
HAL Id: hal-01963269
https://hal.science/hal-01963269

Submitted on 21 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LocalPKI: An Interoperable and IoT Friendly PKI
Jean-Guillaume Dumas, Pascal Lafourcade, Francis Melemedjian,

Jean-Baptiste Orfila, Pascal Thoniel

To cite this version:
Jean-Guillaume Dumas, Pascal Lafourcade, Francis Melemedjian, Jean-Baptiste Orfila, Pascal
Thoniel. LocalPKI: An Interoperable and IoT Friendly PKI. Communications in Computer and In-
formation Science, 2019, 990, pp.224-252. �10.1007/978-3-030-11039-0_11�. �hal-01963269�

https://hal.science/hal-01963269
https://hal.archives-ouvertes.fr

LocalPKI: An Interoperable and IoT Friendly PKI

Jean-Guillaume Dumas1, Pascal Lafourcade2, Francis Melemedjian3,
Jean-Baptiste Orfila1, and Pascal Thoniel3

1 Université Grenoble Alpes, CNRS, Laboratoire Jean Kuntzmann, 700 av. centrale, IMAG,
CS 40700, 38058 Grenoble cedex 9, France

{Jean-Guillaume.Dumas,Jean-Baptiste.Orfila}@univ-grenoble-alpes.fr
2 University Clermont Auvergne, LIMOS, Campus Universitaire des Cézeaux, BP 86, 63172

Aubière Cedex, France
Pascal.Lafourcade@uca.fr

3 NTX Research SA, 111 Avenue Victor Hugo, 75116 Paris, France
{Francis.Melemedjian,Pascal.Thoniel}@ntx-research.com

Abstract. A public-key infrastructure (PKI) binds public keys to identities of
entities. Usually, this binding is established through a process of registration and
issuance of certificates by a certificate authority (CA) where the validation of the
registration is performed by a registration authority. In this paper, we propose an
alternative scheme, called LOCALPKI, where the binding is performed by a local
authority and the issuance is left to the end user or to the local authority. The role
of a third entity is then to register this binding and to provide up-to-date status in-
formation on this registration. The idea is that many more local actors could then
take the role of a local authority, thus allowing for an easier spread of public-key
certificates in the population. Moreover, LOCALPKI represents also an appro-
priate solution to be deployed in the Internet of Things context. Our scheme’s
security is formally proven with the help of Tamarin, an automatic verification
tool for cryptographic protocols.

1 Introduction

The primary goal of a Public Key Infrastructure (abbreviated PKI) is to bind a user
identity with his public key. They are security architectures that manage digital certifi-
cates, electronic documents used to prove the ownership of a public key. The current
global PKI standard is PKIX.

Deploying server certificates is a necessity to bring trust in transactions made on
the Internet. This also mandatory to be able to use electronic signatures, for authentica-
tion, session key transport, authenticated key exchange, or more generally, any secured
communication.

Started near the end of 2015, the Let’s Encrypt project goes further and seeks to de-
mocratize the implementation of server certificates. The goal is to generalize certificates
for almost all servers. Why such an initiative? Two constraints have been identified: the
cost of certificates and the complexity of their implementation. Let’s Encrypt provides
a solution to remove these bottlenecks and as of mid-2018 this has become the choice
of more than half of the market shares.

Now, the deployment of certificates for persons (citizen, professional, student, con-
sumer, Internet user) is also a necessity to bring trust in transactions made on the Inter-
net. Despite PKIX, this deployment has never really been carried out on a large scale and
few of us now possess these certificates. The first goal of LOCALPKI is to democratize
the attribution of people certificates, just like Let’s Encrypt democratized the attribution
of server certificates. The second goal of LOCALPKI is enable an easier deployment of
public key certificates in constrained environments like the IOT Internet of Things.

Overall, the goal is to generalize certificates for all. How? By removing the three
known bottlenecks with PKIX: remote delivery, cost of certificates and their complexity
of use. LOCALPKI provides a solution on organizational, financial and cryptographic
levels (new protocols) in order to eliminate the current, above listed, bottlenecks/issues.
For this, the central actors in LOCALPKI will be the Local Registration Authorities
(LRA). Those will be established industrial actors, like a bank or a telecom operator for
instance, and they will enroll users who are their members or customers thanks to their
local network. The Local Registration Authority will remain close to its users, it will
have to be the local bank branch office or the next door Telecom agency. Indeed, it is a
foremost importance for these actors to deliver to their members or clients certificates
that will enable them to authenticate and sign contracts online. Then, to guarantee the
security of the system, Electronic Notaries will be in charge of maintaining the data
bases of registered certificates.

Now, for the user, he/she can get a free certificate (with paid options available) near
his/her home or work place with the security of face-to-face enrollment (identity verifi-
cation). The system can also support trust circles. For example, if a user trusts a given
financial or telecom player to enroll its customers, then the user will be convinced by
the public key authenticity assertion sent by its Digital / Electronic Notary server about
one of its customers. Finally, LOCALPKI is not only limited to personal certificates.
Tomorrow, the deployment of connected objects certificates will also be a necessity to
bring trust in transactions made on the Internet of Things (IOT, Internet of Things).
Each manufacturer will become the Registration Authority for its connected objects.

1.1 State of the art

Over the internet, the main standard for the format of public key certificates is X.509,
developed by the IETF PKIX working group. This is the most widely used standard in
Internet protocols [9]. RFC 5280, which define how to use X.509 in Internet protocols.
For instance, almost all major internet players authentify their servers with certificates
via the TLS (Transport Layer Security) protocol, basis of the HTTPS (Hypertext Trans-
fer Protocol Secure). In this paradigm, end entities (users) rely on Certificate Authorities
(CA) which deliver X .509 certificates containing, at least, the user’s identity and public
key and a validity period. These certificates are then signed by the CA. Then, before
using the public key of another entity, a user verifies the associated certificate: checking
validity period, correctness of signature etc. We talk about the owner of a certificate and
the user of a certificate.

Now, in order to be able to use long enough validity periods, a revocation mecha-
nism has then to be set up. Indeed, the burden of renewing one’s certificate need not
be repeated too often, but a revocation can however be launched in case of unexpected

events. The most deployed solutions for this are Certificate Revocation List (CRL) [9]
and Online Certificate Status Protocol (OCSP) [26]. In the first case, the user sends a
validity query of the owner’s certificate to an OCSP responder (either maintained by the
certificate’s issuer, or well known to the user). In the second case, lists of revoked cer-
tificates must be regularly updated and published into CRL Distribution Points (CDP).
Users access these CDP and check that the owner’s certificate is not present inside the
list. In the end, depending on the obtained certificate status, the owner is authenticated
or not by the user.

On the one hand, in terms of various security and efficiency requirements, mostly
depending on the environment where the PKI must be set-up (internet, industrial archi-
tecture, power limited devices...), the current state of the art for PKIs is quite substantial.
In terms of efficiency, solutions to reduce communication and computation costs of the
revocation checks arose, such as H-OCSP [22] or Delta-CRL [9]. Moreover, the needed
trustfulness in the CA has been intensively studied in order to reduce the impact of
malicious behavior. Indeed, in PKIX, a compromised CA is able to ruin the entire au-
thentication mechanism by delivering illegitimate certificates. Then, solutions based on
public logs of CA’s action emerged, with for instance Certificate Transparency [18]. In
this paradigm, certifications are included in append-only log structures: the log main-
tainer is able to prove that a specific certificate is present into the structure, and that each
new added certificate has only extended the previous structure. The Accountable Key In-
frastructure [16] exploits public-logs for the certificate management and distributes the
trust between several entities. In [25], the authors provide a solution combining public
revocation and a more largely distributed trust (using users’ browsers) with the Certifi-
cate Issuance and Revocation Transparency.

On the other hand, more recently, the Attack Resilient Public-Key Infrastructure
(ARPKI) [4] proposes a PKI where clients choose several authorities (CAs and log
maintainers) involved into the global process. There, each of these authorities super-
vises the others’ behavior: as a consequence, a single non compromised entity is suffi-
cient to prevent attacks. The solution described in [29] with the Distributed Transparent
Key Infrastructure (DTKI), provides security even in the case where all these entities
are corrupted. Notably, the security of ARPKI and DTKI has been formally proven us-
ing the automatic cryptographic protocols verification tool Tamarin [19,27]. Most of
these advanced solutions provide enhanced security to the cost of some complexity in
the procedures. In a practical set up these solutions involve several authorities, which
must be involved in the management of technical services (this is particularly true for
the management of worldwide append-only logs). Furthermore, these schemes rely on
a CA’s signature of certificates in order to guarantee the binding between the public key
and the identity.

1.2 Contributions

In this paper, we formally describe and prove the security of a public-key infrastructure
called LOCALPKI, based on the PKI 2.0 paradigm [6]. The PKI 2.0 project and its
instances such as LOCALPKI are seeking to democratize the attribution of people cer-
tificates, like what Let’s Encrypt is doing for server certificates. They are essential for

secured transactions: authentication, digital signature, confidentiality. LOCALPKI re-
moves three known bottlenecks of PKIX: remote delivery, cost of certificates and their
complexity of use. The idea is to replace CA signed certificates by user self-signed cer-
tificates. However, contrary to PGP [30], trust is not given by users but by an authority.
This authority, a combination of notaries and local actors in our setting, guaranties the
binding. Indeed, after registration of a certificate owner by a notary, other users will
be able to verify the authenticity of this certificate via a request. For a private verifi-
cation, a possibility is to send a request to the notary, similar to an OCSP procedure:
the notary’s response depends on the looking up of uniquely recorded legitimate users
in his database. For a public verification, a possibility is to provide hashed and signed
subsets of the database, similar to NSEC3 [17] (or now NSEC5 [28]) records within
DNSSEC [5]. Also, as in PKIX, registration and authentication do not need be per-
formed by the same entities. In PKIX the former step can be performed by a Registration
Authority. In LOCALPKI, this entity is a local RA, known by the notary and close to the
user. It can be a technical service, just like a classical registration authority, but it can
also be a local actor or a business service, closer to users. We have in mind banks, postal
offices, mobile network operators, delivery points, university offices, for example, and
more generally any actor used to check identities. For the user, he can get a free certifi-
cate (with possibly paid options available) near his home or work place with the security
of face-to-face enrollment (identity verification). For local registration desks, it would
often be in its own interest to deliver people certificates to its members or clients. These
member/client certificates will enable them to authenticate and perform online opera-
tions, for instance securely signing contracts. Moreover, the involved entities, except
for the notaries, do not really need any technical knowledge. Overall, our proposition,
LOCALPKI, is a first instance of the PKI 2.0 paradigm offering an alternative to PKIX.
LOCALPKI is able to provide the same services as PKIX, from authentication to revo-
cation, via, e.g., cross-certification. But the approach uses instead a user-centric model
and does not need a signature by an authority for each certificate. From the simplicity
of its setup, we show that LOCALPKI also becomes an interesting solution to deploy a
PKI in the Internet of Things context. Further, in this paper, we also provide a security
analysis of all our protocols, using the formal verification tool Tamarin [19,27]. Finally,
we show that the implementation of the LOCALPKI in a practical environment can be
effectively realized using existing PKI tools: we have deployed a prototype web-based
implementation available for testing there: http://hpac.imag.fr/localpki.

1.3 Organization of the paper

In section 2, we start by defining entities involved in LOCALPKI, and we make a high-
level comparison with PKIX. Then in Section 3, we formally describe all the protocols
involved, i.e. the registration, authentication and revocation mechanisms. We also de-
scribe a private blockchain based solution to efficiently interoperate multiple instances
of LOCALPKI. Section 5 is devoted to the deployment of the architecture, using exist-
ing tools and solutions. Finally, in Section 6, we define the required security properties
and an associated formal model for LOCALPKI. Those enable us to formally prove the
security of LOCALPKI, using Tamarin. Finally, in Section 7, we show how to deploy
LOCALPKI as an Internet of Things PKI.

http://hpac.imag.fr/localpki

With respect to the conference version of this paper [11], we describe a complete
use case of LOCALPKI in the Internet of Things context (Section 7). We also extend
the system in order to be able to interoperate multiple instances of LOCALPKI, for
instance using a private blockchain (Section 4). Finally we add some specifications
on the deployment and propose a web-based prototype implementation of LOCALPKI
registration (Section 5).

2 General Description

In this setting, LOCALPKI is a set of protocols which fulfills all the requirements of a
public-key infrastructure (PKI): registration of a new user, authentication of registered
users, revocation of certificates, renewals, cross-certification, etc.

Informally, the main idea is that users will produce themselves their self-signed cer-
tificates, and that notaries will only store the signed hash of this certificate and its serial
number. The notaries them manage these within a database. On-line authentication is
realized by the notary, just verifying that a given certificate hash is present or not in the
database.

In the following, we give more details on the protocols and start by introducing the
different entities and their role.

2.1 Entities

There are three different entities in LOCALPKI: the Electronic Notaries (EN), the Local
Registration Authorities (LRA) and the users (or End Entities).

The Electronic Notary might be seen as the root CA in a classical PKI architecture.
Actually, he manages the databases containing registered users.

The Local Registration Authority represents the intermediate entity between the user
and the notary. It is somewhat like a Registration Authority in a classical PKI, but in
LOCALPKI it is closer to users than to the CA. In practice, the LRA could be an agency
close to the user, such as the user’s insurance company, his bank, the postal office,
etc. Those agencies usually already have the abilities to check identities. The LRA is
registered by some EN, and the identity checks are performed during the recording of
a new user. The multiplicity of Registration Authorities reduces the systemic risk that
exists in the event of a Certification Authority compromise.

Finally, users represent the entities who want to authenticate or be authenticated by
others.

2.2 Comparison with PKIX

The main differences between LOCALPKI and PKIX are:

– In LOCALPKI registration authorities do not need to be security experts. Therefore
they can be closer to users and allow more widespread deployment of the use of
certificates in every day life (see § 3.2).

– Certificate creation is done by the CA in PKIX; in LOCALPKI it is done by the LRA
while the notaries store and make this decision available (see § 3.2).

– The default authentication mode in PKIX is a buffering via the CRL; while default
authentication mode in LOCALPKI is interactive, somewhat like OCSP Online-
Certificate Status Protocol (see § 3.3).

– The alternative authentication mode in PKIX is OCSP, while LOCALPKI can also
propose an alternative buffering mechanism called Certificate Verification Lists
(CVL), described in Section 3.3.

User RA CA

1. Cert. Request

2. ID Check

4. Cert. creation

Repository

ID: User

User Public Key

User Information

Validity

Signature by CA

5. Publication

3. Forward Req.

Fig. 1. PKIX registration [11, Fig. 2].

From a closer look at both protocols execution, the major difference is in the sig-
nature of the user’s certificate: in PKIX, the CA’s signature is present whereas in LO-
CALPKI only the self signature made by the user is required. As shown in Figure 2,
certificate creation is realized in the 2nd step by the owner instead of the 4th one by
the CA for PKIX, as shown in Figure 1. Furthermore, the registration authority for-
wards a certificate request to the CA, while the LRA only sends the certificate’s hash to
the notary. Finally, in LOCALPKI certificates are not directly published since the EN’s
database only contains hashes.

Hence, interactive authentication is also different as shown in Figures 3 and 4: with
LOCALPKI, owners have to provide their certificates to users beforehand, and then the
users interact with notaries in order to be convinced of the certificate’s validity; with
PKIX users can recover certificates in a local repository and then interacts with OCSP
responders to be convinced of the certificate’s validity. The full protocol, in particular
the buffering mechanism (the CVL, also called public mode within LOCALPKI), is
detailed next.

Local RA Notary

2. Cert. Creation

3. Hash of cert.

Database

ID: User

User Public Key

User Information

Validity

Self Signature by User

4. Storing hash

1. ID Check

User

Fig. 2. LOCALPKI registration [11, Fig. 1].

Notary Bob

Alice

3. Alice?

4. Hash

5. Checking:
Cert validity
Notary signature

Notary

1. Alice? 2. CertA 6. {M}PkA

Fig. 3. LOCALPKI end entity interactive authentication [11, Fig. 3].

Repository Bob OCSP

Alice

1. Alice?

2. CertA

3. CertA is
valid?

4. Ok/Unk/Rev

5. Checking:
Cert chain
OCSP signature

6. {M}PkA

Responder

Fig. 4. PKIX end entity interactive authentication [11, Fig. 4].

3 Protocol Description

We now give some notations and then formally define the LOCALPKI protocols.

3.1 Notations

The concatenation of two messages m1 and m2 is denoted m1||m2. Generally, the nota-
tion OA is used to express the belonging of the object O (e.g., a certificate) to the user
A. We denote by PkA (resp. SkA) the public key (resp. private key) of a user A. We write
{m}PkA (resp. {m}SkA) the action of ciphering (resp. signing) a message m with the pub-
lic key PkA (resp. the private key SkA). Hashing a message m is written H(m), with H
the hash function. We denote by X509() a function which takes user’s information and
returns them into the X509 certificate format without any signature.

3.2 Registration of a New User

A user first needs to be enrolled into the system: this step is called registration.
The phase starts by a new key pair generation by the user. After he interacts with

a LRA for the registration process. In LOCALPKI the LRA should be physically close
to the user, so that they can meet in person. The user begins by providing ID proofs
according to the established security policy (e.g., a visual check of the ID card). Once
the identity check succeeds, the user gives his public key to the LRA. Next, the author-
ity generates a field equivalent to the ToBeSigned (TBSCert) in the X .509 certificates,
containing at least: the user’s ID, his public key, a Serial Number (SN), a validity period
and the URL of the notary associated with the LRA. The SN has been obtained by the
LRA from previous exchanges with the EN. The latter is in charge of the SN generation,
and communicates to each supervised LRA a specific range of SN. For the next step, the

user hashes the previously generated T BSCert and signs the digest: the result is called
SI (Signature Id). Afterwards, by using the previously provided public key, the LRA is
able to recompute the digest and then to check the correctness of the signature. At this
step, the user has proven his knowledge about the associated private key to the LRA.
The final registration phase is performed by the EN who registers the unique couple
(SN,SI) (this is a simplified version of what is called a “public key ownership certifi-
cate” in [6]). For this, the LRA ciphers the couple using the EN’s public key, and sends
the result along with its signature of this message (i.e., {H(SN,SI)}SkLRA). In the end,
the registered user owns a certificate Cert containing the T BSCert, and in particular the
SN and the SI, while the EN has added the associated couple (SN,SI) to his database.
The complete process is detailed in Algorithm 1 and schemed in Figure 5.

Algorithm 1 Registration of Alice
Require: The LRA owns a priori serial numbers, provided by a trusted electronic notary EN.
Ensure: Identity check (by the LRA) and registration of Alice into the EN database.
1: Alice generates his public key PkA.
2: Alice→ LRA: PkA
3: LRA checks information and identity of Alice.
4: LRA→ Alice: Serial number (SNA), notary URL (URLEN), validity.
5: Alice generates a X .509 certificate T BSCertA (completed with URLEN and SNA), and com-

putes SIA = {H(T BSCertA)}SkA

6: Alice→ LRA: T BSCertA||SIA
7: LRA checks SIA (PoK of the Alice private key).
8: if Verification OK then
9: LRA→ EN: {SNA||SIA}PkEN ||{H(SNA||SIA)}SkLRA

10: end if
11: EN decides to add Alice to his database.

3.3 Authentication

Once the owner of the certificate has been correctly registered, other users could au-
thenticate him i.e., they are ensured that the used public key is indeed the owner’s one.
The authentication process in LOCALPKI can be realized in two different ways. First
by using a private mode, where only the EN knows the full database containing reg-
istered users. In this case, the user requests the EN about the validity of the owner’s
certificate, and no more information is revealed. The second possibility is to apply the
public mode (also called buffering mode), where the EN shares parts of his database
with the user, who makes the validity verification by himself. In both cases, the user
must be able to first authenticate the EN using the URL provided in the certificate. As
in PKIX, the mechanism used in LOCALPKI is the trust anchors [24]. A trust anchor
contains certificates of the trusted notaries. Then, users are able to retrieve information
on notaries, in particular their associated public key. In the following, we detail both the
private and public modes.

Alice Local Registration Authority Electronic Notary

PkA //

SNA,URLEN ,Validityoo

T BSCertA =

X509(Alice,PkA,SNA,Validity,URLEN)

SIA = {H(T BSCertA)}SkA

T BSCertA||SIA //

Check: {SIA}PkA

?
== H(T BSCertA)

SILRA = {H(SNA||SIA)}SkLRA

C = {SNA||SIA}PkEN

C||SILRA //

Check:{SILRA}PkLRA

?
== H({C}SkEN)

Add (SNA;SIA) to CVL

Fig. 5. Registration of Alice [11, Fig. 5].

Private Mode. The specificity of the private mode resides in the database of registered
users, which is only known by the EN. Then the validity check of the owner’s certificate
by another user (the verifier) is made by interacting with the EN at verification time.
First the verifier gets the certificate from the owner. Then, the verifier has two possibil-
ities: he can check the owner’s self signature by himself (Algorithm 2) or delegate also
this task to the notary (Algorithm 3).

In the first case, the Authentication Request (AR) only contains the couple (SN,SI)
and a nonce R. In the second case, the AR is made of the complete certificate and a
nonce. In any case, the entity verifying the signature has to extract the public key, the
SI and the T BSCert from the certificate. Then, he hashes the T BSCert and applies the
cipher on the SI using the public key. The verifier also checks that the EN associated to
the URL contained in the certificate belongs to his trust anchor, otherwise authentication
cannot be realized. Then, he sends the correct AR (depending on the choice of the

Algorithm 2 Certificate check in private mode (self signature verification)
Require: Alice gets the certificate from Bob. She wants to check the validity of the certificate.
Ensure: Authentication of Bob to Alice if the certificate is correct, failure otherwise.
1: if {SIB}PkB

?
== H(T BSCertB) then

2: Alice: RA←$

3: Alice→URLEN : AR=SNBob||SIBob||RA
4: if (SNBob;SIBob) ∈ Database then
5: Rep = ”OK”||AR
6: else
7: Rep = ”Unknown”||AR
8: end if
9: URLEN → Alice: Rep||{H(Rep)}SkEN

10: Alice checks the response signature, and authenticate (or not) Bob.
11: end if

Algorithm 3 Certificate check in private mode (delegate signature verification)
Require: Alice gets the certificate from Bob. She wants to check the validity of the certificate.
Ensure: Authentication of Bob to Alice if the certificate is correct, failure otherwise.
1: Alice: RA←$

2: Alice→URLEN : AR=CertBob||RA

3: if {SIB}PkB

?
== H(T BSCertB) then

4: if (SNBob;SIBob) ∈ Database then
5: Rep = ”OK”||AR
6: else
7: Rep = ”Unknown”||AR
8: end if
9: else

10: Rep = ”Wrong Signature”||AR
11: end if
12: URLEN → Alice: Rep||{H(Rep)}SkEN

13: Alice checks the response signature, and authenticate (or not) Bob.

signature verification) to the indicated EN. During the next step, the EN looks for the
given IDs in his database. If they are found, he responds positively, otherwise he gives
a negative answer. The complete message consists of the previous answer, the nonce R,
the couple (SN,SI) and the signature by the notary of all the previous contents. Finally,
the verifier checks the EN’s signature of the answer using the public key extracted from
the EN’s certificate (stored in the user trust anchor). An example of authentication can
be found in Figure 6.

Public Mode: Certificate Verification List. In the public mode, checking the owner’s
certificate validity is realized by the verifier. He first obtains the owner’s certificate.
Then he must check that the certificate’s signature (i.e., the SI) is consistent with the
information contained in the T BSCert (i.e., the public key and the SN). After having
checked that the EN belongs to his trust anchor, the verifier sends a request to the EN

Alice Electronic Notary

Knows CertB from Bob

Recovers (T BSCertB,SIB) from CertB with T BSCertB = Bob||PkB||SNB...

Check: H(T BSCertB)
?

== {SIB}PkB

RA
$←−

RA||SNB||SIB //

If (SNB;SIB) ∈ CVL Then

Rep = ”OK”||RA||SNB||SIB

Else Rep = ”Unknown”||RA||SNB||SIB

Endif

SIRep = {H(Rep)}SkEN
Rep||SIRepoo

Check: H(Rep) ?
== {SIRep}PkEN

Fig. 6. Authentication of Bob by Alice (in private mode) [11, Fig. 6].

designated by its URL in the certificate. This request asks for the Certificate Verification
List (CVL) i.e., the content of the database storing the couple (SN,SI) of previously
registered users. To exchange the CVL with the user, the EN sends a signature of the
CVL in addition to the list itself. This also ensures its integrity. Finally, the verifier
checks the signature of the EN, and then verifies that (SN,SI) belongs to the CVL. Of
course, just like a CRL, a CVL can be locally stored (buffered) and reused in a certain
time interval without any refreshment. Just like for a CRL, a typical refreshment rate
for a CVL could be in days. An example of public authentication is given in Figure 7.

Even if the public mode reduces the number of operation realized by the EN, it
implies a non-negligible communication cost. In order to reduce it, the idea is to divide
the database into subdomains. Indeed, the EN is in charge of the generation of the SN
given to the LRA. Hence, the database is intrinsically divided into LRA subdomains.
Then, the verifier could buffer only the CVL associated to a subdomain, and hence the
communication cost between the client and the EN is reduced to this subdomain size.

Comparison between Public, Private Modes and PKIX Mechanisms. LOCALPKI
is designed to be used by default in the private mode, offering a lower communication
cost and an always up-to-date database. Nevertheless, the CVL are interesting in the case
where an online interaction is not always guaranteed. In comparison with mechanisms
used in PKIX, the private mode can be assimilated with OCSP and CVL with CRL.
Initially, OCSP was not designed to resist against replay attacks. In a later version, a
counter-measure has been added to the responseExtensions field (see [26, § 4.4.1]).
However, as discussed in [26, § 5], this solution is not required by the norm. In the
private mode of LOCALPKI, replay attacks are countered by default.

Alice Electronic Notary

MySubDomain CVL //

SICV L = {H(CV L)}SkEN
CV L||SICV Loo

Checks: H(CV L) ?
== {SICV L}PkEN

Knows CertB from Bob

Recovers (T BSCertB,SIB) from CertB

(with T BSCertB = Bob||PkB||SNB...)

Checks: H(T BSCertB)
?

== {SIB}PkB

Checks: (SNB;SIB) ∈? CV L

Fig. 7. Authentication of Bob by Alice (in public mode) [11, Fig; 7].

In PKIX, the complete list of revoked certificates must be shared. Thus, the com-
munication cost is large. A way to reduce these large broadcasts, on solution can be
to use δ-CRL’s. Similarly we proposed to allow subdomain CVL’s. In the case of the
CVL, only the subdomain part containing the certificates need to be exchanged to have
a correct authentication. But, unlike δ-CRL, a subdomain CVL is fail-safe. Indeed a user
looking only in a partial CRL can miss that a certificate has been revoked with another
reason, and still use it. On the contrary, if a valid certificate is not present in a subdomain
CVL, it just cannot be used.

Furthermore, CRL based solutions expose users to false positive authentications.
Since a CRL is not continuously updated, recently revoked certificates could still be
considered valid. By using a white-list strategy like CVL, verifiers may not succeed in
authenticating newly registered users. However, once again, obtaining a false negative
is usually a safer fail than a false positive. Besides that, only valid certificates are stored.
Then, in case of authentication failure, the verifier cannot know the reason (revocation,
unregistered user).

3.4 Revocation

A public key infrastructure should provide a solution to revoke certificates before the
end of their validity period. This allows for instance to manage lost or compromised
key pairs. In LOCALPKI, a certificate revocation can easily be done by the certificate’s
owner or by the LRA, via a request to the EN. In both cases, this request is signed and
contains the owner’s certificate along with a Revoke message, as shown in Algorithm 4
thereafter. In case of a request from the owner’s certificate, the signature acts as a proof

of knowledge of the private key. In case of a request by the associated LRA, the notary
has anyway to accept registrations from this LRA (for instance within a range of allowed
serial number values). This same range can be used to guaranty that the LRA is allowed
to revoke this serial number. Hence, in both cases, the EN verifies the signature and
if the couple (SN,SI) is present in his database, he simply removes the entry. Thus, an
authentication attempt using this revoked couple fails, since the entry has been removed
from the EN database. Then the renewal procedure is simple: after the revocation, the
user has to enter a new registration process with his LRA.

Algorithm 4 Certificate revocation
Require: Alice correctly registered in the EN database. X ∈ {LRA,User}
Ensure: The certificate revocation of User
1: X → EN: SIRev =CertX ||{H(”Revoke”||(SNUser;SIUser))}SkX

2: EN checks signature
3: if Verification is OK and (SNX ;SIX) ∈ DataBase then
4: EN removes (SNX ;SIX) from the database.
5: end if

4 Infrastructures interoperability

4.1 Cross-certification tag

In PKIX, cross-certification is a mechanism allowing the interoperability between pri-
vate PKI. This means that users from a PKI A, are then able to authenticate other users
belonging to the PKI B. In practice, the cross-certification consists in the signature of
a CA’s certificate by another CA. In the end, this creates a trust path between the CAs,
which is verified during the authentication process. The cross-certification is generally
transparent for the end-users, since the technical checks are realized by the CA. In
LOCALPKI, we explain in the following how to define a similar and efficient interop-
erability system using private blockchain based techniques.

First, each notary should carefully look into the operational mode of the others, to be
sure that their security policies do coincide. This is in general realized via a set of audits
and agreements. Then, the notaries should tag each entry of their database with the
issuing notary name. This process is needed to ensure the uniqueness of each database
entry. In practice, the set of SN is individually managed by each EN and thus, inter-
notary collisions might be possible. The tag could be the notary names, or a specific
identifier which identifies them. A database entry of an EN with a tag TAGk for a end-
user indexed with i thus has the following format in a cross-certification setting:

TAGk,SNi,SIi

4.2 Database exchange

A first solution ensuring the interoperability between several ENs could be to setup a
databases exchange. For instance, the notaries EN1 and EN2 agree on a secure exchange
protocol, where for instance mutual authentication could be performed out of band.
Then, they simply exchange their own signed database, like in the CVL mechanism.
In the end, both notaries obtain a shared database. This process could be sufficient
when the PKI are locally deployed, e.g, when a company wishes to authenticate users
belonging to two distinct subsidiaries, running two instances of LOCALPKI.

This is however inefficient in most cases: indeed, since revoked certificates must be
removed from the database and new users can be frequently added, the whole databases
would have to be frequently checked and exchanged. We propose an update mechanism
that should reduce the communications volume and give the possibility to easily add
and remove data from a shared database.

4.3 Private blockchain solution

In fact, the problem is quite exactly that of the management of accounts and their balan-
ce in the shared state of the Ethereum cryptocurrency [7]. There, the solution is based
on the use of a structure called a Merkle PATRICIA Tree (MPT) [15]. This structure
combines that of radix trees [21] with Merkle hash trees [20]. The first ones allow
efficient additions or deletions of nodes, whereas the second use the nodes hashes as
pointers to the next nodes. In the context of LOCALPKI, the leafs represent an entry
of the EN database. Then, to update their mutual databases (which became a shared
database thanks to the cross-certification), the notaries have only to update their MPT.

Overall the solution is thus to setup the database as a private blockchain, between
the notaries involved in the cross certification, using Merkle PATRICIA trees as the
underlying data structure.

5 Deployment

LOCALPKI has the advantage to be easily deployed from an existing PKIX. Actually,
each of these requirements can be satisfied by adapting the current standards of PKIX.
In the following, we present how to realize it.

Certificate format. First of all, certificates employed in LOCALPKI can be based on
X.509v3 certificates [9]. Indeed, both PKI, LOCALPKI and PKIX, share the same
kind of identification data (TBSCert). Then, the CA’s signature is replaced by the
user’s signature and the SN can be stored in the serialNumber field.

On-line authentication request. The communications with the notaries during authen-
tication in the private mode, Figure 6, can be set up using the OCSP norm [26].
Within the OCSP request, the SN replaces the current serialNumber in the CertID
sequence, and the SI is stored in the signature field of the optional Signature
sequence. Note that other fields in CertID, such that the issuerNameHash and
issuerKeyHash, could be left empty since this information is either irrelevant or
redundant with the SI. The nonce RA (see Figure 6 and Algorithms 2 and 3) can be
stored into the OCSP requestExtensions.

On-line authentication response. Similarly, the notary’s answer can also follow the
OCSP response format, where all the latter fields are also present.

Certificate Validation Lists. In the public mode, Certificate Verification Lists (CVL)
can be managed just like Certificate Revocation Lists (CRL). For example, a CVL
could be published on the EN websites, and can be stored in local repositories.
Moreover, if an organization with subdomains is required, e.g., each range of SN
represents a subdomain, the Delta-CRL indicator could used [9], as well as the
BaseCRLNumber field which could represent for us an equivalent Base CVL number
field.

Revocation. The revocation requests within LOCALPKI and PKIX are almost identi-
cal. Thus, LOCALPKI may use the Certificate Management Protocol [23] directly
for revocations.

End-user authentication. All authentication mechanisms using X.509 certificates, like
Simple Authentication and Security Layer (SASL) (e.g., via ISO IEC 9798-3), are
still enabled with LOCALPKI.

Web of trust. Similarly, enhancements to the web of trust between authorities like
ARPKI [4] or Certificate Transparency [18], which use append only log servers
are also applicable to LOCALPKI.

Trust anchor stores. Finally, PKIX requires trust anchors [24] to be deployed, e.g.,
within the store of the users’ browsers or OS’s. Communications between LRAs
and notaries, also require an anchor mechanism and that of PKIX can also be used
directly.

Therefore, existing tools like OpenSSL allow for all entities to generate keys, cer-
tificates, authentication and revocation requests or responses. The technical setup of
LOCALPKI is mainly restricted to the management of the databases. This is delegated
to the EN, who are thus also in charge of maintaining the PKI availability. LRAs are in
charge of communications with the notaries, that is mainly exchanging serial numbers,
and of the face to face identity verifications.

Differently, users have several possibilities, depending on their expertise.

– Expert users, first generate themselves their own key pair. Then they request a serial
number, SN, through the LRA, in order to create and sign their certificate. Finally
they give the associated SI to the LRA who will forward it to the notary.

– An intermediate possibility, is for the user to only generate a key pair. The LRA
will then take charge of the certificate creation and provide means for the user to
sign it with his private key (for instance a usb port and a keyboard so as to type the
password deciphering the private key stored in a usb device).

– The LRA can also create fresh key pairs on the fly and provide everything to the
user.

Part or all of the latter two possibilities are easily realized through a dedicated
web site. Therefore, the only technical requirement for the LRA is the use of tools like
OpenSSL, in order to help the users registration and the creation of a user-friendly as-
sociated API.

We have realized a web-base prototype implementation of the system, available
there:

http://hpac.imag.fr/localpki

This first prototype uses PHP to call some OpenSSL scripts as shown with the capture
of Figure 8.

Fig. 8. Web-based prototype implementation of LOCALPKI

The main OpenSSL scripts do implement LOCALPKI functions as follows:

– As a LOCALPKI certificate is self signed, openssl req -new -x509 can be used
to generate it (for PKIX, it would b a self signed root CA certificate).

– To be handled by most web browser, the generated PEM format certificate can then
be converted to the PKCS12 format, via openssl pkcs12.

– Additionally, openssl genrsa can be used to generate the public/private key pair
for the user.

6 Security Analysis

Using asymmetric cryptography, LOCALPKI aims at making authentication of users
possible. However, the protocol also provides other security guarantees. In the follow-
ing, we first define the security properties of LOCALPKI. Then, we use an automatic
cryptographic protocols verification tool called Tamarin Prover, in order to prove these
security properties.

http://hpac.imag.fr/localpki

6.1 Security Properties

Firstly the protocol must be correct, i.e., if a person has been correctly registered into the
database and her certificate is still valid, then he must be correctly authenticated. The
underlying property correspond to classical authentication property and is thus about
correct identity checks.

Vice versa, an adversary who has not been registered cannot be authenticated. This
soundness property implies that an adversary cannot forge a certificate considered as
valid and cannot impersonate a valid one. A reformulation of the soundness property is
that authentication at time i2 implies a registration at time i1 with i1 < i2.

In [4], the authors also defined the Connection Integrity as follows: if a user estab-
lishes a connection with another one, then the user communicates with the legitimate
owner of the private key. In others words, in the case where registration has been cor-
rectly done (i.e., by honest participants), no adversary can possibly know the private
key of the honest owner.

Moreover, the protocol must ensure some secrecy properties. Indeed, a protocol
execution must not reveal any sensitive information: once authenticated, the adversary
cannot know the message.

To summarize, by assuming that LRA and the EN are trusted, LOCALPKI verifies
the following security properties:

– Correctness: if a user has been correctly registered and is not revoked then he must
be correctly authenticated ;

– Soundness: if a user has been authenticated, then he must have been registered
before and he has not been revoked before;

– Connection Integrity: if a user is correctly registered, then the adversary does not
know his private key.

– Secrecy: once a user is authenticated, the messages sent to him cannot be learnt by
the adversary.

6.2 Tamarin Prover Modeling

We use Tamarin Prover an automatic security protocol verifier [19] to prove these se-
curity properties. This tool can verify an unbounded number of sessions. Moreover the
intruder follows the Dolev-Yao’s intruder model [10]. This means that the intruder ex-
tracts all possible information from every exchanged messages on the network. The tool
assumes the usual perfect encryption hypothesis (i.e., the adversary cannot learn any in-
formation from encrypted messages if he does not know the corresponding secret key).
We consider classic equational theories provided by default by Tamarin for the crypto-
graphic operations like encryption or signature. In Tamarin, the protocols are modeled
by some multiset rewriting rules. These rules are composed of facts, which model the
local knowledge of a participant, such as the reception of a message, or the generation
of a fresh number or the emission of a message. Then, each role action is implemented
as a rule. A rule rewrites a fact into another one, and is eventually labeled in order to
trace the realized actions. For example, a rule rewriting a fact composed of a message
and key into a message containing the encryption of the message with the key could be

labeled as Cipher. Facts could be persistent (denoted with a ! before its name), which
means that it can be reused arbitrarily often by some rules. Otherwise facts are said to
be linear and can be used only once. Once the protocol is modeled by some rules, we
model the desired properties as lemmas. A lemma is a first-order logic sequence ap-
plied on the label of previously defined rules. They contain quantifiers (∀: All, ∃: Ex)
and logical connectives (&,|,not, ==>), along with timepoints (declared with #, and
employed with @). For example Ex sna sia #i. Bob Auth Alice(<sna,sia>) @i
means that the event Bob Authenticates Alice using variables <sna,sia> occurs at time
i.

Now, we detail our model and the properties proved. We also show that trust hy-
pothesis on entities are mandatory, just like, e.g., trust hypothesis are required on CAs
in PKIX, by describing attacks found by the tool if any of these hypothesis is removed.

All the Tamarin source files can be found at: http://hpac.imag.fr/localpki.
See the associated Makefile for details on how to generate proofs and attacks with
Tamarin.

6.3 LOCALPKI Tamarin Model

According to the result of [8], where the authors prove that for verifying a secrecy prop-
erty only one intruder is enough and for an authentication property one intruder and at
most one honest participant per role is enough, we consider a protocol execution where
we have only one notary, one LRA, one registered user (Alice) and one verifier (Bob).
Our model of this execution comprises the registration of Alice, her authentication by
Bob followed by an exchange of a message, and the revocation of her certificate.

In PKIX paper, key pair generations are modeled by generic persistent facts, instan-
tiated with different terms. These facts bind the identity of the entity with its public key
to represent the trust anchors, i.e., other entities have the correct association between
the public key and the identity. Thus, we model the trust anchors of the LRA and the EN
in the same way. In the case of Alice, we need to explicitly define the self-signed certifi-
cate described in the Algorithm 1. Moreover, we assume also that the Alice’s certificate
is public. We have two types of communication channels, depending on the situation:

– a real-life meeting,
– insecure channels.

Since the registration must be realized during a real-life meeting, we assume that
it is not subject to any intruder attack. Therefore, our model expresses the information
exchanged between the LRA and Alice with a private channel (i.e., the adversary is not
able to learn or modify any information for this exchange). All others communications
are public and then controlled by the intruder and exposed to eventual wiretapping.

The registration of the couple (SNA,SIA) in the database is modeled as a state which
associate the knowledge of (SNA,SIA) to the identity of the EN.

Finally, for revocation we have to represent the removal of the certificate from the
database. For this we used a tag into a persistent fact to express that the revocation is
definitive.

http://hpac.imag.fr/localpki

6.4 Security Properties

First, we explicit security properties i.e., lemmas, in the case where all entities are
supposed honest but in presence of an intruder. As defined in the Section 6.1, we have
implemented lemmas about correctness, soundness and secrecy of the protocol.

Soundness. The first lemma (soundness) proves the soundness of the LOCALPKI. The
couple <sna,sia> represents SN the Serial Number and SI the Signature Id of Alice.
Each label in the lemma represents when the actual event occurs. The idea is to prove
that for all possible couples <sna,sia> related to the Alice’s private key ltkA, if Bob
has successfully authenticated Alice at time i (Bob Auth Alice()), then it means that
Alice has been previously registered (at time j, by the notary, EN Reg Alice()), and
that if the certificate has been revoked (Cert Is Revoked()), then it was at an earlier
time k:

lemma soundness:
all-traces
"All EN B sna sia #i.
Bob_Auth_Alice(B, <sna,sia>, ltkA) @i
==>
(Ex #j. EN_Reg_Alice(EN, <sna,sia>, ltkA)@j
& (j<i)) &
(All #k.
Cert_Is_Revoked(EN, <sna,sia>, ltkA)@k ==> i<k)"

Correctness. The second lemma (correctness) ensures that our model is correct, i.e.,
there exists an execution where Alice is registered, Bob authenticates Alice and the
certificate is not revoked. Thanks to this lemma, we check that our model realizes the
protocol steps in a correct order. Other lemmas in our modeling also provide sanity
checks, for example to show that there exists a trace where the certificate has been
correctly revoked.

lemma correctness:
exists-trace
"(Ex EN B sna sia ltkA #i #j.
EN_Reg_Alice_(EN, <sna,sia>, ltkA) @i
& Bob_Auth_Alice(B,<sna,sia>, ltkA) @j
& not(Ex EN #l.
Cert_Is_Revoked(EN, <sna,sia>, ltkA) @l & i<l))"

Secrecy. In the secrecy lemma (secrecy), we ensure the secrecy of exchanged mes-
sages using a LOCALPKI based authentication. Then, we prove in Tamarin that the
message (denoted x) should not be in the adversary knowledge, written as K() at any
time.

lemma secrecy:
all-traces
"All x #i. Secret(x) @i ==> not(Ex #j. K(x)@j)"

Connection Integrity. Similarly, in the connection integrity lemma (connection), we
ensure that the secret key of Alice, ltkA, should not be in the adversary knowledge
neither in the case where Bob authenticates Alice from her certificate nor in the case
where the certificate has been revoked.

lemma connection:
all-traces
"(All EN sna sia ltkA #i.
Bob_Auth_Alice(B, <sna,sia>, ltkA)@i
==> not(Ex #l. K(ltkA) @l))

& (All B sna sia ltkA #i.
Cert_Is_Revoked(EN, <sna,sia>, ltkA) @i
==> not(Ex #l. K(ltkA) @l))"

In other words, whatever subsequent messages sent by any user, Alice’s private key
remains private.

6.5 Trust assumptions

Next, we show that our trust assumptions in both the LRA and the EN are mandatory in
order to preserve the security of the protocol (as is the case in PKIX). To show this we
present attacks on the protocol where one of the entity is malicious i.e. its private key is
given to the adversary.

Trust in the EN. In the case where the notary is corrupted, the secrecy is not verified
because he is able to add a false key pair to his database. Then after the authentica-
tion of Alice by Bob with these keys, a wiretap between communications allows him to
retrieve secret exchanged information. Soundness is also falsified: since the adversary
has access to the EN’s private key, he acts as Alice has been previously registered into
the EN database whereas she is not. In practice, this attack represents the possibility
to the notary of giving to the person of his choice the trust to be authenticated. Con-
cerning the connection integrity property, Tamarin finds an attack as soon as the EN’s
key is leaked to the adversary. The attack is the following: after its initialization, the
EN registers himself as Alice. This means that the adversary forges a certificate using
Alice’s identity, and uses its own private key to sign the certificate. At the next step,
Bob authenticates Alice using this certificate, and the adversary knows the associated
private key: therefore the connection integrity is broken. First, this attacks highlights
the obvious forgery ability of a malicious notary. Second, it shows that the connection
integrity property is well-defined. Indeed, such a forgery ruins the integrity, even if the
adversary has no knowledge of the Alice’s actual private key. This proves that the EN
should be a trusted entity.

Trust in the LRA. When the LRA’s private key is leaked, the tool does not find any attack
on the soundness. From a practical point of view, this result makes sense: the LRA is
only involved into the registration process. Then, even if he provides false information,
Alice should be registered before an authentication process. However, by removing the
restriction of a unique registration per couple (SNA,SIA), the adversary sends a revoked
couple to the EN, in order to pass over the revocation. In practice, serials numbers are
provided by the EN so that this attack is easily preventable, by marking the used ones.
Secrecy is falsified because the adversary impersonates the LRA during the last step of
registration, by signing false information (i.e., false key pair). Then, since Bob does
not exchange messages with the correct Alice’s public key, and a simple wiretap allows

the adversary to retrieve secret messages. When the LRA’s private key is given to the
adversary, the connection integrity is also broken. During this attack, Alice registers
herself to the LRA. Then the LRA modifies Alice’s certificate by including its own key
pairs: the public one into the certificate, and the private one is used to sign the forged
certificate. Then, the fake certificate is sent to the EN. Afterwards, suppose that the
EN, for any reason, decides to revoke this certificate. At this point in time, the EN has
succeeded in revoking the certificate while the adversary knows the associated private
key. Hence, the connection integrity is broken. This attack shows the LRA ability to
forge certificates. In conclusion, this proves that LRA should be a trusted entity.

Trust in Alice. When Alice is corrupted, repercussions on the protocol security are lim-
ited. It does not influence soundness property. This result is coherent: even with Alice’s
private key is given to the adversary, he cannot be authenticated without a previous reg-
istering. In practice, a malicious behavior from Alice could be an identity fraud during
the registering if the LRA has been misled. However, this kind of attacks are out of
the Tamarin scope, since ID checking cannot actually be modeled. On secrecy aspects,
obviously, if the private key of Alice is leaked, the adversary is able to read the secret
messages sent to Alice. This attack could correspond to the Alice’s private key theft,
where both Alice and the attacker are able to retrieve messages ciphered with the as-
sociate public key. Finally, if the private key of Alice is leaked, connection integrity is
obviously broken, since the adversary can then use her key. Overall, we conclude that
Alice does not need to be a trusted participant.

6.6 Security of the LOCALPKI

From our security analysis, using the Tamarin prover, we have proven the following
theorem:

Theorem 1. If the notary and the local registration authority are not corrupted, then
the LOCALPKI security architecture is correct, sound, and preserves confidentiality
and integrity.

Our implementation consists of about 350 source lines of code to describe the model
consisting of 20 rules and 4 lemmas. In order to reduce proof timings we have associated
each entity to a defined Role. Moreover, we have enforced some actions to be unique
(denoted as Only One). These constraints are called axioms into the code. They avoid
generic rewriting of rules either by associating a fixed string to an identity variable
or either by implying timepoints equality in case of multiple uses of the same rules.
Therefore, using a single core of an i5 4590@3.50Ghz with 8GB RAM, we obtain very
good performance for the security verification, as shown in Table 1.

7 LOCALPKI as an Internet of Things PKI

By design, LOCALPKI is made to be deployed into services which are close to end-
users. Moreover, this architecture also presents many advantages if used within an
highly constrained environments like Industrial Control Systems or, more generally, the

Table 1. Timings of Tamarin’s proofs of lemmas [11, Tab. 1].

Lemma CPU Time

Correctness: 4.7 s

Soundness: 4.4 s

Connection integrity: 10.9 s

Secrecy: 6.6 s

Internet of Things (IOT). IOT is a paradigm where a wide variety of objects, like wire-
less sensors or mobile phone, are able to interact each others to accomplish a common
objective [1][14]. Because of the diversity of the architecture components, reaching se-
curity, or at least data integrity and authentication, is arduous. Particularly, this means
that no assumption can be made on the computational nor communicating capabilities
of the equipment. Another strong constraint of an IOT infrastructure lies into its setup
instability: many components are frequently added or removed, and thus the certifica-
tion process becomes complicated. In the following, we show that using LOCALPKI as
a security architecture for the IOT is a solution to some of the previous constraints.

In IOT, we can define a hierarchy: the manufacturer of the objects, the customer,
and finally the objects [2]. For instance, one can refer to medical equipment, where the
manufacturer sells to the hospital the connected devices. Here, there is a natural analogy
with the LOCALPKI actors: the manufacturer is associated with the EN, the customer
with the LRA whereas the things represent the end-users, as shown in Figure 9. Each
device is the owner of its own LOCALPKI certificate.

Electronic Notary

Local Registration Authorities

IoT devices

Manufacturer

Customer 1 Customer 2 . . .

IoT IoT . . . IoT

Fig. 9. LOCALPKI as an Internet of Things PKI

The setup works as following: the manufacturer produces his products, and asso-
ciates to each one of them a Serial Number. Then, he sells them to the customer. At this
point, the latter is able to generate their certificate according to the protocol 1. Further-
more, the customer (i.e. the LRA) has the possibility to send by batch all the requests
to complete the EN’s database. The manufacturer then acts as an Electronic Notary and
stores the certificates database. The customers acting as local registration authorities
and, potentially with the help of the manufacturer, configure the devices and authorize
them onto the network. As already mentioned, then any two devices are able to perform
mutual authentication with any challenge-response protocol, like SASL. Note that cus-

tomers also have the possibility to recover the database and set up their private notary
system.

From a practical point of view, this whole scheme allows to generate the certificates
out of bands, and then to communicate all the requests at the same time when a connec-
tion is available. The global communications volume is quite similar to PKIX, but the
distribution is different. In LOCALPKI, the majority of the communication is local, i.e.
it lies between the LRA and the end-users, whereas the registration authority of PKIX
is generally farther. Indeed, before authentication and confidential communication pro-
cesses, each device sends its public key certificate to each other. For both authentication
and confidential communication processes, each device must be sure that the public key
of the other device is authentic. To do so, each device can either use the public or private
modes of Section 3.3.

During the registration process in LOCALPKI, when the end-users and the LRA
agree on the certificate, the objects are ready to be deployed. On the contrary, with PKIX
the objects should had to wait for the Certification Authority signature. This means
that the objects cannot be fully deployed, since they do not have their certificate, until
the authority responds to the requests. Here, with LOCALPKI, once the certificate has
been created, it is stored into the object, and no more communication with is required
between the object and the EN. Then, the objects could be immediately distributed. Of
course, just like PKIX, secure communications are not possible until the EN validates
the LRA requests. The main advantage of LOCALPKI there is thus to be asynchronous.

Furthermore, LOCALPKI provides a more suitable fail-safe system than PKIX in
IOT. This comes from the use of white lists, which contains the valid certificates. On
the one hand, an update is needed to allow secure communications with new objects
which, as previously said, could be done by batches. On the other hand, these lists offer
a fine-grained controls on the set of authorized connected objects by giving them access
on the secure network only after they have been registered.

8 Conclusion

In this paper, we have proposed an alternative public-key infrastructure model, LO-
CALPKI. This model has been analyzed and its security formally proven using Tamarin.
The main feature is that, unlike the PKIX standard, here user certificates are self-signed
and only the binding of a certificate with an identity is signed by a third-party, a notary
in LOCALPKI. Therefore, it is easier for users to use certificates within their local en-
vironment. For instance, the registration process can be transferred to the notaries by
local businesses, which only have to handle identity verifications. We think that this
could foster a wider spread of certificates among everyday end users. For this, notaries
just have to maintain an accessible database of fingerprints. Hence, LOCALPKI is an
alternative to the PKIX solution, providing similar security properties.

Furthermore, we have shown in Section 7 that this is particularly well suited to con-
strained user-environments, such as Industrial Control Systems or, more generally, the
Internet of Things. In particular, the asynchronous certification process allows to have
an easy and flexible setup. Also, in some cases, the key management of LOCALPKI
is better than that of PKIX. Another example is for local businesses as a bank, where

bank customers have the possibility to look at their account from a website, quite of-
ten using a certificate-based authentication. Managing a classical PKIX either requires
a large internal department or a full delegation of trust to a PKI actor. By deploying
the LOCALPKI solution, the bank still preserves a local registration, and thus trust and
responsibility of its customers, and the technical part of ensuring their authentication is
deported to notaries. Overall, the cost and the technical requirements for the company
are reduced. Moreover, LOCALPKI also offers to small agencies the possibility to help
users for their registration. The economics incentive would be to offer this service only
at a moderate cost, where deploying a full PKI in every agency should be too expensive.

The main similarities and differences between PKIX and LOCALPKI are shown in
Table 2:

Table 2. Comparing LOCALPKI and PKIX

LOCALPKI PKIX

Certificate creation User & LRA CA

Certificate signature User CA

Certificate registration EN /

Default Interactive Off-line
authentication (Private mode) (CRLs)

Alternative Off-line Interactive
authentication (Public mode, CVLs) (OCSP)

Formal trust LRA & EN RA & AC

Finally, as seen in Section 5, the overall deployment of LOCALPKI can be made
using only existing tools and formats. This facilitates the process, as is demonstrated
with our PHP and OpenSSL prototype available implementation: http://hpac.imag.
fr/localpki.

Further work include:

– legal aspect on the shared responsibility of the LRA and the EN in LOCALPKI
should be studied. Indeed, both entities play an important role into the registration
and authentication processes. Our first idea is that the EN could register the identity
of the LRA sending information about new users and store this information also
within the database. Thus, if this user is recognized as malicious, the EN could
blame the LRA.

– trust enhancement of the authorities, just like for PKIX, is also an open problem.
Adapting the secure trust computations described in [12] might be easier for LO-
CALPKI though. There, they compute a global trust by using the trust evaluation of
each certification authorities towards the others. This allows to obtain a better hint
about the trust given in CAs, instead of being based only on the trustfulness given
by trust anchors. This method could be relevant to the LOCALPKI architecture,
since it is also using the trust anchor mechanism.

http://hpac.imag.fr/localpki
http://hpac.imag.fr/localpki

– whether this model could also simplify identity-based approaches like certificate-
less PKI [13,3], for instance using attributes.

– Finally, just like Let’s Encrypt offers certificates enabling HTTPS (via SSL/TLS) for
websites, we have set up a web site offering the possibility to create self-signed
LOCALPKI certificates for any user and connected device; we plan to enhance
the capabilities of this web-site to manage our other protocols, such as revocation,
cross-certification, on-line authentication, database paging, etc.

Acknowledgment

We thank Amaury Huot for his help in implementing the prototype web-based interface
to LOCALPKI certificates.

References

1. L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer Networks,
54(15):2787 – 2805, 2010. URL: http://www.sciencedirect.com/science/article/
pii/S1389128610001568, doi:https://doi.org/10.1016/j.comnet.2010.05.010.

2. B. Badrignans, V. Danjean, J.-G. Dumas, P. Elbaz-Vincent, S. Machenaud, J.-B. Orfila,
F. Pebay-Peyroula, F. cois Pebay-Peyroula, M.-L. Potet, M. Puys, J.-L. Richier, and J.-
L. Roch. Security architecture for point-to-point splitting protocols. In IEEE World
Congress on Industrial Control Systems Security, Cambridge, UK, page 8, Dec. 2017. URL:
https://hal.archives-ouvertes.fr/hal-01657605.

3. J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption without
pairing. In Information Security, 8th International Conference, ISC 2005, Singapore,
September 20-23, 2005, Proceedings, volume 3650 of Lecture Notes in Computer Sci-
ence, pages 134–148. Springer, 2005. URL: http://dx.doi.org/10.1007/11556992_10,
doi:10.1007/11556992_10.

4. D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Szalachowski. ARPKI: Attack
resilient public-key infrastructure. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 382–393, November 2014. URL: http://dx.doi.
org/10.1145/2660267.2660298, doi:10.1145/2660267.2660298.

5. J. Bau and J. C. Mitchell. A security evaluation of DNSSEC with NSEC3. In Proceed-
ings of the Network and Distributed System Security Symposium, NDSS 2010, San Diego,
California, USA, 28th February - 3rd March 2010. The Internet Society, 2010. URL:
http://www.isoc.org/isoc/conferences/ndss/10/pdf/17.pdf.

6. S. Bouzefrane, K. Garri, and P. Thoniel. A user-centric PKI based-protocol to manage FC2
digital identities. IJCSI International Journal of Computer Science Issues, 8(1):74–80, Jan.
2011. URL: https://hal.archives-ouvertes.fr/hal-00628633.

7. V. Buterin et al. Ethereum white paper, 2013.
8. H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. Sci. Comput.

Program., 50(1-3):51–71, 2004. URL: http://dx.doi.org/10.1016/j.scico.2003.
12.002, doi:10.1016/j.scico.2003.12.002.

9. D. Cooper. Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile. RFC 5280, May 2008. URL: https://rfc-editor.org/rfc/
rfc5280.txt, doi:10.17487/rfc5280.

http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2010.05.010
https://hal.archives-ouvertes.fr/hal-01657605
http://dx.doi.org/10.1007/11556992_10
http://dx.doi.org/10.1007/11556992_10
http://dx.doi.org/10.1145/2660267.2660298
http://dx.doi.org/10.1145/2660267.2660298
http://dx.doi.org/10.1145/2660267.2660298
http://www.isoc.org/isoc/conferences/ndss/10/pdf/17.pdf
https://hal.archives-ouvertes.fr/hal-00628633
http://dx.doi.org/10.1016/j.scico.2003.12.002
http://dx.doi.org/10.1016/j.scico.2003.12.002
http://dx.doi.org/10.1016/j.scico.2003.12.002
https://rfc-editor.org/rfc/rfc5280.txt
https://rfc-editor.org/rfc/rfc5280.txt
http://dx.doi.org/10.17487/rfc5280

10. D. Dolev and A. C. Yao. On the security of public key protocols. In Proceedings of the
22Nd Annual Symposium on Foundations of Computer Science, SFCS ’81, pages 350–357,
Washington, DC, USA, 1981. IEEE Computer Society. URL: http://dx.doi.org/10.
1109/SFCS.1981.32, doi:10.1109/SFCS.1981.32.

11. J.-G. Dumas, P. Lafourcade, F. Melemedjian, J.-B. Orfila, and P. Thoniel. Localpki: A user-
centric formally proven alternative to pkix. In Proceedings of the 14th International Joint
Conference on e-Business and Telecommunications - Volume 6: SECRYPT, (ICETE 2017),
pages 187–199. INSTICC, SciTePress, 2017. doi:10.5220/0006461101870199.

12. J.-G. Dumas, P. Lafourcade, J.-B. Orfila, and M. Puys. Private multi-party matrix mul-
tiplication and trust computations. In Proceedings of the 13th International Joint Con-
ference on e-Business and Telecommunications (ICETE 2016), pages 61–72, 2016. doi:
10.5220/0005957200610072.

13. C. Gentry. Certificate-based encryption and the certificate revocation problem. In Proceed-
ings of the 22Nd International Conference on Theory and Applications of Cryptographic
Techniques, EUROCRYPT’03, pages 272–293, Berlin, Heidelberg, 2003. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=1766171.1766194.

14. D. Giusto, A. Iera, G. Morabito, and L. Atzori. The Internet of Things: 20th Tyrrhenian
Workshop on Digital Communications. Springer Publishing Company, Incorporated, 2014.

15. W. E. Hall and C. S. Jutla. Parallelizable authentication trees. In B. Preneel and S. Tavares,
editors, Selected Areas in Cryptography, pages 95–109, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

16. T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor. Accountable key infras-
tructure (AKI): A proposal for a public-key validation infrastructure. In Proceedings of
the 22Nd International Conference on World Wide Web, WWW ’13, pages 679–690, New
York, NY, USA, 2013. ACM. URL: http://doi.acm.org/10.1145/2488388.2488448,
doi:10.1145/2488388.2488448.

17. O. M. Kolkman, M. Mekking, and R. M. Gieben. DNSSEC Operational Practices, Version
2. RFC 6781, Dec. 2012. URL: https://rfc-editor.org/rfc/rfc6781.txt, doi:10.
17487/rfc6781.

18. B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC 6962, June 2013. URL:
https://rfc-editor.org/rfc/rfc6962.txt, doi:10.17487/RFC6962.

19. S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN prover for the sym-
bolic analysis of security protocols. In N. Sharygina and H. Veith, editors, Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia,
July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages
696–701. Springer, 2013. URL: http://dx.doi.org/10.1007/978-3-642-39799-8_48,
doi:10.1007/978-3-642-39799-8_48.

20. R. C. Merkle. A digital signature based on a conventional encryption function. In C. Pomer-
ance, editor, Advances in Cryptology — CRYPTO ’87, pages 369–378, Berlin, Heidelberg,
1988. Springer Berlin Heidelberg.

21. D. R. Morrison. PATRICIA – practical algorithm to retrieve information coded in alphanu-
meric. J. ACM, 15(4):514–534, Oct. 1968. URL: http://doi.acm.org/10.1145/321479.
321481, doi:10.1145/321479.321481.

22. J. L. Muñoz, O. Esparza, J. Forné, and E. Pallares. H-ocsp: A protocol to reduce the
processing burden in online certificate status validation. Electronic Commerce Research,
8(4):255, 2008. URL: http://dx.doi.org/10.1007/s10660-008-9024-y, doi:10.
1007/s10660-008-9024-y.

23. M. Peylo and T. Kause. Internet X.509 Public Key Infrastructure – HTTP Transfer for
the Certificate Management Protocol (CMP). RFC 6712, Sept. 2012. URL: https:
//rfc-editor.org/rfc/rfc6712.txt, doi:10.17487/rfc6712.

http://dx.doi.org/10.1109/SFCS.1981.32
http://dx.doi.org/10.1109/SFCS.1981.32
http://dx.doi.org/10.1109/SFCS.1981.32
http://dx.doi.org/10.5220/0006461101870199
http://dx.doi.org/10.5220/0005957200610072
http://dx.doi.org/10.5220/0005957200610072
http://dl.acm.org/citation.cfm?id=1766171.1766194
http://doi.acm.org/10.1145/2488388.2488448
http://dx.doi.org/10.1145/2488388.2488448
https://rfc-editor.org/rfc/rfc6781.txt
http://dx.doi.org/10.17487/rfc6781
http://dx.doi.org/10.17487/rfc6781
https://rfc-editor.org/rfc/rfc6962.txt
http://dx.doi.org/10.17487/RFC6962
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://doi.acm.org/10.1145/321479.321481
http://doi.acm.org/10.1145/321479.321481
http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1007/s10660-008-9024-y
http://dx.doi.org/10.1007/s10660-008-9024-y
http://dx.doi.org/10.1007/s10660-008-9024-y
https://rfc-editor.org/rfc/rfc6712.txt
https://rfc-editor.org/rfc/rfc6712.txt
http://dx.doi.org/10.17487/rfc6712

24. R. Reddy and C. Wallace. Trust anchor management requirements. RFC 6024, RFC Editor,
October 2010. URL: https://rfc-editor.org/rfc/rfc6024.txt.

25. M. D. Ryan. Enhanced certificate transparency and end-to-end encrypted
mail. In 21st Annual Network and Distributed System Security Sympo-
sium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The
Internet Society, 2014. URL: http://www.internetsociety.org/doc/
enhanced-certificate-transparency-and-end-end-encrypted-mail.

26. S. Santesson, R. Ankney, M. Myers, A. Malpani, S. Galperin, and D. C. Adams. X.509 In-
ternet Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC 6960, June
2013. URL: https://rfc-editor.org/rfc/rfc6960.txt, doi:10.17487/rfc6960.

27. B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. Automated analysis of Diffie-
Hellman protocols and advanced security properties. In S. Chong, editor, 25th IEEE Com-
puter Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012,
pages 78–94. IEEE Computer Society, 2012. URL: http://dx.doi.org/10.1109/CSF.
2012.25, doi:10.1109/CSF.2012.25.

28. J. Vcelak, S. Goldberg, and D. Papadopoulos. NSEC5, DNSSEC Authenticated De-
nial of Existence. Internet-Draft draft-vcelak-nsec5-03, Internet Engineering Task
Force, Sept. 2016. Work in Progress. URL: https://tools.ietf.org/html/
draft-vcelak-nsec5-03.

29. J. Yu, V. Cheval, and M. Ryan. DTKI: A new formalized PKI with verifiable trusted par-
ties. Comput. J., 59(11):1695–1713, 2016. URL: http://dx.doi.org/10.1093/comjnl/
bxw039, doi:10.1093/comjnl/bxw039.

30. P. R. Zimmermann. The Official PGP User’s Guide. MIT Press, Cambridge, MA, USA,
1995.

https://rfc-editor.org/rfc/rfc6024.txt
http://www.internetsociety.org/doc/enhanced-certificate-transparency-and-end-end-encrypted-mail
http://www.internetsociety.org/doc/enhanced-certificate-transparency-and-end-end-encrypted-mail
https://rfc-editor.org/rfc/rfc6960.txt
http://dx.doi.org/10.17487/rfc6960
http://dx.doi.org/10.1109/CSF.2012.25
http://dx.doi.org/10.1109/CSF.2012.25
http://dx.doi.org/10.1109/CSF.2012.25
https://tools.ietf.org/html/draft-vcelak-nsec5-03
https://tools.ietf.org/html/draft-vcelak-nsec5-03
http://dx.doi.org/10.1093/comjnl/bxw039
http://dx.doi.org/10.1093/comjnl/bxw039
http://dx.doi.org/10.1093/comjnl/bxw039

	LocalPKI: An Interoperable and IoT Friendly PKI

