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Supplementary Figure 1 Intensity distribution in GPC and DH generated light patterns. 

Supplementary Figure 2 Intensity and phase distribution of a GPC generated spot. 

 
Supplementary Figure 3 

TF-GPC allows specific two-photon photoactivation of subcellular 

compartments with simultaneous multiple light spots. 

Supplementary Figure 4 Power dependence of ChR2 photo-depolarization in cortical brain slice. 

 
Supplementary Figure 5 

TF-GPC allows specific 2P photoactivation of neuronal compartments 

with simultaneous multiple light spots. 

Supplementary Figure 6 Phase map computation. 

 
Supplementary Figure 7 

Spatial dependence of the 2P excitation efficiency for different methods 

of light patterning. 

Supplementary Figure 8 Uniblitz shutter properties. 

 
Supplementary Note 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The Generalized Phase Contrast method: spatial dependence of 

diffraction efficiency and comparison with Digital Holography. 



Supplementary Figure 1 
 

 

TF-GPC 

TF-DH 

Intensity distribution in GPC and DH generated light patterns. 
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Lateral profile of the 20 µm circular spot shown in Figure 1b (black curve) compared  to the 

lateral profile measured for a 20 µm circular spot generated with temporal focusing - digital 

holography (TF-DH) (red line) from Papagiakoumou et al.1. It is clear that the intensity 

distribution (black trace) is characterized by sharp edges and that the intensity profile is 

substantially homogeneous. In both of these respects, the profile is superior to what we could 

previously achieve in TF-DH1, showing a less sharp cut-off at the edges and substantial speckled 

intensity fluctuations. 
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Supplementary Figure 2 
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Intensity and phase distribution of a GPC generated spot. 
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Intensity and phase distribution at the output mapping plane of the GPC system, i.e., on  the 

grating (refer to the experimental setup illustrated in Fig. 1a), corresponding to a circular spot of 

10 µm in diameter at the sample plane. The phase and intensity map are measured with a SID4- 

028 wave-front analyzer (PHASICS, S.A.). Scale bar: 1 mm. 
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Supplementary Figure 3 
 

 

 
25 mV 

50 ms 

TF-GPC allows specific two-photon photoactivation of subcellular compartments with 

simultaneous multiple light spots. 
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(a) Fluorescence image of a positive cortical neuron expressing the ChR2-H134-GFP plasmid in 

culture. (b) Excitation patterns following the dendritic morphology and corresponding photo- 

evoked potentials (10 ms pulses, 0.3 mW µm-2). Scale bars: 20 µm; exc = 920 nm. 
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Supplementary Figure 4 
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Power dependence of ChR2 photo-depolarization in cortical brain slices. 
 

 

 
 

 

 
Voltage response to photo-excitation with a 10 µm light spot at increasing power density (0.10, 

0.15, 0.20, 0.30, 0.40, 0.52 mW µm-2, light grey to black traces) in a cortical layer V pyramidal 

neuron positive for ChR2. The rising phase of the photo-evoked potential becomes steeper as the 

excitation density increases. exc = 920 nm. 
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Supplementary Figure 5 
 

 

2 
 

1 

4 3 

2 
 

1 

4 3 

mV mV 

1 

2 
 

3 
1 

2 
 

1 

2 

2 
 

1 

4 
3 

25 mV 

50 ms 

100 pA 

10 ms 

TF-GPC allows specific 2P photoactivation of neuronal compartments with  simultaneous  

multiple light spots. 
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(a) Fluorescence image of a ChR2 positive neuron in brain slices filled with Alexa 594. (b) 

Excitation patterns (top) and corresponding photo-evoked potentials (bottom): 15 µm spot on 

soma (position 1), apical and basal dendrites (positions 2, 3 and 4), apical  and  right  basal 

dendrite only (positions 2 and 3) (3 trials in every case, exc = 920 nm, 10 ms pulses, 0.6 mW µm-

2). (c) Top: fluorescence image of a ChR2 positive neuron in brain slices filled with Alexa 594, 

with superimposed excitation patterns (red). Bottom: photo-evoked currents obtained by 

stimulating a basal dendrite (1, light grey), the apical dendrite (2, cyan), both apical and basal 

dendrite (1+2, green), apical dendrite, basal dendrite  and soma (1+2+3, red) (average  on 3 trials 

in every case, exc = 850 nm, 10 ms pulses, 0.25 mW µm-2). Scale bars: 10 µm. 
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Supplementary Figure 6 
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Phase map computation. 
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(a) Source image, indicating the target excitation with surface A(spot), at the sample plane. (b) 

Corresponding binary phase profile (the grey level of the picture corresponds to  a  half-wave 

phase shift of the applied LCOS-SLM): a ring of surface A(ring), is added into the phase map so 

that Aπ(tot) = Aπ(spot) + Aπ(ring) is around ¼ of the illuminated area of the SLM. (c) Phase   

profile addressed to the SLM: the profile is spatially compressed along the x-direction in order to 

pre-compensate the stretch induced by the tilted illumination of the grating. (d) Series of five 

images of a fluorescent layer excited with one to five spots. (e) Integrated intensity of the spots    

in (d) showing that the excitation density within a single spot remains constant independently on 

the number of spots. 
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Supplementary Figure 7 
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Spatial dependence of the 2P excitation efficiency for different methods of light patterning. 

To take into account the quadratic dependence of 2P photoactivation on the excitation intensity, 

the curves are obtained as the square of the 1P curves. The black curves represent the 2P excitation 

efficiency for GPC, δ2P
GPC = δGPC (x/X)2/δGPC(0), calculated for  = 0.6252 and for different 

values of the ratio Aspot/Atot. The circular dots represent the spatial dependence of the 2P excitation 

efficiency for DH, δ2P
DH  = δDH (x/X) 2/ δDH(0), based on the data from the datasheet  of the

 LCOS-SLM (X10468-02, Hamamatsu Photonics; 

http://jp.hamamatsu.com/products/other/1013/1010/X10468/index_en.html). Finally, the dashed 

blue lines represent the excitation efficiency for a Digital Micro-mirror Device (DMD), δDMD = 

0.61% 3 , multiplied to different values of the ratio Aspot/Atot. 

 

 

 

 

 
 

7 

 AASPOT    00..2255 
AA tot 

 

0..20200 

DH 

GPC 

DMD 

0.15 

0.10 

0.05 


0.25 

0.05 2
P

 e
x
c
it
a

ti
o
n
 e

ff
ic

ie
n

c
y
 

http://jp.hamamatsu.com/products/other/1013/1010/X10468/index_en.html)
http://jp.hamamatsu.com/products/other/1013/1010/X10468/index_en.html)


Supplementary Figure 8 
 

 

Uniblitz shutter properties. 
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TTL input signal on the shutter (grey trace) and corresponding laser pulse measured with a 

photodiode at the exit of a 40×, 0.8 N.A. objective (FWHM = 10.6 ms). The shutter was opening 

and closing during the descending phases of two consecutive TTL signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 

p
h

o
to

d
io

d
e 

o
u

tp
u

t 
(a

.u
.)

 

TT
L 

in
p

u
t 

(a
.u

.)
 



 

 

 
 

Supplementary Note 1 The Generalized Phase Contrast method: spatial dependence of 

diffraction efficiency and comparison with Digital Holography. 

The GPC method is based on an extension of the Zernike phase contrast approach into the 

domain of full-range [0, 2] phase modulation4. Briefly, a desired target intensity map is  

converted into a spatially similar phase map  that is addressed on a phase-only modulating SLM.  

A phase contrast filter (PCF) placed at the Fourier plane of the SLM imposes  an appropriate  

phase retardation between the on-axis focused component and the higher-order diffracted Fourier 

components. The PCF is typically – but not limited to – introducing a half-wave phase shift in 

GPC contrary to the fixed quarter-wave phase shifting PCF of the Zernike approach. The 

interference between the phase-shifted focused and the scattered light, from now  on referred to   

as the synthetic reference wave and the signal wave, respectively, allows generating a pure phase-

to-intensity conversion at the output plane. To date GPC has been successfully applied in 

pioneering demonstrations of real-time 3D optical particle trapping and manipulation5,  wave- 

front sensing6, lossless image projection7 and phase security and encryption8. 

A crucial point to consider in the comparison between GPC and DH is  the spatial  dependence 

Ispot, redirected into the 

desired target spot(s) and the light intensity, Itot, incident on the spatial phase modulating LCOS- 

SLM, i.e.  = Ispot/Itot (we neglect for simplicity the losses due to the optical elements of the light 

paths, as these are similar in the two methods). In DH, the diffraction efficiency, , depends on  

the LCOS-SLM pixel size, dSLM, which limits the maximum spatial frequency to  f0max  = 

1/(2dSLM). This limits the excitation field size to a square whose sides have the dimension L = 

X = Y = (2 f0max f1 fobj/f) 
9, 10, where f1 is the lens forming the holographic image of the 

target intensity and f and fobj are the focal lengths of the telescope forming the replica of the  

output image at the focal plane of the objective. Also the number of applicable phase grey levels 

for the applied SLM plays an important role for the DH diffraction efficiency (for a binary-only 

phase SLM the highest possible theoretical diffraction efficiency is limited to 40.5%). 

The diffraction efficiency, DH(f0), within this area depends on the spatial frequency of the 

hologram, f0. For example, for the device used in this paper, holograms with a spatial frequency, 

f0, comprising between 15 and 20 lpmm would generate excitation patterns with a diffraction 
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efficiency, DH(f0) encompassing between 40% and 25% of the incoming light while  (f0)  

quickly goes to zero when f0 approaches f0max, i.e. ~ 25 lpmm (Supplementary Fig. 7). 

In general a compromise has to be found between the excitation area, the diffraction efficiency 

and the hologram phase resolution. Typically one can obtain Atot of ~ 80 × 80 m2  with  an  

overall diffraction efficiency less than 60%. 

In GPC, the excitation field is typically a circular area, Atot, of radius R = (X2+Y2) = (Rc  

(f2 fobj )/ (f1f)), where Rc is the radius of the circular aperture in front of the LCOS-SLM, f1 and  

f2 the focal lengths of lenses L1 and L2 of the GPC  mapping system (Fig. 1), and  f and  fobj are 

the focal lengths of the telescope forming the final intensity pattern at the objective focal plane 

(lens L and objective). Although for GPC it is more appropriate to talk about a phase 

interferometric contrasting we will keep for  the denotation “diffraction efficiency” for  

similitude to the case of DH.. For GPC operated in binary phase mode, two parameters determine 

the value of GPC within Atot. The first one is the ratio S = Aspot/Atot of the excitation pattern area, 

Aspot to Atot. S can also be expressed in terms of pixel distribution at the LCOS-SLM, defined as  

the fill factor F = A/(A+A0), where A and A0 are the number of pixels addressed with input 

phases  and 0, respectively. For F = Fmax = 0.25 (i.e. Aspot = Atot/4) the diffraction efficiency 

reaches a maximum value of 100% 11. However, in the case of GPC this value decreases 

proportionally to Aspot/Aspot(max) for areas smaller than Aspot(max) and adjustments of the phase 

retardation, induced by the PCF, below  are needed for the case where Aspot is greater than 

Aspot(max). The second parameter to be considered is the central filtering size, , defined  as  the 

ratio between the diameter of the PCF, R1, to the main lobe of the Airy profile of the reference 

wave focused at the PCF plane, R2 - i.e. the Fourier transform of the input circular aperture of 

radius Rc2. 

This parameter determines the strength and the wave-front curvature of the synthetic reference 

wave at the GPC output aperture and therefore implicitly the diffraction efficiency of the 

excitation field2. In general a value of  between 0.5 and 0.6 represents a good compromise 

between wave-front curvature and strength of the synthetic reference wave, i.e.  between  

excitation field size and intensity contrast. We can include the dependence of the diffraction 

efficiency on the two parameters,  and S, by defining a total diffraction efficiency for binary 

input phase GPC: 
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GPC = Ispot/Itot = rR    Aspot/Atot for Aspot ≤ Atot/4, where r is the radius coordinate at the 

excitation plane and R is the excitation field radius. 

However, if a grey-level phase encoding is available at the input SLM of a GPC system this    

can be improved to show no significant spatial dependence and one can neglect the rR term 

above12. 

The spatial dependence of  is more flat than that of DH (f0) (Supplementary Fig. 7). 

However, due to the factor Aspot/Atot, the GPC overall efficiency is greater than δDH only for a 

limited range of spot sizes giving Aspot ≈ Aspot(max); for applications requiring the modification  of 

the spot size over a broader range of values, this limitation can be overcome by using a 

reconfigurable beam expander that reduces the size for Atot,  thus compensating for the reduction  

in Aspot. However this comes at the cost of the excitation field size. 

An interesting approach to be tested, can be to merge the functionalities found in optical 

correlators into the so-called mGPC (matched filtering GPC)13 technique to  achieve  the  full 

range of desirable light shape sizes from diffraction limited spots up to extended sized patterns. 

Alternatively, the advantages of DH with those of GPC, could be combined by generating 

excitation patterns by simultaneous control of amplitude and phase modulation14. 

Finally, Digital Micromirror-based Devices (DMDs)3 can also be used to generate patterned 

photoactivation. Their main advantage is the simple optical setup and  increased  addressing  

speed. However, with these devices a large fraction of the laser power is lost  because  the 

intensity patterning is created by redirecting unwanted light out of the excitation field and into 

spurious higher orders. To compare this approach with DH and GPC we can also in this case 

define a total diffraction efficiency  = Itot /Ispot , which results in  = DMD  Aspot/Atot, with DMD ≈ 

61%3 for the case of an optimal diffraction angle with a matching condition of the micro-mirror 

pitch, micro-mirror tilt angle and the applied wavelength of radiation – the so called Littrow 

configuration. 
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