
HAL Id: hal-01963069
https://hal.science/hal-01963069

Submitted on 21 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Theoretical Foundation of Sensitivity in an Abstract
Interpretation Framework

Se-Won Kim, Xavier Rival, Sukyoung Ryu

To cite this version:
Se-Won Kim, Xavier Rival, Sukyoung Ryu. A Theoretical Foundation of Sensitivity in an Abstract
Interpretation Framework. ACM Transactions on Programming Languages and Systems (TOPLAS),
2018, 40 (3), pp.1-44. �10.1145/3230624�. �hal-01963069�

https://hal.science/hal-01963069
https://hal.archives-ouvertes.fr

xx

A Theoretical Foundation of Sensitivity in
an Abstract Interpretation Framework

SE-WON KIM, S-Core1

XAVIER RIVAL, CNRS, ENS, INRIA Paris-Rocquencourt, PSL* University
SUKYOUNG RYU, KAIST

Program analyses often utilize various forms of sensitivity such as context sensitivity, call-site sensitivity,
and object sensitivity. These techniques all allow for more precise program analyses, that are able to compute
more precise program invariants, and to verify stronger properties. Despite the fact that sensitivity tech-
niques are now part of the standard toolkit of static analyses designers and implementers, no comprehensive
frameworks allow the description of all common forms of sensitivity. As a consequence, the soundness proofs
of static analysis tools involving sensitivity often rely on ad hoc formalization, which are not always carried
out in an abstract interpretation framework. Moreover, this also means that opportunities to identify simi-
larities between analysis techniques to better improve abstractions or to tune static analysis tools can easily
be missed.

In this paper, we present and formalize a framework for the description of sensitivity in static analysis.
Our framework is based on a powerful abstract domain construction, and utilizes reduced cardinal power
to tie basic abstract predicates to the properties analyses are sensitive to. We formalize this abstraction,
and the main abstract operations that are needed to turn it into a generic abstract domain construction. We
demonstrate that our approach can allow for a more precise description of program states, and that it can
also describe a large set of sensitivity techniques, both when sensitivity criteria are static (known before
the analysis) or dynamic (inferred as part of the analysis), and sensitive analysis tuning parameters. Last,
we show that sensitivity techniques used in state of the art static analysis tools can be described in our
framework.

1. INTRODUCTION
In this paper, we consider program static analyses that aim at computing nontrivial
semantic properties of programs, so as to establish safety properties such as absence of
certain classes of errors, or partial correctness. The results of static analyses should be
sound, that is, they should hold for all program executions. Furthermore the analyses
should be automatic. Since the properties of interest are by essence not computable,
sound and automatic static analyses are necessarily conservative: they may fail to
compute the most precise semantic properties, and they may fail to establish semantic
properties that hold true. Of course, static analysis designers strive to limit such fail-
ures, and pay great attention to the precision of their analysis algorithms: a precise
static analysis should fail to establish the property of interest as rarely as possible.
Program static analyses often explicitly rely on the notion of abstraction [Cousot and
Cousot 1977], where each abstract property describes a set of concrete states. The goal
of a precise static analysis is then to compute a tight abstraction of the reachable con-
crete states.

Sensitivity is one of the most commonly encountered techniques to improve the pre-
cision of static analysis tools. It consists in considering invariants where distinct (but
not necessarily disjoint) sets of program behaviors are described separately. More pre-
cisely, sensitivity relies on a splitting of the state space into chunks that will always
be discriminated by the analysis. For instance, call-site string sensitivity [Sharir and
Pnueli 1981] was introduced to discriminate states according to an abstraction of their
calling contexts defined by their call strings. The advantage of this approach is that
the analysis does not have to produce a precise abstraction consisting of a single ab-
stract element, for all the states that reach a given procedure f ; instead, it may simply

1This work was done while the author was affiliated at KAIST.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:2 S. Kim, X. Rival, and S. Ryu

produce several abstractions for subsets that reach f , and that correspond to sets of
contexts. In essence, this amounts to using symbolic disjunctions of abstract properties
during the course of the analysis, hereby improving the precision of abstract operations
such as control flow join. On the other hand, such disjunctions may incur a higher cost,
both in terms of space and of analysis run-time.

We can observe that call-site string sensitivity is a form of sensitivity among many,
and that most static analysis tools use one or more forms of it. For instance, flow sensi-
tivity distinguishes states based on the control point at which they can be observed. It
has been formalized by Cousot [Cousot 1981] as an abstract interpretation [Cousot and
Cousot 1977; Cousot and Cousot 1979]. The notion of call-site string sensitivity [Sharir
and Pnueli 1981] was also applied to functional languages [Shivers 1991]. Trace parti-
tioning abstractions [Handjieva and Tzolovski 1998; Rival and Mauborgne 2007] rely
on control flow paths (such as loop iteration counts or condition branches) or on proper-
ties observed at a certain point of program executions (such as the value of a variable
at a specific program point) in order to distinguish states, and improve precision, by
effectively delaying control flow joins that would otherwise deteriorate precision. The
trace partitioning framework has been applied to significantly reduce the number of
false alarms produced when analyzing safety-critical embedded programs [Rival and
Mauborgne 2007]. Moreover, other forms of sensitivities have been proposed to tie ab-
stract properties to (an abstraction of) the value of some variables. This includes object
sensitivity [Milanova et al. 2005; Smaragdakis et al. 2011], the cartesian product al-
gorithm [Agesen 1995], and the functional approach [Sharir and Pnueli 1981]. The
Reps-Horwitz-Sagiv (RHS) algorithm [Reps et al. 1995] is a special case of the func-
tional approach where we can use an efficient graph reachability algorithm.

We can observe that a salient common feature of all these forms of sensitivity is that
they introduce disjunctions into abstract states in a very structured way: each disjunct
corresponds to a set of executions characterized by a specific property, which we call
a view, and attaches some abstract property to it. In this view, each piece of the dis-
junction actually reads as a logical implication, which states that, whenever a concrete
execution is an element of this view, then it also meets the attached abstract property.
Therefore, we can see an abstract value as a conjunction of implications rather than
an unstructured disjunction. As an example, call string sensitivity describes sets of
states by tying each state to an abstraction of its call stack. This construction was
initially formalized by Cousot and Cousot as the reduced cardinal power [Cousot and
Cousot 1979], and it was further developed and generalized by Giacobazzi, Ranzato
and Scozzari in [Giacobazzi and Scozzari 1998; Giacobazzi et al. 2005].

As we noted sensitivity aims at improving precision of static analysis, but may de-
grade its performance significantly, as abstract states become more complex and thus,
harder to manipulate. To avoid performance issues, static analysis designers need to
pay very careful attention to the amount of sensitivity they build into the analyses
they design. A common pattern is to start with a basic flow sensitive analysis, and to
add in additional forms of sensitivities to improve precision, while making sure that
(1) soundness of the analysis is preserved, (2) an adequate level of precision is reached
and (3) performance is not impacted to the point where the analysis would not be scal-
able anymore. Unfortunately, there exists, as of now, no general framework to guide
this process, even though common forms of sensitivity obviously share some character-
istics. Worse still, the forms of sensitivity mentioned above are formalized in different
frameworks, which does not help their combination, although it is often necessary to
integrate several forms of sensitivity in a single static analysis tool. Therefore, the task
of designing and implementing static analyses relying on sensitivity remains tedious.

In this paper, we present a unifying framework for sensitive abstractions in program
analysis. Essentially, a sensitive abstraction is an abstraction which is able to bind

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:3

different pieces of abstract information to different subsets of program behaviors. In
logical terms, this binding boils down to a conjunction of implications. Our study is
carried out in the abstract interpretation framework [Cousot and Cousot 1977; Cousot
and Cousot 1979], and provides a formal foundation to design, combine and engineer
sensitivities. We make the following contributions:

— We set up a general framework for sensitivity in static analysis by abstract inter-
pretation, which relies on a powerful abstract domain combination operation, based
on the reduced cardinal power abstract domain construction [Cousot and Cousot
1979]. The power of our framework largely comes from the way it represents ab-
stract properties as conjunctions of implications rather than unstructured disjunc-
tions. We provide generic abstract operations for sensitive abstractions, including
the post-condition operations, the widening operator used to enforce convergence of
abstract iterates.

— We formalize the most common forms of sensitivity as instances of our framework,
which demonstrates its generality. Moreover, we demonstrate that our framework
allows to reason on the combination of existing forms of sensitivity and can be ap-
plied to the creation of new forms of sensitivity. Therefore, our framework provides
a powerful setup to reason about sensitivity in static analysis.

— We apply our framework to the description of the forms of sensitivity used in real-
world static analyzers, Astrée [Blanchet et al. 2003], Sparrow [Oh et al.], SAFE [Lee
et al. 2012a], and TAJS [Møller et al. 2014]. This study demonstrates that our
framework is effective in practice.

Our framework generalizes the trace partitioning framework [Rival and Mauborgne
2007] since trace partitions can be viewed as specific instances of views. It also allows
to describe forms of sensitivities that would better be described at other levels than
traces. An important motivation for such a framework is to better identify which sen-
sitivity is requires to cope with a given static analysis problem, at a lower cost (i.e.,
with fewer, simpler views), and with a sufficient level of precision.

This paper is organized as follows. In Section 2, we informally study the form of the
predicates expressed in sensitive analyses. Section 3 presents the analysis domains
and the Galois connection between them for sensitive analyses, and discusses their ba-
sic properties. Section 4 defines a precise and sound abstract execution on the analysis
domains defined in Section 3. Section 5 describes how our framework can safely ad-
just sensitivity dynamically. In Section 6, we present techniques to construct sensitive
analyses, including basic instances of sensitivities and operations to compose several
sensitivities together. Section 7 describes four powerful static analysis tools, Astrée,
Sparrow, SAFE, and TAJS, as instances of our framework and discusses related works
and we conclude in Section 8.

2. OVERVIEW
Throughout the paper, we consider programs that can be represented as control flow
graphs. In the following, we discuss a simple example of program, and show how rea-
soning about it can take advantage of some simple form of sensitivity. While the pro-
gram is simplified to better show the impact of sensitivity on the analysis, it does
derive from existing programming patterns that can be encountered in error handling
routines, or in user interaction code. For example, a function in the generic keyboard
shortcut handler provided by the Google Closure library2 computes the value of strokes

2https://closure-library.googlecode.com/git-history/docs/local_closure_goog_ui_
keyboardshortcuthandler.js.source.html

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

https://closure-library.googlecode.com/git-history/docs/local_closure_goog_ui_keyboardshortcuthandler.js.source.html
https://closure-library.googlecode.com/git-history/docs/local_closure_goog_ui_keyboardshortcuthandler.js.source.html

xx:4 S. Kim, X. Rival, and S. Ryu

int readpos() function returning random, positive values

bool b0, b1, . . . , bN−1; boolean variables storing random values
int x0, x1, . . . , xN−1, y; uninitialized integer variables

l0 : if(b0){
x0 = readpos(); reads a strictly positive value into x0

}else{
x0 = 0; zeroes out x0

}
l1 : if(b1){

x1 = readpos(); reads a strictly positive value into x1
}else{

x1 = 0; zeroes out x1
}
. . .

lN−1 : if(bN−1){
xN−1 = readpos(); reads a strictly positive value into xN−1

}else{
xN−1 = 0; zeroes out xN−1

}
ly : y = x0 ∗ x1 ∗ . . . ∗ xN−1; combination
lexit : . . .

Fig. 1: Pseudo-code of a simple program

by using the values of the variables modifiers and keyCode, which are set depending on
whether the value of key is one of the modifier keys shift, ctrl, alt, and meta.

This program shown in Figure 1 declares N boolean variables, which may read ar-
bitrary values (e.g., in the user actions or in previous computations) and N integer
variables known to store positive values. For the sake of simplicity, we also assume in-
teger arithmetic operators perform ideal mathematical operations (instead of modular
arithmetic). The program computes an integer value y from the random boolean inputs
b0, . . . , bN−1, by first computing a series of integer variables x0, . . . , xN−1 (either as a
strictly positive value returned by function readpos, or as 0) and combines them. One
can consider y in this program as strokes in the above mentioned function, the boolean
inputs as whether key’s value is one of the modifier keys, and the integer variables as
modifiers and keyCode.

Obviously, in the concrete executions, the final value of y depends on all the control
flow branches that occur during the execution of the program. In fact, y is strictly
positive if and only if all booleans are true and it is 0 if and only if any of the booleans
is false. Thus, the following two properties hold at the end of the execution of the
program:

(P0) (∀k ∈ {0, . . . , N − 1}, bk = TRUE) =⇒ y ≥ 1

(P1) (∃k ∈ {0, . . . , N − 1}, bk = FALSE) =⇒ y = 0
(1)

Such properties can be inferred or verified in a number of ways. A common technique
consists in performing a forward analysis, starting from a pre-condition, and trying
to establish the aforementioned properties as post-condition. In this case, this anal-
ysis should start from the trivial pre-condition that holds on any state (all variables
initially hold random values). Since we focus on the properties the analyses can estab-
lish and do not consider their representation and algorithms to compute them, we de-

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:5

scribe properties that can be obtained using logical formulas. For presentation brevity,
we assume that the analysis uses a non-relational abstraction, which means a set of
states will typically be described by a conjunction of constraints where each variable
is described in a separate element of the conjunction. Therefore, base domain abstract
properties are expected to be of the form Pb0 ∧ . . . ∧ . . . PbN−1

∧ Px0 ∧ . . . ∧ PxN−1
∧ Py

where Pbi and Pxj denote constraints on bi and xj , respectively.

Non-sensitive analysis. As a first attempt, we consider a fully non-sensitive analy-
sis. Then, it will compute as a post-condition a single conjunction of properties of the
variables. Since this abstract post-condition should account for states where bi is true
and for states where it is false, it cannot capture any precise information about bi. The
same holds for xi. Therefore, it will also account for cases where y is strictly positive
as well as for cases where it is 0. Therefore, a non-sensitive analysis will compute, at
best a property of the form:

(b0 ∈ {true, false}) ∧ . . . ∧ (bN−1 ∈ {true, false}) ∧ (x0 ≥ 0) ∧ . . . ∧ (xN−1 ≥ 0) ∧ (y ≥ 0)

Therefore, a non-relational and non-sensitive analysis will prove neither P0 nor P1.

Fully sensitive analysis. In order to alleviate the limitations of the previous non-
sensitive analysis, the most obvious solution consists in letting it manipulate and pro-
duce disjunctions of abstract states of the previous form. A fully disjunctive analysis
can introduce as many disjuncts as it needs in order to achieve a precise result (this
approach raises termination issues that we do not consider in this paper). The fully dis-
junctive analysis of the example of Figure 1 would produce the following disjunction of
states:

(b0 = true ∧ . . . ∧ bN−2 = true ∧ bN−1 = true
∧ x0 ≥ 1 ∧ . . . ∧ xN−2 ≥ 1 ∧ xN−1 ≥ 1 ∧ y ≥ 1)

∨ (b0 = true ∧ . . . ∧ bN−2 = true ∧ bN−1 = false
∧ x0 ≥ 1 ∧ . . . ∧ xN−2 ≥ 1 ∧ xN−1 = 0 ∧ y = 0)

...
...

∨ (b0 = false ∧ . . . ∧ bN−2 = false ∧ bN−1 = false
∧ x0 = 0 ∧ . . . ∧ xN−2 = 0 ∧ xN−1 = 0 ∧ y = 0)

However, this disjunction does not convey much structure, since it does not allow to
clearly see where each disjunct comes from. In fact, there are at least two ways to
relate each disjunct to a set of behaviors of the program, that will be observed during
the analysis:

— each disjunct is characterized by an initial mapping for the boolean variables;
— equivalently, each disjunct corresponds to a unique control flow path in the program,

that is determined by the true and false branches that are traversed.

Both of these two approaches actually suggest very similar formulas, based on a con-
junction of implications, where each implication characterizes a given configuration of
the boolean variables or a given control flow path. These correspond exactly to value
sensitive and path sensitive analyses. The formula corresponding to the value sensitive

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:6 S. Kim, X. Rival, and S. Ryu

analysis boils down to:

(b0 = true ∧ . . . ∧ bN−2 = true ∧ bN−1 = true)
=⇒ (x0 ≥ 1 ∧ . . . ∧ xN−2 ≥ 1 ∧ xN−1 ≥ 1 ∧ y ≥ 1)

∧ (b0 = true ∧ . . . ∧ bN−2 = true ∧ bN−1 = false)
=⇒ (x0 ≥ 1 ∧ . . . ∧ xN−2 ≥ 1 ∧ xN−1 = 0 ∧ y = 0)

...
...

∧ (b0 = false ∧ . . . ∧ bN−2 = false ∧ bN−1 = false)
=⇒ (x0 = 0 ∧ . . . ∧ xN−2 = 0 ∧ xN−1 = 0 ∧ y = 0)

(2)

Path sensitivity would result in a similar looking formula (essentially, the left hand
side of each implication would turn into a conjunction of branch choices of the form
li : b), thus we focus on value sensitivity in this section. Obviously, this formula de-
scribes in a very precise manner the set of states that can be observed at the end of
the execution of the code fragment, and it allows to verify both property P0 and prop-
erty P1. However, we also note the very high cost of this approach, since this analysis
computes a conjunction of 2N formulas. Therefore, we cannot expect fully disjunctive,
fully value sensitive or fully path sensitive analyses to scale.

More compact choices of a set of cases. The main issue from the fully sensitive anal-
yses discussed in the previous paragraph stems from the fact that they generate too
many case splits which are not all absolutely necessary to establish the properties of
interest. In particular, whenever any of the boolean variables contains false, the re-
sulting value for y is necessarily 0. Therefore, we can use a smaller set of implications
to achieve the same result, even if we stick with conjunctions of variable predicates in
the left hand side of the implications:

(b0 = true ∧ . . . ∧ bN−1 = true) =⇒ (x0 ≥ 1 ∧ . . . ∧ xN−1 ≥ 1 ∧ y ≥ 1)
∧ b0 = false =⇒ (x0 = 0 ∧ y = 0)
...

...
...

...
∧ bN−1 = false =⇒ (xN−1 = 0 ∧ y = 0)

(3)

This case split also corresponds to a value sensitive analysis although it does not dis-
tinguish all vectors of boolean values, thus we can call this approach a form of par-
tially value sensitive analysis. It also allows to verify both property P0 and property P1

though the number of cases it uses is linear (N + 1) instead exponential (2N) with the
fully sensitive analysis.

However, one may argue that the choice of case splits that was used for this analysis
is somewhat arbitrary, since it gives a very special role to a specific vector of inputs.
While this choice is very suitable for some program / properties, it is much less so for
others. For instance, the following linear case split is based on a similar structure, and
only permutes true and false in the left hand side formulas, yet it would fail to verify
both property P0 and property P1:

b0 = true =⇒ (x0 > 0 ∧ y ≥ 0)
...

...
...

...
∧ bN−1 = true =⇒ (xN−1 > 0 ∧ y ≥ 0)
∧ (b0 = false ∧ . . . ∧ bN−1 = false) =⇒ (x0 = 0 ∧ . . . ∧ xN−1 = 0 ∧ y = 0)

(4)

Another linear case split. The previous paragraphs have shown a very powerful but
expensive analysis as well as a much less costly yet very powerful one, though the lat-
ter requires an ad hoc choice of partitions. However, we can observe that there exists
a very natural way of preserving information about each condition as a conjunction

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:7

of implication, that is also quite precise. The fundamental idea is to use another con-
junction of implications, where the left hand side of each implication accounts for the
executions that take a specific (true of false) branch of a specific conditional statement.
The resulting condition characterizing the state at point ly writes down as follows:

b0 = true =⇒ x0 > 1
∧ b0 = false =⇒ x0 = 0
...

...
...

...
∧ bN−1 = true =⇒ xN−1 > 1
∧ bN−1 = false =⇒ xN−1 = 0

(5)

This post-condition results from an analysis that maintains value sensitivity over all
conditions, but that does not perform full sensitivity during the analysis, since it does
not attempt to precisely characterize the results obtained from all combination of in-
puts. Analyzing the final assignment under this pre-condition clearly allows to prove
P1: indeed, if bi = false, then it implies that xi = 0, thus y = 0. More interestingly,
it also allows to prove P0. Indeed, if ∀i, bi = true, then the above formula entails
x0 ≥ 1 ∧ . . . ∧ xN−1 ≥ 1, therefore y ≥ 1 after the assignment. Such a logical step is
possible since the cases in the above conjunction of implication are not mutually ex-
clusive, thus the analysis of the final assignment may combine them. Thus, those two
properties get verified in quite different ways: in the case of P1 only one implication
needs to be used, whereas in the case of P0, several (N) implications are combined
together.

Moreover, this conjunction of implications has linear size since it is made of 2N
implications, and it is also less specific than the cases encountered in the previous
paragraph, in Equation (3) and in Equation (4). The property can still be proved, but
at the cost of a more careful combination of cases in the case of P0.

Sensitive analyses. In this section, we have observed that several instances of value
and path sensitive analyses can be described using logical predicates represented by
conjunctions of implications, and that this presentation gives a more structured view
to the properties manipulated by the analysis than basic disjunctions. This representa-
tion based on conjunctions of implications also allows to better understand the various
ratios between performance and precision that each analysis achieves, as it precisely
characterizes what amount of information is used to define each case. Last, conjunc-
tions of implications may split sets of states into sets of cases that are not mutually
exclusive, while retaining a high level of precision. The next sections will formalize
these observations.

3. ABSTRACTION
In this section, we define abstract elements and their concretization, and compare the
resulting abstraction with existing approaches.

3.1. Views
Our abstract domain construction utilizes views to describe the properties analyses
are sensitive to, and tie them using properties that can be expressed as conjunctions
of implications. Therefore, we first formalize the meaning of views. Intuitively, a view
stands for a set of behaviors, thus it is very natural to let them be described using an
abstract domain specifically designed for this purpose. As an example, if we consider
a transitional semantics, a view v denotes a set of states E, which means that those
states are observed by v. For instance, in the context of call-site string sensitivity, a
view describes all executions that are matching with a given call-string.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:8 S. Kim, X. Rival, and S. Ryu

In the following, we let C denote the concrete domain, where program behaviors can
be described. In most cases, this domain is a powerset over states or execution traces,
and unless stated otherwise, we assume that C is a powerset domain. As each view
describes a set of behaviors, views can be defined as an abstraction of the concrete
domain:

Definition 3.1 (Views). Views are an abstraction defined by

— set of views V];
— concretization function γV : V] → C.

We can apply this notion of views to the example shown in Section 2 in several man-
ners:

Example 3.2 (Views over boolean values). We consider the program of Figure 1 and
discuss the views that correspond to the abstractions described in Section 2. We write
Vbool for the set of boolean values {TRUE, FALSE}, and M for the set of memory states.
We let V] = VNbool and let γV be defined by:

γV(b0, . . . , bN−1) = {µ ∈M | ∀i, µ(bi) = bi}
Essentially, these views describe all the possible settings of all the boolean variables,
thus this set of views defines the elements of the partition encountered in the fully sen-
sitive analysis, where sensitivity is parameterized by values. Each view corresponds
to the left hand side of an implication in the conjunction of implications describing the
abstract states.

We can also describe the cases that arise in the second linear set of views where
we defined a conjunction of implications, the left hand side of which are of the form
bi = TRUE (resp., bi = FALSE):

∀k, γV(v2k) = {µ ∈M | µ(bk) = TRUE}
∀k, γV(v2k+1) = {µ ∈M | µ(bk) = FALSE}

Again, we observe that the left hand side of each implication of the conjunction shown
in Section 2 describes exactly one view.

Additionally, cases where all boolean variables are equal to TRUE and where at least
one boolean variable is equal to FALSE can be described by views v∀TRUE and v∃FALSE, the
concretizations of which are defined by:

γV(v∀TRUE) = {µ ∈M | ∀k, µ(bk) = TRUE}
γV(v∃FALSE) = {µ ∈M | ∃k, µ(bk) = FALSE}

Thus, the set of views required for this analysis is:

V] = {v0, . . . , v2N−1, v∀TRUE, v∃FALSE}
Example 3.3 (Views including control states). Example 3.2 defines views that split

memory states. Flow sensitivity [Cousot 1981] is a common technique that abstracts
separately memory states encountered at different program points. We can combine
this sensitivity with the sensitivity shown in Example 3.2 by defining a new set of
views V] as a product of the set of control states (that can be represented by statement
line numbers) with the set of views defined in the previous example.

Example 3.4 (Views over sets of executions). In Section 2, we observed that the case
splits needed to perform the analysis could also be expressed in terms of control flow
paths, as a trace partitioning. We noted that the structure of the views describing
the cases would then be similar, and that the only difference would be that the left
hand sides of the implications manipulated in the analysis would describe properties

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:9

1 : x = v;
2 : y = 0;
3 : if(x ≥ 0){
4 : y = x + 1;
5 : } else {
6 : y = x− 1;
7 : }
8 : z = 60/abs(y + 1);
9 : . . .

Fig. 2: A partial example code Fig. 3: Transitional semantics of the code in Figure 2

of execution traces instead of sets. Therefore, as in Example 3.2, we can describe the
sets of behaviors that correspond to the left hand sides of implications using views. For
instance, if we consider the full path sensitivity:

— V] should denote the set of all control flow paths through the N conditions;
— γV should map each control flow path to the set of all executions that follow it.

This set of views is isomorphic to the set of views shown in Example 3.2.

We present a last example, that is simpler than the two previous ones, and that we
will refer to further in this section:

Example 3.5 (Views over a basic transitional semantics). We consider the piece of
code shown in Figure 2. Figure 3 illustrates the transitional semantics of this program,
and displays a few program executions, starting from various values of v, as well as a
few other transitions that are not part of complete traces. Each node denotes a state,
and circled nodes denote states that are reachable from some initial state. Transitions
are depicted by arrows. A star denotes a failure state. The four complete traces (start-
ing from a double circle state) correspond to cases where v is initially equal to -4, -3,
1, or 3.

Moreover, we define the following views:

— v1 describes all states observed at line 3 (after executing the assignments at lines 1
and 2);

— v2 describes all states observed after executing the whole if-statement (i.e., at the
beginning of line 8);

— v3 denotes all the states observed after executing the code at line 4 (at the exit of
the true branch);

— v4 denotes all the states observed after executing the code at line 6 (at the exit of
the false branch);

— v5 denotes all the states observed at the end of the program (after the assignment
of line 8 is executed).

This informal description defines a set of views V] together with a γV function.

3.2. Sensitive Abstraction Based on a Loose Cardinal Power Domain
We can now define our general sensitive abstract domain. In the following paragraphs,
we provide several definitions that are essentially equivalent, but are stated under
distinct sets of assumptions and provide additional insight.

Abstract states and concretization relation, based on a Cardinal Power. In Section 2,
we have described program invariants as conjunctions of implications. Since we have

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:10 S. Kim, X. Rival, and S. Ryu

Fig. 4: Abstraction of reachable states in the views in Figure 3

now proposed views as an abstraction for the behaviors used as a left hand side of these
implications, we can now describe such a conjunction of implications as follows: when-
ever a concrete behavior (say, a program state) satisfies the property expressed by a view
v, then it should also satisfy the right hand side attached to that view. This suggests
that conjunctions of implications can be described as a reduced cardinal power [Cousot
and Cousot 1979], where views abstract the properties in the left hand sides of impli-
cations, whereas another abstract domain is used to abstract the formulas in the right
hand sides.

To do this, we assume for now that the concrete semantics of a program can be
described as a set of “behaviors,” where behaviors are typically program states or exe-
cution traces. We let E denote the set of all behaviors and write C = P(E). Then, a view
abstracts a set of behaviors. Furthermore, we let A] denote an abstract domain, and
γA : A] → C be a concretization into sets of behaviors. We can now define the sensitive
abstract domain:

Definition 3.6 (Sensitive abstract domain and concretization). The sensitive ab-
stract domain S] and its concretization γS : S] → C are defined by:

S] = V] −→ A]
γS(s]) =

{
e ∈ E | ∀v ∈ V], e ∈ γV(v) =⇒ e ∈ γA(s](v))

}
We note that we can write this definition of the concretization in other, equivalent
forms:

γS(s]) =
⋂
v∈V]

{
e ∈ E | e ∈ γV(v) =⇒ e ∈ γA(s](v))

}
=
⋂
v∈V]

(
(E \ γV(v))∪ γA(s](v))

)
Example 3.7 (Abstraction based on a cardinal power). Figure 4 displays an ab-

straction for the views that were defined in Example 3.5. Each rectangle maps a view
into an abstraction of the states that satisfy it. To set up an instance of the sensitive
abstraction, that is based on this set of views, we simply need to fix A]. In this example,
we let it be the interval abstract domain: γA maps an interval [a, b] into the set of states
such that the value of variable y lies in that interval. Then, v3 is mapped to [1,+∞[,
v4 is mapped to] − ∞,−2], and v2 is mapped to] − ∞,+∞[. We note that the states
corresponding to views v3 and v4 are included into those corresponding to v2, which
clearly shows that this abstraction differs from an abstraction based on disjunctions.

The other examples of Section 3.1 lead to similar abstractions.

Representation of sensitive abstract states. When designing an abstract domain, the
choice of the computer representation of abstract elements is paramount to the effi-
ciency of static analysis algorithms, therefore we briefly discuss the possible repre-
sentations for sensitive abstract states. Abstract operations on abstract states will be

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:11

presented in Section 4 and typically need to access to or iterate over some views of
the abstract states they operate on. As a consequence, and when the set of views V]
is finite, dictionary structures provide efficient algorithms and thus are a good fit. An
important remark is that sparse representations can be used, so as to avoid enumer-
ating all views in all abstract states: in particular, when an abstract state s] maps a
view v to the > element of A], this mapping does not need be represented. Similarly,
other redundant mappings may be omitted resulting into more compact representa-
tions. When the set of views V] is infinite, such sparse representations are required to
ensure that dictionary structures can be used.

A definition based on Galois-connection. It is also common to define abstraction rela-
tions using abstraction functions, which map concrete behaviors into the most precise
abstract property that describes them, thus we propose to give such a definition for
sensitive abstractions. As in the previous paragraph, concrete domain C is the pow-
erset of behaviors (C = P(E)) and is ordered by inclusion ⊆. We now assume that
the abstract domain A] also features an order relation vA and an abstraction function
αA : C→ A] that forms a Galois-connection together with γA, which means that:

∀c ∈ C, ∀a ∈ A], αA(c) vA a⇐⇒ c ⊆ γA(a)

We note a pair of adjoint functions satisfying this property as follows:

(C,⊆) −−−→←−−−αA

γA
(A],vA)

Then, we can define the sensitive abstraction as a Galois connection as well, where S]
and γS are defined as in Definition 3.6:

LEMMA 3.8 (SENSITIVE ABSTRACTION GALOIS CONNECTION). We let vS be the
pointwise extension of vA over S] = V] −→ A] and αS be defined by:

αS(E) = λv ∈ V] · αA(E ∩ γV(v))

Then, αS and γS define a Galois connection:

(C,⊆) −−−→←−−−αS

γS
(S],vS)

The proof is provided in Appendix A.

Example 3.9 (Abstraction based on a Galois-connection). We keep the same nota-
tions as in Example 3.7. Then, the base abstract domain A] clearly defines a Galois
connection, and so does S], following Definition 3.8.

Example 3.10 (Pure sensitive abstraction). A particular case of Galois-connection
is the identity abstraction, which is defined by A] = C, αA = γA = λ(C ∈ C) · C. The
resulting sensitive abstraction simply associates to each view the behaviors that are
associated to it. As it composes no other abstraction, we call it the pure sensitive ab-
straction. This sensitive abstraction is especially interesting as the sensitive abstrac-
tion defined by any concretization γA (unnecessarily identity) can be derived from the
pure sensitive abstraction by composing γA point-wisely.

Notes on generality. While our abstract domain does not put any restrictions on V],
most of the existing sensitive analyses require two conditions on V] and γV in order to
achieve soundness and reasonable precision. They require them to define:

(1) a covering ⋃
v∈V]

γV(v) = E, and

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:12 S. Kim, X. Rival, and S. Ryu

(2) a disjoint family of sets

∀v1, v2 ∈ V], v1 6= v2 ⇒ γV(v1) ∩ γV(v2) = ∅.
Therefore, they rely on a partitioning of concrete domain (P(E),⊆). On the contrary,
our sensitive abstraction framework does not require either of these conditions be sat-
isfied but it also ensures soundness and can often provide higher precision than the
traditional analyses. For example, in Figure 3, V] is a covering but is not a disjoint
family of sets, as observed in Example 3.7.

Concretization by implicit partitions filtering. To provide additional insight into the
expressiveness of our construction, we propose another definition of the concretiza-
tion. In this paragraph, we assume that A] features a uA for the greatest lower bound
operator. First, we remark that we can define an equivalence relation over E as follows:

Definition 3.11 (Equivalent behaviors ≡V). For all elements x1, x2 ∈ E, we note
x1 ≡V x2 if and only if:

∀v ∈ V], x1 ∈ γV(v)⇐⇒ x2 ∈ γV(v)

The relation ≡V explicitly represents the implicit partitions induced by V] on E. Then,
the elements of E

/
≡V serve as atoms of V] in the sense that, for each v ∈ V], we can

compute γV(v) as the disjoint union of a family of equivalence classes from E/≡V . We
can now prove the following lemma:

LEMMA 3.12. Given abstract domain A], and concretization function γA : A] → C,
we can write the concretization function γS of Definition 3.6 as follows:

γS(s]) =
⋃{

C ∩ γA
(l

A

{
s](v)|C ⊆ γV(v)

})
|C ∈ E/≡V

}
(6)

Essentially, this lemma shows that the concretization can be viewed as that of a dis-
junction, after refining the view information into the partition it induces, and that is
defined by ≡V. Moreover, if V] is partitioning (i.e., if ≡V boils down to the equality
relation), the above definition of γS can be simplified into:

γS(s]) =
⋃{

γV(v)∩ γA ◦ s](v)|v ∈ V]
}

(7)

General definition. In the previous paragraphs, we have defined concretization and
abstraction functions for the sensitive abstract domain under the assumption that the
concrete domain is a powerset, as required in the original definition of the cardinal
power [Cousot and Cousot 1979]. While this is the most common case, we can also de-
fine the abstraction even when that is not the case using more general assumptions.
To achieve this, we use in the following paragraphs more general implicational struc-
tures than the conventional cardinal power construction. We observe that Giacobazzi
and Scozzari have achieved such results using the notion of Heyting completion in
[Giacobazzi and Scozzari 1998]. More recently, Giacobazzi, Ranzato and Scozzari have
proposed a completion based on linear implication in [Giacobazzi et al. 2005]. These
two works have been applied to the static analysis of logic programs, and aim for a
notion of sensitivity comparable to the one we consider in this paper in the context of
logic languages.

The traditional cardinal power domain and its generalized variant semi-
quantale [Giacobazzi and Ranzato 1999] require the exponents of the domains be com-
plete lattices. By contrast, our abstract domain allows V] to be an arbitrary set. We call
our abstract domain a loose cardinal power domain. In this paragraph, and as in these
works, we require the concrete domain C be a complete Heyting algebra. A Heyting
algebra is a complete lattice (we note vC for the order relation, ⊥C for the infimum,

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:13

>C for the supremum, uC for the greatest lower bound operator, and tC for the least
upper bound operator), which also provides an operator ↪→C such that:

∀c0, c1, c2 ∈ C, c0 uC c1 vC c2 ⇐⇒ c0 vC c1 ↪→C c2

Last, we let A] denote an abstract domain with a monotone concretization function
γA : A] → C.

Definition 3.13 (Loose cardinal power abstract domain). The loose cardinal power
abstract domain S] and its concretization γS : S] → C are defined by:

S] = V] −→ A]

γS(s]) =
l

C

{
γV(v) ↪→C γA ◦ s](v) | v ∈ V]

}
Furthermore, if A] also has an abstraction function αA that defines a Galois connection
together with γA, then S] also defines a Galois connection using the pointwise extension
of the order relation over A] and with the abstraction function αS defined by:

αS(E) = λv ∈ V]. αA(E uC γV(v))

Additionally, Definition 3.13 generalizes Definition 3.6: when concrete domain C is a
powerset domain (as in Lemma 3.8), it also satisfies the assumptions of Definition 3.13,
which is then equivalent to Lemma 3.8. Indeed, if C = P(E), then:

γV(v) ↪→C γA ◦ s](v) = (E \ γV(v))∪ γA(s](v))

3.3. Internal reduction
As observed earlier, an element s] of the abstract domain S] intuitively denotes a
conjunction of implications. This logical structure actually allows to strengthen ab-
stract elements by combining the constraints they express so as to produce stronger
constraints. In general, if we know X0 =⇒ Y0 and X1 =⇒ Y1, then we can derive
(X0 ∧ X1) =⇒ (Y0 ∧ Y1). In our abstract domain, this basic reasoning principle also
holds, and means that the property of “view” (X0 ∧ X1) can be refined using the prop-
erties of “views” X0 and X1.

This process is implemented by a reduction operation [?]. In the following, a reduc-
tion operator is a function ρS : S] −→ S], which is sound (i.e., such that ∀s], γS(ρS(s])) =
γS(s])) and reductive (i.e., such that ∀s], ρS(s]) vS s

]).
In the following two paragraphs, we require A] to have a complete lattice structure

and lift this assumption afterwards. We write tA (resp., uA) for the least upper bound
(resp., greatest lower bound) operator.

Reduction in the Galois-connection setup. In the following, we define such an opera-
tor, assuming that C is a powerset over E and that A] defines a Galois connection over
C. Thus, we use the notation of Lemma 3.8. Under these assumptions, there exists an
optimal reduction operator, which boils down to the lower closure operator αS ◦ γS. As
this is often too costly to compute, we will simply search for an over-approximation of
this ideal operator. The reduction principle we expose below generalizes to the more
general sensitive abstract domain definitions, yet at the cost of more complex formulas,
albeit based on the same principle. We recall the definition of αS ◦ γS:

αS ◦ γS(s]) = λ(v0 ∈ V]) · αA(γS(s])∩ γV(v0))

We first remark the result below:

LEMMA 3.14. For s] ∈ S] and v ∈ V], we have αA(γS(s])∩ γV(v)) vA s
](v).

The proof of Lemma 3.14 is given in Appendix A. Informally speaking, this lemma
states that s](v) is a sound approximation of the set of all the concrete behaviors that

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:14 S. Kim, X. Rival, and S. Ryu

satisfy both s] and v. The intuition underlying this result is that of the logical modus
ponens rule where we deduce Y from (X =⇒ Y) ∧X, and where view v corresponds to
X.

While s](v) conservatively approximates the set of all behaviors satisfying v, we
can actually produce a more precise abstraction using the contribution of other views.
Indeed, if E ⊆ γV(v), and since αA is monotone, we get:

αA(γS(s]) ∩ E) vA s
](v) uA αA ◦ γV(v) (8)

This formula is equivalent to Lemma 3.14 in the context of a set of behaviors E that is
subsumed by a single view v. We can actually also generalize this formula to the case
where several views subsume the set E. To express this, we define a notion of covering
that collects all the sets of views that over-approximate a given concrete behavior:

Definition 3.15 (Covering of a set of concrete behaviors). For all E ⊆ E, we let the
covering of E be defined by:

CoversV](E) =

{
V ⊆ V]|E ⊆ ⋃

v∈V
γV(v)

}
.

We can now generalize Equation (8) to the concrete behaviors that are captured by
many views:

LEMMA 3.16. Let s] ∈ S], E ⊆ E and V ∈ CoversV](E). Then:

αA(γS(s])∩E) vA
⊔

A

{
s](v) uA αA ◦ γV(v)|v ∈ V

}
.

Moreover, we can generalize this to all coverings of a given E ⊆ E:

αA(γS(s])∩E) vA
l

A

{⊔
A

{
s](v) uA αA ◦ γV(v)|v ∈ V

}
|V ∈ CoversV](E)

}
.

The proof of Lemma 3.16 is provided in Appendix A. If we select E = γV(v0), we obtain
the following reduction operator:

LEMMA 3.17 (REDUCTION OPERATOR). We let ρS be defined by:

ρS(s]) = λ(v0 ∈ V]) ·
l

A

{⊔
A

{
s](v) uA αA ◦ γV(v)|v ∈ V

}
|V ∈ CoversV](γV(v0))

}
.

Then:

∀s], αS ◦ γS(s]) vS ρS(s]).

Moreover, ρS(s]) vS s
], thus ρS defines a reduction operator.

The proof of Lemma 3.17 is provided in Appendix A. The inclusion ρS(s]) vS s
] follows

from the fact that {v0} is a covering of γV(v0), thus ρS(s])(v0) vA s
](v0).

Note that when there are multiple coverings for E, it performs the meet operation on
the values from all the coverings. Since we have multiple sound approximations using
each covering, we can get a more precise value by performing the meet operation on
all of them.

General definition of reduction. We now propose to extend the previous definition to
the case where the abstraction defined by A] does not feature an abstraction function,
and we assume only a concretization γA : A] −→ C. In the previous definition, we used
αA in order to let an element of V] refine one of A], thus we have to define an operator
with the same effect, and that does not require αA. To achieve this, we require domain
A] to feature a sound view restriction operator restrict]:

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:15

Definition 3.18 (Restriction to a view). Function restrict] : V]×A] → A] is a sound
view restriction operator if it satisfies the following condition:

∀a] ∈ A], ∀v ∈ V], γA(a])∩ γV(v) ⊆ γA(restrict](v, a]))

Following the same reasoning as in the previous paragraph, we can derive the reduc-
tion formula below that maps a view v to an abstract element derived from all the
covering of v:

LEMMA 3.19 (REDUCTION OPERATOR). We let ρS be defined by:

ρS(s]) = λ(v0 ∈ V]) ·
l

A

{⊔
A

{
restrict](v, s](v))|v ∈ V

}
|V ∈ CoversV](γV(v0))

}
.

Then:

∀s], γS(s]) vS γS(reduce]S(s]))

Lemma 3.19 provides a more general definition of reduction operator than
Lemma 3.17. Indeed, in the setup of the latter, λ(v, a]) · a] uA αA ◦ γV(v) defines a
sound restrict] operator. Moreover, the proof of Lemma 3.19 is very similar to that of
Lemma 3.17 (it relies on the properties of concretization functions instead of those of
Galois connections).

Computable reduction operator. The reduction operators defined in Lemma 3.19 and
Lemma 3.17 are not necessarily computable, or even defined if A] is not a complete
lattice (which is common). To define a sound reduction operator, we simply need to
require sound over-approximations for concrete unions and intersections. We assume
that join] defines a sound approximation of the concrete state set union (∀a]0, a

]
1 ∈

A], γA(a]0)∪ γA(a]1) ⊆ γA(join](a]0, a
]
1))), and that meet] defines a sound approximation

of the concrete state set intersection (∀a]0, a
]
1 ∈ A], γA(a]0)∩ γA(a]1) ⊆ γA(meet](a]0, a

]
1))).

Then, we derive the following reduction operator:

THEOREM 3.20 (COMPUTABLE, SOUND REDUCTION OPERATOR). We let reduce]S
be defined by:

∀(v0 ∈ V]),
reduce]S(s])(v0) =

meet]
({

join]
({

restrict](v, s](v))|v ∈ V
})
|V ∈ CoversV](γV(v0))

})
.

Then:

∀s], γS(s]) vS γS(reduce]S(s]))

This result follows directly from Lemma 3.19, and from the use of abstract operations
that over-approximate the concrete ones.

Discussion and examples. In logical terms, this operation amounts to applying the
following logical principle:([∧

i∈I
(Xi → Yi)

]
∧

[∨
i∈I

Xi

])
=⇒

[∨
i∈I

Yi

]
.

The following example shows how this reduction works on a basic example:

Example 3.21 (Internal reduction basic strengthening). In this example, we let
A] = C = (P({1, 2}),⊆), and assume that γA is the identity function. In addition,

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:16 S. Kim, X. Rival, and S. Ryu

we let V] = {v1, v2}, and:

γV(v1) = {1} γV(v2) = {2}

We consider an abstract state s] = {v1 7→ {2}, v2 7→ ∅}. Obviously, this abstract state
is not tight, as v1 is mapped into an element that is not compatible with it. The above
reduction operator strengthens it into the desired abstract state, namely {v1 7→ ∅, v2 7→
∅}. Indeed, if we consider the covering V = {v1} of itself and apply Lemma 3.17, we
obtain ρS(s])(v1) = ∅.

In practice, using the exact definition of the coverings is often too expensive to com-
pute, or even impossible when the set of views is infinite. However, a static analysis
tool may perform a partial reduction using a safe approximation of coverings:

Definition 3.22 (Sound approximate covering). A sound approximate covering is a
function Covers]V] : C→ P(P(V])) such that:

∀E ∈ C, Covers]V](E) ⊆ CoversV](E).

Lemma 3.17 still holds when using Covers]V] instead of CoversV] , and the original
CoversV] is also a sound Covers]V] .

3.4. Disjunctions and Conjunctions of Implications
We have observed that the concretization function of the sensitive abstraction natu-
rally writes down as a conjunction of implications (Definition 3.6 and Definition 3.13),
which is consistent with the intuition drawn from the example of Section 2. We now
propose to compare our approach which relies on conjunctions of implications with
the approaches that rely on disjunctions. We first consider when a family of views is
disjoint and then when views have non-empty intersections.

Several partitioning abstractions such as those proposed in [Rival and Mauborgne
2007; Jeannet 2003] perform a two step abstraction: the first phase splits a set of con-
crete behaviors into a partition and the second phase abstracts each of those subsets
separately. These works let a concretization function be a union of terms, which effec-
tively boils down to a disjunction:

γpart(s
]) =

⋃
v∈V]

γA ◦ s](v) (9)

We note that we have also introduced in Lemma 3.12 a definition of the sensitive
abstract domain concretization function as a least upper bound. Assuming V] is parti-
tioning (and that C is a powerset domain in order to simplify notations), this formula
boils down to:

γS(s]) =
⋃
v∈V]

γV(v) ∩ γA ◦ s](v) (10)

Although both definitions include a set union, this definition of γS is radically differ-
ent from that of γpart though: each of the “disjuncts” includes an intersection with the
concretization γV(v) of the view under consideration, which makes the sensitive ab-
stract domain concretization function tighter. We illustrate this issue in the following
example.

Example 3.23 (Comparison of concretizations). In this example, we reuse the same
notations as in Example 3.21: we let A] = C = (P({1, 2}),⊆), assume that γ0 is the
identity function, let V] = {v1, v2}, and let γV(v1) = {1}, γV(v2) = {2}. We consider an

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:17

abstract value s] = {v1 7→ {2}, v2 7→ ∅}. Then, if we concretize it using γpart, we obtain:

γpart(s
]) = {2}

However, this concretization is not tight, as element 2 is actually incompatible with
view v1, since γV(v1) = {1}. By contrast, the sensitive abstract domain concretization
returns the more precise result that was expected:

γS(s]) = ∅

This means that the sensitive abstract domain actually retains more information on
views; this information can actually be retrieved thanks to the reduction operator of
Lemma 3.17:

ρS(s]) = {v1 7→ ∅, v2 7→ ∅}
This element is actually the “optimal representation” of γS(s]). This reduction cannot
be performed using the disjunction based concretization γpart.

In this instance, the concretization of the partitioning abstract domain is clearly
imprecise as it admits the concrete value 2 even though it is bound to a view that
is incompatible with it. A way to address this issue consists in making sure that the
analysis constructs only abstract values such that:

∀v ∈ V], s](v) ⊆ γV(v).

To summarize, this observation entails that the disjunction based abstraction is less
tight, and does not allow a precise reduction as shown in Section 3.3, as it cannot take
advantage of the meanings of views to constrain concrete behaviors.

Note that this does not imply that the partitioning abstract domain will lead to in-
herently less precise analyses in general. Indeed, the restriction on abstract states
that is mentioned above allows to mitigate the loss in precision. Furthermore, anal-
yses such as [Rival and Mauborgne 2007] utilize refined transition systems that are
consistent with the partition to prevent the effect illustrated in Example 3.23 to oc-
cur. However, it means that the sensitive abstract domain concretization γS naturally
allows for tight reduction opportunities in cases where γpart does not.

Now, let us consider the case where views have non-empty intersections, that is,
where several views subsume a set of behaviors E. Our approach relying on conjunc-
tions of implications produces a precise reduction by Lemma 3.17 using a covering
of E. When there are multiple coverings for E, we can get a more precise value by
performing the meet operation on the values from all the coverings. On the contrary,
because γpart defined in Equation (9) simply joins all the abstract values in s], it is less
precise than our approach. While γS defined in Equation (10) produces more precise
values than γpart, it produces less precise values than our approach, because it joins
abstract values of all the views that have non-empty intersections with E. Note that
our conjunctions of implications can join a subset V of the views if V covers E.

4. ABSTRACT INTERPRETATION: ABSTRACT TRANSFER FUNCTIONS AND ITERATION
In this section, we demonstrate how to design a sound approximation of the standard
concrete semantics of transition systems, using a static sensitive abstraction. The as-
sumption that the sensitivity is static simply asserts that the set of views to be used in
the analysis should be fixed once and for all, before the analysis (the design of an anal-
ysis using a dynamic sensitive abstraction will be discussed in Section 5), and that it is
finite. We base the design of our analysis on a classical standard, forward transitional
semantics.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:18 S. Kim, X. Rival, and S. Ryu

4.1. Concrete semantics
The analyses presented in this paper derive as abstract interpretations of a standard
transitional semantics. We let a program P be defined by the following components:

— the set of all possible states S;
— the transition relation ;⊆ S× S;
— the set of initial states SI .

Forward semantics. The single step forward execution function maps a set of states
S into its set of immediate successors (for the sake of clarity we add primes over the
predecessor states in the following subsections):

post(S) ::= {σ ∈ S | ∃σ′ ∈ S, σ′ ; σ}.

This function allows to define in turn the forward execution semantics (or semantics of
reachable states), which collects all the states reachable by zero, one or many steps of
program execution, starting from any initial state in SI :

JP K = lfp (λS ∈ P(S) · SI ∪ post(S)) =
⋃
n∈N

postn(SI).

As this function is continuous, and defined over a complete lattice, the existence of the
fixpoint and the definition as the join over all iterates follows from standard fixpoint
iteration techniques.

In the case of the program of Figure 2, the forward execution semantics iterates the
transition relation from the initial states at line 1.

Towards an abstract semantics. As in Section 3, we let γV : V] → P(S) denote the
view abstraction, γA : A] → P(S) an abstraction of sets of states, and we let γS : S] →
P(S) represent the sensitive abstraction, where S] = V] → A].

Given such an abstraction, and concrete forward single step execution post, a sound
over-approximation of the concrete semantics JP K can be computed from:

— an abstract single step forward execution JP K] : S] → S] that is sound in the sense
that:

JP K ⊆ γS ◦ JP K]

— an abstract iterator, using widening if necessary, in order to over-approximate con-
crete least-fixpoints.

We address the design of an abstract single step forward execution function in Sec-
tion 4.2, and discuss the construction of an abstract iterator in Section 4.3.

4.2. Abstract single step forward execution
The traditional way to derive a sound abstract semantic function from a concretiza-
tion function γS and a concrete semantic function JP K consists in rewriting step by step
JP K ◦ γS(s]) into some expression of the form γS(X). We follow this approach in this sec-
tion, and apply it step by step, starting with the pure sensitive abstraction which was
defined in Example 3.10, and derive analysis functions for general sensitive abstrac-
tions from that case.

Derivation of the pure sensitive abstraction. To simplify notations, we assume that
the concrete domain is a powerset lattice C = P(E), where E is the set of states S and
let E = S (although similar results would hold if we let program behaviors be traces,
the formalization would be slightly heavier). As we assume that A] defines the pure

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:19

sensitive abstraction, A] = C, αA and γA are the identity, and S] = V] → C = V] →
P(S).

Thus, we look for a function post : (V] → P(S)) −→ (V] → P(S)) such that:

∀s : V] → P(S), post ◦ γS(s) ⊆ γS ◦post(s)
Intuitively, when applied to a set of states S, the semantic function post performs one
step of computation of a transition system P from any state in S. Therefore, we expect
post to perform the same action, albeit maintaining the correspondence between states
and views.

To this end, we first define a couple of utility functions. First, for any pair of views
v′ and v, we define the transition function from v′ to v:

Definition 4.1 (Transition from view to view). We let postv′→v be defined by:

postv′→v : (V] → P(S)) −→ P(S)
s 7−→ γV(v) ∩ post(s(v′) ∩ γV(v′))

In essence, this function restricts the transition relation to the steps from a state de-
scribed by view v′ into a state described by view v. Moreover, given views v′ and v, we
say that v′ covers a transition σ′ ; σ if σ ∈ postv′→v(s) for all s such that σ′ ∈ γS(s).

Additionally, given a view v ∈ V], in order to compute the set of states that can
be described by v after a transition, we need to account for all the transitions that
can reach a state described by this view. On the other hand, if we look for an over-
approximation of the successor of an abstract state s and of the image of view v by that
successor, we are not required to look for all views v′ that cover the same transition
σ′ ; σ: indeed, covering that transition once is enough to guarantee it will be taken
into account by the analysis. Therefore, we define a notion of predecessor covering:

Definition 4.2 (Predecessor covering). We call a predecessor covering of a view v a
set of views V ′ such that:

∀σ ∈ γV(v), ∀σ′ ∈ S, σ′ ; σ =⇒ ∃v′ ∈ V ′, σ′ ∈ γV(v′).

Moreover, we let P→v denote the set of all predecessor coverings of v.

We also let ; be the relation defined over views by:

∀v′, v ∈ V], v′ ; v ⇐⇒ (∃σ′ ∈ γV(v′), ∃σ ∈ γV(v), σ′ ; σ) .

Example 4.3 (Predecessor coverings). In this example and the subsequent one, we
discuss the forward execution of the last statement of the program shown in Figure 1
to establish the implications of (1). We use the set of views of Example 3.3.

— Let us consider the predecessors of states that satisfy the view (lexit, v∀TRUE):
As the variable bk is not modified by the assignment at line ly, such a predecessor
state should map bk to TRUE. Therefore, each singleton of the form below forms a
valid predecessor covering:

{(ly, v2k)}.
— Let us consider the predecessors of states that satisfy the view (lexit, v∃FALSE):

Since the assignment at ly does not modify any of the boolean variables bk, a prede-
cessor covering of (lexit, v∃FALSE) should comprise cases where any of those variables
is equal to FALSE. Therefore, the following set of views forms a valid predecessor
covering:

{(ly, v2k+1) | 0 ≤ k < N}.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:20 S. Kim, X. Rival, and S. Ryu

We now discuss step by step the construction of an over-approximation of the tran-
sitions in the pure sensitive abstraction. We consider a view v, a predecessor covering
V ′ of v, an element s ∈ S], and a state σ ∈ γV(v). Then:

σ ∈ post ◦ γS(s)
⇐⇒ ∃σ′ ∈ γS(s), σ′ ; σ
⇐⇒ ∃σ′ ∈ S, (∀v′ ∈ V], σ′ ∈ γV(v′) =⇒ σ′ ∈ s(v′)) ∧ σ′ ; σ

Since V ′ is a predecessor covering of v and σ′ ; σ, the property σ′ ; σ implies
that there exists a view v′ ∈ V ′ such that σ′ ∈ γV(v′). Then, in turn, the property
∀v′ ∈ V], σ′ ∈ γV(v′) =⇒ σ′ ∈ s(v′) implies that σ′ ∈ s(v′). Therefore, we can derive the
following:

σ ∈ post ◦ γS(s)
=⇒ ∃v′ ∈ V ′, ∃σ′ ∈ γV(v′), σ′ ∈ s(v′) ∧ σ′ ; σ
=⇒ ∃v′ ∈ V ′, ∃σ′ ∈ γV(v′)∩ s(v′), σ′ ; σ
=⇒ ∃v′ ∈ V ′, σ ∈ postv′→v(s)
=⇒ σ ∈

⋃
v′∈V ′ postv′→v(s)

The above property holds for all predecessor coverings of v, thus we can even general-
ize it more:
σ ∈ post ◦ γS(s)
=⇒ σ ∈

⋂
V ′∈P→v

(⋃
v′∈V ′ postv′→v(s)

)
This implication was proved under the assumption that σ ∈ γV(v). Thus, we have
proved:

∀v ∈ V], ∀σ ∈ S, σ ∈ post ◦ γS(s) ∧ σ ∈ γV(v) =⇒ σ ∈
⋂

V ′∈P→v

(⋃
v′∈V ′

postv′→v(s)

)

We derive from this the following abstract single step forward execution function:

THEOREM 4.4 (ABSTRACT SINGLE STEP FORWARD EXECUTION FUNCTION). We
let post : (V] → P(S))→ (V] → P(S)) be defined by:

post : s 7−→ λ(v ∈ V]) ·
⋂

V ′∈P→v

(⋃
v′∈V ′

postv′→v(s)

)

Then:

post ◦ γS(s) ⊆ γS ◦post(s)
The above formula gives a general solution to over-approximate the concrete computa-
tion steps in the abstract, but it does not require the analysis to follow this structure
exactly. In particular, the intersection over all predecessor coverings is likely to be too
costly to compute, and to not always bring a significant payoff in precision: this is not
an issue, as a sound alternate solution consists in considering only some predecessor
coverings; then, the intersection ranges over fewer elements, and thus returns a con-
servative set of states (note that the empty intersection would return the set of all
states, and is always a possible solution). In fact, if we consider two predecessor cov-
erings V0 and V1 of a same view such that V0 ⊆ V1, then the information computed
for V1 can only be worse than that computed for V0, thus we should discard V1 for the
analysis.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:21

An interesting over-approximation of the abstract function of Theorem 4.4 can be
derived using V ′ = V] as a single predecessor covering:

λ(v ∈ V]) ·
⋃
v′∈V]

postv′→v(s) (11)

As noted above, this formula will generally cause redundant information be taken into
account, resulting in a possible loss in precision, depending on the state abstraction
and on the program.

Example 4.5 (Forward execution). We now discuss the forward execution of the last
statement of the program shown in Figure 1 using the set of views of Example 3.3.
We reuse the predecessor coverings of Example 4.3, which will result in an over-
approximation of Theorem 4.4. Before we detail the forward execution computation,
we can note that the states at point ly correspond to each view:

— view (ly, v2k) corresponds to states where variable bk is equal to TRUE and xk ≥ 1;
— view (ly, v2k+1) corresponds to states where variable bk is equal to FALSE and xk = 0.

Thus, the abstract pre-condition before this statement is characterized by:

s(ly, v2k) ∩ γV(ly, v2k) = {µ ∈M | µ(bk) = TRUE ∧ µ(xk) ≥ 1}
s(ly, v2k+1) ∩ γV(ly, v2k+1) = {µ ∈M | µ(bk) = FALSE ∧ µ(xk) = 0}

We now consider the views corresponding to the left hand sides of the implications of
Equation (1):

— Let us consider the predecessors of states that satisfy the view v = (lexit, v∀TRUE):
We focus on the set of predecessor coverings P = {{(ly, v2k)} | 0 ≤ k < N} ⊂
P→lexit,v∀TRUE (many other predecessor coverings could be formed by adding elements
to these):⋂

V ′∈P
(⋃

v′∈V ′ postv′→v(s)
)

=
⋂N−1
k=0 postly,v2k→v(s)

=
⋂N−1
k=0 γV(v) ∩ post(s(ly, v2k) ∩ γV(ly, v2k))

=
⋂N−1
k=0 {µ ∈M | µ(bk) = TRUE ∧ µ(xk) ≥ 1 ∧ µ(y) = µ(x0) · . . . · µ(xN−1)}

= {µ ∈M | ∀k, µ(bk) = TRUE ∧ µ(xk) ≥ 1 ∧ µ(y) = µ(x0) · . . . · µ(xN−1)}
⊆ {µ ∈M | ∀k, µ(bk) = TRUE ∧ µ(xk) ≥ 1 ∧ µ(y) ≥ 1}

Thus, the forward execution using the sensitive abstraction shows the first implica-
tion of Equation (1).

— Let us consider the predecessors of states that satisfy the view v = (lexit, v∃FALSE):
We reuse the predecessor covering displayed in Example 4.3 {(ly, v2k+1) | 0 ≤ k <
N}, and denote it with V ′. The union of the transitions over this predecessor cover-
ing is:⋃

v′∈V ′ postv′→v(s)

=
⋃
k∈{0,...,N−1} γV(v) ∩ post(s(ly, v2k+1) ∩ γV(ly, v2k+1))

=
⋃N−1
k=0 γV(v) ∩ {µ ∈M | µ(bk) = FALSE ∧ µ(xk) = 0 ∧ µ(y) = µ(x0) · . . . · µ(xN−1)}

=
⋃N−1
k=0 γV(v) ∩ {µ ∈M | µ(bk) = FALSE ∧ µ(xk) = 0 ∧ µ(y) = 0}

Thus, the forward execution using the sensitive abstraction shows the second im-
plication of Equation (1).

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:22 S. Kim, X. Rival, and S. Ryu

Derivation of a sensitive abstraction in the general case. We now look beyond the
pure sensitive abstraction case and consider situations where γA is not the identity
function (i.e., we are not considering the pure sensitive abstraction anymore). Then,
we can derive γS by composing γA with the pure sensitive abstraction as remarked in
Example 3.10. To achieve this, we simply need to over-approximate one by one all the
operators and functions used in the definition of post in Theorem 4.4:

— a sound approximation join] of the concrete ∪ state set union operator (∀a]0, a
]
1 ∈

A], γA(a]0)∪ γA(a]1) ⊆ γA(join](a]0, a
]
1)));

— a sound approximation meet] of the concrete ∩ state set intersection operator
(∀a]0, a

]
1 ∈ A], γA(a]0)∩ γA(a]1) ⊆ γA(meet](a]0, a

]
1)));

— a sound approximation post]v→v′ of each postv→v′ function (for all v, v′ ∈ V]), such
that postv→v′ ◦ γA ⊆ γA ◦post

]
v→v′ ;

— a sound under-approximation of predecessor coverings P]→v ⊆ P→v for each view.

Using these elements, and following the construction of Theorem 4.4, we can derive a
sound abstract single step forward execution function:

THEOREM 4.6 (ABSTRACT SINGLE STEP FORWARD EXECUTION). If we let:

post] : s] 7−→ λ(v ∈ V]) ·meet]
({

join]
({

post]v′→v(s
](v′) | v′ ∈ V ′

})
|V ′ ∈ P]→v

})
then:

post ◦ γS ⊆ γS ◦post].
Note that this function is computable since the set of views was assumed to be finite.
Indeed, if V] was infinite, the join over all predecessor views of v would not be com-
putable.

We can also observe a similarity between the abstract post-condition operator shown
in Theorem 4.4 and the reduction operator of Lemma 3.17: both operators use an in-
tersection over coverings in order to strengthen the abstract values they produce.

The remarks that follow Theorem 4.4 fully apply here as well. In particular, it is
in general too costly to compute the intersection over all predecessor coverings, but
this is also not always necessary for a sufficient level of precision, thus a strict under-
approximation of predecessor coverings should be used.

Possible imprecisions may come from the operators used (approximations of join,
meet, and concrete post-conditions), and from the selection of a small set of predecessor
coverings. The reduction operator of Lemma 3.17 may be used to enhance the precision
of the result, and to mitigate these losses in precision.

Partitioning case. In Section 3.2, we have observed that the concretization function
γS can be significantly simplified when views define a partitioning. We can actually
also significantly simplify the definition of the abstract single step forward execution
function. We consider the derivation of the best single step forward abstract execution
function, and let s be an abstract element of V] → P(S), σ be a state, and v be a view:

post ◦ γS(s) = {σ ∈ S | ∃σ′ ∈ γS(s), σ′ ; σ}
= {σ ∈ S | ∃v′ ∈ V], ∃σ′ ∈ γV(v′)∩ s(v′), σ′ ; σ}

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:23

Since the views abstraction is partitioning, for all state σ, there exists a unique view v
such that σ ∈ γV(v). Therefore:

post ◦ γS(s) = {σ ∈ S | ∃σ′ ∈ γS(s), σ′ ; σ}
= {σ ∈ S | ∃v′, v ∈ V], ∃σ′ ∈ γV(v′)∩ s(v′), σ′ ; σ ∧ σ ∈ γV(v)}
= {σ ∈ S | ∃v′, v ∈ V], σ ∈ γV(v)∩postv′→v(s)}
=
⋃
v,v′∈V] (γV(v)∩postv′→v(s))

= γS ◦post(s)

where

post(s) = λ(v ∈ V]) ·
⋃

v,v′∈V]

postv′→v(s). (12)

This result shows that, in the partitioning case, an analysis derived from Equation (11)
loses no precision related to the view coverings (although we have seen above that, in
the non-partitioning case, it may lose some precision).

Approaches based on disjunctions. Analyses based on disjunctive formulas, and that
do not have a notion of views to constrain each disjunct rely on point-wise application
of abstract transformers, whereas analyses that use a notion of views but the less
tight concretization of Equation (9) also do not compute meet on abstract transitions
like Theorem 4.6 does. As an example, we consider the latter case, and assume V] is a
covering. Then, the abstract single step forward execution operator is sound:

post]∨ : s] 7−→ λ(v ∈ V]) · join]
({

post](s])(v′)|v′ ∈ V], v′ ; v
})

(13)

The first important difference between Equation (13) and the operator of Theorem 4.6
is that the latter constrains both its input and output abstract states with the
views, since it uses post]v′→v instead of post] (post]v′→v over-approximates operator
postv′→v : s 7−→ γV(v) ∩ post(s(v′) ∩ γV(v′))): this is in general more precise, as it en-
sures the information attached to a view is not “polluted” by states that should be asso-
ciated to another view. Furthermore, it refines the information attached to view v with
several predecessor coverings, that can strengthen the abstract result: this amounts
to doing an incremental reduction step.

In the partitioning case, we have shown in Equation (12) another tighter abstract
post-condition, that looks closer to Equation (13), since it does not resort to a meet
over predecessor coverings. However, it retains the first advantage of Theorem 4.6
mentioned in the previous paragraph, since it also uses post]v′→v instead of post].

Another advantage of Theorem 4.6 compared to analyses based on Equation (13) is
that it can also be applied when the views abstraction does not define a covering of
concrete states whereas Equation (13) can be used only under the assumption that we
are using a covering. Indeed, if V] does not define a predecessor covering of v, then
there exists no predecessor covering for v, and Theorem 4.6 will return an abstract
element that maps v into >.

While this discussion shows that in general Theorem 4.6 provides a more precise
analysis algorithm, it does not mean that analyses based on the concretization of Equa-
tion (9) are necessarily imprecise. For instance, [Rival and Mauborgne 2007] utilizes a
notion of “partitioned system”, which implies that (1) the views form a covering and, (2)
that the transitions of the system being analyzed correspond to the transitions defined
by post·→·. Therefore, this analysis effectively relies on Equation (13), but achieves
the same precision as Equation (12) and in Theorem 4.6, at a lower cost, since it does
not consider multiple predecessor coverings. However, compared to this analysis, the
operator of Theorem 4.6 is more general.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:24 S. Kim, X. Rival, and S. Ryu

4.3. Abstract iterator
As we have observed in Section 4.1, the concrete semantics writes down as the least-
fixpoint of a function of the single step forward execution, thus we now show how to
derive an abstract interpretation of this semantics. To this end, we need to (1) propose
a widening operator (i.e., an operator over-approximating concrete join, and ensuring
termination of sequences of abstract iterates) to enforce convergence and (2) lift the
concrete least-fixpoint into an abstract iterator.

Widening. In this section, we assumed the set of views is finite. As a consequence,
the abstract domain S] is of finite height if and only if A] is, and if so, a widening
operator for S] can be defined by:

∀s]0, s
]
1, widen]S(s]0, s

]
1) = λ(v ∈ V]) · join](s]0(v), s]1(v)).

On the other hand, if S] does not have a finite height, the same holds for A], and a
proper widening operator is needed. The pointwise extension of a widening operator
widen] : A]×A] over A] then clearly provides an over-approximation of concrete unions
and enforces termination.

∀s]0, s
]
1, widen]S(s]0, s

]
1) = λ(v ∈ V]) ·widen](s]0(v), s]1(v)).

Analysis. Given an over-approximation s]I of the set of initial states SI (i.e., such
that SI ⊆ γS(s]I)), an over-approximation of JP K can be computed as the limit of the
following (converging) sequence of abstract iterates (convergence follows directly from
the widening property):

a]0 = s]I
a]n+1 = widen]S(a]n,post

](a]n))
(14)

The limit a]N of this sequence provides an over-approximation for the concrete seman-
tics:

JP K ⊆ γS(a]N)

Improved iteration strategies (e.g., with unrolling of the first iterations [Blanchet et al.
2003]) can be applied as well.

This analysis can be implemented using a straightforward worklist algorithm in a
straightforward manner, where the worklist stores the set of views that have to be re-
computed as they have not stabilized yet: whenever the image of a view v′ is updated,
all the views that accept v′ as a predecessor should in turn be added to the worklist
(namely, if there exists a view v such that there may exist σ′ ∈ γV(v′), σ ∈ γV(v), such
that σ′ ; σ, then the view-to-view transition v′ ; v should be added to the worklist).

One additional caveat is that Equation (14) turns all views into a widening point,
which is not optimal in general. Instead, it is sufficient to perform widening only on
one view per cycle in the “predecessor” relation over views defined in the previous
paragraph. In the case of flow sensitivity, this boils down to the (very usual) selection
of at least one program location per cycle in the dependence graph.

5. DYNAMIC SENSITIVITY
The previous section described a sensitive analysis, where views are static, which
means that the views are fixed beforehand and do not change over the course of the
analysis. We now study dynamic sensitivity, which is the case where views may change
over the course of the analysis.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:25

5.1. Dynamicity in Program Analysis
Need for a dynamic approach. Given a program and a property of interest the infer-

ence of which requires some sensitive analysis be performed, it is generally preferable
not to introduce too many views, as this is likely to make the analysis slower and
more memory intensive. Conversely, not using enough views would result in a failed
attempt at proving the property of interest. Therefore, selecting an appropriate set of
views for the analysis is not a trivial task. In general, there exists no unique appropri-
ate set of views as shown in Section 2. However, that example also demonstrates that
some sets of views result in more expensive analyses than others. Therefore, it is quite
reasonable to expect that a standard, pre-defined set of views will not let the analy-
sis compute invariants that are sufficiently precise for the verification of an arbitrary
program.

While a solution could be to manually refine the set of views and re-launch the anal-
ysis (as many automatic static analysis tools can also be manually tuned for increased
precision), this approach is often not satisfactory since (1) it requires several runs of
the analysis, which is more time consuming, and (2) it puts an additional and tedious
burden on the user.

An alternative approach lets the analysis compute the set of views at the same time
as the invariants. This technique is called dynamic sensitive analysis. It was initially
proposed in the context of partitioning analyses by Bourdoncle [Bourdoncle 1992] and
it has also been developed for trace partitioning by Rival and Mauborgne [Rival and
Mauborgne 2007]. Other applications include dynamic partitioning of array areas in
array analyses [Cousot et al. 2011] and analysis using predicate domains [Henzinger
et al. 2002]. Furthermore, such techniques have been implemented in several state of
the art static analysis tools, as discussed in Section 7. In essence, this approach aims
at inferring complex invariants without user supplied annotations and repeated static
analysis runs.

This dynamic approach is actually useful not only in the case where the set of pos-
sible views is infinite, but also when that set is possibly large, and when representing
all views at all times could hinder efficiency. While a static approach would carry all
views in V] from the beginning of the analysis, a dynamic analysis may start with only
a subset of V] and extend this set when the needs arise.

Example 5.1 (Dynamic sensitivity). We consider the example program of Figure 1
in Section 2. Example 3.2 describes the set of views V] = {v0, . . . , v2N−1, v∀TRUE, v∃FALSE},
which defines a sensitive analysis that carries all these views. A dynamic sensitive
analysis would add a special view v> that describes any possible behavior:

γV(v>) = E
V] = {v>, v0, . . . , v2N−1, v∀TRUE, v∃FALSE}.

Then, a forward abstract interpretation of the program would start with the abstract
state that contains a single view:

s] : v> 7−→ >.

Furthermore, as the dynamic analysis progresses and discovers information about the
boolean variables, it introduces views v0, . . . , v2N−1.

Design of a dynamic sensitive analysis. Effectively adjusting the set of views during
the analysis is a nontrivial operation that requires a sound (possibly conservative)
conversion of abstract values defined over a set of views into abstract values defined
over a different set of views. This conversion operation should transform an abstract
element s]0 of the sensitive abstract domain with a set of views V0 into another abstract

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:26 S. Kim, X. Rival, and S. Ryu

element s]1 with a set of views V1 (which may contain views not present in V0, and
which may not contain all views in V0), which should over-approximate all the states
described by s]0. If this conversion would lose too much precision or incur a prohibitive
computational cost, the dynamic sensitive analysis would not be worthwhile. Thus, we
study this operation in Section 5.2.

Moreover, the dynamic sensitive analysis should also preserve termination. This im-
plies that the views modifying process should be terminating for any analysis run.
Therefore, the dynamic sensitive analysis requires the definition of a widening op-
erator over abstract elements that comprise the sets of views, which we discuss in
Section 5.3.

5.2. Conversion of sets of views
In this section, we work in the framework set up in Definition 3.6. We assume sets of
views V]0 and V]1, where V]0 denotes the “initial set of views” whereas V]1 denotes the
“target set of views”. As there is no real ambiguity, we note γV(v0) (resp., γV(v1)) for the
concretization of a view v0 ∈ V]0 (resp., v1 ∈ V]1). We consider an abstract element s]0 ∈
V]0 → A] and seek for an abstract element s]1 ∈ V]1 → A] such that s]1 over-approximates
s]0, i.e., γS,0(s]0) ⊆ γS,1(s]1) where γS,0 (resp., γS,1) denotes the concretization function
associated to V]0 → A] (resp., V]1 → A]). Intuitively, this conversion amounts to the
computation of a post-condition for the concrete operation “identity”, and replacing the
set of views V]0 with the set of views V]1. Therefore, intuition can be drawn from the
abstract post-condition function shown in Theorem 4.4: given a view v1, s]1(v1) should
over-approximate the images by s]0 of any set of views in V]0 that cover v1. Besides, in
this process, the images s]i(vi) can be further refined so as to account only for the states
that do satisfy vi, following the internal reduction principle set up in Section 3.3.

To this end, we define the following notion of covering across views:

Definition 5.2 (Covering across views). Let v1 ∈ V]1 be a view in the target set of
views. A V]0-covering of v1 is a set of views V0 ⊆ V]0 such that:

γV(v1) ⊆
⋃

v0∈V0

γV(v0).

We write CoversV]
0
(v1) for the set of V]0-coverings of v1.

In general, the analysis may use an approximation of the set of V]0-coverings, therefore
we let Covers]

V]
0

(v1) denote a subset of CoversV]
0
(v1).

Using the above notations, we can now provide a general operation to convert across
views, using the view restriction function introduced in Definition 3.18:

THEOREM 5.3 (VIEWS CONVERSION OPERATOR). We define ConvertV]
1→V]

0
by:

∀v1 ∈ V]1,
ConvertV]

1→V]
0
(s]0)(v1) =

meet]
({

join]
({

restrict](v1, restrict
](v0, s

]
0(v0)))|v0 ∈ V0

})
|V0 ∈ Covers]

V]
0

(v1)
})

Then:

γS,0(s]0) ⊆ γS,1(ConvertV]
1→V]

0
(s]1)).

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:27

Let σ ∈ γS,0(s]0), and let us prove that σ ∈ γS,1(ConvertV]
1→V]

0
(s]1)). To do that, we let

v1 ∈ V]1, assume that σ ∈ γV(v1) and prove that:

σ ∈ γA(ConvertV]
1→V]

0
(s]1)(v1)).

Given the definition of the conversion operator, we assume that V0 ∈ Covers]
V]

0

(v1),
and show that:

σ ∈ γA
(
join]

({
restrict](v1, restrict

](v0, s
]
0(v0)))|v0 ∈ V0

}))
. (15)

By the definition of Covers]
V]

0

(v1) and since σ ∈ γV(v1), there exists v0 ∈ V0 such

that σ ∈ γV(v0). Therefore, we have σ ∈ γV(v0), σ ∈ γV(v1) and σ ∈ γA(s]0(v0)). As
a consequence Equation (15) holds, and this concludes the proof of the soundness of
ConvertV]

1→V]
0
.

In the next paragraphs, we instantiate Theorem 5.3 to a series of common ways to
modify the set of views, by adding / removing or splitting / merging existing views.
While Theorem 5.3 and those instances all provide sound ways to convert views, they
may not be the most precise or efficient ones in general, and other ways to dynamically
change the set of views may be implemented.

Addition of new views. The addition of a set of views happens when V]1 ⊃ V]0. It
should be performed whenever some views not present in the initial set of views appear
to be required so as to strengthen the precision of abstract states. In this case, an
appropriate abstract covering across views can be defined by:

∀v1 ∈ V]1, Covers]
V]

0

(v1) =

{
{{v1}} if v1 ∈ V]0
V where V ⊆ P(V]0) covers v1, otherwise

The conversion operator obtained by applying the construction of Theorem 5.3 will
synthesize information for the new views.

Example 5.4 (Addition of views). We follow up on Example 5.1. When the forward
analysis of the program of Figure 1 encounters an if-statement, it infers information
about a boolean variable bi which means it is a good point to add views v2i and v2i+1

(which respectively describe states where bi is true or false). The addition of these
views follows the above algorithm, and the analysis synthesizes precise information
for v2i and v2i+1 using the condition tests.

Removal of views. The removal of a set of views corresponds to the case where V]1 ⊂
V]0. It should be used when some views become irrelevant. Typically, they have been
useful for the beginning of the analysis and will not be used anymore onwards, so that
they can be discarded so as to make the representation of abstract states more compact
and cheap to compute on. In this case, an appropriate abstract covering across views
can be defined by:

∀v1 ∈ V]1, Covers]
V]

0

(v1) = {{v1}}

This essentially amounts to throwing away the information about views that belong
to V]0 \V

]
1. Before that information is removed, the reduction operator introduced in

Lemma 3.17 may be applied so as to preserve the information enclosed in the abstract
state.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:28 S. Kim, X. Rival, and S. Ryu

Splitting of views. While the addition operation preserves all existing views and in-
serts novel views, it is often more intuitive to partition existing views into more precise
ones. This is especially natural when the analysis should postpone the computation of
some joins in the abstract, e.g., when analyzing loops or other conditional branching
control structures. An extreme case is when the analysis starts with a single view (that
abstracts any state), and refines this view each time it infers that an abstract join is
better avoided. We call this operation a splitting of views. It is defined by a surjective
function h : V]1 → V]0 such that:

∀v0 ∈ V]0, γV(v0) =
⋃{

γV(v1)|v1 ∈ V]1 ∧ h(v1) = v0

}
.

For more insight, we describe fully the resulting conversion operation when a given
view vs is split into two views v′s and v′′s , i.e., V]1 = V]0 \{vs}]{v′s, v′′s } where h(v′s) =

h(v′′s) = vs. Then, the operation ConvertV]
1→V]

0
maps s]0 into s]1 where:

s]1(v′s) = restrict](v′s, restrict
](vs, s

]
0(vs)))

s]1(v′′s) = restrict](v′′s , restrict
](vs, s

]
0(vs)))

s]1(v1) = s]0(v1) if v1 6∈ {v′s, v′′s }
This formula generalizes to more complex splittings while retaining the same basic
principle: the abstract information attached to the views that are split is refined to the
view partitions.

While some existing analyses always split a view into a set of disjoint views, the
splitting defined by function h is more general, and it also allows one view to be re-
placed with a set of views that cover it.

Merging of views. The dual operation corresponding to the splitting is the merging
of views, and aims at collapsing together views that were split for a local improvement
in precision. Intuitively, when the analysis benefits from more views in a local manner
only, the merging should occur as soon as the views generated by splitting are not
useful anymore. For instance, in the case of a conditional structure where views have
been split, the analysis should merge them at the point where the effect of the condition
is not immediately relevant anymore, and before the additional partitions become an
unnecessary burden to the analysis. The merging is defined by a function h : V]0 → V]1
such that:

∀v0 ∈ V]0, γV(v0) ⊆ γV(h(v0)).

For more insight, we describe fully the resulting conversion operation when a given
pair of views v′s and v′′s are merged into a view vs, i.e., V]1 = V]0]{vs} \{v′s, v′′s } where
h(v′s) = h(v′′s) = vs. Then, the operation ConvertV]

1→V]
0

maps s]0 into s]1 where:

s]1(vs) = restrict](vs, join
](restrict](v′s, s

]
0(v′s)), restrict

](v′′s , s
]
0(v′′s))))

s]1(v1) = s]0(v1) if v1 6= vs

5.3. Widening over sets of views
As noted earlier in this section, the second issue raised by dynamic sensitive analyses
is termination. When views are static, the widening introduced in Section 4.3 consists
of a direct pointwise application of the widening of underlying abstract domain A] to
the image of each view. However, this solution does not provide a widening when the
set of views is dynamic and evolves during the analysis: indeed, the dynamic approach
also needs to enforce the convergence of the underlying set of views, otherwise the view
conversion / underlying domain widening process will not terminate.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:29

Intuitively, and to enforce convergence, the dynamic sensitive analysis should first
enforce convergence of the set of views, and then enforce convergence in the underlying
domain, as in Section 4.3. A general way to achieve this is to resort to a cofibered
abstract domain structure [Venet 1996], where:

— sets of views are elements of a lattice called the basis; and
— an abstract state is given by an element V] of the basis and an abstract element s]

defined over V].

Furthermore, the basis is required to provide a widening, which guarantees the termi-
nation of the process of converting sets of views. This approach has been implemented
in [Rival and Mauborgne 2007] by bounding the numbers of splitted views introduced
for each loop, which guarantees the number of views introduced by the dynamic sen-
sitive analysis of a given program is bounded, even if views are selected among an
infinite set.

6. CONSTRUCTING SENSITIVITIES FOR PROGRAM ANALYSIS
In this section, we define several ways to construct instances of sensitive abstract do-
mains for the static analysis of programs. This includes basic instances of sensitive
abstract domains (including some that are not usually viewed as sensitive abstrac-
tions), and techniques to compose several forms of sensitive abstraction. Therefore,
this section demonstrates the generality of the sensitive abstraction framework to de-
scribe not only families of properties that are used in static analysis, but also ways
to combine sensitivities so as to enhance analysis precision and efficiency. For each
construction, we simply need to define:

— the kind of behaviors that are described by views (e.g., states or execution traces),
the set of views, and their concretization (Definition 3.1);

— the view-to-view transition function (Definition 4.1) and the corresponding prede-
cessor covering (Definition 4.2).

Indeed, in general, these fully define the abstract interpretation of programs. Through-
out this section, we use the notations introduced in Section 3 and Section 4. More-
over, we let T denote the set of finite execution traces over a set of states S; we write
〈σ0, . . . , σn〉 for the execution trace composed of states σ0, . . . , σn in that order; given
two traces τ, τ ′ ∈ T, we write τ · τ ′ for their concatenation.

6.1. Flow Sensitivity
We first consider flow sensitivity, which is a standard static analysis technique that
partitions states depending on the control states they correspond to. For instance, we
employed it throughout Section 2, as we were describing local invariants for each con-
trol state, and we also discussed it in Example 3.3.

We write L for the set of control states. Moreover, for each program state σ ∈ S,
we let L(σ) denote the control state of σ. A state is often defined as a tuple, one of
the components of which is the control state, so that the definition of the function
L : S −→ L is usually trivial.

We can now define the components of the flow-sensitive abstraction that partitions
states using their control states before applying another abstraction (usually on sets
of stores):

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:30 S. Kim, X. Rival, and S. Ryu

— Each view describes a set of states, the set of views is the set of control states, and
the concretization of a view l comprises all the states at the control state l :

C = P(S)
V] = L

γV(l) = {σ ∈ S | L(σ) = l }

Thus, abstract states map control states into the elements of the abstract domain
A].

— Given views l and l ′, the view to view transition postl ′→l captures exactly the pro-
gram steps that move from the control state l ′ to the control state l , and thus, the
predecessor covering of a view l comprises the set of predecessors of l in the control
flow graph.

The corresponding abstract functions simply implement the well-known flow-sensitive
analysis over a control flow graph [Cousot 1981].

Furthermore, coarser abstractions of control states that group several control states
into a single abstract label can be used. The flow-insensitive abstraction is derived
when using a single abstract label that describes all states. These can be formalized
into our framework like the flow-sensitive abstraction.

6.2. Call String Sensitivity
Another common form of sensitivity is context sensitivity, where the analysis groups
states by calling contexts before abstracting them (usually using some store abstrac-
tion). For instance, [Sharir and Pnueli 1981] uses call strings in order to characterize
program states. Context-sensitive abstractions may use both function names and call
sites to describe a chain of function calls, or only function names. Moreover, we can
distinguish fully context-sensitive analyses that use the full call chain, and partially
context-sensitive analyses that use only a part of the calling context to achieve that
(typically, at most k inner calls, where k is a fixed integer). In general, our framework
can describe all these forms of sensitivity, thus we simply show the description of two
of them.

We let K denote the set of call strings. A call string k ∈ K describes a full calling
context including the full list of ongoing function calls (the outermost call is in the end
of the call string whereas the current call is in the beginning); each call is represented
by its name and its call site. Thus, such an element k consists of a sequence (l0, f0) ·
. . . · (ln, fn). Moreover, we let K(σ) denote the calling context of the state σ.

Full context sensitivity. Fully context-sensitive abstractions use full call strings, and
rely on the following sets of views and view coverings:

— Views are call strings, and also abstract sets of states, thus:

C = P(S)
V] = K

γV(k) = {σ ∈ S | K(σ) = k }

Thus, abstract states are functions from calling contexts into A].
— The view to view transition relation describes three kinds of transitions:

(1) intra-procedural execution steps are accounted by transitions of the form
postk→k for some k ∈ K (such transitions are accounted by the intra-procedural
semantics);

(2) function call execution steps are accounted by transitions of the form
postk→((l ,f)·k) for some k ∈ K, l ∈ L and the function name f ;

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:31

(3) function return execution steps are accounted by transitions of the form
post((l ,f)·k)→k for some k ∈ K, l ∈ L and the function name f .

Partial context sensitivity. As fully context-sensitive analyses are often too expen-
sive, or not even practical in the presence of recursive functions (due to unbounded
size call strings), partially context-sensitive abstractions use all call strings of length
at most k (where k is a fixed integer value, chosen before the analysis is ran) and use
call string prefixes. We let Kk denote this set of call strings, and we write k|k for the
prefix of length at most k of the call string k . Then, partially context-sensitive abstrac-
tions are defined by:

— Views are call strings, thus:
C = P(S)
V] = Kk

γV(k) = {σ ∈ S | (K(σ))|k = k }
— The view to view transition relation should be defined for the same three cases

as above, yet the transitions related to function calls and function returns differ
slightly, due to the restriction on prefixes of length at most k. This restriction is
the source of possible imprecision because the call at depth k cannot be precisely
restored after a call at depth k + 1 returns.

Our framework also describes abstractions based on call strings without call site
information. Moreover, it can also model cases where calling context information is
abstracted using a different lattice that does not necessarily define a partition of K.

6.3. Product of Sensitivities
The analysis of interprocedural programs often resorts both to flow sensitivity (Sec-
tion 6.1) and to some kind of context-sensitivity (Section 6.2), which corresponds to
another notion of sensitivity that extends these two previous forms. Fortunately, our
framework also allows to define generic methods to combine several sensitivities, and
to produce new forms of sensitivity.

We assume that two forms of sensitivities describing the same kind of behaviors C
are defined by sets of views V]0 and V]1, and their concretization functions γVi

: V]i −→ C
(for i ∈ {0, 1}). The product sensitivity is defined straightforwardly by:

V]× = V]0 × V]1
∀(v0, v1) ∈ V]0 × V]1, γV×(v0, v1) = γV0

(v0)∩ γV1
(v1)

Essentially, a product view (v0, v1) characterizes exactly the program behaviors that
are characterized by both v0 in V]0 and v1 in V]1, thus it amounts to a conjunction of
views. Abstract states can be represented either as functions from V]0 × V]1 into A] or
as functions from V]0 into V]1 −→ A].

This form of composed sensitivities adequately describes the composition of context
sensitivity and flow sensitivity, where the analysis is sensitive to both the calling con-
text and the program point. Indeed, to achieve this, we let V]0 be the context-sensitivity
abstraction and V]1 be the flow-sensitivity abstraction and apply the product construc-
tion. Then abstract states are functions mapping calling contexts into functions from
control states into A]. This product instance also demonstrates that in general, not all
pairs of views are useful in the product covering: indeed, when a view v0 describes a
calling context where the current function is f and a view v1 describes a control state
that is not located inside the function f , then the view (v0, v1) describes no states at
all. Therefore, such irrelevant product views should not be included in abstract states.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:32 S. Kim, X. Rival, and S. Ryu

The definition of abstract single step forward execution functions for the product
of two sensitivities requires the choice of a set of predecessor coverings for each rel-
evant product view (v0, v1). As observed in Theorem 4.6 (Section 4.2), any under-
approximation of the set of predecessor coverings may be used, so if P]→v0 (resp., P]→v1)
is an under-approximation of the predecessor covering of v0 (resp., of v1), then we can
define an under-approximation of the predecessor covering for (v0, v1) by:

P]→(v0,v1)
= {V0 × V1 | V0 ∈ P]→v0 ∧ V1 ∈ P

]
→v1}.

For the same reason as not all product views are relevant, some of these predecessor
coverings are not relevant and should be pruned out. Intuitively, context and flow sen-
sitive analyses will restrict to calling transitions where call sites, caller contexts, and
callee contexts are coherent.

To summarize, products of sensitive analyses yield increased precision both due to
the finer grained views (which lead to applying the states abstraction defined by A] and
γA to smaller sets of states) and to the finer grained treatment of program transitions
in the computation of abstract single step forward executions.

6.4. Value Sensitivity
In Section 6.1 and Section 6.2, we have discussed sensitive abstractions based on pro-
gram control states (flow or context). Other abstractions based on values may be used
as well, so as to group states.

The most obvious case is when the value of a variable is used. For instance, if a vari-
able b has type bool, the concrete states can be divided into two sets of states, where
b has value TRUE (resp., FALSE). This case induces the following sensitive analysis:

— Each view describes a set of states, the set of views is the set of boolean values, and
the concretization of a view b comprises all the states where b has value b (we let
σ(b) denote the value of the variable b in the state σ):

C = P(S)
V] = {TRUE, FALSE}

γV(b) = {σ ∈ S | σ(b) = b}

— Given views b and b′, the view to view transition postb′→b captures exactly the pro-
gram steps that move from a state where b stores the value b′ into a state where b
stores the value b.

This form of value sensitivity is usually combined by the sensitivity product (Sec-
tion 6.3) with flow or context sensitivity. Moreover, it generalizes easily to the case
where views account for the values of several boolean variables. In particular, this
sensitivity was used in Section 2 in order to analyze precisely the example code of
Figure 1 as shown in Equation (2).

Value sensitivity generalizes in many ways. First, it may be applied to scalar values,
when these range over a finite (small) set of values, or using the dynamic approach,
with widening, that was introduced in Section 5. Second, the set of views could be de-
fined using a coarser division of the values of the variables that the sensitivity is based
on: in Section 2, the results presented in Equation (3), Equation (4), and Equation (5)
select a coarse partition or covering of the values of the boolean variables used in the
program. Note that it is not necessary to use a view concretization γV that partitions
concrete states, and that a γV that induces a covering is also doable as is the case for
Equation (5). Last, other families of scalar predicates such as inequalities could be
used instead as in [Jeannet 2003].

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:33

6.5. Trace History Sensitivity
The sensitive analyses described in the previous subsections all rely on views that ab-
stract sets of states. Using a sensitivity based on traces allows improved expressiveness
because any view abstracting states can also be viewed as an abstraction of the traces,
however the opposite is not true in general since traces contain strictly more informa-
tion than their last states. As an example, trace partitioning based on the history of
execution traces [Handjieva and Tzolovski 1998; Rival and Mauborgne 2007] groups
concrete states depending on an abstraction of the execution traces that lead to them.

A classical form of history-based sensitivity discriminates execution traces based
on the branch taken for a given if statement. Thus, we formalize this case here. We
assume the program contains a if statement at a control state l , and we write lt (resp.,
lf) for the first point of the true branch (resp., the false branch) of that condition:

— Each view describes a set of execution traces; moreover, views characterize three
sets of traces, which respectively, (1) went through the true branch of the condition,
(2) went through the false branch of the condition, (3) did not enter the condition;
therefore, the view concretization formalizes as follows:

C = P(T)
V] = {lt , lf , l�}

γV(lt) = {〈σ0, . . . , σn〉 ∈ T | ∃i, L(σi) = l ∧ L(σi+1) = lt}
γV(lf) = {〈σ0, . . . , σn〉 ∈ T | ∃i, L(σi) = l ∧ L(σi+1) = lf }
γV(l�) = {〈σ0, . . . , σn〉 ∈ T | ∀i, L(σi) 6∈ {lt , lf }}

— The view to view transitions derive straightforwardly from the definition of γV ; in
particular, a transition from l� to lt corresponds to the entry into the true branch of
the condition for the first time.

As an example, we have observed in Section 2 that the abstract state described by
Equation (5) can also be derived using views that denote execution paths, which corre-
sponds exactly to this form of trace history sensitivity.

We note that, if the program contains loops or gotos, a given execution trace may
belong to both γV(lt) and γV(lf), thus this set of views induces a covering (and not a
partitioning) of the program executions. An alternative approach would characterize
the last condition statement entry only; it would induce a partitioning. This set of
views never merges sets of execution traces as in [Handjieva and Tzolovski 1998]. By
contrast, [Rival and Mauborgne 2007] selects merging points to avoid accumulating
too many unnecessary views.

Other kinds of trace history sensitivity use views that describe traces depending on
the number of iterations spent in a given loop or on an abstraction of that number
(e.g., considering iteration parity), the value of a variable at a given point in the exe-
cution, and others. In particular, flow sensitivity (Section 6.1) and context sensitivity
(Section 6.2) can also be viewed as trace history sensitivity. In the case where the cri-
terion is based on the value of a variable x, the major difference with value sensitivity
(Section 6.4) lies in the fact that trace history adjusts the view to state relation only
at given program points whereas value sensitivity modifies it whenever the value of x
changes. Thus, trace history sensitivity captures a different property and may be more
economical.

6.6. Call-site sensitivity
In Section 6.2, we have described a few techniques that use an abstraction of the call
stack as views in order to tackle function calls. We now show that other techniques to
deal with function calls, such as analyses computing function summaries, and analy-

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:34 S. Kim, X. Rival, and S. Ryu

ses that track relations with function parameter values, can be described as sensitive
analyses as well.

Abstract call state sensitivity and application to functional (summary-based) analy-
ses. Among the variants of sensitivities used for the analysis of programs with proce-
dures, we can cite the functional approach [Sharir and Pnueli 1981]. While the call-
string sensitivity uses call-site strings for call contexts, the functional approach uses
input abstract call states as contexts (ultimately, this allows to abstract a function us-
ing pairs of abstract states that respectively describe input and output states). As such,
it also fits into our framework, and can be described using a view abstraction based on
abstract call states: indeed, in this approach, a view v ∈ V] stands for an abstraction
of a set of input states into a function. Thus, to account for this form of sensitivity, we
should let concrete behaviors be pairs (τ, σ) where τ is the stack of entry states for all
the ongoing calls (from the outer call to the inner call).

We assume a state abstraction defined by a domain A]e and a concretization func-
tion γAe

: A]e → P(S). Moreover, we let T (τ) be the topmost element of τ . Then, the
functional approach corresponds to the following sensitive abstraction:

— Views are abstractions of call states, thus:

C = P(T)
V] = A]e

γV(a]e) = {(τ, σ) | T (τ) ∈ γAe(a
]
e) ∧ σ ∈ S}

— As in the trace history sensitivity approach, the predecessor coverings and abstract
execution functions adjust the view to state relations only at function call and func-
tion return sites.

Parameter value sensitivity and object sensitivity. Another common approach utilizes
abstractions of parameter values so as to enhance the precision of the analysis of a
function call. This approach is very common when analyzing object-oriented programs,
since the dependency on the object supporting the method calls is often critical to
derive precise invariants; in this case, we call the sensitivity to method parameters
object sensitivity [Milanova et al. 2005]. This clearly defines an instance of the trace
history sensitivity shown in Section 6.5, as the abstract states group concrete states
based on the value of some parameter at a specific point (i.e., the call sites).

In fact, parameter value sensitivity is an instance of the abstract call state sensi-
tivity explained earlier in this subsection. Indeed, the view abstraction that underlies
parameter value sensitivity simply assumes that A]e and γAe

describe the possible val-
ues of procedure parameters. As an example, let us formalize object sensitivity, where
the views describe the allocation site of the object a method is called on. We assume
that objects are abstracted by their allocation sites, and that O describes the set of
possible allocation sites. We write A(o) for the allocation site of object o. Then, object
sensitivity is derived from the following call state abstraction:

A]e = O]{⊥,>}
γAe

(l) = {σ ∈ S | A(σ(this)) = l }
γAe

(⊥) = ∅
γAe

(>) = S

6.7. Sum of Sensitivities
Our framework can also combine several sensitivities by summing them. Assuming
two forms of sensitivities describing the same kind of behaviors C are defined by their
sets of views V]0 and V]1 (that we assume disjoint), and their concretization functions

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:35

γVi
: V]i −→ C (for i ∈ {0, 1}), the summed sensitivity analysis defines V]+ and γV]

+
as

follows:

V]+ = V]0] V]1
γV]

+
(v) =

{
γV0(v) if v ∈ V]0
γV1(v) if v ∈ V]1

Intuitively, this allows the analysis to choose to maintain two kinds of sensitivities
together, without combining the views themselves: both views of V]0 and of V]1 are
maintained in the same analysis. A definition of predicate coverings for V]+, using
directly those in terms of V]0 and of V]1, would not yield a very precise result in general,
as it would ignore relations between views of V]0 and views of V]1.

As we have observed that dropping the information attached to some views is always
sound, a common approach consists in selecting some views of V]0 and some views of V]1.
An example use of this scheme into a large analysis tool will be given in Section 7.2.

6.8. Partial Product of Sensitivities
Sensitivity tends to add cost to static analyses, as it replaces an abstract state a] with
several (possibly many) abstract states a]0, . . . , a]n of the same form (one per view). Prod-
ucts of sensitivities multiply (Section 6.3) the number of views, which makes the cost
increase even worse. Therefore, when using a product of two sensitivities V]0 and V]1
defined by their concretizations γVi : V]i −→ C, it is common to apply the second sensi-
tivity in a local manner with respect to the first one. This means that for some views
of V]0, the sensitivity defined by V]1 is not used. For instance, when combining call
sensitivity (Section 6.2) and trace history sensitivity (Section 6.5), the analysis may
determine that applying the latter form of sensitivity is useful for precision only in
some contexts.

To formalize this technique, we assume a partition V]0,a]V
]
0,b of V]0, and let V]0,a

(resp., V]0,b) denote the views where the sensitivity V]1 is applied (resp., not applied).
This defines the following set of views and view concretization:

V]+ = V]0,a × V]1]V
]
0,b

∀(v0, v1) ∈ V]0,a × V]1, γV]
+

(v0, v1) = γV0(v0)∩ γV1(v1)

∀v0 ∈ V]0,b, γV]
+

(v0) = γV0(v0)

This sensitivity can be viewed as the combination of a sum (Section 6.7) and of a prod-
uct (Section 6.3). An example use of this technique into a large analysis tool will be
given in Section 7.1.

6.9. Choosing an Adequate Sensitivity
The previous paragraphs have presented a number of instances of our sensitivity
framework and techniques to create new forms of sensitivities from existing ones, thus
the selection of the right sensitivity for a given static analysis problem may appear
challenging. In the remainder of this section, we discuss this issue, and focus on the
criteria to select views to represent, on the inherent cost of sensitive analysis and how
to mitigate it, and on the sensitivity selection process.

Criteria for the selection of views. As we observed in Section 2, the basic motivation
for sensitivity is to ensure that static analysis can compute sufficiently precise results.
Let us assume that an abstraction is described by a concretization function γ and a

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:36 S. Kim, X. Rival, and S. Ryu

concrete operation f over the concrete domain is over-approximated by the abstract
operation f] over the abstract domain. We thus have f ◦ γ ⊆ γ ◦ f]. When the abstract
f] returns abstract states that are too coarse over-approximation of the result of f ◦ γ,
subsequent analysis steps or final analysis results may become unacceptable. In that
setup, the switch to a sensitive abstraction allows to apply f] to different abstract
elements, where hopefully less imprecision will occur.

Very often, the operation f that requires such a treatment is concrete unions. Indeed,
the approximation of concrete unions tends to incur a significant precision loss when
using abstract domains that describe conjunctive logical properties. As an example,
if the abstract domain is based on interval constraints, then joining [0, 5] with [10, 15]
causes to include all values between 5 and 10 in the abstraction. This case was also
observed in Section 2.

However, the same issue may occur with different kinds of operations. As an ex-
ample, shape analyses for inductive data-structures such as dynamically linked lists
need to handle precisely memory cell reads and destructive updates over summarized
regions [Sagiv et al. 2002; Chang and Rival 2008]. To analyze precisely such oper-
ations, these works perform a materialization operation that substitutes an abstract
state with a disjunctive approximation of it, e.g., with two cases covering the case of an
empty list and the case of a non-empty list. Although they formalize such case splits as
a disjunctive analysis, we can also view these as a form of sensitivity (where the views
describe the possible states of the list).

Cost inherent in sensitive analyses. Added cost is an important concern when adding
sensitivity to an existing analysis. Indeed, sensitivity makes the representation of ab-
stract elements larger and the analysis algorithms more complex. In particular, we can
list the following sources of increase in analysis cost:

— the number of views causes an increase in the memory required for the representa-
tion of abstract elements (as seen in Section 3.2) and in the number of operations
in the underlying domain, e.g. for the computation of a post-condition (as shown in
Section 4.2);

— the representation and computation of views add up to the analysis time (Sec-
tion 4.2);

— the operations that modify the set of views cause the recomputation of elements of
the base domain (Section 3.3).

Therefore, an efficient sensitive analysis should utilize enough views to reach a desired
level of precision, but should avoid carrying too many unnecessary views, and should
avoid the most costly operations such as global views reorganization (in the case of a
dynamic sensitivity) and reduction. Several techniques presented in the previous sec-
tions allow to limit the number of views that are effectively represented. For instance,
dynamic sensitivity (Section 5) allows not to represent all views at all times. Similarly,
the partial product (Section 6.8) generates smaller sets of views than a direct product.

The trace partitioning framework of [Rival and Mauborgne 2007] provides a repre-
sentation of views and a set of operations which minimize the costly reductions and
modifications over partitions in the case of trace history sensitivity. Other specific sets
of views may lead to different implementations.

Sensitivity selection process. There is no general and systematic way to characterize
the operation that is limiting the precision of a static analysis, thus the choice of views
to solve such a precision issue is generally not systematic and typically requires human
intervention.

Dynamic sensitivity (Section 5) can be considered as a partially automated view se-
lection process, where a range of possible views is fixed first, and the analysis selects in

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:37

this range set of useful views at each step. The design of this view selection algorithm
is generally a complex task, that cannot be automated.

7. FRAMEWORK INSTANCES
We now show how a few selected analysis tools (for C and JavaScript) implement var-
ious forms of sensitivities that can be formalized inside our framework.

7.1. Astrée
Astrée [Blanchet et al. 2003] is a static analyzer that was designed specifically for
the verification of absence of runtime errors in synchronous safety critical embedded
softwares, as sound in avionics, aerospace, automotive and energy production systems.
It is aimed at computing very precise invariants for such softwares, and its design
takes advantage of the characteristics of embedded programs.

Sensitivity in Astrée. The analysis makes a very careful use of several forms of sen-
sitivity, in order to achieve this precision / efficiency ratio: the analysis is fully flow
sensitive and fully calling-context sensitive, it performs trace partitioning [Rival and
Mauborgne 2007], and it also utilizes partial state partitioning guided by the values of
boolean variables [Blanchet et al. 2003]. These forms of sensitivity can all be expressed
in our framework.

Indeed, flow sensitivity works as described in Section 6.1, and calling-context par-
titioning follows the full context sensitivity approach presented in Section 6.2. Since
safety critical embedded softwares are supposed not to use recursion, the analysis is
fully sensitive to the calling-context, which allows a very high level of precision in
softwares where some functions can be called in very different contexts.

The trace partitioning abstract domain [Rival and Mauborgne 2007] implements
the trace history sensitivity described in Section 6.5. It is defined by an alphabet of
directives D containing the following elements:

— DirTl ,DirFl , when the analyzed code contains an if-statement at program location
l (these directives respectively denote the traces that went to the true and false
branches of the if-statement the last time it was traversed);

— Dir0l ,Dir1l , . . . ,Dirnl ,Dir>nl (where n is a fixed integer), when the analyzed code con-
tains a loop statement at program location l (these directives respectively denote
the traces that went through 0, 1, n, and more than n iterations of this loop the last
time it was reached);

— Dirx=kl (where k is an integer), when the analyzed code contains an integer vari-
able x and a location l (this directive denotes the traces such that variable x was
containing value k the last time it reached location l).

Trace partitioning allows to tie the abstraction of scalar values to the control flow
paths, and is most useful in order to derive precise invariants of programs containing
multiple if-statements with related conditions, and mathematical functions such as in-
terpolations. Interpolations are often computed using loop-up tables searches through
loops (resp., array dereferences) thus can be better analyzed using loop partitioning
(resp., trace partitioning guided by the value of a variable at the beginning of the in-
terpolation). While the above directives can be defined for all matching code locations,
the analysis will in practice use only a small set of directives, determined by analysis
strategies (thus, Astrée uses dynamic sensitivity).

Value sensitivity follows the principles of Section 6.4, and is applied only on boolean
variables, as synchronous softwares often encode part of the control flow in booleans,
and keeping relations between booleans and scalars is crucial to achieve precise invari-
ants. This form of sensitivity is never applied to the global state, and usually relates

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:38 S. Kim, X. Rival, and S. Ryu

only a few group of scalar variables to the values of a few boolean variables, determined
by static analyzer strategies [Blanchet et al. 2003].

Combination of sensitivities in Astrée. Intuitively, the basic technique for combining
sensitivities is the multiplication composition described in Section 6.3. In fact, [Rival
and Mauborgne 2007] formalizes the calling context sensitivity as part of the trace
partitioning abstraction, effectively defining the multiplication of the two.

However, the analysis strategies make this combination more complex, and some
forms of trace partitioning are applied in a parsimonous and local manner: a pre-
analysis phase computes candidate partitioning points, and the analysis assesses
whether partitioning should be done when it reaches these points, thus it may de-
cide to actually do the partitioning or not. For instance, when the pre-analysis phase
marks a piece of code as a candidate for trace partitioning guided by the values of
a variable, and when the analysis computes a large range (over a few hundreds), so
that the partitioning would be costly, then no partitioning is done for that variable.
This combination of sensitivities implements a dynamic (Section 5) partial product of
sensitivities (Section 6.8).

Impact of sensitivity in Astrée. Sensitivity plays a great role in the performance
of the analyzer (both in terms of precision and of runtime). For instance, [Rival and
Mauborgne 2007] performs a comparison between path history sensitive and path his-
tory insensitive analyses: on the largest industrial code considered (400 kLOC), en-
abling this form of sensitivity increases the analysis time by 6 % but reduces the num-
ber of alarms from 7524 to 0. In fact, the added cost inherent in the sensitivity is made
up by the fact the analysis does not need to explore so many unreachable paths and to
compute as long iteration sequences (converging slowly towards imprecise invariants),
as a less precise analysis would. By contrast, a brutal product of sensitivities would
generate an exponential tower of sensitivities, hence would not scale.

7.2. Sparrow
Sparrow [Oh et al.] is a static analyzer that aims to verify the absence of fatal bugs
in C programs. While Astrée is specialized for analyzing synchronous safety critical
embedded softwares, Sparrow is designed for supporting the full set of the C program-
ming language. It uses various analysis techniques such as a general sparse analysis
framework [Oh et al. 2012] for scalability and alarm clustering [Lee et al. 2012b] for
convenience. In addition to traditional sensitivities, Sparrow supports a way to use
context-sensitivity selectively [Oh et al. 2014]. After estimating the impact of context-
sensitivity on the analysis’s precision, it turns on and off context-sensitivity depending
on whether it improves the analysis precision.

Selective context-sensitivity in Sparrow. The selective context-sensitivity can be also
expressed in our framework. Sparrow uses a context selector K that maps procedures
to sets of selected calling contexts that are of interest, and it uses ε to denote all the
other contexts not included in K. In our framework, we can have two views V]0 for
full contexts and V]1 for partial contexts. Accordingly, we can denote the full context-
sensitivity as V]0 → A] and a partial context-sensitivity as V]1 → A]. Then, we can
represent the Sparrow’s selective context-sensitivity using the sum composition de-
scribed in Section 6.7. It is a summed sensitivity of V]0 and V]1 like m ∈ V]0 + V]1 → A]
where we forget some views of m by implicitly mapping them to > losing some anal-
ysis precision. Indeed, it is very close to what Astrée does with trace partitioning. To
make the analysis scalable while keeping the precision, the Sparrow analyzer uses
context-sensitivity for the parts of the code where it will have more impact.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:39

Impact of the selective context-sensitivity in Sparrow. Selective context-sensitivity
serves an important role in the analysis precision with modest overhead. For exam-
ple, [Oh et al. 2014] performs a comparison between the baseline context-insensitive
interval analysis and the selective context-sensitive analysis: the selective sensitivity
reduces the number of (false) alarms by 24.4%, while increasing the analysis cost by
27.8% on average. As the selective sensitivity method also improves the precision of a
relational analysis, it may be applicable to other sensitive analyses like flow-sensitive
analysis and loop-sensitive analysis [Park and Ryu 2015].

7.3. SAFE
SAFE (Scalable Analysis Framework for ECMAScript) [Lee et al. 2012a; KAIST PLRG
2014] is a general analysis framework for JavaScript web applications. It is designed to
be an open-source, pluggable framework to support various kinds of JavaScript anal-
yses including static and dynamic analyses. It provides a baseline static analyzer, a
clone detector [Cheung et al. 2016], and a bug detector that can report type-related
bugs and misuses of Web APIs [Bae et al. 2014].

Sensitivity in SAFE. The baseline analysis supports a numerous forms of sensitivity:
the analysis can be flow sensitive, k call-string sensitive, object sensitive [Milanova
et al. 2005], and loop sensitive [Park and Ryu 2015]. These forms of sensitivity can all
be expressed in our framework.

The k call-string sensitivity follows the partial context sensitivity principle described
in Section 6.2. Unlike C program analysis where highly sensitive analysis with high k
produces precise analysis results but requires an expensive cost, analysis of JavaScript
programs with high k may provide better precision at a much cheaper cost than its
counterpart with low k [Kashyap et al. 2014]. SAFE provides an infrastructure to ex-
periment with different contexts to understand the peculiarities of JavaScript analysis.

The object sensitivity follows the principles of Section 6.6, and is applied only on
the receiver object. While object sensitivity performs better than k call-string sensitiv-
ity for Java program analysis in general [Milanova et al. 2005], it does not apply to
JavaScript program analysis [Kashyap et al. 2014] due to the extremely dynamic and
functional features of JavaScript.

The loop sensitivity [Park and Ryu 2015] works as an instance of the trace his-
tory sensitivity described in Section 6.5. It is similar to the trace partitioning abstract
domain [Rival and Mauborgne 2007] used in Astrée. While trace partitioning uses de-
fault values for loop unrolling counts that can be modified by partitioning strategies
or annotations, the loop sensitivity distinguishes loop iterations as many as needed by
automatically choosing loop unrolling numbers during analysis. The loop sensitivity
distinguishes different loop contexts precisely, which is critical in the analysis perfor-
mance (in terms of both precision and scalability) of JavaScript programs where object
properties are dynamically constructed and initialized their values via loops.

Combination of sensitivities in SAFE. The basic technique for combining sensitivities
is the multiplication composition described in Section 6.3. In fact, [Park and Ryu 2015]
uses a combination of flow sensitivity, k call-string sensitivity, and loop sensitivity
as the multiplication of all of them. To maintain the analysis scalable even with the
multiplication of sensitivities, loop sensitivity controls the number of distinct contexts
while preserving its soundness.

Impact of sensitivity in SAFE. Sensitivity is critical in the performance of the SAFE
analyzer. For instance, [Park and Ryu 2015] performs a comparison between the anal-
ysis results of SAFE with those of state-of-the-art static analyzers, TAJS [Møller et al.
2014] and WALA [IBM Research]. For programs that simply load several versions of

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:40 S. Kim, X. Rival, and S. Ryu

the top 5 JavaScript libraries according to W3Techs 3, WALA could not analyze most
of them. Even though TAJS is also equipped with various sensitivities as we discuss
in Section 7.4, it could not analyze programs that load BootStrap4, Mootools5, and
Prototype6. On the contrary, SAFE can analyze all but BootStrap.

7.4. TAJS
TAJS [Andreasen and Møller 2014; Møller et al. 2014] is a static analyzer for
JavaScript programs. In addition to conventional sensitivities like flow sensitivity, con-
text sensitivity, and object sensitivity, it extends its context-sensitivity to distinguish
more functions and loops using the values of function parameters and loop variables
selected in heuristic ways [Andreasen and Møller 2014].

On-the-fly heuristics for sensitivities in TAJS. In order to improve the analysis preci-
sion, TAJS introduces heuristics to several sensitivity techniques. It selectively applies
value sensitivity described in Section 6.4 by choosing values to distinguish during anal-
ysis, dubbed selective parameter sensitivity. It takes advantage of its constant propa-
gation analysis to select parameters with constant values in each context to identify
them as determinacy information. It also introduces two kinds of loop specialization,
one for for loops and the other for for-in loops. Indeed, such sensitivities are selective
with simple heuristics, thus, TAJS uses dynamic sensitivity.

Impact of the on-the-fly heuristics for sensitivities in TAJS. The combination of dif-
ferent on-the-fly heuristics for sensitivities improves analysis precision, while it in-
creases theoretical worst-case complexity. Even though the multiplication of various
sensitivities may be too costly in theory, analysis of programs using the most widely
used jQuery7 library did not show the overhead in practice.

8. CONCLUSION
We proposed a general abstract interpretation framework to formalize sensitive anal-
yses, which can describe a wide set of sensitivities. The main foundation of our frame-
work is a precise tracking of the link between views that define what the analysis is
sensitive to, and sets of program behaviors (usually states or traces) that can be rep-
resented using other abstractions. It is based on the reduced cardinal power abstract
domain construction technique [Cousot and Cousot 1979].

Our framework provides general definitions for the sensitive abstract domains, their
concretization functions (and abstraction functions when they exist), abstract execu-
tion functions, and analysis algorithms. It relies on a notion of view that generalizes
the trace partitions of [Rival and Mauborgne 2007]. It can be used not only when views
are statically known but also when they are computed during the analysis itself. We
have demonstrated that many kinds of sensitive analyses can be viewed as instances
of our framework. Furthermore, our approach allows to compose several forms of sen-
sitivities together, so as to get increased precision.

The main advantage of our formalization is that it identifies precisely the relation
between views and abstractions of sets of program behaviors, and thus it provides
great control over analysis precision and cost by pointing out how the information
over views is tracked during the analysis (for instance in the definition of reduction
operators). Combination techniques such as sum of sensitivities or partial product of

3http://w3techs.com/technologies/overview/javascript_library/all
4http://getbootstrap.com/javascript/
5http://mootools.net
6http://prototypejs.org
7http://jquery.com

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

http://w3techs.com/technologies/overview/javascript_library/all
http://getbootstrap.com/javascript/
http://mootools.net
http://prototypejs.org
http://jquery.com

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:41

sensitivities allow to further trim the cost of a static analysis that still provides a
sufficient level of precision. We have also shown the generality of our approach by
showing how it accounts for design choices that underlie various static analysis tools,
even when they were not formalized explicitly in such a general way.

REFERENCES
AGESEN, O. 1995. The cartesian product algorithm: Simple and precise type inference of parametric poly-

morphism. In ECOOP ’95: Proceedings of the 9th European Conference on Object-Oriented Program-
ming. Springer-Verlag, 2–26.

ANDREASEN, E. AND MØLLER, A. 2014. Determinacy in static analysis for jQuery. In OOPSLA ’14: Proceed-
ings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
and Applications. ACM, 17–31.

BAE, S., CHO, H., LIM, I., AND RYU, S. 2014. SAFEWAPI: Web API misuse detector for web applications. In
ESEC/FSE ’14: Proceedings of the 22nd ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering. ACM, 507–517.

BLANCHET, B., COUSOT, P., COUSOT, R., FERET, J., MAUBORGNE, L., MINÉ, A., MONNIAUX, D., AND
RIVAL, X. 2003. A static analyzer for large safety-critical software. In PLDI ’03: Proceedings of the
ACM SIGPLAN SIGSOFT Conference on Programming Language Design and Implementation. ACM,
196–207.

BOURDONCLE, F. 1992. Abstract interpretation by dynamic partitioning. Journal of Functional Program-
ming 2, 4, 407–423.

CHANG, B.-Y. E. AND RIVAL, X. 2008. Relational inductive shape analysis. In POPL ’08: Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 247–260.

CHEUNG, W. T., RYU, S., AND KIM, S. 2016. Empirical Software Engineering 21, 2, 517–564.
COUSOT, P. 1981. Semantic foundations of program analysis. In Program Flow Analysis: Theory and Appli-

cations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Chapter 10, 303–342.
COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: a unified lattice model for static analysis of pro-

grams by construction or approximation of fixpoints. In POPL’77: Proceedings of the 4th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM, 238–252.

COUSOT, P. AND COUSOT, R. 1979. Systematic design of program analysis frameworks. In POPL ’79: Pro-
ceedings of the 6th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM, 269–282.

COUSOT, P., COUSOT, R., AND LOGOZZO, F. 2011. A parametric segmentation functor for fully automatic
and scalable array content analysis. In POPL ’11: Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, 105–118.

GIACOBAZZI, R. AND RANZATO, F. 1999. The reduced relative power operation on abstract domains. Theo-
retical Computer Science 216, 1–2, 159–211.

GIACOBAZZI, R., RANZATO, F., AND SCOZZARI, F. 2005. Making abstract domains condensing. ACM Trans-
actions on Computational Logic (TOCL) 6, 1, 33–60.

GIACOBAZZI, R. AND SCOZZARI, F. 1998. A logical model for relational abstract domains. ACM Transactions
on Programming Languages and Systems (TOPLAS) 20, 5, 1067–1109.

HANDJIEVA, M. AND TZOLOVSKI, S. 1998. Refining static analyses by trace-based partitioning using control
flow. In SAS ’98: Proceedings of the 5th International Symposium on Static Analysis. Springer-Verlag,
200–214.

HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2002. Lazy abstraction. In POPL ’02: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM, 58–70.

IBM RESEARCH. T.J. Watson Libraries for Analysis (WALA). http://wala.sf.net.
JEANNET, B. 2003. Dynamic partitioning in linear relation analysis: Application to the verification of reac-

tive systems. Formal Methods in System Design 23, 1, 5–37.
KAIST PLRG. 2014. SAFE: Scalable analysis framework for ECMAScript. http://safe.kaist.ac.kr.
KASHYAP, V., DEWEY, K., KUEFNER, E. A., WAGNER, J., GIBBONS, K., SARRACINO, J., WIEDERMANN, B.,

AND HARDEKOPF, B. 2014. JSAI: A static analysis platform for JavaScript. In FSE ’14: Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM.

LEE, H., WON, S., JIN, J., CHO, J., AND RYU, S. 2012a. SAFE: Formal specification and implementation of
a scalable analysis framework for ECMAScript. In FOOL’12: International Workshop on Foundations of
Object Oriented Languages.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

http://wala.sf.net
http://safe.kaist.ac.kr

xx:42 S. Kim, X. Rival, and S. Ryu

LEE, W., LEE, W., AND YI, K. 2012b. Sound non-statistical clustering of static analysis alarms. In VM-
CAI ’12: Proceedings of the 13th International Conference on Verification, Model Checking, and Abstract
Interpretation. Springer-Verlag, 299–314.

MILANOVA, A., ROUNTEV, A., AND RYDER, B. G. 2005. Parameterized object sensitivity for points-to anal-
ysis for Java. ACM Transactions on Software Engineering and Methodology (ToSEM) 14, 1, 1–41.

MØLLER, A., JENSEN, S. H., THIEMANN, P., MADSEN, M., INGESMAN, M. D., JONSSON, P., AND AN-
DREASEN, E. 2014. TAJS: Type analyzer for JavaScript. https://github.com/cs-au-dk/TAJS.

OH, H., HEO, K., LEE, W., LEE, W., AND YI, K. Sparrow. http://ropas.snu.ac.kr/sparrow.
OH, H., HEO, K., LEE, W., LEE, W., AND YI, K. 2012. Design and implementation of sparse global analyses

for c-like languages. In PLDI ’12: Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 229–238.

OH, H., LEE, W., HEO, K., YANG, H., AND YI, K. 2014. Selective context-sensitivity guided by impact pre-
analysis. In PLDI ’14: Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 475–484.

PARK, C. AND RYU, S. 2015. Scalable and precise static analysis of JavaScript applications via loop-
sensitivity. In ECOOP ’15: Proceedings of the European Conference on Object-Oriented Programming.
Dagstuhl Publishing, 735–756.

REPS, T. W., HORWITZ, S., AND SAGIV, M. 1995. Precise interprocedural dataflow analysis via graph reach-
ability. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, 49–61.

RIVAL, X. AND MAUBORGNE, L. 2007. The trace partitioning abstract domain. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 29, 5, 26.

SAGIV, M., REPS, T., AND WILHELM, R. 2002. Parametric shape analysis via 3-valued logic. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 24, 3, 217–298.

SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data flow analysis. In Program Flow
Analysis: Theory and Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Chapter 7.

SHIVERS, O. 1991. Control-flow analysis of higher-order languages. Ph.D. thesis, Carnegie Mellon Univer-
sity.

SMARAGDAKIS, Y., BRAVENBOER, M., AND LHOTÁK, O. 2011. Pick your contexts well: understanding
object-sensitivity. In POPL ’11: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. ACM, 17–30.

VENET, A. 1996. Abstract cofibered domains: Application to the alias analysis of untyped programs. In SAS
’96: Proceedings of the 3rd International Symposium on Static Analysis. Springer-Verlag, 366–382.

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

https://github.com/cs-au-dk/TAJS
http://ropas.snu.ac.kr/sparrow

A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework xx:43

A. PROOFS
Proof of Lemma 3.8 (Sensitive abstraction Galois connection). Let E ⊆ E be a set of

behaviors and s] ∈ S] be an abstract state in the sensitive abstract domain. Then:

E ⊆ γS(s])
⇐⇒ ∀v ∈ V], E ⊆ {e ∈ E | e ∈ γV(v) =⇒ e ∈ γA(s](v))}
⇐⇒ ∀v ∈ V], ∀e ∈ E, e ∈ γV(v) =⇒ e ∈ γA(s](v))
⇐⇒ ∀v ∈ V], E ∩ γV(v) ⊆ γA(s](v))
⇐⇒ ∀v ∈ V], αA(E ∩ γV(v)) vA s

](v)
⇐⇒ ∀v ∈ V], αS(E)(v) vA s

](v) where αS is defined as in Lemma 3.8
⇐⇒ αS(E) vS s

]

This concludes the proof.

Proof of Lemma 3.12. We recall that:

γS(s]) =
{
e ∈ E | ∀v ∈ V], e ∈ γV(v) =⇒ e ∈ γA(s](v))

}
.

We let Γ be defined by:

Γ : S] −→ P(E)

s] 7−→
⋃{

C ∩ γA
(l

A

{
s](v)|C ⊆ γV(v)

})
|C ∈ E/≡V

}
.

To prove the lemma, we simply let s] be any element of S] and show that Γ(s]) = γS(s]).
We prove this equality by double inclusion.

— Let us first prove that γS(s]) ⊆ Γ(s]). We let e ∈ γS(s]), and show that e ∈ Γ(s]).
Let C0 be the equivalence class of e for relation ≡V. By definition of ≡V, the relation
e ∈ C0 holds. If v is a view such that e ∈ γV(v), then, by definition of γS, e ∈ γA(s](v)).
In particular, this holds for any view v such that C0 ⊆ γV(v). Therefore:

e ∈
⋂{

γA(s](v))|C0 ⊆ γV(v)
}
.

We recall that concretization functions and greatest lower bounds commute. More-
over, e ∈ C0. Thus the above rewrites into:

e ∈ C0 ∩ γA
(l

A

{
s](v)|C0 ⊆ γV(v)

})
.

To sum up, we have proved that:

e ∈
⋃{

C ∩ γA
(l

A

{
s](v)|C ⊆ γV(v)

})
|C ∈ E/≡V

}
= Γ(s]).

This terminates the proof of the first inclusion.
— Secondly, we prove that Γ(s]) ⊆ γS(s]). We let e ∈ Γ(s]), and show that e ∈ γS(s]). By

definition of Γ, there exists an equivalence class C0 or relation ≡V such that e ∈ C0

and:

e ∈ γA
(l

A

{
s](v)|C0 ⊆ γV(v)

})
.

We let v0 be a view such that e ∈ γV(v0) and we show that e ∈ γA(s](v0)). By defini-
tion of ≡V and since C0 is an equivalence class for this relation, e ∈ γV(v0) implies
that C0 ⊆ γV(v0). Therefore:

l
A

{
s](v)|C0 ⊆ γV(v)

}
vA s

](v0)

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

xx:44 S. Kim, X. Rival, and S. Ryu

and since γA is monotone:

γA

(l
A

{
s](v)|C0 ⊆ γV(v)

})
⊆ γA(s](v0)).

We have seen above that e belongs to the left hand side, thus e ∈ γA(s](v0)). This
finishes the proof of the second inclusion.

Proof of Lemma 3.14. Let s] ∈ S] be an abstract state in the sensitive abstract do-
main and v ∈ V] be a view. Let e be a behavior such that e ∈ γS(s]) ∩ γV(v). Then, by
definition of γS, and since e ∈ γV(v), we deduce that e ∈ γA(s](v)). As this holds for all
elements of γS(s])∩ γV(v), we derive that γS(s])∩ γV(v) ⊆ γA(s](v)). Thus:

αA(γS(s])∩ γV(v)) vA s
](v)

Proof of Lemma 3.16. We let E ⊆ E be a set of program behaviors and s] ∈ S] be an
abstract state. Moreover, we assume V ∈ CoversV](E) is a covering of E:

E ⊆
⋃
v∈V

γV(v)

Then:
αA(γS(s])∩E)

vA αA
(
γS(s])∩

(⋃
v∈V γV(v)

))
since αA is monotone

= αA
(⋃

v∈V (γS(s])∩ γV(v))
)

by distributivity
= αA

(⋃
v∈V (γA(s](v))∩ γV(v))

)
since γS(s])∩ γV(v) ⊆ γA(s](v))∩ γV(v)

=
⊔

A

{
αA(γA(s](v))∩ γV(v))|v ∈ V

}
as in general, αA(E0 ∪E1) = αA(E0) tA αA(E1)

vA
⊔

A

{
αA(γA(s](v))) uA αA(γV(v))|v ∈ V

}
since αA(E0 ∩E1) vA αA(E0) uA αA(E1)

vA
⊔

A

{
s](v) uA αA(γV(v))|v ∈ V

}
since αA ◦ γA(s]) vA s

]

Proof of Lemma 3.17 (Reduction operator). Let s] ∈ S] be an abstract state. We show
that αS ◦ γS(s])(v0) vS ρS(s])(v0) for any view v0 ∈ V]:

αS ◦ γS(s])(v0)

= αA(γS(s])∩ γV(v0))

vA
l

A

{⊔
A

{
s](v) uA αA(γV(v))|v ∈ V

}
|V ∈ CoversV](γV(v0))

}
by applying Lemma 3.16 to E = γV(v0)
and to any of its coverings V ∈ CoversV](γV(v0))

= ρS(v0)

Received Xxx 2016; revised Xxx 2016; accepted Xxx 2016

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, Article xx, Publication date: 2016.

	Introduction
	Overview
	Abstraction
	Views
	Sensitive Abstraction Based on a Loose Cardinal Power Domain
	Internal reduction
	Disjunctions and Conjunctions of Implications

	Abstract Interpretation: Abstract Transfer Functions and Iteration
	Concrete semantics
	Abstract single step forward execution
	Abstract iterator

	Dynamic Sensitivity
	Dynamicity in Program Analysis
	Conversion of sets of views
	Widening over sets of views

	Constructing Sensitivities for Program Analysis
	Flow Sensitivity
	Call String Sensitivity
	Product of Sensitivities
	Value Sensitivity
	Trace History Sensitivity
	Call-site sensitivity
	Sum of Sensitivities
	Partial Product of Sensitivities
	Choosing an Adequate Sensitivity

	Framework Instances
	Astrée
	Sparrow
	SAFE
	TAJS

	Conclusion
	Proofs

