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Experimental study and modelling of the kinetic of
biomass char gasification in a fluidized bed reactor

Mathieu Morin ∗, Sébastien Pécate, Mehrdji Hémati
Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse,
France

a b s t r a c t

This work presents experimental data on the kinetic of steam gasification of biomass char

in a fluidized bed reactor at atmospheric pressure. The char was obtained from fast pyrolysis

of cylindrical beech stick in an annex batch fluidized bed reactor at 650 ◦C. The experiments

were performed for temperatures in the range of 700–850 ◦C and steam partial pressures

between 0.1 and 0.7 bars. The results showed that the char steam gasification is done in

two steps. First, a thermal degradation of char takes place just after its introduction in the

fluidized bed. This step leads to a partial conversion of the reactive solid and a formation of

volatile products. Then, the new carbonaceous residue reacts with steam to produce syngas.

The effect of hydrogen partial pressure up to 0.25 bars on the kinetic of char gasification was

also investigated. The results revealed that the presence of H2 inhibits the reaction of steam

gasification. Besides, interactions also occur between char and H2 which lead to the forma-

tion of CH4 in the product gas. Moreover, as the hydrogen partial pressure increases, the

methane production also increases. Finally, a modelling kinetic study including the inhibit-

ing effect of H2 showed that experimental data can be well-represented by the Shrinking

Core Model with an activation energy and a reaction order with respect to steam equal to
123 kJ/mol and 0.62, respectively.

Fluidized Bed) (Hofbauer et al., 2002). FICFB process consists of two
1. Introduction

Biomass is a possible alternative to the direct use of fossil fuel in gasi-

fication process as it has the advantage of being neutral in regard to

the emission of greenhouse gas carbon dioxide. Recently, an increas-

ing interest has been showed for the production of methane via

Methanation process and “Biomass to Fisher-Tropsch Liquids”. Biomass

gasification is a thermochemical conversion occurring at high temper-

atures with many simultaneous reactions. It occurs in two stages: (i) a

pyrolysis step above 350 ◦C in which the biomass undergoes a thermal

conversion leading to the formation of volatile products either con-

densable (steam and tars) or non-condensable (H2, CO, CO2, CH4 and

C2Hx) and a solid residue called char (Di Blasi, 2008); (ii) a gasifica-

tion step in which the char reacts with steam and carbon dioxide at
temperatures greater than 700 ◦C to produce syngas.
Biomass gasification is an endothermic process. To maintain a fixed

temperature in the reactor, a contribution of energy is required. The

gasification technologies can be divided into two types depending on

the way the heat is supplied to the gasifier (Ruiz et al., 2013; Gómez-

Barea and Leckner, 2010). First, in autothermal or direct gasification, the

heat is provided by partial combustion of the fuel in the gasifier itself.

This process includes the fixed bed gasifiers (co- and counter-current)

and the “bubbling fluidized bed” gasifiers. In these types of reactor, the

biomass undergoes drying, pyrolysis and partial combustion of volatile

matters and char and finally the gasification of char. In allothermal

or indirect gasification the heat is obtained from a source outside of

the gasifier. One of the most promising technologies of indirect gasifi-

cation is dual or twin fluidized bed (FICFB: Fast Internally Circulating
reactors: a dense fluidized bed endothermic gasifier (operating around



Nomenclature

ASCM Pre-exponential factor for the SCM
(mol m−2 Pa−n s−1)

E˛ Activation energy (J mol−1)
f (X) Structure function (–)
Mc Molar weight of carbon (kg mol−1)
n Reaction order with respect to steam (–)
ṅcarbon (t) Carbon molar flow rate (mol min−1)
ni (t) Cumulative amount of component i during the

time t (mol)
ṅt (t) Instantaneous total molar flow rate (mol min−1)
ṅN2 Molar flow rate of nitrogen at the entrance of

the reactor (mol min−1)
ṅi (t) Instantaneous molar flow rate of component i

(mol min−1)
(ncarbon)char Amount of introduced carbon in the reactor

(mol)
PH2O,s Steam partial pressure at the particle surface

(Pa)
PH2 Hydrogen partial pressure (Pa)
R Universal gas constant (J mol−1 K−1)
R˛pp Apparent reaction rate for Xc = 0.4
R˛pp (PH2 ) Apparent reaction rate for various H2 partial

pressures
R˛pp (PH2 = 0) Apparent reaction rate for various steam

partial pressures and PH2 = 0 bar
R0 Initial particle radius
Tp Particle temperature (K)
Umf Minimum fluidization velocity (m s−1)
Xc Carbon conversion rate (–)
xc Mass fraction of carbon in the char particle (–)
xN2 (t) Measured molar fraction of nitrogen at the

reactor outlet (–)
xi (t) Molar fraction of component i (–)

Greek letters
εp Solid porosity (–)
�˛ Apparent density (kg m−3)
�t,c True density (kg m−3)
�i Number of carbons in the component i
�CSTR Residence time of the continuous flow stirred-

tank reactors (min)
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50–850 ◦C) that produces the syngas and an entrained bed exothermic

ombustor (operating at 900–950 ◦C) that burns a part of the residual

har to provide heat to the gasifier. A solid bed material (sand, olivine

r catalyst particles) is circulated between the two reactors to transfer

he heat to the gasification (Gómez-Barea and Leckner, 2010).

During biomass gasification in FICFB, the char reacts with steam

nd carbon dioxide in the gasifier and with oxygen in the combus-

or. Information regarding the kinetic of biomass char gasification with

team in a fluidized bed reactor is then essential to better understand

henomena occurring inside the gasifier and to design this process.

Char gasification with steam corresponds to a complex chemical

ransformation which occurs in several steps: (1) the external transfer

f steam from the bulk to the external surface of the particle, (2) the

iffusion of steam through the ash layer and within the pores of the

olid, (3) the steam chemisorption on an active site (adsorption), (4) the

ntrinsic chemical reaction, (5) the products desorption from the sur-

ace, (6) the diffusion of the products through the particle and ash layer

nd finally (7) the external transfer back of the products from the exter-
al surface to the bulk (Laurendeau, 1978; Szekely et al., 1976). These

ifferent steps are strongly affected by the physicochemical properties
of char, the gasification temperature, the steam partial pressure and

the size of the solid particles.

The physicochemical properties of char depend on the parent fuel

and the pyrolysis operating conditions (Di Blasi, 2009; Morin et al., 2016).

In a previous study (Morin et al., 2016), it was highlighted that the

physicochemical properties and the reactivity of char is strongly depen-

dent on the pyrolysis temperature, the heating rate and the biomass

nature. It was found that these parameters influence hydrogen, oxy-

gen, carbon and ash contents in the char as well as the presence of

amorphous and aromatic carbon. Besides, a raise of the heating rate

during the biomass pyrolysis increases the char reactivity while an

increase in the final temperature decreases the reactivity. The presence

of inorganic matters (i.e. ashes) in the char matrix is known to catalyze

the reaction of gasification (Mermoud et al., 2006; Marquez-Montesinos

et al., 2002; Dupont et al., 2016). For instance, by comparing the reactiv-

ity in steam gasification in TGA of nineteen biomasses prepared under

the same pyrolysis conditions, Dupont et al. (2016) emphasized the cat-

alytic effect of potassium (K) as well as the inhibiting effect of silicon

(Si) and phosphorous (P). Hence, they concluded that the gasification

rate may be correlated to the ratio K/(P + Si).

Szekely et al. (1976) divided the gasification of a porous solid into

three main regimes according to the temperature, the steam partial

pressure and the char particles size. Regime I is established for low

temperatures and char particles sizes so that the mass transfer rates

(i.e. steam diffusion inside the pores and external transfer around the

particle) are much faster than the intrinsic chemical reaction rate. In

this regime, both the gas concentration and the gas temperature on

the char surface sites are equal to those in the bulk gas. When the

temperature and the char particles size are increased (Regime II), the

reactive gas cannot completely penetrate into the particle and leads

to steam concentration gradients inside the char. This Regime II is the

transition regime where both the diffusion of steam and the intrinsic

chemical reaction play a significant role. Finally, in Regime III which

occurs at high temperatures, the intrinsic reactivity of the solid is very

high and the steam molecules react at the particle surface as soon as

they have passed the boundary layer around the particle. The external

mass transfer is then the limiting step.

Table 1 presents several literature works on the kinetic of biomass

char gasification with steam. Overall, in the literature, the influence

of the gasification temperature and the steam partial pressure was

investigated in the range of 550–1150 ◦C and 500–100,000 Pa. It is well-

established that the gasification rate increases by increasing these two

parameters (Marquez-Montesinos et al., 2002; Nandi and Onischak,

1985; Bhat et al., 2001; Klose and Wölki, 2005; Paviet et al., 2007;

Groeneveld and van Swaaij, 1980; Ahmed and Gupta, 2011; Nilsson

et al., 2014, 2012; Le and Kolaczkowski, 2015; Kramb et al., 2014; Zhai

et al., 2015; Barrio et al., 2001; Kojima et al., 1993; Hawley et al., 1983;

Hémati and Laguerie, 1988; Woodruff and Weimer, 2013). Table 1 also

shows that a large variety of particles sizes was investigated between

45 �m to 2 mm. This parameter mainly influences the diffusion of

steam inside the pores and yields to gradients of concentration within

the particle. Hence, to determine the intrinsic char-steam gasification

kinetic, the authors (Bhat et al., 2001; Klose and Wölki, 2005; Paviet

et al., 2007; Ahmed and Gupta, 2011; Nilsson et al., 2014, 2012; Zhai

et al., 2015; Hawley et al., 1983; Hémati and Laguerie, 1988) minimized

the effects of heat and mass transfers so that the reaction of gasifica-

tion takes place in Regime I and for isothermal conditions. In the case

of TGA analyses, it consists in determining the particles size, the mass

of char in the crucible and the volume flow rate of the reactive gas in the

apparatus for a constant temperature and steam partial pressure until

no influence on the gasification rate was observed (Klose and Wölki,

2005; Paviet et al., 2007; Hémati and Laguerie, 1988). Other researchers

(Nilsson et al., 2014, 2012; Hawley et al., 1983) calculated the effective-

ness factor (ratio between the actual reaction rate and the intrinsic

reaction rate) which must be close to the unity in Regime I. By and

large, bibliographic works (Di Blasi, 2009; Bhat et al., 2001) agreed that

kinetic experiments of the char gasification with both steam and CO2

takes place in Regime I in the absence of any mass transfer limitations
for temperatures up to 900 ◦C.



Table 1 – Literature review on the kinetic of biomass char gasification with steam.

Ref. Pyrolysis conditions Gasification operating conditions Kinetic expression

Reactor Temp (◦C) Diam. (mm) H2O (%) dX
dt

(s−1), A (s−1 or s−1 Pa−n), Ea (J mol−1)

Marquez-
Montesinos et al.
(2002)

Quartz tube furnace TGA (Patm) 725–800 1–1.6 1.7–47.4 dX

dt
= A × exp

(
− Ea

RT

)
Pn

H2O (1 − X)

Ea = 134, 000 − 201, 000
n = 0.53 − 0.73

700 ◦C
N2

2 h
Peel grapefruit

Nandi and Onischak
(1985)

Tube furnace,
732–927 ◦C

TGA (21.7 bar) 649–927 – 50 (5% H2) M (N2–H2O): dX
dt

= 5.55 × 105 × exp
(
− 177,000

RT

)
(1 − X)

11 ◦C/min M (N2–He–H2O): dX
dt

= 2.96 × 106 × exp
(
− 195,000

RT

)
(1 − X)

30 min P (N2–H2O): dX
dt

= 1.72 × 105 × exp
(
− 170,000

RT

)
(1 − X)

Maple, pine P (N2–He–H2O): dX
dt

= 2.89 × 105 × exp
(
− 178,000

RT

)
(1 − X)

Nandi and Onischak
(1985)

TGA 704–871 ◦C TGA
(21.7 bar)

704–871 – 50 (5% H2) M (N2–H2O): dX
dt

= 4.03 × 105 × exp
(
− 167,000

RT

)
(1 − X)

N2, H2O (H2) M (N2–He–H2O): dX
dt

= 3.65 × 105 × exp
(
− 167,000

RT

)
(1 − X)

Maple, pine P (N2–H2O): dX
dt

= 2.14 × 105 × exp
(
− 164,000

RT

)
(1 − X)

P (N2–He–H2O): dX
dt

= 1.77 × 106 × exp
(
− 176,000

RT

)
(1 − X)

Bhat et al. (2001) Batch Pyrolysis Tubular reactor
(Patm)

750–900 Grain 100 dX
dt

= 2.9×1010
T × exp

(
− 200,325

RT

)
PH2O (1 − X)

600–700 ◦C
N2 (Patm)
Rice husk

Klose and Wölki
(2005)

Vertical tube furnace TGA (Patm) 720–780 <0.125 70 r = k

1+ K

exp
(

− �H
RT

)
PH2O

900 ◦C B: k = 2.1 × 107 exp
(

− 196, 000
RT

)
3 ◦C/min K = 2 × 107Pa
30 min �H = −35, 000 J mol−1

Beech, oil palm OP: k = 1.2 × 1011 exp
(
− 299,000

RT

)
K = 2.5 × 106Pa
�H = −37, 000 J mol−1

Paviet et al. (2007) Muffle furnace,
1000 ◦C, 100 ◦C/min

Tubular Kiln (Patm) 900–1000 0.1–2 30–70 P: dX
dt

= 6.6×104
1−0.75 × exp

(
− 174,000

RT

) PH2O
PT

(1 − X)
√

1 − ln (1 − X)

W: dX
dt

= 6×105
1−0.86 × exp

(
− 204,000

RT

) PH2O
PT

(1 − X)
√

1 − 5ln (1 − X)

Paper, wood, plastic,
vegetable

Pl: dX
dt

= 1×105
1−0.75 × exp

(
− 185,000

RT

) PH2O
PT

(1 − X)
√

1 − 5ln (1 − X)

V: dX
dt

= 8.1×104
1−0.67 × exp

(
− 178,000

RT

) PH2O
PT

(1 − X)
√

1 − 5ln (1 − X)

Groeneveld and van
Swaaij (1980)

Wood, N2, Patm,
980 ◦C

TGA (Patm) 800–1000 – 0.5–22 dX
dt

= 107

(RT)0.7 × exp
(
− 217,100

RT

)(
PH2O + PCO2

)0.7
(1 − X)

Ahmed and Gupta
(2011)

Reaction chamber Reaction chamber
(2 bar)

900 – 30–75 30% H2O: dX
dt

= 0.052 × (1 − X)
√

1 − 16.71ln (1 − X)

900 ◦C 45% H2O: dX
dt

= 0.056 × (1 − X)
√

1 − 10.53ln (1 − X)

He (Patm) 60% H2O: dX
dt

= 0.080 × (1 − X)
√

1 − 3.80ln (1 − X)

1 h 75% H2O: dX
dt

= 0.071 × (1 − X)
√

1 − 4.95ln (1 − X)

Woodchip



Nilsson et al. (2014) Fluidized bed Fluidized bed (Patm) 760–840 1.9 20–40 (10% H2) dX
dt

= k1PH2O

1+k2PH2O+ k3PH2
× 1

(1−0.20) × (1 − X)n

760–900 ◦C k1 = 1.2 × exp
(
− 137,000

RT

)
N2 (Patm) k2 = 6.19 × 10−6 × exp

(
22,900

RT

)
Olive tree k3 = 2.93 × 10−5 × exp

(
24,100

RT

)
n = 0.8 − 1.5

Le and Kolaczkowski
(2015)

Gasification Pilot
plant

Packed bed (Patm) 800–900 0.306 30–70 dX
dt

= A × exp
(

− Ea

RT

)
Pn

H2O × (1 − X)
2⁄3

RDF A = 1.14 × 104 − 3.53 × 104 s−1 bar−n

Ea = 96, 000 − 106, 000
n = 0.89 − 2.9

Kramb et al. (2014) TGA TGA (Patm) 750–850 – 89–100 (0–10% H2) dX
dt

= k1f PH2O

1+
k1f

k3
PH2O + k1b

k3
PH2

[
˛ exp

(
−�X2

)
+ (1 − X)

√
1 − ϕln (1 − X)

]
750–850 ◦C k1f = 1.9 × 107 exp

(
− 200, 000

RT

)
ϕ = 3.9

H2O–H2 k1b = 2.9 × 1010 exp
(

− 240, 000
RT

)
˛ = 3.8

Pine sawdust k3 = 2.4 × 109 exp
(

− 250, 000
RT

)
� = 24

Zhai et al. (2015) Muffle furnace Drop tube furnace
(Patm)

700–950 1.2 100
dX
dt

= 0.388 × exp
(

− 66, 500
RT

)
× (1 − X)2/3

800 ◦C

40 min dX
dt

= 3.34 × exp
(

− 74, 800
RT

)
× (1 − X)

Rice husk

Barrio et al. (2001) Macro TGA Pressurized TGA
(Patm)

750–950 0.045–0.063 5–100 (10–30% H2) Be (N2–H2O): dX
dt

= 3.7 × 105 exp
(

− 237, 000
RT

)
P0.57

H2O (1 − X)

600 ◦C
Bi (N2 − H2O) :

dX

dt
= 4.8 × 104 × exp

(
− 211, 000

RT

)
P0.51

H2O (1 − X)

dX

dt
= k1f PH2O

1 + k1f

k3
PH2O + k1b

k3
PH2

× (1 − X)

24 ◦C/min



Table 1 (Continued)

Ref. Pyrolysis conditions Gasification operating conditions Kinetic expression

Reactor Temp (◦C) Diam. (mm) H2O (%) dX
dt

(s−1), A (s−1 or s−1 Pa−n), Ea (J mol−1)

30 min

Be (N2 − H2O − H2) : k1f = 2 × 102 exp
(

− 199, 000
RT

)
k1b = 18 exp

(
− 146, 000

RT

)
k3 = 8.4 × 107 exp

(
− 225, 000

RT

)

Beech, birch

Bi (N2 − H2O − H2) : k1f = 7.6 × 102 exp
(

− 199, 000
RT

)
k1b = 2.1 × 109 exp

(
− 284, 000

RT

)
k3 = 1.6 × 1010 exp

(
− 273, 000

RT

)
Kojima et al. (1993) Fluidized bed Fluidized bed (Patm) 850–950 1–2 0–58 dX

dt
=

1773 × exp
(

− 179, 000
RT

)
P0.41

H2O × (1 − X)
850–950 ◦C
Sawdust

Hawley et al. (1983) 700 ◦C Electric furnace
(Patm)

550–685 1–2 45–100
dX
dt

= 6.57 × exp
(

− 156, 000
RT

)
PH2O × f (X)

N2

10 min
Poplar wood

Hémati and Laguerie
(1988)

TGA TGA (Patm) 650–750 0.250–0.315 25–100 dX
dt

=
2.17 × 103 exp

(
− 198,000

RT

)
P0.75

H2O × (1 − X)750–1000 ◦C
N2 (Patm)
Sawdust

Nilsson et al. (2012) Fluidized bed Fluidized bed (Patm) 800–900 1.2 10–30 dX
dt

= 8731 exp
(
− 171,000

RT

)
P0.33

H2O ×
(1 − X) (11.5X + 3.6) exp

(
−3X1/2

)800–900 ◦C
Dried sewage sludge

Woodruff and
Weimer (2013)

1000 ◦C Fixed bed (Patm) 1000–1150 10 Section 20–100 (0–40% H2) dX
dt

= K1PH2O
1+K2PH2O+K3PH2

× (1 − X)
√

1 − ϕ ln (1 − X)

20 ◦C/min K1 = 2.51 × 10−2 exp
(
− 112,600

RT

)
20 min K2 = 6.74 × 10−7 × exp

(
37,300

RT

)
Switch grass K3 = 3.04 × 10−6 × exp

(
36,600

RT

)
ϕ = 4.3

Septien et al. (2015) Macro TGA Macro TGA (Patm) 750–950 <0.250 15–50 dX
dt

= 7.349 ×
107 exp

(
− 275,000

RT

)
P0.65

H2O ×(
34.228X6 − 69.460X5 + 49.267X4 − 7.903X3 − 2.653X2 + 1.633X + 0.345

)850 ◦C
100 ◦C/s
Beech chips
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Table 1 highlights that a wide range of biomasses (wood, paper,

lastic, vegetable, rice husk, switchgrass, RDF. . .) as well as pyrolysis

onditions (temperatures ranging from 600 to 1000 ◦C and heating rates

etween 3 and 100 ◦C/min) were applied during the pyrolysis. The char

asification with steam was performed in a large variety of reactors

TGA, packed bed, fluidized bed, drop tube furnace. . .). The obtained

inetic expressions combined to mass transfers and hydrodynamic

henomena may be used to model the char gasification in industrial

onditions. For instance, Bates et al. (2016) proposed a transient char

onversion model in oxygen-free gasification conditions in a fluidized

ed reactor. In this case, they assumed that the char is consumed by

asification, combustion and attrition.

The most widely used treatment to represent the char-steam reac-

ion for both coal char and biomass char is based on a simple global

eaction (Di Blasi, 2009; Roberts and Harris, 2006; Hüttinger and Merdes,

992):

+ H2O → CO + H2 (I)

Followed by the Water–Gas–Shift (WGS) reaction in the gas-phase

hich is close to the equilibrium during char steam gasification:

O + H2O � CO2 + H2 (II)

A part of the carbon dioxide from the WGS reaction may also react

ith char to produce carbon monoxide according to the Boudouard

eaction:

+ CO2 → 2CO (III)

The amount of CH4 produced at atmospheric pressure during char-

team gasification is low and is usually neglected (Di Blasi, 2009).

In reality, Reaction (I) consists of a series of oxygen adsorption and

esorption processes. The simplest reaction scheme to represent Reac-

ion (I) is that an oxygen atom of the steam molecule is adsorbed on an

ctive site of the carbon surface to give a carbon-oxygen complex C(O)

hich then further desorbs to produce CO. These steps are known as

xygen exchange mechanism and are expressed by the two following

eactions:

f + H2O � C (O) + H2 (IV)

(O) → CO (V)

The reactivity of char with steam can be described by the rate of a

olid-state reaction according to the following expression (Vyazovkin

t al., 2011; Khawam and Flanagan, 2010):

dX

dt
= k (Tp) · h

(
PH2O,s

)
· f (X) (1)

here X, PH2O,s and Tp are respectively the conversion rate, the steam

artial pressure at the particle surface (Pa), and the particle tempera-

ure (K). f (X) is the reaction model also known as the structure function.(
PH2O,s

)
is the steam partial pressure function which represents the

ffect of steam partial pressure on the reaction rate. k (Tp) is the tem-

erature dependent rate constant.

In the literature (Di Blasi, 2009), the majority of kinetic analyses

onsider Reaction (I) as a simple global reaction. In this case, k (Tp) is

escribed by an Arrhenius law and h
(

PO2,s

)
is given in the form of a

ower law:

(Tp) · h
(

PH2O,s

)
= A · exp

(
− Ea

RTp

)
· Pn

H2O,s (2)

here A is the pre-exponential factor, Ea is the activation energy

J mol−1), R is the gas constant (J mol−1 K−1) and n is the reaction order

ith respect to steam.
From Table 1, this global kinetic model leads to activation energies

anging from 66,500 to 237,000 J/mol and reaction orders with respect
to steam between 0.33 and 1. According to Di Blasi (2009), this disper-

sion in the kinetic parameters is caused by different biomasses and

char properties, pyrolysis conditions, amounts and compositions of

ash, gasification conditions and devices of the experiment. It is impor-

tant to note that several authors (Nandi and Onischak, 1985; Zhai et al.,

2015) incorporated the dependence of the reactivity on the steam par-

tial pressure into the pre-exponential factor so that the results are only

valid for the gaseous mixture used in the experiment (Di Blasi, 2009).

In the case of steam gasification of coal char, some researchers

(Roberts and Harris, 2006) have used a Langmuir–Hinshelwood

formulation to represent the kinetic data. The simplest

Langmuir–Hinshelwood formulation takes into account Reactions (IV)

and (V) and is given by:

k (Tp) · h
(

PH2O,s

)
= Rglobal = kIVPH2O,s

1 + kIV
kV

· PH2O,s

(3)

where kIV and kV are the rate constants of Reactions (IV) and (V), respec-

tively and follow an Arrhenius law.

The hydrogen inhibition effect during the char gasification was also

taken into account by some authors in the kinetic modelling (Nilsson

et al., 2014; Kramb et al., 2014; Barrio et al., 2001; Woodruff and Weimer,

2013; Hüttinger, 1988; Lussier et al., 1998). Indeed, the presence of

hydrogen is known to decrease the char reactivity with steam. This

phenomenon may be explained by either the equilibrium of Reaction

(IV) or by hydrogen adsorption on the active sites. Hence, the kinetic

expression can be expressed as follows:

k (Tp) · h
(

PO2 ,s

)
= Rglobal = kIVPH2O

1 + kIV
kV

· PH2O + f
(

PH2

) (4)

where PH2 is the hydrogen partial pressure and f
(

PH2

)
is a function

which depends on the selected mechanism for hydrogen inhibition.

Literature studies (Kramb et al., 2014; Barrio et al., 2001; Hüttinger,

1988; Lussier et al., 1998) mainly assume the oxygen-exchange mech-

anism to represent hydrogen inhibition which considers Reaction (IV)

as reversible. f
(

PH2

)
is then expressed as:

f
(

PH2

)
= k−IV

kV
· PH2 (5)

In some cases, several authors (Nilsson et al., 2014; Woodruff and

Weimer, 2013) reduced Eq. (4) to the following expression without con-

sidering any hydrogen inhibition mechanisms:

k (Tp) · h
(

PO2 ,s

)
= Rglobal = K1PH2O

1 + K2 · PH2O + K3 · PH2

(6)

The char gasification with CO2 (i.e. Boudouard reaction) has simi-

larity to the char steam reaction as it also includes an oxygen exchange

mechanism (Irfan et al., 2011). The Boudouard reaction was extensively

studied in the literature (Di Blasi, 2009; Ahmed and Gupta, 2011; Nilsson

et al., 2014, 2012; Irfan et al., 2011). The authors found that the char-CO2

reaction is 3–4 times slower than the reaction with H2O. Besides, in the

case of coal char, several researchers (Groeneveld and van Swaaij, 1980;

Roberts and Harris, 2007; Chen et al., 2015) studied the char gasification

with mixtures of CO2 and H2O. For instance, Chen et al. (2015) found

that the char gasification rate in a mixture of CO2 and H2O is lower than

the sum of the reaction rates taken individually. Moreover, CO2 and H2O

molecules may compete for the same active sites on the char surface.

Roberts and Harris (2007) also concluded that, for experiments at high

pressures, the presence of CO2 reduced the rate of C-H2O reaction.

In Eq. (1), the structure function f (X) represents the reactive surface

of the particle. Its evolution during the gasification or the combustion

reactions is difficult to predict and is subject to discussion in the litera-

ture (Mermoud et al., 2006). Due to the complex char structure, several

kinetic models are reported to represent the structure function. Table 1
shows that the most commonly models used to represent the char gasi-

fication kinetic are the Volumetric Model (VM) (Marquez-Montesinos



Fig. 1 – (A) beech stick particle (STI), (B) char (STI650) obtained by pyrolysis of beech stick at 650 ◦C in a fluidized bed reactor.

Table 2 – Proximate analysis of the beech stick (wt%, dry basis).

Biomass Moisture (%) Volatile matters (%) Fixed carbona (%) Ash (%)

Beech stick 8.40 76.7 14.7 0.2

a By difference.

Table 3 – Ultimate analysis and properties of the different solids.

Material STI STI650 Olivine

Composition (db,wt.%) C: 44.63 C: 84.47 MgO: 57.5–50.0
H: 6.37 H: 2.75 SiO2: 39.0–42.0
O: 45.24 O: 7.39 CaO: max 0.4
Ash: 0.2 Ash: 5.39 Fe2O3: 8.0–10.5

Chemical formula CH1.71O0.76 CH0.39O0.07 (Mg1−xFex)2SiO4

d32 (�m) – – 264
Apparent density �a (kg m−3) 718 ± 24 212 ± 32 2965 ± 20
True density �t,c (kg m−3) 1362.5 ± 1 1589.4 ± 5 3265 ± 2
Solid porosity εp (–) 0.47 0.87 0.09
Umf (850 ◦C) (cm s−1) – – 5.8

db: dry basis.
et al., 2002; Nandi and Onischak, 1985; Bhat et al., 2001; Groeneveld

and van Swaaij, 1980; Zhai et al., 2015; Barrio et al., 2001; Kojima et al.,

1993; Hémati and Laguerie, 1988), the Shrinking Core Model (SCM)

(Le and Kolaczkowski, 2015; Zhai et al., 2015) and the Random Pore

Model (RPM) (Paviet et al., 2007; Ahmed and Gupta, 2011; Woodruff and

Weimer, 2013). The Volumetric Model (Dutta and Wen, 1977) assumes

a homogeneous reaction throughout the particle while the Shrinking

Core Model (Wen, 1968) considers a reaction front onto the char sur-

face which moves within the particle. These two models (i.e. VM and

SCM) describe a decrease in the reaction rate with conversion. The Ran-

dom Pore Model developed by Bathia and Perlmutter (1980) attempts

to describe the change in the pores structure during char conversion.

This model introduces a structural parameter by considering that the

char particle is porous and the reaction occurs at the internal surface

of the pores. As the reaction proceeds, a random overlapping of the

pores occurs which can increase or reduce the reactive surface area.

This model was largely used for char gasification due to its ability to

predict a bell-shape relationship between the reaction rate and the con-

version rate which is often observed during gasification experiments.

Finally, some authors (Kramb et al., 2014; Nilsson et al., 2012; Septien

et al., 2015) also represented the structure function with an empirical

expression valid for a specific range of operating conditions.

The present study investigates the isothermal kinetic of beech char

gasification with steam in a fluidized bed reactor and at atmospheric

pressure. This char was obtained from fast pyrolysis of beech stick at

650 ◦C in an annex fluidized bed reactor. The paper systematically stud-

ies the influence of temperature between 700 and 850 ◦C, steam partial
pressure between 0.3 and 0.7 bars and hydrogen partial pressure in the

range of 0.1–0.25 bars on both the production of non-condensable gases
and on the gasification rate. The effect of hydrogen partial pressure on

the CH4 production is also examined in order to highlight the poten-

tial interactions between carbon and H2 during the steam gasification.

Finally, a kinetic model is also proposed to represent the experimental

data.

2. Experimental section

2.1. Char preparation

The biomass is a cylindrical beech stick (D = 6 mm, L = 10 mm).
A picture of the raw materials is given in Fig. 1(A). The prox-
imate analysis of this fuel was carried out following the
standard test method for chemical analysis of wood charcoal
D 1762-84. The results are given in Table 2.

The pyrolysis procedure can be found in detail in a previous
work (Morin et al., 2016). Briefly, beech sticks were pyrolyzed in
an annex batch fluidized bed reactor at 650 ◦C with a heating
rate of 18 ◦C/s. The pyrolysis was conducted at atmospheric
pressure under an inert atmosphere of nitrogen. After reach-
ing the temperature of 650 ◦C and a steady state regime in the
reactor, about 20 g of biomass were introduced in the hot flu-
idized bed of sand particles. This step was repeated several
times to produce a sufficient amount of char. After the pyrol-
ysis, the produced chars (called STI650) were cooled under a

flow of nitrogen before being recovered the day after by sieving.
A picture of the obtained char is given in Fig. 1(B).





cha
Fig. 2 – Experimental setup used for the

the reactor. These tests are performed for temperatures
between 700 and 850 ◦C and a pure flow of nitrogen.

• The set of experiments “Dev 1 G 2” carries out the thermal
degradation of char under pure N2 followed by the steam
gasification of the carbonaceous residue at three different
temperatures (700, 750 and 800 ◦C) and a constant steam
partial pressure of 0.3 bar.

• Tests “Hyd 3” investigate the effect of hydrogen partial pres-
sure between 0.1 and 0.2 bars in a gas mixture of H2 and N2

at 850 ◦C on the CH4 production and the char conversion.
• Experiments “G 4” study the effect of temperature between

700 and 850 ◦C on the steam gasification of STI650 for a
constant steam partial pressure of 0.3 bars.

• The set of tests “G 5” investigates the effect of steam partial
pressure between 0.1 and 0.7 bars on the steam gasification
of STI650 at 850 ◦C.

• Finally, experiments “G 6” study the influence of hydrogen
partial pressure between 0.1 and 0.25 bars during the steam
gasification of STI650 at 850 ◦C and a constant steam partial
pressure of 0.3 bars.
For each experiment, the composition of the non-
condensable gases was analyzed as a function of time from the
r gasification in a fluidized bed reactor.

continuous micro GC analyses. The nitrogen is not involved
during the gasification reaction and is only used as an inert
gas for mass balances. The total molar flow rate at the reactor
outlet is given by:

ṅt (t) = ṅN2

xN2 (t)
(8)

where ṅt (t) is the instantaneous total molar flow rate
(mol min−1), ṅN2 represents the molar flow rate of nitrogen
at the entrance of the reactor (mol min−1) and xN2 (t) is the
measured molar fraction of nitrogen at the reactor outlet.

The molar flow rate of each component is calculated as
follows:

ṅi (t) = xi (t) · ṅt (t) (9)

where ṅi (t) and xi (t) are the instantaneous molar flow rate
and molar fraction of component i, respectively. During the
char devolatilization and gasification, H2, CO, CO2, CH4 and
traces of C2Hx were detected by the gas analyzer. It is impor-

tant to note that no tars (i.e. benzene, toluene, phenol and
naphthalene) were detected during any experiments.



Fig. 3 – (A) Molar percentages of the non-condensable gases versus time, (B) total molar flow rates versus time, (experiment
G
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4c, ṅN2 = 0.155 mol min−1).

The cumulative amount of each component produced dur-
ng a time “t” is defined according to the following expression:

i (t) =
∫

t=0

t

ṅi (t) dt (10)

here ni (t) is the cumulative amount of component i during
he time t.

The carbon molar flow rate is calculated according to the
ollowing expression:

˙ carbon (t) =
Ntot∑
i=1

ṅi (t) · �i (11)

here ṅcarbon (t) is the carbon molar flow rate (mol.min−1) and

i represents the number of carbons in the component i.
The carbon conversion rate is determined by:

c =
∫

t=0

t
ṅcarbon (t) dt

(ncarbon)char

(12)

here (ncarbon)char is the amount of introduced carbon in the
eactor (mol).

The instantaneous gasification rate is obtained using the
quation:

dXc

dt
= ṅcarbon (t)

(ncarbon)char

(13)

Finally, the apparent reaction rate is defined as the deriva-
ive of the evolution of the carbon conversion rate versus time,
or a conversion rate of 40%:

app = dXc

dt
|
Xc=0.4

(14)

.2.4. Experimental measurement errors
xperimental errors were estimated from the gas analyzer cal-
bration and the accuracy of both the gas mass flowmeters and
he char mass introduced in the reactor during the combus-
ion. For each gas analysis, the measured values are within an
ccuracy of 1% with a confidence level of 95%. Consequently,
n experimental error of 1% was taken for components quan-
ification. The mass flowmeters accuracy was fixed to 0.5% of

ull scale. Regarding the char mass measurement accuracy, the
ystematic constant error is equal to 0.1 g. Hence, in the fol-
lowing, from these three systematic experimental errors, the
error bars are introduced into the experimental data.

Besides, some experiments (i.e. gasification at 850 ◦C with
PH2O = 0.3 bars and PH2 = 0 bar) have been repeated with a
time lapse of 5 months. The results showed a very good
repeatability of the replicate experimental measurements.

3. Results & discussions

3.1. Typical experiment

In this section, the results of a typical experiment (i.e. exper-
iment G 4c) are presented and the different findings can be
generalized to any other tests.

The results of the steam gasification of STI650 at 800 ◦C and
a steam partial pressure of 0.3 bars (experiment G 4c) are given
in Fig. 3. Fig. 3(A) presents the molar percentages variation of
the produced gases H2, CO, CO2 and CH4 with time. The nitro-
gen molar percentage is not shown since it only acts as an
inert gas. It can be seen that the molar percentage of each
component substantially increases before reaching a maxi-
mum followed by a gradual decrease to zero. Fig. 3 (B) shows
the total molar flow rate of the produced gas. Therefore, the
combination of results given in Fig. 3(A) and (B) enables the
partial molar flow rates of each component to be calculated.

It can also be observed that H2 is the larger produced com-
ponent during the steam gasification of char. A large amount
of CO and CO2 is also produced while a non-negligible amount
of CH4 is formed.

Fig. 4 shows the instantaneous gasification rate (Eq. (13))
versus carbon conversion rate during the experiment G 4c.
The curve profile emphasizes that the reaction rate first
increases, reaches a maximum (for Xc = 0.1) followed by a
decrease to zero. Besides, the decrease in the reaction rate
occurs in two stages: from Xc = 0.1 to Xc = 0.9, it is related to the
char consumption which progressively decreases the forma-
tion of volatile products; for Xc higher than 0.9, it corresponds
to the end of the reaction.

Three different points of view can be found in the litera-
ture to explain the maximum reaction rate which is frequently
observed during the char gasification (Paviet et al., 2007;
Ahmed and Gupta, 2011; Kramb et al., 2014; Nilsson et al., 2012;
Woodruff and Weimer, 2013):

• First, some authors (Paviet et al., 2007; Ahmed and Gupta,

2011; Kramb et al., 2014; Nilsson et al., 2012; Woodruff and
Weimer, 2013) attributed the maximum reaction rate to a



Fig. 4 – Instantaneous gasification rate versus carbon
conversion rate, (experiment G 4c).
change of the char reactive surface during the gasification.
Hence, they represent the gasification rate using the Ran-
dom Pore Model (RPM) proposed by Bathia and Perlmutter
(1980). This model considers two competing effects of struc-
tural change in the porous char particle. As the reaction
proceeds, the char reactive surface area may either increase
related to pores growth or decrease due to pores intersection
and coalescence. The gasification rate reaches a maximum
when the second effect overshadows the first effect.

• For isothermal gasification tests in TGA or fixed bed reac-
tor, most of the authors (Barrio et al., 2001) employed a
switching gas method which consists in heating the reac-
tor under an inert atmosphere to the desired temperature
before switching the gas from inert to reactive to perform
the char gasification. In this case, the reaction rate profile
at the beginning of the experiment is attributed to the low
gasification agent content in the reactive atmosphere. For
example, in a previous work on char combustion (Morin
et al., 2017), it was found that it requires about 25 min for
the reactive gas to completely replace the inert gas just after
switching the gas from inert to reactive in the TGA. This
time leads to a non-constant steam partial pressure at the
beginning of the gasification which is responsible for the
maximum gasification rate.

• Finally, for char gasification experiments in which the
produced gases are continuously sampled and analyzed
(Nilsson et al., 2014, 2012), the maximum reaction rate may
be attributed to the gas mixing in the sampling lines. This
phenomenon lowers the amount of detected gas and affects
the kinetic of char gasification. This effect can be corrected
using several continuous flow stirred-tank reactors in series
as indicated in Section 2.2.2.

In our experiments, since the char is directly introduced
in the reactor once a steady state is reached (i.e. a constant
temperature and steam partial pressure), the strong increase
in the instantaneous gasification rate to reach a maximum
may be the combination of two different phenomena: the gas
mixing in the sampling lines as well as the thermal degrada-
tion (devolatilization) of char just after its introduction in the
reactor. This char devolatilization step produces a significant
amount of H2, CO, CO2 and CH4 at the initial stage of the char
gasification.

Fig. 5(A) shows the molar percentages of H2, CO, CO2
and CH4 without considering the presence of nitrogen in the
product gas versus the carbon conversion rate. The molar per-
centages of CO + CO2 is also presented in this figure. Three
zones can be emphasized:

(1) For Xc < 0.1, the molar percentages of H2, CO and CO2

strongly increase. This initial raise is associated with the
char devolatilization step which produces large amounts
of non-condensable gases.

(2) For a carbon conversion rate between 0.1 and 0.95, the
molar percentages reach a constant value. This plateau
is attributed to the effect of both the steam gasification
reaction (Reaction (I)) and the Water-Gas-Shift reaction
(Reaction (II)).

(3) For Xc > 0.95, the molar percentages gradually decrease to
zero which is related to the end of the char gasification.

The steps (1) and (2) can also be highlighted by introducing
a parameter 	 which is defined according to the molar flow
rates of H2, CO and CO2 as follows:

	 = ṅH2

ṅCO + 2 · ṅCO2

(15)

This parameter emphasizes the effect of both the steam
gasification and the WGS reactions during the experiment
G 4c. When 	 = 1, it can be assumed that both Reactions (I) and
(II) are predominant. This result is developed in Appendix A.

Fig. 5(B) shows the profile of the parameter 	 versus the
conversion rate. It can be seen that 	 strongly increases for
Xc < 0.15 before reaching a constant value equal to 1. This
confirms that, during the char gasification with steam, the
reaction occurs in two stages: the char devolatilization fol-
lowed by the steam gasification according to Reactions (I) and
(II). Besides, from these results, it can be assumed that the
Boudouard reaction (i.e. Reaction (III)) can be neglected during
steam gasification experiments.

Fig. 5(A) also shows that a non-negligible amount of CH4

is produced. The molar percentage of this component first
substantially increases before progressively decreasing. The
origin of its formation is discussed in Section 3.3.

3.1.1. Effect of char devolatilization on the steam
gasification
A second set of tests (i.e. experiments Dev 1 G 2) was
performed in order to emphasize the effect of the char
devolatilization step during the steam gasification. The exper-
iments include two stages: the devolatilization of STI650 under
pure nitrogen and the successive steam gasification of the
residue from the devolatilization step. The experimental pro-
tocol consists in heating the fluidized bed to 800 ◦C under
an inert atmosphere of nitrogen. Once a steady state regime
is reached, the char is introduced in the reactor. The char
devolatilization takes place for about 40 min. The instanta-
neous reaction rate of the devolatilization step is plotted
versus time on the left side of Fig. 6. After the char devolatiliza-
tion, the gas is switched from nitrogen to a mixture of N2/H2O
(PH2O = 0.3 bars) to perform the steam gasification. The com-
parison between the instantaneous gasification rate obtained
after the char devolatilization step and the one obtained from
direct steam gasification of STI650 is also presented in Fig. 6.
For better comparison of the results, the beginning of the
direct steam gasification has been shifted to 40 min. A strong
difference in reactivity is observed at the beginning of the

steam gasification. Indeed, between 40 and 60 min in Fig. 6,
the instantaneous reaction rate is higher for the direct gasi-



Fig. 5 – (A) Molar percentages of the non-condensable gases without considering nitrogen in the product gas, (B) parameter
� versus conversion rate, (experiment G 4c).

Fig. 6 – Instantaneous reaction rate versus time, ( ) char
devolatilization followed by steam gasification (experiment
Dev 1c G 2), ( ) direct steam gasification (experiment G 4c),
(
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Fig. 7 – Cumulative amount of the different components
produced during the devolatilization of STI650, (experiment
Dev 1c).
) intrinsic gasification rate (experiment Dev 1c G 2).

cation of STI650 compared to that of the gasification of the
arbonaceous residue obtained after the devolatilization step.
esides, the presence of steam seems to have an effect on the
har devolatilization step as the strong increase in the instan-
aneous gasification rate during the direct steam gasification
s more acute than the one of devolatilization.

.1.2. Effect of the transfer function on the steam
asification
ig. 6 also presents experimental results of the char steam
asification after the devolatilization step corrected by the
ransfer function of the sampling gas system ( ). It is observed
hat the strong increase in the instantaneous reaction rate is
ignificantly attenuated by removing the effect of gas mixing
n the sampling lines. After 40 min of reaction, no differences
re observed between the two curves which indicate that the
ransfer function has a strong influence at the beginning of
he char gasification.

.2. Effect of temperature on char devolatilization step
experiments Dev 1)

n a previous work (Morin et al., 2016), it was shown that STI650
s a complex solid residue which contains both aromatic
nd amorphous carbon. The amorphous carbon represents
he non-aromatic carbons (i.e. aliphatic, carbonyl, methoxyl

roups) trapped in the char macromolecules. Hence, during
rapid heat treatment, the amorphous carbon is released
as volatile products (H2, CO, CO2 and CH4). This leads to
a change in the physicochemical properties of char which
becomes more aromatic with a higher carbon content. This
char devolatilization step was also reported by some authors
in the literature (Klinghoffer et al., 2012). For instance, in
the case of char devolatilization in TGA under pure nitro-
gen, Klinghoffer et al. (2012) observed a mass loss which was
attributed to the loss of volatile products that are still present
in the char.

In this work, the char devolatilization step was highlighted
by analyzing the formation of non-condensable gases dur-
ing the insertion of STI650 in the reactor in the presence of
pure nitrogen. Fig. 7 presents the cumulative amount of the
non-condensable gases produced during the char devolatiliza-
tion at 800 ◦C (experiment Dev 1c). It can be seen that a
non-negligible amount of H2, CO, CO2 and CH4 is produced.
These gases are the results of the decomposition of the
carbon–oxygen and carbon–hydrogen matrix to form CO, CO2

and CH4. Besides, it was found that H2 is the higher produced
component followed by CO, CO2 and CH4.

Fig. 8(A) highlights that an increase in the devolatilization
temperature leads to a raise of the cumulative amount of H2

in the product gas. This phenomenon was also observed for
CO and CH4. However, it was found that the temperature has
no influence on the amount of CO2. The influence of tem-
perature on the char conversion rate is shown in Fig. 8(B).
The devolatilization step lasts approximately 40 min and a

conversion less than 5% is reached. Moreover, a higher tem-
perature yields to a higher partial conversion of the char. From



Fig. 8 – (A) Effect of the temperature on the cumulative amount of hydrogen in the product gas, (B) effect of the temperature
on the carbon conversion rate, (experiments Dev 1).

Fig. 9 – Effect of hydrogen partial pressure on (A) the cumulative amount of CH4 (B) the molar flow rate of CH4 (experiments
Devi 1d, Hyd 3 and G 4d).

Table 5 – Effect of temperature on the chemical formula
of the residual carbonaceous solid obtained after the
devolatilization of STI650.

Temperature (◦C) CHmOp

STI650 CH0.39O0.07

700 CH0.36O0.05

750 CH0.33O0.05

800 CH0.31O0.04
850 CH0.30O0.03

the mass balance on carbon, hydrogen and oxygen, the effect
of temperature on the char composition was evaluated. The
results are presented in Table 5 which highlights that a higher
devolatilization temperature leads to: a higher partial degra-
dation of char, a lower amount of hydrogen and oxygen in the
residual carbonaceous solid.

3.3. Interactions between char and hydrogen
(experiments Hyd 3)

During the steam gasification of STI650, a non-negligible
amount of methane is detected for each temperature and
steam partial pressure. In the literature, the production of
CH4 during the char gasification at atmospheric pressure is
not well-understood yet and is usually neglected (Blackwood
and McGrory, 1958). Indeed, the reaction between carbon and
hydrogen is not thermodynamically favored at low pressures
and high temperatures. Therefore, it may be questionable

whether this reaction occurs during the steam gasification
and is responsible for the CH4 production. In the literature,
it was mainly investigated at elevated pressures (Liu et al.,
2017) while a very few studies gave data at atmospheric pres-
sure (González et al., 2002). Bibliographic works also showed
that alkali and alkaline earth metals as well as Fe and Ni may
catalyze the reaction between char and H2 (Liu et al., 2017;
González et al., 2002).

This section aims to establish the effect of hydrogen partial
pressure on the char-hydrogen interactions and the CH4 pro-
duction. A set of experiments was performed in the fluidized
bed reactor (experiments Hyd 3) at 850 ◦C in a gas mixture of
H2 and N2 and at atmospheric pressure. The effect of hydro-
gen partial pressure was investigated up to 0.2 bars. Apart from
the char devolatilization step (i.e. during the first 40 min of the
reaction), CH4 was the main produced gas detected during the
experiments.

Fig. 9 shows both the cumulative amount and the molar
flow rate of CH4 versus time for various hydrogen partial pres-
sures. Results from the char steam gasification for a steam
partial pressure of 0.3 bars (experiment G 4d) are also pre-
sented in this figure.

Several observations can be made:

• For each hydrogen partial pressure, the cumulative amount
of methane continuously increases during the experiment
(Fig. 9(A)) which highlights that the reaction between char
and hydrogen is very low. Indeed, it was also found that,
in the case of a hydrogen partial pressure equal to 0.2 bars,

a conversion rate of about 11% is obtained after 700 min of
reaction.



Fig. 10 – Effect of temperature on the (A) conversion rate versus time, (B) instantaneous gasification rate versus conversion
rate, (experiments G 4).

Fig. 11 – Logarithm of the apparent reaction rate versus 1/T
during the char gasification, (experiments G 4).

•

•
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2005; Paviet et al., 2007; Groeneveld and van Swaaij, 1980;

F
c

The formation of CH4 in the product gas increases by raising
the hydrogen partial pressure (Fig. 9(A)).
The molar flow rate of CH4 substantially increases at
the beginning of the reaction before gradually decreas-
ing (Fig. 9(B)). This strong peak is the results of the char
devolatilization just after its introduction in the reactor.
This devolatilization step is much faster than the reaction
between char and hydrogen.
During the steam gasification of char, both the cumulative
amount and the molar flow rate of CH4 are higher compared

to those obtained during the char devolatilization. These

ig. 12 – Effect of steam partial pressure on the (A) conversion ra
onversion rate, (experiments G 5).
results can be explained by the interactions at the solid sur-
face between the hydrogen produced during the gasification
and the reactive char.

• During the steam gasification of char, for carbon conversion
rates less than 95% (i.e. a reaction time less than 75 min),
the cumulative amount of CH4 is slightly higher than the
one obtained with a hydrogen partial pressure of 0.2 bars.
Therefore, it seems that the produced hydrogen from the
char gasification gives rise to more interactions at the char
surface and a higher CH4 production.

Consequently, these results showed that, despite the ther-
modynamic limitations of char-H2 reaction at atmospheric
pressure, it can be assumed that interactions between carbon
and hydrogen occur in the reactor. The reaction is very slow
and may explain the formation of methane during the steam
gasification of char.

3.4. Direct steam gasification

3.4.1. Effect of temperature (experiment G 4)
Fig. 10(A) presents the effect of gasification temperature
between 700 and 850 ◦C on the conversion rate versus time
under a constant steam partial pressure of 0.3 bars. As
the temperature is increased, the steam gasification of char
becomes faster. This result is well-known in the literature
(Nandi and Onischak, 1985; Bhat et al., 2001; Klose and Wölki,
Ahmed and Gupta, 2011; Nilsson et al., 2014, 2012; Le and

te versus time, (B) instantaneous gasification rate versus



Fig. 13 – Logarithm of the apparent reaction rate versus
logarithm of steam partial pressure at 850 ◦C, (experiments

G 5).

Kolaczkowski, 2015; Kramb et al., 2014; Zhai et al., 2015; Barrio
et al., 2001; Kojima et al., 1993; Hawley et al., 1983; Hémati and
Laguerie, 1988; Woodruff and Weimer, 2013). For instance, it
requires 29.3 min, 39.5 min, 78.8 min and 161.2 min to reach a
conversion rate of 0.4, for temperatures of 850 ◦C, 800 ◦C, 750 ◦C
and 700 ◦C, respectively.

Fig. 10(B) illustrates the effect of temperature on the
instantaneous gasification rate versus conversion. For each
experiment, the profile curves increase, reach a maximum
before gradually decreasing to zero. As mentioned in Section
3.1, this profile is the result of both the gas mixing in the
sampling lines and the char devolatilization step.

Fig. 11 shows that gasification experiments are very well
correlated to a linear expression between the logarithm of
apparent reaction rate (Eq. (14)) and 1/T. This indicates that the
apparent reaction rate can be well represented by an Arrhe-
nius law. From Eqs. (1) and (2) and the slope of the straight line,
it is possible to determine the activation energy without con-
sidering any reaction models. Its value is equal to 137 kJ mol−1

and is in the same order of magnitude than previous works in
the literature (Ea comprised between 96 and 275 kJ mol−1, see
Table 1).

3.4.2. Effect of steam partial pressure (experiments G 5)
The influence of steam partial pressure was conducted
between 0.1 and 0.7 bars at 850 ◦C. The results show that a raise
of the steam partial pressure leads to a higher gasification rate
and a faster char conversion (Fig. 12).

Fig. 13 presents the logarithm of apparent reaction rate
versus the logarithm of steam partial pressure at 850 ◦C. Again,
considering Eqs. (1) and (2) and from the slope of the straight
line, the reaction order with respect to steam can be deter-
mined without considering any reaction models. Its value is
equal to 0.66 which is close to values obtained in the literature
(n comprised between 0.33 to 0.75, see Table 1).

3.4.3. Effect of hydrogen partial pressure (experiments
G 6)
This section investigates the effect of hydrogen partial pres-
sure between 0.1 and 0.25 bars during the steam gasification
of char at 850 ◦C with a constant steam partial pressure of 0.3
bars (experiments G 6).

Fig. 14(A) presents the effect of hydrogen partial pressure
on the instantaneous gasification rate versus conversion rate

during the steam gasification of char (experiments G 6). It can
be seen that the presence of hydrogen inhibits the reaction
of char gasification with steam. The effect of H2 was found
to be significant for hydrogen partial pressures higher than
0.15 bars. Besides, the results have shown that the produced
molar flow rates of H2 and CO2 decrease by raising the hydro-
gen partial pressure. This is due to Reactions (I) and (II) being
favored in the indirect direction. On the contrary, the amount
of CH4 strongly increases with the hydrogen partial pressure.
As mentioned in Section 3.3, an increase in the hydrogen par-
tial pressure promotes the interactions between char and H2

and favors the CH4 production. Finally, the molar flow rate
of CO was found to increase by raising the hydrogen partial
pressure up to 0.15 bars and decrease for higher pressures. It is
attributed to the competition between Reactions (I)–(III). These
results are highlighted in Fig. 14 (B) which plots the molar flow
rates of H2, CO, CO2 and CH4 versus hydrogen partial pressure
for a given conversion rate of 0.4. Moreover, it seems that the
hydrogen partial pressure up to 0.15 bars has a higher effect on
the WGS reaction while for higher partial pressures, it mainly
influence the steam gasification of carbon.

In the literature, most of the authors consider Eq. (4) to rep-
resent the hydrogen inhibition effect in the kinetic modelling.
This formulation takes into account the effect of both steam
and hydrogen on the kinetic of char gasification. However, in
this work, the hydrogen inhibition could not be represented
using Eq. (4). Therefore, an empiric relation was considered.
Indeed, it was found that the ratio of the apparent reaction
rate for various hydrogen partial pressures and the one with
PH2 = 0 can be well-correlated according to:

g (PH2 ) = Rapp (PH2 )
Rapp (PH2 = 0)

= 1.00 ·
(

PH2O

PH2O + PH2

)0.74

(16)

where g (PH2 ) is a function which represents the hydrogen
inhibition effect, Rapp (PH2 ) is the apparent reaction rate for
various hydrogen partial pressures and PH2O = 0.3 bars, and
Rapp (PH2 = 0) is the apparent reaction rate for various steam
partial pressures and PH2 = 0 bar.

3.5. Kinetic modelling

3.5.1. Kinetic models
As Reactions (I) and (II) were found to be predominant dur-
ing the steam gasification of char, a global kinetic model was
used to represent experimental results. For the operating con-
ditions considered in this work (i.e. temperature, PH2O, PH2 ), the
Shrinking Core Model (SCM) was found to well-represent the
structure function f (X) and was used to estimate the kinetic
parameters. This model is presented below.

The SCM (Wen, 1968) assumes that the reaction takes
place at the outer surface of a non-porous particle with an
initial radius R0 in isothermal conditions. As the reaction
proceeds, the surface moves into the interior of the solid leav-
ing behind an inert ash. By considering a cylindrical particle
and a pseudo-steady-state regime, the reaction rate can be
expressed as:

dX

dt
= 2Mc

R0�t,c (1 − εp) xc
ASCM · exp

(
− Ea

RTp

)
· h (PH2O,s)

·g (PH2 ) · (1 − X)
1⁄2 (17)

where Mc is the molar weight of carbon (kg mol−1), �t,c is the

true density of the char (kg m−3), xc is the mass fraction of
carbon in the char particle and ASCM is the pre-exponential



Fig. 14 – Effect of hydrogen partial pressure on (A) the gasification rate versus conversion rate, (B) the molar flow rate of H2,
C n conversion rate of 0.4, (experiments G 6).
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Table 6 – Kinetic parameters obtained with the
Shrinking Core Model by solving the differential
equations system Eq. (19).

Char type ASCM

(mol m−2 Pa−n s−1)
Ea (J/mol) n (–) min

x
‖f (x) ‖2

2

STI650 5.86 122880 0.62 0.2427
O, CO2 and CH4 versus hydrogen partial pressure for a give

actor (mol m−2 Pa−n s−1), Tp is the particle temperature which
s assumed to be equal to that in the bulk.

Besides, the two empirical functions (h (PH2O,s) = Pn
H2O,s

nd g (PH2 ) given in Eq. (16)) were considered. To determine
he kinetic parameters (i.e. pre-exponential factor, activation
nergy and reaction order with respect to steam), most of the
uthors (Irfan et al., 2011) in the literature use a graphical res-
lution by integrating Eq. (17) and plotting the left hand side
ersus time:

− (1 − X)
1⁄2 = KSCM · t (18)

From the slope of the straight line (Eq. (18)), the kinetic
arameters can be determined for various combustion tem-
eratures and steam partial pressures.

.5.2. Modelling
o obtain the kinetic parameters, a differential equations sys-
em was defined which takes into consideration both the effect
f gas mixing (i.e. 5 CSTR in series) and the intrinsic kinetic of
har gasification (SCM). It is given by the following expression:

Kinetic Model {dXint

dt
= 2Mc

R0�t,c(1 − εp)Xc
· (

PH2O

PH2O + PH2

)
0.74

ASCM · exp(
Ea

RTp
) · Pn

H2O · (1 − Xint)
1/2for the SCM

Effect of gas mixing{
dX1

dt
= 1

�CSTR
· (Xint − X1)

dX5

dt
= 1

�CSTR
· (X4 − X5)

(19)

The kinetic parameters ASCM, Ea and n are estimated by
olving Eq. (19) using an explicit Runge Kutta (4,5) formula
nd applying the nonlinear least-squares curve fitting prob-
em which consists in minimizing the sum of the difference
etween each experimental data and the one corresponding
o the model for all temperatures and steam partial pressures
ccording to the following expression:

in
x

‖f (x) ‖2
2 = min

x

(
N∑

i=1

fi(x)2

)
(20)

here fi (x) = Xexp − X5, x are the kinetic parameters, N corre-
ponds to the number of experimental data.

In the case of the Shrinking Core Model, the values of pre-

xponential factor, activation energy and reaction order with
espect to steam are given in Table 6. It can be seen that the
activation energy is similar to that obtained in Section 3.4.1. Its
value is also in good agreement with those obtained in the lit-
erature (see Table 1). The comparisons between experimental
data and results obtained from the SCM including the mix-
ing of gas in the sampling lines are given in Figs. 10 and 12. A
good agreement is found. The small interval observed may be
attributed to the effect of the devolatilization step. Fig. 15(A)
also presents the comparison between the SCM and data from
experiments G 6. Finally, Fig. 15(B) shows the apparent reac-
tion rate for (Xc = 0.5) from the literature and the one proposed
in this work. In this figure, the shade area corresponds to 80%
of the kinetic model from bibliographic studies. It can be seen
that, our kinetic model is in very good agreement compared
to those in the literature.

4. Conclusion

This paper presented experimental data on the kinetic of char
gasification with steam in a fluidized bed reactor. Experiments
were carried out for temperatures in the range of 700–850 ◦C
and steam partial pressures between 0.1 and 0.7 bars. The
results showed that the char gasification with steam can be
divided into two steps:

• A char devolatilization just after its introduction in the reac-
tor. This step corresponds to a partial degradation of char to
form non-condensable products. It depends on the temper-
ature, the char nature and the reactive atmosphere in the
reactor. The devolatilization leads to a char conversion less
than 5%.

• The second step is the char gasification with steam. It was
found that both the reaction between carbon and steam as
well as the Water–Gas-Shift reaction are predominant.

The effect of hydrogen partial pressure on the CH4 pro-
duction and on the steam gasification was also investigated
at atmospheric pressure. First, it was found that interactions

between char and hydrogen occur in the reactor. This reac-
tion is very slow and leads to the formation of CH4. Besides,



Fig. 15 – (A) Comparison between the SCM obtained from Eq. (19) and experimental data, (B) comparison between apparent
reaction rates from literature and the one obtained in this work, Paviet et al. (2007), Groeneveld and van Swaaij (1980),
Nilsson et al. (2014, 2012), Kramb et al. (2014), Barrio et al. (2001), Kojima et al. (1993), Klose and Wölki (2005), Hémati and

(2015
Laguerie (1988), Woodruff and Weimer (2013), Septien et al.

a higher hydrogen partial pressure leads to a higher methane
production. The presence of hydrogen also inhibits the reac-
tion of gasification.

Finally, a global kinetic model was used to represent the
experimental steam gasification results. The kinetic mod-
elling includes both the transfer function of the sampling gas
lines and the inhibiting effect of hydrogen. The Shrinking Core
Model was found to be in good agreement with experimental
data. The value of activation energy was equal to 123 kJ/mol
while the reaction order with respect to steam was 0.62.
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Appendix A.

Ratio �

The two following reaction are considered:

CHxOy + (1 − y) H2O → CO +
(

1 − y + x

2

)
H2 (VII)

CO + H2O → CO2 + H2 (II)

The rate of Reactions (VII) and (II) are given by r1 and r2,
respectively. The molar flow rates of CO, CO2 and H2 are then
calculated by the following expressions:

ṅCO = r1 − r2 (21)

ṅCO2 = r2 (22)

ṅH2 =
(

1 − y + x

2

)
r1 + r2 (23)

By combining Eqs. (21)–(23), we obtain:
ṅH2 =
(

1 − y + x

2

)
ṅCO + ṅCO2

(
2 − y + x

2

)
(24)
).

Finally, for x = y = 0, Eq. (24) becomes:

ṅH2

ṅCO + 2 · ṅCO2

= 1 (25)
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