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A Near-Optimal Axiomatisation of ZX-Calculus for Pure
Qubit Quantum Mechanics

Renaud Vilmart
renaud.vilmart@loria.fr

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Abstract. Recent developments in the ZX-Calculus have resulted in complete axiomatisa-
tions first for an approximately universal restriction of the language, and then for the whole
language. The main drawbacks were that the axioms that were added to achieve completeness
were numerous, tedious to manipulate and lacked a physical interpretation.
We present in this paper two complete axiomatisations for the general ZX-Calculus, that
we believe are optimal, in that all their equations are necessary and moreover have a nice
physical interpretation.

1 Introduction

The ZX-Calculus is a powerful graphical language for quantum computing and reasoning [7]. The
objects manipulated are open graphs, also called diagrams, that represent quantum evolutions
through the standard interpretation. One of the most important features of the language is that the
graphs can be considered unoriented, that is, any two isomorphic graphs will yield the same result.
Isomorphism between diagrams are not the only transformations that preserve the interpretation
though, so the ZX-Calculus comes equipped with a set of axioms: transformations between diagrams
that, when applied locally, preserve the interpretation.

The language is universal: any 2n × 2m matrix can be represented by a ZX-diagram with
respect to the standard interpretation. Hence, it has already been used in numerous applications
[8], ranging from measurement-based quantum computing [11,16,22] and quantum codes [5,6,13,14],
to protocols [20] and foundations [4,12]. The language itself can be manipulated through tools such
as Quantomatic [26] or PYZX [27].

A broader use of the ZX-Calculus was limited though, because of a question that remained open
for a while: completeness. The language would be complete if, for any two diagrams that represent
the same quantum evolution, they could be transformed into one another by mere application of the
axioms. The question has been answered for gradually more expressive restrictions of the language.
In 2014, complete axiomatisations were provided for the stabiliser [2] and the real stabiliser [17],
then for the one-qubit Clifford+T case [3]. However, none of these restrictions are approximately
universal. The first complete axiomatisation for an approximately universal restriction – the many-
qubit Clifford+T – was recently provided [23], and soon followed two complete axiomatisations for
the general – universal – ZX-Calculus [19,24].

Up to the one-qubit Clifford+T case, all the axioms provided were natural and had a relevant
interpretation, however, the axiomatisations for (approximately) universal ZX-Calculus introduced
rules that are hard to manipulate, mainly because of their size, and that moreover can not be
naturally justified.

We give in this paper a simpler axiomatisation of the general ZX-Calculus, and prove that it
is complete for the general ZX-Calculus. It is basically composed of the axioms that make the
Clifford – or stabiliser – fragment complete, and of an additional axiom, denoted (EU):
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with a side condition that links the angles on the right to those on the left. In ZX-Calculus, the
green node with angle α represents a rotation of angle α around the Z axis (denoted RZ(α)),



and the red one a rotation around the orthogonal axis, X (denoted RX(α)). This axiom, which
is an application of the Euler angles, essentially gives a normal form for one-qubit unitaries, as
a sequences of rotations around the axes X, Z and X again. This equality between diagrams has
been used in [30] to prove that the then version of ZX-Calculus was not complete, and is part of
the axiomatisation of [10].

To prove that the new axiomatisation is complete, we simply derive the rules of the former
axiomatisation [23]. However, since all the power of “beyond-Clifford” is contained in the rule
(EU), we will end up using it a lot, which would cause a lot of side computation, for the angles on
one side of the rule are not defined from the others in a linear fashion. So to avoid having to go
through all this tedious process, we use another kind of normal form for ZX-diagrams, which is the
graphical version of the singular-value decomposition of a matrix. Hence, instead of showing that
a sound equation is derivable, we will show that we can transform the diagrams on both sides into
a particular form, which is essentially unique.

We also provide a second axiomatisation, which is not very far from the other. Indeed, in the
first, we may notice a rule (HD) that we call the Euler decomposition of Hadamard, which essentially
gives the unitary normal form of the Hadamard gate. The second axiomatisation replaces the rules
(HD) and (EU) by another single rule that unifies them.

In Section 2, we formally introduce the language ZX-Calculus, as well as the two aforemen-
tioned axiomatisations, and we discuss their minimality. In Section 3, we recover a known complete
axiomatisation for the Clifford fragment, hence directly giving us access to already proven lemmas
from it. In Section 4, we introduce the singular-value decompositions of cycle-free 0→ 1 and 1→ 1
ZX-diagrams, and show they are essentially unique. Finally, in Section 5, we use these decomposi-
tions to show the completeness of the axiomatisations for the Clifford+T and for the unrestricted
ZX-Calculus.

2 ZX-Calculus

In this section, we introduce the ZX-diagrams together with a new simple axiomatisation that we
prove complete in the following sections. The definition of the ZX-diagrams and their interpretation
is standard.

2.1 Diagrams and standard interpretation

A ZX-diagram D : k → l with k inputs and l outputs is generated by:

R
(n,m)
Z (α) : n→ m α

· · ·

· · ·

n

m

R
(n,m)
X (α) : n→ m α

· · ·

· · ·

n

m

H : 1→ 1 e : 0→ 0

I : 1→ 1 σ : 2→ 2

ε : 2→ 0 η : 0→ 2

where n,m ∈ N, α ∈ R, and the generator e is the empty diagram.

and the two compositions:

– Spacial Composition: for any D1 : a → b and D2 : c → d, D1 ⊗D2 : a+ c → b+ d consists in
placing D1 and D2 side by side, D2 on the right of D1.

– Sequential Composition: for any D1 : a→ b and D2 : b→ c, D2 ◦D1 : a→ c consists in placing
D1 on the top of D2, connecting the outputs of D1 to the inputs of D2.
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The standard interpretation of the ZX-diagrams associates to any diagram D : n→ m a linear
map JDK : C2n → C2m inductively defined as follows:

J.K

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r z

:=
(
1
) r z

:=

(
1 0
0 1

)
t |

:=
1√
2

(
1 1
1 −1

) r z
:=


1 0 0 0
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0 1 0 0
0 0 0 1
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1
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0
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...
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0 0 · · · 0 eiα
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For any n,m ≥ 0 and α ∈ R:
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◦
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}
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~ ◦
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(
where M⊗0 =

(
1
)

and M⊗k = M ⊗M⊗k−1 for any k ∈ N∗
)
.

To simplify, the red and green nodes will be represented empty when holding a 0 angle:

· · ·
0:=

· · · · · ·

· · ·
and 0:=

· · · · · ·

· · · · · ·

ZX-Diagrams are universal:

∀A ∈ C2n × C2m , ∃D : n→ m, JDK = A

However, it is customary to restrict the language to a countable or finite set of angles. Some
of these restrictions, or fragments, correspond to well-known restrictions of quantum computing:
The π

2 -fragment – the restriction where all the angles are multiples of π
2 – corresponds to Clifford;

while the π
4 -fragment corresponds to Clifford+T. In the following, we may refer to the π

2 -fragment
using the term Clifford, and similarly for the π

4 -fragment.

2.2 Calculus

The diagrammatic representation of a matrix is not unique in the ZX-Calculus. As a consequence
the language comes with a set of axioms. Additionally to the axioms of the language described in
Figure 1, one can:

– bend any wire of a ZX-diagram at will, without changing its semantics. This paradigm – the
so-called Only Connectivity Matters – can be derived from the following axioms:

= = =
= =

= ==
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· ·
· = α+β

β

· · ·
α
· · ·

(S)

· · ·
· · ·

· · ·

· · ·

=
(Ig)

=
(Ir) -π

4

π
4

=
(E)

=
(CP)

=
(B)

= β2

β1

β3

α2

α1

α3

π

γ

(EU)

π
2

π
2

-π
2

=
(HD)

α

· · ·

= α

· · ·

· · ·

· · ·
(H)

Fig. 1. Set of rules ZX for the ZX-Calculus with scalars. The right-hand side of (E) is an empty diagram.

(...) denote zero or more wires, while ( · · · ) denote one or more wires. In rule (EU), β1, β2, β3 and γ can
be determined as follows: x+ := α1+α3

2
, x− := x+ − α3, z := cos

(
α2
2

)
cos

(
x+

)
+ i sin

(
α2
2

)
cos

(
x−

)
and z′ := cos

(
α2
2

)
sin

(
x+

)
− i sin

(
α2
2

)
sin

(
x−

)
, then β1 = arg z + arg z′, β2 = 2 arg

(
i+

∣∣ z
z′

∣∣) , β3 =

arg z − arg z′, γ = x+ − arg(z) + α2−β2
2

where by convention arg(0) := 0 and z′ = 0 =⇒ β2 = 0.

– apply the axioms to sub-diagrams. If ZX ` D1 = D2 then, for any diagram D with the
appropriate number of inputs and outputs:
• ZX ` D1 ◦D = D2 ◦D
• ZX ` D ◦D1 = D ◦D2

• ZX ` D1 ⊗D = D2 ⊗D
• ZX ` D ⊗D1 = D ⊗D2

where ZX ` D1 = D2 means that D1 can be transformed into D2 using the axioms of the
ZX-Calculus.

All the axioms of Figure 1, but (EU), are standard in the ZX-calculus. Roughly speaking: (S)
and (I) correspond to the axiomatisation of orthonormal basis [9], each color being associated with
an orthonormal basis; (CP) and (B) capture the fact that the two bases are strongly complementary
[7]; (H) means that Hadamard can be used to exchange the colours and (HD) means that Hadamard
can be decomposed using π

2 -rotations [15]; (E) states that some particular scalars (ZX-diagram with
no input/output) can vanish, which means that their interpretation is one [25]. In the following we
investigate the properties of (EU).

2.3 The Euler Angles

The rule (EU) is really all about unitaries. Indeed, we have the following result:

Proposition 1. Any one-qubit unitary can be decomposed as eiγRZ(α3)RX(α2)RZ(α1), which can
be represented in ZX as:

α2

α1

α3

π

γ

If the unitary is not diagonal or anti-diagonal (i.e. if α2 6= 0 mod π), then this decomposition can
be made unique if we impose α1 ∈ [0, π)

In 1775, Euler proved what is now called Euler’s rotation theorem [18], stating that there are
several ways to decompose a rotation into several rotations around elementary axes. In quantum
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mechanics, a consequence is that any unitary operator on one qubit can be seen as either a com-
position of rotations around Z, X, Z; or around X, Z, X. On the one hand, the rule (HD) says – in
a distorted, ZX-style way – that the Hadamard gate can be decomposed as a series of rotations,
while on the other hand, the rule (EU) gives the equality between two different decompositions of
the same unitary:

= β2

β1

β3

α2

α1

α3

π

γ

(EU)
where



x+ := α1+α3

2 x− := x+ − α3

z := cos
(
α2

2

)
cos (x+) + i sin

(
α2

2

)
cos (x−)

z′ := cos
(
α2

2

)
sin (x+)− i sin

(
α2

2

)
sin (x−)

β1 = arg z + arg z
β2 = 2 arg

(
i+
∣∣ z
z′

∣∣)
β3 = arg z − arg z′

γ = x+ − arg(z) + α2−β2

2

The angles βi and γ seem to not always be defined. Indeed, arg is not defined in 0, and β2 is not
defined when z′ = 0. By convention, we decide that arg(0) = 0 and that β2 = 0 when z′ = 0.

The first proof of incompleteness [30] relied on an euler decomposition, but adding it to the
set of ZX axioms has been avoided for a while because of its non-linearity. However, a non-linear
axiom is necessary to get the completeness for the general ZX-Calculus [24]. And so, it has been
used in [10] to prove the completeness of the 2-qubit π

4 -fragment of the ZX-Calculus. The rule
(EU) is actually much more powerful than this, for, as we will prove in the following:

Theorem 1. The ZX-Calculus – with axioms in Figure 1 – is complete for pure qubit quantum
mechanics. For any two diagrams D1 and D2 of the ZX-Calculus:

JD1K = JD2K ⇐⇒ ZX ` D1 = D2

2.4 On Minimality

We call an axiomatisation minimal when there is no redundancy in the axioms. Particularly, we
want a proof that none of the axioms are derivable from the others. We conjecture that all the
axioms in Figure 1 are necessary. Indeed, in [1], nearly all the rules for Clifford – i.e. all of the
axioms in Figure 1 except (E) and (EU)– are proven to be necessary, and all arguments stand here:

– (S): It is the only axiom that can transform a node of degree four or higher into a diagram
containing lower-degree nodes

– (Ig) or (Ir): These are the only two axioms that can transform a diagram with nodes connected
to a boundary to a node-free diagram

– (CP): It is the only axiom that can transform a diagram with two connected outputs into one
with two disconnected outputs

– (HD): The necessity of this axiom requires a non-trivial interpretation given in [15,17], and
given again in the Appendix at page 15.

– (H): It is the only axiom that matches red nodes with 4+ degree to green nodes of the same
degree

However, (E) and (EU) can also be proven to be necessary:

– (E): It is the only axiom that can transform a non-empty diagram into an empty one

– (EU): It is the only non-linear axiom

In a nutshell, all the axioms are proven to be necessary, except (B) and one of the (I).

Another aspect of minimality, is whether a rule can be made “simpler” thanks to the others,
according to some measure, be it arbitrary or well-defined. In the previous axiomatisation, we
have two rules that are closely related to how unitaries can be decomposed: (HD) and (EU). It
so happens that we can fuse them into one, of the same size as (EU), and doing so allows us to
simplify the scalar rule:
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Theorem 2.
π
2

π
2

-π
2

=
(HD)

, = β2

β1

β3

α2

α1

α3

π

γ

(EU)
,

-π
4

π
4

=
(E)

 can be replaced by

 = β2

β1

β3

α1

α2

π

γ

(EU’)
,

α
=

(IV)

 where



x+ := α1+α2

2 x− := x+ − α2

z := − sin (x+) + i cos (x−)
z′ := cos (x+)− i sin (x−)
β1 = arg z + arg z
β2 = 2 arg

(
i+
∣∣ z
z′

∣∣)
β3 = arg z − arg z′

γ = x+ − arg(z) + π−β2

2
As a consequence, the axiomatisation given in Figure 2 is complete for universal quantum

mechanics.

· ·
· = α+β

β

· · ·
α
· · ·

(S)

· · ·
· · ·

· · ·

· · ·

=
(Ig)

=
(Ir) α

=
(IV)

=
(CP)

=
(B)

α

· · ·

= α

· · ·

· · ·

· · ·
(H)

= β2

β1

β3

α1

α2

π

γ

(EU’)

Fig. 2. Set of rules ZX’ for the ZX-Calculus with scalars. The right-hand side of (E) is an empty diagram.

(...) denote zero or more wires, while ( · · · ) denote one or more wires. In rule (EU’), β1, β2, β3 and γ
can be determined as follows: x+ := α1+α2

2
, x− := x+ − α2, z := − sin

(
x+

)
+ i cos

(
x−

)
and z′ :=

cos
(
x+

)
−i sin

(
x−

)
, then β1 = arg z+arg z′, β2 = 2 arg

(
i+

∣∣ z
z′

∣∣) , β3 = arg z−arg z′, γ = x+−arg(z)+π−β2
2

where by convention arg(0) := 0 and z′ = 0 =⇒ β2 = 0.

Proof. The proof, done at the end of the appendix, at page 25, consists in showing that all the
rules in Figure 1 are derivable.

On the one hand, this new axiomatisation is one axiom shorter, and (EU’) and (IV) can be
considered simpler than (EU) and (E). On the other hand, the axiomatisation in Figure 1 has
the nice property that it suffices to remove (EU) and (E) to get a complete axiomatisation for the
scalar-free Clifford fragment. Moreover, (EU) is arguably more natural, and has already been given
for instance in [10].

The following of the paper is dedicated to the proof of Theorem 1. Since [19,24] provided us
with two complete axiomatisations for the general ZX-Calculus, all we have to do is prove all the
equations used as axioms in either one of these two axiomatisations. As the axiomatisation in [19]
requires additional generators and more axioms, we will use the axiomatisation of [24] as a reference
which consists in all the axioms of Figure 1 but (EU), together with the following axioms, we call
obsolete, as we are proving in the following that they can be derived using the (EU) rule:
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Obsolete ZX-rules

=
π

α

-α

πα

π(K)

α α+π

=

2α+π

(SUP) βα π

βγ

-γ

α
=

α

απ

β -γ

γ

β(C)

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW)

θ2θ1

α-α β -β

=

γ
-γ

2eiθ3 cos (γ) = eiθ1 cos (α) + eiθ2 cos (β)

π
2

π
4

π
4

θ3

π
4 π

4

(A)

π

=
(Z0)

π

=
(IV’)

Remark 1. The last two equations, (ZO) and (IV’), are actually derivable from (K), (SUP) and the
Clifford axiomatisation [25]. However, they are given here, because together with (S), (I), (CP),
(B), (HD) and (H), they make the Clifford fragment complete, which will be our first milestone.

3 Clifford

As we just said, a first and easy step to do is to show that we can recover the rules that are known
to make the language complete for Clifford [1]. This will allow us to freely use in the following all
the equations of the π

2 -fragment that are sound. We already have most of these rules that make
the ZX-calculus complete for Clifford. We only lack two: the zero (ZO) and the inverse (IV’) rules.
A first very well known lemma we will use for both proofs is the Hopf law:

Lemma 1 (Hopf Law).

ZX ` =

From there, it is fairly easy to recover the inverse rule:

Proposition 2. The inverse rule is derivable:

ZX ` =

To prove the zero rule, we will use another well known equation, called π-commutation, which
is also one of the now obsolete rules.

Proposition 3. The π-commutation is derivable:

ZX `
π

α

=
-α

πα

π
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and, with some effort, the rule (ZO), which only deals with null diagrams, can be recovered:

Proposition 4. The zero rule is derivable:

ZX `
π

=

π

As a result:

Theorem 3. For any diagrams D1, D2 of the π
2 -fragment:

JD1K = JD2K ⇐⇒ ZX ` D1 = D2

From this first milestone, we get all the sound equations in Clifford, but actually also a bit more.
For instance, the following lemmas are known to be derivable from the Clifford axiomatisation (see
Appendix):

Lemma 2.

π

α

π

β
=

π

α+β

Lemma 3.

α
=

4 Singular Value Decompositions

The next step is logically to get the completeness for Clifford+T quantum mechanics, i.e. the
completeness of the π

4 -fragment of the ZX-calculus. Now that we are seeking to prove equations
that are out of Clifford, we will begin to use (EU) to its full potential. However, we would like,
as much as possible, to avoid computing the angles, because, since we work on the problem of
completeness, we need to formally prove the equality between two diagrams, and hence to formally
write what the angles resulting from (EU) are, which becomes tedious after a few number of
application of the rule.

To simplify this task, instead of showing directly that two diagrams can be turned into one
another, we will define a normal form for them, show that it is unique, and show that there is an
algorithm to turn them in this normal form.

First, we show another version of the rule (EU) with dangling branches:

Lemma 4.

α2

α1

α3 =

γ

β2

π
β3

β1

where β1, β2, β3, γ can be determined as in rule (EU).

In a particular case, it implies:

Corollary 1.

α1

α3
=

γ

β2

π
β3

β1

π
2

-π
2

where β1, β2, β3, γ can be determined as in rule (EU) with α2 ← π
2 .

We can also derive a kind of inverse operation:
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Lemma 5.

α2

α1
=

β3

β1

π
2

β2-π
2

π

γ

-π
2

where β1, β2, β3, γ can be determined as in rule (EU) applied with the angles α2 ← α2 + π
2 and

α3 ← π
2 .

Then, we show that any diagram in the form of the left hand side of (SUP)– but with arbitrary
angles – can be transformed in a state with no branching:

Lemma 6.

α1 α3

=
π
2

β1+β3

β2

π

γ

-π
2

where β1, β2, β3, γ can be determined as in rule (EU) with α2 ← π
2 .

Now, by specialising the angles to α and α+ π, we shall recover (SUP):

Proposition 5. The supplementarity is derivable:

ZX `
α α+π

=

2α+π

Remark 2. The supplementarity allows us to prove:

π
4

π
= π

2

which, coupled with Lemma 2 , implies that
π

γ
-π
2 can be replaced by

π

γ-π
4

in the last three

lemmas.

Right now, we have proven all the equations that do not really need a unique normal form. For
the rest, we present the singular-value decomposition of a matrix, and introduce it to ZX-diagrams.

Definition 1. We call a singular value decomposition (SVD) of a matrix a decomposition of the
form

M = UΣV †

where U and V are unitary, and Σ is diagonal. Notice that M needs not be square (in this case Σ
has the same dimensions as M).

To justify the use of SVDs, we give some of it interesting properties [21]:

Proposition 6. The SVD M = UΣV † of a matrix M has the following properties:

– It exists whatever M
– Σ can be made unique if we impose that its diagonal entries are decreasing non-negative real

numbers
– U and V are not unique in general, though:
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– If M is square with distinct and non-zero singular values, then U and V are essentially unique:

UΣV † = U ′ΣV ′† ⇐⇒ (∃d, (U ′ = Ud) ∧ (V ′ = V d))

where d is diagonal with diagonal entries some roots of unity.

Even though the singular-value decomposition is relevant for any diagram, we are only going
to give its derivation for a particular family of diagrams:

Definition 2. We call a cycle-free diagram a diagram composed only of , , α
· · ·
n

, α
· · ·
n

where n ∈ N and α ∈ R.

Remark 3. Some diagrams that do not strictly follow the conditions of the previous definition will
still be considered cycle-free if they are equal to a cycle-free diagram by mere application of the
“only topology matters” paradigm, i.e. if they are isomorphic to a cycle-free diagram. E.g.:

α
=

α

We can now easily give a normal form for one-qubit states, using the SVD. In this caseΣ = s′ |0〉,
U is a one-qubit unitary, which can be expressed as in Proposition 1, and V is a 0 → 0 unitary,
i.e. a global phase.

Proposition 7 (SVD of a State). Any cycle-free state D : 0 → 1 can be put in the following
forms:

D
= sβ

α

= s′β′
α′

where β, β′ ∈ [0, π), and where s and s′ are 0→ 0 diagrams, i.e. scalars. We call these two forms
respectively SVDg and SVDr.

Proposition 8 (SVDs of states are essentially unique). If D1 =

α1

β1 s1 and D2 =

α2

β2 s2

are in SVD, and if JD1K = JD2K 6= 0, then either:

– α1 = α2 mod 2π and αi = 0 mod π
– α1 = α2 and β1 = β2

We can have basically the same results for 1→ 1 operators:

Proposition 9 (SVD of a 1 → 1 diagram). Any cycle-free diagram D : 1 → 1 can be written
in the forms:

D = α3 γ

α2

α4

α1

α5
s

= γα′3

s′

α′2

α′4

α′1

α′5

where γ ∈ [0, π2 ], and α1, α5, α
′
1, α
′
5 ∈ [0, π). We denote the two forms respectively SVDg and SVDr.

Remark 4. We gave two conventions for the SVDs of 0→ 1 and 1→ 1 diagrams. These two depend
on the basis in which we consider the decomposition. SVDg corresponds to the computational basis,
while SVGr corresponds to the diagonal basis. If M = UΣV † with Σ diagonal in the computational
basis, M = (UH) ·HΣH · (V H)†.

10



Proposition 10 (1→ 1 SVDs are essentially unique).

Suppose D1 = α3 γ

α2

α4

α1

α5
s

and D2 =

s2

β3 γ′

β2

β4

β1

β5

are in SVD, and that JD1K = JD2K 6= 0. Then, either:

– γ = γ′ = 0
– γ = γ′ = π

2
– αi = βi and γ = γ′

5 Clifford+T and Beyond

The point now is to exploit the SVD of ZX-diagrams and their uniqueness. A rule that can directly
use these results is (BW):

Proposition 11.

ZX `

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4

The results on SVDs can not be directly used to prove the equation (C), for its diagrams have
4 inputs/outputs, and have a cycle. However, the SVDs can be used to prove a first intermediary
result:

Lemma 7.

βα

π

βα

=
β α

π

β α

From which we can deduce the equation (C) itself:

Proposition 12.

ZX `
γ β

β

-γ

α

α

π
=

π

β

α-γ

γ

β

α

Remark 5. From Lemma 7, (C) can be derived using only the Clifford rules. However, the provided
proof requires using half angles. Hence, whenever the considered fragment contains all its half
angles, the equation in Lemma 7 should be preferred to (C).

We have derived all the rules necessary for the completeness of the Clifford+T fragment of the
ZX-Calculus, which means:

11



Theorem 4. For any diagrams D1, D2 of the π
4 -fragment:

JD1K = JD2K ⇐⇒ ZX ` D1 = D2

Finally, it remains to derive the equation (A). Notice that the diagram on the left hand side
contains a cycle, which implies we can not use the results on SVDs. However, the cycle can be
easily removed, and we are able to prove:

Proposition 13.

ZX `
θ2θ1

α-α β -β

=

γ
-γ

2eiθ3 cos (γ)
= eiθ1 cos (α) + eiθ2 cos (β)

π
2

π
4

π
4

θ3

π
4 π

4

This last proposition ends the proof of Theorem 1. ut

6 Discussion and Further Work

We have provided two simple but complete axiomatisations of the ZX-Calculus for universal quan-
tum mechanics. By doing so, we have restored intuitiveness – one of its the first aims – to the
language (at least on the structural level, computing the angles in (EU) remains tedious if done
formally). This step forward should simplify axiom-related problems such as verification or com-
pilation.

To simplify the task of proving the derivability of equations, we introduced singular-value
decomposition of 0 → 1 and 1 → 1 diagrams, and proved that there exists an algorithm to turn
any 0→ 1 and 1→ 1 cycle-free diagram into its SVD form. We did not need SVD form for diagrams
with cycle, and leave as a further development the extension of the algorithm to arbitrary 0 → 1
and 1→ 1 diagrams, which should be possible by completeness and universality.

We did not need to define the SVD form for larger diagrams either. A problem would arise in
ZX, for instance for a diagram with 3 inputs/outputs: do we decompose the diagram as a 0 → 3,
or a 1 → 2 diagram and then use the map/state duality? This would result in two completely
different decompositions. Still, defining SVDs for diagrams of any arity could prove interesting.

Concerning the result itself, we have proven that, in ZX-Calculus:

many-qubit Clifford completeness
+

completeness for 1-qubit unitaries

 = many-qubit completeness

This formulation is a bit excessive, since we actually have several rules that operate beyond the
Clifford fragment, namely (S) and (H), where the angles can take any value in R – and this feature
is actually needed for the completeness. Still, since it is not absurd to imagine we can always find
similar rules for the considered language, this raises two questions:

– Is it true for fragments of the ZX-Calculus?
The answer in general is no. Indeed, in the case of Clifford+T, the axiomatisation for Clifford
is enough to get the 1-qubit completeness [3]. However, it has been proven that rules (SUP)
and (E) are necessary [25,28]. Hence, the previous statement does not stand for Clifford+T.

– How far from this statement are we in other languages?
For instance, we know a complete presentation for the many-qubit Clifford fragment of quantum
circuits [29]. Moreover, the rule (EU) has an obvious equivalent in circuits, and is the only
needed axiom for 1-qubit completeness. So what do we lack to get the universal completeness?

12
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A Appendix

Proof (Prop. 1).
• Existence:
Any element of U(2) can be decomposed as:

eiϕ/2
(
eiψ0 0

0 e−iψ0

)(
cos (θ) sin (θ)
− sin (θ) cos (θ)

)(
eiψ1 0

0 e−iψ1

)
Hence, the existence is given by:

u

www
v
α2

α1

α3

π

γ

}

���
~

= ei(γ+
α2
2 )

(
1 0
0 eiα3

)(
cos
(
α2

2

)
−i sin

(
α2

2

)
−i sin

(
α2

2

)
cos
(
α2

2

) )(1 0
0 eiα1

)

= ei(γ+
α2
2 )

(
1 0
0 ei(α3+

π
2 )

)(
cos
(
α2

2

)
sin
(
α2

2

)
− sin

(
α2

2

)
cos
(
α2

2

))(1 0
0 ei(α1−π2 )

)
= ei(γ+

α1+α2+α3
2 )

(
e−i(

α3
2 +π

4 ) 0

0 ei(
α3
2 +π

4 )

)(
cos
(
α2

2

)
sin
(
α2

2

)
− sin

(
α2

2

)
cos
(
α2

2

))(e−i(α1
2 −

π
4 ) 0

0 ei(
α1
2 −

π
4 )

)
• Uniqueness:

Suppose

u

www
v
α2

α1

α3

π

γ

}

���
~

=

u

www
v
α′2

α′1

α′3

π

γ′

}

���
~

. The first diagram yields:

ei(γ+
α2
2 )

(
cos
(
α2

2

)
−ieiα1 sin

(
α2

2

)
−ieiα3 sin

(
α2

2

)
ei(α1+α3) cos

(
α2

2

))
and similarly for the second one. If α2 6= 0 mod π, then neither cos

(
α2

2

)
nor sin

(
α2

2

)
is null.

Hence, dividing element (1,1) by element (0,0) on both sides gives ei(α1+α3) = ei(α
′
1+α

′
3) and
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dividing element (0,1) by element (1,0) on both sides gives ei(α1−α3) = ei(α
′
1−α

′
3). In other words,

α1+α3 = α′1+α′3 mod 2π and α1−α3 = α′1−α′3 mod 2π, so 2α1 = 2α′1 mod 2π i.e. α1 = α′1 mod π.
Since we required α1, α

′
1 ∈ [0, π), we get α1 = α′1. It then follows easily that α3 = α′3, α2 = α′2 and

γ = γ′.

Proof (Necessity of Rule (HD)). We define the non-standard interpretation J.K\ as follows:

7→ 7→ 7→

α

· · ·

· · ·

n

m

7→ α α

· · ·

· · ·

α

· · ·

· · ·

n

m

7→ α α

· · ·

· · ·

7→

D1 ◦D2 7→ JD1K
\ ◦ JD2K

\
D1 ⊗D2 7→ JD1K

\ ⊗ JD2K
\

It is then easy to see that all the rules but (HD) hold under this interpretation, hence proving that
(HD) could not be derived from the other rules.

A.1 Proofs for Clifford

Proof (Lemma 1).

= =
(I)
(S)

=
(B)

=
(CP)

=
(S)
(I)

Proof (Prop. 2).

=
(E)

−π
4

π
4

=
(S)
(CP)

π
4

−π
4

=
(S)

π
4

−π
4

=
1

π
4

−π
4

=
(S)
(I)

−π
4

π
4

=
(S)
(I)

−π
4

π
4

=
(E)

Proof (Prop. 3).

π

α
=
(I)
(S)

α

π

π

π

=
(EU)

π

π

α

π-α
2

π-α
2

=
(I)
(S)
2

-α

πα

π

Proof (Prop. 4).

=
(S)
(I)

=
(CP)

=
(S)

(1)
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π
=
(S)

π
=
3 π

π
=
(I)

π
π

=
(CP)
2

π π

=
(S)

(2)

α

π

=
1

α

π

=
(S)

α
2

π
α
2

=
3

α
2

-α
2

α
2

π
π

=
(S)

α
2

π
π =

2
1

π
π
α
2

(3)

α

π

π

=
(3)

π
π
α
2π

=
(2)

π
α
2

π

=
2

α
2

π

π

(4)

Now, if α ∈ Dπ (where D := Z
[
1
2

]
), then there exists n such that 2nα = 0 mod 2π. Hence, in this

case the scalar on the right hand side of (3) can be removed by applying (4) from right to left n+1
times then using (2) and 2 to remove it. Hence:

∀α ∈ Dπ,
π

=α

π

(5)

π =
(5)

π
π
4

-π
4

=
(E)

π (6)

-π
2 =

(H)

-π
2

=
(HD)
(S)
2

π
2

-π
2

=
(CP)
(S)

π
2

-π
2

(7)

π

=
(5)

π

-π
2 =

(7)

π
π
2

-π
2 =

(5)

π

=
(1)
2

π

=
(6)

π

Proof (Lem. 2). We are going to use the following equation we get from the Clifford completeness:

π
=

π π
(8)

so:

α

π

β

π
=
(S)
(CP)

α

π

β

π
=
8
(S) α β

π

=
(S) α+β

π

Proof (Lem. 3).

α
=
(S)

π

α

π
=
3

π

-α

π

π

α =
(S)
(CP)

π

-α

π

α

π
=
2
2

ππ
=

(CP)

ππ

=
(S)
2
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A.2 Proofs for Singular-Value Decompositions

Proof (Lem. 4).

α2

α1

α3 =
(B) α3

α2α1

=
(S)
(EU)

β2β3

β1

π

γ

=
(B)

γ

β2

π
β3

β1

Proof (Cor. 1).

α1

α3
=
(S)

α1

α3

-π
2
π
2

=
π
2 C

α3

α1

π
2

π
2

-π
2

=
4

γ

β2

π
β3

β1

π
2

-π
2

Proof (Lem. 5).

α2

α1
=
(B)

α2

α1
=
π
2 C

α2+π
2

α1

-π
2

π
2
π
2 =

(EU)
(S) β1

π

γ
β3+π

2

β2-π
2

=
(H)
(S)

β3+π
2

β1 β2
π

γ

-π
2

=
π
2 C

β3

β1 β2-π
2

π
2

π

γ

-π
2

=
(B)

β3

β1

π
2

β2-π
2

π

γ

-π
2

Proof (Lem. 6).

α1 α3

=
(S)

α1

α3
=
1

β2

β3

β1

π
2

π

γ

-π
2

=
(CP)
(S)
(I)

π
2

β1+β3

β2

π

γ

-π
2

Proof (Prop. 5). We first use Lemma 6, where α3 = α1 + π. In this case, it can be computed that

β1 + β3 = 0, so we end up with:

α+πα

=

β2

π

γ

-π
2

. From this, we can easily specify the

scalar on the right part:

β2

π

γ

-π
2

=
π
2 C

β2

π

γ

-π
2

=

α+πα

=
(S)
(I)

2α+π
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So finally:

α α+π

=

β2

π

γ

-π
2

=
2α+π

=
1

2α+π

Proof (Rem. 2).

π
4

π
=
(E)

π
π
4π

4

−π
4

=
(H)

π
−π
4

π
4

π
4

=
(HD)

3π
4

π
4

π
4

π −π
2 =

3
2

π

3π
4

π
π
2

−π
2

−π
4

=
5
1
2

π

π
2

π
2

π
−π
2

=
2
3

π
2

Proof (Prop. 7). First, notice that a state in the previous form can easily be transformed into an
SVD. Indeed, if β ∈ [π, 2π):

sβ

α

=
3 sβ-π

-α

π

α

and similarly for the SVDr. We can show that we can transform an SVDr into an SVDg and
vice-versa: :

α s

β =
(H)

α

s

β
=
π
2 C
(S)
2

s

α−π
2

β−π
2

-π
2

π
4

π

=
(EU)

π
4

+γ

π

s

γ3

γ1

γ2 =
(CP)
3
(S)

γ3 π
4

+γ

γ2

s

π

Then, we prove the result by induction.

α
=
(I)

α

Then :

D
=

α

sβ
=
(H)

α
s

β = γ3

γ2
s′

Notice that the generator R
(0,1)
Z (α) can be obtained as a combination of the last two. Then :

D
γ =

α

sβ

γ
=
(S)

α
s

β+γ

D1 D2

=
(S)

α2

s2

α1
s1

β1+β2 =
6 β1+β2

-π
2

π

γ′
β2

β′

s1

s2

18



=
π
2 C

γ′-π
4 β2

β1+β2
+π

2

π

β′+π
2

s1

s2 =
(H)

π

γ′-π
4

s2

β2

β1+β2
+π

2

s1
β′+π

2

Finally, the generator R
(n,1)
Z (α) can be obtained by composition of RZ(α) and R

(2,1)
Z (α); and

R
(n,1)
X (α) can be obtained by composition of R

(n,1)
Z (α) and H.

Proof (Prop. 8). The equality reads s1

(
1 + eiα1

eiβ1(1− eiα1)

)
= s2

(
1 + eiα2

eiβ2(1− eiα2)

)
. If α1 = π, then it

is easy to see that α2 = π and s1e
iβ1 = s2e

iβ2 . If αi 6= π, then the upper coefficient is non-null,
hence we can divide the lower coefficient by the upper one, which yields:

eiβ1
1− eiα1

1 + eiα1
= eiβ2

1− eiα2

1 + eiα2
⇔ eiβ1 tan

(α1

2

)
= eiβ2 tan

(α2

2

)
If α1 = 0 mod 2π then α2 = 0 mod 2π. Otherwise, since β1, β2 ∈ [0, π), β1 = β2 and α1 =
α2 mod 2π.

Proof (Prop. 9). First, if D is in the form SVDg, but where the constraints on the angles are not
met, we can transform it into an actual SVDg:

– If α1 ∈ [π, 2π) (and similarly for α5):

α2

α1

...

=
(S)
3

-α2

α1-π

...

π
π

α2

– If γ ∈ [−π2 , 0[:

α3 γ =
(S)
3

π+α3 -γ
π

γ

– If γ ∈ [−π,−π2 [:

α3 γ =
(S)
3

-α3 γ+π

π

π
π

α3

– If γ ∈ [π2 , π):

α3 γ =
(S)
3

-α3 γ+π

π

π
π

α3

=
(S)
3

π-α3 π-γ

π

π

π

α3+γ
+π

19



Then, we show that the two decompositions are equivalent:

α3 γ

α2

α4

α1

α5
s

=
(H)

γα3

α2

α4

α1

α5

s

=
π
2 C

γα3

α2+π
2

α4-π
2

α1

α5

s

π
2

-π
2

=
(EU)

γα′3

s′

α′2

α′4

α′1

α′5

The two 1→ 1 generators R
(1,1)
Z (α) and H can be put in SVD:

α =
(S)

α+π
2

-π
2 =

π
2 C
2

α+π
2

π
2

π

-π
4

=
π
2 C
(I)

π
2

π
2

-π
2

The composition of two SVDs can be put in SVD (here, ignoring the scalars):

D1

D2

=

α3 α

α2

α4

α1

α5

β3 β

β2

β4

β1

β5

=
(S)
(EU)

γ1 α

α2

α1

γ3 β

γ2

β4

β5

=
(S)
4

α

α2

α1

γ3β

π
2

β4

β5

γ1

γ4

γ5
=
6

γ7

α2

α1

γ6

π
2

β4

β5

γ1

γ4

γ5
=
5

γ8

γ10

π
2

γ9

α2

α1

γ6

π
2

β4

β5

γ1

=
(EU)

γ12

γ15

γ14

γ13 γ9

γ11

Notice that, by composition, the 1→ 1 generator R
(1,1)
X (α) can be put in SVD.

If the 1 → 1 diagram has no cycle, there can still be branching. Hence, there can be a state
D : 0→ 1 in tree-like form attached to the “main wire” by a node, say green, as follows:

D

= β

α

s

=
(S)
(I)

β α

s

Branching made by a red node can be deduced by composing the green one and Hadamard nodes.
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Proof (Prop. 10). First we decompose D1 and D2 as:

D1 = α3 γ

α2

α4

α1

α5
s

= π
2

γ

α2

α4

α1

α5

s′

x

α3 − x− π
2

u

π

Σ

U

V † v

π

D2 =

s2

β3 γ′

β2

β4

β1

β5

= π
2γ′

β2

β4

β1

β5

s′2

x′

β3 − x′ − π
2

u′

π

Σ′

U ′

V ′† v′

π

where u, v, u′ and v′ have been chosen so that JΣK and JΣ′K are real matrices. Notice that JUK,q
V †

y
, JU ′K,

q
V ′†

y
are unitaries. We have two SVDs that represent the same matrix:

JUK ◦ JΣK ◦
q
V †

y
= JD1K = JD2K = JU ′K ◦ JΣ′K ◦

q
V ′†

y

First off, let us show that Σ and Σ′ are essentially the same. One could compute JΣK = Js′K (1 +

eiγ)

(
1 0
0 tan

(
γ
2

)) and JΣ′K = Js′2K (1+eiγ
′
)

(
1 0

0 tan
(
γ′

2

))
. Since γ, γ′ ∈ [0, π2 ], tan

(
γ
2

)
and tan

(
γ′

2

)
are smaller than 1, and since the diagrams are non-null, we get JΣK = JΣ′K by Proposition 6, which
implies γ = γ′.

If γ = γ′ 6= 0, then JΣK and JΣ′K have full rank. Moreover, if γ = γ′ 6= π
2 , then JΣK and JΣ′K

are not colinear to the identity. Hence, if γ = γ′ ∈]0, π2 [, then we can apply Proposition 6.

By Proposition 6, there exists d =

(
eiϕ0 0

0 eiϕ1

)
such that JU ′K = JUK◦d and

q
V ′†

y
= d† ◦

q
V †

y
.

Notice that

u

w
vϕ1-ϕ0

ϕ0

π

}

�
~ = d and

u

w
vϕ0-ϕ1

-ϕ0

π

}

�
~ = d†. Hence:

JU ′K =

u

www
v
β4

β5

x′

u′

π

}

���
~

= JUK ◦ d =

u

wwwww
v
α4

α5
u+ϕ0

π

x+ϕ1−ϕ0

}

�����
~

Since β5 and α5 are in [0, π), the representation of the unitary is unique by Proposition 1, so
β5 = α5, β4 = α4, and x′ = x + ϕ1 − ϕ0. Similarly, the second equation yields α1 = β1, α2 = β2
and β3 − x′ − π

2 = α3 − x− π
2 +ϕ0 −ϕ1. Together, the equations on x and x′ imply that α3 = β3.

A.3 Proofs for Clifford+T and Beyond

Proof (Prop. 11). Using Proposition 9, we can put both sides of the equation in SVD, and thanks
to Proposition 10, the two forms have the same angles. We can even compute:

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

= π
2

β1
π
2

γ

π
2

β1

s1
and

π
4π

π
2

π
4

π
4

π

π
4

= π
2

β1
π
2

γ

π
2

β1

s2
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with γ = π
2 − 2 arctan 1√

5
and β1 = arctan 2. It remains to prove that the two scalar diagrams are

equal:

s1 =
π
2 C

s1

=
(S)
3 -π

4

π

s1 π
4

π
π
4

π
2

=
(S)
3
2

-π
2

π

s1 π
4

π
π
4

π
2

π
4

π
π
4

=
(S)
(CP)

-π
2

π

s1

π
4π
π
4

π
2

π
4π

π
4 =

-π
2

π

s1

π
2

β1
π
2

γ

π
2

β1

s2
=

-π
2

π

s2

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

=
(CP)
(S)

-π
2

π

s2

π
4

π
4

π
4

−π
2

π
4

π
4

π
4 =

(I)
(S)

-π
2

π

s2

π
2

π
2

=
2
π
2 C

-π
2

π

s2 π
4

π

π
4

π

=
2
3
2

s2

Proof (Lem. 7). We prove the equality by simplifying both sides of the equation. The left hand
side yields, when ignoring the scalars:

βα

π

βα

=
π
2 C

α+π
2

β

β+π
2

-α

π
2 =

(B)
-α β

β+π
2

π
2

α+π
2

=
1

β+π
2

-α βπ
2

α+π
2

=
(EU)

β+π
2

β1

α+π
2

β3β2

=
(B) β1

β2

β+π
2

β3

α+π
2
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=
π
2 C

β2

β+π
2

β1-π
2 β3

α

-π
2 =

(EU) β3

β+π
2

β2

γ3γ2

γ1

=
3
(S)

(-1)mβ3

β+π
2

+mπ

β2

γ3+
(n+m)π

(-1)nγ2

γ1+nπ

where n and m are chosen in {0, 1} so that γ1 + nπ and β + π
2 + mπ are in [0, π). Similarly, the

right hand side yields:

β α

π

β α

=
(-1)mβ3

β+π
2

+mπ

β2

γ3+
(n+m)π

(-1)nγ2

γ1+nπ

Notice that, due to the symmetry of the two diagrams, the resulting scalars (that we ignored) are
equal (and non null). If β2 = 0 mod π, then we can compute that both α and β are multiples

of π, and in this case the equation is trivially derivable. Else, notice that

t

β2

|

is invertible,(
its inverse is 1

1−e2iβ2

(
1 −eiβ2

−eiβ2 1

))
. Hence, we get:

u

wwwwwwww
v

(-1)mβ3

β+π
2

+mπ

γ3+
(n+m)π

(-1)nγ2

γ1+nπ

}

��������
~

=

u

wwwwwwww
v

(-1)mβ3

β+π
2

+mπ

γ3+
(n+m)π

(-1)nγ2

γ1+nπ

}

��������
~

We can then plug any red dot with angle ∈]0, π2 [, say π
4 , on the lower branch. We can now use

Proposition 10, match the angles γ1 +nπ = β+ π
2 +mπ and (−1)nγ2 = (−1)mβ3, so the two initial

diagrams are equal.

Proof (Prop. 12).

γ β

β

-γ

α

α

π
=
(H)
(CP)
(B)

β

α

α

π

βγ

-γ

- γ
2

γ
2

=
(S)
7

- γ
2

α γ
2

π

β

- γ
2

βγ
2

α
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=
7

γ
2

β

β

- γ
2

α

π
- γ
2

α

γ
2 =

(H)
(B)

γ
2

α β

π
- γ
2

α
β

- γ
2

γ
2 =

(H)
7

β

α

π

α
γ
2

- γ
2

γ
2- γ

2

β

=
(B)
(H)

β

α

γ
2

- γ
2

β

π

γ
2

α- γ
2 =

7

γ

β

β

-γ

α
- γ
2

α
π

γ
2

=
(B)
(CP)
(H)

π

β

α-γ

γ

β

α

Proof (Prop. 13). The idea of the proof is here again to use the SVD, but this time of a state,
the equation being between two states. The diagram on the right hand side has an SVD by direct
use of Proposition 7. However, the one on the left hand side has a cycle, so we have to work a bit
more. Notice that, using Proposition 9:

θ2

θ1
α

-α

β

-β

π
2

π
4

π
4

= α6α3

s

α2

α4

α1

α5

Hence:

θ2θ1

α-α β -β

π
2

π
4

π
4

=

α6

α3α2 α4

α1 α5

s

=
(S)

α6

α3
α2 α4

α1+α5

s

=
(B)

α6

α3
α2

α4

α1+α5

s

=
7

s1ε1

δ1

From a direct use of Proposition 7:

γ
-γ

θ3

π
4 π

4

= s2ε2

δ2

Since the initial equation is sound under the constraint 2eiθ3 cos (γ) = eiθ1 cos (α) + eiθ2 cos (β), we
have: u

w
v s1ε1

δ1
}

�
~ =

u

w
v s2ε2

δ2
}

�
~

By Proposition 8, either δ1 = δ2 = 0, or δ1 = δ2 = π, or δ1 = δ2 6= 0 mod π and ε1 = ε2. Notice

however that in our case, δ1 and δ2 cannot be π because

u

www
v

γ
-γ

θ3

π
4 π

4

}

���
~

= (1+i)

(
1√

2eiθ3 cos (γ)

)
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and

u

v sε

π
}

~ =

(
0√

2seiε

)
.

If δ1 = δ2 = 0, then ε1 and ε2 can be discarded: sε = s . Hence, in any case, it only

remains to prove that the two scalar diagrams s1 and s2 can be transformed into one another.

s1 =
3
2

s1
π
4

π

-π
4

π =
2

s1 π
2

-π
4

π =
(S)
(I)

s1

γ
π
4

-π
4

π

-γ
π
4

=
(CP)

s1

γ
π
4

-π
4

π

-γ
π
4

θ3

=
s1

-π
4

π

δ

ε
s2

=

-π
4

π

s2

θ2θ1

α-α β -β

π
2

π
4

π
4

=
(S)
(I)

-π
4

π

s2

θ2θ1

α-α β -β

π
2

π
2

=
(B)

-π
4

π

s2

θ2θ1

α-α β -β

π
2

π
2

=
π
2 C

s2

θ2θ1

α-α β -β

=
(CP)

s2

θ2θ1

α-α β -β

=
(CP)
3
(S)
(I)

s2
=
π
2 C

s2

Proof (Thm. 2). We are going to prove here that all the equations in Figure 1 can be recovered
from the ones in 2. First of all, we try to recover a complete axiomatisation for Clifford. To do so,
we simply need to show that the Hadamard gate can be decomposed.

= =
(I)
(S)

=
(B)

=
(CP)

=
(S)
(I)

(9)

=
(Ig)

=
(H)

=
(Ir)

(10)

=
(I)

=
(EU’)

π
2

π
2

π
2

π

-π
4

=
(H)
(10)

π
2

π
2 π

-π
4

π
2

(11)
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-π
2 =

(H)

-π
2

=
(11)
(S)

π
2

π
2 π

-π
4

=
(IV)
(CP)

π
2

π

-π
4

π
2

=
(IV)

π
2

π

-π
4

(12)

=
(11)

π
2

π
2 π

-π
4

π
2

=
(S)
(H)

π
2

π

-π
4

π
2

π
2 =

(12)

π
2

π
2

-π
2 =

(H)

π
2

π
2

-π
2 (13)

We have recovered a complete axiomatisation for Clifford. We now have access to all the lemmas
deriving from this axiomatisation. The next step is to prove the equation (E) is derivable.

π

α
=
(H)

π

α
=

(EU’)

π
2

π
2

-α

-π
2

π

α-π
4

=
(S)
(11)

-α

π
π

α

=
(H)

-α

π

π

α
(14)

π
2 =

(H)

π
2 =

(CP)
(IV)

π
2

π
2 π

-π
4

π
2

π
π
4

=
(11)

π
π
4

=
(H)
(IV)

π
π
4

(15)

α α+π

=
(I)
(S)

α α+π

-π
2
π
2

=
(B)

α α+π

-π
2

π
2

=
(13)

α-π
2

α+π
2

π
2

=
(EU’)

π
2

β2β1 β3

π

γ

=
(S)
(9)

π
2

β2

π

γ

=
(CP)
(IV)

β2

π

γ

β2
π

γ
=

β2

π

γ

=

α α+π

= 2α+π

α α+π

=

2α+π

=

2α+π

(16)
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-π
4

π
4

=
(H)

π
4

-π
4

=
(13)

3π
4

π
4

-π
2 =

(14)

π
π
4

3π
4

-π
4

π
-π
2 =

(16)

π
π
4

π
2 π

-π
2

=
(9)

π
π
4
π
2 π

-π
2

=
(15)

π
π
4

π

-π
2

π
π
4

=
(IV)

It now remains to prove the rule (EU) can be derived. We decompose the left hand side diagram
as such:

α1

α3

α2 =

α1

α3

α2 =

α1

α3

x

α2-x
=

β2(x)

β1(x)

β3(x)

+γ1(x)
π

β4(x)

+γ4(x)γ2(x)

γ3(x)

where x is considered as a variable, and hence, all the computed angles depend on it, while the
angles αi are fixed. We want to find x0 such that β3(x0) + γ1(x0) = 0 mod π. Let the functions f
and g be defined as:

f : x 7→ arctan

(
tan (α1) cos (x) + tan (α3) cos (α2 − x)

1− tan (α1) cos (x) tan (α3) cos (α2 − x)

)
g : x 7→ tan (α1) cos (x) + tan (α3) cos (α2 − x)

Notice that

g
(
−π

2

)
= tan (α3) cos

(
α2 +

π

2

)
and g

(π
2

)
= tan (α3) cos

(
α2 −

π

2

)
Hence, g

(
−π2
)
g
(
π
2

)
≤ 0. Since g is continuous, by the intermediate value theorem, there exists

x0 ∈ [−π2 ,
π
2 ] such that g(x0) = 0. Notice now that f(x0) = arctan

(
0

1+tan(α1)
2 cos(α2−x0)

2

)
=

0. Also, it can be computed that f = β3 + γ1 mod π. Hence, β3(x0) + γ1(x0) = 0 mod π i.e.
β3(x0) + γ1(x0) = nπ. Hence, denoting βi ← βi(x0) and γi ← γi(x0):

α1

α3

α2 =

β2

β1

nπ π

β4+γ4
γ2

γ3

=
14
(S)

β2+

(-1)nγ2

β1

π

β4+γ4
+nγ2γ3+

nπ

=
14
(S)

(-1)mβ2+

(-1)n+mγ2

β1+
mπ

π

β4+mβ2+γ4+

(n+(-1)nm)γ2
γ3+

(n+m)π
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Since, thank to Proposition 1, the unitary representation is unique if β1 +mπ ∈ [0, π[ (m has been
chosen for this purpose), then the previous diagram is provably equivalent to the one resulting
directly from (EU).
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