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Tree detection with low-cost 3D sensors for autonomous navigation
in orchards

A. Durand-Petiteville1, E. Le Flecher2,3, V. Cadenat2,3, T. Sentenac2 and S. Vougioukas1

Abstract—This paper deals with autonomous farming and with
the autonomous navigation of an agricultural robot in orchards.
These latter are typical semi-structured environments where the
dense canopy prevents from using GPS signal and embedded
sensors are often preferred to localize the vehicle. To move safely
in such environments, it is necessary to provide the robot the
ability of detecting and localizing trees. This paper focuses on
this problem. It presents a low cost but efficient vision-based
system allowing to detect accurately, quickly and robustly the
trees. It is made of four stereo cameras which provide a point
cloud characterizing the environment. The key idea is to find the
tree trunks by detecting their shadows which are materialized
by concavities in the obtained point cloud. In this way, branches
and leaves are not taken into account, improving the detection
robustness and therefore the navigation strategy. The method
has been implemented using ROS and validated using data
sequences taken in several different orchards. The obtained
results definitely validate the approach and its performances show
that the processing time (around 1ms) is sufficiently short for the
data to be used at the control level. A comparison with other
approaches from the literature is also provided.

I. INTRODUCTION

It is projected [1] that agricultural production will need to
double by 2050 to cover the needs of an increasing population
for food, feed, fiber and biofuels, and do so in a sustainable
manner, despite increasing shortages in available farm labor.
Advanced automation of field operations has been identified
as a key technology to achieve this goal [2]. One of the main
challenges in developing automated solutions for operations
like mowing, spraying, pruning, thinning and harvesting in
orchards is reliable and precise autonomous navigation. The
most basic operation of an autonomous vehicle in an orchard
is to drive from one end of a row to the other end (row
traversal), and then navigate in the headland to turn and enter
the next row. This operation is repeated to cover the area of
interest (e.g., an orchard block). Unfortunately, precision GPS-
based guidance is often unreliable in orchards. Tall tree foliage
can introduce large errors in GPS positions due to multipath
effects, and also cause intermittent or complete GPS signal
outage. Furthermore, commercial orchards constitute semi-
structured outdoor environments: trees are planted in parallel
rows, but individual tree positions and trunk-canopy shapes
and sizes vary in space and time and tree lines may also not
be perfectly parallel or at exactly the same distance from each
other. Finally, precise georeferenced up-to-date orchard maps
are typically unavailable and can be costly to generate. For
these reasons, orchard navigation based only on GPS has not
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proved - so far - to be reliable and accurate enough to become
commercially available.

An alternative approach is to utilize on-board sensors that
acquire data from the surrounding environment and develop
navigation strategies that exploit the spatial structure of or-
chards. Since orchard structure is primarily defined by the tree
rows, reliable detection and localization of trees is considered
very important for navigation. Such a capability would make
it possible to navigate locally through rows and headlands
using feedback controllers based on exteroceptive sensing, as
well as to detect transitions between an orchard row and its
neighboring headland.

This navigation strategy appears to be very well adapted to
orchards for several reasons. First, as a reactive control strategy
is used, there is no need for building an orchard metric map
or for localizing the robot within it. This is of great interest in
our context. Indeed, embedded sensor-based localization can
lead to inaccuracies with time and obtaining an up to date
map of an orchard can be challenging because of its changing
nature (branches, pruning, fruits, ...). Next, the position of the
trees appears as a relevant and robust feature to navigate safely
within the rows and headlands. From them, it is possible to
deduce the lines the robot has to move along to efficiently
follow a row. Moreover, in previous works [3], it has been
shown that the last trees of the rows can be used as references
to navigate in the headlands, i.e., to perform U-turn maneuvers
allowing the robot to transition from one row to the next one.
Moreover, in commercial orchards, it appears more suitable to
use tree trunks as characteristic features for navigation rather
than to compute the free space in front of the robot and use it to
determine a path, as it is done for example in [4]. One reason
is that this computed free space can be severely distorted when
branches are present in the field of view of the sensors or the
non-uniform distribution of the branches around the tree. Such
a distortion can cause path deformation and affect navigation
robustness. Another reason is that free space in the headlands
does not provide any valuable information to find the next row
and reach it. Thus, the knowledge of the trees positions appears
to be a key feature in order to perform orchard navigation. It
has then be decided to provide the robot the ability of visually
detecting trees.

This paper presents the design of a tree detection algorithm
aiming at detecting the trunks of the surrounding trees and
providing their position with respect to the current robot
frame. The algorithm processes the range component of point
cloud data acquired by low-cost stereo vision systems in real
time. The adoption of low-cost sensors makes it possible
to eventually use several of them to provide a large field
of view. Detecting tree trunks using only range data makes
the approach more robust to changes and discontinuities in



(a) Point cloud (b) Example of polar grip map - Or-
ange borders: concavities - Red
circles: trunks

(c) Top view of the point
cloud

(d) Example of polar grip map - Green line:
ridge of the shape

Fig. 1. Example of point cloud in an orchard

illumination, which can be severe in orchards.
The proposed method operates by detecting the empty

spaces (”shadows”) in the point cloud created by the trees.
Indeed, when processing data from a single view of a stereo
vision system, it is not possible to compute 3D points behind
the objects present in the scene. The empty spaces can then
be seen as the shadows of the trees in the point cloud. Figure
1(c) presents an example of a single point cloud acquired in
an orchard. The empty spaces are represented by the orange
triangles, whereas the red circles represent the trunks of the
trees. The proposed tree detection algorithm detects the tree
shadows (orange rectangles) and their origins (red circles) in
the point cloud, and can be briefly described as follows. First,
the 3D points belonging to the ground are extracted from the
point cloud. Next, these points are used to create 2D grid maps
expressed in polar coordinates. As it can be seen in figure 1(b),
the computed points form a concave shape, where the shadows
of the trees correspond to the concavities1. The bottom point
of a concavity corresponds to the trunk.

In the second part of the tree detection process the concav-
ities and their bottom points are detected, and concavity areas
are estimated. Figure 1(b) suggests that it may be possible to
represent the top boundary of the polar grid map by a smooth
function. If that were so, finding the bottom of a concavity
would be equivalent to determining its local minimum by using
a gradient descent. However, as it can be seen in figure 1(d)
where the green line represents the boundary, branches and
irregular trunk shapes in the camera field of view create shapes
in the grid map with boundaries that cannot be represented by
single-valued functions. For this reason, this paper presents a
novel concavity detection algorithm relying on 2D grid maps
at different resolutions that takes advantage of the upward
orientation of the concavities. Moreover, the algorithm does
not filter the shape in the grid map in order to avoid shape
distortion that would result in inaccuracies in the estimation
of the trunk position. Instead, it processes the non-smooth
contours of the shape which are the result of noise introduced
by the low-cost sensors. Finally, the computed bottom points
of the concavities, e.g., the trunks, are filtered using a density

1Concavities are the difference between the original shape and its convex
hull.

map to deal with the false detections. By combining the ground
extraction process with the concavity detection algorithm,
a robust and efficient method is obtained to estimate tree
positions. Moreover, its implementation allows its use for real-
time control, as the obtained computation times are smaller
than 15 ms (see experimental section). Thus, the proposed
method allows to robustly and efficiently provide the features
which are required to perform exteroceptive feedback based
navigation in orchards, both inside rows and in headlands.

The rest of the paper is organized as follows. Next section
provides an overview of the related works. The third section
presents the robot and its stereo cameras. The fourth section
presents the point cloud processing pipeline and focuses on a
novel concavities detection algorithm. The last section presents
and discusses experimental results obtained in orchards.

II. RELATED WORKS

The proposed method addresses the detection of tree trunks
by finding concavities. It is intended to provide features for
navigation purposes. Thus the following section will review
works related to these three domains, namely: orchard navi-
gation, tree detection and concavities determination.

A. Orchard navigation

The existing orchard navigation systems mostly focus on
the navigation through the rows. Two main strategies have
been identified. The first one consists of matching the acquired
data with a map to localize and control the robot [5], [6].
However, orchards are highly changing environments as the
trees aspect greatly depends on seasons (presence of fruits or
not, . . . ) or on agricultural treatments (pruning, . . . ). Thus,
characterizing them with a metric map is not always easy and
accurate enough.

The second approach relies on the extraction of lines
representing the tree rows. In [7], [8], the lines are computed
in the image space, whereas in [9], [10], [11] and [12] they are
extracted from point clouds either by using a Hough transform,
or by using a RANSAC algorithm coupled with an extended
Kalman filter. In this second approach, the branches and the
leaves are taken into account to compute the lines, which leads
to inaccuracies when they are not homogeneously distributed
around the trunk. For this reason, it seems mandatory to first
extract the position of the trunks, then to compute the lines
fitting the rows.

Moreover, the tree detection algorithm can be used to pro-
vide exteroceptive feedbacks during the headland navigation.
In the previously mentioned works, the headland navigation is
not addressed or simply performed using pure dead-reckoning.
In [3], we have presented a navigation strategy and the related
controllers allowing to make the robot switch from the current
row to the next one. The strategy relies on the position of the
trees in both the rows and the headlands.

B. Tree detection

The tree detection problem has been addressed in works
related to orchards and other agricultural environments. The



work presented in [13] proposes to identify trees to catalog
them. To do so, a trunk localization is performed thanks
to the point clouds acquired with a LIDAR. However, the
presented approach is not relevant to our case. Indeed, the
trunk detection is performed off-line, with the whole orchards
previously scanned, in order to easily extract the rows based
on a simple distance criteria.

In [14] the authors present an algorithm able to generate
a navigation path in an orchard for a harvesting robot based
on machine vision. It dynamically recognizes the main tree
trunk area from orchard images. However, it is shown that
this algorithm is extremely affected by the presence of weeds
in the orchards.

[15] focuses on the trunk detection of oil-palm using a
Kinect camera. The data processing uses the Viola and Jones
detector in the image space combined with a Hough transform
to extract line from depth data. In this work, the trunk has to
fill a major part of the field of view, making this approach
suitable only for trees with tall trunks.

The work presented in [16] proposes to detect trees using
a camera coupled with a laser scanner. It relies on stochastic
models, obtained during a pre-navigation step, to detect trees
in both Cartesian and image spaces. Despite the reported
high accuracy, such a system has two issues. First, it relies
on a planar scan of the environment, which might lead to
errors when the trunks are occluded with leaves. Then, it only
provides a narrow field of view, and increasing the number of
the selected sensors might be an expensive solution.

In [17], the trunks of dwarf orange trees are detected and
localized thanks to cameras coupled to ultrasonic sensors
mounted on pan-platforms. The tree recognition is based on
several features such as color, texture and contour used to
train a support vector machine classifier. Moreover, for each
detected tree, the ultrasonic sensor mounted on the same pan-
platform as the camera, provides the distance to it. In this
work, a pair of camera/ultrasonic sensors can only detect,
localize and track one tree at the time.

In [18], the authors segment images of citrus trees to extract
the areas corresponding to the fruits and trunks. They use
elliptical regions in the YCrCb color space to extract the
fruits and trunks areas from the background. However, in this
approach, only one tree is considered at the time and the results
are sensitive to illumination.

C. Concavity detection

In [19], the authors give an overview of the methods
developed to detect inflection points: curvature based [20],
skeleton based, chord based [21] and polygon approximation
[22]. These methods require a smooth contour and poorly
perform in presence of a noise in the extracted shape. However,
because one aims at accurately computing the position of the
trees, it is not suitable to remove noise with morphological op-
erations. Indeed, these latter distort the original shape leading
to inaccuracies in the tree position computation. Thus, these
methods are not adapted to our case.

III. MATERIAL

To navigate across the orchards, a Toro workman MDE
vehicle is used. It is a car-like robot equipped with ZED stereo
cameras from Stereolabs (see figure 2). They represent a low-
cost solution to acquire point clouds in an outdoor environment
and on a long range, up to 20 meters. Moreover, the API
computing the point cloud uses NVIDIA Graphics Processing
Unit (GPU) to provide a frame rate from 15Hz to 60 Hz. For
all these reasons, it has been decided to install four cameras
on the robot. Two are mounted in the front and face towards,
whereas the two other ones are installed on the left and right
sides to provide a large field of view to the system. The
acquired data are individually processed for each camera in
order to detect the trees surrounding the robot. The obtained
features allow to feed the controllers used to drive the robot
in the row or in the headland. This paper only focuses on
the point cloud processing algorithm. More details on control
aspects can be found in [3].

Fig. 2. Toro workman MDE vehicle equipped with 4 stereo cameras

IV. TREE DETECTION SYSTEM

This section first presents the pipeline of methods applied
to the acquired point cloud. As explained before, the goal is to
detect tree trunks by computing the concavity inflection points.
Most of the processes used in this pipeline belong to classical
tools from point cloud and image processing. However, the
concavity detection algorithm has been specifically developed
for this project. Firstly, an overview of the whole pipeline
is presented before focusing on our main contribution, the
concavity detection algorithm.

A. The overall processing pipeline

The pipeline designed to compute the position of the trees
is presented in figure 3. It is split into two parts, the first one
being related to the ground extraction and the second one to
the tree detection itself.

1) The ground detection: The first task consists of extract-
ing the points representing the ground from the acquired point
cloud XY Z. To do so, three steps are performed. First, to
save computation time2, XY Z is randomly sampled to generate

2It would have been possible to directly extract the points belonging to
the ground from XY Z thanks to a least square regression using a RANSAC
algorithm, as it is done in step 2 with XY ZS. However, this approach is more
time consuming than a process combining steps 1, 2 and 3.



Fig. 3. Pipeline to detect the trees from point cloud XY Z

a point cloud XY ZS (figure 4(a)) with a smaller dimension
KSampling (step 1). Next, the parameters KKK plane of the plane
characterizing the ground are computed thanks to a least
square regression using a RANSAC algorithm (step 2). From
this result, XY ZP, the point cloud containing all the points
from XY Z belonging to the plane, is computed (step 3). It is
determined by including all the points from XY Z which are
at an Euclidean distance smaller than TPlane from the plane
defined by KKK plane (figure 4(b)). Finally, XY Z is rotated to align
the ground and camera axis.

(a) Point cloud XY ZS (b) Point cloud XY ZP

(c) I1 (d) IN

(e) Density map MD (f) Selected trees

Fig. 4. Intermediate results of the pipeline

2) The tree detection: Once the points representing the
ground have been extracted, it remains to detect the trees. This
is done thanks to the concavity detection algorithm, detailed
in section IV-B, which allows to compute the concavities

inflection points. It relies on 2D polar representation of the
point cloud at N different resolutions. Incrementally increasing
the resolution allows to deal with the noise inherent to a point
cloud, as well as to decrease the required computing time.
Thus, the next step of the pipeline consists in computing N
images of the points belonging to the plane expressed in polar
coordinates, at different resolutions: KKKI = [µ1,θ1, ...,µN ,θN ],
where µi and θi, with i ∈ [1, ..,N], are respectively the length
and angle represented by each pixel (pipeline step 4). In the
computed images, the shadows now correspond to vertical
concavities (see figures 4(c), 4(d)).

To detect these concavities, the algorithm (step 5) places
coins at the top of the images and then drop them. The coins
move down until they are ejected or stuck. This process is
repeated for the N images. At the end, it provides, in the
last image IN , a vector CCCE containing the NC tree candidates
positions.

However, due to uneven ground, tall grass or some left
over equipments, it may happen that a shadow which does
not represent a tree appear is detected. It is then necessary
to add a tree selection process (pipeline step 6) which will
reduce the number of false positive elements. It consists in
checking if there are branches or leaves above each detected
candidate point (which is supposed to be a trunk). Thus a
candidate is considered to be a tree if the number of points
above it is sufficiently important. To do so, a discrete map
MD whose resolution is similar to IN is computed. Each cell
of MD gives the number of points of XY ZS belonging to the
area it represents (figure 4(e)). Finally, the values of the cells
belonging to a square of dimension KO and centered on the
candidate are summed to compute an occupancy score SO. If
SO happens to be higher than a predefined threshold TO, the
candidate point is added to the tree vector T which contains
all the detected trunk positions.

B. Concavity Detection Algorithm

The concavity detection algorithm aims at detecting the
concavities, computing their inflection points, and provide an
estimate of their area. To do so, it uses N images representing
the ground in polar coordinates at different resolutions. They
are stored in an image vector III = [I1, ..., In], where I1 has the
lowest resolution and IN has the highest one. Algorithm 1
provides an overview of the method and presents the three
steps successively applied to each image. First, the initial

Algorithm 1: trunkCandidatesComputation
input : III,N
output: CCCE

1 for i = 1 : N :
2 CCCS = startingCoordinates(III[i],CCCE , i)
3 CCCC =detectConcavities(III[i],CCCS)
4 CCCE =exploreConcavities(III[i],CCCC)

positions of the coins are computed. Second, the coins drop
down until the entrance of a concavity is detected or they are
ejected. Finally, the non-ejected coins explore the concavity
until they reach its bottom. Once this process is over, the final



positions CCCE of the NC tree candidates obtained in the image
IN are provided. The three previous steps are detailed hereafter
in the algorithms 2, 3 and 4.

Algorithm 2: startingCoordinates
input : I,CCCE , i
output: CCCS

1 if i = 1 :
2 for j = 1 : numberOfColumn(I) :
3 CCCS[ j] = (1, j)
4 else:
5 for j = 1 : numberOfColumn(CCCE) :
6 (x,y) =convertCoordinates(CCCE [ j])
7 CCCS[ j] = (x,y)

(a) Concavity detection at low resolution in I1 - Green dots: intial positions
- Orange dots: ejected coins - Red dots: stuck coins

(b) Concavity detection at high resolution in IN - Blue lines represent the
previous resolution - Yellow squares: initial positions computed from
the final positions at the lowest resolution - Red dots: final positions

(c) Example of dropping one coin in I1 - Green dot: intial position -
White dots: dropping step - Purple dot: concavity detected - Cyan dots:
concavity exploration - Red dot: final position - Orange dots: borders
compupted for each row in this example

Fig. 5. Example of concavity detection at different resolutions

Algorithm 2 aims at performing the first step: the computa-
tion of starting coordinates. It provides the vector CCCSSS, which
contains the initial coordinates of the coins for the ith image
III[i]. For I1, one coin per column is placed at the top row of
the image (represented by the green dots in figure 5(a)). For
the other images Ii, with i ∈ [2,N], the initial coordinates are
randomly selected within the area obtained by converting the
final coordinates CCCEEE in image Ii−1 to the current resolution
(represented by the yellow square in figure 5(b)).

Once the coordinates vector CCCS has been computed, algo-
rithm 3 allows to drop the coins to detect the entrance of the
concavities in an image I. To do so, for each element present in
CCCS, the closest pixels in the right and left directions, belonging
to the same row, and with a non-null value are calculated. From
now on, they are named left and right borders, and denoted
Bl ,Br (orange spots in figure 5(c)). If Bl or Br is one of the
image border, then the coin has to move to the next row (white
dots in figure 5(c)). If the next pixel has a non-null value,
then the coin is ejected. Otherwise it is dropped to the next
row at the same column. If both Bl and Br represents pixels
with non-null value, then the entrance of a concavity has been
detected (purple dot in figure 5(c)). The current location of
the coin is then added to CCCC, vector containing the position
of the concavity entrances.

Algorithm 3: detectConcavities
input : I,CCCS
output: CCCC

1 k = 1
2 for j = 1 : numberOfColumn(CCCS) :
3 (x,y) =CCCS[ j]
4 e jected = FALSE, borders = FALSE
5 while !e jected and !borders :
6 (Bl ,Br) = findBorders(I,x,y)
7 borders = evaluateBorders(Bl ,Br)
8 if borders =FALSE :
9 y = y+1

10 e jected = evaluateNextRow(I,x,y)
11 else:
12 CCCC[k] = (x,y)
13 k = k+1

Algorithm 4: exploreConcavities
input : I,CCCC
output: CCCE

1 k = 0 for j = 1 : numberOfColumn(CCCC) :
2 (x,y) =CCCC[ j]
3 e jected = FALSE, stuck = FALSE
4 while !e jected and !stuck :
5 (x,y) = dropCandidates(I,x,y)
6 (Bl ,Br,e jected) = findBorders(I,x,y)
7 if !e jected :
8 CCCN = nextCandidates(I,x,y,Bl ,Br)
9 NOC = numberOfColumn(CCCN)

10 if NOC > 0 :
11 r = random(NOC)
12 (x,y) =CCCN [r]
13 else:
14 CCCE [k] = (x,y)
15 k = k+1
16 stuck = TRUE

The concavities being detected, algorithm 4 aims at explor-
ing them to find the point of inflection (cyan dots in figure
5(c)). To do so, each element of CCCC is moved to the next row



and the borders Bl and Br are computed. If at least one of the
border corresponds to the image border, the coin is ejected.
Otherwise, all the non-null pixels of the next row within the
borders Bl and Br are placed in the next candidate vector CCCN .
Next, if CCCN is not empty, the next position is randomly selected
among the elements of CCCN . Otherwise, it means that the coin
is stuck at the bottom of a concavity and is added to the final
coordinates vector CCCE (red dot in figure 5(c)).
Remark 1: The exploration of the concavity is randomly done
in order to deal with noise. Indeed, in the case of a small
concavity inside another concavity, due to the presence of
noise, a deterministic approach could lead to stuck all the
coins in the small concavity. A random approach allows to
minimize the impact of noise in the exploration process.
Remark 2: The final coordinates vector CCCE obtained for the last
image IN corresponds to the coordinates of the tree candidates.
It is the output of the concavities detection algorithm.

V. EXPERIMENTS

(a) Orchard #1 winter (b) Orchard #1 spring

(c) Orchard #2 (d) Orchard #3

Fig. 6. View of the orchards

The above point cloud processing pipeline has been imple-
mented on our Toro Workman robot. It is equipped with ROS
middleware which is running on a laptop equipped with an
Intel Core i7-6700H, 16 GB RAM and a NVIDIA GeForce
GTX 960M GPU. The vision system is composed of four
ZED cameras, setup with a resolution of 720p. Each camera
provides a point cloud of 777600 points in a 15m range. In
order to evaluate the performances of the proposed approach,
data from three different orchards were collected (see figure
6). The first one is a plum orchard and the data gathered during
winter (Data #1) and spring (Data #2). The two other ones are
walnut (Data #3) and almond (Data #4) orchards and the data
collected during spring. In table I, the average row width, tree
spacing and trunk diameter are given for the different data
sets. Finally, the data were both acquired in the rows and the
headlands.

The tree detection algorithm has been implemented using
the C++ and CUDA languages, as well as the openCV and
PCL libraries. Moreover, its parameters have been fixed as
follows: size of the sample KSampling = 350000; distance to

TABLE I
DESCRIPTION OF THE ORCHARDS - AVERAGE WIDTH, SPACING AND

DIAMETER EXPRESSED IN METER

Data # Season Type Width Spacing Trunk diameter
1 Winter Plum 5 3 0.5
2 Spring Plum 5 3 0.5
3 Spring Walnut 4 3.5 0.35
4 Spring Almond 6 2.5 0.35

plane threshold TP = 0.25 m; number of images N = 2 3 with
µ1 = 0.5 meter, θ1 = 1 degree, µ2 = 0.05 meter, and θ2 =
0.1 degree. Moreover, the dimension of the density square is
KO = 11 and the occupancy threshold TO = 200. In table II,
the performances of the proposed approach are given for the
four data sets. It provides the precision and recall of the tree
detection algorithm. The results are given by distance range:
from 0 to 5 m, from 5 to 10 m and over 10 m. The position of
the cameras was changed between winter and spring to make
them face downward. Thus, the data acquired during spring do
not allow to detect trees beyond 10 meters. The ZED cameras
provide relevant high quality data up to 5 meters. Thus, for this
range, the tree detection algorithm offers great performances.
Indeed, for the four data sets, precision is above 97% and recall
is above 96%. For the 5 to 10 meters range, the precision is
still good with at least 97%. However, recall drops especially
for the second and third data sets with respectively 72.4% and
83.1%. Two factors explain the drop of recall performances at
this range. First, the point clouds computed by the stereo vision
system contains more noise and the position of the points is
less accurate. Second, especially for the spring data sets, the
field of view might be blocked by leaves, making impossible
for the camera to acquire data related to further trees. However,
the performances obtained within the 10 m range is sufficient
to navigate within a commercial orchard.

Figure 7 shows four detailed results of tree detection in the
last image I2. The yellow squares represent the position of the
tree candidates computed in image I1, while the green squares
are the selected candidates. Finally, the red squares correspond
to the candidates rejected based on SO and TO. The first image
7(a) represents the tree detection for the front left camera in the
first orchard. The three trees in the field of view of the camera
are detected, while the false positive detections are filtered
thanks to the density based criteria. Moreover, this case is an
example of the necessity to randomly explore the concavities.
Indeed the two left trees belong to the same large concavity
with four points of inflection (but only two of them correspond
to trees). Thus, if the coins are moved in a systematic way, by
moving to the middle of the next row for example, then only
one of the four inflection point is detected. In images 7(b) and
7(c) the results for the front and left sided sensors in orchards

3For the current resolution only 2 images are required. Indeed, the low
resolution of the first image I1 allows to obtain a detailed representation of
the scene while removing most of the noise. Thus, the results obtained in
I1 can be directly used in the high resolution image I2 without risking false
detections. In the case of a higher resolution of the image provided by the
camera or a more noisy representation of the scene, it might be required to
use a higher value for N.



TABLE II
TREE DETECTION PERFORMANCE - RESULTS ARE GIVEN FOR 0 TO 5 M

(0-5), 5 TO 10 M (M) AND OVER 10 M (10+)

0-5 m 5-10 m 10+ m Total
Data #1

Number of tree 38 67 49 154
Precision 100% 98.5% 64.7% 90.2%

Recall 97.3% 91% 44.8% 77.9%
Data #2

Number of tree 198 213 N/A 411
Precision 97.5 % 98.7% N/A 98%

Recall 98.9% 72.4% N/A 85.1%
Data #3

Number of tree 89 101 N/A 190
Precision 97.7% 97.6% N/A 97.7%

Recall 96.6% 83.1% N/A 89.4%
Data #4

Number of tree 107 60 N/A 167
Precision 97.1% 98.2% N/A 97.5%

Recall 96.2% 90% N/A 91.5%

(a) Front left sensor from data #2

(b) Front left sensor from data #3

(c) Side left sensor from data #3

(d) Front right sensor from data #4

Fig. 7. Example of tree detection in image I2 - Yellow squares: tree candidates
computed in I1 - Green squares: selected candidates - Red squares: rejected
candidates - Red lines: 5 and 10 m limits

TABLE III
AVERAGE PROCESSING TIME MEASURED WITH 100 POINT CLOUDS (MS)

1: Random sampling 2.5 ms 2: Ransac 4.7 ms
3: Extract plane and rotate 1.8 ms 4: Polar images 1 ms

5: Concavity detection 1 ms 6: Select tree 0.1 ms

#2 can be seen. Once again all the trees in the field of view
of the cameras are detected while the false positive detections
are filtered. Moreover, the tree in the 0-5 meter range is a V-
shape tree. It was then possible to perceive the ground between
the two main branches, creating a non-empty concavity in the
image. That fully explains why it has been decided to detect
the trees by developing a new concavity detection algorithm,
instead of using a function-based method such as the gradient
descent one. Finally, the image 7(d) represents the result of
the tree detection for the right front camera in the last orchard.
In this case, only two of the three trees present in the field of
view are detected. The inflection point of the non-detected one,
the left red square in the figure, was detected by the concavity
detection algorithm. However, the density score was not high
enough to be selected as a tree.

The tree detection algorithm presented in this paper seems to
perform at least as well as the ones presented in the literature.
However, it is difficult to compare the obtained performances
because of the different sensors and platform used, and types
of orchards considered. Moreover, the listed results do not
provide any information regarding the distance between the
sensors and the detected trees. Here, the performances reported
in previous works are summarized. The method presented in
[14] performs in apple orchards and allows to obtain a correct
recognition rate of 91.7% with a single camera. In [15], the
authors report a detection rate of 97.8% and a false-positive
rate of 15.2% for an oil-palm tree detection performed with
a stereo camera. The algorithm presented in [16] allows to
detect persimmon trees thanks to a camera coupled with a
laser scanner. Precision rates ranging from 96.77% to 98.94%
and recall rates from 93.75% to 96.88% are reported. In [17],
orange trees are detected using cameras and ultrasonic sensors.
The proposed algorithm allows to obtain a recall ratio of
92.14% and an accuracy ratio of 95.49%. Finally, the citrus
tree detection using a camera presented in [18], performs with
a true-positive ratio of 90.8% and a false positive-ratio of
95.49%.

In table III, the time required by our platform to compute
the different steps of the pipeline are given. It is shown that
the average total time to detect the trees is about 10 ms
with peaks up to 15 ms. It should be noticed that a previous
implementation not using CUDA was requiring an average
processing time of 150 ms to process the entire pipeline.

VI. CONCLUSION

In this article, a robust, quick and accurate perception
system dedicated to tree detection in orchards was developed.
It proposes a vision-based system made of four low cost
stereo cameras which provide a dense representation of the
agricultural environment around the vehicle. In our method,



the point cloud is processed to detect trunks instead of the
whole trees to avoid considering leaves or branches which
might reduce the result accuracy. To do so, the key idea
is to find the tree trunks by detecting their shadows which
are materialized by concavities in the obtained point cloud.
The designed algorithm is made of two steps, respectively
consisting in extracting the ground and detecting the trees.
This latter objective is fulfilled thanks to an original algorithm
whose execution time is around 1ms, allowing its use in a
control context. The pipeline was implemented on our robot
using ROS middleware and validated using various sequences
of data taken in different orchards. The obtained results have
been proven to be quite satisfying. A comparison with other
approaches has also been proposed. Our future works will
be mainly orientated towards the coupling of our perception
system to our control strategies. Indeed, the positions of
the trees are now available with a sufficient accuracy to
compute the control laws. Then, it will be necessary to build a
topological map of the environment. Finally, it will remain to
sequence the row following and U-turn controllers proposed in
[3] depending on the robot position in the orchard to complete
the navigation task.
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