ε k ; B r (z)) 1/2 . But now, thanks to (3.27), it holds lim r→0 lim inf k→+∞ 1 r n-1 (Ω\Ω λ ε k )∩Br(z)
G(x, e(u ε k )) dx = 0, yielding (3.26), thence completing the proof.

We are now ready to proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let (u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε with u ε → u and v ε → v in L 1 .
We can easily assume that sup ε {F ε (u ε , v ε )} < +∞ (otherwise there is nothing to prove). Let λ ∈ (0, 1) to be chosen later and apply Proposition 3.3 to deduce that v = 1 L n -a.e. in Ω, u ∈ SBD 2 (Ω) and to conclude that (3.11) and (3.10) are in force. Thus

lim inf ε→0 Ω\Ω λ ε v ε Ae(u ε ) • e(u ε ) + ψ(v ε ) ε + F (x, e(u ε ), v ε ) dx ≥ Ω [Ae(u) • e(u) + F (x, e(u), 1)] dx + 2(h(1) -h(λ))H n-1 (J u ).
(3.28)

By writing

F ε (u ε , v ε ) ≥ Ω\Ω λ ε v ε Ae(u ε ) • e(u ε ) + ψ(v ε ) ε + F (x, e(u ε ), v ε ) dx + Ω λ ε v ε Ae(u ε ) • e(u ε ) + ψ(v ε ) ε + F (x, e(u ε ), v ε ) dx, (3.29) 
it is readily seen that it suffices to focus on the second addendum in the right-hand side of (3.29), denoted as G ε (u ε , v ε ; λ), which by Cauchy-Schwarz inequality yields

G ε (u ε , v ε ) ≥ Ω λ ε 2 √ α Ae(u ε ) • e(u ε ) ψ(v ε ) + F (x, e(u ε ), v ε ) dx.
Since ψ(s) → ψ(0) and ω F (s; 0) → 0 for s → 0, for some λ δ we have that | ψ(s)ψ(0)| + ω F (s; 0) ≤ δ for all s < λ δ . Thus, for a suitably small λ, we have

Ω λ ε 2 √ α Ae(u ε ) • e(u ε )( ψ(v ε ) -ψ(0)) dx ≤ 2δ √ κα Ω λ ε |e(u ε )| dx
and

Ω λ ε [F (x, e(u ε ), v ε ) -F (x, e(u ε ), 0)] dx ≤ Ω λ ε ω F (v ε ; 0)|e(u ε )| dx ≤ δ Ω λ ε |e(u ε )| dx.
In particular, according to (3.9), we reach

lim ε→0 Ω λ ε [2 √ α Ae(u ε ) • e(u ε )( ψ(v ε ) -ψ(0)) dx + lim ε→0 Ω λ ε F (x, e(u ε ), v ε ) -F (x, e(u ε ), 0)] dx ≤ δC
where C is a constant depending only on the sequence on the sequence u ε . In particular, we have

lim inf ε→0 G ε (u ε , v ε ) ≥ -δC + lim inf ε→0 Ω λ ε 2 αψ(0) Ae(u ε ) • e(u ε ) + F (x, e(u ε ), 0) dx.
For H n-1 -a.e. z ∈ J u we can guarantee that

lim r→0 Eu(B r (z)) ω n-1 r n-1 = |[u](z) ν(z)| Moreover, if lim r→0 lim inf ε→0 F ε (u ε , v ε ; B r (z)) r n-1 = +∞
then the (n -1)-dimensional densities of the lim inf lower bound is +∞ and the lim inf inequality trivially holds. Instead, for all the other point it must hold

lim r→0 lim inf ε→0 F ε (u ε , v ε ; B r (z)) r n-1 < +∞.
Hence by applying Proposition 3.4, and in particular relation (3.24), we get

lim inf ε→0 G ε (u ε , v ε ) ≥ -δC + Ju 2 αψ(0) A[u] ν • [u] ν + F ∞ (x, [u] ν, 0) dx. (3.30)
Summarizing, we have shown that for any δ > 0 there exists a λ δ such that, if λ ≤ λ δ , then (3.30) holds true. Moreover (3.28) is in force for every λ ∈ (0, 1). Thus, for any δ > 0 it must holds

lim inf ε→0 F ε (u ε , v ε ) ≥ -δC + F(u, v),
that, by taking the limit as δ → 0, achieves the proof.

Limsup inequality

This section is entirely devoted to the construction of a recovery sequence. We first show how to recover the energy on a special class of function Cl(Ω; R n ) and then we show, with a density argument, that each function u ∈ SBD 2 (Ω; R n ) can be recovered. Let us define

Cl(Ω; R n ) :=                u ∈ SBV 2 (Ω; R n ) ∩ L ∞ (Ω; R n ) ∩ W m,∞ (Ω \ J u ; R n ),
for all m ∈ N where J u ∩ Ω is the finite union S of closed, pairwise disjoint (n -1)-dimensional simplexes intersected with Ω and

H n-1 ((J u ∩ Ω) \ J u ) = 0.                . (4.1) Figure 4.1.
In grey is depicted the set A ϑε . In order to avoid overlaps, since the function u ε has been defined outside the blue ball of size ε, we can extend it and sew up everything together inside such a region by exploiting a capacitary argument as briefly sketched in Remarks 4.1 and 4.2. In particular we can always assume that the pieces of the set A ϑε , on each branches of J u , do not overlap. In order to alleviate the notations we are neglecting this correction.

4.1. Recovery sequence in Cl(Ω; R n ). Consider u ∈ Cl(Ω; R n ) and fix once and for all a unitary vector field ν = ν u which is normal H n-1 -a.e. to K = J u ∩ Ω. Notice that, since J u is the finite union of closed and pairwise disjoint (n -1)-dimensional simplexes, then the point where ν is not well-defined is a set of dimension at most n -2. The projection operator P : Ω → K is well defined almost everywhere around a small tubular neighborhood T ⊂ Ω of K and thus we can consider, for points in T , the signed distance

dist(x, K) = (x -x) • ν(x), x = P (x).
We consider a normal extension of ν on T . We now introduce the recovery sequence. Set ϑ :

J u → R, a function such that ϑ ∈ W 1,∞ 0 (J u ; R, H n-1 ), ϑ > 0 on J u ,
to be chosen later. We also require that ϑ(x) = 0 for all x ∈ K \ J u . For any ε > 0 small enough, consider the set defined as

A ϑε := {y + tν(y) | y ∈ J u , t ∈ (-ϑ(y)ε, ϑ(y)ε)}.
Notice that up to choose ε small enough it is not restrictive to assume that A ϑε has finitely many disconnected component well separated one from another, each of which is part of a tubular neighborhood of an (n -1)-dimensional hyperplane (see Figure 4.1). Indeed, as explained briefly in Remark 4.1, up to carefully removing the singularity of the simplex where J u lives and extending u smoothly on the cut (or by arguing just in the case where Ω is a cube and the jump set is an hyperplane as it is done in [START_REF] Focardi | Asymptotic analysis of ambrosio-tortorelli energies in linearized elasticity[END_REF]), we obtain (asymptotically) the same result. Note that this machinery would only make the computations heavier without adding any relevant generality to our proof; thus we will avoid it. With the same carefulness (or by suitably modify the construction provided by Theorem 4.8, see [27, Remark 3]), it is not restrictive to assume also

K = J u ∩ Ω ⊂ Ω. Remark 4.1. Let H 1 , H 2 be two hyperplanes such that J u ⊂ H 1 ∩ H 2 .
Then consider the tubular neighborhood given by the Minkowski sum T 1,2 (ε) := H 1 ∩ H 2 + B ε . Assume that we are able to define our recovery sequence u ε , v ε for any x ∈ Ω \ T 1,2 (ε). Then we can extend it to an [START_REF] Cortesani | Strong approximation of GSBD functions by piecewise smooth functions[END_REF]proof of Corollary 3.11]). In particular the contribution to the energy of the pairs (u ε , v ε ) on the set T 1,2 (ε) is given by

H 1 (Ω; R n ) × V ε pair (u ε , v ε ) on Ω through the solution of the 2-capacity problem in T 1,2 (ε) (see
F ε (u ε , v ε ; T 1,2 (ε)) = T 1,2 (ε) Ae(u ε • e(u ε ) + F (x, e(u ε , v ε ) + ψ(v ε ) ε dx ≤ C T 1,2 (ε) |∇u ε | 2 dx + |T 1,2 (ε)| ε .
Since the 2-capacity of

H 1 ∩ H 2 in T 1,2 ( 
ε) is 0 and since |T 1,2 (ε)|/ε → 0 as ε approaches 0 we can conclude that the contribution to the energy of such pairs, on the set T 1,2 (ε), is asymptotically negligible. For this reason in the sequel we will assume without loss of generality that the jump set is always contained in the pairwise disjoint union of pieces of hyperplane (see Figure 4.1).

Having in mind this additional assumption on the jump set, we define the following functions

v ε (x) =        1 if x / ∈ A (ϑ+1)ε 1 -αε ε |dist(x, J u )| -ϑ(x) + (1 + ϑ(x))αε if x ∈ A (ϑ+1)ε \ A ϑε αε if x ∈ A ϑε (4.2)
and

u ε (x) =                  u if x / ∈ A ϑε u(x + ϑ(x)εν) -u(x -ϑ(x)εν) 2ϑ(x)ε dist(x, Ju) + u(x + ϑ(x)εν) + u(x -ϑ(x)εν) 2 if x ∈ A ϑε . (4.3) 
Remark 4.2 (On the regularity of (u ε , v ε )). When x approaches J u \ J u we have u ε (x) = u(x) and thus we can conclude u ε ∈ W 1,∞ (Ω; R n ). On the other hand, we see that v ε might present a jump on the lines

{y + tν | y ∈ J u \ J u , t ∈ (-ε, ε)}
where ϑ(y) = 0. To overcome this problem we can argue as follows. As a consequence of [20, Corollary 3.11, Assertion ii")] we can claim that the better regularity of the jump set of u ensures that H n-2 (J u \ J u ) < +∞ and thus, for every ε > 0 we can cover such a set with a finite number

N ε of balls B k (ε) of radius ε such that lim ε→0 N ε ε n-1 = 0. Moreover, we can find a function ζ ε such that ζ ε = 1 outside Σ ε := Nε k=1 B k (2ε), |∇ζ ε | ≤ 1/ε, ζ ε = αε on ∪ k B k (ε).
In particular we can make use of the neighbourhood

Nε k=1 B k (3ε) \ Σ ε to sew up ζ ε 1 Σε with v ε (1 -1 Σε
) in an H 1 way. Furthermore, the slope of the function constructed in this way can be controlled by 1/ε and hence the gradient of the surgery, namely vε , still has modulus less than 1/ε (up to the carefulness of Remark 4.3) as required by the constraint. In particular, by considering vε in place of v ε we can see that vε ∈ V ε . In order to alleviate the notations we will neglect this correction that, indeed, does not affect the energy asymptotically, due to the fact that

| Nε k=1 B k (3ε)|/ε ≤ CN ε ε n-1 → 0. Remark 4.3 (On the constraint |∇v ε | ≤ 1/ε). Notice that |∇v ε | = (1 -αε) ε [1 + ε 2 |∇ϑ(x)| 2 ] ≤ C ε /ε
where C ε 1. In particular we can correct our v ε by dividing by the factor C ε > 1 so to ensure |∇v ε | ≤ 1/ε without essentially changing the structure of the recovery sequence.

To ease the notations we also decided not to take into account this small correction that is anyhow asymptotically negligible.

Up to these modifications we can thus pretend that

u ε ∈ W 1,∞ (Ω; R n ), v ε ∈ W 1,∞ (Ω; [0, 1]) and u ε → u, v ε → 1 in L 1 .
For the sake of shortness, in the sequel when referring to a point x ∈ A ϑε we will adopt the slight abuse of notation ϑ(x) by meaning ϑ(x) = ϑ(x) which is equivalent to consider the normal extension of ϑ to A ϑε . We now proceed to the proof of the following Proposition.

Remark 4.4. Since we will make use of the following computations in the sequel, let us briefly clarify it in few lines. We will often deal with integrals of the form A ϑε q(x) dx that we will slice with the co-area formula with respect to the function g(x) = d(x, J u ) (notice that |∇g(x)| = 1) yielding

A ϑε q(x) dx = ϑmaxε -ϑmaxε dt {d(y,Ju)=t}∩A ϑε q(y) dH n-1 (y) = ϑmaxε -ϑmaxε dt D q(z + tν(z)) dH n-1 (z)
where

ϑ max = sup x∈Ju {ϑ(x)}, D = {z ∈ J u | z + tν(z) ∈ A ϑε }.
The identity between characteristic functions

1 [-ϑmaxε,ϑmaxε] (t)1 D (z) = 1 Ju (z)1 [-ϑ(z)ε,ϑ(z)ε] (t)
is in force for any ε is small enough and thus an application of Fubini's theorem yields

A ϑε q(x) dx = Ju ϑ(z)ε -ϑ(z)ε q(z + tν(z)) dt dH n-1 (z). Proposition 4.5. If u ∈ Cl(Ω; R n ),
there exists a function ϑ such that the sequences defined in (4.2) and (4.3) are recovery sequence for the energy F. In particular

lim ε→0 F ε (u ε , v ε ) = F(u, 1). Moreover u ε L ∞ ≤ u L ∞ and u ε → u in L 2 .
Proof. We choose ϑ at the very end. We just develop all the computation by assuming that 1

K |[u](y) ν(y)| ≤ ϑ(y) ≤ K|[u](y) ν(y)| (4.4)
for a universal constant K so that

sup y∈Ju |[u](y) ν(y)| ϑ(y) < +∞.
We first compute the gradient of u ε for points x ∈ A ϑε .

∇u ε (x) = ∇u(x + εϑν)(∇P (x) + ε∇(ϑν)) + ∇u(x -εϑν)(∇P (x) -ε∇(ϑν)) 2 + u(x + ϑεν) ⊗ ν -u(x -ϑεν) ⊗ ν 2ϑε + ∇u(x + εϑν)(∇P (x) + ε∇(ϑν)) -∇u(x -εϑν)(∇P (x) -ε∇(ϑν)) 2ϑε dist(x, Ju) - u(x + εϑν) ⊗ ∇ϑ -u(x -εϑν) ⊗ ∇ϑ 2ϑ 2 ε dist(x, Ju) = ∇u(x ± ϑεν)(∇P (x) ± ε∇(ϑν)) 1 2 ± dist(x, Ju) 2ϑε - S ϑε u(x) ⊗ ∇ϑ 2ϑ 2 ε dist(x, J u ) + S ϑε u(x) ⊗ ν 2ϑε , (4.5) 
where

S ϑε u(x) := u(x + ϑεν) -u(x -ϑεν).
In order to give a more clear picture of the computations we are performing, we will argue on each separate addendum of the energy F ε . In particular we divide the proof in three steps plus an additional fourth where we choose the appropriate ϑ : J u → R. Each addendum contains a principal part that has a nonzero limit as ε approaches zero and a vanishing remainder R ε (u ε , v ε ). For the sake of shortness in the sequel, we will always denote with a small abuse, by R ε any term that is vanishing. In particular the term R ε can change from line to line.

Step one: limit of the absolutely continuous part of the gradient. Notice that

Ω v ε Ae(u ε ) • e(u ε ) dx = Ω\A (ϑ+1)ε Ae(u) • e(u) dx + A ϑε αεAe(u ε ) • e(u ε ) dx + R ε (u ε , v ε ),
where

R ε (u ε , v ε ) = A (ϑ+1)ε \A ϑε v ε Ae(u) • e(u) dx, which (since v ε ≤ 1, u ∈ W 1,∞ and ϑ ∈ L ∞ (J u ; R, H n-1 )) is clearly vanishing to 0. Moreover e(u ε )(x) - S ϑε u(x) ν(x) 2ϑε ≤ 1 2 + dist(x, J u ) 2ϑε |∇u(x ± εϑν)| ( ∇P ∞ + ε ∇(ϑν) ∞ ) + |S ϑε u(x)| ∇ϑ ∞ dist(x, J u ) 2ϑ 2 ε ≤ ∇u ∞ ( ∇P ∞ + ε ∇(ϑν) ∞ ) + u ∞ ∇ϑ ∞ 2ϑ ≤ C 1 + u ∞ ϑ
where C is a constant depending on u and ϑ only (that in the sequel may vary from line to line). In particular

Ae(u ε ) • e(u ε ) - 1 4ϑ 2 ε 2 A(S ϑε u(x) ν(x)) • S ϑε u(x) ν(x) ≤ Ae(u ε ) • e(u ε ) - (S ϑε u(x) ν(x)) 2ϑε + A (S ϑε u(x) ν(x)) 2ϑε • e(u ε ) - (S ϑε u(x) ν(x) 2ϑε ≤ C 1 + u ∞ ϑ + C S ϑε u(x) ν(x) 2ϑε 1 + u ∞ ϑ .
Due to our assumption on u and ϑ (4.4) we know that

S ϑε u(x) ν(x) 2ϑε ≤ |[u] ν| ϑε ≤ C ε
and thence we can conclude

Ae(u ε ) • e(u ε ) - 1 4ϑ 2 ε 2 A(S ϑε u(x) ν(x)) • S ϑε u(x) ν(x) ≤ C ϑ + C ϑε ≤ C ϑε .
This means that

A ϑε αε Ae(u ε ) • e(u ε ) - 1 4ϑ 2 ε 2 A(S ϑε u(x) ν(x)) • S ϑε u(x) ν(x) dx ≤ αεC implying A ϑε αεAe(u ε ) • e(u ε ) dx = α A ϑε 1 4ϑ(x) 2 ε A(S ϑε u(x) ν(x)) • S ϑε u(x) ν(x) dx + R ε (u ε , v ε ).
By slicing the term as in Remark 4.4 we get

α A ϑε 1 4ϑ(x) 2 ε A(S ϑε u(x) ν(x)) • S ϑε u(x) ν(x) dx = α Ju dH n-1 (z) εϑ(z) -εϑ(z) 1 4ϑ(z) 2 ε A(S ϑε u(z) ν(z)) • S ϑε u(z) ν(z) dt = α Ju 1 2ϑ(z) A(S ϑε u(z) ν(z)) • S ϑε u(z) ν(z) dH n-1 (z).
By virtue of S ϑε u(z) → [u](z), we get

lim ε→0 Ω v ε Ae(u ε ) • e(u ε ) dx = Ω Ae(u) • e(u) dx + α Ju A([u](z) ν(z)) • ([u](z) ν(z)) 2ϑ(z) dH n-1 (z).
(4.6)

Step two: limit of the fracture's potential part. Notice that

1 ε Ω ψ(v ε ) = 1 ε A (ϑ+1)ε \A ϑε ψ(v ε ) dx + ψ(αε) ε A ϑε dx = 1 ε Ju (ϑ(z)+1)ε ϑ(z)ε ψ(v ε (z + tν)) + ψ(v ε (z -tν))) dt dH n-1 (z) + 2ψ(αε) Ju ϑ(z) dH n-1 (z) = Ju 1 0 ψ(v ε (z + (tε + εϑ(z))ν)) + ψ(v ε (z -(tε + εϑ(z))ν))) dt dH n-1 (z) + 2ψ(αε) Ju ϑ(z) dH n-1 (z). Since v ε (z ± (tε + εϑ(z))ν) → t, we get lim ε→0 1 ε Ω ψ(v ε ) dx = 2ψ(0) Ju ϑ(z) dH n-1 (z) + 2H n-1 (J u ) 1 0 ψ(t) dt. (4.7)
Step three: limit of the lower order potential. We see that

Ω F (x, e(u ε ), v ε ) dx = Ω\A (ϑ+1)ε F (x, e(u), 1) dx + A (ϑ+1)ε \A ϑε F (x, e(u), v ε ) dx + A ϑε F (x, e(u ε ), αε) dx = Ω\A (ϑ+1)ε F (x, e(u), 1) dx + A ϑε F (x, e(u ε ), αε) dx + R ε (u ε , v ε ).
Once again the co-area formula leads to

A ϑε F (x, e(u ε ), αε) dx = Ju ϑε -ϑε F (z + tν, e(u ε )(z + tν), αε) dt dH n-1 (z) = Ju ϑ(z)ε 1 0 F (z + tϑ(z)εν, e(u ε )(z + tϑ(z)εν), αε) dt dH n-1 (z) + Ju ϑ(z)ε 1 0 F (z -tϑ(z)εν, e(u ε )(z -tϑ(z)εν), αε) dt dH n-1 (z) = Ju (g + ε (z) + g - ε (z)) dH n-1 (z)
where

g + ε (z) := ϑ(z)ε 1 0 F (z + tϑ(z)εν, e(u ε )(z + tϑ(z)εν), αε) dt g - ε (z) := ϑ(z)ε 1 0 F (z -tϑ(z)εν, e(u ε )(z -tϑ(z)εν), αε) dt Notice that, since F (•, M, 0) is Lipschitz continuous uniformly in M we can obtain 1 2 F ∞ (z, [u] ν) = lim ε→0 ϑ(z)ε 1 0 F z + tϑ(z)εν, [u] ν 2ϑε , 0 dt and g + ε (z) -ϑ(z)ε 1 0 F z + tϑ(z)εν, [u] ν 2ϑε , 0 dt ≤ω F (αε; 0)ϑ(z)ε 1 0 |e(u ε )(x + tεϑν)| dt + σϑ(z)ε 1 0 e(u ε )(z + tϑ(z)εν) - [u] ν 2ϑε dt.
We underline that

e(u ε )(z ± tεϑ(z)ν) = 1 4 ∇u(∇P ± ε∇(ϑν))(z ± ϑεν) [1 ± t] + 1 4 (∇P t ± ε∇(ϑν) t )∇u t (z ± ϑεν) [1 ± t] - S ϑε u(z) ∇ϑ 2 t ϑ(z) + S εϑ u(z) ν 2ϑε = M ε + [u](z) ν 2ϑ(z)ε with M ε := 1 4 ∇u(∇P ± ε∇(ϑν))(z ± ϑεν) [1 ± t] + 1 4 (∇P t ± ε∇(ϑν) t )∇u t (z ± ϑεν) [1 ± t] - S ϑε u(z) ∇ϑ 2 t ϑ(z) + S εϑ u(z) ν -[u] ν 2ϑε .
Note also that

u(z ± tεϑ(z)ν) -u(z) ± εϑ(z) ≤ 1 2εϑ(z) tεϑ(z) 0 |∇u(z ± sν)ν| ds ≤ t 2 ∇u ∞ that implies |e(u ε )(x + tεϑν)|ϑε < C, ϑε|M ε | ≤ εC. Hence lim ε→0 g + ε (z) -ϑ(z)ε 1 0 F z + tϑ(z)εν, [u] ν 2ϑε , 0 dt = 0 and thence lim ε→0 g + ε (z) - 1 2 F ∞ (z, [u] ν) = 0.
In the same spirit, starting from g - ε (z) we conclude

lim ε→0 g - ε (z) - 1 2 F ∞ (z, [u] ν) = 0.
These, holding for every z ∈ J u , lead to

lim ε→0 A ϑε F (x, e(u ε ), αε) dx = Ju F ∞ (z, [u] ν) dH n-1 (z).
In particular,

lim ε→0 Ω F (x, e(u ε ), v ε ) dx = Ω F (x, e(u), 1) dx + Ju F ∞ (z, [u] ν) dH n-1 (z). (4.8)
Step four: Choice of ϑ. Collecting together steps one, two and three and in particular (4.6), (4.7) and (4.8) we write

lim ε→0 F ε (u ε , v ε ) = Ω Ae(u) • e(u) dx + α Ju A([u](z) ν(z)) • ([u](z) ν(z)) 2ϑ(z) dH n-1 (z) + 2ψ(0) Ju ϑ(z) dH n-1 (z) + 2 1 0 ψ(t) dtH n-1 (J u ) + Ω F (x, e(u), 1) dx + Ju F ∞ (z, [u] ν) dH n-1 (z).

Due to Schwarz inequality

A 2ϑ + 2ϑB ≥ 2 √ AB where "=" is attained iff ϑ = √ A 2 √ B , by choosing θ(z) := √ α 2 √ ψ(0) A([u](z) ν(z)) • [u](z) ν(z)
we can guarantee that, for any other ϑ(z) satisfying the hypothesis, it will hold

α Ju A([u](z) ν(z)) • ([u](z) ν(z)) 2ϑ(z) dH n-1 (z) + 2ψ(0) Ju ϑ(z) dH n-1 (z) ≥ 2 αψ(0) Ju A([u](z) ν(z)) • [u](z) ν(z) dH n-1 (z).
In particular, with this choice we reach the equality (minimum energy). Notice that all the hypothesis are satisfied together with (4.4) due to the regularity of u ∈ Cl(Ω; R n ), in particular θ(z) ∈ W 1,∞ (K; R, H n-1 ) ∩ L ∞ (K; R, H n-1 ). Moreover, by definition it holds θ > 0 on J u and ϑ = 0 on K \ J u . Thus, this choice guarantees that

lim ε→0 F ε (u ε , v ε ) = Ω Ae(u) • e(u) dx + 2 αψ(0) Ju A([u](z) ν(z)) • ([u](z) ν(z)) dH n-1 (z) + 2 1 0 ψ(t) dt H n-1 (J u ) + Ω F (x, e(u), 1) dx+ + Ju F ∞ (z, [u] ν) dH n-1 (z).
Step five: L 2 convergence and L ∞ bound. By construction, it follows that

u ε L ∞ ≤ u L ∞ . We easily compute Ω |u ε -u| 2 dx = A ϑε |u ε -u| 2 dx ≤ C|A ϑε | u 2 ∞ → 0.
Remark 4.6. Notice that, from (4.5) it follows also that

Ω |∇u ε | dx ≤ C |Ω|( ∇u ∞ + u ∞ ) + A ϑε |S ϑε u(x)| ϑε dx .
Moreover, since u is regular outside J u we can also see that

|S ϑε u(x)| ≤ |u(x + ϑεν) -u + (x)| + |u(x -ϑεν) -u + (x)| + |u + (x) -u -(x)| and |u(x + ϑεν) -u + (x)| ≤ εϑ(x) 0 |∇u(x)| dx ≤ ∇u ∞ εϑ. Since A ϑε |u + (x) -u -(x)| ϑε dx = Ju dH n-1 (y) ϑε -ϑε |u + (y) -u -(y)| ϑε dt = 2 Ju |[u]| dH n-1 (y) ≤ 2 u ∞ H n-1 (J u ).
All this considered gives

Ω |∇u ε | dx ≤ C, (4.9) 
for a constant C that depends on u and Ω only. Along the same line we can also obtain

A ϑε v ε |∇u ε | 2 dx ≤ C ∇u 2 ∞ + α A ϑε ε |u + (x) -u -(x)| 2 ϑ 2 (x)ε 2 dx ≤ C ∇u 2 ∞ + α Ju ϑ(y)ε -ϑ(y)ε |u + (y) -u -(y)| 2 ϑ 2 (y)ε dx ≤ C,
for a constant C that depends on u and Ω only. In particular,

Ω v ε |∇u ε | 2 dx ≤ C, (4.10) 
for a constant C that depends on u and Ω only.

4.2.

Recovery sequence for u ∈ SBD 2 (Ω). We provide an approximation Theorem based on the following two Theorems from [START_REF] Crismale | On the approximation of SBD functions and some applications[END_REF] (which comes as a refinement of [START_REF] Iurlano | A density result for gsbd and its application to the approximation of brittle fracture energies[END_REF]) and [START_REF] Cortesani | A density result in sbv with respect to non-isotropic energies[END_REF]. In particular note that condition d) in the following approximation result is a consequence of a more general statement found in [22, 

} k∈N ⊂ SBV 2 (Ω; R n ) ∩ L ∞ (Ω; R n ) ∩ W 1,∞ (Ω \ S k ; R n ) such that each J u k is contained in the union
S k of a finite number of closed, connected pieces of C 1 -hypersurfaces and the following properties hold 

a) u k -u L 2 → 0; b) e(u k ) -e(u) L 2 → 0; c) H n-1 (J u k ∆J u ) = 0; d) Ju k ∪Ju |[u k ] ν k -[u] ν| dH n-1 → 0. Moreover, if u ∈ L ∞ (Ω; R n ) it holds u k L ∞ ≤ u L ∞ .
∈ SBV 2 (Ω; R n )∩L ∞ (Ω; R n ).
Then there exists a sequence of function

{u k } k∈N ⊂ SBV (Ω; R n ) such that 1) u k ∈ W m,∞ (Ω \ J u k ) for all m ∈ N and H n-1 ((J u k ∩ Ω) \ J u k ) = 0;
2) The set J u k ∩ Ω is the the finite union of closed and pairwise disjoint (n -1)simplexes intersected with Ω;

3) u k -u L 2 → 0; 4) ∇u k -∇u L 2 → 0; 5) lim sup k→+∞ A∩Ju k ϕ(x, u + k , u - k , ν k ) dH n-1 (x) ≤ A∩Ju ϕ(x, u + , u -, ν) dH n-1 (x)
where property 5) holds for every open set A ⊂ Ω and every upper semicontinuous function

ϕ : Ω × R n × R n × S n-1 → [0, +∞) such that ϕ(x, a, b, ν) = ϕ(x, b, a, -ν) for all x, a, b, ν ∈ Ω × R n × R n × S n-1 ; (4.11) lim sup (y,a ,b ,µ)→(x,a,b,ν) y∈Ω ϕ(y, a , b , µ) < +∞ for all x, a, b, ν ∈ ∂Ω × R n × R n × S n-1 . (4.12) Moreover u k L ∞ ≤ u L ∞ .
About these results, other references of interest are [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF][START_REF] Chambolle | Addendum to "an approximation result for special functions with bounded deformation[END_REF][START_REF] Chambolle | A density result in gsbd p with applications to the approximation of brittle fracture energies[END_REF], with special emphasis on the pioneer paper [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF]. As a consequence we obtain the following result: Proposition 4.9. For any function u ∈ SBD 2 (Ω) there exists a sequence

u k ∈ Cl(Ω; R n ) such that u k → u in L 2 and lim k→+∞ F(u k , 1) = F(u, 1). Moreover if u ∈ L ∞ (Ω; R n ) it holds u k ∞ ≤ u ∞ .
Proof. We will apply Theorem 4.7 and 4.8 to improve the regularity of our sequence. We divide the proof in two steps.

Step one: reduction to SBV 2 . Let u ∈ SBD 2 (Ω). Then, by applying Theorem 4.7 we find a sequence of functions {w k } k∈N ⊂ SBV 2 (Ω) ∩ L ∞ (Ω) such that properties a)-d) of Theorem 4.7 hold. We have that

F k (w k , 1) = Ω Ae(w k ) • e(w k ) dx + 2 αψ(0) Ju k A([w k ](z) ν k (z)) • ([w k ](z) ν k (z)) dH n-1 (z) + 2 1 0 ψ(t) dt H n-1 (J w k ) + Ω F (x, e(w k ), 1) dx + Jw k F ∞ (z, [w k ] ν k ) dH n-1 (z).
In particular, because of property b) we can infer that Ae(w k ) • e(w k ) → Ae(u) • e(u) in L 1 and that F (x, e(w k ), 1) → F (x, e(u), 1) where we exploited the fact that F is a Lipschitz function (Remark 2.3). In particular

lim k→+∞ Ω Ae(w k ) • e(w k ) dx + 2 1 0 ψ(t) dt H n-1 (J w k ) + Ω F (x, e(w k ), 1) dx = Ω Ae(u) • e(u) dx + 2 1 0 ψ(t) dt H n-1 (J u ) + Ω F (x, e(u), 1) dx. (4.13)
Because of property d) of our sequence we also have

Jw k ∪Ju |[w k ] ν k -[u] ν| dH n-1 (z) → 0. (4.14)
The functions √ AM • M and F ∞ are 1-homogeneous and convex and thus Lipschitz on M n×n sym (thanks to Remark 2.3). Then

| A([w k ](z) ν k (z)) • ([w k ](z) ν k (z)) -A([u](z) ν(z)) • ([u](z) ν(z))| + |F ∞ (z, [w k ] ν k ) -F ∞ (z, [u] ν)| ≤ C|[w k ] ν k -[u] ν|
that integrated over J w k ∪ J u and passed to the limit yields by (4.14) lim k→+∞ 2 αψ(0) Step two: regularization to Cl(Ω; R n ). For any w = w k produced in step one we can produce, by applying Theorem 4.8, a sequence {u k } k∈N such that u k ∈ Cl(Ω; R n ) and satisfying 1) -5) of Theorem 4.8. In particular u k → w in L 2 and, thanks to property 4) and 5) we obtain lim sup

Jw k A([w k ](z) ν k (z)) • ([w k ](z) ν k (z)) dH n-1 (z) + Jw k F ∞ (z, [w k ] ν k ) dH n-1 (z) = Ju F ∞ (z, [u] ν) dH n-1 (z) + 2 αψ(0) Ju A([u](z) ν(z)) • ([u](z) ν(z)) dH n-1 (z).
k→+∞ Ω Ae(u k ) • e(u k ) dx + 2 αψ(0) Ju k A([u k ](z) ν k (z)) • ([u k ](z) ν k (z)) dH n-1 (z) + 2 1 0 ψ(t) dt H n-1 (J u k ) + Ω F (x, e(u k ), 1) dx + Ju k F ∞ (z, [u k ] ν k ) dH n-1 (z) ≤ Ω Ae(w) • e(w) dx + 2 αψ(0) Jw A([w](z) ν(z)) • ([w](z) ν(z)) dH n-1 (z) + 2 1 0 ψ(t) dt H n-1 (J w ) + Ω F (x, e(w), 1) dx + Jw F ∞ (z, [w] ν) dH n-1 (z)
where we have exploited the fact that F is Lipschitz continuous (as in step one) and that the function

ϕ(z, a, b, ν) := 2 αψ(0) A((a -b) ν) • ((a -b) ν) + F ∞ (z, (a -b) ν)
is always positive (due to the hypothesis 2.1 on F ) and satisfies assumptions (4.11), (4.12).By possibly passing to the truncated ûk (x) = max{u k (x), w ∞ } the above inequality is preserved together with the condition ûk

∞ ≤ w ∞ (≤ u ∞ if u is L ∞ ). By taking into account Theorem 3.1, it is deduced that lim k→+∞ F(û k , 1) = F(w, 1). (4.17)
By combining (4.16), (4.17) with a diagonalization argument on ûk , w j we can produce the sought sequence.

We are thus in the position to state the lim sup upper bound and provide a recovery sequence for functions u ∈ SBD 2 (Ω).

Theorem 4.10. Let {ε j } j∈N be a vanishing sequence of real numbers. Then, for any u ∈ SBD 2 (Ω) there exists a subsequence {ε j k } k∈N ⊂ {ε j } j∈N and a sequence of function

(u k , v k ) ∈ H 1 (Ω; R n ) × V ε j k such that ε j k → 0, u k -u L 2 → 0, v k -1 L 2 → 0 and lim κ→+∞ F ε j k (u k , v k ) = F(u, 1). Moreover, if u ∈ L ∞ (Ω; R n ), it holds that u k ∞ ≤ u ∞ .
Proof. We prove that, for any k > 0 there exists an

ε j k and (u k , v k ) ∈ H 1 (Ω; R n ) × V ε j k such that v k -1 L 1 + u k -u L 2 + |F ε j k (u k , v k ) -F(u, 1)| + ε j k ≤ 1 k . (4.18)
This would complete the proof. According to Proposition 4.9, for any fixed k > 0 we can find

w ∈ Cl(Ω; R n ) (with eventually w ∞ ≤ u ∞ if u ∈ L ∞ (Ω; R n )) such that |F(w, 1) -F(u, 1)| + w -u L 2 ≤ 1 2k . (4.19)
The sequence (u ε , v ε ) ∈ H 1 (Ω) × V ε as defined in (4.2), (4.3) (thanks to Proposition 4.5) provides

lim ε→0 F ε (u ε , v ε ) = F(w, 1), with w ∈ Cl(Ω; R n ), and satisfies u ε L ∞ ≤ w L ∞ (≤ u L ∞ ).
In particular, we can find an ε 0 (k) such that

u ε -w L 2 + v ε -1 L 2 + |F ε (u ε , v ε ) -F(w, 1)| ≤ δ 4 for all ε < ε 0 .
We can select an ε j k < ε 0 (k), since ε j is vanishing, such that 

u ε j k -w L 2 + v ε j k -1 L 2 + |F ε j k (u ε j k , v ε j k ) -F(w, 1)| + ε j k ≤ 1 2k . ( 4 

Compactness result and minimum problem

5.1. Compactness. This section is devoted to the proof of Theorem 2.6.

Proof of Theorem 2.6. From [34, Theorem II.2.4] we obtain L 1 -compactness from uniform BD-boundedness. In particular notice that, if 

(u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε satisfies sup ε { u ε L 1 +F ε (u ε , v ε )} < +∞,
{|Eu ε |(Ω)} = sup ε>0 Ω |e(u ε )| dx < +∞.
This, combined with the uniform L 1 upper bound on u ε gives a uniform bound on the BD norm leading to

L 1 compactness of u ε . Moreover sup ε {W(u ε , v ε )} ≥ 1 ε Ω ψ(v ε ) dx implying that ψ(v ε ) → 0 in measure and thus v ε → 1 in measure.
Then there is a subsequence converging to 1 almost everywhere and due to the boundedness of v ε we have (up to a subsequence) v ε → 1 in L 1 . In particular we have shown that, up to a subsequence (not relabeled), it holds u ε → u, v ε → 1 in L 1 and Eu ε * Eu. By applying Proposition 3.3 we obtain u ∈ SBD 2 (Ω).

5.2.

Statement of the minimum problem. We discuss the issue of existence of minimizers under Dirichlet boundary condition. We restrict ourselves to smooth boundary data on an open bounded set having smooth boundary.

From now on the set Ω will be assumed to be an open bounded set with C 2 boundary. Assume that A, F, ψ are as in 2.1. On the potential F we require additionally that

• F (x, •, v) is convex for all (x, v) ∈ Ω × [0, 1]
(5.1)

• ρ = sup |F (x, L, v) -F (y, L, v)| |L||x -y| | x, y ∈ Ω, L ∈ M n×n sym , v ∈ [0, 1] < +∞. (5.2)
and that, having fixed, for s, t ∈ (0, 1),

ω F (s; t) := sup |F (x, L, s) -F (x, L, t)| |L| | (x, L) ∈ Ω × M n×n sym
it holds lim s→t ω F (s; t) = 0 for all t ∈ (0, 1).

(

Consider the following infimum problems

γ ε := inf F ε (u, v) | u = f, v = 1 on ∂Ω, (u, v) ∈ H 1 (Ω; R n ) × V ε , γ 0 := inf F(u, 1) + R(u, f ) | u ∈ SBD 2 (Ω) ,
where

R(u, f ) := ∂Ω F ∞ (z, [u -f ] ν) dH n-1 (z) + bH n-1 ({x ∈ ∂Ω | u(x) = f (x)}) + a ∂Ω A[u -f ] ν • [u -f ] ν dH n-1 (z). 
(

Notice that the additional term R(•, f ) is the price that a function has to pay in order to detach from the boundary datum f on ∂Ω. Then the following Theorems holds true.

Theorem 5.1. If {(u ε , v ε )} ε>0 is such that u ε = f, v ε = 1 on ∂Ω with also sup ε>0 {F ε (u ε , v ε )} < +∞
then there exists at least an accumulation point of {(u ε , v ε )} ε>0 . Moreover any accumulation point has the form (u 0 , 1) with u 0 ∈ SBD 2 (Ω).

Theorem 5.2. For every ε > 0 there exists minimizers (u ε , v ε ) for γ ε . Moreover

lim ε→0 γ ε = γ 0 (5.5)
and any accumulation point of {(u ε , v ε )} ε>0 is of the form (u 0 , 1) with u 0 a minimum for γ 0 .

This implies that, by combining Theorem 5.1 with Theorem 5.2, we can prove the following corollary.

Corollary 5.3. There exists at least a minimizer for the problem γ 0 .

The proof of Theorem 5.2 follows by showing that the problem γ ε (Γ)-converges to the problem γ 0 . While it is easy to show that lim inf γ ε ≥ γ 0 in order to prove the lim sup inequality we have to exhibit a recovery sequence with fixed boundary datum. Note that this approach to handle the boundary datum was proposed in [START_REF] Ambrosio | A variational model for plastic slip and its regularization via Γ-convergence[END_REF] in the anti-plane case, though without a complete proof. We also remark that such a framework (with the penalization term R) has also been implemented in [START_REF] Chambolle | A density result in gsbd p with applications to the approximation of brittle fracture energies[END_REF] to prove existence of a solution for the Griffith energy.

The arguments we used to address existence results should be considered as a title of example in order to introduce and formalize an approach based on the extension of In red is depicted the region where tr (u) = f . After the normal extension we can see that the region {tr (u) = f } has become just part of J û. We then consider a recovery sequence (û ε , vε ) defined as in (4.2) and (4.3). The grey part represents the region where the damage variable vε << 1. Finally, by composing u ε , v ε with the diffeomorphism Φ ε provided by Proposition 5.4, we go back to our domain Ω by preserving the boundary condition. This operation does not affect in a significant way the energy and we asymptotically recover the sharp energy, which also accounts for R(u, f ) (that comes exactly from those regions where {tr (u) = f }). the domain Ω. For this reason, its generality is restricted. In particular, for the sake of simplicity we restrict ourselves to smooth boundary data considered on domain with smooth boundary. We are however confident that, with a refined analysis of the surgeries, one can carry out a more general statement involving H 1/2 boundary data defined on pieces of the boundary ∂Ω of a Lipschitz domain.

We underline that the proof of existence for γ 0 can also be achieved by applying the direct method. It is not immediate, however, to see that the energy u → F(u, 1) + R(u, f ) is lower semi-continuous due to the additional term R. We here decided to treat the problem from a Γ-convergence point of view in order to ensure also convergence of minimizers of the approximate problem.

5.3.

Recovery sequence with prescribed boundary condition. We now proceed to show how to recover the energy of a function u ∈ Cl(Ω; R n ) by making use of function

u j ∈ H 1 (Ω; R n ) with smooth boundary data f ∈ C 1 (∂Ω; R n ).
At the very end, by making use of Theorem 4.7 and 4.8 we show that we can recover the energy F(u, 1) + R(u, f ) of any u ∈ SBD 2 (Ω). We briefly sketch the proof for regular functions before moving to the technical part. As depicted in Figure 5.3 it might happen that tr (u) = f on ∂Ω. To handle also this situation, which represents the main challenge of our proof, we first extend normally our u ∈ Cl(Ω; R n ) into a û defined on a slightly larger Ω ⊃ Ω in a way that does not destroy the regularity of u. In this way, any region on ∂Ω where tr (u) = f becomes the jump region of û and it is well contained in the extended domain. Thus we can proceed to define the recovery sequence as in (4.2) and (4.3). Such a recovery sequence coincides with u far enough from the jump set and this allows us to deduce a strong control on the energy in the strip Ω \ Ω. This normal extension further allows us to deduce that along the level set E t = {d(x, ∂Ω) = t} (for suitable t) we have that u ε Et = f . Then, by applying a smooth diffeomorphism, that we are able to control in terms of ε, we shrink back our extended domain onto Ω so that E t → ∂Ω and this guarantees that the whole boundary condition is satisfied.

We start with the following technical Lemma that will provide us the required family of diffeomorphisms. Let us recall that we are denoting by P : (∂Ω) δ → ∂Ω the orthogonal projection onto ∂Ω well defined on any tubular neighbourhood (∂Ω) δ of δ small enough. Moreover we are always considering the outer unit normal ν Ω : ∂Ω → S n-1 and we recall that, with the notation dist(x, ∂Ω), we are always meaning the signed distance dist(x, ∂Ω) := (x -P (x)) • ν Ω (P (x)) well defined on small tubular neighbourhoods around ∂Ω.

Lemma 5.4. Let Ω be an open bounded set with C 2 boundary and consider (∂Ω) δ any fixed tubular neighborhood of ∂Ω where the projection operator x → P (x) ∈ ∂Ω is well defined. Let also (∂Ω) εL be another tubular neighborhood where L > 0 is any real constant and set Ω ε = Ω ∪ (∂Ω) εL . Then there exists a family of diffeomorphism

{Φ ε : Ω → Ω ε } ε>0 such that lim ε→0 sup x∈Ω {|JΦ ε (x)|} = 1, (5.6) 
lim ε→0 sup x∈Ωε {|JΦ -1 ε (x)|} = 1, (5.7) 
sup x∈Ωε {|∇Φ -1 ε (x) -Id |} + sup x∈Ω {|∇Φ ε (x) -Id |} ≤ Cε (5.8)
where C depends on Ω, L and δ only. Moreover

P (Φ ε (x)) = P (Φ -1 ε (x)) = P (x) on (∂Ω) εL ∪ (∂Ω) δ , Φ ε (x) = x on Ω \ (∂Ω) δ ,
and

Φ -1 ε (∂Ω ε ) = ∂Ω, Φ ε (∂Ω) = ∂Ω ε , Proof. Consider the diffeomorphism, depicted in Figure 5.3: Φ ε (x) := x if x ∈ Ω \ (∂Ω) δ x + ν Ω (P (x)) (δ+dist(x,∂Ω) δ εL if x ∈ Ω ∩ (∂Ω) δ (5.9) with inverse Φ -1 ε (x) := x if x ∈ Ω ε \ (∂Ω) δ x -ν Ω (P (x)) (δ+dist(x,∂Ω)) δ+εL εL if x ∈ Ω ε ∩ Ω δ .
(5.10)

It is straightforward that Φ ε (∂Ω) = ∂Ω ε , Φ -1 ε (∂Ω ε ) = ∂Ω and Φ ε (x) = x on Ω \ (∂Ω) δ . Moreover ∇Φ ε (x) = Id + ∇ν Ω (P (x)) (δ + dist(x, ∂Ω)) δ εL + ν Ω (P (x)) ⊗ ν Ω (P (x)) εL δ
in particular the desired convergences (5.6), (5.7) follow together with (5.8).

Proposition 5.5. Let Ω be an open bounded set with C 2 boundary and let

f ∈ C 1 (∂Ω; R n ). For every u ∈ Cl(Ω; R n ) there exists a sequence (u ε , v ε ) ∈ H 1 (Ω) × V ε such that (u ε , v ε ) → (u, 1) in L 2 , u ε = f, v ε = 1 on ∂Ω, and 
F ε (u ε , v ε ) → F(u, 1) + R(u, f ) as ε → 0.
Proof. By virtue of Remark 4.1 we can always assume that J u ∩ Ω ⊂ Ω. In particular we can find a δ > 0 that depends only on Ω and u and such that (∂Ω) δ ∩ J u = ∅. We first define the extension û of u ∈ Cl(Ω; R n ) as

û := u(x) for x ∈ Ω f (P (x))
for x ∈ (∂Ω) δ \ Ω. (5.11) where P denotes the orthogonal projection onto ∂Ω which is well defined on (∂Ω) δ for δ small enough. Then, having in mind Remarks 4.2 and 4.3, for any ε > 0 we define

(û ε , vε ) ∈ H 1 (Ω ∪ (∂Ω) δ ; R n ) × V ε as in (4.
2) and (4.3) with the ϑ provided in step four of the proof of Proposition 4.5 (clearly we mean V ε referred to the domain Ω ∪ (∂Ω) δ which is here not explicitly denoted in order to enlighten the notation). Notice that

[û]H n-1 J û = [u]H n-1 J u + [tr (u) -f ]H n-1 ∂Ω.
According to the definition of ûε in (4.3), we can see that ûε (x) = û(x) for all x such that d(x, J û) > L 0 ε for an L 0 depending on u only. In particular we can choose a suitable L > 0 so to guarantee that ûε (x) = û(x) = f (P (x)), vε (x) = 1 for all x ∈ [(∂Ω) δ \(∂Ω) Lε ]\Ω. We now apply our Lemma 5.4 to Ω with the tubular neighborhoods (∂Ω) δ , (∂Ω) εL to produce a family of diffeomorphism {Φ ε : Ω → Ω ∪ (∂Ω) εL = Ω ε }. By virtue of the computations in Remark 4.6 and in particular due to (4.9) and (4.10) we can deduce also

Ωε |∇û ε (x)| dx + Ωε vε |∇û ε | 2 dx ≤ C, (5.12) 
for a constant C > 0 that depends on Ω and u only (and that in the sequel may vary from line to line), while it is clear that the same computation performed in the proof of Proposition 4.5 leads to

lim ε→0 F ε (û ε , vε ; Ω ε ) = F(u, 1) + R(u, f ). (5.13)
By making use of this facts we proceed to define (u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε by simply shrinking our domain Ω ε into Ω throughout Φ ε . More precisely

u ε (x) := ûε (Φ ε (x)), v ε := vε (Φ ε (x)).
Notice that for x ∈ ∂Ω we have Φ ε (x) ∈ ∂Ω ε \Ω ⊂ (∂Ω) δ \Ω and that P (Φ ε (x)) = P (x) = x for all x ∈ ∂Ω. Hence

u ε (x) = ûε (Φ ε (x)) = f (P ((Φ ε (x))) = f (x), v ε (x) = vε (Φ ε (x)) = 1 for all x ∈ ∂Ω.
We underline that, as in Remark 4.3, we are once again neglecting a possible factor (asymptotically equal to 1) in front of v ε that might be needed in order to comply with the constraint |∇v ε (x)| ≤ 1/ε. Up to this carefulness we can infer (u ε , v ε ) ∈ H 1 (Ω; R n ) × V ε . The L 1 convergence is immediately derived from the easy relations

Ω |u ε -u| dx ≤ Ω |û ε (Φ ε (x)) -û(Φ ε (x))| dx + Ω |û(Φ ε (x)) -u(x)| dx, Ω |û(Φ ε (x)) -u(x)| dx ≤ Cε( u ∞ + ∇u ∞ ),
also holding for the function v ε . It remains to show that the energy of the pairs (u ε , v ε ) is converging to F(u, 1) + R(u, f ). From

∇u ε (x) -∇û ε (Φ ε (x)) = (∇Φ ε (x) -Id )∇û ε (Φ ε (x)),
and thanks to (5.8) we get

|∇u ε (x) -∇û ε (Φ ε (x))| ≤ Cε|∇û ε (Φ ε (x))|,
for a constant C depending on Ω and u only. In particular,

Ω v ε (x)A[e(u ε )(x) -e(û ε )(Φ ε (x))] • e(û ε )(Φ ε (x)) dx + Ω v ε (x)A[e(u ε )(x) -e(û ε )(Φ ε (x) • [e(u ε )(x) -e(û ε )(Φ ε (x))] dx ≤ Cε Ω vε (Φ ε (x))|∇û ε (Φ ε (x))| 2 dx = Cε Ωε vε (x)|∇û ε (x)| 2 |JΦ -1 ε (x)| dx,
which vanishes due to (5.7) and (5.12). Along the same lines and by exploiting Remark 2.3 combined with hypothesis (5.1) and item 3) in 2.1 on F we get

Ω |F (x, e(u ε )(x), v ε (x)) -F (x, e(û ε )(Φ ε (x)), v ε (x))| dx ≤ Ω |e(u ε )(x) -e(û ε (Φ ε (x))| dx ≤ C ε Ω |∇û ε (Φ ε (x))| dx ≤ Cε Ωε |∇û ε (x)||JΦ -1 ε (x)| dx → 0,
once again due to (5.7) and (5.12). On the other hand, by exploiting (5.2) we can infer that

Ω |F (x, e(û ε )(Φ ε (x)), vε (x)) -F (Φ ε (x), e(û ε )(Φ ε (x)), vε (x))| dx ≤ ρ Ω |Φ ε (x) -x||e(û ε (Φ ε (x))| dx ≤ Cε Ωε |∇û ε (x)||JΦ -1 ε (x)| dx → 0.
In particular, all this considered we can conclude that

lim ε→0 F ε (u ε , v ε ; Ω) = lim ε→0 Ω v ε (x)Ae(û ε )(Φ ε (x)) • e(û ε )(Φ ε (x)) dx + Ω F (Φ ε (x), e(û ε )(Φ ε (x)), v ε (x)) dx + Ω ψ(v ε (x)) ε dx = lim ε→0 Ωε |JΦ -1 ε |v ε Ae(û ε ) • e(û ε ) dx + Ωε |JΦ -1 ε |F (x, e(û ε ), vε ) dx + Ωε |JΦ -1 ε | ψ(v ε (x)) ε dx = lim ε→0 F ε (û ε , vε ; Ω ε ) = F(u, f ) + R(u, f ),
where we exploited (5.7) and (5.13). Notice that (u ε , v ε ) provide the desired sequences. 

F(u k , 1) + R(u k , f ) ≤ F(u, 1) + R(u, f ) Proof.
Consider Ω ⊃ Ω be a slightly larger domain and consider w ∈ H 1 (Ω; R n ) to be such that w ∂Ω = f . Consider the extension û := u1 Ω + w1 Ω\Ω ∈ SBD 2 ( Ω). Then, by virtue of Proposition 4.9, we can find a sequence ûk ∈ Cl( Ω; R n ) such that

F(û k , 1; Ω) → F(û, 1; Ω) = F(u, 1)+R(u, f )+ Ω\Ω Ae(w)•e(w) dx+ Ω\Ω F (x, e(w) , 1) dx. 
If we trace through the proof of Proposition 4.9 we can see that the following is also guaranteed:

lim sup k→+∞ Ju k ∩A ϕ(x, û+ k , û- k , ν k ) dH n-1 (z) ≤ J û∩A ϕ(x, û+ , û-, ν) dH n-1 (z),
for any A ⊆ Ω and for any upper semicontinuous function ϕ satisfying (4.11) and (4.12).

In particular, by testing the above inequality with A = Ω,

ϕ(x, ξ, η, ν) = a A(ξ -η) ν • (ξ -η) ν + F ∞ (z, (ξ -η) ν)
and with ϕ = b we can infer that lim sup

k→+∞ J ûk ∩Ω [a A([û k ] ν k • [û k ] ν + F ∞ (z, ([û k ] ν k ) + b] dH n-1 (z) ≤ J û∩Ω [a A([û] ν • [û] ν + F ∞ (z, ([û] ν) + b] dH n-1 (z). Thus lim sup k→+∞ F(û k , 1; Ω) ≤ F(u, 1; Ω) By noticing that F(•, 1; Ω) = F(•, 1; Ω) + R(•, f ),
we conclude by simply setting u k := ûk 1 Ω ∈ Cl(Ω; R n ).

We finally notice that the same diagonalization argument exploited in the proof of Theorem 4.10 allows us to prove the following Proposition. Proposition 5.7. Consider Ω to be an open bounded set with C 2 boundary and fix a boundary data f ∈ C 1 (∂Ω; R n ). Let {ε j } j∈N be a vanishing sequence of real numbers. Then, for any u ∈ SBD 2 (Ω) there exists a subsequence {ε j k } k∈N ⊂ {ε j } j∈N and a sequence of function 

(u k , v k ) ∈ H 1 (Ω; R n ) × V ε j k such that ε j k → 0, u k -u L 2 → 0, v k -1 L 2 → 0, with u ε = f , v ε = 1 on ∂Ω and lim sup k→+∞ F ε j k (u k , v k ) ≤ F(u, 1) + R(u, f ).
ûε L 1 (R n ) ≤ C(n)|E ûε |(R n ) that translates into u ε L 1 (Ω) ≤ C(n) ( ∇w L 2 + |Eu ε |(Ω)) . ( 5 
{ u ε L 1 + F ε (u ε , v ε )} < +∞
that can ensure (thanks to the compactness Theorem 2.6) that there exists at least an accumulation point and that any accumulation point has the form (u 0 , 1) for some u 0 ∈ SBD 2 (Ω).

Proof of Theorem 5.2. We divide the proof in three steps.

Step one: existence for γ ε . Fix ε > 0 and consider (u k , v k ), a minimizing sequence. Then

sup k∈N Ω |e(u k )| 2 dx + v k H 1 < +∞.
In particular, Korn's inequality 2 combined with the L 1 -compactness for sequences with uniformly bounded H 1 -norm gives us that

u k → u ∈ H 1 , v k → v ∈ V ε in L 1 and e(u k ) e(u) in L 2 with also u = f , v = 1 on ∂Ω.
Moreover, because of assumption (5.3) on F and due to the uniform L 2 bound on the symmetric part of the gradient e(u k ) we have All this considered yields, together with the convexity of F (x, •, v),

Ω [F (x, e(u k ), v k ) -F (x, e(u k ), v)] dx ≤ Ω ω F (v k ; v)|e(u k )| dx → 0.
lim inf k→+∞ F ε (u k , v k ) ≥ Ω vAe(u) • e(u)dx + 1 ε Ω ψ(v) dx + Ω F (x, e(u), v) dx.
In particular, by the application of the direct method of calculus of variation we achieve existence for γ ε , ε > 0.

Step two: 

liminf inequality. Let {(u ε , v ε )} ε>0 ⊂ H 1 (Ω; R n ) × V ε be such that u ε → u 0 , v ε → 1 in L 1 and with u ε = f , v ε = 1 on ∂Ω for all ε > 0. Then lim inf ε→0 F ε (u ε , v ε ) ≥ F(u 0 , 1) + R(u 0 , f ). (5.16) Indeed, by considering Ω ⊃ Ω, a function w ∈ H 1 ( Ω; R n ) with w ∂Ω = f and the extension ûε = u ε 1 Ω + w1 Ω\Ω , vε = v ε 1 Ω + 1 Ω\Ω we can notice that ûε → û0 , vε → 1. Moreover F ε (û ε , vε ; Ω) = F ε (u ε , v ε ; Ω) + Ω\Ω [Ae(w) • e(w) + F (x, e ( 
F ε (u ε , v ε ; Ω) = lim inf ε→0 F ε (û ε , vε ; Ω) ≥ F(û 0 , 1; Ω) = F(u 0 , 1; Ω) + R(u 0 , f ) + Ω\Ω [Ae(w) • e(w) + F (x, e(w), 1 
)] dx, leading to (5.16).

Step three: proof of (5.5) and existence of a minimizer. Let {ε j } j∈N be the sequence such that lim sup ε→0 γ ε = lim j→+∞ γ ε j . Thanks to Proposition 5.7 we have that, for any fixed u 0 ∈ SBD 2 (Ω) we can find

{ε j k } k∈N ⊂ {ε j } j∈N and (u k , v k ) ∈ H 1 (Ω; R n ) × V ε j k with u k = f , v k = 1
on ∂Ω and such that it holds

F(u 0 , 1) + R(u 0 , f ) ≥ lim sup k→+∞ F ε j k (u k , v k ) ≥ lim sup k→+∞ γ ε j k = lim sup ε→0 γ ε .
Thus, by taking the infimum among u 0 ∈ SBD 2 (Ω) we get γ 0 ≥ lim sup ε→0 γ ε .

(5.17)

On the other side, by denoting with (ū ε , vε ) the minimizers at the level γ ε we clearly have

sup ε {F ε (ū ε , vε )} < +∞ (5.18)
that allows us (thanks to Theorem 5.1) to deduce the existence of an accumulation with the form (u 0 , 1) for some u 0 ∈ SBD 2 (Ω). Thus step two guarantees that lim inf

ε→0 γ ε = lim inf ε→0 F ε (u ε , v ε ) ≥ F(u 0 , 1) + R(u 0 , f ) ≥ γ 0 .
Combining this previous relation with (5.17) proves (5.5) and demonstrates also that any other accumulation point of {(u ε , v ε )} ε>0 provides a minimizer for γ 0 .

Selected applications

We now provide examples of energy with some specific functions F of interests with a view to applications. As a title of example we consider the case where ψ(v) = (1 -v) 2 yielding a = 2 √ α and b = 2 3 .

6.1.

A simple model of fracking. In the case of hydraulic fracturing, with a simple variational model as studied in [START_REF] Xavier | A simplified model of fracking based on the topological derivative concept[END_REF], the phenomena is modeled through a potential of the type F (x, M, v) = -p(x, M, v)trace(M ). We directly state the hypothesis on p that guarantees our Γ-convergence result 2.5 and the existence Theorem 5.2. In particular, in order to apply our results we require that the pressure p is a concave function of the variable M and that 1)

p(•, M, 0) ∈ C 0 (Ω) for all M ∈ M n×n sym ; 2) p(x, •, v) is a concave function for all (x, v) ∈ Ω × [0, 1]; 3) -σ|x -y| ≤ p(x, M, v) -p(y, M, v) ≤ |x -y| for all x, y ∈ R n and all (M, v) ∈ M n×n sym × [0, 1]
where > 0 is any real constant and 0 < σ < max λ∈(0,1) where ρ ∈ L ∞ is a Lipschitz function and m, q ∈ R. Provided ρ has suitably small L ∞ norm, hypothesis 1), 2), 3) and 4) are clearly satisfied. We have p(x, M, 1) = (m + q)ρ(x), p(x, M, 0) = qρ(x).

2 αψ(λ) √ κ(1 + 2 α|Ω|ψ(λ)/λ) < 2 αψ(0) κ ; ( 6 
Moreover F ∞ (x, M ) = qρ(x)trace(M ). Hence the Γ-limit of the energy (2.1) is given by

Φ(u) := Ω [Ae(u) • e(u) -(m + q)ρ(x)div(u)] dx + bH n-1 (J u )+ + a Ju A([u] ν•)([u] ν) dH n-1 (z) -q Ju ρ(z)[u](z) • ν(z) dH n-1 (z).
The model in [START_REF] Xavier | A simplified model of fracking based on the topological derivative concept[END_REF] corresponds to m = 0 and ρ is a constant taken as a hydrostatic pressure acting as a boundary condition inside the crack considered as impermeable. Note that in [START_REF] Xavier | A simplified model of fracking based on the topological derivative concept[END_REF] exactly the approximation of this work is proposed. Another phase-field approximation closer to the original Ambrosio-Tortorelli model is considered in [START_REF] Yoshioka | A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses[END_REF], with q = 0 and a constant ρ. Note however that their claimed limit functional is not what we proved to be.

6.1.2. Pressure non constant in e(u): isotropic and anisotropic case. We now examine the case where the pressure p has a concave dependence on the variable M :

p(x, M, v) := ρ(x, v)g(M ).
A suitable choice of ρ ensures that 1) and 2) are in force. In order to guarantee 3) (and thus 4) provided a suitable ρ) we ask also that g L ∞ < c for an appropriate constant c.

In particular any concave bounded function is such that lim t→+∞ g(tM ) = γ(M ) Figure 6.1. The two different materials behave differently when subject to an elastic strain. This is modeled by considering two different pressures on each component. In the picture, different gray corresponds to different value of p(•, M, v). Notice that the role of the layer (δ) around the interface S can be made as small as we like and it is adopted only to satisfy the continuity assumption on the spatial behavior of the pressure and to take into account eventual situations where

H n-1 (J u ∩ ∂Q 1 ∩ ∂Q 2 ) > 0.
that can be rearranged as The case with several rocks can be obtained in the same way. that consists of a generalization of a phase-field approximation of plastic slip as discussed in [START_REF] Ambrosio | A variational model for plastic slip and its regularization via Γ-convergence[END_REF] for the anti-plane case.

Φ(u) := 2 i=1 Q i \Q δ [Ae(u) • e(u) -ρ(1)p i (e(u))div(u)] dx -ρ(0) Ju∩(Q i \Q δ ) p ∞ i ([u](z) ν(z))[u](z) • ν(z) dH n-1 (z) + 2 i=1 Q i ∩Q δ
By possibly making additional restriction on the function p, a functional dependence on M can be considered. However, for the sake of clarity and as a title of example we would avoid such a dependence. It is immediate that 

F ∞ (x, M ) = p(x, 0)g ∞ |M |,

L(u, p).

Indeed, following our approach we can write a Lagrangian by exploiting our lower order potential F . An appropriate low-order potential for this problem can be chosen as F (x, M, v) = (1 -v) 2 p(x) max{-trace(M ), 0} = (1 -v) 2 p(x)trace(M ) -.

Notice that, M → max{-trace(M ), 0} is a positive convex function and with sublinear growth (since | max{a, b}| ≤ |a|+|b|). In particular a suitable choice of p, which now comes as a datum, will ensure that our hypothesis on F 2.1 together with (5.1),(5.2) and (5.3) are satisfied. Notice that, for t > 0, one has trace(tM ) -= t max{-trace(M ), 0}, and thus Due to the convexity of F (x, •, 0) we deduce that f (t) is increasing on (0, +∞). Moreover, assumption 1) in 2.1 also guarantees that By definition of F ∞ we have finally that F ∞ (x, rM, 0; L) = rF ∞ (x, M ; L).

Remark 7.2. We can think the function F ∞ (x, •; L) as a function defined on the unit sphere of M n×n sym and extended homogeneusly on the whole space. The first thing we need is the following decomposition Lemma, holding for convex function with suitable regularity, which as a Corollary yields the independence of the function F ∞ from the starting point L. Remark 7.4. Let us briefly sketch the proof of Proposition 7.3 in the easy case where G(x, M ) = G(M ) is convex just to give an idea to the reader about why such decomposition hold true (the proof can be also found in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]). Chosen {P j } j∈N ⊂ M n×n sym a dense set it is enough to define the values a j := ∇ M G(P j ), b j := -∇ M G(P j ) • P j + G(P j ).

Notice that G(P j ) = ∇ M G(P j ) • P j -∇ M G(P j ) • P j + G(P j ) = a j • P j + b j .

(7.1)

Pick now any M ∈ M n×n sym and let {P j k } k∈N ⊂ {P j } j∈N be a subsequence such that P j k → M . Since G(x, •) is convex and thanks to (7.1) we get G(M ) ≥ a j • M + b j , and hence

G(M ) ≥ sup j∈N {a j • M + b j }.
On the other hand, by continuity, G(M ) = lim k G(P j k ) and thus for any δ > 0 there exists K 0 such that G(M ) ≤ G(P j k ) + δ for all k ≥ K 0 . Thus

G(M ) ≤G(P j k ) + δ = a j k • P j k + b j k + δ =a j k • M + b j k (x) + δ + a j k • (P j k -M ) ≤ sup j∈N {a j • M + b j } + δ + a j k • (P j k -M ). (7.2)
Function G being convex it is also Liptshitz on every bounded set in M n×n sym and in particular a j k = ∇ M G(P j k ) is bounded for P j k close enough to M . Thus a j k • (P j k -M ) → 0 and in particular, by taking the limit in k and then in δ in (7. We now want to apply Lemma 7.6 and thus we set ν = L n + H n-1 J u and we define the functions 
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  ) and extended to +∞ otherwise. Here we have set, for the sake of shortness, ∞ (z, M ) := lim t→+∞ F (z, tM, 0) -F (z, 0, 0) t for z ∈ J u and M ∈ M n×n sym (see Proposition 7.1 to see why F ∞ is well defined for potential F satisfying assumptions 2.1 ).

  Thanks to Proposition 3.2, the bound (3.8) implies sup ε>0 {W ε (u ε , v ε )} < +∞.(3.12)

Theorem 4 . 8 .

 48 [[21], Theorem 3.1] Let Ω be an open bounded set with Lipschitz boundary and let u

(4. 15 )

 15 By virtue of (4.13) and (4.15) we have produced a sequence w k such that w k → u in L 2 and lim k→+∞ F(w k , 1) = F(u, 1). (4.16)

. 20 )

 20 By combining (4.20) and(4.19) and by setting u k = u ε j k , v k = v ε j k we obtain (4.18).

Figure 5 .

 5 Figure 5.1.In red is depicted the region where tr (u) = f . After the normal extension we can see that the region {tr (u) = f } has become just part of J û. We then consider a recovery sequence (û ε , vε ) defined as in (4.2) and (4.3). The grey part represents the region where the damage variable vε << 1. Finally, by composing u ε , v ε with the diffeomorphism Φ ε provided by Proposition 5.4, we go back to our domain Ω by preserving the boundary condition. This operation does not affect in a significant way the energy and we asymptotically recover the sharp energy, which also accounts for R(u, f ) (that comes exactly from those regions where {tr (u) = f }).

Figure 5 . 2 .

 52 Figure 5.2. We shrink the region (∂Ω) εL ∪ [(∂Ω) δ ∩ Ω] onto (∂Ω) δ ∩ Ω through Φ ε by gently pushing the set along ν Ω with a strength that decays in dist(x, ∂Ω) fast enough so that Φ ε (x) = x on Ω \ (∂Ω) δ .

5. 4 . 2 .

 42 Proof of Theorem 5.2. We are finally in the position to prove Theorem 5.1 and 5.Proof of Theorem 5.1. By extending the functionsu ε into ûε ∈ SBD(R n ) through a function w ∈ H 1 (R n \ Ω; R n ) such that w∂Ω = f and by applying the Poincaré-type inequality [25, Theorem 1.7.6] we get

. 14 )

 14 Thanks to Proposition 3.2, the uniform bound in energy yields also sup ε {W(u ε , v ε )} < +∞. By then arguing as in the proof of Proposition 3.3 we can retrieve relations (3.13) and (3.14) that implysup ε>0 {|Eu ε |(Ω)} = sup ε>0 Ω |e(u ε )| dx < +∞.(5.15)In particular, (5.15) combined with (5.14) and with the energy bound leads to sup ε>0

Furthermore, due to

  the weak convergence of e(u k ) and to the strong convergence of v k (see for example[START_REF] Buttazzo | Semicontinuity, relaxation, and integral representation in the calculus of variations[END_REF] Theorem 2.3.1]) lim inf k→+∞ Ω v k Ae(u k ) • e(u k ) dx ≥ Ω vAe(u) • e(u) dx2 the arbitrary rigid displacement is here fixed by the prescription of the boundary condition.

  w), 1)] dx and thanks to Theorem 3.1 we have Ω\Ω [Ae(w) • e(w) + F (x, e(w), 1)] dx + lim inf ε→0

6 . 1 . 1 .

 611 setω p (s; t) := |p(x, M, s) -p(x, M, t)| : (x, M ) ∈ R n × M n×n sym then lim s→t ω p (s; t) = 0.Under these assumptions the potential F = -p(x, M, v)trace(M ) satisfies Assumption 2.1 and (5.1),(5.2),(5.3). MoreoverF ∞ (x, M ) = -trace(M ) lim t→+∞ p(x, tM, 0). Pressure constant in e(u) and linear in v. We first examine the case p(x, M, v) := (mv + q)ρ(x)

[

  Ae(u) • e(u) -d(x, S)ρ(1) δ p i (e(u))div(u)] dx -ρ(0) Ju∩(Q i \Q δ ) d(x, S) δ p ∞ i ([u](z) ν(z))[u](z) • ν(z) dH n-1 (z) + a Ju A([u](z) ν(z)) • ([u](z) ν(z)) dH n-1 (z) + bH n-1 (J u ).

6. 3 .

 3 A model of plastic slip: F = p|e(u)|. Now we analyze the case F (x, M, v) := p(x, v)g(|M |),

  It is a well-known result that (6.4) = infv∈A d sup p∈L ∞ (Ju;H n-1 )

F( 1 -Proposition 7 . 1 .

 171 ∞ (x, M ) = p(x)trace(M ) - With these carefulness we can Γ-approximate the LagrangianΦ(u) := Ω Ae(u) • e(u) dx + a Ju A([u](z) ν(z)) • ([u](z) ν(z)) dH n-1 (z) + bH n-1 (J u ) + Ju p(z)([u] • ν) -dH n-1 (z) by F ε (u, v) = Ω vAe(u) • e(u) + 1 ε Ω ψ(v)dx + Ω v) 2 p(x)div(u) -dx.7. Appendix7.1.A semicontuity result on SBD. We now proceed to the proof of a lower semicontinuity result. This result can be derived by gathering several results available in the literature. We retrieve them here and we give a brief sketch of the proof of the main result in order to present our work as self-contained as possible . Let us start with the following Proposition: For any fixed L ∈ M n×n sym there exists a functionF ∞ (x, M ; L) : M n×n sym → R such that lim t→+∞ F (x, L + tM, 0) -F (x, L, 0) t = F ∞ (x, M ; L). Moreover F ∞ (x, rM ; L) = rF ∞ (x, M ; L) for all r ∈ R + .Proof. Consider, for fixed M ∈ M n×n sym and x ∈ Ω the quantity f (t) := F (x, L + tM, 0) -F (x, L, 0) t .

F

  (x, L + tM, 0) -F (x, L, 0) t ≤ |L| -F (x, L, 0) t + |M |.In particular lim t→+∞ f (t) = exists finite.Thus there exists a function F ∞ (x, M ; L) such that lim t→+∞ f (t) = F ∞ (x, M ; L).

Proposition 7 . 3 .

 73 Let G : Ω × M n×n sym → R be a function such that G(x, M ) is lower semicontinuous in (x, M ), G(x, •) is convex for all x ∈ Ω and |G(x, M )| < |M | for some ∈ R and for all (x, M ). Then there exists two families of continuous function {a j (x) : Ω → M n×n sym } j∈N and {b j (x) : Ω → R} j∈N such that G(x, M ) = sup j∈N {a j (x) • M + b j (x)} and lim t→+∞ G(x, L + tM ) -G(x, L) t = sup j∈N {a j (x) • M } for any L ∈ M n×n sym . The proof of the previous Proposition comes as a consequence of [10, Lemma 2.2.3, Remark 2.2.6, Lemma 3.1.3].

  2), we getG(M ) ≤ sup j∈N {a j • M + b j }.For the recession function instead we see that, because of the convexity, for any L ∈ M n×n sym the quantityG(L + tM ) -G(L) t Let A 0 , . . . A m be pairwise disjoint open subset of A and ϕ j ∈ C c (A j ) with 0 ≤ ϕ j ≤ 1 for all j = 0, . . . , m. Then A G(x, e(u ε )) dx ≥ m j=0 A j ϕ j G(x, e(u ε )) dx ≥ m j=0 A j ϕ j a j (x) • e(u ε ) dx + A j ϕ j b j (x) dx,which, by passing to the limit in ε and by exploiting the fact thata j ϕ j ∈ C c (A j ; M n×n sym ) leads to lim inf ε→0 A G(x, e(u ε ) dx ≥ m j=0 A j ϕ j a j (x) • dEu(x) + A j ϕ j b j (x) dx = m j=0 A j ϕ j a j (x) • dEu dL n (x) + b j (x) dx + A j ϕ j a j (x) • dEu s (x) = m j=0 A j ϕ j [a j (x)• e(u) + b j (x)] dx +A j ∩Ju ϕ j a j (x) • ([u] ν) dH n-1 (x).

φ

  j (x) := a j (x) • e(u) + b j (x) for x ∈ A \ J u a j (x) • ([u] ν) for x ∈ J u ∩ A, , φ(x) := G(x, e(u)) for x ∈ A \ J u G ∞ (x, [u] ν) for x ∈ J u ∩ A.

( 7 . 3 )

 73 Notice that, due to the mutual singularity of L n and H n-1 J u , we getm j=0 A j φ j ϕ j dν ≤ lim inf ε→0 A G(x, e(u ε )) dx.By taking the supremum over ϕ j we getm j=0 A j φ + j dν ≤ lim infε→0 A G(x, e(u ε )) dx. Thanks to Proposition 7.3, for any fixed x ∈ A it holds sup j∈N {φ j (x)} = sup j∈N {φ + j (x)} = φ(x), since φ ≥ 0 for all x ∈ Ω. Now, by taking the supremum among all the finite families of pairwise disjoint open subsets of A and by applying Lemma 7.6e(u)) dx + A∩Ju G ∞ (z, [u] ν) dH n-1 (z).

  then, thanks to Proposition 3.2, we have sup ε {W(u ε , v ε )} < +∞. By then arguing as in the proof of Proposition 3.3 we can retrieve relations(3.

	13)
	and (3.14) that imply
	sup
	ε>0

  Proposition 5.6. Let Ω be an open bounded set with C 2 boundary and fix a smooth boundary data f ∈ C 1 (∂Ω; R n ). For any function u ∈ SBD 2 (Ω) there exists a sequenceu k ∈ Cl(Ω; R n ) such that u k → u in L 2 and

	lim sup
	k→+∞

Here we discard on purpose the work of the external forces.
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exists finite. Thus the Γ-limit of the energy (2.1) is given by Φ(u) := Ω [Ae(u) • e(u) -ρ(x, 1)g(e(u))div(u)] dx

This case corresponds to a more realistic fracking model where the pressure is a thermodynamic variable with a certain constitutive law (as related to the Biot's coefficient and the pore-pressure [START_REF] Yoshioka | A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses[END_REF]), instead of a hydrostatic pressure given as a model datum. In particular this case applies to the case where the crack is no more impermeable, and hence the pressure satisfies a certain balance equation in the whole domain.

6.2. Pressure almost constant in x: the two-rocks model. Of particular interest in the case of hydraulic fracking is the case where the pressure p takes values p 1 (e(u)), p 2 (e(u)) in two different region of our ambient space Ω and quickly varies from p 1 to p 2 in a small layer of size δ bordering the two regions. This models the situation of a so-called stratified domain, i.e., where we have two permeable rocks (or impermeable if p i assumes a constant value in each rock) separated by an interface (where the pressure is linearly interpolated). As a title of example we consider the situation depicted in figure 6.2. In particular we set

If p i are concave function and ρp i ∞ is suitably small, we can surely choose ρ so that conditions 3) and 4) are satisfied. Moreover, setting

and

we get that the limiting energy reads

where g ∞ := lim t→+∞ g(t) t . Thus, the limit energy in this scenario is where λ i (P ) denotes the i-th eigenvalue of the matrix P . This function are, respectively convex and concave and

Hence, by setting

provided g is a convex function with sublinear growth, the class of function p such that hypothesis 2.1 and (5.1),(5.2) and (5.3) on F are satisfied is not trivial. Notice now that λ max (tAM ) = tλ max (AM ), λ min (tAM ) = tλ min (AM ), and thus, as above, we get

where g ∞ = lim t→+∞ g(t)

t . The limit energy here is 

where A d is a suitable admissible class. The associated Lagrangian to such a problem reads as

is increasing in t and thus

On the one hand, for all j ∈ N, we get

On the other, for any k ∈ N, it holds

In particular the equality is attained.

Remark 7.5. In the light of Proposition 7.3 it is clear that the recession function is independent of the starting point L.

We recall the following technical Lemma from [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Lemma 2.35].

Lemma 7.6. Let ν be any positive Radon measure and let ϕ i : Ω → R + with i ∈ N be a family of Borel functions. Then

where the supremum ranges over all finite families {A i } i∈I of pairwise disjoint open set compactly contained in Ω.

We now state and prove the semicontinuity result. For the sake of completeness we mention that this result comes also as a consequence of [10, Theorem 3.