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Abstract

We propose a new grid unfolding without refinement of a new sub-class of
polycubes that we call Manhattan towers with an H-convex base. Such poly-
cubes can be seen both as a Manhattan tower and as an orthostack. At the
end of the paper we show that an extension of this algorithm to Up-and-Down
Orthoterrains is also possible.
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1. Introduction

”An unfolding of a polyhedron is produced by cutting its surface in such a
way that it can be flattened to a single, connected piece without overlap” [4].
An edge unfolding is obtained by cutting along the edges of the polyhedron,
keeping the faces whole. It is still an open question to know whether every
convex polyhedron has an edge unfolding, however there are several exam-
ples of non-convex polyhedra that cannot be edge unfolded [1, 2]. General
unfolding is less restrictive since cuts are allowed anywhere on the surface.
We know that every convex polyhedron has a general unfolding [7] but there
are no certitudes on non-convex polyhedra.

Since the problem of unfolding general non-convex polyhedra is compli-
cated, there has been a focus on orthogonal polyhedra in general and poly-
cubes in particular. An orthogonal polyhedron has all of its faces parallel to
Cartesian coordinate planes. Since there are simple examples of orthogonal
polyhedra that cannot be edge unfolded, grid unfolding of orthogonal polyhe-
dra has been introduced. Grid unfolding is a special case of general unfolding
where the surface can be cut along additional edges obtained by ”intersecting
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the polyhedron with planes parallel to Cartesian coordinate planes through
every vertex” [9].

There are algorithms for grid unfolding of a number of orthogonal poly-
hedra sub-classes, such as orthotubes [2], well-separated orthotrees [5], or-
thoterrains [8], etc. For other sub-classes, the known methods require the
grid to be refined further by adding cutting planes in a constant amount of
times: 4×5 grid-unfolding for Manhattan towers [6] and 1×2 grid-unfolding
for orthostacks [2]. In more general cases, linear refinement are sometimes
considered [4].

In this paper we are interested in a particular class of orthogonal polyhe-
dra, the polycubes, which are composed of a set of face-connected cubes. A
new grid unfolding without refinement (edge unfolding) of a new sub-class of
polycubes that can be seen both as a Manhattan tower and as an orthostack
is proposed: Manhattan towers with an H-convex base. A Manhattan tower
can be defined by a matrix with integer value where each value corresponds
to the height of a stack of cubes. Previous papers have focused on Manhat-
tan towers with a rectangular base: each value of the matrix is a strictly
positive integer. In our case, we allow zeros at the end or start of each row
in the matrix, thus the name of H-convex Manhattan towers. Of course the
final polycube has to be formed of one connected component. This algorithm
extends the types of Manhattan towers that can be grid unfolded without
refinement [9]). Our technique is somewhat similar to the one of [3].

The paper is organized as follows: in Section 2 we present some notations
and definitions that will be needed all along the paper. Section 3 details our
unfolding algorithm with its three distinct cases and presents some results
and examples. Section 4 explains how the algorithm can be extended to
Up-and-Down Orthoterrains.

2. Notations and Definitions

2.1. Notations and Definitions

In this paper we are considering cubes of side one with a center located
on a 3D grid point (integer coordinates), formed of six square faces with a
normal parallel to the axes, pointing to the exterior of the cube. Two cubes
are said to be connected if they share a face. A polycube is a finite set of
cubes that forms one connected component. The faces of a polycube are all
the faces of its cubes that are not shared by another cube of the polycube.
Two Faces are connected iff they share an edge and:
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1. they belong to two face connected cubes and have the same normal
(same direction).

2. they belong to the same cube.

3. they belong to two different, not face connected cubes, such that there
exists a third cube sharing the same edge and connected to both cubes.

For a polycube C, let us consider the complementary polycube C−1

formed by all the cubes that do not belong to C. The faces of C may form
several connected components. We are henceforth only considering the con-
nected component whose faces belong to the infinite connected component
of C−1.

A Manhattan tower is a set of cubes defined by a rectangular 2D matrix
(called Manhattan matrix) containing only positive or null integer values.
A value n in M(i, j) represents a stack of n cubes of coordinates between
(i, j, 0) to (i, j, n − 1) and such that all the cubes of the Manhattan tower
form a polycube.

An x-row (respectively y-column) in a Manhattan matrix M(i, j) corre-
sponds to all the values in the matrix for a fixed value i (respectively j).
An H-convex (Horizontal convex) Manhattan tower is such that each x-row
of the corresponding Manhattan matrix is formed of a unique contiguous
sequence of strictly positive integer values (there can be zeroes at the be-
ginning or end of the row but not in between non zero values). There is no
such constraint on the y-columns. In Figure 1, an example of an H-convex
Manhattan tower is presented with its matrix and unfolding. For the sake of
clarity, the corresponding Manhattan matrix is written out in such a way that
the lower left value of the matrix corresponds to the lowest abscissa-ordinate
value.

x, y, z-faces. We call an x-face (resp. y or z-face) any face perpendicular to
the x axis (resp. y or z).

Row Ri. A row Ri is the collection of cubes with y = i. The base of a row
are the cubes of this row with z = 1. Do not mistake a row Ri with a row
of the Manhattan matrix. The row Ri corresponds to the cubes represented
by the i-th row of the Manhattan matrix.

Band Bi. A band Bi is the collection of x and z-faces of a row Ri.
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(a) H-convex Manhattan tower with its corre-
sponding matrix.

0 2 1 3 2 1 2 1
0 0 0 1 3 4 0 0
3 2 2 2 3 0 0 0


(b) Corresponding matrix.

(c) Algorithm’s output. Bands
are in purple. y-faces are in cyan.
Bridges are in green.

Figure 1: An example of H-convex Manhattan towers and its unfolding.

3. Algorithm

The result of our algorithm is a net structured as the example in Figure
1c: each band Bi is kept as a whole and placed horizontally, while the y-
faces are placed in between with some of them forming a bridge linking two
consecutive bands.

The algorithm iteratively places each band Bi and the corresponding y-
faces. To unfold Bi, we need to consider the rows Ri and Ri+1. Comparing
their bases, we can identify two different configurations (with (i1, i2) = (i, i+
1) or (i1, i2) = (i + 1, i), the order does not matter):
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Figure 2: x, y, z-faces, rows and bands.

1. The base of row i1 includes the base of the row i2 (ymini1 ≤ ymini2 and
ymaxi1 ≥ ymaxi2). See Figure 3a. This case is developed in section
3.1;

2. The base of row i1 sticks out on the left and the base of row i2 sticks
out on the right (ymini1 ≤ ymini2 and ymaxi1 ≤ ymaxi2). See Figure
4a. This case is developed in section 3.2.

Using an example for each configuration, we will show how our algorithm
ensures a non-overlapping unfolding.

3.1. Case 1: One base includes the other

This case corresponds to the base of row i1 that includes the base of the
row i2 (ymini1 ≤ ymini2 and ymaxi1 ≥ ymaxi2). This case is illustrated
by rows 1 and 2 of the polycube in Figure 1a (two first rows of the matrix
presented in Figure 1b). The faces that we have to place are the bands and
the y-faces in between the two bands, as highlighted in Figure 3a.

3.1.1. Unfolding the first band

First, we unfold the band corresponding to the largest base. Let us call the
band with largest base B1 and the other band B2 (in our example respectively
the bands for y = 1 and y = 2). Note that the band with the largest base is
not necessarily the band with the largest number of faces. We may have a
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(a) B1 is in light purple, B2 in
dark purple. The central y-faces
are in red and the left and right
y-faces are respectively in dark
cyan and light cyan.

(b) y-faces strips.
The arrows point to
the edge attaching
the strip to B1.

(c) Corresponding unfolding. We can see that
strip E is the bridge between B1 and B2.

Figure 3: Case 1: One base includes the other.

larger base with a small height while a band with a narrower base and high
towers may have more faces.

Once B1 is unfolded, we will form vertical and horizontal strips of width
1 with the y-faces and attach each strip to the unfolded band B1. We will
show that, since we have chosen the band corresponding to the largest base,
each strip has at least one common edge with B1. One of these strips will
form the bridge where the band B2 is attached, so we also have to ensure that
at least one of the longest strips is attached by one edge to B1 and shares its
opposite edge with B2.

3.1.2. Three groups of y-faces

Let us look at the method in bit more details. Once B1 has been unfolded,
the next step is to place the y-faces. To do that we split the y-faces into
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three groups. The base B1 is defined on an interval (ymin1, ymax1) while
the base B2 is defined on an interval (ymin2, ymax2), with ymin1 ≤ ymin2

and ymax1 ≥ ymax2. We split the y-faces into three groups where y lies in
one of the intervals (ymin1, ymin2), called the left y-faces (in light cyan in
Figure 3), (ymin2, ymax2) called the central y-faces (in red in Figure 3) and
(ymax2, ymax1) called the right y-faces (in dark cyan in Figure 3).

3.1.3. Unfolding the central y-faces

With the central y-faces (in red in Figure 3), we form vertical strips, one
for each x = i (C, D and E on the Figure). Each strip shares at least one
edge with a face of the band B1 and will be attached to the strip on that
edge. We can notice that the opposite edge of each strip is shared with B2,
so any of them could be used as bridge between B1 and B2. Note as well
that the edge of such a strip in contact with B1 and the edge in contact with
B2 are unique and distinct (an edge is only shared by two faces and there
can not be another y-face that shares that edge). This means that none of
the central strips are overlapping.

3.1.4. Unfolding the left and right y-faces

With the left y-faces, (in light cyan in Figure 3), and the right y-faces
(in dark cyan in the Figure 3), we form horizontal strips, at least one (and
possibly multiple) for each z = i. Each strip shares at least one edge, the
exterior one, with B1, and will be attached to the strip B1 on that edge. We
can note that for z = 1, there can only be a single strip on each side (strips A
and G in Figure 3), which will share its exterior edge with B1 and its interior
edge with B2. Let us note as well that among the left or right strips, the
strip for z = 1 is necessarily the longest. This means they may be bridge
candidates.

Again, each left (resp. right) strip has only one edge at the left (right) of
the strip that is in common with B1. This edge (and the face it is attached
to in B1) is necessarily different from the other edges already considered
for central y-faces and other left or right y-faces. Lastly, it is easy to see
that, when attaching the left (resp. right) most face of a left (resp. right)
horizontal strip to B1, the horizontal strip will become vertical on the net
when B1 is unfolded. The uniqueness of the face of B1 it is attached to and
the horizontally attachment means that it does not overlap with any other
strip (be it central, left or right).
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3.1.5. Choosing the bridge and attaching the second band

We now have placed all the y-faces with no overlaps between any of
them. The last step is to find where to attach the band B2 so that it does
not overlap with the previously placed y-faces. In [3] the choice is to attach
to the leftmost or rightmost strip and to have band B2 cut in such a way
that it overhangs away from the other strips, which restrains the way we can
unfold B2. To avoid any overlap, we can simply attach the band B2 to (one
of) the longest y-face strip (see Figure 3c).

3.1.6. About cutting the bands

We have not discussed about the way a band is cut yet. For each band,
when unfolding it into an horizontal sequence of faces, we have to decide
what will be the first (and last) face of the sequence (where to cut the band).
There is no constraint for this case, however, as we will see, for case 2 (section
3.2) we need to cut the band on a specific edge. We will explain how to deal
with this problem in general once we have explained what the constraints
are for case 2.

3.2. Case 2: Each base sticks out on one side

This case corresponds to the base of row Ri1 that sticks out on the left and
the base of row Ri2 sticks out on the right (ymini1 ≤ ymini2 and ymaxi1 ≤
ymaxi2). This second case is illustrated by lines 2 and 3 of the polycube in
Figure 1a. The faces that we have to place are the bands and the y-faces in
between the two bands, as highlighted in Figure 4a.

The band we unfold first for case 2 does not matter as long as it is done in
a consistent way for the whole algorithm (see section 3.3 for a discussion on
this matter). Once again, let us call B1 (corresponding to row R1) the band
we choose to unfold first, and B2 the other band (with R2 the corresponding
row). Let us consider, for the sake of simplicity, that R1 sticks out on the
left and R2 sticks out on the right (switch left and right for what follows if
R1 sticks out on the right and R2 sticks out on the left).

3.2.1. Cutting the band and unfolding the right y-faces

Unlike case 1, we need to control the cut location of band B1 to avoid
overlaps. One suitable cut location is found as follows: let us call F the right
face of the rightmost voxel of Ri1 with z = 1. The band B1 is cut along the
top edge of face F (Red edge in Figure 4a).
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(a) R1 (with B1 in light purple) sticks
out on the left while R2 (with B2 in
dark purple) sticks out on the right.
The central y-faces are in red and the
left and right y-faces are respectively in
dark cyan and light cyan. The cut lo-
cation for B1 is highlighted in red.

(b) y-faces strips.
The arrows point to
the edge attaching
the strip to B1.

(c) Corresponding unfolding. We can see that
strip F is the bridge between B1 and B2.

Figure 4: Case 2: One base sticks out on each side.

The set of right y-faces is rotated by 90◦ to the left and attached to B1 on
F . Since F is the leftmost face of unfolded B1 (because of the cutting), all
the right y-faces correspond either to a vertical strip on the final net attached
to face F (corresponding to the horizontal strip of y-faces with z = 1) or stick
out on the left of the unfolded band B1 (set of faces F in Figure 4b and 4c).
If this set of y-faces were not attached to the leftmost face of B1, sticking
out on the outside, we could have a strip from the left or central part that
would overlap.

We can note that the horizontal strip of faces for z = 1 is always connected
with B1 at one end and B2 at the other end. Let us note as well that the
rightmost face of this strip has the biggest x value and therefore, in the net,

9



there can be no other right y-face that is located higher. This means that
the z = 1 y-face strip is a potential candidate for the bridge between B1 and
B2.

3.2.2. Unfolding the remaining y-faces

When we look only at the central and left y-faces, the configuration is
actually the same as in case 1 where this part of the base of Ri2 is included
in the base of Ri1 . The remaining central and left y-faces can therefore be
handled exactly in the same way as in case 1.

3.3. Row Unfold Order

Let us consider the rows R1, R2 and R3 and the corresponding bands B1,
B2 and B3. For each couple of rows, (R1, R2) and (R2, R3), we may have two
constraints. For a couple in case 1, we must unfold the band corresponding
to the largest base first and for a couple in case 2 we must cut one of the
bands at a precise location.

3.3.1. Case 1 and Case 1

When both couples (R1, R2) and (R2, R3) are in case 1 (see rows 1, 2 and
3 on Figure 5), we can simply deal with the first couple of rows and unfold
it and then deal with (R2, R3). Now, let us imagine that band B2 had the
longest base of (B1, B2) and B3 the longest base of (B2, B3), then we would
have to unfold B3 before B2 which seems to be in contradiction with the fact
that we unfold (R1, R2) first before considering (R2, R3). If B3 has a longer
base than B2 and if B2 is already unfolded, we have actually two simple
possibilities to deal with this apparent contradiction: the first one consists
simply to predetermine the bridge. It is rather simple since it corresponds to
(one of) the longest y-face strip(s) and we know exactly how these strips are
made. Once the longest y-face strip between B2 and B3 is determined and
unfolded, the band B3 and all the y-faces attached to B3 (and facing towards
B2) can be put down.

The second solution consists simply in unfolding B3 somewhere away from
the net and once the band and all the y-faces are put down, to translate all
these faces so as to make the bridge with B2.

3.3.2. Case 1 and Case 2

When (R1, R2) is in case 1 and (R2, R3) is in case 2 (see rows 2, 3 and 4
on Figure 5), we can simply deal with the first couple of rows and unfold it
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and then deal with (R2, R3). The idea is to unfold the band B2 with a cut
at the specific location corresponding to the configuration related to case 2
of (R2, R3) (since we have a choice between B2 and B3). The fact that B2

may have the longest base and is unfolded first does not matter since we can
always unfold B2 before B1 with a specific cut location.

3.3.3. Case 2 and Case 1

When (R1, R2) is in case 2 and (R2, R3) is in case 1 (see rows 4, 5 and 6 on
Figure 5), we can simply deal with the first couple of rows and unfold it and
then deal with (R2, R3). Here we can simply choose to cut B1 at a specific
location which has no consequence on whether B2 or B3 has the longest base.
In case B3 has a longer base than B2, we can apply the same strategies than
for case 1 - case 1 in section 3.3.1.

3.3.4. Case 2 and Case 2

When both couples (R1, R2) and (R2, R3) are in case 2 (see rows 3, 4 and
5 on Figure 5), we can simply deal with the first couple of rows and unfold it
and then deal with (R2, R3). The idea is to unfold B1 first with a specific cut
location to deal with case 2 of the couple (R1, R2), and then later on unfold
B2 with a specific cut location to deal with the case 2 of the couple (R2, R3).

As we can see, each time it is possible to unfold a couple of rows (Ri, Ri+1)
before unfolding the next couple (Ri+1, Ri+2) as long as we identify the cases
of consecutive couples of rows.

3.4. Extremal y-faces

Once all the y-faces between two bands have been placed, there remains
the y-faces that are not between two bands, on either side of the H-convex
Manhattan towers (in the direction of the rows). These faces can be at-
tached directly as strips or as a whole set of faces to the first and last band
respectively (See the grey faces in Figure 1c).

4. Extension: Up-and-Down Orthoterrains

This algorithm can easily be extended to a subclass that we call Up-and-
Down Orthoterrains (UDO). An UDO is defined by rectangular matrix where
all the values are formed of a pair of integers (mi,j,Mi,j) ∈ Z2, such that
mi,j < Mi,j. Each pair represents a set of cubes of coordinates (i, j, z) ∈ Z3

with mi,j ≤ zMi,j. Such a set of cubes is called a tower of base coordinates
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1
1

2

2
1

Figure 5: The Manhattan Tower with the corresponding matrix, the net and the net as it
is refolded.

(i, j). In order to have a valid polycube for our algorithm, each tower has to
be face-connected to every of its neighboring towers. Every towers must be
composed of at least one cube, i.e. the projection along z-axis is rectangular.
See Figure 6 for an example.

To unfold this kind of polycube, we can apply a simplified version of the
algorithm we previously exposed in section 3. Since the polycube is rectan-
gular along the z-axis, every line will have the same width. The consequence
is that all the y-faces will be in the central case (attached vertically to the
band).

We cannot extend the definition of the Up-and-Down Orthoterrains to
accept H-convex projection: the way we treat left and right y-faces in the
previous algorithm would not work here. As we can see on Figure 7a, the
possible bridges between both bands here may be shorter than some strips
and thus lead to overlaps. In Figure 7b we can see another problem: for
case 2 in the H-convex Manhattan unfolding method (section 3.2), the y-
faces that stick out on one of the sides are rotated by 90 degrees so that the
y-faces stick out from the unfolded band (see section 3.2.1). This will not be
the case here and therefore there can be overlaps.
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Figure 6: An example of an Up-and-Down Orthoterrain with its corresponding matrix and
unfolding.

(a) A: One of the longest
bridges. B: A strip longer
than the bridge

(b) Part in red should ro-
tate of 90 degrees on the
unfolding, but there would
be possible overlapping.

Figure 7: Limits on UDO
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5. Conclusion

We have established an algorithm for unfolding Manhattan towers with an
H-convex base without any refinement. Previous grid unfolding algorithms
were able to treat orthoterrains (with rectangular base) [8, 9] or general Man-
hattan towers [9] but with a 4× 5 refinement [6]. The algorithm we propose
does not need any refinement and its complexity is linear in terms of number
of faces. We also proposed an extension we called Up-and-Down Orthoterrain
as a direct consequence of the method we proposed for H-convex Manhat-
tan towers. A next step could be to propose more general Manhattan tower
landscapes including, for instance, central parks (convex regions with values
0 inside the Manhattan matrix). The unfolding of more general polycubes
remains an open question.
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