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Foreword

In general, in Mathematics, a book is written on a topic when the theory starts be-
ing well-established, when the key results have reached their definitive forms (or are
very close to that point) and there is a global understanding of the phenomenas which
is validated by the community. When we started this project of book, we were not
at all in this idyllic situation: on one hand, the connections between Hamilton-Jacobi
Equations with co-dimension 1 discontinuities and equations set on networks have
just been noticed and there was still controversies about the most satisfying approach
for such problems, and in particular on the notions of solutions to be used. On the
other hand, for more general discontinuities, we had just finished revisiting “stratified
problems” in the whole space and the theory needed to be further developed. In that
direction, the course of P.L. Lions at the College de France when he presented the
“tanker problem” was illuminating on the possibilities of using stratified formulations
for such problems with boundary conditions.

These two points were the main motivations to start writing this book: on one hand,
our first aim was to revisit the recent progress made in the study of Hamilton-Jacobi
Equations with co-dimension 1 discontinuities, and in particular those coming from
the existing theories for equations set on networks (a subject which we are going to
consider a little bit even if we did not want to enter too deeply into it). Our aim was
both to clarify and simplify the existing results and their proofs and it seemed to us
that there was a lot of room to do it!

On the other hand, we wished to develop and pushed as far as possible the ideas we
had for stratified problems, and in particular with the aim of treating problems with
boundary conditions. Maybe the imperfection or even the lack of the existing theories
in these different directions explain why it took us five years to reach this last version.

In the case of co-dimension 1 discontinuities, revisiting the recent progress means
that we are not merely copy-pasting with few modifications the existing articles. In-
stead we have tried to emphasize the main common ideas, either technical or more
fundamental ones. This is why, while thinking about all the common points in sev-
eral works, we have decided to dedicate an entire part (Part I) to the “basic results”,
which are common —bricks, used very often under perhaps slightly different forms, to
prove the main results. This has the advantage to lighten the presentation of the main



results and their proofs, but that creates a rather technical –and perhaps difficult to
read– part, although it is not uninteresting to see some classical ideas revisited in
(sometimes) unusual ways.

In the second and third parts, we describe and compare the different notions of
solutions for codimension-1 type discontinuities: we begin with the classical Ishii’s
notion of viscosity solutions (Part II) and then, in Part III, we consider the different
approaches used for networks (flux-limited and junction solutions). We have tried
to analyze all these different approaches in full details, trying to give to the reader
the most precise comparison of their advantages and disadvantages in terms of the
generality of assumptions and results. Ending up with the idea that they are comple-
mentary and, being based on rather different technical ideas, they provide all together
a very interesting toolbox which, we hope, will be useful in the future progress of the
domain. Even if they are different, they share a lot of common points which partly
justifies our first part on common tools.

In this third part dedicated to what we call the “Network approach” for problems
with a co-dimension 1 discontinuity, we do not just describe the state-of-the-art but
we also provide new results and applications, based on a combinations of the pre-
sented tools, in order to illustrate them. In particular, we give some applications to
KPP (Kolmogorov-Petrovsky-Piskunov) type problems and we also give a simple idea
of the results one can get in the framework which is the HJ analogue of 1-d scalar
conservation laws with a discontinuous flux, for the reader who just wants to have a
quick overview of them. In order to conclude this short overview of the codimension-1
discontinuities case, we point out that a very intriguing question, which enlights the
difference and complementarity of the different notions of solutions, is the conver-
gence of the vanishing viscosity approximation: one has a complete answer in this
codimension-1 framework by combining the arguments from these various notions,
but it remains open in more general situations, like on chessboard-type configura-
tions for example.

A large part of this book is dedicated to stratified problems where discontinuities
of any co-dimensions are present: this opens a very large range of applications, the
newest ones being for problems with boundary conditions where both the boundary
may be non-smooth and the data may present discontinuities. Some a priori very
singular problems can be addressed and even treated, the most fascinating ones be-
ing in the boundary conditions case. Here, to our point of view, the main message
is the identification of what we believe as being the “good framework” for studying
discontinuities in Hamilton-Jacobi Equations, namely the assumptions of “tangential



continuity”, ”normal controllability” and the suitable notion of solution. The reader
who is familiar with either exit time, state-constraint control problems or boundary
conditions for Hamilton-Jacobi Equations will recognize some common features. With
these assumptions, it is surprising to see how some applications can be treated with-
out major additional difficulty compared to the continuous case.

For treating applications in a simpler way we address, in particular, the follow-
ing question: under which conditions can one prove that Ishii viscosity solutions are
stratified solutions? The motivation is clear: classical viscosity solutions have nice
stability properties and passages to the limit, even in rather complicated situations,
are rather simple. On the other hand, we have a general comparison result for strati-
fied solutions. Hence in the cases where these two concepts of solutions coincide, we
benefit of all the advantages. Of course, as it is clear from the study of codimension
1 discontinuities where we have a very precise and complete picture, this strategy
does not lead to the most general results. But still, it provides interesting results in
a rather cheap way and in cases where our understanding of discontinuities is not so
satisfactory (any discontinuity of codimension bigger than 1, in fact...).

This book is called “illustrative” since we have tried to provide applications to
concrete problems but also we have pointed out several key open problems. We hope
that the reader of this manuscript will enjoy reading it and that it will be useful for
him/her. Of course, we will be very happy to hear that he will be able to solve some
of the open problems we mention.

G. Barles E. Chasseigne
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Chapter 1

General Introduction

Viscosity solutions: a simple, efficient and universal notion of solu-
tions.

In 1983, the introduction of the notion of viscosity solutions by Crandall and Lions
[68] solved the main questions concerning first-order Hamilton-Jacobi Equations (HJE
in short), at least those set in the whole space RN , for both stationary and evolution
equations: this framework provided the right notion of solutions for which uniqueness
and stability hold, allowing to prove (for example) the convergence of the vanishing
viscosity method. In this founding article the definition was very inspired by the works
of Kružkov [127, 128, 130, 129] and, in fact, viscosity solutions appeared as the L∞-
analogue of the L1-entropy solutions for scalar conservation laws. This initial, rather
complicated Kružkov-type definition, was quickly replaced by the present definition,
given in the article of Crandall, Evans and Lions [66], emphasizing the key role of
the Maximum Principle and of the degenerate ellipticity, thus preparing the future
extension to second-order equations.

The immediate success of the notion of viscosity solutions came from both its sim-
plicity but also universality: only one definition for all equations, no matter whether
the Hamiltonian was convex or not. A single theory was providing a very good frame-
work to treat all the difficulties connected to the well-posedness (existence, unique-
ness, stability...etc.) but it was also fitting perfectly with the applications to deter-
ministic control problems, differential games, front propagations, image analysis etc.

Of course, a second key breakthrough was made with the first proofs of comparison
results for second-order elliptic and parabolic, possibly degenerate, fully nonlinear
partial differential equations (pde in short) by Jensen [124] and Ishii [120]. They al-
low the extension of the notion of viscosity solutions to its natural framework and
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open the way to more applications. This extension definitively clarifies the connec-
tions between viscosity solutions and the Maximum Principle since, for second-order
equations, the Maximum Principle is a standard tool and viscosity solutions (for de-
generate equations) are those for which the Maximum Principle holds when testing
with smooth test-functions.

The article of Ishii and Lions [117] was the first one in which the comparison result
for second-order equations was presented in the definitive form; we recommend this
article which contains a lot of results and ideas, in particular for using the ellipticity
in order to obtain more general comparison results or Lipschitz regularity of solutions.

We refer to the User’s guide of Crandall, Ishii and Lions [67] for a rather complete
introduction of the theory (See also Bardi and Capuzzo-Dolcetta[13] and Barles [31]
for first-order equations, Fleming and Soner [87] for second-order equations together
with applications to deterministic and stochastic control, Bardi, Crandall, Evans,
Soner and Souganidis [12] ot the CIME course [2] for a more modern presentation of
the theory with new applications).

Discontinuities: a weakness of viscosity solutions?

Despite all these positive points, the notion of viscosity solutions had a little weak-
ness: it only applies with the maximal efficiency when solutions are continuous and,
this is even more important, when the Hamiltonians in the equations are continuous.
This fact is a consequence of the keystone of the theory, namely the comparison re-
sult, which is mainly proved by the “doubling of variables” technic, relying more or
less on continuity both of the solutions and the Hamiltonians.

Yet, a definition of discontinuous solutions has appeared very early (in 1985) in Ishii
[118] and a first attempt to use it in applications to control problems was proposed
in Barles and Perthame [22]. The main contribution of [22] is the “half-relaxed limit
method”, a stability result for which only a L∞-bound on the solutions is needed. But
this method, based on the Ishii’s notion of discontinuous viscosity solutions for dis-
continuous Hamiltonians, uses discontinuous solutions more as an intermediate tool
than as an interesting object by itself.

Discontinuities: the end of universality?

However, in the late 80’s, two other types of works considered discontinuous solu-
tions and Hamiltonians, breaking the universality feature of viscosity solutions. The
first one was the study of measurable dependence in time in time-dependent equation
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(cf. Barron and Jensen [43], Lions and Perthame [133], see also the case of second-
order equations in Nunziante [140, 141], Bourgoing [51, 52] with Neumann boundary
conditions, and Camilli and Siconolfi [58]): in these works, the pointwise definition of
viscosity solutions has to be modified to take into account the measurable dependence
in time. It is worth pointing out that there was still no difference between convex and
non-convex Hamiltonians.

On the contrary, Barron and Jensen [42] in 1990 considered semi-continuous solu-
tions of control problems (See also [30] for a slightly simpler presentation of the ideas
of [42] and Frankowska [92], Frankowska and Plaskacz [94], Frankowska and Mazzola
[93] for different approaches): they introduced a particular notion of viscosity solution
which differs according to whether the control problem consists in minimizing some
cost or maximizing some profit; thus treating differently convex and concave Hamil-
tonians. This new definition had the important advantage to provide a uniqueness
result for lower semi-continuous solutions in the case of convex Hamiltonians, a very
natural result when thinking in terms of optimal control.

In the period 1990-2010, several attempts were made to go further in the under-
standing of Hamilton-Jacobi Equations with discontinuities. A pioneering work is the
one of Dupuis [72] whose aim was to construct and study a numerical method for
a calculus of variation problem with discontinuous integrand, motivated by a Large
Deviations problem. Then, control problems with a discontinuous running cost were
addressed by Garavello and Soravia [98, 97] and Soravia [157] who highlight some
non-uniqueness feature for the Bellman Equations in optimal control, but identify the
maximal and minimal solutions. To the best of our knowledge, all the uniqueness re-
sults use either a special structure of the discontinuities or different notions solutions,
which are introduced to try to tackle the main difficulties as in [70, 71, 100, 101, 107]
or an hyperbolic approach as in [8, 62]. For the boundary conditions, Blanc [46, 47]
extended the [22] and [42] approaches to treat problems with discontinuities in the
boundary data for Dirichlet problems. Finally, even the case of measurability in the
state variable was considered for Eikonal type equations by Camilli and Siconolfi [57].

Before going further, we point out that we do not mention here the Lp-viscosity
solutions nor viscosity solutions for stochastic pdes, two very interesting subjects but
too far from the scope of this book.

Towards more general discontinuities

In this period, the most general contribution for first-order Hamilton-Jacobi-Bellman
Equations was the work of Bressan and Hong [53] who considered the case of con-
trol problems in stratified domains. In their framework, the Hamiltonians can have
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discontinuities on submanifolds of RN of any codimensions which form a Whitney
stratification and the viscosity solutions inequalities are disymmetric between sub
and supersolutions (we come back on this important point later on). In this rather
general setting, they are able to provide comparison results by combining pde and
control methods. Of course, we are very far from the context of an universal definition
but it seems difficult to have more general discontinuities. Before going further, we
refer the reader to Whitney [162, 161] for the notion of Whitney stratified space.

Networks and discontinuities: same battle?

In the years 2010’s, a lot of efforts have been spent to understand Hamilton-Jacobi
Equations on networks and, maybe surprisingly, this had a key impact on the study
of discontinuities in these equations. An easy way to understand why is to look at an
HJ-equation set on the real line R, with only one discontinuity at x = 0. Following
this introduction, it seems natural to jump on to Ishii’s definition and to address the
problem as an equation set on R. But another point of view consists in seeing R as a
network with two branches R− and R+. This way, x = 0 becomes the intersection of
the two branches and it is conceivable that the test-functions could be quite different in
each branch, leading to a different notion of solution. Moreover, a “junction condition”
is needed at 0 which might come from the two Hamiltonians involved (one for each
branch) but also a specific inequality at 0 coming from the model and the transmission
condition we have in mind. Therefore, at first glance, these “classical approach” and
“network approach” seem rather different.

Surprisingly (with today’s point of view), these two approaches were investigated
by different people and (almost) completely independently until Briani, Imbert and
the authors of this book made the simple remark which is described in the last above
paragraph. But, in some sense, this “mutual ignorance” was a good point since differ-
ent complementary questions were investigated and we are going to described these
questions now.

For the “classical approach”, in the case of the simplest codimension 1 discontinuity
in R or RN and for deterministic control problems, i.e. with convex Hamiltonians,
these questions were

(i) Is Ishii’s definition of viscosity solutions providing a unique solution which is
the value-function of an associated control problem?

(ii) If not, can we identify the minimal and maximal solutions in terms of value
functions of ad hoc control problems?
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(iii) In non-uniqueness cases, is it possible to recover uniqueness by imposing some
additional condition on the discontinuity?

(iv) Can the limit of the vanishing viscosity method be identified? Is it the maximal
or minimal solution? Or can it change depending on the problem?

These questions were investigated by Rao [144, 145], Rao and Zidani [146], Rao,
Siconolfi and Zidani [143] by optimal control method, and Barles, Briani and Chas-
seigne [16, 17] by more pde methods. In [16, 17], there are some complete answers to
questions (i) and (ii), almost complete for (iii) and really incomplete for (iv).

For the “network approach”, in the case of two (or several) 1−dimensional (or
multi-dimensional) branches, the questions were different and the convexity of the
Hamiltonians appears as being less crucial

(v) What is the correct definition of solution at the junction? What are the different
possible junction conditions and their meanings in the applications?

(vi) Does a comparison result for such network problems hold?

(vii) Does the Kirchhoff condition (involving derivatives of the solution in all branches)
differ from tangential conditions (which just involve tangential derivatives)?

(viii) What are the suitable assumptions on the Hamiltonians to get comparison?

(ix) Can we identify the limit of the vanishing viscosity method?

Questions (v)-(vi) were investigated under different assumptions in Schieborn [152],
Camilli and Marchi [55], Achdou, Camilli, Cutr̀ı and Tchou [3], Schieborn and Camilli
[153], Imbert, Monneau and Zidani [115], Imbert and Monneau [113] for 1-dimensional
branches and Achdou, Oudet and Tchou [4, 6], Imbert and Monneau [114] for all di-
mensions; while Graber, Hermosilla and Zidani [103] consider the case of discontinuous
solutions. The most general comparison result (with some restrictions anyway) is the
one of Lions and Souganidis [137, 138] which is valid with very few, natural assump-
tions on the Hamiltonians, and not only in the case of Kirchhoff conditions but also
for general junction conditions. It allows to answer in full generality to question (ix)
which is also investigated in Camilli, Marchi and Schieborn [56].

In fact, Lions and Souganidis use a notion of solution which we call in this book
“junction viscosity solution” and which is rather close to the classical notion of vis-
cosity solutions; the only difference which is imposed by the network framework is the
space of test-functions but this is a common feature of all the notions of solution in



20 Barles & Chasseigne

this context. Because of this similarity, the half-relaxed limits’ method extends with-
out any difficulty and, taking into account the very general ideas of their comparison
result, almost all the above questions seem to be solved by this notion of solution.

It remains anyway two questions: on one hand, despite of its generality, the com-
parison result of Lions and Souganidis requires in higher dimensions some unnatural
hypotheses and, on the other hand, this result is originally proved in [137, 138] for
Kirchhoff type junction conditions which is not the most natural conditions for control
problems but which appear when studying the convergence of the vanishing viscos-
ity method. Hence a very concrete question is: is it possible in the case of convex
or concave Hamiltonians to give formulas of representation for such problems with
Kirchhoff type junction conditions? To answer this question, it seems clear that one
has to investigate the connections between Kirchhoff type junction conditions and
“flux-limited conditions” in the terminology of Imbert and Monneau [113, 114] which
are the natural junction conditions for control problems.

The extensive study of “flux-limited conditions” by Imbert and Monneau [113,
114] uses the notion of “flux-limited solutions”: contrarily to the notion of “junction
viscosity solution”, this notion is less general and requires quasi-convex Hamiltonians
on each branch of the network. It has also the defect to lead to a rather complicated
(and limited) stability result. But it perfectly fits with control problems and the
comparison result is proved under very natural and general assumptions.

In this book, we completely describe these two notions of solutions and theirs prop-
erties but we also show the connections between general Kirchhoff conditions and
flux-limited conditions in the quasi-convex case, allowing the complete identification
of the vanishing viscosity limit.

How this book was written; key points

In this book, our aim is to consider various problems with different types of discon-
tinuities and to describe the different approaches to treat them. Thinking about all
the common points that can be found in the works mentioned above, we have decided
to dedicate an entire part to the “basic results”, which are common bricks, used very
often under perhaps slightly different forms. This organisation has the advantage to
lighten the presentation of the main results and their proofs, but this clearly creates
a rather technical—and perhaps difficult to read—first part. Anyway we think that
collecting some classical ideas, revisited in sometimes unusual ways presents sufficient
advantages to accept this flaw.

Then, the first problems we address are “simple” co-dimension 1 discontinuities (a
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discontinuity along an hyperplane or an hypersurface, for example) in the whole space
RN . For these problems, we provide in Part II and III a full description of the “classical
approach” and the connections with the “network approach” with different compari-
son proofs (the Lions-Souganidis one and the Barles-Briani-Chasseigne-Imbert one).
We also analyze their advantages and disadvantages.

Main results of these parts are

(i) Identification of the minimal viscosity supersolution and maximal viscosity sub-
solution with explicit controls formulas. Furthermore, we provide an easy-to-
check condition on the Hamiltonians ensuring that these minimal supersolution
and maximal subsolution are equal, i.e. that there is a unique viscosity solution.
This condition turns out to be useful in different applications.

(ii) For the different notions of solutions in the “network approach”, we provide
comparison and stability results, and a complete analysis of the connections
between these different types of solutions (classical Ishii viscosity solutions,
flux-limited solutions and junction viscosity solutions).

(iii) Several versions of the convergence of the vanishing viscosity method, for convex
and non-convex Hamiltonians, each of them relying on a particular notion of
solution; the most complete form uses all the results of (i) and (ii) above, in
particular the links between the different notions of solutions in the “network
approach”.

The reader who wants to have a quick idea of all these results can take a look at
Section 18. This section gives a flavor of them in a simple framework, the Hamilton-
Jacobi analogue of 1-d scalar conservation laws with a discontinuous flux.

In these parts, we make a point to emphasize the following fundamental issues which
play a key role in all the other parts. They also seem to be the key assumptions to
be used in problems with discontinuities in order to have a continuous solution and
a comparison result between sub and supersolutions

(NC) Normal controlability (or coercivity): in the framework of control prob-
lems, this property means that one should be able either to reach the interface
(here the codimension 1 manifold where we have the discontinuity) or, on the
contrary, to leave it in any directions, in order to take advantage of a more fa-
vorable situation in terms of cost. Such assumption ensures that this potentially
favorable situation is “seen”. This is translated into a coercivity-type assump-
tion in the normal coordinates on the associated Hamiltonian.
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(TC) Tangential continuity : with respect to the coordinates of the interface, the
Hamiltonians have to satisfy standard comparison under RN -type assumptions.

We insist on the fact that these assumptions will be used for ANY type of results:
comparison, but also stability and connections with control. These are really key
assumptions and we will find them everywhere throughout the books, expressed in
different ways.

The fourth part is devoted to the case of “stratified problems” in the whole space
RN , i.e. to the case where discontinuities of any codimensions can appear, provided
they form a Whitney stratification. In this part, we describe the extension of the work
by Bressan and Hong [53] obtained in [35], with some extensions and applications.

We point out anyway two differences with [35]: first, we introduce a notion of weak
stratified subsolutions(1). While the strong stratified subsolutions used in [35] are Ishii
subsolutions which satisfy additional subsolution inequalities on each manifold of the
Whitney stratification, the weak stratified subsolutions are not assumed to satisfy
the usual “global” Ishii subsolution inequality on the manifolds of codimension bigger
than 1; hence they are not a priori Ishii subsolutions.

Despite being rather natural from the control point of view, this notion has the
defect to allow “artificial values” on the discontinuities of the equation since no con-
nection between these values on the different part of the Whitney stratification is
imposed by the subsolutions inequalities. This is the second key difference with [35]
where the “global” Ishii subsolution inequality and (NC) imply the “regularity of
subsolutions”, i.e. the fact that on a discontinuity, the values of a subsolution is the
lim sup of its values outside this discontinuity. Hence strong stratified subsolutions
are necessarely “regular” while it may not be the case for the weak ones.

This is a key point since, as it is remarked in [35], this property is playing a very
important role for all the results. To summarize the content of Part IV, we can just say
that all the results of [35] hold for regular weak stratified subsolutions and even that
regular weak stratified subsolutions are strong stratified subsolutions under suitable
assumptions, which are, to our point of view, the natural hypotheses to be used in
this framework.

The main result is, of course, the comparison result between either regular weak or
strong stratified subsolutions and supersolutions; it uses in a key way (NC)-(TC)
but also standard reductions presented in Part I. Then we present different stability
results where we improve the one given in [35] by taking into account changes in the
structure of discontinuities: indeed we handle cases where some discontinuities may

(1)The situation for supersolutions is simpler since stratified supersolutions are just Ishii superso-
lutions.
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either disappear or appear. It is worth remarking that the notion of weak stratified
subsolutions has the advantage to simplify the proofs of these stability results.

Finally, we provide conditions under which classical viscosity (sub)solutions are
stratified (sub)solutions. Under these conditions, classical viscosity solutions and
stratified solutions are the same, which allows to treat in a rather precise way some
applications. This applies in particular to KPP-type problems, even in rather compli-
cated domains. Indeed, we can take advantage at the same time of the good properties
of viscosity solutions in terms of stability, and the uniqueness of stratified solutions.

In Part V, we extend these ideas to consider “stratified problems” set in a domain
with state-constraint boundary conditions. In fact, the stratified formulation allows
to treat various boundary conditions (Dirichlet, Neumann, sliding boundary condi-
tions,...) in the same framework. This, without assuming the boundary of the domain
to be smooth, and with the possibility of mixing boundary conditions in some rather
exotic way, as in the Tanker problem which is presented at the beginning of this part.

Roughly speaking, all the results of Part IV can be extended to this more general
framework since, essentially, the boundary and the discontinuities in the boundary
conditions just create new parts of the stratification and new associated Hamiltonians.
Only the “one-sided feature” coming from the absence of exterior controlability at
the boundary generates some technical difficulties. For instance, the regularity of
subsolutions which comes automatically from (NC) in RN is not so simple here. We
show in this part how to reformulate classical boundary conditions and conclude with
the non-standard example of the Tanker problem.

Different approaches for control problems in stratified frameworks, more in the
spirit of Bressan & Hong have been developed by Hermosilla, Wolenski and Zidani
[111] for Mayer and Minimum Time problems, Hermosilla and Zidani [112] for classi-
cal state-constraint problems, Hermosilla, Vinter and Zidani [110] for (very general)
state-constraint problems (including a network part).

A final remark.

We conclude this introduction by a remark on “how to read this book?” vs “how
not to read this book?”.

As we already mentioned it above, we have decided to start by an entire part (Part I)
gathering basics results which are identified as the key bricks appearing in any type
of problems involving Hamilton-Jacobi Bellman Equations and deterministic control
problems. This part is unavoidably a “little bit technical” and admittedly hard to
read without a serious motivation... Which we hope can be found in the next parts!
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We have tried to draft all the proofs by emphasizing the role of the related key
bricks but in order to be readable without knowing the details of these bricks: in that
way, one can avoid reading the different independent sections of Part I before being
completely convinced that it is necessary.

Part II is certainly the most unavoidable one since it describes all the challenges
and potential solutions at hand in a rather simple context of a co-dimension 1 dis-
continuity. Yet the difficulty of this part is to extract a clear global vision and we try
to provide our point of view in Section 19.

Stratified problems require a non-neglectable investment but we have tried to point
out the main ideas to keep in mind and to start from the easiest case and before
going towards the most sophisticated ones. We hope that the general treatment of
singular boundary conditions in non-smooth domains will be a sufficient motivation
for enduring all the difficulties! But also the applications of Chapter 23.



Chapter 2

Basic Continuous Framework and
Classical Assumptions Revisited

Viscosity solutions’ theory relies on two types of key results: comparison results and
stability results. If the “half-relaxed limits” method provides stability in a very general
discontinuous framework where both solutions and Hamiltonians may be discontin-
uous (see Section 3.1), the situation is completely different for comparison. If most
of the classical arguments for comparison can handle discontinuous sub and super-
solutions, none of them can really handle discontinuous Hamiltonians, even in the
simplest cases of discontinuities.

In this section, we first describe one of the most classical result in the continuous
framework: our aim is to comment the assumptions and the methods of proof in order
to introduce and partially justify the general approach we develop afterwards.

We only sketch the approach and results in this chapter since they are classical. We
refer the reader to well-known references on this subject for more details: Lions [134],
Bardi and Capuzzo-Dolcetta [13], Fleming and Soner [87], the CIME courses [12, 2]
and Barles [31].

2.1 The value function and the associated pde

We consider a finite horizon control problem in RN on the time interval [0, Tf ] for
some Tf > 0, where, for x ∈ RN and t ∈ [0, Tf ], the state of the system is described
by the solution X(·) of the ordinary differential equation

Ẋ(s) = b(X(s), t− s, α(s)) , X(0) = x ∈ RN .

25



26 Barles & Chasseigne

Here, α(·) ∈ A := L∞(0, Tf ;A) is the control which takes values in the compact metric
space A and b is a continuous function of all its variables. More precise assumptions
are introduced later on.

For a finite horizon problem, the value function is classically defined by

U(x, t) = inf
α(·)∈A

{∫ t

0

l(X(s), t− s, α(s)) exp

(
−
∫ s

0

c(X(τ), t− τ, α(τ))dτ

)
ds

+ u0(X(t)) exp

(
−
∫ t

0

c(X(τ), t− τ, α(τ))dτ

)}
,

where l is the running cost, c is the discount factor and u0 is the final cost. All these
functions are assumed to be continuous on RN × [0, Tf ]×A (for l and c) and on RN

(for u0) respectively.

The most classical framework use the following assumptions which will be refered
below as (Hclass.

BA−CP) for Basic Assumptions on the Control Problem – Classical case:

(i) The function u0 : RN → R is a bounded, uniformly continuous function.

(ii) The functions b, c, l are bounded, uniformly continuous on RN × [0, Tf ]× A.

(iii) There exists a constant C1 > 0 such that, for any x, y ∈ RN , t ∈ [0, Tf ], α ∈ A,
we have

|b(x, t, α)− b(y, t, α)| ≤ C1|x− y| .

One of the most classical results connecting the value function with the associated
Hamilton-Jacobi-Bellman Equation is the

Theorem 2.1.1 If Assumption (Hclass.
BA−CP) holds, the value function U is continuous

on RN × [0, Tf ] and is the unique viscosity solution of{
ut +H(x, t, u,Dxu) = 0 in RN × (0, Tf ) , (2.1)

u(x, 0) = u0(x) in RN . (2.2)

where

H(x, t, r, p) := sup
α∈A
{−b(x, t, α) · p+ c(x, t, α)r − l(x, t, α)} .

In Theorem 2.1.1, we have used the notation ut for the time derivative of the function
(x, t) 7→ u(x, t) and Dxu for its derivatives with respect to the space variable x. These
notations will be used throughout this book.
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Sketch of Proof — Of course, there exists a lot of variants of this result with different
assumptions on b, c, l and u0 but, with technical variants, the proofs use mainly the
same steps.

(a) The first one consists in proving that U is continuous and satisfies a Dynamic
Programming Principle (DPP in short), i.e. that for any 0 < h < t,

U(x, t) = inf
α(·)∈A

{∫ h

0

l(X(s), t− s, α(s)) exp

(
−
∫ s

0

c(X(τ), t− τ, α(τ))dτ

)
ds

+ U(X(h), t− h) exp

(
−
∫ h

0

c(X(τ), t− τ, α(τ))dτ

)}
.

This is obtained by using the very definition of U and taking suitable controls.

(b) If U is smooth, using the DPP on [0, h] and performing expansions of the different
terms with respect to the variable h, we deduce that U is a classical solution of (2.1)-
(2.2). If U is not smooth, this has to be done with test-functions and we obtain that
U is a viscosity solution of the problem.

(c) Finally one proves a comparison result for (2.1)-(2.2), which shows that U is the
unique viscosity solution of (2.1)-(2.2).

Q.E.D.

We point out that, in this sketch of proof, the continuity (or uniform continuity) of
U is not as crucial as it seems to be. Of course continuity can be obtained directly
by working on the definition of U in this framework. But one may also show that
U is a discontinuous viscosity solution (see Section 3.1) and deduce continuity from
the comparison result. We insist on the fact that in this classical framework, people
are mainly interested in cases where U is continuous and therefore in assumptions
ensuring this continuity.

Concerning Assumption (Hclass.
BA−CP), it is clear that (iii) together with (ii) ensure

that for any choice of control α(·) there is a well-defined trajectory, by the Cauchy-
Lipschitz Theorem. Moreover, this trajectory X(·) exists for all times, thanks to the
boundedness of b. On the other hand, the boundedness of l, c allows to show that
U(x, t) is well-defined, bounded in RN × [0, Tf ] and even uniformly continuous there.
Therefore we get all the necessary information at the control level.

But Assumption (Hclass.
BA−CP) plays also a key role at the pde level, in view of the

comparison result: indeed, it implies that the Hamiltonian H satisfies the following
property: for any R ≥ 1

There exists M > 0, C1 and a modulus of continuity m : [0,+∞) → [0,+∞) such
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that, for any x, y ∈ RN , t, s ∈ [0, Tf ], −R ≤ r1 ≤ r2 ≤ R ∈ R and p, q ∈ RN


|H(x, t, r1, p)−H(y, s, r1, p)| ≤ (C1|x− y|+m(|t− s|)) |p|+m ((|x− y|+ |t− s|)R) ,

H(x, t, r2, p)−H(x, t, r1, p) ≥ −M(r2 − r1) ,

|H(x, t, r1, p)−H(x, t, r1, q)| ≤M |p− q| .

Of course, these properties are satisfied with M = max(||b||∞, ||c||∞, ||l||∞) and m is
the modulus of uniform continuity of b, c, l.

2.2 Important remarks on the comparison proof

We want to insist on several points here, and highlight several remarks that are
important to understand the methods and strategies we develop throughout this
book.

On proper Hamiltonians – in the process of performing comparison between a
subsolution u and a supersolution v (See Section 3.1), the initial step is to reduce the
proof to the case when r 7→ H(x, t, r, p) is increasing (or even non-decreasing) for any
x, t, p. Such Hamiltonians are often called “proper”.

This can be done through the classical change of unknown functions

u(x, t)→ ũ(x, t) := u(x, t) exp(−Kt) ,

and the same for v → ṽ, for some K ≥M . The Hamiltonian H is changed into

H̃(x, t, r, p) := sup
α∈A
{−b(x, t, α) exp(−Kt) · p+ [c(x, t, α) +K]r − l(x, t, α) exp(−Kt)} .

This allows to reduce to the case where c(x, t, α) ≥ 0 for any x, t, α, or even ≥ 1.

? We will always assume in this book that, one way or the other, we can reduce
to the case when c ≥ 0.

On the x and t-dependence – the second point we want to emphasize is the
t-dependence of b. It is well-know that, in the comparison proof, the term

Q := (C1|x− y|+m(|t− s|)) |p|
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is playing a key role. In order to handle the difference in the behavior of b in x and t,
one has to perform a proof with a “doubling of variable” technique which is different
in x and t. Namely we have to consider the function

(x, t, y, s) 7→ ũ(x, t)− ṽ(y, s)− |x− y|
2

ε2
− |t− s|

2

β2
− η(|x|2 + |y|2) ,

where 0 < β � ε � 1 and 0 < η � 1. We recall that the η-term ensures that this
function achieves its maximum while the ε, β-terms ensure (x, t) is close to (y, s).
Therefore the maximum of this function is close to supRN (ũ− ṽ).

The idea behind this different doubling in x and t is the following: the proof requires
a quantity similar to Q above to be small. Now, since |p| behaves like o(1)ε−1, while
|x − y| is like o(1)ε and |t − s| like o(1)β, the product C1|x − y||p| is indeed small.
But in order to ensure that the product m(|t− s|)|p| is also small, we need to choose
β small enough compared to ε.

? In this book, we want to handle cases when b, c, l can be discontinuous on sub-
manifolds of RN×[0, Tf ]. From a technical point of view, one quickly realizes that
the x and t variables often play a similar role in this framework. For this reason,
our assumptions on the behavior of b, c, l or H w.r.t. x and t will essentially be
the same. In particular, we will assume that b is also Lipschitz continuous in t.
This unnatural hypothesis simplifies the proofs but we indicate in Section 24.1
how it can be removed at the expense of more technicalities.

On localization arguments – last but not least, this classical comparison proof
does not use a real “localization” procedure. Of course, the role of the −η(|x|2 + |y|2)-
term is to ensure that the function associated to the “doubling of variable” achieves
its maximum. However, the way to play with the parameters, letting first η tend to 0
and then sending β and ε to zero afterwards implies that these maximum points do
not remain a priori bounded.

? In all the arguments in the book, we will use in a more central way the Lips-
chitz continuity of H in p in order to have a more local comparison proof. We
systematically develop this point of view in Section 3.2.

2.3 Basic assumptions

The previous remarks lead us to replace (Hclass.
BA−CP) by the following basic (yet less

classical) set of assumptions on the control problem:



30 Barles & Chasseigne

(HBA−CP) Basic Assumptions on the Control Problem:

(i) The function u0 : RN → R is a bounded, continuous function.

(ii) The functions b, c, l are bounded, continuous functions on RN × [0, Tf ]×A and
the sets (b, c, l)(x, t, A) are convex compact subsets of RN+2 for any x ∈ RN ,
t ∈ [0, Tf ]

(1).

(iii) For any ball B ⊂ RN , there exists a constant C1(B) > 0 such that, for any
x, y ∈ RN , t ∈ [0, Tf ], α ∈ A, we have

|b(x, t, α)− b(y, s, α)| ≤ C1(B) (|x− y|+ |t− s|) .

We will explain in Section 24.1 how to handle a more general dependence in time
when the framework allows it. In terms of equations and Hamiltonians, and although
the following assumption is not completely equivalent to (HBA−CP), we will use the

(HBA−HJ) Basic Assumptions on the Hamilton-Jacobi equation:

There exists a constant C2 > 0 and, for any ball B ⊂ RN × [0, Tf ], for any R > 0,
there exists constants C1(B,R) > 0, γ(R) ∈ R and a modulus of continuity m(B,R) :
[0,+∞)→ [0,+∞) such that, for any x, y ∈ B, t, s ∈ [0, Tf ], −R ≤ r1 ≤ r2 ≤ R and
p, q ∈ RN

|H(x, t, r1, p)−H(y, s, r1, p)| ≤ C1(B,R)[|x−y|+|t−s|]|p|+m(B,R)(|x−y|+|t−s|) ,

|H(x, t, r1, p)−H(x, t, r1, q)| ≤ C2|p− q| ,

H(x, t, r2, p)−H(x, t, r1, p) ≥ γ(R)(r2 − r1) .

In the next part “Tools”, we introduce the key ingredients which allow to pass from
the above standard framework to the discontinuous one; they are concerned with

a. Hamilton-Jacobi Equations: we recall the notion of viscosity solutions and
we revisit the comparison proof in order to have an easier generalization to the
discontinuous case. We immediately point out that the regularization of sub
and supersolutions by sup or inf-convolutions will play a more important role
in the discontinuous setting than in the continuous one.

(1)The last part of this assumption which is not a loss of generality will be used for the connections
with the approach by differential inclusions.
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b. Control problems: the discontinuous framework leads to introduce Differ-
ential inclusions in order to define properly the dynamic, discount and cost
when b, c, l are discontinuous. We provide classical and less classical results on
the DPP in this setting.

c. Stratifications: we describe the notion of Whitney stratification which is the
notion used in Bressan and Hong [53] for the structure of the discontinuities of
H or the (b, c, l).

Using these tools requires to make some basic assumptions for each of them, which
are introduced progressively in this next part. Apart from (HBA−HJ) and (HBA−CP)
that we introduced above, we will use (HBCL) and (HST) respectively for the Differ-
ential Inclusion and the Stratification. We have also compiled the various assumptions
in this book in an appendix for the reader’s convenience.
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Part I

A Toolbox for Discontinuous
Hamilton-Jacobi Equations and

Control Problems
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Chapter 3

Pde Tools

3.1 Discontinuous viscosity solutions for equations

with discontinuities, “half-relaxed limits” method

In this section, we recall the classical definition of discontinuous viscosity solutions
introduced by Ishii[118] for equations which present discontinuities. We have chosen
to present it in the first-order framework since, in this book, we are mainly interested
in Hamilton-Jacobi Equations but it extends without major changes to the case of
fully nonlinear elliptic and parabolic pdes. We refer to the Users’ guide of Crandall,
Ishii and Lions [67], the books of Bardi and Capuzzo-Dolcetta [13] and Fleming and
Soner [87] and the CIME courses [12, 2] for more detailed presentations of the notion
of viscosity solutions in this more general setting.

We (unavoidably) complement this definition by the description of the discontinuous
stability result, often called “Half-Relaxed Limits Method”, being clearly needed when
dealing with discontinuities. We recall that it allows passage to the limit in fully
nonlinear elliptic and parabolic pdes with just an L∞–bound on the solutions. The
“Half-Relaxed Limits Method” was introduced by Perthame and the first author in
[22] and developed in a series of works [23, 24]. One of its first striking consequences
was the “Perron’s method” of Ishii [156], proving the existence of viscosity solutions
for a very large class of first- and second-order equations (see also the above references
for a complete presentation).

The definition of viscosity solutions uses the upper semicontinuous (u.s.c.) envelope
and lower semicontinuous (l.s.c.) envelope of both the (sub and super) solutions and
of the Hamiltonians and we introduce the following notations: if f : A ⊂ Rp → R is a

35
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locally bounded function (possibly discontinuous), we denote by f ∗ its u.s.c. envelope

f ∗(X) = lim sup
X̃→X

f(X̃) for X ∈ A ,

and by f∗ its l.s.c. envelope

f∗(X) = lim inf
X̃→X

f(X̃) for X ∈ A .

Throughout this section, we use X ∈ RN as the generic variable to cover both the
stationary and evolution cases where respectively, X = x ∈ Rn or X = (x, t) ∈ Rn×R.

3.1.1 Discontinuous viscosity solutions

We consider a generic Hamiltonian G : O ×R×RN → R where O is an open subset
of RN and O denotes its closure. We just assume that G is a locally bounded function
which is defined pointwise.

The definition of viscosity sub and supersolution is the following

Definition 3.1.1 (Discontinuous Viscosity Solutions) A locally bounded func-
tion u : O → R is a viscosity subsolution of the equation

G(X, u,Du) = 0 on O (3.1)

if, for any ϕ ∈ C1(O), at a maximum point X0 ∈ O of u∗ − ϕ, one has

G∗(X0, u
∗(X0), Dϕ(X0)) ≤ 0 .

A locally bounded function v : O → R is a viscosity supersolution of Equation (3.1)
if, for any ϕ ∈ C1(O), at a minimum point X0 ∈ O of v∗ − ϕ, one has

G∗(X0, v∗(X0), Dϕ(X0)) ≥ 0 .

A (discontinuous) solution is a function which is both viscosity sub and supersolution
of the equation.

Several classical remarks on this definition:

(i) In general, the notion of subsolution is given for u.s.c. functions while the notion
of super-solution is given for l.s.c. functions: this may appear natural when looking at
the above definition where just u∗ and v∗ play a role and actually we can reformulate
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the above definition for general functions as: u is a subsolution if and only if the
u.s.c. function u∗ is a subsolution and v is a supersolution if and only if the l.s.c.
function v∗ is a supersolution. The interest of this more general definition comes from
the applications, for example to control problems, where we face functions which
are a priori neither u.s.c. nor l.s.c. and still we wish to prove that they are sub and
supersolution of some equations. Therefore such a formulation is needed. But when
we will have to give a result which holds for subsolutions (or supersolutions), we
will assume the subsolution to be u.s.c. (or the supersolution to be l.s.c.) in order to
lighten the notations in the statement.

(ii) If the space of “test-functions” ϕ which is here C1(O) is changed into C2(O),
Ck(O) for any k > 1 or C∞(O), we obtain an equivalent definition. Then, for a
classical stationary equation (say in Rn) like

H(x, u,Du) = 0 in Rn ,

the variable X is just x, N = n and Du stand for the usual gradient of u in Rn. But
this framework also contains the case of evolution equations

ut +H(x, t, u,Dxu) = 0 in Rn × (0, Tf ) ,

where X = (x, t) ∈ Rn× (0, Tf ), N = n+ 1 and Du = (Dxu, ut) where ut denotes the
time-derivative of u and Dxu is the derivative with respect to the space variables x,
and the Hamiltonian reads

G(X, r, P ) = pt +H(x, t, r, px) ,

for any (x, t) ∈ Rn × (0, Tf ), r ∈ R and P = (px, pt).

(iii) This definition is a little bit strange since the equation is set on a closed subset, a
very unusual situation. There are two reasons for introducing it this way: the first one
is to unify equation and boundary condition in the same formulation as we will see
below. With such a general formulation, we avoid to have a different results for each
type of boundary conditions. The second one, which provides also a justification of
the “boundary conditions in the viscosity sense” is the convergence result we present
in the next section.

To be more specific, let us consider the problem{
F (x, u,Du) = 0 in O ⊂ Rn,
L(x, u,Du) = 0 on ∂O,

where F,L are given continuous functions. If we introduce the function G defined by

G(x, r, p) =

{
F (x, r, p) if x ∈ O,
L(x, r, p) if x ∈ ∂O.
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we can just rewrite the above problem as

G(x, u,Du) = 0 on O ,

where the first important remark is that G is a priori a discontinuous Hamiltonian.
Hence, even if we assume F and L to be continuous, we face a typical example which
we want to treat in this book!

The interpretation of this new problem can be done by setting the equation in
O instead of O. Applying blindly the definition, we see that u is a subsolution if
G∗(x, u∗, Du∗) ≤ 0 on O, i.e. ifF (x, u∗, Du∗) ≤ 0 in O ,

min(F (x, u∗, Du), L(x, u∗, Du∗)) ≤ 0 on ∂O ,

while v is a supersolution if G∗(x, v∗, Dv∗) ≥ 0 on O, i.e. ifF (x, v∗, Dv∗) ≥ 0 in O ,

max(F (x, v∗, Dv∗), L(x, v∗, Dv∗)) ≥ 0 on ∂O .

Indeed, we have just to compute G∗ and G∗ on O and this is where the “min” and
the “max” come from on ∂O.

Of course, these properties have to be justified and this can be done by the discon-
tinuous stability result of the next section which can be applied for example to the
most classical way to solve the above problem, namely the vanishing viscosity method{

−ε∆uε + F (x, uε, Duε) = 0 in O ,
L(x, uε, Duε) = 0 on ∂O .

Indeed, by adding a −ε∆ term, we regularize the equation in the sense that one
can expect to have more regular solutions for this approximate problem—typically in
C2(O) ∩ C1(O).

To complete this section, we turn to a key example: the case of a two half-spaces
problem, which presents a discontinuity along an hyperplane. We use the following
framework: in RN , we set Ω1 = {xN > 0}, Ω2 = {xN < 0} and H = {xN = 0}. We
assume that we are given three continuous Hamiltonians, H1 on Ω1, H2 on Ω2 and
H0 on H. Here, X = (x, t) and let us introduce

G(X, u, p) :=


pt +H1(x, t, u, px) if x ∈ Ω1 ,

pt +H2(x, t, u, px) if x ∈ Ω2 ,

pt +H0(x, t, u, px) if x ∈ H .
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Then solving G(X, u,Du) = 0 for X = (x, t) ∈ RN+1 means to solve the equations
ut+Hi(x, t, u,Du) = 0 in each Ωi (i = 1, 2) with the “natural” conditions on H given
by the Ishii’s conditions for the sub and super-solutions, namely{

min(ut +H1(x, t, u∗, Du∗), ut +H2(x, t, u∗, Du∗), ut +H0(x, t, u∗, Du∗)) ≤ 0 on H ,
max(ut +H1(x, t, v∗, Dv∗), ut +H2(x, t, v∗, Dv∗), ut +H0(x, t, v∗, Dv∗)) ≥ 0 on H .

Remark 3.1.2 We have decided to present the definition of viscosity solution on a
closed space O for the reasons we explained above. But we can define as well equations
set in open subset of RN (typically O) or open subsets of O (typically O ∩ B(X, r)
for some X ∈ O and r > 0). The definition is readily the same, considering local
maximum points of u∗−ϕ or minimum points of v∗−ϕ which are in O or O∩B(X, r).

We end this section with a classical “trick” that is used in many stability results
like the half-relaxed limit method, which is detailed in the next section.

Lemma 3.1.3 When testing the sub or supersolution condition for an equation of
the type G(X, u,Du) = 0, if u − ϕ reaches a local extremum at X0, we can always
assume that X0 is a strict maximum or minimum point, without changing Dϕ(X0).

We point out that a immediate consequence of this lemma is that we have an
equivalent definition of viscosity sub and supersolutions by considering only strict
local maximum/minimum points.

Proof — In the case of a maximum point, we just need to replace ϕ by ψ(X) :=
ϕ(X)−c|X−X0|2 where c > 0: it is clear that u−ψ has a strict maximum at X0 and
moreover since Dϕ(X0) = Dψ(X0), the subsolution condition still takes the form

G(X0, u(X0), Dϕ(X0)) ≤ 0 .

Of course, the same argument applies for the supersolution condition by adding this
time c|X −X0|2 to ϕ.

Q.E.D.

Notice that the same trick works for second-order equations, but in order to keep
the second-order derivatives unchanged we have to use ϕ(X)± c|X −X0|4.

3.1.2 The half-relaxed limits method

In order to state it we use the following notations: if A ⊂ Rp and if (fε)ε is a sequence
of uniformly locally bounded real-valued functions defined on A, the half-relaxed
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limits of (fε)ε are defined, for any X ∈ A, by

lim sup∗ fε(X) = lim sup
Y→X
ε→0

fε(Y ) and lim inf ∗ fε(X) = lim inf
Y→X
ε→0

fε(Y ) .

Theorem 3.1.4 Assume that, for ε > 0, uε is a viscosity subsolution [ resp. a
supersolution ] of the equation

Gε(X, uε, Duε) = 0 on O ,

where (Gε)ε is a sequence of uniformly locally bounded functions in O × R × RN .
If the functions uε are uniformly locally bounded on O, then u = lim sup∗ uε [ resp.
u = lim inf ∗ uε ] is a subsolution [ resp. a supersolution ] of the equation

G(X, u,Du) = 0 on O ,

where G = lim inf ∗ Gε. [ resp. of the equation

G(X, u,Du) = 0 on O ,

where G = lim sup∗ Gε ].

In order to compare them, we recall that the first stability result for viscosity
solutions is given in the introductory article of Crandall and Lions [68]: it takes the
form

Theorem 3.1.5 Assume that, for ε > 0, uε ∈ C(O) is a viscosity subsolution [ resp.
a supersolution ] of the equation

Gε(X, uε, Duε) = 0 in O ,

where (Gε)ε is a sequence of continuous functions in O×R×RN . If uε → u in C(O)
and if Gε → G in C(O×R×RN), then u is a subsolution [ resp. a supersolution ] of
the equation

G(X, u,Du) = 0 in O .

We recall that the convergence in the space of continuous functions (C(O) or C(O×
R× RN)) is the local uniform convergence.

Theorem 3.1.5 is, in fact, a particular case of Theorem 3.1.4. Indeed, as the proof
will show, the result of Theorem 3.1.4 remains valid if we replace O by O and if uε
and Gε converge uniformly then u = u = u and G = G = G.
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Hence Theorem 3.1.4 is more general when applied to either sub or supersolutions:
its main interest is to allow the passage to the limit in the notion of sub and su-
persolutions with very weak assumptions on the solutions but also on the equations:
only uniform local L∞–bounds. In particular, phenomenas like boundary layers can
be handled with such a result. This is a striking difference with Theorem 3.1.5 which,
in practical uses, requires some compactness of the uε’s in the space of continuous
functions (typically some gradient bounds) in order to have a converging subsequence.

The counterpart is that we do not have a limit anymore, but two half-limits u and
u which have to be connected in order to obtain a real convergence result. In fact,
the complete Half-Relaxed Limit Method is performed as follows

1. Get a locally (or globally) uniform L∞–bound for the (uε)ε.

2. Apply the above discontinuous stability result.

3. The inequality u ≤ u on O holds by definition.

4. To obtain the converse inequality, use a Strong Comparison Result, (SCR)
in short, i.e a comparison result which is valid for discontinuous sub and super-
solutions, which yields

u ≤ u in O (or on O ) .

5. From the (SCR), we deduce that u = u in O (or on O). Setting u := u = u,
it follows that u is continuous (because u is u.s.c. and u is l.s.c.) and it is easy
to show that, u is the unique solution of the limit equation, by using again the
(SCR).

6. Finally, we also get the convergence of uε to u in C(O) (or in C(O)) (see
Lemma 3.1.7 below).

It is clear that, in this method, (SCR) play a central role and one of the main
challenge in this book is to show how to obtain them in various contexts.

Now we give the Proof of Theorem 3.1.4. We do it only for the subsolution case,
the supersolution one being analogous.

We first remark that lim sup∗ uε = lim sup∗ u∗ε and therefore changing uε in u∗ε, we
can assume without loss of generality that uε is u.s.c.. Recall also that by Lemma 3.1.3,
we are always reduced to consider strict extremum points in viscosity inequalities
testing. The proof is based on the
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Lemma 3.1.6 Let (wε)ε be a sequence of uniformly bounded u.s.c. functions on O
and w = lim sup∗ wε. If X ∈ O is a strict local maximum point of w on O, there
exists a subsequence (wε′)ε′ of (wε)ε and a sequence (Xε′)ε′ of points in O such that,
for all ε′, Xε′ is a local maximum point of wε′ in O, the sequence (Xε′)ε′ converges to
X and wε′(Xε′)→ w(X).

We first prove Theorem 3.1.4 by using the lemma. Let ϕ ∈ C1(O) and let X ∈ O
be a strict local maximum point de u − ϕ. We apply Lemma 3.1.6 to wε = uε − ϕ
and w = u−ϕ = lim sup∗ (uε−ϕ). There exists a subsequence (uε′)ε′ and a sequence
(Xε′)ε′ such that, for all ε′, Xε′ is a local maximum point of uε′ − ϕ on O. But uε′ is
a subsolution of the Gε′-equation, therefore

Gε′(Xε′ , uε′(Xε′), Dϕ(Xε′)) ≤ 0 .

Since Xε′ → X and since ϕ is smooth Dϕ(Xε′) → Dϕ(X); but we have also
uε′(Xε′)→ u(X), therefore by definition of G

G(X, u(X), Dϕ(X)) ≤ lim inf Gε′(Xε′ , uε′(Xε′), Dϕ(Xε′)) .

This immediately yields
G(X, u(X), Dϕ(X)) ≤ 0 ,

and the proof is complete.

Proof of Lemma 3.1.6 — Since X is a strict local maximum point of w on O, there
exists r > 0 such that

∀Y ∈ O ∩B(X, r) , w(Y ) ≤ w(X) ,

the inequality being strict for Y 6= X. But O ∩ B(X, r) is compact and wε is u.s.c.,
therefore, for all ε > 0, there exists a maximum point Xε of wε on O ∩ B(X, r). In
other words

∀Y ∈ O ∩B(X, r) , wε(Y ) ≤ wε(Xε) . (3.2)

Now we take the lim sup as Y → X and ε→ 0: we obtain

w(X) ≤ lim sup
ε→0

wε(Xε) .

Next we consider the right-hand side of this inequality: extracting a subsequence
denoted by ε′, we have lim supε wε(Xε) = limε′ wε′(Xε′) and since O ∩ B(X, r) is
compact, we may also assume that Xε′ → X̄ ∈ O ∩ B(X, r). But using again the
definition of the lim sup∗ at X̄, we get

w(X) ≤ lim sup
ε→0

wε(Xε) = lim
ε′→0

wε′(Xε′) ≤ w(X̄) .
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Since X is a strict maximum point of w in O ∩ B(X, r) and that X̄ ∈ O ∩ B(X, r),
this inequality implies that X̄ = X and that wε′(Xε′) → w(X), so that the proof is
complete.

Q.E.D.

Controlling the liminf and limsup also implies local uniform convergence:

Lemma 3.1.7 If K is a compact subset of O and if u = u on K then uε converges
uniformly to the function u := u = u on K.

Proof of Lemma 3.1.7 : Since u = u on K and since u is u.s.c. and u is l.s.c. on O,
u is continuous on K. We first consider

Mε = sup
K

(u∗ε − u) .

The function u∗ε being u.s.c. and u being continuous, this supremum is in fact a
maximum and is achived at a point Xε. The sequence (uε)ε being locally uniformly
bounded, the sequence (Mε)ε is also bounded and, K being compact, we can extract
subsequences such that Mε′ → lim supε Mε and Xε′ → X̄ ∈ K. But by the definition
of the lim sup∗ , lim supu∗ε′(Xε′) ≤ u(X̄) while we have also u(Xε′) → u(X̄) by the
continuity of u. We conclude that

lim sup
ε→0

Mε = lim
ε′→0

Mε′ = lim
ε′→0

(u∗ε′(Xε′)− u(Xε′)) ≤ u(X̄)− u(X̄) = 0 .

This part of the proof gives half of the uniform convergence, the other part being
obtained analogously by considering M̃ε = sup

K
(u− (uε)∗).

3.2 Strong comparison results: how to cook them?

In the previous section, we have seen that (SCR) are key tools which are needed to use
the “Half-Relaxed Limit Method”. We have used the terminology “strong” because
such comparison results have to hold for discontinuous sub and supersolutions, which
are only u.s.c. and l.s.c. respectively. From a technical point of view, it is easier to
compare at least continuous sub and supersolutions and of course, some comparison
results may even fail in the discontinuous framework. However, in this book we mainly
prove (SCR) therefore the expression “comparison result” always refers to a strong
one.

In general, a comparison result is a global inequality (i.e. on the whole domain)
between sub and supersolutions. However, in the case of Hamilton-Jacobi Equations
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with discontinuities it is far easier, if not necessary, to argue locally. This is why in
this section we explain how to reduce the proof of global comparison results to the
proof of local comparison results. We do not pretend this section to cover all cases
but we tried to make it as general as we could.

3.2.1 Stationary equations

In this section we are in the situation where X = x is the space variable in RN or a
subset of it, and no time variable is involved here. We consider a general equation

G(x, u,Du) = 0 on F , (3.3)

where F is a closed subset of RN and G is a continuous or discontinuous function on
F × R× RN .

We introduce the following notations: USC-Sub(F) is a subset of u.s.c. subsolutions
of (3.3) while LSC-Sup(F) is a subset of l.s.c. supersolutions of (3.3). We prefer to
remain a little bit vague on these subsets but the reader may have in mind that they
are generally defined by some growth conditions at infinity if F is an unbounded
subset of RN . In these definitions, we may replace below F by a subset (open or
closed) of F and we use below the following notations

Fx,r := B(x, r) ∩ F and ∂Fx,r := ∂B(x, r) ∩ F .

Finally we denote by USC-Sub(Fx,r) [ resp. LSC-Sup(Fx,r) ] the set of u.s.c. [ resp.
l.s.c. ] functions on Fx,r which are subsolutions [ resp. supersolutions ] of G = 0 in
Fx,r. Notice that, for these sub and supersolutions, no viscosity inequality is imposed
on ∂B(x, r).

By “global” and “local” comparison results we mean the following

(GCR)F Global Comparison Result in F :
For any u ∈ USC-Sub(F), for any v ∈ LSC-Sup(F), we have u ≤ v on F .

(LCR)F Local Comparison Result in F :
For any x ∈ F , there exists r > 0 such that, if u ∈ USC-Sub(Fx,r), v ∈ LSC-Sup(Fx,r)
then

max
Fx,r

(u− v)+ ≤ max
∂Fx,r

(u− v)+.
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Writing the(LCR)F with the (...)+ inequality is quite standard, see for instance
[102]. The meaning of this formulation is the following: either u ≤ v in Fx,r and we
are done locally speaking, or the maximum of u− v is positive, but controlled by the
values at the boundary.

In the rest of this section, we skip the reference to F in (LCR) and (GCR) since
there is no ambiguity here. It is clear that proving (LCR) seems much easier because
of the compactness of Fx,r and the fact that r may depend on x: indeed, on one hand,
the behavior at infinity of u and v does not play a role anymore, and, on the other
hand, we only use local properties of G; in particular, if G has discontinuities which
form a stratification, we can use this localization to restrict to a flat stratification (cf
Section 3.3).

Now we formulate two assumptions which allow to reduce (GCR) to (LCR).

(LOC1): If F is unbounded, for any u ∈ USC-Sub(F), for any v ∈ LSC-Sup(F),
there exists a sequence (uα)α>0 of u.s.c. subsolutions of (3.3) such that uα(x)−v(x)→
−∞ when |x| → +∞, x ∈ F . Moreover, for any x ∈ F , uα(x)→ u(x) when α→ 0.

In the above assumption, we do not write that uα ∈ USC-Sub(F) because this is
not the case in general: typically, USC-Sub(F) may be the set of bounded subsolutions
of (3.3) while uα is not expected to be bounded.

In order to introduce the second localization hypothesis, let us define

bfcx∂Fx,r := f(x)− max
y∈∂Fx,r

f(y) ,

which in some sense measures the variation of f between x and the boundary. Notice
that since max(f+g) ≤ max(f)+max(g), this operator enjoys the following property

bfcx∂Fx,r + bgcx∂Fx,r ≤ bf + gcx∂Fx,r . (3.4)

(LOC2): For any x ∈ F , r > 0, if u ∈ USC-Sub(Fx,r), there exists a sequence
(uδ)δ>0 of functions in USC-Sub(Fx,r) such that buδ − ucx∂Fx,r ≥ η(δ) > 0 for any δ.
Moreover, for any y ∈ Fx,r, uδ(y)→ u(y) when δ → 0.

The role of (LOC1) and (LOC2) will be clear in the proof of the property “(LCR)
implies (GCR)” below

• (LOC1) leads to a standard localization procedure: instead of having to prove
the comparison in F which can be unbounded, it allows to do it only on a com-
pact subset of F . This has several advantages: first, we can consider maximum
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points for the u.s.c. function uα− v in such a compact subset, while this is not,
in general, the case for u − v in F since u, v can also be unbounded. But we
can also have more general assumptions on G (cf. (HBA−CP) and (HBA−HJ) in
Section 2.3).

• (LOC2) is a technical assumption which allows to make sure that, in (LCR),
the max is not attained at the boundary by replacing u with another subsolution
which has a greater variation between x and the boundary. This is a key point
in the proof “(LCR) implies (GCR)”.

Proposition 3.2.1 Under Assumptions (LOC1) and (LOC2), then (LCR) implies
(GCR).

Proof — Given u ∈ USC-Sub(F) and v ∈ LSC-Sup(F), we have to prove that u ≤ v
on F .

Instead of comparing u and v, we are going to compare uα and v for uα given
by (LOC1) and then to let α tend to 0. Arguing in that way and droping the α
for simplifying the notations means that we can assume without loss of generality
that u(x) − v(x) → −∞ when |x| → +∞, x ∈ F and therefore we can consider
M := maxF(u− v) and we argue by contradiction, assuming that M > 0.

Since F is closed, u− v is u.s.c. and tends to −∞ at infinity, this function achieves
its maximum at some point x ∈ F . Considering r > 0 for which (LCR) holds, this
means that bu− vcx∂Fx,r ≥ 0.

Now we apply (LOC2). Since uδ ∈ USC-Sub(Fx,r) and (LCR) holds, we get the
following alternative

(i) either uδ ≤ v in Fx,r, but this cannot be the case for δ small enough since
uδ(x)− v(x)→ u(x)− v(x) > 0;

(ii) or maxFx,r(u
δ − v) > 0 and

max
Fx,r

(uδ − v) ≤ max
∂Fx,r

(uδ − v).

In particular, this implies that buδ − vcx∂Fx,r ≤ 0. But using (3.4), we deduce that

bu− vcx∂Fx,r ≤ bu
δ − vcx∂Fx,r − bu

δ − ucx∂Fx,r ≤ −η(δ) < 0 ,

which yields a contradiction. The conclusion is that M cannot be positive, hence
uα ≤ v in F for any α and we get the (GCR) by sending α→ 0.

Q.E.D.
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Now an important key question is: how can we check (LOC1) and (LOC2)? We
provide some typical examples.

The Lipschitz case — We assume that there exists a constant c > 0 such that the
function G satisfies, for all x ∈ F , z1 ≤ z2 and p, q ∈ RN

G(x, z1, p)−G(x, z2, p) ≥ c−1(z1 − z2) ,

|G(x, z1, p)−G(x, z1, q) ≤ c|p− q| .

In the case when USC-Sub, LSC-Sup are sets of bounded sub or supersolutions then
(LOC1) is satisfied with uα(x) = u(x)− α[(|x|2 + 1)1/2 + c2], indeed

G(x, uα(x), Duα(x)) ≤ G(x, u(x), Du(x))− c−1(α[(|x|2 + 1)1/2 + c2)) + cα
|x|

(|x|2 + 1)1/2
,

≤ −c−1(αc2)) + cα = 0.

Concerning (LOC2), for any r > 0 we can use

uδ(y) = u(y)− δ(|y − x|2 + k)

for some well-chosen constant k. Indeed

G(y, uδ(y), Duδ(y)) ≤ G(y, u(y), Du(y))− c−1δ(|y − x|2 + k) + 2cδ|y − x| ,

≤ −δ
c

(|y − x|2 + k − 2c2|y − x|),

and with the choice k = c4 we get a subsolution since X2 − 2c2X + c4 has no real
roots. On the other hand, if y ∈ ∂Fx,r

uδ(x)− u(x) = −δk ≥ −δ(|y − x|2 + k) + δr2 = uδ(y)− u(y) + δr2 ,

so that buδ − ucx∂Fx,r ≥ η(δ) = δr2.

The convex case — Here we assume that G(x, z, p) is convex in z and p; the ad-
vantage is to avoid the restriction due to the Lipschitz continuity of G in p. For the
localization (LOC1), we do not propose any explicit building of uα since it strongly
depends on (typically) the growth at infinity of the solutions we want to handle. But
a classical construction is described by the following assumption which emphasizes
not only the role of the growth of solutions (via ψ1) but also of the convexity of G
(via the way the uα are built)
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(Subsol1): For any u ∈ USC-Sub(F), v ∈ LSC-Sup(F), there exists an u.s.c. sub-
solution ψ1 : F → R such that for any 0 < α < 1, uα(x) := (1 − α)u(x) + αψ1(x)
satisfies (LOC1).

Concerning (LOC2), we may also use a similar construction relying on the convexity

(Subsol2): For any x ∈ F , there exists r > 0 and ψ2 ∈ USC-Sub(Fx,r) such that for
any 0 < δ < 1, uδ(y) = (1− δ)u(y) + δψ2(y) satisfies (LOC2).

A typical candidate is ψK2 (x) = −(K|y − x|2 + k) for k > 0 large enough depending
on K, but we need an additional argument.

We first replace the subsolution u by ũ(y) = max(u(y), ψ1
2(y)); since the maximum

of two subsolutions is a subsolution, ũ is a subsolution and, if k is large enough
ũ(x) = u(x). Therefore we can use ũ instead of u in the proof of Proposition 3.2.1.

With this construction, ũ satisfies (Subsol2) with ψK for K large enough. If
ψK2 (x) = −(K|y − x|2 + k̃), for any y ∈ B(x, r) we have

ũδ(y)− ũ(y) = δ(ψK2 (y)− ũ(y)) ≤ δ(ψK2 (y)− ψ1
2(y)) = −δ((K − 1)r2 + k̃ − k) ,

while ũδ(x) − ũ(x) = δ(ψK2 (x) − ũ(x)) = −δ(k̃ + ũ(x)). Hence, provided k is chosen
large enough (with respect to K), we get

bũδ − ũ(y)cx∂Fx,r ≤ −δ((K − 1)r2 − k − ũ(x)) = −η(δ) < 0 .

3.2.2 The evolution case

There are some key differences in the evolution case due to the fact that the time-
variable is playing a particular role since we are mainly solving a Cauchy problem,
hence we have to reformulate the results with the “parabolic boundary”. Using here
the variable X = (x, t), we first write the equation as

G(x, t, u, (Dxu, ut)) = 0 on F × (0, Tf ] , (3.5)

where F is a closed subset of RN and G is a continuous or discontinuous function on
F × [0, Tf ]× R× RN+1.

This equation has to be complemented by an initial data at time t = 0 which can
be of an usual form, namely

u(x, 0) = u0(x) on F , (3.6)



HJ-Equations with Discontinuities: Pde Tools 49

where u0 is a given function defined on F , or this initial value of u can be obtained
by solving an equation of the type

Ginit(x, 0, u(x, 0), Dxu(x, 0)) = 0 on F , (3.7)

where Ginit is a continuous or discontinuous function on F × [0, Tf ]× R× RN .

A strong comparison result for either (3.5)-(3.6) or (3.5)-(3.7) which is denoted
below by (GCR)-evol can be defined in an analogous way as (GCR): subsolutions
(in a certain class of functions) are below supersolutions (in the same class of func-
tions), USC-Sub(F) and LSC-Sup(F) being just replaced by USC-Sub(F × [0, Tf ])
and LSC-Sup(F × [0, Tf ]); we just point out that the initial data is included in the
equation in this abstract formulation: for example, a subsolution u satisfies either

u(x, 0) ≤ (u0)∗(x) on F ,

in the case of (3.6) or the function x 7→ u(x, 0) satisfies

Ginit(x, 0, u(x, 0), Dxu(x, 0)) ≤ 0 on F ,

in the viscosity sense, in the case of (3.7).

As it is even more clear in the case of (3.7), a comparison result in the evolution
case consists in two steps

(i) proving that for any u ∈ USC-Sub(F × [0, Tf ]) and v ∈ LSC-Sup(F × [0, Tf ]),

u(x, 0) ≤ v(x, 0) on F , (3.8)

(ii) showing that this inequality remains true for t > 0, i.e.

u(x, t) ≤ v(x, t) on F × [0, Tf ] .

Of course, in the case of (3.6), (3.8) is obvious if u0 is a continuous function; but, in
the case of (3.7), the proof of such inequality is nothing but a stationary (GCR) in
F × {0}.

Therefore the main additional difficult consists in showing that Property (ii) holds
true and we are going to explain now the analogue of the approach of the previous
section assuming that we have (3.8).

To redefine (LCR), we have to introduce, for x ∈ F , t ∈ (0, Tf ], r > 0 and
0 < h < t, the sets

Qx,t
r,h[F ] := (B(x, r) ∩ F)× (t− h, t] .
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As in the stationary case, we introduce the set USC-Sub(Qx,t
r,h[F ]), LSC-Sup(Qx,t

r,h[F ])
of respectively u.s.c. subsolutions and l.s.c. supersolution of G(x, t, u, (Dxu, ut)) = 0 in
Qx,t
r,h[F ]. This means that the viscosity inequalities holds in Qx,t

r,h[F ] and not necessarily

on its closure, but these sub and supersolutions are u.s.c. or l.s.c. on Qx,t
r,h[F ].

On the other hand, including (B(x, r)∩F)×{t} in the set where the subsolution or
supersolution inequalities hold is important in order to have the suitable comparison
up to time t and we also refer to Proposition 3.2.4 for the connection between sub
and supersolutions in (B(x, r) ∩ F)× (t− h, t) and on (B(x, r) ∩ F)× (t− h, t].

With this definition we have

(LCR)-evol : For any (x, t) ∈ F × (0, Tf ], there exists r > 0, 0 < h̄ < t such that,
for any 0 < h < h̄, if u ∈ USC-Sub(Qx,t

r,h̄
[F ]), v ∈ LSC-Sup(Qx,t

r,h̄
[F ]),

max
Qx,tr,h[F ]

(u− v)+ ≤ max
∂pQ

x,t
r,h[F ]

(u− v)+ ,

where ∂pQ
x,t
r,h[F ] stands for the parabolic boundary of Qx,t

r,h[F ], composed of a “lateral”
part and an “initial” part as follows

∂pQ
x,t
r,h[F ] =

{
(∂B(x, r) ∩ F)× [t− h, t]

}⋃{
(B(x, r) ∩ F)× {t− h}

}
=: ∂ latQ ∪ ∂ iniQ .

We point out that, in the sequel, we are going to play with the parameter h to
obtain the comparison result. This explains the formulation of (LCR) where the
local comparison result has to hold in Qx,t

r,h for any 0 < h ≤ h̄.

The corresponding evolution versions of (LOC1) and (LOC2) are given by

(LOC1)-evol : If F is unbounded, for any u ∈ USC-Sub(F × [0, Tf ]), for any v ∈
LSC-Sup(F × [0, Tf ]), there exists a sequence (uα)α>0 of u.s.c. subsolutions of (3.3)
such that uα(x, t)− v(x, t)→ −∞ when |x| → +∞, x ∈ F , uniformly for t ∈ [0, Tf ].
Moreover, for any x ∈ F , uα(x, t)→ u(x, t) when α→ 0.

(LOC2)-evol : For any x ∈ F , if u ∈ USC-Sub(Qx,t

r,h̄
[F ]) for some 0 < h̄ < t, there

exists 0 < h ≤ h̄ and a sequence (uδ)δ>0 of functions in USC-Sub(Qx,t
r,h[F ]) such

that buδ − uc(x,t)∂ latQ
≥ η̃(δ) > 0 with η̃(δ) → 0 as δ → 0. Moreover, for any y ∈ F ,

uδ(y)→ u(y) when δ → 0.

Notice that (LOC2)-evol is only concerned with a property at the lateral boundary.
As we see in the proof, the initial boundary is easily left out by a minimality argument.

With these assumptions, we have the
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Proposition 3.2.2 Under Assumptions (LOC1)-evol and (LOC2)-evol, then
(LCR)-evol implies (GCR)-evol.

Proof — There is no main change in the proof except the following point: using
(LOC1)-evol , we may assume that the maximum of u− v is achieved at some point
(x, t). Here we choose t as the minimal time such that we have a maximum of u− v.
And we assume that this maximum is positive.

Notice first that t > 0 because u ≤ v on F × {0} and, if r and h ≤ h̄ are given by
(LCR)-evol , notice also that by the minimality property of t,

max
(B(x,r)∩F)×{t−h}

(u− v) < max
Qx,tr,h[F ]

(u− v) = u(x, t)− v(x, t) .

In other words, the maximum of u− v is not attained on the initial boundary, ∂ iniQ.
On the other hand, on the lateral boundary we obviously get

bu− vc(x,t)∂ latQ
= (u− v)(x)− max

∂Fx,r×[t−h,t]
(u− v) ≥ 0 .

Then we apply (LOC2)-evol . Using the property of η̃(δ) we can choose δ small
enough in order that again, the max of uδ − v is not attained at time t − h. Of
course, if max(uδ − v) ≤ 0 we reach a contradiction for δ small enough so using the
(LCR)-evol yields

uδ(x, t)− v(x, t) ≤ max
Qx,tr,h[F ]

(uδ − v)

≤ max
∂pQ

x,t
r,h[F ]

(uδ − v) = max
∂Fx,r×[t−h,t]

(uδ − v) .

In other words, buδ − vc(x,t)∂ latQ
≤ 0 and the rest of the proof follows the same arguments

as in the stationary case

bu− vc(x,t)∂ latQ
≤ buδ − vc(x,t)∂ latQ

− buδ − uc(x,t)∂ latQ
≤ −η̃(δ) < 0 ,

which leads to a contradiction.
Q.E.D.

In the evolution case, where the equation (or part of the equation) contains some
ut-term, building the uα and uδ turns out to be easy. For example, in the Lipschitz
case

uα(x, t) = u(x, t)− α[(|x|2 + 1)1/2 +Kt] ,
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for K > 0 large enough. And for uδ,

uδ(y, s) = u(y, s)− δ[(|y − x|2 + 1)1/2 − 1 +K(s− t)] ,

where K has to be chosen large enough to have a subsolution and h small enough to
have the right property on the parabolic boundary. This is because of this property
on the parabolic boundary that (LOC2)-evol has this formulation for h.

In the convex case, the arguments which are presented in the stationary part can
be extended.

Remark 3.2.3 Since we are going to use these localization properties throughout the
book in order to treat discontinuities, let us make two important comments here.

(i) As the proofs show it (both in the stationary and evolution case), in order to
have (GCR), we do not need (LCR) to hold on the whole set F : indeed, if we
already know that u ≤ v on some subset A of F , then (LCR) is required only
in F \ A to have (GCR).

(ii) Both in the Lipschitz and convex case we can check (LOC1), (LOC2) (and
their evolution variations) in standard ways. It should be noticed that, in both
cases, the localization procedure is independant of the possible discontinuities
in x. Which is why it will be systematically applied to get the various (GCR)
throughout this book.

3.2.3 Viscosity inequalities at t = Tf in the evolution case

We conclude this section by examining the viscosity sub and supersolutions inequali-
ties at t = Tf and their consequences on the properties of sub and supersolutions. To
do so, we have to be a little bit more precise on the assumptions on the function G
appearing in (3.5). We introduce the following hypothesis

(HBA−pt) For any (x, t, r, px, pt) ∈ F × (0, Tf ] × R × RN × R, the function pt 7→
G
(
x, t, r, (px, pt)

)
is increasing and G

(
x, t, r, (px, pt)

)
→ +∞ as pt → +∞, uniformly

for bounded x, t, r, px.

This assumption is obviously satisfied in the standard case, i.e. for equations like

ut +H(x, t, u,Dxu) = 0 in RN × (0, Tf ] ,

providedH is continuous (or only locally bounded) since in this case G(x, t, r, (px, pt)) =
pt +H(x, t, r, px).
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Proposition 3.2.4 Under Assumption (HBA−pt), we have

(i) If u : F × (0, Tf ) → R [ resp. v : F × (0, Tf ) → R ] is an u.s.c. viscosity
subsolution [ resp. lsc supersolution ] of

G(x, t, w, (Dxw,wt)) = 0 on F × (0, Tf ) ,

then, for any 0 < T ′ < Tf , u [ resp. v ] is an u.s.c. viscosity subsolution [ resp.
lsc supersolution ] of

G(x, t, w, (Dxw,wt)) = 0 on F × (0, T ′] .

(ii) Under the same conditions on u and v and if

u(x, Tf ) = lim sup
(y,s)→(x,Tf )

s<Tf

u(y, s) [resp. v(x, Tf ) = lim inf
(y,s)→(x,Tf )

s<Tf

v(y, s)] , (3.9)

then u and v are respectively sub and supersolution of (3.5).

(iii) If u : F × (0, Tf ] → R is an u.s.c. viscosity subsolution of (3.5), then, for any
x ∈ F , (3.9) holds for u.

(iv) If G satisfies G(x, t, r, (px, pt)) → −∞ as pt → −∞, uniformly for bounded
x, t, r, px and if v : F × (0, Tf ] → R is a l.s.c. viscosity supersolution of (3.5),
then (3.9) holds for v.

This result clearly shows the particularities of the viscosity inequalities at the ter-
minal time t = Tf or t = T ′: sub and supersolutions in F × (0, Tf ) are automatically
sub and supersolutions on F × (0, T ′] for any 0 < T ′ < Tf and even for T ′ = Tf
provided that they are extended in the right way up to time Tf , according to (3.9).
And conversely sub and supersolutions on F × (0, Tf ] satisfy (3.9) provided that G
has some suitable properties which clearly hold for the standard H-equation above.
Here there is a difference between sub and supersolutions due to the disymmetry
of Assumption (HBA−pt). We will come back later on this point with the control
interpretation.

Proof — We only prove the first and second part of the result in the subsolution case,
the proof for the supersolution being analogous. Let ϕ be a smooth function (say, in
F × [0, Tf ]) and let (x, T ′) be a strict local maximum point of u − ϕ in F × [0, T ′].
We introduce the function

(y, s) 7→ u(y, s)− ϕ(y, s)− [(s− T ′)+]2

ε
.
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An easy application of Lemma 6.4.1 implies that this function has a local maximum
point at (xε, tε) and we have

(xε, tε)→ (x, T ′) and u(xε, tε)→ u(x, T ′) as ε→ 0 ,

because of both the strict maximum point property and the ε-penalisation. Moreover,
for ε small enough, the penalization implies that tε < Tf .

Since u is a subsolution of the G-equation in F × (0, Tf ) and as we noticed, (xε, tε)
is a local maximum point in F × (0, Tf ), we have

G∗
(
xε, tε, u(xε, tε), (Dxϕ(xε, tε), ϕt(xε, tε) + 2ε−1(s− Tf )+)

)
≤ 0 .

But, by (HBA−pt), G(y, s, r, (px, pt)) and therefore G∗(y, s, r, (px, pt)) is increasing in
the pt-variable and we have

G∗(xε, tε, u(xε, tε), (Dxϕ(xε, tε), Dtϕ(xε, tε))) ≤ 0 .

The conclusion follows from the lower semicontinuity of G∗ by letting ε tend to 0.

For the proof of (ii), we argue in an analogous way: if (x, Tf ) is a strict local
maximum point of u− ϕ in F × [0, Tf ], we introduce the function

(y, s) 7→ u(y, s)− ϕ(y, s)− ε

(Tf − s)
.

By Lemma 6.4.1, this function has a local maximum point at (xε, tε) and we have

(xε, tε)→ (x, Tf ) and u(xε, tε)→ u(x, Tf ) as ε→ 0 .

It is worth pointing out that, in this case, the proof of such properties uses not only the
strict maximum point property and the fact that the ε-penalisation is vanishing, but
also strongly Property (3.9) for u which provides Assumption-(iii) of Lemma 6.4.1.

We are led to

G∗
(
xε, tε, u(xε, tε), (Dxϕ(xε, tε), ϕt(xε, tε) +

ε

(Tf − s)2
)
)
≤ 0 ,

and we conclude by similar arguments as in the proof of (i).

Finally we prove (iii) since the supersolution one, (iv), follows again from similar
arguments with the additional assumption on G.

We pick some (x, Tf ) ∈ F × {Tf} and we aim at proving (3.9). We argue by
contradiction: if this is not the case then u(x, Tf ) > lim supu(y, s) as (y, s)→ (x, Tf ),
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with s < Tf . This implies that for any ε > 0 small enough and any C > 0, the
function

(y, s) 7→ u(y, s)− |y − x|
2

ε2
− C(s− Tf )

can only have a maximum point for s = Tf , say at y = xε close to x. The viscosity
subsolution inequality reads

G∗
(
xε, Tf , u(xε, Tf ), (

2(xε − x)

ε2
, C)

)
≤ 0 .

But if we fix ε (small enough), all the arguments in G∗ remains bouded, except C.
So, choosing C large enough, we have a contradiction because of (HBA−pt).

Q.E.D.

Remark 3.2.5 We point out that, even if Proposition 3.2.4 only provides the result
for sub or supersolutions inequalities in sets of the form F × (0, Tf ), a similar result
can be obtained, under suitable assumptions, for sub and supersolution properties at
any point (x, Tf ) of M where M is the restriction to RN × (0, Tf ] to a submanifold
of RN ×R. Indeed, it is clear from the proof that only Assumption (HBA−pt) is really
needed to have such properties.

3.2.4 The simplest examples of (SCR): continuous Hamilton-
Jacobi equations in the whole space RN

As a simple example, we consider the standard continuous Hamilton-Jacobi Equation

ut +H(x, t, u,Dxu) = 0 in RN × (0, Tf ) , (3.10)

where H : RN × [0, Tf ]×R×RN → R is a continuous function, ut denotes the time-
derivative of u and Dxu is the derivative with respect to the space variables x. Of
course, this equation has to be complemented by an initial data

u(x, 0) = u0(x) in RN . (3.11)

We provide comparison results in the two cases we already consider above, namely
the Lipschitz case and the convex case, the later one allowing more general Hamilto-
nians coming from unbounded control problems.

Our result is the following
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Theorem 3.2.6 (Comparison for the Lipschitz case) Let USC-Sub(RN×[0, Tf ])
be the set of bounded u.s.c. subsolution u of (3.10) such that u(x, 0) ≤ u0(x) in RN and
LSC-Sup(RN × [0, Tf ]) is the set of bounded l.s.c. supersolutions v of (3.10) such that
u0(x) ≤ v(x, 0) in RN . Under Assumption (HBA−HJ), there exists a (GCR-evol) for
sub and supersolutions of (3.10)-(3.11) in USC-Sub(RN× [0, Tf ]) and LSC-Sup(RN×
[0, Tf ]) respectively.

Proof — We just sketch it since it is the standard comparison proof that we recast in
a little unsual way.

By the argument of the previous section, it suffices to prove (LCR)-evol . Therefore,

we argue in Qx̄,t̄
r,h for some x̄ ∈ RN , 0 < t̄ < Tf , r, h > 0 and we assume that

max
Qx̄,t̄r,h

(u− v) > 0 where u ∈ USC-Sub(Qx̄,t̄
r,h), v ∈ LSC-Sup(Qx̄,t̄

r,h).

It is worth pointing out that, in Qx̄,t̄
r,h, taking into account the fact that u and v

are bounded, we have fixed constants and modulus in (HBA−HJ) (that we denote
below by C1, γ and m). Moreover, we can assume w.l.o.g. that γ > 0 through the
classical change u(x, t) → exp(Kt)u(x, t), v(x, t) → exp(Kt)v(x, t) for some large
enough constant K.

We argue by contradiction, assuming that

max
Qx̄,t̄r,h

(u− v) > max
∂pQ

x̄,t̄
r,h

(u− v) ,

and we introduce the classical doubling of variables

(x, t, y, s) 7→ u(x, t)− v(y, s)− |x− y|
2

ε2
− |t− s|

2

ε2
.

Using Lemma 6.4.1, this u.s.c. function has a maximum point at (xε, tε, yε, sε) with

(xε, tε), (yε, sε) ∈ Qx̄,t̄
r,h and

u(xε, tε)− v(yε, sε)→ max
Qx̄,t̄r,h

(u− v) and
|xε − yε|2

ε2
+
|tε − sε|2

ε2
→ 0 .

It remains to write the viscosity inequalities which reads

aε +H(xε, tε, u(xε, tε), pε) ≤ 0 and aε +H(yε, sε, v(yε, sε), pε) ≥ 0 ,

with

aε =
2(tε − sε)

ε2
and pε =

2(xε − yε)
ε2

.
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Subtracting the two inequalities, we obtain

H(xε, tε, u(xε, tε), pε)−H(yε, sε, v(yε, sε), pε) ≤ 0 ,

that we can write as

[H(xε, tε, u(xε, tε), pε)−H(xε, tε, v(xε, tε), pε)] ≤ [H(xε, tε, v(xε, tε), pε)−H(yε, sε, v(yε, sε), pε)] .

It remains to apply (HBA−HJ)

γ(u(xε, tε), pε)− v(xε, tε))−C1(|xε− yε|+ |tε− sε|)|pε| −m(|xε− yε|+ |tε− sε|) ≤ 0 .

But, as ε→ 0, m(|xε − yε|+ |tε − sε|)→ 0 since |xε − yε|+ |tε − sε| = o(ε) and

(|xε − yε|+ |tε − sε|)|pε| =
2|xε − yε|2

ε2
+

2|tε − sε||xε − yε|
ε2

→ 0 .

Therefore we have a contradiction for ε small enough since

γ(u(xε, tε), pε)− v(xε, tε))→ γmax
Qx̄,t̄r,h

(u− v) > 0 .

And the proof is complete.
Q.E.D.

It is worth pointing out the simplifying effect of the localization argument in this
proof: the core of the proof becomes far simpler since we do have to handle several
penalization terms at the same time (the ones for the doubling of variables and the
localization ones).

We have formulated and proved Theorem 3.2.6 in a classical way and in a way which
is consistent with the previous sections but in this Lipschitz framework, we may have
the stronger result based on a finite speed of propagation type phenomena which we
present here since it follows from very similar arguments

Theorem 3.2.7 (Finite speed of propagation) Let USC-Sub(RN × [0, Tf ]) be
the set of locally bounded u.s.c. subsolution u of (3.10) and LSC-Sup(RN × [0, Tf ])
is the set of locally bounded bounded l.s.c. supersolutions v of (3.10). Assume that
(HBA−HJ) holds with γ(R) independent of R; if u ∈ USC-Sub(RN × [0, Tf ]) and
v ∈ LSC-Sup(RN × [0, Tf ]) satisfy u(x, 0) ≤ v(x, 0) for |x| ≤ R for some R > 0, then

u(x, t) ≤ v(x, t) for |x| ≤ R− C2t ,

where C2 is given by (HBA−HJ).
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Proof — Let χ : (−∞, R) → R be a smooth function such that χ(s) ≡ 0 if s ≤ 0, χ
is increasing on R and χ(s)→ +∞ when s→ R−. We set

ψ(x, t) := exp(−|γ|t)χ(|x|+ C2t) .

This function is well-defined in C := {(x, t) : |x|+ C2t ≤ R}.
We claim that, for 0 < α � 1, the function uα(x, t) := u(x, t) − αψ(x, t) in a

subsolution of (3.10) in C and satisfies uα(x, t) → −∞ if (x, t) → ∂C ∩ {t > 0} and
uα(x, 0) ≤ u(x, 0) for |x| ≤ R.

The second part of the claim is obvious by the properties of ψ. To prove the first
one, we first compute formally

(uα)t +H(x, t, uα, Dxuα) ≤ ut +H(x, t, u,Dxu)− α(ψt − |γ|ψ − C2|Dxψ|) .

But an easy -again formal- computation shows that ψt−|γ|ψ−C2|Dxψ| ≥ 0 in C and
since the justification of these formal computations is straightforward by regularizing
|x| in order that ψ becomes C1, the claim is proved.

The rest of the proof consists in comparing uα and v in C, which follows from the
same arguments as in the proof of Theorem 3.2.6.

Q.E.D.

Now we turn to the convex case where we may have some more general behavior for
H and in particular no Lipschitz continuity in p. To simplify the exposure, we do not
formulate the assumption in full generality but in the most readable way (at least,
we hope so!)

(HBA−Conv) H(x, t, r, p) is a locally Lipschitz function which is convex in (r, p).
Moreover, for any ball B ⊂ RN × [0, Tf ], for any R > 0, there exists constants
L = L(B,R), K = K(B,R) > 0 and a function G = G(B,R) : RN → [1,+∞[ such
that, for any x, y ∈ B, t, s ∈ [0, Tf ], −R ≤ u ≤ v ≤ R and p ∈ RN

DpH(x, t, r, p) · p−H(x, t, u, p) ≥ G(p)− L ,

|DxH(x, t, r, p)|, |DtH(x, t, r, p)| ≤ KG(p)(1 + |p|) ,
DrH(x, t, r, p) ≥ 0 .

On the hand, we assume the existence of a subsolution

(HSub−HJ) There exists an C1-function ψ : RN × [0, Tf ] → R which is a subsolution
of (3.10) and which satisfies ψ(x, t) → −∞ as |x| → +∞, uniformly for t ∈ [0, Tf ]
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and ψ(x, 0) ≤ u0(x) in RN .

The result is

Theorem 3.2.8 (Comparison for the Convex case) Assume (HBA−HJ−U) and
(HSub−HJ). Let USC-Sub(RN × [0, Tf ]) [ resp. LSC-Sup(RN × [0, Tf ]) ] be the set of
bounded u.s.c. subsolution u of (3.10) [ resp. the set of bounded l.s.c. supersolutions
v of (3.10) ] such that

lim sup
|x|→+∞

u(x, t)

ψ(x, t)
≥ 0

[
resp. lim inf

|x|→+∞

v(x, t)

ψ(x, t)
≤ 0

]
uniformly for t ∈ [0, Tf ] .

Then there exists a (GCR)-evol for sub and supersolutions of (3.10)-(3.11) in USC-Sub(RN×
[0, Tf ]) and LSC-Sup(RN × [0, Tf ]) respectively.

Proof — The first step consists as above in replacing u by uα := (1 − α)u + αψ
for 0 < α � 1. The convexity of H(x, t, r, p) in (r, p) implies that uα is still a
subsolution of (3.10) and uα(x, 0) ≤ u0(x) in RN . Moreover, by the definition of
USC-Sub(RN × [0, Tf ]) and LSC-Sup(RN × [0, Tf ]),

lim(uα(x, t)− v(x, t)) = −∞ as |x| → +∞, uniformly for t ∈ [0, Tf ].

Therefore the subsolution ψ plays its localization role.

For (LCR)-evol , we argue exactly in the same way as in the proof of Theorem 3.2.6

in Qx̄,t̄
r,h (and therefore with fixed contants L,K and a fixed function G) but with the

following preliminary reductions: changing u, v in u(x, t) + Lt and v(x, t) + Lt, we
may assume that L = 0. Finally we perform Kruzkov’s change of variable

ũ(x, t) := − exp(−u(x, t)) , ṽ(x, t) := − exp(−v(x, t)) .

The function ũ, ṽ are respectively sub and supersolution of

wt + H̃(x, t, w,Dw) = 0 in Qx̄,t̄
r,h ,

with H̃(x, t, r, p) = −rH(x, t,− log(−r),−p/r).
Computing DrH̃(x, t, r, p), we find (DpH ·p−H)(x, t,− log(−r),−p/r)) ≥ G(−p/r),

while DxH̃(x, t, r, p), DtH̃(x, t, r, p) are estimated by |r||DxH(x, t,− log(−r),−p/r)|,
|r||DtH(x, t,− log(−r),−p/r)|, i.e. by |r|KG(−p/r)(1 + |p/r|).

Following the proof of Theorem 3.2.6, we have to examine an inequality like

H̃(xε, tε, ũ(xε, tε), pε)− H̃(yε, sε, ṽ(yε, sε), pε) ≤ 0 .
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To do so, we argue as if H̃ was C1 (the justification is easy by a standard approxi-
mation argument) and we introduce the function

f(µ) := H̃(µxε + (1− µ)yε, µtε + (1− µ)sε, µũ(xε, tε) + +(1− µ)ṽ(yε, sε), pε) ,

which is defined on [0, 1]. The above inequality reads f(1)− f(0) ≤ 0 while

f ′(µ) = DxH̃.(xε − yε) +DtH̃.(tε − sε) +DrH̃.(ũ(xε, tε)− ṽ(yε, sε)) ,

where all the H̃ derivatives are computed at the point

(µxε + (1− µ)yε, µtε + (1− µ)sε, µũ(xε, tε) + (1− µ)ṽ(yε, sε), pε) .

If we denote by rε = µũ(xε, tε) + (1− µ)ṽ(yε, sε), we have, by the above estimates,

f ′(µ) ≥− |rε|KG(−pε/rε)(1 + |pε/rε|)(|xε − yε|+ |tε − sε|)
+G(−pε/rε).(ũ(xε, tε)− ṽ(yε, sε))

≥G(−pε/rε)
[
−K(|rε|+ |pε)(|xε − yε|+ |tε − sε|) + (ũ(xε, tε)− ṽ(yε, sε))

]
.

But if M := max
Qx̄,t̄r,h

(ũ− ṽ) > 0, the arguments of the proof of Theorem 3.2.6 show that

the bracket is larger than M/2 if ε is small enough. Therefore f ′(µ) ≥ M/2 > 0, a
contradiction with f(1)− f(0) ≤ 0.

Q.E.D.

We conclude this part by an application of Theorem 3.2.6 and 3.2.8 to the equation

ut + a(x, t)|Dxu|q − b(x, t) ·Dxu = f(x, t) in RN × (0, Tf ) ,

where a, b, f are at least continuous function in RN × [0, Tf ] and q ≥ 1.

Of course, Theorem 3.2.6 applies if q = 1 and a, b are locally Lipschitz continuous
functions and f is a uniformly continuous function on RN × [0, Tf ].

Theorem 3.2.8 is concerned with the case q > 1 and a(x, t) ≥ 0 in RN × [0, Tf ] in
order to have a convex Hamiltonian.

Next the computation gives

DpH(x, t, r, p) · p−H(x, t, u, p) = a(x, t)(q − 1)|p|q − b(x, t) · p+ f(x, t) .

and in order to verify (HBA−HJ−U), we have to reinforce the convexity assumption
by assuming a(x, t) > 0 in RN × [0, Tf ]. If B is a ball in RN × [0, Tf ], we set m(B) =
minB a(x, t) and we have, using Young’s inequality

DpH(x, t, r, p) · p−H(x, t, u, p) = m(B)(q − 1)|p|q + 1− L(B) .
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Here the “+1” is just a cosmetic term to be able to set G(p) := m(B)(q−1)|p|q+1 ≥ 1
and L(B) is a constant depending on the L∞-norm of b and f on B.

Finally, a, b, f being locally Lipschitz continuous, it is clear enough that the es-
timates on |DxH(x, t, r, p)|, |DtH(x, t, r, p)| hold. It is worth pointing out that the
behavior at infinity of a, b, f does not play any role since we have the arguments of
the comparison proof are local. But, of course, we do not pretend that this strategy
of proof is optimal...

The checking of (HSub−HJ) is more “example-dependent” and we are not going to
try to find “good frameworks”. If b = 0 and if there exists η > such that

η ≤ a(x, t) ≤ η−1 in RN × (0, Tf ) ,

the Oleinik-Lax Formula suggests subsolutions of the form

ψ(x, t) = −α(t+ 1)(|x|q′ + 1)− β ,

where q′ is the conjugate exponent of q, i.e.
1

q
+

1

q′
= 1 and α, β are large enough

constants. Indeed

ψt + a(x, t)|Dxψ|q − f(x, t) ≤ −α(|x|q′ + 1) + η−1[q′α(t+ 1)]q|x|q′ − f(x, t) .

If there exists c > 0 such that

f(x, t) ≥ −c(|x|q′ + 1) in RN × (0, Tf ) ,

then, for large α, namely α > η−1[q′α]q + c, one has a subsolution BUT only on a
short time interval [0, τ ]. Therefore one has a comparison result if, in addition, the
initial data satisfies for some c′ > 0

u0(x) ≥ −c′(|x|q′ + 1) in RN ,

in which case, we should also have α > c′.

In good cases, the comparison result on [0, τ ] can be iterated on [τ, 2τ ], [2τ, 3τ ],. . . ,etc
to get a full result on [0, Tf ].

3.3 Whitney stratifications: a good framework for

Hamilton-Jacobi equations

In this section, we introduce the notion of Whitney stratification (based on the Whit-
ney conditions found in [162, 161]). This yields a well-adapted structure to deal with
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the general discontinuities we are considering in this book, especially in Part IV. We
first do it in the case of a flat stratification; the non-flat case is reduced to the flat
one by suitable local charts.

Before we begin, notice that for the moment we consider stratifications in RN but

(i) since the definition of a (flat or not flat) stratification is purely local, a stratifi-
cation of an open subset O ⊂ RN can be defined exactly in the same way.

(ii) When considering time-dependent problems, we have to consider stratifications
in RN+1—or more precisely of RN×(0, Tf )—, adding one dimension for time and
using the remark of Point (i). This allows to treat the case of time-depending
stratifications, see Chapter 20.

(iii) Stratifications can also be considered in a closed set, typically the closure of a
domain Ω ⊂ RN . In this case, as we will see in Part V, both the interior of the
set and the boundary—typically Ω and ∂Ω—can be stratified. Of course, this
last point can also be combined with (i) and (ii) and this is what we will do in
Part V, looking at stratifications of Ω× (0, Tf ).

3.3.1 Admissible flat stratifications

We consider here the stratification introduced in Bressan and Hong [53]:

RN = M0 ∪M1 ∪ · · · ∪MN ,

where the Mk (k = 0..N) are disjoint submanifolds of RN . Each Mk can be decom-
posed as the union of various connected components,

Mk =
⋃
i∈Ik

Mk
i .

To start with, we examine the case when the different embedded submanifolds of RN

are locally affine subspace of RN .

Notations:

• for k = 0..N , V (k) is the set of all k-dimensional affine subspaces of RN ;

• For x ∈ RN , V (k)(x) ⊂ V (k) is the subset of affine subspaces containing x. In
other words, V ∈ V (k)(x) if V = x + Vk where Vk is a k-dimensional vector
subspace of RN .
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Definition 3.3.1 We say that M = (Mk)k=0..N is an Admissible Flat Stratification —
(AFS) in short— if the following set of hypotheses (HST)flat is satisfied

(i) If x ∈Mk for some k = 0..N , there exists r = rx > 0 such that

(a) B(x, r) ∩Mk = B(x, r) ∩ (x+ Vk) for some (x+ Vk) ∈ V (k)(x) ;

(b) For any l < k, B(x, r) ∩Ml = ∅ ;

(c) For any l > k, B(x, r)∩Ml is either empty or has at most a finite number
of connected components ;

(d) For any l > k, B(x, r) ∩Ml
j 6= ∅ if and only if x ∈ ∂Ml

j.

(ii) If Mk
i ∩Ml

j 6= ∅ for some l > k then Mk
i ⊂Ml

j.

(iii) The following inclusion holds: Mk ⊂M0 ∪M1 ∪ · · · ∪Mk.

We first notice that Condition (HST)flat-(i) implies that the set M0, if not void,
consists of isolated points. Indeed, in the case k = 0, (x + Vk) = {x} so that M0 ∩
B(x, r) = {x}.

Let us also mention that assumption (HST)flat-(i)(d) is just a consequence of (i)(c)
provided we choose the radius rx > 0 small enough. Indeed, since, by (i)(c), we have
only a finite number of connected components Ml

j for l > k such thatB(x, r)∩Ml
j 6= ∅,

we can exclude all those such that dist(x,Ml
j) > 0 by choosing a smaller radius r.

Let us also mention another direct consequence of (HST)flat

Lemma 3.3.2 Let M = (Mk)k=0..N be an (AFS) of RN . Then, for any k = 0..N and

i ∈ Ik, there exists an open set O = O(i, k) ⊂ RN and V
(k)
i ∈ V (k) such that

Mk
i = O ∩ V (k)

i .

In other words, if x ∈ Mk
i , then Mk

i = O ∩ (x + Vk) for some k-dimensional vector
space Vk independent of x.

Proof — Let k ∈ {0, .., N}, i ∈ Ik, and fix x ∈ Mk
i . By (HST)flat-(i)(a), for any

z ∈Mk
i , there exists V

(k)
i(z) ∈ V (k) such that z ∈ V (k)

i(z). Now, consider the function

χ : Mk
i → {0, 1}

z 7→

{
1 if V

(k)
i(z) = V

(k)
i(x) ,

0 otherwise.
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This function is obviously locally constant: indeed, by (HST)flat-(i)(a), if z ∈ Mk
i

then B(z, rz) ∩Mk
i = B(z, rz) ∩ V (k)

i(z) and therefore if z′ ∈ B(z, rz) ∩Mk
i , necessarily

V
(k)
i(z′) = V

(k)
i(z).

Therefore, since Mk
i is connected, it follows that χ is in fact constant, so that

i(z) = i(x) = i for all z ∈Mk
i . In other words, (HST)flat-(i)(a) can be written for all

z ∈Mk
i by means of only one affine subspace

B(z, rz) ∩Mk
i = B(z, rz) ∩ V (k)

i .

We then set O := ∪z∈Mk
i
B(z, rz) which is an open set in RN . We deduce from the

previous set equality that O ∩Mk
i = O ∩ V (k)

i .
Q.E.D.

Before providing comments on the difference between the assumptions (HST)flat
and the ones used in Bressan & Hong [53], we consider the simplest relevant example
of a flat stratification.

Example 3.1 — We consider in R2 a chessboard-type configuration, see Figure 3.1.
In this case, we have the following decomposition:

M0 = Z× Z ,

M1 =
{

(Z× R) ∪ (R× Z)
}
\ Z2 ,

and M2 = R2 \ (M0 ∪ M1). In this simple case, the checking of the (HST)flat-
assumptions is straightforward.

Figure 3.1: The chessboard-type configuration
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We point out that, even if the formulation is slightly different, Assumptions (HST)flat
are equivalent (for the flat case) to the assumptions of Bressan & Hong [53]. Indeed,
we both assume that we have a partition of RN with disjoints submanifolds but we
define a different way the submanifolds Mk. The key point is that for us Mk is here
a k-dimensional submanifold while, in [53], the Mj can be of any dimension. In other
words, our Mk is the union of all submanifolds of dimension k in the stratification of
Bressan & Hong.

With this in mind it is easier to see that our assumptions (HST)flat-(ii)-(iii) are

equivalent to the following assumption of Bressan and Hong: if Mk ∩Ml 6= ∅ then
Mk ⊂ Ml for all indices l, k without asking l > k in our case. But according to the
last part of (HST)flat-(i), Mk ∩Ml = ∅ if l < k: indeed for any x ∈Mk, there exists
r > 0 such that B(x, r) ∩Ml = ∅. This property clearly implies (HST)flat-(iii).

A typical example – Let us consider a stratification in R3 induced by the upper
half-plane {x3 > 0, x2 = 0} and the x2-axis (see figure 3.2).

Figure 3.2: Example of a 3-D stratification

• The “good” stratification consists in setting first M2 = {x3 > 0, x2 = 0}. By
(HST)flat-(iii), the boundary of M2 which is the x1-axis is included in M1 ∪M0

and we also have x2-axis in the stratification. In this case, M1 ∪M0 is the cross
formed by the x1 and x2-axis but in order for M1 to be a manifold, (0, 0, 0) has to
be excluded and we have to set here M0 = {(0, 0, 0)}. Thus, M1 consists of four
connected components which are induced by the x1- and x2-axis (but excluding the
origin, which is in M0). Notice that in this situation, the x3-axis has no particular
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status, it is included in M2.

• A wrong approach would be the following alternative decomposition:

M2 = {x3 > 0, x2 = 0}, M1 = {x1 = x3 = 0}∪{x2 = x3 = 0}, M3 = R3−M2−M1 .

Because (0, 0, 0) ∈M1 ∩ M2 but clearly M1 is not included in M2, so (HST)flat-(ii)
forbids this decomposition of R3.

As a consequence of the definition we have following result which will be useful in
a tangential regularization procedure (see Figure 2 below)

Lemma 3.3.3 Let M = (Mk)k=0..N be an (AFS) of RN . Let x ∈Mk and r > 0, Vk
be as in (HST)flat-(i). If y ∈ B(x, r) ∩Ml

j for some l > k and j ∈ Il then x ∈ Ml
j

and
B(x, r) ∩ (y + Vk) ⊂ B(x, r) ∩Ml

j .

Proof — Notice that by (HST)flat-(i)(d) we already know that x ∈ Ml
j, but more-

over (HST)flat-(ii) implies that Mk
i ⊂ Ml

j. Using open sets Ok and Ol defined in
Lemma 3.3.2 we get

Ok ∩ (x+ Vk) ⊂ Ol ∩ (y + Vl) = Ol ∩ (x+ Vl) ,

the last equality being justified by the fact that x ∈ ∂Ml
j.

This implies that Vk is a subspace of Vl, so that clearly for any y ∈Ml
j, y + Vk ⊂

y + Vl. The result directly follows after intersecting with B(x, r).
Q.E.D.

Remark 3.3.4 In this flat situation, the tangent space of Mk at x is Tx := x + Vk
while the tangent space of Ml at y is Ty := y + Vl, where l > k. The previous lemma
implies that if (yn)n is a sequence converging to x, then the limit tangent plane of
the Tyn is x + Vl and it contains Tx, which is exactly the Whitney condition—see
[162, 161].

3.3.2 General regular stratifications

Definition 3.3.5 We say that M = (Mk)k=0..N is a general regular stratification of
RN— (RS) in short— if it satisfies the two following assumptions denoted by (HST)reg
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Figure 3.3: local situation

(i) the following decomposition holds: RN = M0 ∪M1 ∪ · · · ∪MN ;

(ii) for any x ∈ RN , there exists r = r(x) > 0 and a C1,1-change of coordinates
Ψx : B(x, r) → RN such that Ψx(x) = x and {Ψx(M ∩ B(x, r))}k=0..N is the
restriction to Ψx(B(x, r)) of an (AFS) in RN .

Remark 3.3.6 If we need to be more specific, we also say that (M,Ψ) is a stratifica-
tion of RN , keeping the reference Ψ for the collection of changes of variables (Ψx)x.
This will be usefull in Section 22 when we consider sequences of stratifications.

Tangent spaces – The definition of regular stratifications (flat or not) allows to
define, for each x ∈Mk, the tangent space to Mk at x, denoted by TxM

k. To be more
precise, if x ∈Mk and r > 0, Vk are as in (HST)flat-(i), then

TxM
k = (DΨx(x))−1(Vk) ,

which can be identified to Rk. Moreover, we can decompose RN = Vk⊕V ⊥k , where V ⊥k
is the orthogonal space to Vk. For any p ∈ RN , we have p = p>+p⊥ with p> ∈ Vk and
p⊥ ∈ V ⊥k . In the special case x ∈M0, we have V0 = {0}, p = p⊥ and TxM

0 = {0}.

The notion of stratification is introduced above as a pure geometrical tool and it
remains to connect it with the singularities of Hamilton-Jacobi Equations. Our aim is
to define below a “natural framework” allowing to treat Hamilton-Jacobi Equations
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(or control problems) with discontinuities, which will involve two types of information:
some conditions on the kinds of singularities we can handle and some assumptions on
the Hamiltonians in a neighborhood of those singularities.

We provide here a first step in this direction by considering the simple example of
an equation set in the whole space RN

H(x, u,Du) = 0 in RN ,

where the Hamiltonian H has some discontinuities (in the x-variable) located on some
set Γ ⊂ RN . The first question is: what kind of sets Γ can be handled?

The approach we systematically use consists in assuming that Γ provides a stratifi-
cation M = (Mk)k=0..N of RN . This means that MN is the open subset of RN where
H is continuous while Mk contains the discontinuities of dimension 0 ≤ k ≤ (N − 1).
Of course, some of the Mk can be empty.

What should be done next is to clarify the structure of the Hamiltonian H in
a neighborhood of each point x ∈ Mk and for each k ≤ (N − 1). This is where
the previous analysis on stratifications allows to reduce locally the problem to the
following situation: if x ∈ Mk, there is a ball B(x, r) for some r > 0, and a C1-
diffeomorphism Ψ such that

B(x, r) ∩Ψ(Mk) = B(x, r) ∩
k⋃
j=0

(
x+ Vj

)
.

In other words, through a suitable C1 change of coordinates, we are in a flat situation
where x is only possibly “touched” by j-dimensional vector spaces for j ≥ k.

3.3.3 The limits of the stratified approach

The notion of regular stratification seems to provide a very general framework in
which one could think that many (if not all) situations can be treated. As we have
seen, several quite special geometric structures can be handled, corresponding to a
great variety of discontinuities in the equations we consider.

However, it should be noticed that there are still very simple situations that the
stratified framework cannot handle. Let us focus here on curves in R2 in order to
better understand the problems that may occur.

Cusps are the typical examples of geometric structures which cannot be included
in regular stratifications: consider the curve

Γ :=
{
y =

√
|x| : x ∈ R

}
⊂ R2 .
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The natural (and only) stratification of Γ would be to set

M0 = {(0, 0)} , and M1 = {y =
√
−x : x < 0} ∪ {y =

√
x : x > 0} .

However, condition (ii) of the regular stratification definition cannot hold. More pre-
cisely, at the singular point z = (0, 0), there is no C1,1 change of variables Ψz which
can transform the cusp into a flat stratification since such a change of variables could
not be Lipschitz regular.

Figure 3.4: A cusp

Nevertheless, a piecewise C1 curve Γ ⊂ R2 satisfying a double-sided cone condition
at junction points can always be considered as a regular stratification, after choosing
M0 as the set of singular points. Indeed, if x ∈M0, the C1,1 diffeormorphism Ψx just
has to “flatten the angle” in order to get a flat stratification (see fig 3.5), which is of
course possible.

In order to give a general result that stratifications must satisfy, we need to introduce
some objects.

Extended tangent spaces — Let x ∈ Mk
i and Ψx, B(x, r) as in the definition

of (RS). If x ∈ ∂Ml
j, then, combining Lemma 3.3.3 and Remark 3.3.4, there exists a

l-dimensional vector space Vl,j such that

Ψx(Ml
j ∩B(x, r)) ⊂ (x+ Vl,j) ,

and we can extend the tangent space to Ml
j up to x by setting

T xM
l
j := D(Ψx(x))−1(Vl,j) .
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Figure 3.5: A piecewise smooth example

Inward pointing cones — Let M be an (AFS) and fix x ∈ Mk
i for some k ∈

{0..N − 1}, i ∈ Ik. We assume that x ∈ ∂Ml
j for some l > k. We first introduce the

notion of inward directions to Ml
j at x: a direction v ∈ RN \{0} is said to point inward

to Ml
j at x if x + hv ∈ Ml

j for h > 0 small enough. Since Ml
j = Ol,j ∩ (x + Vl,j) is

flat, all these inward directions v belongs to Vl,j. Then we define the inward pointing
cone C+

flat(l, j)(x) as the set containing all these inward directions to Ml
j at x. This

vector set is strictly positively homogeneous by definition and it does not contain the
tangential directions in ∂Ml

j nor 0.

More generally, in the case of a (RS) the definition of the inward pointing cone is
given by

C+
x Ml

j := (DΨx(x))−1
(
C+

flat(l, j)(x)
)
⊂ T xM

l
j .

Here also, the vectors in C+
x Mj

l are pointing strictly inwards Ml
j, excluding the di-

rections tangent to ∂Ml
j at x and 0. Notice finally that since (DΨx(x))−1 is linear,

C+
x Ml

j is also strictly positively homogeneous.

An intrinsic characterization of the inward pointing cone can be given. To do so,
for a given x ∈ ∂Ml

j, we consider the C1-curves γ : R→ RN such that γ(0) = x and
γ(s) ∈ Ml

j if s ∈ (0, s0) for some s0 > 0. We will say that γ ∈ Λl
j(x) if there exists

η > 0 such that

dist(γ(s), ∂Ml
j) ≥ ηs for all s ∈ (0, s0) . (3.12)

Then the following characterization holds:

Lemma 3.3.7 Given x ∈Mk
i ∩ ∂Ml

j, we have C+
x Ml

j =
{
γ̇(0) : γ ∈ Λl

j(x)
}

.
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Proof — We first prove the result in the case of an (AFS).

Direct inclusion – For the inclusion C+
flat(l, j)(x) ⊂ C+

x Ml
j, we have to show that

if v ∈ C+
flat(l, j)(x) there exists η > 0 such that γ(s) := x + sv satisfies (3.12) for

s ∈ (0, s0), s0 being small enough. We argue by contradiction: if (3.12) does not hold,
there exists a sequence of positive numbers sε → 0 such that

0 < dist(x+ sεv, ∂Ml
j) ≤ εsε

(of course the distance is positive because x+ sεv is in Ml
j, not on its boundary).

By (HST)flat-(i)-(c) and (iii), we can extract a subsequence of (sε)ε (still denoted
in the same way to simplify the exposure) such that the distance is achieved for yε in
the same Mn

m for some n < l and m ∈ In. Hence, if Mn
m = (x+ Vn,m) ∩ On,m,∣∣∣(x+ sεv)− (x+ wε)

∣∣∣ ≤ εsε for some wε ∈ Vn,m .

We deduce from this property that∣∣∣v − wε
sε

∣∣∣ ≤ ε ,

and since wε/sε ∈ Vn,m for any ε > 0, by letting ε tend to 0 we deduce that v ∈ Vn,m.
It follows that x + sεv ∈ (x + Vn,m) and thus, for ε > 0 small enough, x + sεv ∈
(x + Vn,m) ∩ On,m ⊂ ∂Ml

j which contradicts dist(x + sεv, ∂Ml
j) > 0. Hence (3.12) is

proved.

Converse inclusion – In order to prove that C+
x Ml

j ⊂ C+
flat(l, j)(x), we take any γ ∈

Λl
j(x) and we have to show that γ̇(0) ∈ C+

flat(l, j)(x). Notice first that γ(s) ∈ x+ Vl,j
for any s ∈ (0, s0) and therefore γ̇(0) ∈ Vl,j. On the other hand, by the differentiability
of γ at 0,

γ(s) = x+ γ̇(0)s+ o(s) ,

and x+ γ̇(0)s ∈ x+ Vl,j. Now, by (3.12) we see that for s > 0 small enough,

dist(x+ γ̇(0)s, ∂Ml
j) ≥ dist(γ(s), ∂Ml

j) + o(s) ≥ (η + o(1))s > 0 ,

which implies that x + γ̇(0)s ∈ Ml
j for any s > 0 small enough. Hence γ̇(0) ∈

C+
flat(l, j)(x) and we are done.

The (RS) case – Here we use in an essential way the Lipschitz continuity of Ψx and
its C1-property.

If v ∈ C+
x Ml

j, we claim that the curve γ(s) := (Ψx)−1(x + sv) belongs to Λl
j(x):

indeed, Ψx(γ(s)) = x+sv with v ∈ C+
flat(l, j)(x) and the first part of the proof implies
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that it satisfies (3.12) for the (local) flat stratification. Using the Lipschitz continuity
of Ψx, we deduce that γ also satisfies (3.12), for some other parameters η̃, s̃0 > 0.

Conversely, if γ ∈ Λl
j(x), then the curve Γ(·) := Ψx(γ(·)) is also in the set Λl

j(x)
(but for the flat stratification) and therefore

Γ̇(0) = (DΨx)(x)
(
γ̇(0)

)
∈ C+

flat(l, j)(x) .

By definition of C+
x Ml

j, it follows that γ̇(0) ∈ C+
x Ml

j, and the proof is complete.
Q.E.D.

The main result of this section is the

Proposition 3.3.8 Let M be a stratification of RN , 0 ≤ k < N and x ∈ Mk
i for

some i ∈ Ik. Assume that x ∈ ∂Ml
j ∩ ∂Ml′

j′ for some k < l, l′ ≤ N . If (l, j) 6= (l, j′),
then

(i) the following inclusion holds: Mk
i ⊂ ∂Ml

j ∩ ∂Ml′

j′ ;

(ii) for any x ∈Mk
i , C+

x Ml
j ∩ C+

x Ml′

j′(x) = ∅.

Though this proposition is simple in its form, it rules out several cusp-like configura-
tions involving various dimensions (see below examples after the proof). In particular,
in the case of the piecewise smooth curve in dimension N = 2, we recover that the
tangents from both sides of a singular point cannot be equal in the limit at such
point. Notice that of course, they can possibly make a π-angle but in that case, the
inward pointing directions are opposite.

Proof — Concerning (i), the result follows directly from (HST)flat-(ii): since

x ∈Ml
j ∩Ml′

j′ ,

we get that Mk
i is included in both Ml

j ∩Ml′
j′ . But since l > k, Mk

i does not intersect

with Ml
j nor with Ml′

j′ , so that (i) holds.

We now turn to (ii) and consider first the case of an (AFS). Since (l, j) 6= (l′, j′)
then Ml

j ∩Ml′

j′ = ∅ which clearly implies that the inward pointing cones are disjoint.

Indeed, as we noticed before, if e ∈ C+
flat(l, j)∩C

+
flat(l

′, j′) then for h small enough, we
get that x+ he ∈Ml

j ∩Ml′

j′ which is a contradiction.
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In the (RS) case, the conclusion follows from the fact that since D(Ψx(x))−1 is
invertible it cannot map two different directions on the same one. More precisely,
assume that

e ∈ C+
x Ml

j ∩ C+
x Ml′

j′ 6= ∅ .
Then there exist two vectors w ∈ C+

flat(i, j), w
′ ∈ C+

flat(l
′, j′) such that

e = D(Ψx(x))−1(w) = D(Ψx(x))−1(w′) .

But since w 6= w′ because they belong to C+
flat(l, j) and C+

flat(l
′, j′) respectively, we get

a contradiction with the bijectivity of D(Ψx(x))−1.
Q.E.D.

Remark 3.3.9 The fact that the cones C+
x Ml

j do not intersect implies that various
cone conditions hold at x, separating the manifolds touching at this point (which are
in finite number, see (HST)flat-(i)(c)). However, building explicitly such cones is quite
difficult in all its generality and we wil not try to state it here. But notice that there
is a lot of freedom in choosing the directions of such cones: if C+

x Ml
j ∩ C+

x Ml′

j′ = ∅,
any direction e at positive distance from both cones allows to build a separating cone.

Typical situations — Of course very complex situations can occur involving dif-
ferent dimensions but let us see two simple situations to understand the meaning of
Proposition 3.3.8-(ii).

Fig. 3.6 — On the left the situation is allowed since at the point {x} = M0,
C+
x M2

1 = M2
1, C+

x M2
2 = M2

2 and therefore C+
x M2

1 ∩ C+
x M2

2 = ∅. Notice however that
the boundaries intersect, which corresponds to the direction of M1

1.

On the right, it is clear that the problem does not come from C+
x M2

1/2/3 which do not

intersect (although C+
x M2

3 = ∅), but from the M1 manifolds since C+
x M1

1 ∩C+
x M1

2 =
M1

1 6= ∅. This cusp-type situation is of course not allowed.

Fig. 3.7 — On the left the situation is allowed since the semi-line M1 makes a non-
zero contact angle with the plane M2. However, using for instance the caracterization
in Lemma 3.3.7 we see that C+

x M1 = R+
∗ e, while C+

x M2 = M2. Hence C+
x M1 ∩

C+
x M2 = R+

∗ e 6= ∅, another cusp-type situation that is not allowed.

Stratifications in domains — The question is whether we can extend or not the
notion of stratification in RN to the case of open sets Ω.
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Figure 3.6: Examples in 2-D

Figure 3.7: Examples in 3-D

At this point of the book, we do not enter into details on this because we devote a
complete part of the book (Part V) to the case of state-constraint problems. Let us just
mention that when we consider a domain Ω, its boundary ∂Ω has to be understood
as a specific part of the stratification. And if the boundary is not regular, we use the
stratified approach to decompose it in various manifolds of different dimensions.

The conditions on the inward pointing cones that we proved above imply that Ω
has to satisfy a double-sided cone condition in order to deal with it in the stratified
approach. This cone condition (at least the interior one) is also used in Section 26.4
in order to get a suitable boundary regularity for subsolutions.

3.4 Partial regularity, partial regularization

In this section, motivated by Sections 3.2 and 3.3, we present some key ingredients
in the proof of local comparison results for HJ equations with discontinuities. The
assumptions we are going to use are those which are needed everywhere in this book
to prove any kind of results and therefore we define at the end of the section a “good
local framework for HJ Equations with discontinuities”.
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Local comparison results lead to consider HJ-Equations in a ball, namely

G(X, u,Du) = 0 in B∞(X̄, r) , (3.13)

where X̄ ∈ RN and r > 0 are fixed. We recall that the notation X can refer to either
X = x or X = (x, t). Because of the previous section, it is natural to assume that
the discontinuities in this equation have a general flat stratification-type structure:
the variable X ∈ RN can be decomposed as (Y, Z) ∈ Rk ×RN−k and G is continuous
w.r.t. u, p and Y but not with respect to Z. In particular we have in mind that locally
around X̄, Hamiltonian G has a discontinuity on Γ0 = {(Y, Z); Z = 0} which can be
identified with Rk.

The properties of discontinuous sub and supersolutions on Γ are playing a key role
in the proof of such local comparison results and the aim of the next section is to
introduce the notion of “regular discontinuous function”.

3.4.1 Regular discontinuous functions

The following definition provides several notions of regularity for discontinuous func-
tions.

Definition 3.4.1 Let A ⊂ Rk, f : A→ R an u.s.c. [ resp. lsc ] function and ω ⊂ A.

(i) The function f is said to be ω-regular at x ∈ ∂ω ∩ A if

f(x) = lim sup
y→x
y∈ω

f(y)
[
resp. f(x) = lim inf

y→x
y∈ω

f(y)
]
.

(ii) If E ⊂ ∂ω∩A, f is said to be ω-regular on E if it is ω-regular at any point of E.

(iii) If A is a closed subset of Rk and E ⊂ A is such that A \ E = A, f is said to be
regular on E if, at any point x ∈ E and for any connected component ω of A \ E
such that x ∈ ω, f is ω-regular at x.

The regularity of u.s.c. subsolution or l.s.c. supersolutions is used in several type of
situations: the most classical one is when we consider a stationary HJ-equation set
in a domain Ω of RN ; a natural choice is A = Ω, ω = Ω, E = ∂Ω. In the study of
the Dirichlet problem (cf. for example [22, 23, 24]), such regularity of the sub and/or
supersolution is needed to have a comparison result up to the boundary. The point is to
avoid “artificial values” of these sub or supersolution on ∂Ω. For the case of evolution



76 Barles & Chasseigne

equations, one may also choose A = Ω × (0, Tf ), ω = Ω × (0, Tf ), E = ∂Ω × (0, Tf ).
In the same context, some result can be formulated using the ω-regularity of the sub
or supersolution at some point of ∂Ω× (0, Tf ) (cf. Section 3.5).

In this book, an other important example is the case when A = RN × (0, Tf ) and
E = M× (0, Tf ) where M ⊂ RN is a k-dimensional manifold. But here there are two
different cases: if k < N−1, ω = A\E is connected and there is no difference between
(ii) and (iii). But if E is an hyperplane, then A \ E has two connected components
ω1, ω2 and, roughly speaking, the regularity property has to hold in both side of E ,
i.e. both for ω1 and ω2. This is actually the case which will be studied in Part II and
III.

3.4.2 Regularity of subsolutions

The aim of this section is to study subsolutions of (3.13) and to prove that, under
suitable assumptions, they satisfy some “regularity properties”.

We immediately point out that, for reasons which will clear later on in this book,
we are not going to use only subsolutions in the Ishii sense and therefore, we are not
going to use only the lower semi-continuous enveloppe of some Hamiltonian as in the
Ishii definition. To simplify matter, we assume here that the function G contains all
the necessary information for subsolutions. In other words, by subsolution of (3.13),
we mean an u.s.c. function u which satisfies

At any maximum point X ∈ B∞(X̄, r) of u − φ, where φ is a smooth test-function,
we have

G(X, u(X), Dφ(X)) ≤ 0 .

In the sequel, we decompose Du as (DY u,DZu) (the same convention is used for the
test-functions φ) and the corresponding variable in G will be p = (pY , pZ).

In order to state our main result on the “regularity of subsolutions”, we introduce
the assumption

(NCw) Weak Normal Controllability :

(i) If N − k > 1, there exists e ∈ RN−k such that, for any R > 0, we have

G(X, u, (pY , Ce))→ +∞ when C → +∞ ,

uniformly for X = (Y, Z) ∈ B∞(X̄, r), |u| ≤ R, |pY | ≤ R.

(ii) If N − k = 1, this property holds for e = +1.

(iii) If N − k = 1, this property holds for e = −1.
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Our result is the following.

Proposition 3.4.2 We have

(a) Assume that (NCw) holds. If u be a bounded, u.s.c. subsolution of (3.13) and if
Γc := B∞(X̄, r) ∩ {(Y, Z) ; Z = c} 6= ∅, then u is regular on Γc . In particular,
u is regular on Γ = Γ0 .

(b) If u be a bounded, u.s.c. subsolution of (3.13), if N − k = 1 and if (NCw)-(ii)
holds, then u is regular on Γ0 with respect to B∞(X̄, r) ∩ {Z > 0}. In the same
way, if N −k = 1 and if (NCw)-(iii) holds, then u is regular on Γ0 with respect
to B∞(X̄, r) ∩ {Z < 0}.

(c) If u is a subsolution of G = 0 on B∞(X̄, r)∩{Z ≥ 0} and if either (NCw)-(ii) or
(NCw)-(iii) holds then u is is regular on Γ0 with respect to B∞(X̄, r)∩{Z > 0}.

This proposition means that in B∞(X̄, r), subsolutions cannot have “singular val-
ues” on affine subspaces of the form { (Y, Z); Z = c }. By singular values we mean
here values which are not given by limits coming from outside of those affine sub-
spaces. The three above results can be interpreted in the following way: (a) is the
general “good case” of a subsolution which is regular on Γ0, a set of discontinuity
for G, when we use the entire assumption (NCw). Result (b) is the case when Γ0 is
an affine hyperplan but only one part of assumption (NCw). Result (c) deals with
boundary regularity; such regularity property is useful in order to use the results of
Section 3.5.

Proof — We start by (a). We recall that, thanks to Definition 3.4.1, in the case when
k < N − 1, we have to show that, for any X = (Y, Z) ∈ Γc

u(X) = lim sup{u(Y ′, Z ′) ; (Y ′, Z ′)→ X, Z ′ 6= Z} . (3.14)

since B∞(X̄, r) \Γc is connected and Z ′ 6= Z is equivalent to (Y ′, Z ′) /∈ Γc. Moreover,
if N − k = 1, we also have to show

u(X) = lim sup{u(Y ′, Z ′); (Y ′, Z ′)→ X, Z ′ > Z}
= lim sup{u(Y ′, Z ′); (Y ′, Z ′)→ X, Z ′ < Z}, (3.15)

since in this case, B∞(X̄, r) \ Γc has two connected components. In order to prove
(3.14) we argue by contradiction assuming that

u(X) > lim sup{u(Y ′, Z ′) ; (Y ′, Z ′)→ X, Z ′ 6= Z} .
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Therefore there exists some δ > 0 small enough such that u(Y ′, Z ′) < u(X) − δ if
|(Y ′, Z ′)−X| < δ, with Z ′ 6= Z. Next, for ε > 0, we consider the function

Y ′ 7→ u(Y ′, Z)− |Y − Y
′|2

ε
.

If ε is small enough, this function has a local maximum point at Yε which satisfies
|Yε − Y | < δ and u(Yε, Z) ≥ u(X). But because of the above property, there exists
a neighborhood V of (Yε, Z) such that, if (Y ′, Z ′) ∈ V and Z ′ 6= Z, u(Y ′, Z ′) <
u(Yε, Z)− δ.

This implies that (Yε, Z) is also a local maximum point of the function

(Y ′, Z ′) 7→ u(Y ′, Z ′)− |Y − Y
′|2

ε
− Ce · (Z ′ − Z) .

for any positive constant C and the vector e of RN−k given by (NCw). But, by the
subsolution property, we have

G
(

(Yε, Z), u(Yε, Z),

(
2(Yε − Y )

ε
, Ce

))
≤ 0 .

But, using (NCw) with R = max(||u||∞, 2δε−1), we reach a contradiction for C large
enough.

For the case N − k = 1, we repeat the same argument by choosing either e = +1
or e = −1.

Indeed, if we assume by contradiction that u(X) > lim sup{u(Y ′, Z ′) ; (Y ′, Z ′) →
X, Z ′ > Z}, we argue as above but looking at a local maximum point of the function

(Y ′, Z ′) 7→ u(Y ′, Z ′)− |Y − Y
′|2

ε
+ C(Z ′ − Z) ,

therefore with the choice e = −1. We first look at a maximum point of this function
in compact set of the form

{(Y ′, Z ′); |Y ′ − Y |+ |Z ′ − Z| ≤ δ, Z ′ ≤ Z} .

Notice that, in this set, the term C · (Z ′−Z) is negative (therefore it has the right
sign) and this function has a local maximum point which depends on ε and C, but, in
order to simplify the notations, we denote it by (Ȳ , Z̄). We have u(Ȳ , Z̄) ≥ u(X) by
the maximum point property and we have (Ȳ , Z̄) → (Yε, 0) when C → +∞, where
(Yε, 0) is a maximum point of the function

Y ′ 7→ u(Y ′, 0)− |Y − Y
′|2

ε
.
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Using that u(X) > lim sup{u(Y ′, Z ′) ; (Y ′, Z ′)→ X, Z ′ > Z}, we clearly have the
same property at (Yε, 0) and therefore, for C large enough, at (Ȳ , Z̄) which is also a
maximum point of the above function for all (Y ′, Z ′) such that |Y ′−Y |+ |Z ′−Z| ≤ δ
if δ is chosen small enough. And we reach a contradiction as in the first part of the
proof using (NCw).

Hence u is regular with respect to the the {Z ′ > Z} side but an analogous proof
shows the same property for the other side.

Finally the proofs of (b) and (c) rely on analogous arguments, therefore we skip
them. We just point out that, for (c), the fact that B∞(X̄, r) ∩ {Z < 0} is not part
of the domain allows to do the proof as in the first case of (a).

Q.E.D.

Remark 3.4.3

(i) We have stated and proved Proposition 3.4.2 under Assumption (NCw) but, in
the sequel, we will mainly use Assumption (NC) which will be introduced in the
next section. Clearly (NC) implies (NCw).

On an other hand, we point out that, in control problems, provided that the
Hamiltonian G is defined in a suitable way, (NCw) is equivalent to the existence
of a non-tangential dynamic in the case N − k > 1 while, in the case when
N − k = 1, it is equivalent to the existence of two dynamics pointing strictly
inward each of the two half-spaces defined by the hyperplan Γ0.

(ii) Notice that a similar result still holds for l.s.c. subsolutions à la Barron-Jensen,
where we consider minimum points of u−φ. Of course in this case, the regularity
property has to be expressed with a liminf instead of a limsup but the modifi-
cations are straightforward. We refer to Section 23.4 where the Barron-Jensen
approach is detailed and we use this liminf regularity property.

3.4.3 Regularization of subsolutions

The aim of this section is to construct, for a given subsolution, a suitable approxi-
mation by Lipschitz continuous subsolutions which are even C1 in Y in the convex
case.

To do so, we use for G the following assumptions: for any R > 0, there exist some
constants CR

i > 0 for i = 1 . . . 4, a modulus of continuity mR : [0,+∞[→ [0,+∞[ and
either a constant λR > 0 or µR > 0 such that
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(TC) Tangential Continuity : for any X1 = (Y1, Z), X2 = (Y2, Z) ∈ B∞(X̄, r), |u| ≤ R
and p ∈ RN , then

|G(X1, u, p)−G(X2, u, p)| ≤ CR
1 |Y1 − Y2|.|p|+mR

(
|Y1 − Y2|

)
.

(NC) Normal Controllability : for any X = (Y, Z) ∈ B∞(X̄, r), |u| ≤ R, p =
(pY , pZ) ∈ RN , then

G(X, u, p) ≥ CR
2 |pZ | − CR

3 |pY | − CR
4 .

Notice that (NC) and (TC) have counterparts in terms of control elements i.e.
dynamic and cost, see (NC-BCL), (TC-BCL), p. 139. For the last assumption, if
pY ∈ Rk, we set pY = (pY1 , · · · , pYk)

(Mon) Monotonicity : for any R > 0, there exists λR, µR ∈ R, such that one of the
two following properties holds

(Mon-u): λR > 0 and for any X ∈ B∞(X̄, r), p = (pY , pZ) ∈ RN , any R ≤
u1 ≤ u2 ≤ R,

G(X, u2, p)−G(X, u1, p) ≥ λR(u2 − u1) ; (3.16)

(Mon-p): (3.16) holds with λR = 0, we have µR > 0 and

G(X, u1, q)−G(X, u1, p) ≥ µR(qY1 − pY1) , (3.17)

for any q = (qY , pZ) with pY1 ≤ qY1 and pYi = qYi for i = 2, ..., p.

Before providing results using these assumptions, we give an example showing the
type of properties hidden behind these general assumptions.

Example – We consider an equation in RN+1 written as

µut +H((x1, x2), t, u, (Dx1u,Dx2u)) = 0 in Rk × RN−k × (0,+∞) ,

Here the constant µ satisfies 0 ≤ µ ≤ 1 and in order to simplify we can assume that
H is a continuous function. To be in the above framework, we write X = (t, x1, x2) ∈
(0,+∞)× Rk × RN−k and we set Y = (t, x1) ∈ Rk+1, Z = x2 ∈ RN−k and

G(X, u, P ) = µpt +H((x1, x2), t, u, (px1 , px2)) ,
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where P = (pt, (px1 , px2)).

In order to formulate (TC), (NC) and (Mon) in a simple way, we assume that
(x1, t, u) 7→ H((x1, x2), t, u, (px1 , px2)) is locally Lipschitz continuous for any x2, px1 , px2 .
Then these assumptions can be formulated in the following way

• For (TC), recalling that we always argue locally, one has to assume that, for any
R > 0, there exists a constant CR

1 > 0 such that, for any (t, x1, x2) ∈ [0,+∞)×Rk ×
RN−k with t+ |x1|+ |x2| ≤ R, |u| ≤ R and (px1 , px2) ∈ Rk × RN−k, we have

|Dx1H((x1, x2), t, u, (px1 , px2))|, |DtH((x1, x2), t, u, (px1 , px2))| ≤ CR
1 (|(px1 , px2)|+ 1) .

Here we are in the simple case when mR
(
τ
)

= CR
1 τ for any τ ≥ 0. One can easily

check that these assumptions imply the right property for G with Y = (t, x1).

• Next since pY1 = pt, (Mon) reduces to either µ > 0 orDuH((x1, x2), t, u, (px1 , px2)) ≥
λR > 0 for the same set of (t, x1, x2), u, (px1 , px2) as for (TC). Hence, either we are
in a real time evolution context (µ > 0), or µ = 0 and the standard assumption “H
strictly increasing in u” has to hold.

• Finally (NC) holds if H satisfies the following coercivity assumption in px2

H((x1, x2), t, u, (px1 , px2)) ≥ CR
2 |px2 | − CR

3 |px1| − CR
4 ,

again for the same set of (t, x1, x2), u, (px1 , px2) as for (TC). Notice that in order to
check (NC) for G, the constant CR

3 may have to be changed in order to incorporate
the µpt-term if µ 6= 0.

Our result concerning the approximation by Lipschitz subsolutions is the

Proposition 3.4.4 Let u be a bounded subsolution of (3.13) and assume that (TC),
(NC) and (Mon) hold. Then there exists a sequence of Lipschitz continuous functions
(uε)ε defined in B∞(X̄, r − a(ε)) where a(ε)→ 0 as ε→ 0 such that

(i) each uε is a subsolutions of (3.13) in B∞(X̄, r − a(ε)),

(ii) each uε are semi-convex in the Y -variable

(iii) lim sup∗ uε = u as ε→ 0.

Remark 3.4.5 Equations of the form

max(ut +G1(x,Dxu);G2(x, u,Dxu)) = 0 ,

do not satisfy (Mon) even if G2 satisfies (Mon-u) and the Hamiltonian pt+G1(x, px)
satisfies (Mon-p). To overcome this difficulty, we have to use a change of variable of
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the form v = exp(Kt) · u in order that both Hamiltonians satisfy (Mon-u), which is
a natural change (cf. Section 5.5). Of course, suitable assumptions on G1 and G2 are
needed in order to have (TC) and (NC).

Proof — First we can drop the R in all the constants appearing in the assumptions
by remarking that, u being bounded, we can use the constants with R = ||u||∞.

In the case, when (Mon) holds with λ > 0 we set for X = (Y, Z)

uε(X) := max
Y ′∈Rk

{
u(Y ′, Z)− (|Y − Y ′|2 + ε4)

α/2

εα

}
,

for some (small) α > 0 to be chosen later on, while, in the other case we set

uε(X) := max
Y ′∈Rk

{
u(Y ′, Z)− exp(KY1)

|Y − Y ′|2

ε2

}
,

for some constant K to be chosen later on.

In both cases, the maximum is achieved for some Y ′ such that |Y − Y ′| ≤ O(ε),
hence with a point (Y ′, Z) ∈ B∞(X̄, r) for a(ε) > O(ε), and therefore uε is well-
defined in B∞(X̄, r − a(ε)). By standard properties of the sup-convolution, the uε’s
are continuous in Y but, for the time being, not necessarily in Z, despite of Proposi-
tion 3.4.2.

To prove that uε is a subsolution in B∞(X̄, r − a(ε)), we consider a smooth test-
function φ and we assume that X ∈ B∞(X̄, r − a(ε)) is a maximum point of uε − φ.
We first consider the “λ > 0” case : if

uε(X) = u(Y ′, Z)− (|Y − Y ′|2 + ε4)
α/2

εα
,

then (Y ′, Z) is a maximum point of (Ỹ , Z̃) 7→ u(Ỹ , Z̃)−

(
|Y − Ỹ |2 + ε4

)α/2
εα

−φ(Y, Z̃) ,

and therefore, by the subsolution property for u

G((Y ′, Z), u(Y ′, Z), (pY , DZφ(Y, Z))) ≤ 0 ;

where

pY := α(Y ′ − Y )
(|Y − Y ′|2 + ε4)

α/2−1

εα
.

On the other hand the maximum point property in Y , implies that pY = DY φ(Y, Z).



HJ-Equations with Discontinuities: Pde Tools 83

To obtain the right inequality, we have to replace (Y ′, Z) by X = (Y, Z) in this
inequality and u(Y ′, Z) by uε(X). To do so, we have to use (TC); in order to do it,
we need to have a precise estimate on the term |Y −Y ′||(pY , DZφ(Y, Z))|. The explicit
form of pY gives it for |Y − Y ′||pY | but this is not the case for |Y − Y ′|.|DZφ(Y, Z)|
since we have not such a precise information on DZφ(Y, Z). Instead we have to use
(NC) which implies

C2|DZφ(Y, Z)| − C3|pY | − C4 ≤ 0 .

(remember that we have dropped the dependence in R for all the constants). On the
other hand, we have combining (TC) and (Mon)

G(X, uε(X), (DY φ(Y, Z), DZφ(Y, Z))) ≤ G((Y ′, Z), u(Y ′, Z), (pY , DZφ(Y, Z)))+

C1|Y − Y ′||Dφ(X)|+m(|Y − Y ′|)− λ

(
|Y − Ỹ |2 + ε4

)α/2
εα

.

It remains to estimate the right-hand side of this inequality: we have seen above that
|Y − Y ′| = O(ε) and (NC) implies that

|Dφ(X)| ≤ K̄(|pY |+ 1) ,

for some large constant K̄ depending only on C2, C3, C4. Finally

|Y − Y ′||pY | = α|Y − Y ′|2 (|Y − Y ′|2 + ε4)
α/2−1

εα
≤ α

(
|Y − Ỹ |2 + ε4

)α/2
εα

.

By taking α < K̄, we finally conclude that

G(X, uε(X), (DY φ(Y, Z), DZφ(Y, Z)) ≤ O(ε) +m(O(ε)) ,

and changing uε in uε − λ−1(O(ε) +m(O(ε))), we have the desired property.

In the µ-case, the equality pY = DY φ(Y, Z) is replaced by

DY φ(Y, Z) = −K exp(KY1)
|Y − Y ′|2

ε2
e1 + exp(Kt)

(Y ′ − Y )

ε2
,

where e1 is the vector (1, 0, · · · , 0) in Rk. The viscosity subsolution inequality for u
at (Y ′, Z) reads

G((Y ′, Z), u(Y ′, Z), (p̃Y , DZφ(Y, Z)) ≤ 0 ,

where p̃Y = exp(Kt)
(Y ′ − Y )

ε2
.
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We first use (NC), which implies

|Dφ(X)| ≤ K̄(|p̃Y |+ 1) = K̄(exp(Kt)
|Y ′ − Y |

ε2
+ 1) .

Then we combine (TC) and (Mon) to obtain

G(X, uε(X), (DY φ(Y, Z), DZφ(Y, Z)) ≤ G((Y ′, Z), u(Y ′, Z), (p̃Y , DZφ(Y, Z))+

C1|Y − Y ′||Dφ(X)|+m(|Y − Y ′|)− µK exp(KY1)
|Y − Y ′|2

ε2
.

We conclude easily as in the first case choosing K such that µK > C1K̄.

Properties (ii) and (iii) are classical properties which are easy to obtain and we
drop the proof.

We conclude this proof by sketching the proof of the Lipschitz continuity of uε in
Z. To do so, we write X̄ = (Ȳ , Z̄) and for any fixed Y such that |Y − Ȳ | < r− a(ε),
we consider the function Z 7→ uε(Y, Z). By using (NC) and the Lipschitz continuity
of uε in the Y -variable, it is easy to prove that this function is a subsolution of

C2|DZw| ≤ C3Kε + C4 ,

where Kε = ||DY u
ε||∞ and the estimates of DZu

ε follows.
Q.E.D.

The convex case – The above regularization result can be improved when some
convexity property of the Hamiltonian holds. More precisely, let us introduce the fol-
lowing assumption

(HConv) : For any X ∈ B∞(X̄, r), the function (u, p) 7→ G(X, u, p) is convex.

We begin with a result concerning convex combinations of subsolutions. While the
result is interesting in itself even in the case of continuous Hamiltonians, we actually
need it to make a suitable regularization of subsolutions. By a convex combination of
subsolutions ui for i = 1, .., n, we mean of course a finite sum

W :=
n∑
i=1

µiui , where for all i, µi ≥ 0 and
n∑
i=1

µi = 1 .
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Lemma 3.4.6 Assume that (X, r, p) 7→ G(X, r, p) is l.s.c. and satisfies (HConv).
Then any convex combination of Lipschitz continuous subsolutions of G = 0 is a
subsolution of G = 0.

Proof — We just sketch the proof since most of the arguments are rather standard. We
have only to prove the result for a convex combination of two subsolutions W := λw1+
(1 − λ)w2, the general case involving n subsolutions for n > 2 deriving immediately
by iteration of the result. Of course, we can assume w.l.o.g. that 0 < λ < 1.

Let φ be a smooth test-function and X̃ ∈ B∞(X̄, r) a local strict maximum point

of W − φ in B(X̃, r̃) ⊂ B∞(X̄, r). We use a tripling of variables by considering in

B(X̃, r̃)
3

the function

Ψ(X1, X2, X) := λw1(X1)+(1−λ)w2(X2)−φ(X)−λ |X1 −X|2

ε
− (1−λ)

|X2 −X|2

ε
.

Denoting by (Xε
1 , X

ε
2 , X

ε) a maximum point of this function and applying Lemma 6.4.1
in Section 6.4, we have (Xε

1 , X
ε
2 , X

ε)→ (X̃, X̃, X̃) when ε→ 0, thereforeXε
1 , X

ε
2 , X

ε ∈
B(X̃, r̃) for ε small enough. Hence we get the viscosity inequalities

G(Xε
1 , w1(Xε

1), P ε
1 ) ≤ 0 , G(Xε

2 , w2(Xε
2), P ε

2 ) ≤ 0 ,

and the property Dφ(X) = λP ε
1 + (1− λ)P ε

2 , where, for i = 1, 2,

P ε
i =

2(Xε
i −Xε)

ε
.

Using the Lipschitz continuity of w1, w2, the P ε
i are uniformly bounded with respect

to ε and extracting if necessary subsequences, we can assume that they converge
respectively to Pi when ε→ 0.

Letting ε tend to 0, using in a crucial way the lower semi-continuity of G, we are
lead to the same situation as above:

G(X̃, w1(X̃), P1) ≤ 0 , G(X̃, w2(X̃), P2) ≤ 0 .

Because of the continuity of Dφ, Dφ(X̃) = λP1 + (1 − λ)P2. So, making the convex
combinaison of the above inequalities, after using (HConv) we finally get

G(X̃,W (X̃), Dφ(X̃)) ≤ 0 ,

which proves that W is a viscosity subsolution of G = 0.
Q.E.D.

We can now state the regularization result
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Proposition 3.4.7 Under the assumptions of Proposition 3.4.4, if G is l.s.c. and if
(HConv) holds then the sequence (uε)ε of Lipschitz continuous subsolutions of (3.13)
can be built in such a way that they are C1 (and even C∞) in the Y variable.

Proof — By Proposition 3.4.4, we can assume without loss of generality that u is
Lipschitz continuous. In order to obtain further regularity, we are going to use a
standard convolution with a sequence of mollifying kernels but only in the Y -variable.

Let us introduce a sequence (ρε)ε of positive, C∞-functions on Rk, ρε having a
compact support in B∞(0, ε) and with

∫
Rk ρε(e)de = 1. Then we set, for X = (Y, Z) ∈

B∞(X̄, r − ε)
uε(X) :=

∫
|e|∞<ε

u(Y − e, Z)ρε(e)de .

By standard arguments, it is clear that uε is smooth in Y .

We first want to prove that the uε are approximate subsolutions of (3.13), i.e. there
exists some η(ε)→ 0 as ε→ 0 such that

G(X, uε, Duε) ≤ η(ε) in B∞(X̄, r − ε) . (3.18)

To do so we follow the strategy of [38][Lemma A.3], approximating the integral by a
Riemann sum. We are lead to consider a function uεn defined by

uεn(X) :=
n∑
i=1

µi u(Y − ei, Z) ,

for some |ei| < ε and for coefficients µi ≥ 0 such that
∑
µi =

∫
ρε = 1.

Using (TC) and the Lipschitz continuity of u, it is clear that there exists η(ε), sat-
isfying the above mentioned properties and independent of i, such that the functions
X = (Y, Z) 7→ u(Y − ei, Z) are all subsolutions of G− η(ε) = 0.

Applying Lemma 3.4.6, uεn is also a subsolution of G− η(ε) = 0 and since uεn con-
verges uniformly to uε when n→ +∞, a standard stability result (cf. Theorem 3.1.4)
implies that uε a subsolution of G− η(ε) = 0 as well.

Finally, in order to drop the η(ε)-term in (3.18), we can either replace uε by uε −
λ−1η(ε) in the (Mon-u)-case, or uε − µ−1η(ε)Y1 in the (Mon-p) case, and we get
indeed a subsolution of G = 0.

Q.E.D.

Remark 3.4.8 Let us make three complementary comments.
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(i) It is clear from the proof of Proposition 3.4.7 that the convexity of G(X, r, P ) in
r is not necessary to obtain such a result, the continuity in r being enough, as we
explain now. Notice first that, by the Lipschitz continuity of u,

|u(Y − ei, Z)− u(Y, Z)|, |u(Y, Z)− uε(Y, Z)|, |u(Y, Z)− uεn(Y, Z)| ≤ Kε ,

K being the Lipschitz constant. Then, we are reduced to a version of Lemma 3.4.6
with no r-dependence by using an approximate Hamiltonian of the form G̃(X,P ) :=
G(X, uε(X), P )− η̃(ε), depending only on X and P . Indeed, taking into account the
Kε error term into η̃(ε), the functions u(Y −ei, Z), uεn and uε become all subsolutions
of G̃ = 0, which satisfies (HConv). The rest of the proof is then the same as above.

(ii) The next remark concerns “tangential regularizations” in the case of a “tangential
viscosity inequalities”. In several situations, and in particular in stratified problems,
the subsolution u of (3.13) satisfies also a subsolution inequality of the form

GΓ(Y, u(Y, 0), DY u(Y, 0)) ≤ 0 on Γ ,

where the precise meaning of this subsolution inequality is obtained by looking at max-
imum points of u(Y, 0)−φ(Y ) on Γ, not in all RN . As the proofs of Proposition 3.4.4
and 3.4.7 show, if GΓ satisfies (TC), then the uε given by the regularization pro-
cesses of these results are also semi-convex or C1 subsolutions of GΓ ≤ 0; indeed the
main difficulty in the proofs of these results comes from the Z-variable which does not
appear here. A remark which plays a crucial in the case of stratified problems.

(iii) The result still applies to quasi-convex Hamiltonians. Indeed, for instance us-
ing (i) above for simplicity, the convexity of G is used to prove essentially that if
G(X, u, Pi) ≤ 0 for i = 1, 2, then G(X, u, sP1 + (1− s)P2) ≤ 0. But of course this is
also true in the case of quasi-convexity since

G(X, u, sP1 + (1− s)P2) ≤ max{G(X, u, P1),G(X, u, P2)} ≤ 0 .

However, in the context of evolution equations this means that we need a “full” quasi-
convexity assumption: under the form H(x, t, u, (Dxu, ut)) = 0, the quasi-convexity
is required to hold with respect to both (Dxu, ut). Suprisingly, this assumption leaves
out “natural” evolution equations under the form ut + F (x, t, u,Dxu) = 0 where F is
quasi-convex in Dxu. Indeed, the full Hamiltonian H = ut + F is not quasi-convex
with respect to both variables in general.

3.4.4 What about regularization for supersolutions?

The previous section shows how to regularize subsolutions and we address here the
question: is it possible to do it for supersolutions, changing (of course) the sup-
convolution into an inf-convolution?
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Looking at the proof of Theorem 3.4.4, the answer is not completely obvious: on
one hand, the arguments for an inf-convolution may appear as being analogous but,
on the other hand, we use in a key way Assumption (NC) which allows to control
the derivatives in Z of the sup-convolution (or the test-function), an argument which
is, of course, valid only for subsolutions.

Actually, regularizing a supersolution v of (3.13)—a notion which is defined exactly
in the same way as for subsolutions—requires additional assumptions on either v or
G. For G, we introduce the following stronger version of (TC)

(TC-s) Strong Tangential Continuity : for any R > 0, there exists CR
1 > 0 and a

modulus of continuity mR : [0,+∞[→ [0,+∞[ such that for any X1 = (Y1, Z), X2 =
(Y2, Z) ∈ B∞(X̄, r), |u| ≤ R, p = (pY , pZ) ∈ RN , then

|G(X1, u, p)−G(X2, u, p)| ≤ CR
1 |Y1 − Y2|.|pY |+mR

(
|Y1 − Y2|

)
.

We point out that, compared to (TC), the “|p|” is replaced by “|pY |”. This as-
sumption is typically satisfied by equations of the form

G(X, u, p) = G1(X, u, pY ) + G2(z, u, p) ,

since, for G1, (TC-s) reduces to (TC) and G2 readily satisfies (TC-s).

Another possibility is to assume that v(X) = v(Y, Z) is Lipschitz continuous in Z
in B∞(X̄, r), uniformly in Y , i.e. there exists a constant K > 0 such that, for any
X1 = (Y, Z1), X2 = (Y, Z2) ∈ B∞(X̄, r)

|v(X1)− v(X2)| ≤ K|Z1 − Z2| . (3.19)

The result for the supersolutions is the

Proposition 3.4.9 Let v be a bounded supersolution of (3.13) and assume that
(a) either (TC-s) and (Mon) hold
(b) or (TC), (Mon) and (3.19) hold.
Then there exists a sequence (vε)ε defined in B∞(X̄, r − a(ε)) where a(ε) → 0 as
ε→ 0 such that

(i) each vε is a supersolution of (3.13) in B∞(X̄, r − a(ε)),

(ii) each vε is semi-concave in the Y -variable

(iii) lim inf ∗ v
ε = v as ε→ 0.
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Two remarks on this proposition: first, the proof is readily the same as for subso-
lutions, the only difference is that we do not need to control the Z-derivative in case
(a) because of the form of (TC-s) while it is clearly bounded in case (b) because of
(3.19). The second remark is that, a priori, the vε are not continuous in Z in case (a).
But of course, they are Lipschitz continuous in Y and Z in case (b).

3.5 Equations on the boundary

We conclude this chapter with several results concerning the properties of viscosity
sub and supersolutions of an HJ-equation at the boundary of the domain where the
equation is set. Those results will be mainly applied in Part III but we formulate both
in a quite general way here, considering a general HJ-equation of the form

ut +H(x, t, u,Du) = 0 in Q , (3.20)

where Q := Ω× (0, Tf ), H is a continuous function and Ω is a C1-domain of RN . We

also set ∂`Q := ∂Ω× (0, Tf ) and Q
`

= Ω× (0, Tf ).

The first result is used below in the proof of Proposition 17.2.1: in terms of control,
it means that viscosity subsolution inequalities hold up the boundary for all dynamics
which are pointing inward the domain. Here, d(z) = dist(z, ∂Ω) denotes the distance
to the boundary which is C1 in a neighborhood of ∂Ω.

Proposition 3.5.1 Assume that u is an u.s.c., locally bounded function on Q
`

which
is a subsolution of (3.20). If there exists (x, t) ∈ ∂`Q and r > 0 such that

(i) The u.s.c. function u is Q-regular on ∂`Q ∩ [B(x, r)× (t− r, t+ r)].

(ii) The distance function d to ∂Ω is smooth in Ω ∩B(x, r),

(iii) There exists a function L : Q
` ∩ [B(x, r) × (t − r, t + r)] × R × RN → R such

that L ≤ H on Q
` ∩ [B(x, r)× (t− r, t+ r)]× R× RN and

λ 7→ L(y, s, u, p+ λDd(y)) ,

is a decreasing function for any (y, s, u, p) ∈ Q`∩[B(x, r)×(t−r, t+r)]×R×RN .

Then u is a subsolution of

ut + L(x, t, u,Du) = 0 on ∂`Q ∩ [B(x, r)× (t− r, t+ r)] .

Moreover, if we can take L = H the same result is valid for supersolutions.
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We point out that this result holds for “regular subsolutions”, i.e. which satisfy (i),
a regularity which is a consequence of Proposition 3.4.2 if we have suitable normal
controlability and tangential continuity type assumptions.

Proof — We consider a test-function ψ which is C1 on Q
`

and we assume that (y, s) ∈
∂`Q∩ [B(x, r)× (t− r, t+ r)] is a strict local maximum point of u−ψ (again we refer
to Lemma 3.1.3 to see why we can always assume the maximum point to be strict).
To prove the L-inequality, we consider the function

(z, τ) 7→ u(z, τ)− ψ(z, τ)− α

d(z)
,

where α > 0 is a parameter devoted to tend to 0.

We apply Lemma 6.4.1 with

w(z, τ) := u(z, τ)− ψ(z, τ) , χα(z, τ) =
α

d(z)
,

K = F = Q
` ∩ (B(x, r)× [t− r, t+ r]) .

Assumption (i) of Lemma 6.4.1 is clearly satisfied and since lim inf∗ χα = 0 in K (even
on ∂Ω), Assumption (ii) also holds. We now turn to condition (iii) which requires
some explanations.

By the Q-regularity of u on ∂`Q ∩ [B(x, r)× (t− r, t+ r)], there exists a sequence
(yk, tk) converging to (y, t) such that u(yk, tk)→ u(y, t) and yk ∈ Ω. We may assume
without loss of generality that d(yk) ≥ k−1/2.

Then, considering the sequence (yα, tα) := (y[α−1], t[α−1]) where [α−1] is the integer
part of α−1, we have (yα, tα) → (y, t). Moreover, since d(yα) ≥ [α−1]1/2, we deduce
also that χα(yα, tα) → 0 and w(yα, tα) → w(y, t). In other words, this sequence
corresponds to the sequence (zε0)ε required in Assumption (iii) of Lemma 6.4.1.

Now, for α small enough, this function has a local maximum at (z̄, τ̄) ∈ K, depend-
ing on α but we drop this dependence for the sake of simplicity of notations. The
strict maximum property at (y, s) implies its uniqueness, hence Lemma 6.4.1 ensures
that up to extraction, as α→ 0 we get

(z̄, τ̄)→ (y, s) , u(z̄, τ̄)→ u(y, s) .

Writing the viscosity subsolution inequality for u, we have

ψt(z̄, τ̄) +H(z̄, τ̄ , u(z̄, τ̄), Dψ(z̄, τ̄)− α

[d(z̄)]2
Dd(z̄)) ≤ 0 ,
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which implies that the same inequality holds for L since L ≤ H. Finally we use the
monotonicity property of L in the Dd(y)-direction which yields

ψt(z̄, τ̄) + L(z̄, τ̄ , u(z̄, τ̄), Dψ(z̄, τ̄)) ≤ 0 .

The conclusion follows by letting α tends to 0, using the continuity of L.

For the supersolution property, we argue in an analogous way, looking at a minimum

point and introducing a “+
α

d(z)
” term instead of the “− α

d(z)
”-one.

Q.E.D.

Then we turn to the classical notions of sub and superdifferentials: we describe their
properties on the boundary ∂`Q since those on Q are well-known and, as we already
mentioned it above, some of these properties play a crucial role in Part III. Here we

add the term “relatively to Q
`
” since, in the sequel, we are going to consider at least

two domains with a common boundary. Therefore, on ∂`Q we can consider both sub

and super-differentials relatively either to Q
`

or to its complementary.

We first give the general definition for any point in Q
`
.

Definition 3.5.2 Sub and superdifferentials relatively to Q
`
.

(i) The superdifferential relatively to Q
`

of an u.s.c. function u : Q
` → R at a point

(x̄, t̄) ∈ Q`
is the, possibly empty, closed convex set D+

Q
`u(x̄, t̄) ⊂ RN+1, defined

by: (px, pt) ∈ D+

Q
`u(x̄, t̄) if and only if, for any (x, t) ∈ Q`

,

u(x, t) ≤ u(x̄, t̄) + px · (x− x̄) + pt(t− t̄) + o(|t− t̄|+ |x− x̄|) ,

(ii) The subdifferential relatively to Q
`

of an l.s.c. function v : Q
` → R at a point

(x̄, t̄) ∈ Q`
is the, possibly empty, closed convex set D−

Q
`v(x̄, t̄) ⊂ RN+1, defined

by: (px, pt) ∈ D−
Q
`v(x̄, t̄) if and only if, for any (x, t) ∈ Q`

,

v(x, t) ≥ v(x̄, t̄) + px · (x− x̄) + pt(t− t̄) + o(|t− t̄|+ |x− x̄|) .

Of course, the terminology “relatively to Q
`
” only makes sense for points (x̄, t̄) ∈

∂`Q and if u (or v) is defined not only on Q
`×(0, Tf ) but on a larger domain, typically

RN × (0, Tf ). Moreover, for points in Q, Definition 3.5.2 is the classical definition.

The first lemma is classical and we leave its proof to the reader.
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Lemma 3.5.3 (Sub/superdifferentials on Q
`

and test-functions)

(i) Let u : Q
` → R be an u.s.c. function and (x̄, t̄) ∈ Q`

. An element (px, pt) is in
D+

Q
`u(x̄, t̄) if and only if there exists a C1-function ϕ such that (x̄, t̄) is a strict

local maximum point of u− ϕ on Q
`

and Dxϕ(x̄, t̄) = px, ϕt(x̄, t̄) = pt.

(ii) Let v : Q
` → R be an l.s.c. function and (x̄, t̄) ∈ Q`

. An element (px, pt) is in
D−
Q
`v(x̄, t̄) if and only if there exists a C1-function ϕ such that (x̄, t̄) is a strict

local minimum point of u− ϕ on Q
`

and Dxϕ(x̄, t̄) = px, ϕt(x̄, t̄) = pt.

We have formulated Lemma 3.5.3 with “strict” local maximum or minimum point
but, obviously, this is a fortiori true with just local maximum or minimum.

Now we turn to the structure of the sub and superdifferentials on the boundary
and the connections with Equation (3.20). With the notations of Proposition 3.5.1,
we have

Proposition 3.5.4 (Structure of the sub and superdifferentials on ∂`Q and
inequalities up to the boundary)

(i) Assume that u : Q
` → R is an u.s.c., locally bounded subsolution of (3.20)

which is Q-regular at the point (x, t) ∈ ∂`Q. If (px, pt) ∈ D+

Q
`u(x, t), then the

set I = {λ ∈ R : (px +λDd(x), pt) ∈ D+

Q
`u(x, t)} is an interval, either I = R or

I = [λ,+∞) for some λ ≤ 0 and in this latter case,

pt +H(x, t, u(x, t), px + λDd(x)) ≤ 0 .

(ii) Assume that v : Q
` → R is a l.s.c., locally bounded supersolution of (3.20)

which is Q-regular at the point (x, t) ∈ ∂`Q. If (px, pt) ∈ D−
Q
`v(x, t), then the

set J = {λ ∈ R : (px + λDd(x), pt) ∈ D−
Q
`v(x, t)} is an interval, either J = R

or J = (−∞, λ] for some λ ≥ 0 and in this latter case,

pt +H(x, t, v(x, t), px + λDd(x)) ≥ 0 .

We recall that, for x ∈ ∂Ω, Dd(x) is the unit normal vector to ∂Ω at x pointing
inward Ω. Therefore Proposition 3.5.4 gives informations on the structure of the sub
and superdifferentials on the boundary in the normal direction.



HJ-Equations with Discontinuities: Pde Tools 93

Proof — We provide a complete proof only in the subsolutions case, the case of su-
persolutions follows from similar arguments.

(a) Since D+

Q
`u(x, t) is a non-empty closed convex subset of RN+1, it is clear that

I is also a non-empty closed convex subset of R, hence an interval. Moreover, we
claim that since (px, pt) ∈ D+

Q
`u(x, t), then also (px+λDd(x), pt) ∈ D+

Q
`u(x, t) for any

λ ≥ 0. Indeed, if y ∈ Ω, by the regularity of d(·),

0 ≤ d(y) = d(x) +Dd(x) · (y − x) + o(|y − x|) = Dd(x) · (y − x) + o(|y − x|) .

So, for any λ ≥ 0, λDd(x) ·(y−x) ≥ o(|y−x|) and the claim follows. Hence I is either
R or of the form [λ,+∞) for some λ ∈ R, and necessarily λ ≤ 0 because λ = 0 ∈ I.

It remains to prove the viscosity inequality when λ > −∞.

(b) Since (px + λDd(x), pt) ∈ D+

Q
`u(x, t), by Lemma 3.5.3, there exists a C1-function

ϕ such that (x, t) is a strict local maximum point of u − ϕ on Q
`

and Dxϕ(x, t) =
px + λDd(x), ϕt(x, t) = pt. Then, for 0 < ε� 1, we consider the function

ψε(y, s) = u(y, s)− ϕ(y, s) + εd(y) .

Since (x, t) is a strict local maximum point of u − ϕ on Q
`
, for ε small enough,

there exists a maximum point (yε, sε) of ψε near (x, t) and we have (yε, sε) → (x, t),
u(yε, sε)→ u(x, t) as ε→ 0.

We claim that (yε, sε) ∈ Q, at least for ε small enough. Indeed, if (yε, sε) ∈ ∂`Q,
then necessarily (yε, sε) = (x, t); otherwise, by the strict maximum point property,
we would have

ψε(yε, sε) = (u− ϕ)(yε, sε) < (u− ϕ)(x, t) = ψε(x, t)

which would contradict the maximality of (yε, sε) for ψε. But (yε, sε) = (x, t) is not
possible since it would imply that (px+(λ−ε)Dd(x), pt) ∈ D+

Q
`u(x, t), a contradiction

to the minimality of λ.

(c) Therefore (yε, sε) ∈ Q and the viscosity subsolution inequality holds, namely

ϕt(yε, sε) +H(yε, sε, u(yε, sε), Dxϕ+ (λ− ε)Dd(yε)) ≤ 0 .

The result follows by letting ε → 0, using the continuity of H and the fact that ϕ
is C1.

Q.E.D.
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Remark 3.5.5 (Sub and superdifferentials on ∂`Q and regularity)
In Proposition 3.5.4, we assume the sub and supersolutions to be Q-regular at the
point (x, t) ∈ ∂`Q: this is, of course, to obtain the viscosity inequalities for λ and λ.
We point out anyway that
– even if these regularity properties hold, λ and λ can be infinite. Take Q = (0,+∞)×
(0, Tf ) and consider the functions u(x, t) = −x1/2 or v(x, t) = x1/2.
– If u is NOT Q-regular at the point (x, t) ∈ ∂`Q and if D+

Q
`u(x, t) is non-empty then

I = R and, in the same way, if v is NOT Q-regular at the point (x, t) ∈ ∂`Q and if
D−
Q
`v(x, t) is non-empty then J = R.

We conclude this section by a “two-domain” result. More precisely we consider a
domain Ω̃ ⊂ RN which can be written as

Ω̃ = Ω1 ∪ Ω2 ∪H ,

where Ω1,Ω2 are two disjoints domains of RN and H = ∂Ω1∩∂Ω2 is a smooth (N−1)-

manifold. We use the notations Qi = Ωi × (0, Tf ), Ωi
`

= Ωi × (0, Tf ) and we notice
that H × (0, Tf ) ⊂ ∂`Ωi for i = 1, 2. Finally we denote by d(·) the distance function
to H and by n(x) the unit normal vector to H pointing inward to Ω1.

Given Λ = (λ1, λ2) ∈ R, we define the continuous function χΛ : Ω̃→ R by

χΛ(x) =

{
λ1d(x) if x ∈ Ω1,

λ2d(x) if x ∈ Ω2,

Lemma 3.5.6 (Sub and superdifferentials on H× (0, Tf ) and test-functions)

(i) Let u : Ω̃ × (0, Tf ) → R be an u.s.c. function and (x̄, t̄) a point of H× (0, Tf ).
We assume that there exists (px, pt) ∈ RN+1 and Λ = (λ1, λ2) ∈ R2 such that (px + λ1n(x), pt) ∈ D+

Ω1
lu(x̄, t̄) ,

(px − λ2n(x), pt) ∈ D+

Ω2
lu(x̄, t̄) .

Then there exists a C1-function ϕ such that (x̄, t̄) is a strict local maximum
point of u− χΛ − ϕ on Ω̃× (0, Tf ) and Dxϕ(x̄, t̄) = px, ϕt(x̄, t̄) = pt.

(ii) Let v : Ω̃× (0, Tf )→ R be a l.s.c. function and (x̄, t̄) a point of H× (0, Tf ). We
assume that there exists (px, pt) ∈ RN+1 and Λ = (λ1, λ2) ∈ R2 such that (px + λ1n(x), pt) ∈ D−

Ω1
lv(x̄, t̄)

(px − λ2n(x), pt) ∈ D−
Ω2

lv(x̄, t̄) .



HJ-Equations with Discontinuities: Pde Tools 95

Then there exists a C1-function ϕ such that (x̄, t̄) is a strict local maximum
point of u− χΛ − ϕ on Ω̃× (0, Tf ) and Dxϕ(x̄, t̄) = px, ϕt(x̄, t̄) = pt.

We refer the reader to Part III where we introduce test-functions which are piecewise
C1 like χΛ + ϕ above. Lemma 3.5.6 will be useful in this context.

Proof — The proof is short and we provide it only in the subdifferential case, the
proof for the superdifferential being analogous. We just notice that (px, pt) is in the
super-differential of the u.s.c. function u−χΛ at (x̄, t̄). The existence of ϕ is therefore
a consequence of the classical results on subdifferentials.

Q.E.D.
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Chapter 4

Control Tools

Of course, the key ingredients used in this chapter are not new, we just try to revisit
them in a more modern way: we refer the reader to the founding article of Filippov
[86] and to Aubin and Cellina [10], Aubin and Frankowska [11], Clarke [60], Clarke,
Ledyaev, Stern and Wolenski [61] for the classical approach of deterministic control
problems by non-smooth analysis methods.

4.1 Introduction: how to define deterministic con-

trol problems with discontinuities? The two

half-spaces problem

As in the basic example of a two half-space discontinuity that was introduced in
Section 3.1, we consider a partition of RN into

H = {xN = 0} , Ω1 = {xN > 0} , Ω2 = {xN < 0} ,

and we assume that we have three different control problems in each of these subsets
given by (bH, cH, lH), (b1, c1, l1), (b2, c2, l2). For the sake of simplicity, we can assume
that they are all defined on RN × [0, T ] × Ai for i = H, 1, 2 and even that they all
satisfy (HBA−CP).

For such problems, the first question consists in defining properly the dynamic since,
when the trajectory reaches H, we have a discontinuity in b and the controller may
have access to dynamics b1 and b2, but also to the specific dynamics bH. But how?
And of course, a similar question holds for the cost and discount factor.

The natural tool consists in using the theory of differential inclusions that we first

97
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introduce on the simple example of Chapter 2. The idea consists in looking at the set
valued map

BCL(x, t) := {(b(x, t, α), c(x, t, α), l(x, t, α)) : α ∈ A} ,

and to solve the differential inclusion

(Ẋ(s), Ḋ(s), L̇(s)) ∈ BCL(X(s), t− s) , (X,D,L)(0) = (x, 0, 0) ,

which only required that the set valued map BCL is upper-semicontinuous, with
values in compact, convex sets (which is almost satisfied here, at least, adding the
assumptions that the BCL(x, t) are convex or solving with their convex hull). Then

Ũ(x, t) = inf
(X,D,L)

(∫ t

0

L̇(s) exp(D(s))) ds+ u0(X(t)) exp(D(t))

)
,

The advantage of this approach is to allow to define the dynamic, discount and cost
without any regularity in b, c, l.

The next step is the half-space discontinuity for which we are going to define BCL
in the same way for x ∈ Ω1 and x ∈ Ω2 by just setting{

(b(x, t, α), c(x, t, α), l(x, t, α)) = (b1(x, t, α1), c1(x, t, α1), l1(x, t, α1)) if x ∈ Ω1

(b(x, t, α), c(x, t, α), l(x, t, α)) = (b2(x, t, α2), c2(x, t, α2), l2(x, t, α2)) if x ∈ Ω2

where α ∈ A = AH × A1 × A2, the “extended control space”.

For x ∈ H and t ∈ [0, T ], we just follow the theory of differential inclusions:
by the upper semi-continuity of BCL, we necessarely have in BCL(x, t) all the
(bi(x, t, αi), ci(x, t, αi), li(x, t, αi)) for i = H, 1, 2 but we have also to take the convex
hull of all these elements, namely all the convex combinations of them. In particu-
lar, for the dynamic, we have (a priori) all the b = µ1b1 + µ2b2 + µ3bH such that
µ1 +µ2 +µ3 = 1, µi ≥ 0 but we will show that such b play a role only if the trajectory
stays on H and therefore if we have b ·eN = 0. A more precise statement will be given
in Section 8.

4.2 Statement of the deterministic control prob-

lem and dynamic programming principle

Based on the ideas that we sketched in last section, we consider a general approach
of finite horizon control problems with differential inclusions. We use an extended
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trajectory (X,T,D, L) in which we also embed the running time variable T , pointing
out that, in the basic example we introduced in the previous section, we just have
T (s) = t− s.

This framework may seem complicated but we made this choice because it allows
us to consider all the applications we have in mind: on one hand, time and space
will play analogous roles when we face time-dependent discontinuities, or for treating
some unbounded control type features; on the other hand, discount factors will be
necessarily involved when dealing with boundary condition — see Part V.

In this section, we present general and classical results which do not require any
particular assumption concerning neither the structure of the discontinuities, nor on
the control sets.

In the following, we denote by P(E) the set of all subsets of E.

4.2.1 Dynamics, discount and costs

The first hypothesis we make is

(HBCL)fund : The set-valued map BCL : RN × [0, Tf ]→ P(RN+3) satisfies

(i) the map (x, t) 7→ BCL(x, t) has compact, convex images and is upper semi-
continuous;

(ii) there exists M > 0, such that, for any x ∈ RN and t > 0,

BCL(x, t) ⊂
{

(b, c, l) ∈ RN+1 × R× R : |b| ≤M ; |c| ≤M ; |l| ≤M
}
,

where | · | stands for the usual euclidian norm in any euclidean space Rp (which
reduces to the absolute value in R, for the c and l variables). If (b, c, l) ∈ BCL(x, t), b
corresponds to the dynamic (both in space and time), c to the discount factor and l to
the running cost. Assumption (HBCL)fund-(ii) means that dynamics, discount factors
and running costs are uniformly bounded. In the following, we sometimes have to
consider separately dynamics, discount factors and running costs. To do so, we set

B(x, t) =
{
b ∈ RN+1; there exists c, l ∈ R such that (b, c, l) ∈ BCL(x, t)

}
,

and analogously for C(x, t),L(x, t) ⊂ R. Finally, we decompose any b ∈ B(x, t) as
(bx, bt), where bx and bt are respectively the space and time dynamics.

We recall the definition of upper semi-continuity we use here: a set-valued map
x 7→ F (x) is upper-semi continuous at x0 if for any open set O ⊃ F (x0), there



100 Barles & Chasseigne

exists an open set ω containing x0 such that F (ω) ⊂ O. Expressed in other terms,
F (x) ⊃ lim sup

y→x
F (y).

4.2.2 The control problem

We look for trajectories (X,T,D, L)(·) of the differential inclusion
d

dt
(X,T,D, L)(s) ∈ BCL

(
X(s), T (s)

)
for a.e. s ∈ [0,+∞) ,

(X,T,D, L)(0) = (x, t, 0, 0) .
(4.1)

The key existence result is the

Theorem 4.2.1 Assume that (HBCL)fund holds. Then

(i) for any (x, t) ∈ RN×[0, Tf ) there exists a Lipschitz function (X,T,D, L) : [0, Tf ]→
RN × R3 which is a solution of the differential inclusion (4.1).

(ii) for each solution (X,T,D, L) of (4.1) there exist measurable functions (b, c, l)(·)
such that for a.e. s ∈ (t, Tf ),

(Ẋ, Ṫ , Ḋ, L̇)(s) = (b, c, l)(s) ∈ BCL(X(s), T (s)) .

Throughout this chapter, we mostly write

(Ẋ(s), Ṫ (s)) = b
(
X(s), T (s)

)
Ḋ(s) = c

(
X(s), T (s)

)
L̇(s) = l

(
X(s), T (s)

)
in order to remember that b, c and l correspond to a specific choice in BCL(X(s), T (s)).
Later on, we will also introduce a control α(·) to represent the (b, c, l) as

(b, c, l)(X(s), T (s), α(s)) .

In order to simplify the notations, we just use the notation X,T,D, L when there
is no ambiguity but we may also use the notations Xx,t, T x,t, Dx,t, Lx,t when the
dependence in x, t plays an important role.

Let us introduce a point of vocabulary here: by a state-constraint control problem
in a setW , we mean that the controller can only use trajectories which remain inW :
(X,T,D, L)(s) ∈ W for any s ∈ [0,+∞). In general, such constraint only concerns
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the state variable X, which is required to satisfy X(s) ∈ Ω for some domain Ω: we
study these state-constraint problems in Part V.

However, throughout this book we have chosen a framework with a dynamic on T
in order to describe finite horizon control problems in RN × [0, Tf ] (or Ω × [0, Tf ]).
Hence, the T -variable is also constrained to satisfy T (s) ∈ [0, Tf ]. This property is at
the origin of some of the hypotheses below. In this setting, the usual terminal cost is
changed into a running cost, which also requires some assumptions in order to have
a bounded value function.

Before describing the value function, we are going to make the following structure
assumptions on the BCL-set valued map

(HBCL)struct: There exists c,K > 0 such that

(i) For all x ∈ RN , t ∈ [0, Tf ] and b = (bx, bt) ∈ B(x, t), −1 ≤ bt ≤ 0. Moreover,
there exists b = (bx, bt) ∈ B(x, t) such that bt = −1.

(ii) For all x ∈ RN , t ∈ [0, Tf ], if ((bx, bt), c, l) ∈ BCL(x, t), then −Kbt + c ≥ 0.

(iii) For any x ∈ RN , there exists an element in BCL(x, 0) of the form ((0, 0), c, l)
with c ≥ c.

(iv) For all x ∈ RN , t ∈ [0, Tf ], if (b, c, l) ∈ BCL(x, t) then max(−bt, c, l) ≥ c.

By introducing this general framework, our aim is to gather different type of control
problems and treat them within the same setting. In classical finite horizon problems
bt = −1, which indicates a time direction associated to the ut-term, and in this case
T (s) = t − s. Here we choose the more general assumption −1 ≤ bt ≤ 0 in order to
respect this monotonicity in time, but allowing also bt = 0 which can corresponds
either to a control problem with a stopping time or an unbounded control problem
or a combination of the two. In particular, we point out that a classical final cost is
treated as associated to a stopping time control problem. Of course, by the convexity
assumption all the interval bt ∈ [−1, 0] has to be potentially considered.

Assumption (iii) and a part of (iv) concern the final cost (u0 in the example of the
previous section) which is in general the initial data for the Hamilton-Jacobi-Bellman
Equation. As we pointed out above, the value function we define below is associated to
a state-constraint problem in RN× [0, Tf ], and therefore it is necessary that strategies
with bt = 0 for any point (x, 0) ∈ RN × {0} exist.

Assumption (iii) means that we can stop the trajectory at any point (x, 0), as for
the case of a classical initial data, the assumption on c being necessary, in general,
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to keep the integral of the running cost bounded. However, strategies with bt = 0,
bx 6= 0 are also allowed provided that they satisfy (iv) at time t = 0 in order, again,
that the associated cost remains bounded: indeed, either the trajectory is associated
to a positive discount factor c ≥ c which ensures the boundedness of the integral of
the running cost or it has a positive cost l ≥ c in order to avoid the long use of this
strategy.

Such situations may also happen for t > 0, either to model a possible stopping time
(obstacle type problem) or an exit cost (see in Part V, Dirichlet boundary condition),
which is why (iv) is written for all t ∈ [0, Tf ].

On the other hand, the consequence of (ii) is that the change of unknown function
u → exp(−Kt)u allows to reduce to the easier case of a positive discount factor.
Such assumption is necessary in this framework since the formulation below leads to
a stationary type equation, because we treat time as a space variable.

Finally, notice that the fact that bt can be 0 (or close to it) includes the unbounded
control case. In particular if bt = 0, the trajectory can stay at a constant time t̄ for,
say, s ∈ [s1, s2] while if bx 6= 0, the trajectory can be seen as an instantaneous jump
from the point X(s1) to the point X(s2) since time does not vary on this interval.

In all the rest of the book, (HBCL) means that both (HBCL)fund and (HBCL)struct
are fulfilled.

Before introducing the value-function, we state a result allowing to reduce always
the case c ≥ 0 for any (b, c, l) ∈ BCL(x, t) and for any (x, t) ∈ RN × [0, Tf ]

Lemma 4.2.2 Assume that (HBCL) hold and let (X,T,D, L) be a solution of (4.1)
associated to (b, c, l)(·) such that the following integral is well-defined

J(X,T,D, L) =

∫ +∞

0

l
(
X(s), T (s)

)
exp(−D(s)) dt .

Then, considering the constant K given by (HBCL)struct, we have

exp(−Kt)J(X,T,D, L) = J(X̃, T̃ , D̃, L̃) ,

where (X̃, T̃ , D̃, L̃) is the solution of (4.1) associated to (b, c−Kbt, l exp(−KT (s)))(·).
In particular X̃ = X, T̃ = T , D̃ = D + K(T − t) and of course we still have
(X̃, T̃ , D̃, L̃)(0) = (x, t, 0, 0).

The use of this lemma will be clear in the next sections but it is obvious from
(HBCL)struct-(ii) that the replacement of c by c−Kbt ≥ 0 allows as we wish to reduce
c ∈ R to the case when c ≥ 0.



HJ-Equations with Discontinuities: Control Tools 103

4.2.3 The value function

Now we introduce the value function which is defined on RN × [0, Tf ] by

U(x, t) = inf
T (x,t)

{∫ +∞

0

l
(
X(s), T (s)

)
exp(−D(s)) ds

}
, (4.2)

where T (x, t) stands for all the Lipschitz trajectories (X,T,D, L) of the differential
inclusion which start at (x, t) ∈ RN× [0, Tf ] and such that (X(s), T (s)) ∈ RN× [0, Tf ]
for all s > 0.

As we explained above, Assumption (iii) − (iv) imply formally the existence of
trajectories (X,T,D, L) satisfying the constraint (X,T ) ∈ RN×[0, Tf ] with a bounded
cost J(X,T,D, L). Hence we expect both that T (x, t) 6= ∅ for all (x, t) ∈ RN × [0, Tf ]
and that U is bounded. A rigourous proof of this claim is contained in the

Lemma 4.2.3 Assume that (HBCL) holds. Then

(i) The value-function U is locally bounded on RN × [0, Tf ].

(ii) For any trajectory (X,T,D, L) of the differential inclusion such that

J(X,T,D, L) :=

∫ +∞

0

l
(
X(s), T (s)

)
exp(−D(s))ds <∞ ,

then D(s)→ +∞ as s→ +∞.

Proof — We first use Lemma 4.2.2 to reduce the proof in the case when c is positive.

(a) In order to prove (i) we first show that T (x, t) 6= ∅. Let us solve differential
inclusion (4.1), replacing BCL by

BCL[(x, t) := BCL(x, t) ∩ {(b, c, l) ∈ RN+3; bt = −1} .

The reader can easily check that this new set-valued map satisfies all the required
assumptions (HBCL)fund and (HBCL)struct. Moreover, for any trajectory associated
with BCL[ starting at (x, t, 0, 0), it is clear that T (t) = 0 since T (s) = t− s. Notice
that for s ∈ [0, t], this trajectory may be seen as a trajectory associated to the original
BCL since BCL[ ⊂ BCL.

Then, for any s ≥ t we redefine the trajectory by solving

(Ẋ, Ṫ , Ḋ, L̇)(s) = ((0, 0), c, l)
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where ((0, 0), c, l) is given by Assumption (HBCL)struct-(iii) for the original BCL, at
(x, 0) = (X(t), T (t)). This defines a new trajectory for all s ∈ [0,+∞) associated to
BCL and obviously, (X(s), T (s)) ∈ RN × [0, Tf ] so that the constructed trajectory
(X,T,D, L) belongs to T (x, t).

(b) Next we show that for any trajectory, J(X,T,D, L) is bounded from below. To
do so, we use (HBCL)struct-(iv) and introduce the sets

E1 := {s : −bt ≥ c } , E2 := {s /∈ E1 : c ≥ c } , E3 = [0,+∞) \ (E1 ∪ E2) .

By (HBCL)struct-(iv), we have [0,+∞) = E1 ∪E2 ∪E3 and E1, E2, E3 are disjoint by
construction. We now evaluate the integral on each of these three sets.

Concerning the E1-contribution, we notice that, using that Ṫ (s) = bt,

|E1| c ≤
∫
E1

−bt(X(s), T (s)) ds ≤ T (0) = t .

Since l is bounded, 0 ≤ exp(−D(s)) ≤ 1 and |E1| ≤ t/c, the contribution on E1 in J
is finite.

The one on E3 is positive so it is bounded from below. Finally on E2, since Ḋ(s) =
c(s) ≥ c, it follows that∫

E2

l
(
X(s), T (s)

)
exp(−D(s)) ds ≥−M

∫
E2

exp(−D(s))ds

≥−M
∫
E2

Ḋ(s)

c
exp(−D(s)) ds

≥−M
∫

[0,+∞)

Ḋ(s)

c
exp(−D(s)) ds ≥ −M

c
,

which completes the proof of (i).

(c) In order to prove (ii), we examine carefully the sets E1, E2, E3 defined above. We
recall first that |E1| ≤ t/c < +∞, so that necessarily, either E2 or E3 has infinite
Lebesgue measure. Now, on E2, Ḋ(s) = c(s) ≥ c so that

c · |E2 ∩ [0, S]| ≤
∫
E2∩[0,S]

Ḋ(s) ds ≤ D(S) .

We deduce that if the increasing function s 7→ D(s) does not tend to +∞ when
s→ +∞, then |E2| ≤ supsD(s)/c <∞, so that |E3| = +∞.
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By the monotonicity of D, if D(s) does not tend to +∞ when s→ +∞, there exists
γ > 0 such that exp(−D(s)) ≥ γ on [0,+∞) but on E3, since l(s) ≥ c we see that∫

E3

l
(
X(s), T (s)

)
exp(−D(s)) ds ≥

∫
E3

c · γ ds = c · γ · |E3| = +∞ ,

and we reach a contradiction because integral J(X,T,D, L) is bounded.
Q.E.D.

4.3 Ishii solutions for the Bellmann equation

In this section we prove that the value function is a (discontinuous) viscosity solution
of the Bellmann equation associated with the control problem, namely

F(x, t, u,Du) = 0 in RN × [0, Tf ] , (4.3)

where, for any x ∈ RN , t ∈ [0, Tf ], r ∈ R and p = (px, pt) ∈ RN+1

F(x, t, r, p) := sup
(b,c,l)∈BCL(x,t)

{
− b · p+ cr − l

}
. (4.4)

Writing the Bellmann equation under the form (4.3) is a little bit formal: if a more or
less classical definition of viscosity sub and supersolutions can be used in RN×]0, Tf ]
following Definition 3.1.1, the case of t = 0 requires a particular treatment.

Indeed, it is well-known that the supersolution inequality for such Bellman Equation
is related to the optimality of one or several trajectories while the subsolution one
reflects the fact that any trajectory for any possible control is sub-optimal. At a
point (x, 0), the standard F ≥ 0 supersolution inequality does not seem to cause any
problem, even if the optimal trajectory has to stay on RN×{0}. On the contrary, there
is a problem with the standard subsolution inequality since we cannot use any solution
(X,T,D, L) of the BCL-differential inclusion, but only those for which bt = 0. This
is why the constraint to remain in RN × [0, Tf ] obliges us to change the definition of
subsolution for t = 0.

This leads to introduce the “initial Hamiltonian”

Finit(x, r, px) := sup
((bx,0),c,l)∈BCL(x,0)

{
− bx · px + cr − l

}
. (4.5)

Before going further, we describe the properties of F and Finit in the following result.
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Lemma 4.3.1 The Hamiltonians (x, t, r, p) 7→ F(x, t, r, p) and (x, t, r, p) 7→ Finit(x, r, p)
are u.s.c. with respect to all the variables, and convex and Lipschitz as a function of
r and p.

Proof — We only provide the proof for F, the one for Finit being analogous.

For the upper semi-continuity, let us take a sequence (xn, tn, rn, pn)→ (x, t, r, p) ∈
RN × [0, Tf ] × R × RN+1. Since, for any n, BCL(xn, tn) is compact, there exists
(bn, cn, ln) ∈ BCL(xn, tn) such that

F(xn, tn, rn, pn) = −bn · pn + cnrn − ln .

Since BCL(·, ·) is u.s.c. as a set-valued map, it follows that, for any δ > 0, if n is
large enough,

(bn, cn, ln) ∈ BCL(xn, tn) ⊂ BCL(x, t) + δB2N+3 ,

where B2N+3 is the unit ball in R2N+3. For such n, (bn, cn, ln) can be decomposed as
the sum (b̃n, c̃n, l̃n)+δen for some (b̃n, c̃n, l̃n) ∈ BCL(x, t) and some en ∈ B2N+3. Now,
since (xn, tn, rn, pn) is bounded,

F(x, t, r, p) ≥ −b̃n · p+ c̃nr − l̃n
≥ −bn · pn + cnrn − ln − oδ(1)

≥ F(xn, tn, rn, pn)− oδ(1) .

Passing to the limsup on n and sending δ → 0 yields the upper semi-continuity
property.

The Lipschitz continuity is just a consequence of the boundedness of the b and c
components in BCL(x, t) for any x and t : if F (x, t, r, p) = −b · p+ cr− l, then since
F(x, t, r′, q) ≥ −b · q + cr′ − l, we have

F(x, t, r, p)− F(x, t, r′, q) ≤ |c||r − r′|+ |b||p− q| ≤M
(
|r − r′|+ |p− q|

)
,

and of course the converse inequality is also true.

Finally, the convexity of F with respect to (r, p) just comes from the fact that F is
the supremum of affine functions in (r, p).

Q.E.D.
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4.3.1 Discontinuous viscosity solutions

Let us first give the definition based on the notion of discontinuous (or Ishii) viscosity
solution exposed in Chapter 3, but modified in a suitable way to take into account
the particularity of t = 0.

Definition 4.3.2 A locally bounded function u is a subsolution of (4.3) if its u.s.c.
enveloppe satisfies

F∗(x, t, u∗, Du∗) ≤ 0 on RN×]0, Tf ] , (4.6)

and, for t = 0

min(F∗(x, 0, u∗, Du∗), (Finit)∗(x, u∗(x, 0), Dxu
∗(x, 0))) ≤ 0 in RN . (4.7)

A locally bounded function v is a supersolution (4.3) if its l.s.c. enveloppe satisfies

F(x, t, v∗, Dv∗) ≥ 0 on RN × [0, Tf ] . (4.8)

A locally bounded function is a viscosity solution of (4.3) if it is both a subsolution
and a supersolution of (4.3).

For the supersolution property, the simple formulation comes from the fact that F
is u.s.c. in RN × [0, Tf ]×R×RN . For the subsolution, the inequality is the expected
one on RN×]0, Tf ] but is modified for t = 0. In fact, we show below that the value
function satisfies

(Finit)∗(x, U∗(x, 0), DxU
∗(x, 0))) ≤ 0 in RN ,

and Section 5.1 (see Proposition 5.1.1) will confirm that the F∗-contribution in (4.7)
is not necessary, the initial data condition being totally equivalent to (Finit)∗ ≤ 0.

4.3.2 The dynamic programming principle

The first step towards establishing the sub/supersolution properties of U is to prove
the classical

Theorem 4.3.3 (Dynamic Programming Principle)
Under hypothesis (HBCL), the value function U satisfies

U(x, t) = inf
T (x,t)

{∫ θ

0

l
(
X(s), T (s)

)
exp(−D(s)) ds+ U

(
X(θ), T (θ)) exp(−D(θ))

}
,

for any (x, t) ∈ RN × (0, Tf ], θ > 0.
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Proof — Let us denote by Jθ(X,T,D, L) the integral over (0, θ) inside the inf and by
Û(x, t) the complete right-hand side, while U(x, t) = infT (x,t) J(X,T,D, L) and J(·)
stands for the integral over (0,+∞).

(a) Let us prove that U ≤ Û . We first take any trajectory (X,T,D, L) ∈ T (x, t).
Then, noting (xθ, tθ) := (X(θ), T (θ)), we select an ε-optimal trajectory (Xε, T ε, Dε, Lε) ∈
T (xθ, tθ), in the sense that

U(xθ, tθ) ≤ J(Xε, T ε, Dε, Lε) + ε .

We then construct a new trajectory in T (x, t) by setting

(X̂, T̂ , D̂, L̂)(s) :=

{
(X,T,D, L)(s) if 0 ≤ s ≤ θ ,

(Xε, T ε, Dε +D(θ), Lε + L(θ))(s− θ) if s > θ .

Using the definition of U(x, t) we get

U(x, t) ≤ J(X̂, T̂ , D̂, L̂)

≤ Jθ(X,T,D, L) +

∫ +∞

θ

l(Xε(s− θ), T ε(s− θ)) exp(−Dε(s− θ)−D(θ)) ds

≤ Jθ(X,T,D, L) + exp(−D(θ))

∫ +∞

0

l(Xε(s), T ε(s)) exp(−De(s)) ds

≤ Jθ(X,T,D, L) + exp(−D(θ))(U(X(θ), T (θ)) + ε)

Notice that the trajectory (X,T,D, L) ∈ T (x, t) is artbitrary and does not depend
on ε. Hence, taking the infimum over T (x, t) and sending ε to zero, we conclude that
indeed U ≤ Û .

(b) The converse inequality follows from similar manipulations: let us take an ε-
optimal trajectory (Xε, T ε, Dε, Lε) ∈ T (x, t) for estimating U(x, t). After separating
the integral in two parts and changing variable s 7→ s− θ in the second part we get

U(x, t) + ε ≥ Jθ(X
ε, T ε, Dε, Lε)

+

∫ +∞

0

l(Xε(s+ θ), T ε(s+ θ)) exp(−Dε(s+ θ)) ds .
(4.9)

The trajectory (X,T,D, L)(s) := (Xε, T ε, Dε, Lε)(s+ θ)− (0, 0, Dε(θ), Lε(θ)) belongs
to T (Xε(θ), T ε(θ)), and (4.9) can be written as

U(x, t) + ε ≥ Jθ(X
ε, T ε, Dε, Lε)

+ exp(−Dε(θ))

∫ +∞

0

l(X(s), T (s)) exp(−D(s)) ds ;

≥ Jθ(X
ε, T ε, Dε, Lε) + exp(−Dε(θ))J(X,T,D, L) .
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Now, using (X,T,D, L) as an admissible trajectory starting at (Xε(θ), T ε(θ)) we use
the estimate

U(Xε(θ), T ε(θ)) ≤ J(X,T,D, L)

to get the inequality

U(x, t) + ε ≥ Jθ(X
ε, T ε, Dε, Lε) + exp(−Dε(θ))U(Xε(θ), T ε(θ)) .

Finally, Û(x, t) being the infimum of all trajectories in T (x, t), the right-hand side is
greater than or equal to Û(x, t) and the conclusion follows.

Q.E.D.

4.3.3 The value function is an Ishii solution

Following the definition recalled in Section 4.3, we first prove the Following Defini-
tion 4.3.2, we first prove the

Theorem 4.3.4 (Supersolution Property) Under Assumptions (HBCL), the value
function U is a viscosity supersolution of the Bellmann equation (4.3).

Proof — We keep here the notation Jθ(X,T,D, L) introduced in the proof of Propo-
sition 4.3.3 for the integral over (0, θ) in the dynamic programming principle.

Let (x, t) ∈ RN × [0, Tf ] be a local minimum point of U∗ − φ where φ ∈ C1(RN ×
[0, Tf ]). We can assume without loss of generality that U∗(x, t) = φ(x, t). In particular,
U ≥ U∗ ≥ φ in a neighborhood of (x, t). Moreover, by definition of the lower semi-
continuous envelope, there exists a sequence (xn, tn) → (x, t) such that U(xn, tn) →
U∗(x, t).

We apply the dynamic programming principle for U at (xn, tn):

U(xn, tn) = inf
T (xn,tn)

(
Jθ(Xn, Tn, Dn, Ln) + U(Xn(θ), Tn(θ)) exp(−Dn(θ))

)
.

On one hand, for the left-hand side, using the definition of the sequence (xn, tn), the
fact that U∗(x, t) = φ(x, t) and the continuity of φ, there exists a sequence (εn)n of
non-negative real numbers converging to 0 such that U(xn, tn) ≤ φ(xn, tn) + εn.

On the other hand, since |b| ≤ M is bounded, if θ is small enough the trajectory
(Xn(s), Tn(s)) remains close enough to (x, t) and we can use the inequalities U ≥
U∗ ≥ φ, the last one coming from the local minimum point property. This yields

φ(xn, tn)+εn ≥ inf
T (xn,tn)

(
Jθ(Xn, Tn, Dn, Ln)+φ(Xn(θ), Tn(θ)) exp(−Dn(θ))

)
. (4.10)
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For simplicity of notations, we set Zs := (Xn(s), Tn(s)). Since φ is C1, the following
expansion holds

φ(Zθ) exp(−D(θ))− φ(Z0) =

∫ θ

0

d

ds

(
φ(Zs) exp(−Dn(s))

)
ds

=

∫ θ

0

(
b(Zs) ·Dφ(Zs)− c(Zs)φ(Zs)

)
exp(−Dn(s)) ds .

(4.11)
Combining with (4.10) yields

0 ≥ inf
T (xn,tn)

∫ θ

0

{
b(Zs) ·Dφ(Zs)− c(Zs)φ(Zs) + l(Zs)

}
exp(−Dn(s)) ds− εn ,

≥
∫ θ

0

−F(Xn(s), Tn(s), φ(Xn(s), Tn(s)), Dφ(Xn(s), Tn(s))) exp(−Dn(s)) ds− εn .

Since θ is arbitrary, we can choose a sequence θn in order that εnθ
−1
n → 0. We re-

mark that (Xn(s), Tn(s), φ(Xn(s), Tn(s)), Dφ(Xn(s), Tn(s))→ (x, t, φ(x, t), Dφ(x, t)).
Therefore, if δ > 0 is fixed and small, provided n is large enough we have

F(Xn(s), Tn(s), φ(Xn(s), Tn(s)), Dφ(Xn(s), Tn(s)) ≤ F(x, t, φ(x, t), Dφ(x, t)) + δ .

In addition, exp(−Dn(s)) = 1 + O(θn) so, using all these informations in the above
inequality, we deduce that

0 ≥ θn (−F(x, t, φ(x, t), Dφ(x, t))− δ( 1 +O(θn))− εn .

Dividing by θn and letting n tend to infinity, we obtain F(x, t, φ(x, t), Dφ(x, t))+δ ≥ 0
and this inequality being true for any δ > 0, the result is proved.

Q.E.D.

Now we turn to the subsolutions properties.

Theorem 4.3.5 (Subsolution Properties) Under Assumptions (HBCL), the value
function U is a viscosity subsolution of

F∗(x, t, U,DU) ≤ 0 on RN×]0, Tf ] , (4.12)

and for t = 0, it satisfies

(Finit)∗(x, U(x, 0), pxU(x, 0)) ≤ 0 in RN , (4.13)

hence it is a subsolution of (4.3).
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Proof — The proof is more involved than for the supersolution condition, first because
we need to consider F∗ which a priori differs from F, but also because we face here
the potential discontinuities of b, c, l with respect to x, t.

We first prove (4.12). We consider a maximum point (x, t) ∈ RN×]0, Tf ] of U∗ − φ
where φ is a C1 test-function and, as above, we assume that U∗(x, t) = φ(x, t). By
definition of U∗, there exists a sequence (xn, tn) → (x, t) such that U(xn, tn) →
U∗(x, t) and, by the continuity of φ, we also have φ(xn, tn) ≤ U(xn, tn) + εn for some
sequence (εn)n of non-negative real numbers converging to 0.

Applying the dynamic programming principle, we have

U(xn, tn) = inf
T (xn,tn)

(
Jθ(X,T,D, L)) + U(X(θ), T (θ)) exp(−D(θ))

)
.

If θ > 0 is small enough, the maximum point property implies

U(X(θ), T (θ)) ≤ U∗(X(θ), T (θ)) ≤ φ(X(θ), T (θ))

and therefore we obtain

φ(xn, tn)− εn ≤ inf
T (xn,tn)

(
Jθ(X,T,D, L)) + φ(X(θ), T (θ)) exp(−D(θ))

)
.

Using expansion (4.11)—here also with the notation Zs = (X(s), T (s))—leads to∫ θ

0

(
− b(Zs)Dφ(Zs) + c(Zs)φ(Zs)− l(Zs)

)
exp(−D(s)) ds ≤ εn , (4.14)

for any trajectory (X,T,D, L)n ∈ T (xn, tn).

In order to conclude, we have to show that, for any n, we can choose a trajectory
(X,T,D, L)n ∈ T (xn, tn) such that the integral is close to F∗(x, t, φ(x, t), Dφ(x, t)).

To do so, we are going to solve a suitable differential inclusion for a set-valued map
that we build in the following way. We consider the auxiliary function hφ(b, c, l) :=
−b · Dφ(x, t) + cφ(x, t) − l and for δ > 0, we define a restricted set-valued map for
(y, s) in a neighborhood of (x, t) as follows

BCLδ
loc(y, s) := BCL(y, s) ∩

{
hφ(b, c, l) ≥ F∗(x, t, φ(x, t), Dφ(x, t))− δ

}
.

We claim that BCLδ
loc is not empty and satisfies (HBCL)fund, at least for (y, s) close

enough to (x, t).

Indeed, if, on the contrary, BCLδ
loc(yn, sn) is empty for some sequence (yn, sn) →

(x, t), this means that, for any (b, c, l) ∈ BCL(yn, sn), we have

hφ(b, c, l) < F∗(x, t, φ(x, t), Dφ(x, t))− δ ,
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which implies that

F(yn, sn, φ(x, t), Dφ(x, t)) = sup
(b,c,l)∈BCL(yn,sn)

hφ(b, c, l) ≤ F∗(x, t, φ(x, t), Dφ(x, t))− δ .

But using the lower semi-continuity of F∗ we are led to a contradiction since

F∗(x, t, φ(x, t), Dφ(x, t)) ≤ lim inf
n→∞

F(yn, sn, φ(x, t), Dφ(x, t))

≤ F∗(x, t, φ(x, t), Dφ(x, t))− δ .

Concerning the images BCLδ
loc(y, s), they are clearly convex and compact from the

properties of BCL and the fact that the set {hφ ≥ α} is closed and convex. Moreover,
the u.s.c. property derives from the fact that BCL is u.s.c. while {hφ ≥ δ} is a fixed
set.

Hence we can solve the differential inclusion associated to BCLδ
loc ⊂ BCL with

initial data (xn, tn) on a small time interval (0, θ). For this specific trajectory, up to
taking θ smaller and n larger, using that φ is C1, we get for s ∈ [0, θ]

−b(Zs) ·Dφ(Zs) + c(Zs)φ(Zs)− l(Zs) = hφ(b(Zs), c(Zs), l(Zs)) +O(θ)

≥ F∗(x, t, φ(x, t), Dφ(x, t))− δ +O(θ) .

Plugging this into (4.14), using also that exp(−D(s)) = 1 +O(θ), we get

θ
(
F∗(x, t, φ(x, t), Dφ(x, t))− δ +O(θ)

)
(1 +O(θ)) ≤ εn .

To conclude, we send n → ∞ and then we divide by θ and we send it to 0. We
end up with the inequality F∗(x, t, φ(x, t), Dφ(x, t)) ≤ δ for any δ > 0 and therefore
F∗(x, t, φ(x, t), Dφ(x, t)) ≤ 0.

Now we turn to (4.13). This case is treated by the same technique as above provided
that we use the

Lemma 4.3.6 Under Assumptions (HBCL), we have, for any x ∈ RN

U∗(x, 0) = lim sup
y→x

U(y, 0) .

In other word, the u.s.c. enveloppe of U at points (x, 0) can be computed by using only
U on RN × {0}.

If Lemma 4.3.6 holds, the same above proof readily applied since we can choose
tn = 0 and therefore, in the definition of BCLδ

loc, we can consider only the b such
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that bt = 0 and replace F∗ by (Finit)∗. Indeed any relevant trajectory starting from
(xn, 0) necessarely satisfies bt(Zs) = 0.

Proof of Lemma 4.3.6 — By definition of U∗, there exists a sequence (xε, tε)→ (x, 0)
such that U(xε, tε)→ U∗(x, 0). Then we apply the dynamic programming principle

U(xε, tε) = inf
T (xε,tε)

(
Jθ(Xε, Tε, Dε, Lε) + U(Xε(θ), Tε(θ)) exp(−Dε(θ))

)
.

We consider a trajectory (Xε, Tε, Dε, Lε) which is solution of the differential inclusion
associated with BCL[ defined in the proof of Lemma 4.2.3, i.e. with bt = −1, and we
use it in the dynamic programming principle with θ = tε. Since Tε(θ) = Tε(tε) = 0,
we obtain

U(xε, tε) ≤ Jtε(Xε, Tε, Dε, Lε) + U(Xε(tε), 0) exp(−Dε(tε)) .

But Jtε(Xε, Tε, Dε, Lε) = O(tε) and exp(−Dε(tε)) = 1 +O(tε), therefore:

U(xε, tε) ≤ U(Xε(tε), 0) +O(tε) ,

and U∗(x, 0) ≤ lim supU(xε, tε) ≤ lim supU(Xε(tε), 0) ≤ U∗(x, 0). Proving the claim.
Q.E.D.

Q.E.D.

As we shall see later on in this book, Ishii solutions are not unique in general in the
presence of discontinuities. Nevertheless, we prove below that U is the minimal one,
see Corollary 4.4.3, and we will explain later on several ways in which we can recover
some uniqueness.

4.4 Supersolutions of the Bellmann equation

4.4.1 Super-dynamic programming principle

We prove here that supersolutions always satisfy a super-dynamic programming prin-
ciple. Again, we remark that this result is independent of the possible discontinuities
for the dynamic, discount factor and cost. But to prove it, we need an additional
ingredient in which we assume that we have already used Lemma 4.2.2 to reduce to
the case when c ≥ 0.

Lemma 4.4.1 Assume (HBCL)struct holds and let χ(t) = −K(t+ 1) for K > 0 large
enough. Then, for any (x, t) ∈ RN × [0, Tf ] and any (b, c, l) ∈ BCL(x, t),

−b ·Dχ(t) + cχ(t)− l ≤ −c < 0 .
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Proof — This is just obtained by direct computation: −b · Dχ(t) = Kbt ≤ 0 while
cχ(t)− l ≤ −Kc− l. By taking K ≥ (c+ l)/c, we get the result.

Q.E.D.

Lemma 4.4.1, which is valid both for t > 0 and t = 0, provides a very classical
property: the underlying HJB equation has a strict subsolution, which is a key point
in comparison results. Of course, in this time-dependent case, one could say that such
property is obvious. But we are not completely in a standard time-dependent case
since we recall that bt = 0 is allowed potentially for any t ≥ 0.

Our next result is the

Lemma 4.4.2 Under Assumptions (HBCL), if v is a bounded l.s.c. supersolution of
(4.8) in RN × (0, Tf ], then, for any (x̄, t̄) ∈ RN × (0, Tf ] and any σ > 0,

v(x̄, t̄) ≥ inf
T (x̄,t̄)

{∫ σ

0

l
(
X(s), T (s)

)
exp(−D(s)) ds+ v

(
X(σ), T (σ)

)
exp(−D(σ))

}
(4.15)

Proof — To begin with, because of Lemma 4.2.2 we can assume that c ≥ 0 for any
(b, c, l) ∈ BCL(x, t) and for any (x, t). Fixing (x̄, t̄) and σ > 0, we argue through
a three-step proof involving a regularization procedure and comparison result in the
compact domain

K(x̄,t̄) := B(x̄,Mσ)× [0, t̄] ,

where M is given by (HBCL)fund.

Step 1: regularization — We consider a sequence of regularized Hamiltonians
using the penalization function

ψ(b, c, l, x, t) = inf
(y,s)∈RN×[0,Tf ]

(
dist

(
(b, c, l),BCL(y, s)

)
+ |y − x|+ |t− s|

)
,

where dist(·,BCL(y, s)) denotes the distance to the set BCL(y, s). We notice that
ψ is Lipschitz continuous and that ψ(b, c, l, x, t) = 0 if (b, c, l) ∈ BCL(x, t). Then we
set

Fδ(x, t, r, p) := sup
(bδ,cδ,lδ)∈BCLδ(x,t)

{
− bδ · p+ cδr − lδ

}
,

where BCLδ(x, t) is the set of all (bδ, cδ, lδ) ∈ RN+1 × R × R such that |bxδ | ≤ M ,
−1 ≤ btδ ≤ 0, 0 ≤ cδ ≤M and

lδ = l + δ−1ψ
(
bδ, cδ, l, x, t

)
for some |l| ≤M .

This sequence of Hamiltonians enjoys the following straightforward properties:
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(i) for any δ > 0, Fδ ≥ F and therefore v is a l.s.c. supersolution of Fδ ≥ 0
on B(x̄,Mσ)× (0, t];

(ii) the Hamiltonians Fδ are (globally) Lipschitz continuous w.r.t. all variables;

(iii) Fδ ↓ F as δ → 0, all the other variables being fixed.

On the other hand, v being l.s.c. on K(x̄,t̄), there exists an increasing sequence (vδ)δ
of Lipschitz continuous functions such that vδ ≤ v and supδ vδ = v on K(x̄,t̄).

For (x, t) ∈ K(x̄,t̄), we now introduce the function

uδ(x, t) := inf
{∫ σ∧θ

0

lδ
(
Xδ(s), Tδ(s)

)
exp(−Dδ(s)) ds

+ vδ
(
Xδ(σ ∧ θ), Tδ(σ ∧ θ)

)
exp(−Dδ(σ ∧ θ))

}
,

where (Xδ, Tδ, Dδ, Lδ) is a solution of the differential inclusion{
(Ẋδ, Ṫδ, Ḋδ, L̇δ)(s) ∈ BCLδ(Xδ(s), Tδ(s)) ,

(Xδ, Tδ, Dδ, Lδ)(0) = (x, t, 0, 0) ,

the infimum being taken over all trajectories Xδ which stay in B(x̄,Mσ) till time
σ ∧ θ and any stopping time θ such that either Xδ(θ) on ∂B(x̄,Mσ) or Tδ(θ) = 0.

By classical arguments, uδ is continuous since all the data involved are continuous,
uδ ≤ vδ on (∂B(x̄,Mσ) × [0, t̄]) ∪ (B(x̄,Mσ) × {0}) (for the same reason) and uδ
satisfies

Fδ(x, t, u,Du) = 0 in B(x̄,Mσ)× (0, t̄] .

Notice that this equation and the one for vδ hold up to time t̄, as a consequence of
the fact that bt ≤ 0 for all b ∈ B(x, t) and all (x, t).

Step 2: comparison for the approximated problem — In order to show that
uδ ≤ v in K(x̄,t̄) we argue by contradiction assuming that maxK(x̄,t̄)

(uδ − v) > 0.

We consider the function χ given by Lemma 4.4.1: using the definition of lδ, it is
easy to show that

Fδ(x, t, χ,Dχ) ≤ −c < 0 in B(x̄,Mσ)× (0, t̄] ,

and, by convexity, for any 0 < µ < 1, uδ,µ = µuδ + (1− µ)χ is a subsolution of

Fδ(x, t, uδ,µ, Duδ,µ) ≤ −(1− µ)c < 0 in B(x̄,Mσ)× (0, t̄] .
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Moreover, if µ < 1 is close enough to 1, we still have maxK(x̄,t̄)
(uδ,µ − v) > 0 and

we can choose K large enough in order to have uδ,µ ≤ vδ on (∂B(x̄,Mσ) × [0, t̄]) ∪
(B(x̄,Mσ)× {0}.

If (x̃, t̃) ∈ K(x̄,t̄) is a maximum point of uδ,µ− v, we remark that (x̃, t̃) cannot be on
(∂B(x̄,Mσ)× [0, t̄])∪(B(x̄,Mσ)×{0}) since on these parts of the boundary uδ,µ ≤ v.

Now we perform the standard proof using the doubling of variables with the test-
function

uδ,µ(x, t)− v(y, s)− |x− y|
2

ε2
− |t− s|

2

ε2
− (x− x̃)2 − (t− t̃)2 .

By standard arguments, see Lemma 6.4.1, this function has a maximum point (xε, tε, yε, sε)
which converges to (x̃, t̃, x̃, t̃) since (x̃, t̃) is a strict global maximum point of (y, s) 7→
uδ,µ(y, s)− v(y, s)− (y − x̃)2 − (s− t̄)2 in K(x̄,t̄).

We use now the Fδ-supersolution inequality for v, the strict subsolution inequality
for uδ,µ and the regularity of Fδ together with the fact that c ≥ 0 for all (b, c, l) ∈
BCL(y, s) [or BCLδ(y, s)] and any (y, s) ∈ K(x̄,t̄). We are led to the inequality

o(1) ≤ −(1− µ) exp(−Kt̄)η < 0 ,

which yields a contradiction. Sending µ→ 1, we get that uδ ≤ v in K(x̄,t̄).

Step 3: passing to the limit — To conclude the proof, we use the inequality
uδ(x̄, t̄) ≤ v(x̄, t̄) and we first remark that, in the definition of uδ(x̄, t̄), necessarily
σ∧ θ = σ since the trajectory Xδ cannot exit B(x̄,Mσ) before time σ. Then, in order
to let δ tend to 0 in this inequality, we pick a δ-optimal trajectory (Xδ, Tδ, Dδ, Lδ).

By the uniform bounds on (Ẋδ, Ṫδ, Ḋδ, L̇δ), Ascoli-Arzela’s Theorem implies that
up to the extraction of a subsequence, we may assume that (Xδ, Tδ, Dδ, Lδ) converges
locally uniformly on [0,+∞) to some (X,T,D, L). We may also assume that their
derivatives converge in L∞ weak-* topology (in particular L̇δ = lδ).

Using the δ-optimal trajectory for approching uδ leads to

v(x̄, t̄) ≥
∫ σ

0

lδ
(
Xδ(s), Tδ(s)

)
exp(−Dδ(s)) ds

+ vδ
(
Xδ(σ), Tδ(σ)

)
exp(−Dδ(σ))− δ ,

(4.16)

an inequality that we use in two ways.

First, by multiplying by δ and using that v and vδ are bounded. Writing Zs =
(Xδ(s), Tδ(s)) for simplicity, we obtain∫ σ

0

ψ
(
bδ(Zs), cδ(Zs), lδ(zs), Xδ(s), Tδ(s)

)
exp(−Dδ(s))ds = O(δ) .
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By classical results on weak convergence, since the functions (bδ, cδ, lδ) converge
weakly to (b, c, l), there exists µs ∈ L∞

(
0, t;P(B(0,M)×[−M,M ]2

)
) where P(B(0,M)×

[−M,M ]2) is the set of probability measures on B(0,M)×[−M,M ]2 such that, taking
into account the uniform convergence of Xδ, Tδ and Dδ, we have∫ σ

0

∫
B(0,M)×[−M,M ]2

ψ
(
b, c, l, X(s), T (s)

)
exp(−D(s)) dµs(b, c, l) ds =

lim
δ→0

∫ σ

0

ψ
(
bδ(s), cδ(s), lδ(s), Xδ(s), Tδ(s)

)
exp(−Dδ(s))ds = 0 .

We remark that ψ ≥ 0 and ψ(b, c, l, x, t) = 0 if and only if (b, c, l) ∈ BCL(x, t),
therefore (X,T,D, L) is a solution of the BCL-differential inclusion.

Second, we come back to (4.16) after recalling that ψ is nonnegative, which implies
that lδ

(
Xδ(s), Tδ(s)

)
≥ l
(
Xδ(s), Tδ(s)

)
and therefore∫ σ

0

l
(
Xδ(s), Tδ(s)

)
exp(−Dδ(s)) ds+ vδ

(
Xδ(σ), Tδ(σ)

)
exp(−Dδ(σ))− δ ≤ v(x, t) .

We pass to the limit in this inequality using the lower-semicontinuity of v, together
with the uniform convergence of Xδ, Tδ, Dδ and the dominated convergence theorem
for the l-term. In particular,

lim inf
δ→0

(
vδ
(
Xδ(σ), Tδ(σ)

))
≥ v
(
X(σ), T (σ)

)
,

which yields∫ σ

0

l(X(s), T (s)) exp(−D(s)) ds+ v
(
X(σ), T (σ)

)
exp(−D(σ)) ≤ v(x̄, t̄) .

Finally, recalling that (X,T,D, L) is a solution of the BCL-differential inclusion,
taking the infimum in the left-hand side over all solutions of this differential inclusion
gives the desired inequality.

Q.E.D.

4.4.2 The value function is the minimal supersolution

An easy consequence of Lemma 4.4.2 is the

Corollary 4.4.3 Under Assumptions (HBCL), the value function U is the minimal
Ishii supersolution of (4.8).
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Proof — Let v be any bounded l.s.c. supersolution in the Ishii sense of F = 0. Using
(4.15) we see that for any (x, t) ∈ RN × (0, Tf ] and σ > 0,

v(x, t) ≥ inf
T (x,t)

{∫ σ

0

l
(
X(s), T (s)

)
exp(−D(s)) ds+ v

(
X(σ), T (σ)

)
exp(−D(σ))

}
.

Sending σ → +∞, we see that in particular for any trajectory (X,T,D, L) the integral
J(X,T,D, L) in Lemma 4.2.3-(ii) is bounded by 2‖v‖∞.

Therefore, D(σ) → 0 as σ → +∞ and passing to the limit in the dynamic pro-
gramming principle yields

v(x, t) ≥ inf
T (x,t)

∫ +∞

0

l
(
X(s), T (s)

)
exp(−D(s)) ds = U(x, t) .

The conclusion is that v ≥ U , which proves the minimality of the value function.
Q.E.D.

We end this chapter by some comment: as we saw, the situation is not totally
symmetric between general Ishii supersolutions and subsolutions. For supersolutions,
properties derive directly from the Bellman equation while the treatment of general
subsolutions requires more advanced tools and some structure assumption on the
discontinuities. This is done in Chapter 5.



Chapter 5

Mixed Tools

5.1 Initial condition for sub and supersolutions of

the Bellman Equation

In this section, we consider a little bit more precisely the conditions satisfied by
sub and supersolutions of the Bellman Equation at time t = 0 according to Defini-
tion 4.3.2.

In the classical cases where one has a standard initial data u0, these conditions read
min(F∗, u−u0) ≤ 0 for the subsolution and max(F, v−u0) ≥ 0 for the supersolution,
and it is known that they just reduce to either u ≤ u0 in RN if u is a subsolution or
v ≥ u0 in RN if v is a supersolution.

Here we have an analogous result but which is more complicated, involving the
initial Hamiltonian Finit defined in Section 4.3.

The result is the following.

Proposition 5.1.1 Under Assumptions (HBCL), if u : RN × [0, Tf ]→ R is an u.s.c.
viscosity subsolution of the Bellman Equation F = 0, then u(x, 0) is a subsolution in
RN of

(Finit)∗
(
x, u(x, 0), Dxu(x, 0)

)
≤ 0 in RN .

Similarly, if v : RN × [0, Tf ] → R is a l.s.c. supersolution of the Bellman Equation,
then v(x, 0) is a supersolution of

Finit(x, v(x, 0), Dxv(x, 0)) ≥ 0 in RN .

Proof — We provide the full proof in the supersolution case and we will add additional

119
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comments in the subsolution one. Let φ : RN → R be a smooth function and let x
be a local strict minimum point of the function y 7→ v(y, 0) − φ(y). In order to use
the supersolution property of v, we consider for 0 < ε � 1 the function (y, t) 7→
v(y, t)− φ(y) + ε−1t.

By an easy application of Lemma 6.4.1 in a compact neighborhood of (x, 0), this
function has a local minimum point at (xε, tε) and we have at the same time (xε, tε)→
(x, 0) and v(xε, tε)→ v(x, 0) as ε→ 0. The viscosity supersolution inequality reads

sup
(b,c,l)∈BCL(xε,tε)

{
ε−1bt − bx ·Dxφ(xε) + cv(xε, tε)− l

}
≥ 0 .

We denote by (bε, cε, lε) the (b, c, l) for which the supremum is achieved and which
exists since BCL(xε, tε) is compact. By Assumptions (HBCL), we may assume that
up to extraction, (bε, cε, lε) → (b̄, c̄, l̄) ∈ BCL(x, 0). Moreover, since btε ≤ 0 and the
other terms are bounded, the above inequality implies that ε−1btε is also bounded
independently of ε. In other words, btε = O(ε) and b̄ = (b̄x, 0).

Dropping the negative ε−1btε-term in the supersolution inequality, we obtain

−bxε ·Dxφ(xε) + cεv(xε, tε)− lε ≥ 0 ,

and letting ε → 0, we end up with −b̄x · Dxφ(x) + c̄v(x, 0) − l̄ ≥ 0 . since (b̄, c̄, l̄) ∈
BCL(x, 0), we deduce that

sup
((bx,0),c,l)∈BCL(x,0)

{
− bx ·Dxφ(x) + cv(x, 0)− l

}
≥ 0 ,

in other words: Finit
(
x, v(x, 0), Dxv(x, 0)

)
≥ 0 holds in the viscosity sense.

In the subsolution case, the proof is analogous but we consider local strict maximum
point of the function y 7→ u(y, 0) − φ(y). Introducing the function (y, t) 7→ u(y, t) −
φ(y) − ε−1t for 0 < ε � 1, we have a sequence of local maximas (xε, tε) such that
(xε, tε)→ (x, 0) and u(xε, tε)→ u(x, 0) as ε→ 0.

If tε > 0, the subsolution inequality reads

F∗(xε, tε, u(xε, tε), (Dxφ(xε), ε
−1)) ≤ 0 .

This time, we cannot bound ε−1bt as we did for the supersolution case, but because of
(HBCL)struct-(i), in all BCL(x, t) for t ≥ 0, there exists an element with bt = −1. Since
the other terms are bounded, this implies that the F∗-term in the above inequality
is larger than ε−1 + O(1) and therefore, for ε small enough, the F∗-inequality above
cannot hold.
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Hence, necessarily tε = 0 and the strict maximum point property for u− φ implies
that xε = x. But for the same reason as above, for ε > 0 small enough the viscosity
inequality

F∗(x, 0, u(x, 0), (Dxφ(x), ε−1)) ≤ 0

cannot hold unless it corresponds to a (b, c, l) ∈ BCL(x, 0) such that bt = 0. Which
leads finally to

(Finit)∗(x, u(x, 0), Dxφ(x)) ≤ 0 ,

the inequality we wanted to prove.
Q.E.D.

The above result means that, in order to compute the initial data, one has to solve
an equation. A fact which is already known in the case of unbounded control.

In the case of classical problems, a typical situation is when for t > 0, the elements
of BCL(x, t) are of the form ((bx,−1), c, l) while for t = 0 we consider a l.s.c. cost
u0 in RN . In order to satisfy the upper semi-continuity of BCL at t = 0, we need a
priori to consider both elements of the form ((bx,−1), c, l) and ((0, 0), 1, u0(x)). But
in that situation, the result above leads back to the standard initial data conditions

u(x, 0) ≤ (u0)∗(x) and v(x, 0) ≥ u0(x) in RN ,

due to the fact that Finit(x, u, px) = u− u0(x) and (Finit)∗(x, u, px) = u− (u0)∗(x).

5.2 A second relevant example involving unbounded

control

We want to consider here a problem that we first write as

max(ut +H(x, t, u,Dxu), |Dxu| − 1) = 0 in RN × (0, Tf ), (5.1)

with an “initial data” g is a bounded, continuous function in RN (we are going to
make more precise what we mean by initial data). Here the Hamiltonian H is still
given by

H(x, t, r, p) := sup
α∈A
{−b(x, t, α) · p+ c(x, t, α)r − l(x, t, α)} ,

but the functions b, c, l may be discontinuous. Our first aim is to connect this problem
with the above framework and deduce the key assumptions which have to be imposed
on b, c, l in order to have our assumptions being satisfied.
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First we have to give the sets BCL and to do so, we set, for x ∈ RN , t ∈ (0, Tf ]

BCL1(x, t) := {((b(x, t, α),−1), c(x, t, α), l(x, t, α)) : α ∈ A} ,

and

BCL2(x, t) := {((β, 0), 0, 1) : β ∈ B(0, 1)} .

Then we introduce

BCL(x, t) = co
(
BCL1(x, t) ∪BCL2(x, t)

)
,

where, if E ⊂ Rk for some k, co(E) denotes the closed convex of E; computing
F(x, t, r, p) = sup(b,c,l)∈BCL(x,t)

{
− b · p + cr − l

}
, we actually find that, for any

x, t, r, px, pt
F(x, t, r, (px, pt)) = max(pt +H(x, t, u, px), |px| − 1) .

For t = 0, we have to add the following

BCL0(x, 0) := {((0, 0), 1, g(x))} .

and BCL(x, 0) = co (BCL0(x, 0) ∪BCL1(x, 0) ∪BCL2(x, 0)).

We first consider Assumption (HBCL)fund which is satisfied if the three functions
b(x, t, α), c(x, t, α), l(x, t, α) are bounded on RN × [0, Tf ] × A and if BCL1(x, t)
has compact, convex images and is upper semi-continuous. Next we remark that
(HBCL)struct obviously holds and we are going to assume in addition that c(x, t, α) ≥ 0
for all x, t, α (this is not really an additional assumption since we can reduce to this
case by the exp(−Kt)- change).

Since all these assumptions hold, this means that all the results of Section 4.2 also
holds. Moreover we have for the initial data Finit(x, u, px) := max

{
|px| − 1, u− g(x)

}
and therefore the computation of the “real” initial data comes from the resolution of
the stationary equation

max(|Dxu| − 1, u− g(x)) = 0 in RN . (5.2)

Remark 5.2.1 Of course, this example remains completely standard as long as we
are in the continuous case (typically under the assumptions (HBA−CP)); it will be
more interesting when we will treat examples in which we have discontinuities in the
dynamics, discount factors and costs or when the term “|Dxu|−1” will be replaced by,
for instance, “|Dxu|−a(x)” where a(·) is a discontinuous functions satisfying suitable
assumptions and in particular a(x) ≥ η > 0 in RN .
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5.3 Dynamic programming principle for subsolu-

tions

In this section, we provide a sub-dynamic programming principle for subsolutions of
Bellman Equations, but in a more general form than usual, due to the very general
framework we use in Section 4.1 allowing dynamics to have some bt = 0. Roughly
speaking, we show that if a (LCR) holds in a suitable subdomain O of RN × [0, Tf ]
and for a suitable equation, then subsolutions satisfy a sub-dynamic programming
principle inside O.

This formulation is needed in order to get sub-dynamic principles away from the
various manifolds on which the singularities are located, and to deal with situations
where the definition of “subsolution” may be different from the standard one: even
if, to simplify matter, we write below the equation in a usual form (cf. (5.3)), the
notion of “subsolution” can be either an Ishii subsolution or a stratified subsolution,
depending on the context. These specific sub-dynamic programming principles will
play a key role in the proofs of most of our global comparison results, via Lemma 5.4.1.

In order to be more specific, we consider (x0, t0) ∈ RN × (0, Tf ] and the same
equation as in the previous section set in Qx0,t0

r,h for some r > 0 and 0 < h < t0,
namely

F(x, t, u,Du) = 0 on Qx0,t0
r,h , (5.3)

where F is defined by (4.4), and we recall that Du = (Dxu, ut). We point out that we
assume that BCL and F are defined in the whole domain RN × [0, Tf ].

In the sequel, M is a closed subset of Qx0,t0
r,h such that (x0, t0) /∈ M and O =

Qx0,t0
r,h \M 6= ∅. We denote by T hO (x0, t0) the set of trajectories starting from (x0, t0),

such that (X(s), T (s)) ∈ O for all s ∈ [0, h]. For simplicity here, we assume that
the size of the cylinder satisfies Mh < r. This is not restrictive at all since when
we use the following sub-dynamic programming principle, we can always apply it in
situations where r is fixed and we can choose a smaller h.

Our result is the

Theorem 5.3.1 Let h, r > 0 be such that Mh < r. Let u be a subsolution of (5.3)

and let us assume that, for any continuous function ψ such that ψ ≥ u on Qx0,t0
r,h , a

(LCR) holds in O for

max(F(x, t, u,Du), u− ψ) = 0 in O . (5.4)
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If T hO (x0, t0) 6= ∅, then for any η ≤ h

u(x0, t0) ≤ inf
X∈T hO (x0,t0)

{∫ η

0

l
(
X(s), T (s)

)
exp(−D(s)) ds+u

(
X(η), T (η)

)
exp(−D(η))

}
.

(5.5)

Proof — In order to prove (5.5), the strategy is the following: we build suitable value
functions vε,δ, depending on two small parameters ε, δ which are supersolutions of
some problems of the type max(F(x, t, v,Dv), v − ψδ) ≥ 0, for some function ψδ ≥ u

on Qx0,t0
r,h . Then, comparing the supersolutions vε,δ with the subsolution u and choosing

properly the parameters ε, δ we obtain (5.5) after using the dynamic programming
principle satisfied by vε,δ.

The main difficulty is that we have a comparison result which is not valid up to
M, only in O. Therefore we need to make sure that the supersolution enjoys suitable
properties not only on ∂Qx0,t0

r,h but also on M.

To do so, we introduce a control problem in RN×[t0−h, t0] with a large penalization

both in a neighborhood of ∂Qx0,t0
r,h and outside Qx0,t0

r,h , but also in a neighborhood of
M. Unfortunately, the set valued map BCL does not necessarily satisfy assumption
(HBCL)struct-(iii) at time t = t0 − h, which plays the role of the initial time t = 0

here. We need also to take care of the possibility that bt vanishes inside Qx0,t0
r,h . For

these reasons, we need to enlarge not only the “restriction” of BCL to RN ×{t0−h}
in order to satisfy (HBCL)struct, but also on the whole domain RN × [t0 − h, t0].

For doing so, since u is u.s.c., it can be approximated a decreasing sequence (uδ)δ of
bounded continuous functions and we enlarge BCL(x, t) for t ∈ [t0− h, t0] by adding
elements of the form

((bx, bt), c, l) = ((0, 0), 1, uδ(x, t) + δ) for 0 ≤ δ � 1 .

On the other hand, we introduce, for 0 < ε� 1, the penalization function

χε(x, t) :=
1

ε4

[(
2ε− d((x, t),M)

)+
+ (2ε− (r − |x− x0|))+ + (2ε− (t− t0 + h))+

]
,

so that χε(x, t) ≥ ε−3 if either d((x, t),M) ≤ ε, d(x, ∂B(x0, r)) ≤ ε or t−(t0−h) ≤ ε.

We use this penalization in order to modify the original elements in BCL(x, t),
where l(x, t) is replaced by l(x, t) + χε(x, t). We denote by BCLδ,ε this new set-
valued map where, at the same time, BCL is enlarged and modified; the elements
of BCLδ,ε are referenced as (bδ,ε, cδ,ε, lδ,ε). We recall that we can assume that for the
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original BCL, we have c ≥ 0 and therefore we also have cδ,ε ≥ 0 for all (x, t) and
(bδ,ε, cδ,ε, lδ,ε) ∈ BCLδ,ε(x, t).

In RN × [t0 − h, t0], we introduce the value-function vε,δ given by

vε,δ(x, t) = inf
T δ,ε(x,t)

{∫ +∞

0

lδ,ε
(
Xδ,ε(s), T δ,ε(s)

)
exp(−Dδ,ε(s))ds

}
,

where (Xδ,ε, T δ,ε, Dδ,ε, Lδ,ε) are solutions of the differential inclusion associated with
BCLδ,ε, constrained to stay in RN × [t0−h, t0], T δ,ε(x, t) standing for the set of such
trajectories.

Borrowing arguments from Section 4.1 and computing carefully the new Hamilto-
nian, we see that vε,δ is a l.s.c. supersolution of the HJB-equation

max(F(x, t, w,Dw), w − (uδ + δ)) = 0 in RN × (t0 − h, t0] ,

because l(x, t)+χε(x, t) ≥ l(x, t) for any x and t, and we notice that u is a subsolution
of this equation since u ≤ uδ + δ in RN × (t0 − h, t0]. We also remark that, due to
the enlargement of BCL, vε,δ(x, t) ≤ uδ(x, t) + δ, which is the value obtained by
solving the differential inclusion with (b, c, l) = ((0, 0), 1, uδ(x, t) + δ). We want to
show that vε,δ ≥ u in O. In order to do so, we have to examine the behavior of vε,δ

in a neighborhood of ∂O first, which is provided by the

Lemma 5.3.2 For ε > 0 small enough, vε,δ(x, t) ≥ uδ(x, t) on ∂O.

We postpone the proof of this result and finish the argument. Since vε,δ ≥ uδ ≥ u
on the boundary of O, we have just to look at maximum points of u− vε,δ in O but,
in this set, (LCR) holds for (5.4) with ψ := uδ + δ. Therefore the comparison is valid
and we end up with vε,δ ≥ u everywhere in O.

Ending the proof and getting the sub-dynamic principle is done in three steps as
follows.

Step 1 – at the specific point (x0, t0) we have u(x0, t0) ≤ vε,δ(x0, t0), and using the
Dynamic programming Principle for vε,δ at (x0, t0) gives that for any η > 0,

u(x0, t0) ≤ inf
T ε,δ(x0,t0)

{∫ η

0

lδ,ε
(
X(s), T (s)

)
exp(−D(s))ds+vε,δ

(
X(η), T (η)

)
exp(−D(η))

}
.

(5.6)
we want to get the same inequality, but for trajectories in T hO (x0, t0). This relies on
the following step.
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Step 2 – Claim: if (X,T,D, L) is a given trajectory in T hO (x0, t0) and if η < h, then,
for ε > 0 small enough, (X,T,D, L) coincides with a trajectory in T ε,δ(x0, t0) on
[0, η].

The main argument in order to prove this claim is to notice that for ε small enough,
such trajectories satisfy ψε(X(s), T (s)) = 0 on [0, η].

Indeed, let us fix η < h and take ε small enough such that t0 − h + 2ε < t0 − η.
Then, for any trajectory (X,T,D, L) in T hO (x0, t0), T (s) ∈ [t0 − η, t0] for s ∈ [0, η],
so that T (s) > t0 − h + 2ε. Similarly, since Mh < r and |b| ≤ M , we get that
d(X(s); ∂B(x0, r)) > 2ε for s ∈ [0, η]. Of course, by definition of T hO (x0, t0), the
trajectory does not reach M hence, if ε is small enough, d((X(s), T (s));M) > 2ε
for any s ∈ [0, η]. In other words, for each fixed trajectory in T hO (x0, t0), if we take ε
small enough (depending on the trajectory) we have ψε(X(s), T (s)) = 0 on [0, η].

Therefore, for any trajectory (X,T,D, L) ∈ T hO (x0, t0), lδ,ε(X(s), T (s)) = l(X(s), T (s))
if ε > 0 is small enough and 0 ≤ s ≤ η < h. This means that (X,T,D, L) can be
seen as a trajectory associated to the extended BCLδ,ε, with initial data (x0, t0, 0, 0).
Hence it belongs to T δ,ε(x, t), which proves the claim.

Step 3 – Passing to the limit in ε and δ.

We take a specific trajectory (X,T,D, L) ∈ T hO (x0, t0) and take ε small enough so
that we can use it in (5.6). As we already noticed, vε,δ ≤ (uδ + δ) everywhere in Qx0,t0

r,h

due to the enlargement of BCL. Passing to the limit as ε→ 0 yields

u(x0, t0) ≤
∫ η

0

l
(
X(s), T (s)

)
exp(−D(s))ds+ (uδ + δ)

(
X(η), T (η)

)
exp(−D(η))

}
.

Then, we can let δ → 0 in this inequality, using that (uδ+δ)δ is a decreasing sequence
which converges to u and that the trajectory (X,T,D, L) and η are fixed.

Therefore (uδ + δ)
(
X(η), T (η)

)
→ u

(
X(η), T (η)

)
and we get

u(x0, t0) ≤
∫ η

0

l
(
X(s), T (s)

)
exp(−D(s))ds+ u

(
X(η), T (η)

)
exp(−D(η)) .

Taking the infimum over all trajectories in T hO (x0, t0) yields the conclusion when
η < h. The result for η = h is obtained by letting η tend to h, arguing once more
trajectory by trajectory.

Q.E.D.

Proof of Lemma 5.3.2 — We need to consider three portions of ∂O: t = t0 − h,
x ∈ ∂B(x0, r) and (x, t) ∈ M. We detail the first estimate which is technically
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involved, then the last two ones are done with similar arguments. In the following,
we use an optimal trajectory for vδ,ε, denoted by (Xδ,ε, T δ,ε, Dδ,ε, Lδ,ε).

Part A. Initial estimates – if t = t0 − h, we have to consider

– the running costs l
(
Xδ,ε(s), T δ,ε(s)

)
+ χε(X

δ,ε(s), T δ,ε(s)), with (perhaps) a non-
zero dynamic bx.

– the running costs uδ(Xδ,ε(s), T δ,ε(s))+δ coming from the enlargement with a zero
dynamic;

– and the convex combinations of the two above possibilities, obtained by using a
weight µδ,ε(s) ∈ [0, 1].

We first notice that since t = t0 − h, we have T δ,ε(s) = t0 − h for any s ≥ 0
since bt ≤ 0 and the trajectories have the constraint to stay in RN × [t0 − h, t0]. In
the following, we make various estimates (for ε small enough) involving constants
κ0, κ1, κ2, κ3 depending on the datas of the problem and δ > 0 but neither on ε nor
on x ∈ B(x0, r).

Next we set

E :=
{
s ∈ [0,+∞) : lδ,ε

(
Xδ,ε(s), T δ,ε(s)

)
= lδ,ε

(
Xδ,ε(s), t0 − h

)
≥ ε−3/2

}
,

where lδ,ε is given by the convex combination

lδ,ε
(
Xδ,ε(s), t0 − h

)
= µδ,ε(s)

{
l
(
Xδ,ε(s), t0 − h

)
+ χε

(
Xδ,ε(s), t0 − h

)}
+
(
1− µδ,ε(s)

)
(uδ + δ)

(
Xδ,ε(s), t0 − h

)
.

By definition of lδ,ε and in particular because of the χε-term, we have, for any s ≥ 0,
if ε is small enough

l
(
Xδ,ε(s), t0 − h

)
+ χε

(
Xδ,ε(s), t0 − h

)
≥ κ0ε

−3 ,

while (1− µδ,ε)(uδ + δ)(Xδ,ε(s), t0− h
)

is bounded uniformly with respect to ε, s and

x. Therefore, on Ec, we necessarily have µδ,ε(s) ≤ κ1ε
3/2 for some κ1 > 0.

Estimates on E – As we noticed in the proof of Theorem 5.3.1, vε,δ ≤ uδ + δ. In
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particular,

(uδ + δ)(x, 0) ≥ vε,δ(x, 0)

≥
∫ +∞

0

lδ,ε
(
Xδ,ε(s), T δ,ε(s)

)
exp(−Dδ,ε(s))ds

≥
∫
E

lδ,ε
(
Xδ,ε(s), T δ,ε(s)

)
exp(−Dδ,ε(s))ds

+

∫
Ec
lδ,ε
(
Xδ,ε(s), T δ,ε(s)

)
exp(−Dδ,ε(s))ds

By definition of E, the first integral is estimated by∫
E

lδ,ε
(
Xδ,ε(s), T δ,ε(s)

)
exp(−Dδ,ε(s))ds ≥

∫
E

ε−3/2 exp(−Dδ,ε(s))ds ,

while, using the boundedness of l and (uδ + δ) there exists C > 0 such that∫
Ec
lδ,ε
(
Xδ,ε(s), T δ,ε(s)

)
exp(−Dδ,ε(s))ds ≥ −C

∫
Ec

exp(−Dδ,ε(s))ds .

To get an estimate on the Lebesgue measure of E, we need an upper estimate of∫
Ec

exp(−Dδ,ε(s))ds. Notice that on Ec, because of the estimate on µδ,ε(s) we have

Ḋδ,ε(s) = cδ,ε
(
Xδ,ε(s), T δ,ε(s)

)
= µδ,ε(s)c

(
Xδ,ε(s), T δ,ε(s)

)
+
(
1−µδ,ε(s)

)
= 1+O(ε3/2) ,

where the |O(ε3/2)| ≤ Mκ1ε
3/2 is independent of x. Hence, since Ḋδ,ε(s) ≥ 0 for any

s ≥ 0, ∫
Ec

exp(−Dδ,ε(s))ds =

∫
Ec

Ḋδ,ε(s)

(1 +O(ε3/2))
exp(−Dδ,ε(s))ds

≤ (1 +O(ε3/2))−1

∫ +∞

0

Ḋδ,ε(s) exp(−Dδ,ε(s))ds

≤ (1 +O(ε3/2))−1 .

Gathering all the above informations, we finally conclude that∫
E

ε−3/2 exp(−Dδ,ε(s))ds ≤ κ2 ,

for some constant κ2 which is independent of ε and x.
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We introduce now a parameter S > 0 and denote by ES := E ∩ [0, S]. Since
0 ≤ Ḋδ,ε(s) ≤M for any s ≥ 0, we have

exp(−MS)|ES| ≤
∫
ES

exp(−Dδ,ε(s))ds ≤
∫
E

exp(−Dδ,ε(s))ds ≤ κ2ε
3/2 ,

where |ES| denotes the Lebesgue measure of ES. We choose S = Sε such that
exp(MSε) = ε−1/6 which yields

|ESε| ≤ κ2ε
3/2 exp(MSε) = κ2ε

4/3 .

We remark that Sε behaves like ln(ε−1/6), uniformly in x. The reason why we choose
Sε in order to get a power 4/3 > 1 in |ESε| will become clear in the lateral estimates.
For Part A, any power in (0, 3/2) is convenient.

Consequences on vε,δ – We first apply the Dynamic Programming Principle for vε,δ

which gives

vε,δ(x, t0 − h) =

∫ Sε

0

lδ,ε
(
Xδ,ε(s), t0 − h

)
exp(−Dδ,ε(s))ds

+ vε,δ(Xδ,ε(Sε), t0 − h) exp(−Dδ,ε(Sε)) .

Now we have to examine each term carefully. We first come back to the equation of
Dδ,ε: we have seen above that |Ḋδ,ε(s) − 1| ≤ Mκ1ε

3/2 on Ec, while |ESε| ≤ κ2ε
4/3.

We deduce that, for s ∈ [0, Sε]

|Dδ,ε(s)− s| ≤M(κ1ε
3/2Sε + κ2ε

4/3) ≤ κ3ε
4/3 (5.7)

for some κ3 > 0. In particular, since Sε → +∞ as ε → 0, exp(−Dδ,ε(Sε)) → 0 as
ε→ 0 and

lim inf
ε→0

(
vε,δ(Xδ,ε(S), t0 − h) exp(−Dδ,ε(Sε))

)
≥ 0 ,

uniformly w.r.t. x since vε,δ is bounded from below.

On an other hand, for the Xδ,ε-equation, we also have, on Ec (in fact only the bx

part is useful here)

bδ,ε(Xδ,ε(s), t0 − h) = µδ,ε(s)b(Xδ,ε(s), t0 − h) + (1− µδ,ε(s))(0, 0) = O(ε3/2) ,

more precisely the bound takes the form Mκ2ε
3/2. Using the decomposition with ESε

and its complementary Ec
Sε

= Ec ∩ [0, Sε] as in (5.7), it follows that∫ Sε

0

|bδ,ε(τ)|dτ =

∫ Sε

0

|bδ,ε(τ)|1I{ESε}(s)dτ +

∫ Sε

0

|bδ,ε(τ)|1I{EcSε}(s) dτ

≤M(κ2ε
4/3 + κ1ε

3/2Sε) ≤ κ3ε
4/3 .



130 Barles & Chasseigne

We deduce that if s ∈ [0, Sε], X
δ,ε(s)− x = O(ε4/3) and since uδ is continuous,

(uδ + δ)(Xδ,ε(s), t0 − h) = (uδ + δ)(x, t0 − h) + oε(1) ≥ (uδ + δ/2)(x, t0 − h) .

For a similar reason, on Ec
Sε

we can absorb the oε(1)-term by a δ/2 for ε small enough

lδ,ε
(
Xδ,ε(s), t0 − h

)
≥ (uδ + δ/2)

(
x, t0 − h

)
.

Gathering all these informations, using (5.7) and that (l + ψε) ≥ 0 on ESε we get

Iε :=

∫ Sε

0

lδ,ε
(
Xδ,ε(s), t0 − h

)
exp(−Dδ,ε(s))ds

≥
∫
EcSε

(
(uδ + δ/2)

(
x, t0 − h

))
exp

(
− s+O(ε4/3)

)
ds .

Then, since Sε behaves like ln(ε−1/6) and |ESε| ≤ κ2ε
4/3, we get

Iε ≥ (uδ + δ/2)
(
x, t0 − h

) ∫
EcSε

exp(−s)ds+ oε(1)

≥ (uδ + δ/2)
(
x, t0 − h

)
+ oε(1) .

Hence vε,δ(x, t0− h) ≥ (uδ + δ/2)
(
x, t0− h

)
+ oε(1) where the “oε(1)” is independent

of x and for ε small enough, we have vε,δ(x, t0 − h) ≥ uδ
(
x, t0 − h

)
on B(x0, r).

Part B. Lateral estimates – Essentially, the proof is the same as for the initial
estimates: the only difference is that the trajectory may exit the region where χε is
large. But, if d((x, t),M) ≤ ε or if d(x, ∂B(x0, r)) ≤ ε, the running cost satisfies again
the estimate l

(
Xδ,ε(s), T δ,ε(s)

)
+ χε(X

δ,ε(s), T δ,ε(s)) ≥ κ0ε
−3 ≥ 0.

We consider the case when (x, t) ∈M, the proof being the same if (x, t) ∈ ∂B(x0, r).
Since the dynamic b is bounded by M , a trajectory (X,T ) starting at (x, t) satisfies
d((X(s), T (s)),M) ≤ Ms and therefore, it stays in an ε-neighborhood of M for
s < ε/M .

For an optimal trajectory, we repeat the same proof as in Part A, but on E∩ [0, τε∧
Sε], where τε is the first time for which d((Xδ,ε(s), T δ,ε(s)),M) = ε and a ∧ b =
min(a, b).

If we set as above

E :=
{
s ∈ [0,∞) : lδ,ε

(
Xδ,ε(s), T δ,ε(s)

)
≥ ε−3/2

}
,
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then the Lebesgue measure of E∩ [0, τε∧Sε] is less than κ3ε
4/3 for some κ3 > 0, while

on Ec ∩ [0, τε ∧ Sε] we have µδ,ε(s) ≤ κ4ε
3/2 for some κ4 > 0. As in Part A, using the

decomposition on E ∩ [0, τε ∧ Sε] and its complementary we deduce that∫ τε∧Sε

0

|bδ,ε(s)| ds ≤ M
{
κ3ε

4/3 + κ4ε
3/2(τε ∧ Sε)

}
,

while by definition the distance between (x, t) and (Xδ,ε(τε), T
δ,ε(τε)) is larger than ε

(if τε is finite, of course).

We claim that for ε small enough, τε ∧ Sε = Sε. Indeed, assume on the contrary
that for some subsequence εn → 0, τεn < Sεn . From the previous estimate it follows
that

εn ≤ |(Xδ,ε(τε), T
δ,ε(τε))− (x, t)| ≤M

{
κ3ε

4/3
n + κ4ε

3/2
n τεn

}
.

The fact that the power in the first term is greater than 1 implies that τεn goes to

infinity, at least like ε
−1/2
n . But since by construction Sεn behaves like ln(ε

−1/6
n ), we

reach a contradiction.

We deduce that necessarily τε > Sε as ε → 0, and that on [0, Sε], the trajectory
remains “trapped” in an ε-neighborhood of M. We end the proof exactly as in Part
A, sending ε→ 0.

The proof if x ∈ ∂B(x0, r) being the same, in conclusion we have shown that
vδ,ε ≥ uδ on ∂O for ε small enough.

Q.E.D.

In the case when bt is not allowed to vanish, obtaining the sub-dynamic principle is
a bit easier since we do not need to consider an obstacle-type problem like (5.4).

Theorem 5.3.3 Let h, r > 0 be such that Mh < r and assume that, for any (x, t) ∈
Qx0,t0
r,h and any (b, c, l) ∈ BCL(x, t), bt = −1. If u is a subsolution of (5.3), if

T hO (x0, t0) 6= ∅ and if a (LCR) holds in O for the equation F = 0, then for any
η ≤ h

u(x0, t0) ≤ inf
X∈T hO (x0,t0)

{∫ η

0

l
(
X(s), T (s)

)
exp(−D(s)) ds+u

(
X(η), T (η)

)
exp(−D(η))

}
.

(5.8)

Proof — The difference between the two cases comes from the fact that, under the
assumption of Theorem 5.3.3, we could have T (h) > t0 − h in (5.6) (Step 1) for a
trajectory starting from (x0, t0) since bt was allowed to be different from −1: this
is why the strategy of the proof of this theorem uses η < h and, for handling this
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situation, we need to have vε,δ(x, t) ≤ uδ(x, t) + δ in the whole domain to conclude
after using the Dynamic Programming Principle for vε,δ (cf. Step 3).

Here on the contrary we are sure that T (h) = t0 − h for any such trajectory and
we are going the Dynamic Programming Principle for vε,δ up to time t0− h, i.e. with
s = h.

For this reason, we are going to prove (5.8) for η = h, the inequality for η < h being
obtained by applying the result with h replaced by η.

For all these reasons the proof is similar to that of Theorem 5.3.1 but there are
substantial simplifications.

(a) We enlarge BCL in the same way BUT ONLY at time t = t0−h. The consequence
is that vε,δ is a supersolution for the HJB-equation F = 0 and not of (5.4), since we
have no enlargement for t ∈ (t0−h, t0). Hence we just have to deal with the comparison
results for the F-equation, we do not need to assume some obstacle-type comparison
property.

(b) The penalization function we use here does not require a specific penalization for
the initial time and we just write it as

χε(x, t) :=
1

ε4

[(
2ε− d((x, t),M)

)+
+ (2ε− (r − |x− x0|))+

]
.

The initial inequality vε,δ(x, t0 − h) ≥ (uδ + δ)(x, t0 − h) for any x ∈ B(x0, r) follows
from the following argument: since bt = −1 in BCL, the only possibility for a con-
strained trajectory (Xδ,ε, T δ,ε, Dδ,ε, Lδ,ε) ∈ T δ,ε(x, t0−h) to remain in RN × [t0−h, t0]
is to solve the differential inclusion by using the elements ((0, 0), 1, (uδ + δ)(x, t0−h))
of BCLδ,ε. This implies directly that vε,δ(x, t0 − h) ≥ (uδ + δ)(x, t0 − h).

(c) With these simplications, the proof remains the same as in the general case
bt ∈ [−1, 0]: we first get that vε,δ ≥ u on t = t0 − h, for x ∈ ∂B(x0, r) and for
(x, t) ∈ M. Using that we have a (LCR) in O implies that vε,δ ≥ u on O. Then
we proceed as above using the dynamic programming principle for vε,δ. For η ≤ h(1),
taking ε > 0 small enough allows to restrict this dynamic principle to the trajectories
in T hO (x0, t0), which avoid M. Sending ε → 0 and δ → 0 is done “trajectory by
trajectory”.

Q.E.D.

(1)Here we do not have to treat separately the cases when η < h and η = h since we have
dropped the penalization term in a neighborhood of t = t0 − h and we know that vε,δ(x, t0 − h) ≥
(uδ + δ)(x, t0 − h).
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5.4 Local comparison for discontinuous HJB equa-

tions

The aim of this section is to provide an argument which is a keystone in several
comparison results we give for HJB equations with discontinuities, and in particular
for stratified problems.

To do so, we consider a C1-manifoldM⊂ RN × (0, T ) (which will be in the sequel
a set of discontinuity for the HJB equation) and for any (x, t) ∈ M, we denote by
T(x,t)M, the tangent space ofM at (x, t). Then we define the tangential Hamiltonian
associated with M by setting

FM(x, t, u, p) := sup
(b,c,l)∈BCLT (x,t)

{
− b · p+ cu− l

}
, (5.9)

where BCLT (x, t) :=
{

(b, c, l) ∈ BCL(x, t) : b ∈ T(x,t)M
}

. This tangential Hamilto-
nian is defined for any (x, t) ∈ M× [0, T ], u ∈ R and p ∈ T(x,t)M. But by a slight
abuse of notation, we also write FM(x, t, u, p) when p ∈ RN+1, meaning that only
the projection of p onto T(x,t)M is used for the computation. We also recall that
Du = (Dxu, ut).

Our main argument comes from the

Lemma 5.4.1 (The “Magical Lemma”)

We assume that (HBCL) holds, that v : Qx,t
r,h → R is a l.s.c. supersolution of F(x, t, v,Dv) =

0 in Qx,t
r,h where (x, t) ∈ M and 0 < t − h < t ≤ T , and that u : Qx,t

r,h → R has the
following properties

(i) u ∈ C0(Qx,t
r,h) ∩ C1(M),

(ii) FM(y, s, u,Du) < 0 on M,

(iii) u satisfies a “strict” subdynamic principle in Qx,t
r,h[Mc] = (B(x, r)×(t−h, t])\M,

i.e. there exists η > 0, such that, for any (x̄, t̄) ∈ Qx,t
r,h[Mc], for any solution

(X,T,D, L) of the differential inclusion such that X(0) = x̄, T (0) = t̄ and
(X(s), T (s)) ∈ Qx,t

r,h[Mc] for 0 < s ≤ τ̄ , we have, for any 0 < τ ≤ τ̄

u(y, s) ≤
∫ τ

0

(l(X(s), T (s))− η) exp(−D(s)) ds+ u(X(τ), T (τ)) exp(−D(τ)).

(5.10)
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If max
Qx,tr,h

(u− v) > 0, then, for any (y, s) ∈ Qx,t
r,h \ ∂pQ

x,t
r,h,

(u− v)(y, s) < m := max
∂pQ

x,t
r,h

(u− v) .

Proof — Using (HBCL)struct, we can assume without loss of generality that c ≥ 0 for

all (b, c, l) ∈ BCL(y, s) and for all (y, s) ∈ Qx,t
r,h.

We assume by contradiction that (u − v) reaches its maximum on Qx,t
r,h at a point

(x̄, t̄) ∈ Qx,t
r,h. If (x̄, t̄) ∈ Qx,t

r,h \M, we easily reach a contradiction: by Lemma 4.4.2,
v satisfies (4.15) and for sufficiently small τ , all the trajectories (X,T,D, L) are
such that (X(s), T (s)) ∈ Qx,t

r,h[Mc]. We consider an optimal trajectory for v at (x̄, t̄),
(X,T,D, L) and we gather the information given by (4.15) and (5.10) for some time
τ small enough: substracting these inequalities, we get

u(x̄, t̄)− v(x̄, t̄) ≤ −ητ + (u(X(τ), T (τ))− v(X(τ), T (τ))) exp(−D(τ)) . (5.11)

But (x̄, t̄) is a maximum point of u − v in Qx,t
r,h and therefore we have at the same

time u(x̄, t̄)−v(x̄, t̄) > 0 and u(x̄, t̄)−v(x̄, t̄) ≥ u(X(τ), T (τ))−v(X(τ), T (τ)); hence,
since exp(−D(τ)) ≥ 0

u(x̄, t̄)− v(x̄, t̄) ≤ −ητ + (u(x̄, t̄)− v(x̄, t̄)) exp(−D(τ)) ,

which is a contradiction since exp(−D(τ)) ≤ 1.

If (u − v) reaches its maximum on Qx,t
r,h at a point (x̄, t̄) ∈ Qx,t

r,h ∩M, we face two
cases

A. – In (4.15) for (x̄, t̄), there exists a trajectory (X,T,D, L) and τ > 0 such that
X(0) = x̄, T (0) = t̄ and

v(x̄, t̄) ≥
∫ τ

0

l
(
X(s), T (s)

)
exp(−D(s)) ds+ v

(
X(τ), T (τ)

)
exp(−D(τ)) , (5.12)

AND (X(s), T (s)) ∈ Qx,t
r,h\M for s ∈ (0, τ ]. In this case we argue essentially as above:

we use as a starting point (xε, tε) := (X(ε), T (ε)) ∈ Qx,t
r,h[Mc] for 0 < ε � 1 and we

use (5.10) for the specific trajectory (X,T,D, L) but on the time interval [ε, τ ]

u(xε, tε) ≤
∫ τ

ε

(l(X(s), T (s))− η) exp(−D(s)) ds+ u(X(τ), T (τ)) exp(−D(τ)) .

But in this inequality, we can send ε to 0, using the continuity of u and finally get,
combining it with the above inequality for v to obtain (5.11) and a contradiction.
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B. – If Case A cannot hold, this means that, for any τ and for any trajectory
(X,T,D, L) such that (5.12) holds, then there exists a sequence tn ↘ 0 such that
X(tn) ∈ M for any n ∈ N. We first use the dynamic programming inequality for v
between s = 0 and s = tn, which yields

v(x̄, t̄) ≥
∫ tn

0

l(X(s), T (s)) exp(−D(s)) ds+ v(X(tn), T (tn)) exp(−D(tn)) .

Since u− v reaches a maximum at (x̄, t̄) and since this maximum is positive, we can
replace v by u in this inequality which leads to

u(x̄, t̄)− u(X(tn), T (tn)) exp(−D(tn))

tn
≥ 1

tn

∫ tn

0

l(X(s), T (s)) exp(−D(s)) ds .

Now, since u is C1-smooth on M× (t − h, t), we have (recall that Du = (Dxu, ut)
and that here we use only derivatives which are in the tangent space of M)

u(X(tn), T (tn)) =u(x̄, t̄) +Du(x̄, t̄)(X(tn)− x̄, T (tn)− t̄) + o(|X(tn)− x̄|+ |T (tn)− t̄|)
=u(x̄, t̄) +Du(x̄, t̄)(X(tn)− x̄, T (tn)− t̄) + o(tn) ,

and writing

(X(tn)− x̄, T (tn)− t̄) =

∫ tn

0

b(s)ds , exp(−D(tn)) =

∫ tn

0

−c(s) exp(−D(s))ds

we obtain

1

tn

∫ tn

0

{−b(s) ·Du(x̄, t̄) + c(s)u(x̄, t̄)− l(X(s), T (s))} exp(−D(s))ds ≥ 0 .

And since exp(−D(s)) = 1 +O(tn), we can write this inequality as

−bn ·Du(x̄, t̄) + cnu(x̄, t̄)− ln ≥ on(1) ,

where

bn =

(
1

tn

∫ tn

0

b(s)ds

)
, cn =

(
1

tn

∫ tn

0

c(s)ds

)
, ln

(
1

tn

∫ tn

0

l(X(s), T (s))ds

)
.

But the bn, cn, ln are uniformly bounded and therefore we can assume that bn →
b̄, cn → c̄, ln → l̄. Using the convexity and upper semi-continuity of BCL, we have
(b̄, c̄, l̄) ∈ BCL(x̄, t̄) and by the definition of bn, we also have b̄ ∈ T(x̄,t̄)M. Finally,
passing to the limit in the above inequality yields

−b̄ ·Du(x̄, t̄) + c̄u(x̄, t̄)− l̄ ≥ 0 .
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But, thanks to the definition of FM and the properties of u, we have the inequalities

0 ≤ −b̄ ·Du(x̄, t̄) + c̄u(x̄, t̄)− l̄ ≤ FM(x̄, t̄, u(x̄, t̄), Du(x̄, t̄)) < 0 ,

which is the desired contradiction.
Q.E.D.

Remark 5.4.2 There are possible variants for this lemma. In particular, in Part II,
we use one of them where the sub and supersolution properties for u and v are defined
in a slightly different way, namely with taking a more restrictive set of control on M.
Of course, in that case, FM is replaced by an Hamiltonian which defined in a different
way. The proof is still valid if the Dynamic Programming argument of B. leads to the
right inequality.

5.5 The “good framework for HJ-equations with

discontinuities”

The study of Hamilton-Jacobi with discontinuities or the associated control prob-
lems in the convex case leads to various situations, many of which we consider in
Parts II, III, IV or V. These situations may appear to be quite different, but still
we can identify some common structure on the equations and the discontinuities of
the Hamiltonians which seems quite “natural” to get most of the results. Of course,
what we are going to describe as the “good framework for HJ-Equations with discon-
tinuities” does not perfectly fit all situations and some adaptations have to be made
in each case. But the definition below provides a good idea of the key assumptions
which are required to treat those problems.

5.5.1 General definition at the pde level

Definition 5.5.1 We say that we are in the “good framework for HJ-Equations with
discontinuities” for the equation

G(X, u,Du) = 0 in O ⊂ RN (5.13)

if (LOC1), (LOC2) hold and if there exists a stratification M = (Mk)k=0..N of RN

such that, for any k = 0, .., N
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(i) if X̄ ∈ Mk ∩ O, there is a ball B(X̄, r) ⊂ O for some r > 0 and a C1,1-
diffeomorphism Ψ : B(X̄, r) → RN such that Ψ(X̄) = X̄, the Ψ(Ml ∩ B(x, r))
for l = 0..N form a (HST)flat and

Ψ(B(X̄, r) ∩Mk) =
(
X̄ + Rk × {0RN−k}

)
∩Ψ(B(X̄, r)) .

(ii) Denoting Ψ(X) = X̄ + (Y, Z) with Y ∈ Rk, Z ∈ RN−k and

G̃((Y, Z), r, (pY , pZ)) = G(Ψ−1
(
X̄ + (Y, Z)

)
, r, [(Ψ−1)′]T

(
X̄ + (Y, Z)

)
(pY , pZ)) ,

where [(Ψ−1)′]T denotes the transpose matrix of (Ψ−1)′, then (TC), (NC),(Mon)
hold for G̃ on Ψ(B(X̄, r) ∩Mk).

In this case, we will say that M is associated to Equation (5.13).

As we already mentioned it in Section 3.4, the difficulty when stating such definition
is that it is supposed to cover very different situations for which the sense of G = 0
may vary and may also involve several Hamiltonians. In these various situations, we
use the following convention

(TC), (Mon) have to be satisfied - up to some change of variables - by ANY Hamil-
tonians which are involved in the sub and supersolutions inequalities while (NC) has
to be satisfied by the Hamiltonians which are involved in the subsolutions inequalities
related to local maximum points in O—or Ψ(B(X̄, r))—but not by the Hamiltonians
related to local maximum points on the Mk for k < N .

But before coming back to this point, let us explain the key ideas beyond this “good
framework for HJ-Equations with discontinuities”.

The very first idea is that the discontinuities of G form a regular stratification.
Since we always argue locally (using (LOC1), (LOC2), for comparison results), we
can use Definition 3.3.5—with perhaps a smaller r—to reduce to the case when the
discontinuities in G form an AFS (here Mk is replaced by X̄ +Rk×{0RN−k}). This is
the first important reduction. We immediately point out that, in Definition 5.5.1, the
diffeomorphism Ψ is assumed to be C1,1 which is needed in general to get (TC) but,
in coercive cases, i.e. when G is coercive in p, C1-diffeomorphisms may be enough.

Once this change is done, we are in the framework of Section 3.4 and using a com-
bination (TC), (NC),(Mon) allows us to regularize subsolutions in order to be able
to apply Lemma 5.4.1. The triptych “Tangential continuity + normal controllability
+ some suitable monotonicity” seems to us the basis of most of our results, and not
only the comparison ones.
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The two extreme cases have also to be commented: if k = N , then there is no
normal directions, (TC) has to be satisfied by all coordinates, G is continuous in
a neighborhood of X̄, no change Ψ is really needed and, through (TC), we just
recover the classical assumption for the uniqueness of viscosity solutions for a standard
HJ-Equations without discontinuity. If k = 0, X̄ is an isolated point, we have no
“tangent coordinates” and (TC) is void but (NC) implies that G is coercive in p in
a neighborhood of X̄.

5.5.2 The stratified case and the associated “good assump-
tions” on the BCL

Now let us come back on the sense of the equation G = 0 and the way the above
convention has to be applied. Anticipating Part IV on the full stratified case, we have
an HJ-equation of the type

F(x, t, U,DU) = 0 in RN × [0, Tf ] ,

where DU = (DxU,DtU) and

F(x, t, r, p) := sup
(b,c,l)∈BCL(x,t)

{
− b · p+ cr − l

}
.

Assuming that (HBCL) holds, what does it mean to be in the “good framework for
HJ-Equations with discontinuities” here?

In the case of stratified problems, roughly speaking, the sense of the equation is
F ∗ ≥ 0 in RN × (0, Tf ] for supersolutions and, for subsolutions, F∗ ≤ 0 in RN × (0, Tf ]
with the additional conditions Fk ≤ 0 on Mk where the “tangential Hamiltonians”
Fk for k = 0..N are defined for (x, t) ∈Mk, r ∈ R and p ∈ T(x,t)M

k, by

Fk(x, t, u, p) := sup
(b,c,l)∈BCL(x,t)

b∈T(x,t)M
k

{
− b · p+ cu− l

}
.

For t = 0, we have analogous properties but for Finit. We refer to Chapter 20 for more
precise definitions.

Now we examine the needed assumptions on the BCL in RN × (0, T ] in order to
have (TC) and (NC): we are going to do it precisely for (TC) and (NC) since, for
(Mon), this is a more standard consequence of (HBCL) and we come back on that
point in Chapter 20, more specifically in Section 20.4. On the other hand, for t = 0,
such checking is analogous using Finit and the associated Hamiltonians on Mk

0.
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Since these assumptions are local and invariant by the Ψ-changes, we can state
them in a ball B((x, t), r) centered at (x, t) ∈ Mk with a small radius r > 0
and we can assume that, in B((x, t), r), M is an (AFS) with Mk = (x, t) + Vk,
where Vk is a k-dimensional vector space in RN+1 and B((x, t), r) intersects only
Mk,Mk+1, · · · ,MN+1. We denote by V ⊥k the orthogonal space to Vk and by P⊥ the
orthogonal projector on V ⊥k . We trust the reader to be able to translate them for the
original stratification and BCL.

In this framework, (TC) & (NC) are satisfied if, with the above notations

(TC-BCL) For any 0 ≤ k ≤ N + 1 and for any (x, t) ∈Mk, there exists a constant
C1 > 0 and a modulus m : [0,+∞)→ R+ such that, for any j ≥ k, if (y1, t1), (y2, t2) ∈
Mj ∩ B((x, t), r) with (y1, t1) − (y2, t2) ∈ Vk, then for any (b1, c1, l1) ∈ BCL(y1, t1),
there exists (b2, c2, l2) ∈ BCL(y2, t2) such that

|b1 − b2| ≤ C1(|y1 − y2|+ |t1 − t2|) , |c1 − c2|+ |l1 − l2| ≤ m
(
|y1 − y2|+ |t1 − t2|

)
.

(NC-BCL) For any 0 ≤ k ≤ N+1 and for any (x, t) ∈Mk, there exists δ = δ(x, t) >
0, such that, for any (y, s) ∈ B((x, t), r), one has

B(0, δ) ∩ V ⊥k ⊂ P⊥ (B(y, s)) .

Of course, the case k = 0 is particular since Vk = {0}: here we impose a complete
controllability of the system in a neighborhood of x ∈M0 since the condition reduces
to B(0, δ) ⊂ B(y, t) because V ⊥k = RN+1.

As we will see it throughout this book, the normal controllability assumption plays a
key role in all our analysis: first, at the control level, to obtain the viscosity subsolution
inequalities for the value function on each Mk, then in the comparison proof to allow
the regularization (in a suitable sense) of the subsolutions and, last but not least, for
the stability result.

It is rather easy to prove that (NC-BCL) implies (NC) in this (AFS) frame-
work. We therefore concentrate on (TC-BCL) and the following result first gives
an important consequence of these assumptions: the continuity of all the Hamiltoni-
ans {Fk}k=0..N , whose proof uses a combination of (TC-BCL) and (NC-BCL). We
point out that, on the contrary, it is easy to prove that FN+1 satisfies (TC) in MN+1.

With the same notations as above we set, for (y, s) ∈ B((x, t), r) ∩Mk

BCLk(y, s) := {(b, c, l) ∈ BCL(y, s); b ∈ T(y,s)M
k = Vk} ,
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and Bk(y, s) is the set of all b such that there exists c, l for which (b, c, l) ∈ BCLk(y, s).

We have the

Lemma 5.5.2 If (TC-BCL) and (NC-BCL) hold, then

(i) BCLk(y, s) 6= ∅ for any (y, s) ∈ B((x, t), r) ∩Mk.

(ii) There exists C̄1 > 0 and a modulus m̄ such that, if (y1, t1), (y2, t2) ∈ B((x, t), r)∩
Mk and if (b1, c1, l1) ∈ BCLk(y1, t1), there exists (b2, c2, l2) ∈ BCLk(y2, t2) such
that

|b1− b2| ≤ C̄1(|y1− y2|+ |t1− t2|) , |c1− c2|+ |l1− l2| ≤ m̄
(
|y1− y2|+ |t1− t2|

)
.

In particular, the Hamiltonian Fk satisfies (TC) on Mk, i.e. for any R > 0, for
any (y1, t1), (y2, t2) ∈ B((x, t), r) ∩Mk, |r| ≤ R, p ∈ Vk (or p ∈ RN+1)

|Fk(y1, t1, r, p)− Fk(y2, t2, r, p)| ≤C̄1(|y1 − y2|+ |t1 − t2|)|p|

+ (R + 1)m̄
(
|y1 − y2|+ |t1 − t2|

)
.

(iii) For any j ≥ k, there exists C̃1 > 0 and a modulus m̃ such that, if (y1, t1), (y2, t2) ∈
Mj∩B(x, r) with (y1, t1)−(y2, t2) ∈ Vk, if (b1, c1, l1) ∈ BCLj(y1, t1), there exists
(b2, c2, l2) ∈ BCLj(y2, t2) such that

|b1− b2| ≤ C̃1(|y1− y2|+ |t1− t2|) , |c1− c2|+ |l1− l2| ≤ m̃
(
|y1− y2|+ |t1− t2|

)
.

In particular, the Hamiltonian Fj satisfies (TC) on Mj, i.e. for any R > 0, for
any (y1, t1), (y2, t2) ∈ B((x, t), r) ∩Mk, |r| ≤ R, p ∈ Vk (or p ∈ RN+1)

|Fj(y1, t1, r, p)− Fj(y2, t2, r, p)| ≤C̃1(|y1 − y2|+ |t1 − t2|)|p|

+ (R + 1)m̃
(
|y1 − y2|+ |t1 − t2|

)
.

Proof — The first part of the result is a direct consequence of (NC-BCL): indeed
0 ∈ P⊥ (B(y, s)), hence there exists (b, c, l) ∈ BCL(y, s) such that P⊥(b) = 0, i.e.
b ∈ Vk = T(y,s)M

k.

For the second part of the result, we use (TC-BCL): if (b1, c1, l1) ∈ BCLk(y1, t1) ⊂
BCL(y1, t1), there exists (b2, c2, l2) ∈ BCL(y2, t2) such that

|b1 − b2| ≤ C1(|y1 − y2|+ |t1 − t2|) , |c1 − c2|+ |l1 − l2| ≤ m
(
|y1 − y2|+ |t1 − t2|

)
.
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We have to modify (b2, c2, l2) in order to obtain (b̃2, c̃2, l̃2) ∈ BCLk(y2, t2) with the
right property. To do so, we notice that, since P⊥(b1) = 0 then |P⊥(b2)| ≤ η :=
C1(|y1 − y2|+ |t1 − t2|).

If P⊥(b2) = 0 the resulu holds, hence we may assume that P⊥(b2) 6= 0 and set

e =
P⊥(b2)

|P⊥(b2)|
.

Using (NC-BCL), there exists (b̄2, c̄2, l̄2) ∈ BCL(y2, t2) such that P⊥(b̄2) = −(δ/2)e
and we consider the convex combination

(b̃2, c̃2, l̃2) := (1− α)(b2, c2, l2) + α(b̄2, c̄2, l̄2) .

Since

P⊥(b̃2) = (1− α)P⊥(b2) + αP⊥(b̄2) = (1− α)ηe− δ

2
αe ,

choosing α = η/(η+δ/2) we get P⊥(b̃2) = 0. Therefore (b̃2, c̃2, l̃2) ∈ BCLk(y2, t2) and
the estimates on |b1 − b̃2|, |c1 − c̃2|, |l1 − l̃2| are an easy consequence of the value of
α, because of the definition of η and the properties of b2, c2, l2. Indeed, the difference
between (b̃2, c̃2, l̃2) and (b2, c2, l2) behaves like 3Mα ≤ 3Mδ−1η and therefore the
result holds with

C̄1 := (1 + 3Mδ−1)C1 and m̄(τ) = m(τ) + 3Mδ−1C1τ .

Finally the (TC) inequality for Fk is a direct consequence of the previous result.
The third result follows from analogous arguments as in (ii).

Q.E.D.

5.5.3 The case of Ishii viscosity solutions for an Hamilton-
Jacobi Equation with a codimension 1 discontinuity

We conclude this section by some remarks on the model problem which is studied in
Part II and III where O = RN × (0, Tf ), X = (x, t) and

G(x, t, r, (px, pt)) :=

{
pt +H1(x, t, r, px) if xN > 0,

pt +H2(x, t, r, px) if xN < 0.

For Part II, we are in the control case and we use the standard Ishii inequalities,
namely G∗ ≥ 0 in O and G∗ ≤ 0 in O. We can use (TC-BCL) and (NC-BCL)
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which are satisfied if (HBA−HJ) holds and if H1, H2 satisfies the assumption (NCH)
(see p. 163) on MN = H := {x : xN = 0}×(0, Tf ) . In fact, (Mon) but also (LOC1),
(LOC2) are also satisfied under these assumptions.

Concerning Part III, we point out that essentially the same type of assumptions are
needed but since the Hamiltonians H1, H2 will only be assumed to be quasi-convex,
we have to come back to the (TC), (NC) formulations.



Chapter 6

Other Tools

6.1 Semi-convex/semi-concave functions: the main

properties

The aim of this section is to describe the properties of semi-convex and semi-concave
functions which will be used throughout this book, in particular those connected
to their differentiability. Considering Section 3.4.3, it is clear that we are not going
to manipulate functions which are semi-convex or semi-concave w.r.t. all variables
but only in the “tangential variables”; anyway, since this latter case consists only in
applying the results of the first one by fixing the normal coordinates, we will only
be interested in this section in the case of the functions which are semi-convex/semi-
concave w.r.t. all variables.

We first recall that, if O ⊂ RN is a convex domain and f : O → R, the function
f is semi-convex [ resp. semi-concave ] if there exists a constant C ≥ 0 such that
x 7→ f(x) + C|x|2 is convex [ resp. x 7→ f(x)− C|x|2 is concave ].

In the sequel, we consider only the semi-convex case, the semi-concave one being
deduced by changing f in −f in the results below. In addition, we point out that all
the properties we are going to describe are nothing but properties of convex functions
which are translated in a suitable (and easy) way, the term C|x|2 being smooth and
therefore causing no problem for the differentiability.

We list all the properties in the following result

Proposition 6.1.1 If f : O → R is a locally bounded function which is semi-convex
for a constant C ≥ 0, we have
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(i) f is locally Lipschitz continuous in O and if B(x, 2r) ⊂ O, the Lipschitz constant
of f in B(x, r) depends only on ||f ||L∞(B(x,r)).

(ii) f is differentiable a.e. in O.

(iii) For any x ∈ O, D−Of(x) 6= ∅ and if p ∈ D−Of(x), we have, for all y ∈ O,

f(y) ≥ f(x) + p · (y − x)− 2C|y − x|2 . (6.1)

(iv) Let (fε)ε be a sequence of functions which are semi-convex with the same con-
stant C and which are converging to f locally uniformly in O and let (xε)ε a
sequence of points of O which converges to x ∈ O. If pε ∈ D−Of(xε) and if
(pε′)ε′ is subsequence of (pε)ε which converges to p then p ∈ D−Of(x). In partic-
ular, if fε is differentiable at xε for any ε and if f is differentiable at x, then
Dfε(xε)→ Df(x).

(v) If ϕ is either a C1 or a semi-concave function defined on O and if x is a
maximum point of f − ϕ, then f is differentiable at x, ϕ is also differentiable
at x in the semi-concave case and Df(x) = Dϕ(x).

Of course we are not going to give a complete proof of Proposition 6.1.1: as we
mentioned it above, most of the results are very classical for convex functions and
extend without any difficulty to the case of semi-convex ones. But we provide some
comments for each of them.

• (i) and (ii) are famous classical results for convex functions, (ii) being a conse-
quence of (i) through Rademacher’s Theorem (even if historically Rademacher’s
Theorem is more a consequence of (ii)).

• (iii) also reflects a classical property of convex function, in particular Inequal-
ity (6.1) with the correcting term −2C|y − x|2.

• (iv) is an easy consequence of Inequality (6.1). We point out that the existence
of converging subsequences (pε′)ε′ is a consequence of (i) since it is easy to
show that |pε| is controlled by the Lipschitz constant of fε and these Lipschitz
constants are uniformly bounded by (i) and the local uniform convergence of
the sequence (fε)ε. An interesting particular case is the choice when fε ≡ f
where we have some kind of “continuity of the gradient” since, if we have a
sequence (xε)ε of points where f is differentiable which converges to x ∈ O
where f is differentiable, then Df(xε) → Df(x). This is proved by a standard
compactness argument since Df(x) is the only possible limit of subsequences
of (Df(xε))ε.
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• Property (v) will play a key role for us since we are going to be any time in
this context (we recall here that this will be only a property to be used in the
“tangential variables”). This property is a consequence of the following result:
if D−Of(x) 6= ∅ AND D+

Of(x) 6= ∅ then f is differentiable at x and D−Of(x) =
D+
Of(x) = {Df(x)}. In our context, we know by (iii) that D−Of(x) 6= ∅ and

then we have two cases

– if ϕ is C1, the maximum point property implies Dϕ(x) ∈ D+
Of(x) which is

therefore non-empty and the conclusion follows readily.

– If ϕ is semi-concave, then D+
Oϕ(x) 6= ∅ by an analogous property of (iii) for

semi-concave function and the maximum point property both implies D+
Oϕ(x) ⊂

D+
Of(x) and D−Of(x) ⊂ D−Oϕ(x). Hence both f and ϕ are differentiable at x

and Df(x) = Dϕ(x).

Remark 6.1.2 Property (iv) will mainly be used in the case when f is differentiable
at x. Then, for any sequence (xε)ε of points of O which converges to x ∈ O and for
any choice of pε ∈ D−Ofε(xε), the sequence of (pε)ε converges to Df(x). Indeed, the
sequence (pε)ε is bounded, hence it lies in a compact subset of RN and Df(x) is the
only possible limit for converging subsequences of (pε)ε.

6.2 Quasi-convexity: definition and main proper-

ties in R

Let C ⊂ RN be a convex set. A quasi-convex function f : C → R is a function such
that, for any a ∈ R, the lower level set {x : f(x) ≤ a} is convex.

An equivalent definition is: for any x, y ∈ C and λ ∈ (0, 1),

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} .

Of course, convex functions are quasi-convex but the converse is false since quasi-
convex functions can be discontinuous, even if they are bounded: for example, take,
in RN , the indicator function of the complementary of a convex set. Hence, one of the
differences between convex and quasi-convex functions is that quasi-convex functions
may have various “flat” zones, not only where they achieve their minimum.

In the sequel, we consider the following class of functions

Definition 6.2.1 We say that f : R → R satisfies (HQC−R) if f is continuous,
coercive and quasi-convex.
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6.2.1 Representation of quasi-convex functions

The first (classical) result we have for such functions is the

Lemma 6.2.2 If f : R→ R satisfies (HQC−R) then

(i) there exists m−(f) ≤ m+(f) such that the set where f achieves its minimum is
exactly the interval [m−(f),m+(f)].

(ii) f is nonincreasing on ]−∞,m−(f)[ and nondecreasing on ]m+(f),+∞[.

(iii) f = max{f ], f[} where f ] is nondecreasing and f[ is nonincreasing.

Proof — The proof of (i) is easy: since f is continuous and coercive, it is bounded from
below and achieves its minimum. Moreover by quasi-convexity, the set {x : f(x) ≤
minR(f)} is convex, hence this is an interval [m−(f),m+(f)].

For (ii), we consider x, y ∈] − ∞,m−(f)[ with x < y. If f(x) < f(y), then, by
the quasi-convexity of f , the convex set {t : f(t) ≤ f(x)} contains x and m−(f),
hence all the interval [x,m−(f)]. A contradiction since y ∈ [x,m−(f)]. Hence f is
nonincreasing on ]−∞,m−(f)[ and an analogous proof shows that f nondecreasing
on ]m+(f),+∞[.

For (iii), we consider

f ](x) = min{f(t); t ≥ x} , f[(x) = min{f(t); t ≤ x}.

Clearly we have

f ](x) = min
R

(f) if x ≤ m+(f) , f[(x) = min
R

(f) if x ≥ m−(f) ,

while, by using (ii),

f ](x) = f(x) if x > m+(f) , f[(x) = min
R

(f) if x < m−(f) .

The conclusion follows by analyzing the different cases x < m−(f), m−(f) ≤ x ≤
m+(f) and x > m+(f).

Q.E.D.
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6.2.2 On the maximum of two quasi-convex functions

In this section, we describe a result which is crucial in order to give sufficient conditions
for the uniqueness of Ishii solutions in problems with codimension 1 discontinuities
(see Section 10.2).

Let f, g : R→ R satisfy (HQC−R) and define

M(s) := max{f(s), g(s)} , M reg(s) := max{f ](s), g[(s)} .

We point out that we use the strange notation M reg to be consistent with Section 10.2.
Notice that the definition of M reg is not symmetric on f and g.

Lemma 6.2.3 We assume that f, g satisfy (HQC−R). There exists ν1 ≤ ν2 such that

M reg(s) :=


g[(s) > f ](s) if s < ν1 ,

f ](s) = g[(s) if ν1 ≤ s ≤ ν2 ,

f ](s) > g[(s) if s > ν2 .

Of course, min
s∈R

M reg(s) is attained on [ν1, ν2].

Proof — We introduce the function ϕ(s) := f ](s)− g[(s). Due to the properties of f ]

and b[, the function ϕ is nondecreasing. Moreover, due to the coercivity assumption,
ϕ(s) → −∞ as x → −∞ and ϕ(s) → +∞ as x → +∞. Therefore, there exists
ν1 ≤ ν2 such that ϕ(s) < 0 if s < ν1, ϕ(s) > 0 if s > ν2 and ϕ(s) = 0 on [ν1, ν,2 ]. The
lemma directly follows.

Q.E.D.

Proposition 6.2.4 Let f, g : R → R satisfy (HQC−R). If m+(f) ≤ m−(g) then the
following property holds

min
s∈R

M(s) = min
s∈R

M reg(s) .

Proof — Notice first that of course the inequality max{f, g} ≥ max{f ], g[} holds
simply because of the definition of f ] and g[; therefore the same inequality holds
when taking the minimum over s.

In order to get the opposite inequality, we first remark that, by Lemma 6.2.3, the
minimum of M reg is attained at some point s0 which satisfies s0 ∈ [ν1, ν2]. Moreover,
f ](s0) = g[(s0). There are three cases, some of which may be void.
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First case: s0 ∈ [m+(f),m−(g)]. In this case the conclusion easily follows from the
fact that f ](s0) = f(s0) = g[(s0) = g(s0): we deduce immediately that minR(M reg) =
M reg(s0) = M(s0) ≥ minR(M).

Second case: s0 ≤ m+(f) ≤ m−(g). This implies that f ](s0) = minR(f) = g[(s0) and
minR(M reg) = M reg(s0) = minR(f).

Considering the situation at s = m+(f) we see that

g(m+(f)) = g[(m
+(f)) because m+(f) ≤ m−(g)

≤ g[(s0) because g[ is nonincreasing

≤ f ](s0) by the definition of s0

≤ f ](m+(f)) because f ] is flat for s ≤ m+(f)

≤ f(m+(f)) = min
R

(f) .

We deduce that, at s = m+(f), M(m+(f)) = minR(f) = minR(M reg). Hence, we
conclude that minR(M reg) ≥ minR(M).

Third case: if s0 ≥ m−(g) ≥ m+(f), the proof is the same after reversing the roles of
f ] and g[.

The conclusion is that, in any case, minR(M reg) ≥ minR(M) which implies that
those minima are equal.

Q.E.D.

6.2.3 Application to quasi-convex Hamiltonians

As we have seen in the previous sections, throughout this book we deal with Hamil-
tonians of the form H(x, t, r, p). Those may be either convex, Lipschitz, or have a
quasi-convexity property that we describe now.

The quasi-convex case (mainly exposed in Part III) is defined in the following way:
if we set p = (p′, pN) with p′ ∈ RN−1 and pN ∈ R, we will say that we are in the
quasi-convex case if

(HQC) for any (x, t, r, p′), the function h : s 7→ H(x, t, r, p′+seN) satisfies (HQC−R).

Using the previous sections, we can introduce the new Hamiltonians

H−(x, t, r, p) = h](pN) =
[
H(x, t, r, p′ + pNeN)

]]
,

H+(x, t, r, p) = h[(s) =
[
H(x, t, r, p′ + seN)

]
[
.
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Thanks to the above results, we have H = max(H+, H−). We use extensively this
decomposition in Part III and we point out that, if H satisfies (HBA−HJ), then the
Hamiltonians H+, H− also satisfy (HBA−HJ).

6.3 A strange, Kirchhoff-related lemma

In Part III, the following lemma will be useful in order to connect general Kirchhoff
type conditions with flux-limited type conditions on the interface.

Lemma 6.3.1 Assume that f,g : R → R and h : R2 → R are continuous functions
such that

(i) f is an increasing function with f(t)→ +∞ as t→ +∞,

(ii) g is a decreasing function with g(t)→ +∞ as t→ −∞,

(iii) there exists α > 0 such that, for any t2 ≥ t1 and s2 ≤ s1, we have

h(t2, s2)− h(t1, s1) ≤ −α(t2 − t1) + α(s2 − s1) .

If ψ : R2 → R is the function defined by

ψ(t, s) := max(f(t), g(s), h(t, s)) ,

then ψ is a coercive continuous function in R2 and there exists (t̄, s̄) such that

ψ(t̄, s̄) = min
t,s

(ψ(t, s)) (6.2)

and
f(t̄) = g(s̄) = h(t̄, s̄) . (6.3)

Moreover, if a point (t̃, s̃) ∈ R2 satisfies (6.3) then (t̃, s̃) is a minimum point of ψ.
Finally,

min
t,s
{max(f(t), g(s), h(t, s))} = max

t,s
{min(f(t), g(s), h(t, s))} .

In the statement of the above lemma, we point out that the assumption on h implies
that h(t, s) is a strictly decreasing function of t and a strictly increasing function of
s with h(t, s) → +∞ if t → −∞, s remaining bounded or if s → +∞, t remaining
bounded.
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Proof — Using the three properties we impose on f, g, h, and in particular, the con-
sequences of the assumption on h we describe above, it is easy to prove that ψ is
actually continuous and coercive; therefore such a minimum point (t̄, s̄) exists.

We have to show that (6.3) holds and to do so, we may assume without loss of
generality that f is strictly increasing and g is strictly decreasing. Otherwise, we may
prove the result for f(t) + εt and g(s) − εs for ε > 0 and pass to the limit ε → 0
remarking that the associated minimum points remain in a fixed compact subset of
R2.

If m = mint,s (ψ(t, s)), we first notice that h(t̄, s̄) = m. Otherwise h(t̄, s̄) < m and
it is clear enough by using the monotonicity of f and g that, for δ > 0 small enough,
then

ψ(t̄− δ, s̄+ δ) < ψ(t̄, s̄) ,

a contradiction.

In the same way, if f(t̄) < m, using the properties of h, there exists δ, δ′ > 0 small
enough such that h(t̄ + δ, s̄ + δ′) < m, g(s̄ + δ′) < m and ψ(t̄ + δ, s̄ + δ′) < ψ(t̄, s̄),
again a contradiction.

A similar proof allowing to conclude that g(s̄) = m, (6.3) holds.

Notice that if we have replaced f(t) by f(t) + εt and g(t) by g(s)− εs, we can let
ε tend to 0 and keep this property for at least one minimum point.

Now we consider a point (t̃, s̃) ∈ R2 which satisfies (6.3) and we pick any point
(t, s) ∈ R2. We examine the different possible cases, taking into account the particular
form of ψ and the monotonicity properties of f, g, h, using that, of course, ψ(t̃, s̃) =
f(t̃) = g(s̃) = h(t̃, s̃)

• If t ≥ t̃, ψ(t, s) ≥ f(t) ≥ f(t̃) = ψ(t̃, s̃).

• If s ≤ s̃, the same conclusion holds by using that g is decreasing.

• If t ≤ t̃ and s ≥ s̃, then ψ(t, s) ≥ h(t, s) ≥ h(t̃, s̃) = ψ(t̃, s̃).

And the conclusion follows since we have obtained that ψ reaches its minimum at
(t̃, s̃).

For the last property, we set

χ(t, s) = min(f(t), g(s), h(t, s)) .

If, as above, (t̃, s̃) ∈ R2 is a point which satisfies (6.3), we have χ(t̃, s̃) = f(t̃) = g(s̃) =
h(t̃, s̃) and by similar arguments as above
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• If t ≤ t̃, χ(t, s) ≤ f(t) ≤ f(t̃) = χ(t̃, s̃).

• If s ≥ s̃, the same conclusion holds by using that g is decreasing.

• If t ≥ t̃ and s ≤ s̃, then χ(t, s) ≤ h(t, s) ≤ h(t̃, s̃) = χ(t̃, s̃).

And the proof is complete.
Q.E.D.

Remark 6.3.2 A similar result to the last part of Lemma 6.3.1, but with a simpler
proof, is

min
t
{max(f(t), g(t))} = max

t
{min(f(t), g(t))} . (6.4)

This equality is also useful in Part III.

6.4 A few results for penalized problems

In viscosity solutions’ theory, several proofs require penalization arguments, i.e. ap-
proximations of maxima or minima by penalizing the function. The most emblematic
example is certainly the doubling of variables in comparison proofs but there are sev-
eral other examples, such as the treatment of some boundary conditions (evolution
equations set in (0, T ) which hold up to time T or more generally boundary conditions
in the case when all dynamics are pointing inward the domain) or the convergence of
regularization by inf or sup-convolution...etc.

Instead of refering to these (rather easy) results as “standard results” all along this
book, we have decided to provide two general lemmas gathering the key informations,
one for penalization in compact sets, the other one (more restrictive) concerns the
penalization at infinity.

6.4.1 The compact case

Lemma 6.4.1 Let w : K → R be an u.s.c. function defined on some compact set
K ⊂ Rp and F ⊂ K be closed. We denote by M := maxz∈F w(z). For any ε > 0 let
χε : K → R ∪ {+∞} satisfying

(i) the functions {χε} are uniformly bounded from below and l.s.c.(1);

(1)in the expected generalized sense in order to take into account the +∞ value at some points if
necessary.
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(ii) lim inf ∗ χε(z) =

{
0 if z ∈ F ,

+∞ if z ∈ K \ F ;

(iii) for any z0 ∈ F , there exists (zε0)ε such that w(zε0)− χε(zε0)→ w(z0) as ε→ 0.

Then

1. Mε := max
z∈K

(w(z)− χε(z))→M as ε→ 0.

2. For any ε > 0 let zε be a maximum point of z 7→ w(z) − χε(z). If (zε′)ε′ is a
subsequence of (zε) converging to some z̄, then

z̄ ∈ F , w(z̄) = M , w(zε′)→ w(z̄) , χε′(zε′)→ 0 .

3. If w = w1 − w2 where w1 is u.s.c. and w2 is l.s.c., then w1(zε′) → w1(z̄) and
w2(zε′)→ w2(z̄).

4. If there is a unique maximum point z̄ of w on F then zε → z̄, w(zε) → w(z̄)
and χε(zε)→ 0.

Proof — Since K is compact and F is a closed subset of K, there exists z0 such that
w(z0) = M . By the definition of zε and (iii), we have

M + oε(1) = w(zε0)− χε(zε0) ≤ w(zε)− χε(zε) = Mε

and this inequality immediately gives lim supMε ≥M .

On the other hand, if we extract a converging subsequence zε′ → z̄ ∈ K, by letting
ε′ → 0 and using the upper semicontinuity of w we obtain

M ≤ lim inf (w(zε′)− χε′(zε′)) ≤ lim sup (w(zε′)− χε′(zε′)) ≤ w(z̄)− lim inf ∗ χε(z̄) .

Using (i), we see that necessarily z̄ ∈ F since lim inf ∗ χε(z̄) cannot be +∞, therefore
lim inf ∗ χε(z̄) = 0. We deduce from this property and the above inequality that
w(z̄) ≥M but since z̄ ∈ F , we conclude that w(z̄) = M .

Gathering all these informations, the above inequality can be rewritten as

M ≤ lim inf (w(zε′)− χε′(zε′)) ≤ lim sup (w(zε′)− χε′(zε′)) ≤M ,

and therefore Mε′ = w(zε′)− χε′(zε′)→M .
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Extracting first a subsequence such that limMε′ = lim inf Mε and then a converg-
ing subsequence out of (zε′)ε′ , the above argument shows that lim inf Mε = M and
therefore Mε →M . This proves 1.

Point 2 is a direct consequence of the above argument: for any converging subse-
quence zε′ → z̄ ∈ K, we have z̄ ∈ F , w(z̄) = M and since lim supw(zε′) ≤ w(z̄) ≤M
by the upper semi-continuity of w and lim inf χε′(zε′) ≥ lim inf ∗ χε(z̄) = 0, the
only possibility to have such a convergence to M is w(zε′) → M = w(z̄) and
limχε′(zε′) = 0.

For Point 3, the argument is analogous: since lim supw1(zε′) ≤ w1(z̄) and lim inf w2(zε′) ≥
w2(z̄), the only possibility to have w(zε′) → w(z̄) is to have at the same time
w1(zε′)→ w1(z̄) and w2(zε′)→ w2(z̄).

Finally 4. comes from a standard compactness argument.
Q.E.D.

Typical application: the doubling of variables – After the localization procedure
described in Section 3.2, we get two functions u, v : B(x, r)→ R for some x ∈ RN and
r > 0, u being u.s.c. while v is l.s.c. and we are considering M := maxx∈B(x,r)(u(x)−
v(x)), that we approximate by the maximum of the function

ψε(x, y) = u(x)− v(y)− |x− y|
2

ε2
.

We apply Lemma 6.4.1 with K = B(x, r)×B(x, r), F = K ∩ {(x, y) : x = y},

z = (x, y) , w(x, y) = u(x)− v(y) , χε(x, y) =
|x− y|2

ε2

and w1 = u, w2 = v. We notice that Assumptions (i)− (ii)− (iii) for χε are obviously
satisfied with zε0 = z0 for any ε.

So, if (xε, yε) ∈ K is a maximum point of ψε in K and if (xε′ , yε′) is a converging
subsequence of maximum points of ψε′ , we first have that (xε′ , yε′)→ (x̄, x̄) ∈ F and

u(xε′)→ u(x̄) , v(yε′)→ v(x̄) ,
|xε′ − yε′ |2

(ε′)2
→ 0 ,

which is the classical result we use.

Remarks on the assumptions

(a) As a first comment, we point out that, one way or the other, the “compactness”
assumption on K in Lemma 6.4.1 is necessary, although it may be replaced by a
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stronger assumption on w like coercivity which prevents infinity to play a role, see
Subsection 6.4.2 below.

Moreover, this type of lemma does not hold in non-compact situations, in general,
even if we replace max by sup. Indeed if we look at the following penalization

ψε(x, y) = sin(x2)− sin(y2)− |x− y|
2

ε2
− ε|x| ,

but with K = R × R and F = {(x, y) : x = y}, the reader will easily check, using
the non-uniform continuity of sin(x2), that Mε exists and Mε → 2 as ε → 0 while
M = sup(x,y)∈F (sin(x2)− sin(y2)) = 0.

(b) Notice that χε can take the value +∞, a case which gives important applications
too. For instance if K = [0, T ], we can handle terms like ε/(T−t) in χε, which prevent
the maximum to be attained at t = T . The lower semicontinuity property for χε holds
since

lim
t→T
t<T

χε(t) = +∞ .

Similarly if Ω is a bounded smooth domain, we can use a penalization like ε[d(x)]−1

in χε : Ω → R ∪ {+∞} where d(·) stands for the distance to the boundary of Ω.
Such penalizations avoid maximum points at the boundary —See for instance Propo-
sition 3.5.1 where this approached is used.

(c) Finally, let us explain the (admittedly strange) Assumption (iii) for χε. In state-
constraint problems where the subsolution inequalities hold only in a domain Ω while
the supersolution ones hold on Ω, one needs to “push inside Ω” the point x corre-
sponding to the subsolution. In order to prove comparison result for such problems,
Soner [154, 155] introduces penalization terms of the form∣∣∣∣x− yε + n(y)

∣∣∣∣2
where, if ∂Ω is smooth, n denotes an extension to a neighborhood of ∂Ω of the
unit outward normal to ∂Ω. But such penalization terms do not tend to 0 if we
choose as above x = y. Moreover, it is known that a cone condition should hold
for the subsolution. So, here we require by (iii) that for any x̄ ∈ ∂Ω, there exist
(xε, yε)→ (x̄, ȳ) such that

u(xε)− v(yε)−
∣∣∣∣xε − yεε

+ n(yε)

∣∣∣∣2 → u(x̄)− v(x̄) .
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This assumption is satisfied by xε = x̄−εn(x̄), yε = x̄ if u is continuous or if the cone
condition holds for u.

6.4.2 Penalization at infinity

The following result is connected to our localization procedure.

Proposition 6.4.2 Let w : RN → R a bounded u.s.c. function and (wα)α>0 a se-
quence of u.s.c. functions such that
(i) wα(x)→ −∞ as |x| → +∞,
(ii) wα(x)→ w(x) when α→ 0 for any x ∈ RN .
Then, if Mα := maxRN (wα) and M := supRN (w), we have

lim inf Mα ≥M .

Moreover, if wα(x) = w(x)− αχ(x) where χ : RN → R is a coercive, locally bounded,
l.s.c. function and if xα is such that wα(xα) = Mα then w(xα)→M and αχ(xα)→ 0.

Proof — By definition of the supremum, there exists a sequence (xk)k of points in RN

such that w(xk)→M and, for any k,

wα(xk) ≤Mα .

Taking the liminf as α tend to 0 and letting k tend to infinity, we obtain the first part
of the result.

For the second part, we use the fact that χ is bounded from below and therefore
Mα ≤ M − αm, where m = minRN (χ). Hence lim supMα ≤ M and therefore Mα →
M . In other words

wα(xα) = w(xα)− αχ(xα)→M .

But −αχ(xα) ≤ −αm and therefore

w(xα) = Mα + αχ(xα) ≥Mα + αm .

Hence lim inf w(xα) ≥ M but obviously lim supw(xα) ≤ M . This yields limw(xα) =
M and, as a consequence, −αχ(xα) = Mα − w(xα)→ 0.

Q.E.D.
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Part II

Deterministic Control Problems
and Hamilton-Jacobi Equations for
Codimension One Discontinuities
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Chapter 7

Introduction : Ishii Solutions for
the Hyperplane Case

In this part, we consider one of the simplest and emblematic case of discontinuity for
an equation or a control problem: the case when this discontinuity is an hyperplane,
say H = {xN = 0}. In terms of stratification, as introduced in Section 3.3, this is
one of the simplest examples of stratification of RN × (0, Tf ) for which MN+1 =
(Ω1 ∪ Ω2)× (0, Tf ), MN = H× (0, Tf ) and Mk = ∅ for any k = 0..(N − 1), where

Ω1 = {xN > 0} , Ω2 = {xN < 0} .

For simplicity of notations, we also write Ω0 = H and we take the convention to
denote by eN = (0, . . . , 0, 1) the unit vector pointing inside Ω1, so that eN is also the
outward unit normal to Ω2, see figure 7.1 below.

Two types of questions can be addressed whether we choose the pde or control
point of view and, in this part, both will be very connected since we mainly consider
Hamilton-Jacobi-Bellman type equations.

7.1 The pde viewpoint

From the pde viewpoint, the main question concerns the existence and uniqueness of
solutions to the problem

ut +H1(x, t, u,Du) = 0 for x ∈ Ω1 × (0, Tf ) ,

ut +H2(x, t, u,Du) = 0 for x ∈ Ω2 × (0, Tf ) ,

u(x, 0) = u0(x) for x ∈ RN ,

(7.1)
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Figure 7.1: Setting of the codimension one case

under some standard assumptions on H1, H2 and u0. It is also very natural to consider
a specific control problem or pde on H, which amounts to adding an equation

ut +H0(x, t, u,DTu) = 0 for x ∈ H , (7.2)

where DTu stands for the tangential derivative of u, i.e. the (N −1) first components
of the gradient, leaving out the normal derivative. However, for reasons that will be
exposed later in Section 11, adding such a condition is not completely tractable in the
context of Ishii solutions and is more relevant in the context of flux-limited solutions
or junction conditions (see Part III). Therefore, except for Section 11, we restrict
ourselves to problem (7.1).

As we explained in Section 3.1, the conditions on H for those equations have to be
understood in the relaxed (Ishii) sense, namelymax

(
ut +H1(x, t, u,Du), ut +H2(x, t, u,Du)

)
≥ 0 ,

min
(
ut +H1(x, t, u,Du), ut +H2(x, t, u,Du)

)
≤ 0 ,

(7.3)

meaning that for the supersolution [ resp. subsolution ] condition, at least one of the
inequation for H1 or H2 has to hold.

7.2 The control viewpoint

From the control viewpoint, we are in the situation where different dynamics, discount
factors and costs are defined on Ω1 and Ω2. A double question arises: (i) how to define
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a global control problem in RN ? (ii) once this is done, if each Hamiltonian in (7.1) is
associated to the control problem in the corresponding domain, is the “usual” value
function still the unique solution of (7.1)?

In this chapter, we combine several tools introduced in Part I in order to address
these problems. Notice that the present stratification of RN is obviously a typical AFS.
So, assuming moreover that each Hamiltonian satisfies (NC), (TC) and (Mon), we
are in what we called a “good” framework for treating discontinuities in the sense of
Definition 5.5.1 (here, no diffeomorphism is needed since the stratification is flat).

7.3 The uniqueness question

As we will see, Ishii’s notion of solution is not strong enough to ensure comparison
(and uniqueness) in this setting in general: this is already true for Equation (7.1) but
the situation is even worse when adding (7.2) on H. Let us give a brief overview of
this story here.

The general formulation of control problems described in Chapter 4 provides a
“natural” control solution of (7.1), obtained by minimizing a cost over all the possible
trajectories. We denoted this solutin by U−. By Corollary 4.4.3, U− is in fact the
minimal supersolution (and solution) of (7.1).

But we introduce another value function denoted by U+ where we minimize over a
subset of those trajectories, that are called regular. We will show that U+ is also an
Ishii solution of (7.1), and it is even the maximal Ishii (sub)solution of (7.1). In general
U− 6= U+ and we provide an explicit example of such a configuration. Finally both
U− and U+ can be characterized by means of an additional “tangential” Hamiltonian
on H. Later in this part, we will also see that U+ is the limit of the vanishing viscosity
method.

At this point, the reader may think that there is no difference when adding (7.2) to
problem (7.1), after modifying in a suitable way the specific control problem on H.
It is, of course, the case for U− where again the general results of Chapter 4 apply.

But the determination of the maximal Ishii (sub)solution is more tricky: to under-
stand why, we refer the reader to the Dirichlet/exit time problem for deterministic
control problem in a domain; it is shown in [23] that, if the minimal solution of the
Dirichlet problem is actually given by an analogue of the value function U− for such
problems, the maximal one is obtained by considering the “worse stopping time” on
the boundary (see also [31]). This differential game feature arises here in a more
complicated way and we give some elements to understand it in Section 11.
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In the next four Chapters, we give a complete study of (7.1): we first introduce
the control problem, define and characterize U−. Then we construct and study U+.
Some uniqueness and non-uniqueness results are proved and we discuss the problem
of adding (7.2) in the last Chapter 11.



Chapter 8

The Control Problem and the
“Natural” Value Function

Assuming that (7.1) is associated to a control problem means that there exists some
triplets dynamics-discount-cost (bi, ci, li) : Ωi × [0, Tf ]×Ai → RN+3 for i = 1, 2, such
that for any (x, t, u, p) ∈ Ωi × (0, Tf ]× R× RN ,

Hi(x, t, u, p) = sup
αi∈Ai
{−bi(x, t, αi) · p+ ci(x, t, αi)u− li(x, t, αi)} .

All these (bi, ci, li) can be assumed as well to be defined on RN × [0, Tf ]×Ai. More-
over, in the following we assume that they satisfy the basic assumptions (HBA−CP)
and the normal controllability assumption

(NCH) — Normal Controllability. For any (x, t) ∈ H× [0, Tf ], there exists δ = δ(x, t)
and a neighborhood V = V(x, t) such that, for any (y, s) ∈ V

[−δ, δ ] ⊂ {b1(y, s, α1) · eN , α1 ∈ A1} if (y, s) ∈ Ω1 ,

[−δ, δ ] ⊂ {b2(y, s, α2) · eN , α2 ∈ A2} if (y, s) ∈ Ω2 ,

where eN = (0, 0 · · · , 0, 1) ∈ RN .

It is easy to check that Assumption (NCH) implies (NC) for H1 and H2 and
we refer below to assumptions (HBA−CP) for (bi, ci, li), i = 1, 2 and (NCH) as the
“standard assumptions in the co-dimension-1 case”.

163
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8.1 Finding trajectories by differential inclusions

In order to introduce the set-valued map BCL, we first notice that all the equations
in (7.1) have the form “ut + H(x, t, u,Du)”, which means that bti(x, s, αi) = −1 for
all i = 1, 2 and all (x, s, αi) ∈ Ω̄i × (0, Tf ] × Ai. Therefore, for i = 1, 2, x ∈ Ωi and
t ∈ [0, Tf ] we set

BCLi(x, t) := ((bi,−1), ci, li)(x, t, Ai)

and, for x ∈ RN , t ∈ (0, Tf ],

BCL(x, t) :=


BCL1(x, t) if x ∈ Ω1 ,

BCL2(x, t) if x ∈ Ω2 ,

co(BCL1,BCL2)(x, t) if x ∈ H ,

where co(E1, E2) denotes the closure of the convex hull of the sets E1, E2. Notice that
here, since BCL1 and BCL2 have compact images, the convex closure reduces to the
union of all possible convex combinations of elements.

For t = 0 we need to add more information: since we consider a finite horizon
problem, we have to be able to stop the trajectory at time s = 0, and we want the
initial condition u(0) = u0 to be encoded through the Hamiltonian Hinit(x, u,Du) =
u− u0. So, setting Init(x) := {(0, 0), 1, u0(x)}, we are led to define

BCL(x, 0) :=


co(BCL1(x, 0), Init(x)) if x ∈ Ω1 ,

co(BCL2(x, 0), Init(x)) if x ∈ Ω2 ,

co(BCL1(x, 0),BCL2(x, 0), Init(x)) if x ∈ H .
(8.1)

At this stage, we have defined rigourously BCL following the general framework
described in Part I – Chapter 4 but, since we are mainly in a case where bt = −1,
we are going to drop from now on the bt-part in BCL and, in order to simplify
the notations, we just write b = bx. In fact, the only place where bt plays a role is
t = 0. Indeed, because of the convex hull, BCL(x, 0) contains all the time dynamics
bt ∈ [−1, 0] However, in our case the initial conditions reduce to

u(x, 0) ≤ (u0)∗(x) and v(x, 0) ≥ u0(x) in RN ,

for a subsolution u and a supersolution v, hence they produce no additional difficulty.

The very first checking in order to solve the control problem is the

Lemma 8.1.1 The set-valued map BCL satisfies (HBCL).
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Proof — Concerning (HBCL)fund, the proof is quite straightforward by construction:
first notice that since all the bi, li, ci are bounded by some constant M > 0, then it
is the same for all the elements in BCL. Then, by construction BCL(x, t) is closed,
hence compact, and it is convex. It remains to see that (x, t) 7→ BCL(x, t) is upper
semi-continuous which is clear since each BCLi(x, t) is upper semi-continuous and
we just make a convex hull of them.

We turn now to (HBCL)struct, which follows almost immediatly from (8.1): (i) is
obviously satisfied by our choice for bt which always belongs to [−1, 0]. Point (ii)
clearly holds if s > 0. Indeed, if we choose K = M (the constant appearing in
(HBCL)fund), since bt = −1 for s > 0 we get the inequality. Now, if s = 0 the
inequality comes from the fact that −Kbt + c ≥ c = 1. Point (iii) is included in (8.1)
and point (iv) follows from the fact that this condition can only happen for s = 0
here (otherwise bt = −1), in which case we have c = c = 1 > 0.

Q.E.D.

Thanks to Theorem 4.2.1 (and recalling that we have dropped the bt = −1 term),
we solve the differential inclusion (Ẋ, Ḋ, L̇)(s) ∈ BCL

(
X(s), t− s

)
for a.e. s ∈ [0,+∞) ,

(X,D,L)(0) = (x, 0, 0) .
(8.2)

Notice that we have used the fact that T (s) = t − s when the starting point of the
(X,T )-trajectory is (x, t). As we saw in Chapter 4, we we mostly write

Ẋ(s) = b
(
X(s), t− s

)
Ḋ(s) = c

(
X(s), t− s

)
L̇(s) = l

(
X(s), t− s

) (8.3)

in order to remember that b, c and l correspond to a specific choice in the set
BCL(X(s), t− s), but when needed we will also introduce a control α(·) to represent
(b, c, l) as (b, c, l)(X(s), t− s), α(s)) .

Now the aim is to give a more precise description of each trajectory. For the sake
of clarity, we denote by (bH, cH, lH) the (b, c, l) when X(s) ∈ H which are of course
obtained through a convex combination of all the (bi, ci, li), i = 1, 2. So, in order to
take this into account, we introduce the “extended control space”

A := A1 × A2 × ∆̃ where ∆̃ := {(µ1, µ2) ∈ [0, 1]2 : µ1 + µ2 = 1} ,

and A := L∞(0, Tf ;A). The extended control takes the form a = (α1, α2, µ1, µ2) and
if x ∈ H,

(bH, cH, lH) = µ1(b1, c1, l1) + µ2(b2, c2, l2) ,
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with µ1 + µ2 = 1, where b1, c1, l1 are computed at the point (x, t, α1) and b2, c2, l2 at
the point (x, t, α2).

Lemma 8.1.2 For any trajectory (X,D,L) of (8.2) there exists a control a(·) =
(α1, α2, µ1, µ2)(·) ∈ A such that

(Ẋ, Ḋ, L̇)(s) = (b1, c1, l1)(X(s), t− s, α1(s))1I{X(s)∈Ω1}

+ (b2, c2, l2)(X(s), t− s, α2(s))1I{X(s)∈Ω2}

+ (bH, cH, lH)(X(s), t− s, a(s))1I{X(s)∈H}

and bH(X(s), t− s, a(s)) · eN = 0 for almost any s ∈ (t, Tf ) such that X(s) ∈ H.

Proof — Given a trajectory, we apply Filippov’s Lemma (cf. [11, Theorem 8.2.10]).
To do so, we define the map g : R+ × A→ RN as follows

g(s, a) :=


b1

(
X(s), t− s, α1

)
if X(s) > 0

b2

(
X(s), t− s, α2

)
if X(s) < 0

bH
(
X(s), t− s, a

)
if X(s) = 0 ,

where a = (α1, α2, µ1, µ2) ∈ A.

We claim that g is a Caratheodory map. Indeed, it is first clear that, for fixed s,
the function a 7→ g(s, a) is continuous. Then, in order to check that g is measurable
with respect to its first argument we fix a ∈ A, an open set O ⊂ RN and evaluate

g−1
a (O) =

{
s > 0 : g(s, a) ∩ O 6= ∅

}
that we split into three components, the first one being

g−1
a (O)∩{s > 0 : X(s) < 0} =

{
s > 0 : b1(X(s), t−s, α1) ∈ O

}
∩{s > 0 : X(s) < 0} .

Since the function s 7→ b1(X(s), t− s, α1) is continuous, this set is the intersection of
open sets, hence it is open and therefore measurable. The same argument works for
the other components, namely {s > 0 : X(s) < 0} and {s > 0 : X(s) = 0} which
finishes the claim.

The function s 7→ Ẋ(s) is measurable and, for any s, the differential inclusion
implies that

Ẋ(s) ∈ g(s, A) ,
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therefore, by Filippov’s Lemma, there exists a measurable map a(·) = (α1, α2, µ1, µ2)(·) ∈
A such that (8.4) is fulfilled. In particular, by the definition of g, we have for a.e.
s ∈ [0, Tf ]

Ẋ(s) =


b1

(
X(s), t− s, α1(s)

)
if X(s) > 0

b2

(
X(s), t− s, α2(s)

)
if X(s) < 0

bH
(
X(s), t− s, a(s)

)
if X(s) = 0.

(8.4)

The last property is a consequence of Stampacchia’s theorem (see for instance [102]):
setting y(s) := XN(s), then ẏ(s) = 0 almost everywhere on the set {y(s) = 0}. But
ẏ(s) = bH(X(s), t− s, a(s)) · eN on this set, so the conclusion follows.

Q.E.D.

8.2 The U− value-function

Solving (8.2) with BCL yields a set T (x, t) of all admissible trajectories, without
specific condition on H for (7.1) (see Section 4.2.3). Changing slightly the notations
of this section to emphasize the role of the control a(·), we first define the value
function

U−(x, t) := inf
T (x,t)

{∫ t

0

l(X(s), t− s, a(s)) exp(−D(s)) ds+ u0(X(t)) exp(−D(t))

}
,

and the aim is now to prove that U− is a viscosity solution of (7.1). To do so, we use
the control approach described in Section 4.2: recalling that we use the notation b for
bx, the “global” Hamiltonian is given by

F(x, t, u, (px, pt)) := sup
(b,c,l)∈BCL(x,t)

(
− (b,−1) · (px, pt) + cu− l

)
.

Writing p for px in order to simplify the notations, we decompose

F(x, t, u, (px, pt)) = pt +H(x, t, u, p) ,

where H(x, t, u, p) = Hi(x, t, u, p) if x ∈ Ωi for i = 1, 2. By the upper-semicontinuity
of BCL, H and F are upper-semi-continuous and we have the

Lemma 8.2.1 If x ∈ H then, for all t ∈ [0, Tf ], r ∈ R, px = p ∈ RN

H(x, t, r, p) = max
(
H1(x, t, r, p), H2(x, t, u, p)

)
.
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As a direct consequence, for any x ∈ H, t ∈ [0, Tf ], u ∈ R, px = p ∈ RN , pt ∈ R

F(x, t, u, (px, pt)) = max
(
pt +H1(x, t, u, p), pt +H2(x, t, u, p)

)
,

F∗(x, t, u, (px, pt)) = min
(
pt +H1(x, t, u, p), pt +H2(x, t, u, p)

)
.

Proof — If (b, c, l) ∈ BCL(x, t), it can be written as a convex combination of some
(bi, ci, li) ∈ BCLi(x, t), i = 1, 2, and thefore the same is true for −b ·p+cu− l, namely

−b · p+ cr − l =
∑
i

µi(−bi · p+ cir − li) ,

for some 0 ≤ µi ≤ 1 with
∑

i µi = 1. Since (−bi · p + cir − li) ≤ Hi(x, t, u, p), we
deduce that −b · p+ cr − l ≤ max

(
H1(x, t, r, p), H2(x, t, u, p)

)
and therefore

H(x, t, r, p) ≤ max
(
H1(x, t, r, p), H2(x, t, u, p)

)
.

ButH(x, t, r, p) ≥ (−bi·p+cir−li) for any (bi, ci, li) ∈ BCLi(x, t) so thatH(x, t, r, p) ≥
Hi(x, t, r, p) for i = 1, 2. The representation of H as the max follows immediately.

Concerning F, the first equality (as a maximum) is trivial and the representation
formula for F∗ derives directly from its definition as the lim inf, knowing that of course
H1 and H2 are both continuous up to H.

Q.E.D.

Then, by using all the results of Section 4.2, we have the

Proposition 8.2.2 Assume that the “standard assumptions in the co-dimension-1
case” are satisfied. Then the value function U− is an Ishii viscosity solutions of (7.1).
Moreover U− is the minimal supersolution of (7.1).

We leave the proof of the reader since it immediately follows from Theorem 4.3.4
and Corollary 4.4.3. This result gives a good amount of information on U− but not
all of them.

To go further, we have to examine more carefully the viscosity inequality onH which
is done in the next section. However, in order to do so we need first to make sure that
(U−)∗ is regular in the sense of Definition 3.4.1. We provide below a direct “control
proof” of this fact but for a pde proof, the reader can also check that Proposition 3.4.2
applies here since we assume (NCH). Notice also that the proof below only uses
“outward normal controlability” both from Ω1 and Ω2.
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Lemma 8.2.3 Assume that the “standard assumptions in the co-dimension-1 case”
are satisfied, then

((U−)|H×(0,Tf ))
∗ = (U−)∗ on H× (0, Tf ) ,

where (U−)|H×(0,Tf ) denotes the restriction to H× (0, Tf ) of U−.

Proof — Let (x, t) ∈ H × (0, Tf ). By definition of (U−)∗, there exists a sequence
(xn, tn)→ (x, t) such that U−(xn, tn)→ (U−)∗(x, t). The statement of Lemma 8.2.3
means that we can assume that xn ∈ H. Indeed, if xn ∈ Ω1, we use the normal
controllability assumption (NCH) at (x, t): there exists δ > 0 and a control α1 such
that b1(x, t, α1) · eN = −δ < 0. Considering the trajectory with constant control α1

Ẏ (s) = b1(Y (s), tn − s, α1) , Y (0) = xn, (8.5)

it is easy to show that τ 1
n, the first exit time of the trajectory Y from Ω1 tends

to 0 as n → +∞. By the Dynamic Programming Principle, denoting (x̃n, t̃n) =
(X(τ 1

n), t− τ 1
n), we have

U−(xn, tn) ≤
∫ τ1

n

0

l
(
Y (s), tn−s, α1

)
e−D(s) ds+U−(x̃n, t̃n) e−D(τ1

n) = U−(x̃n, t̃n)+on(1) ,

where on(1) → 0. Therefore (x̃n, t̃n) → (x, t), U−(x̃n, t̃n) → (U−)∗(x, t) and x̃n ∈ H,
which is exactly what we wanted to prove. The same results holds if xn ∈ Ω2 using a
control such that b2(x, t, α2) · eN = δ > 0.

Q.E.D.

8.3 The complemented equations

This section is motivated in particular by Lemma 8.1.2 where the term (bH, cH, lH)
plays a key role as a coupling between the control problems in Ω1 and Ω2.

Following Section 5.4, we introduce the tangential elements in BCL which maintain
the trajectories on H: for any x ∈ H, t ∈ [0, Tf ], we set

BCLT (x, t) :=
{

(b, c, l) ∈ BCL(x, t) : b · eN = 0
}
.

Similarly we define BT (x, t) for the set-valued map of tangential dynamics: any b ∈
BT (x, t) can be expressed as a convex combination

b = µ1b1 + µ2b2 (8.6)
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for which (µ1b1 + µ2b2) · eN = 0 with µ1 + µ2 = 1, µ1, µ2 ∈ [0, 1]. We also introduce
tangential Hamiltonian which was already considered

HT (x, t, u, p) := sup
BCLT (x,t)

{
− b · p+ cu− l

}
. (8.7)

Notice that pt + HT (x, t, u, p) = FN(x, t, u, (p, pt)) on MN = H × (0, Tf ) and, by
Lemma 5.5.2 with k = N , the Hamiltonian HT satisfies (TC); in particular, HT is
continuous in x, t, uniformly with respect to (u, p) in compact sets. Such property can
also be obtained by using the representation formula given by Lemma 10.2.1.

Before deriving an HT -subsolution property, we need first the following preliminary
result which allows us to build trajectories which remains on H, at least for some
time.

Lemma 8.3.1 Let (x, t) ∈ H × (0, Tf ) and (b, c, l) ∈ BCLT (x, t), obtained as a
convex combination (b, c, l) = µ1(b1, c1, l1) + µ2(b2, c2, l2). If

(b1(x, t, α1) · eN) · (b2(x, t, α1) · eN) < 0 ,

there exists a neighborhood V of (x, t) in H× (0, Tf ) and a Lipschitz continuous map
ψ : V → RN×R×R, such that ψ(x, t) = (b, c, l) and ψ(y, s) = (b̃(y, s), c̃(y, s), l̃(y, s)) ∈
BCLT (y, s) for any (y, s) ∈ V.

Proof — Our assumption means that

(µ1b1(x, t, α1) + µ2b2(x, t, α2)) · eN = 0 .

Now, if (y, s) is close enough to (x, t) we set

µ]1(y, s) :=
b2(y, s, α2) · eN

(b2(y, s, α1)− b1(y, s, α1)) · eN
, µ]2 := 1− µ]1 .

By this choice we have 0 ≤ µ]1, µ
]
2 ≤ 1 and

(
µ]1(y, s)b1(y, s, α1) + µ]2(y, s)b2(y, s, α2)

)
·

eN = 0, which yileds a tangential dynamic which is well-defined as long as (b2(y, s, α1)−
b1(y, s, α1)) · eN 6= 0. In particular this is true in a neighborhood of (x, t).

Then the function ψ given by

ψ(y, s) := µ]1(y, s)(b1, c1, l1) + µ]2(y, s)(b2, c2, l2) ,

satisfies all the desired properties: it is Lipschitz continuous since b1, b2 are Lipschitz
continuous in x, t and since µ]1(x, t) = µ1, µ]2(x, t) = µ2, ψ(x, t) = (b, c, l).

Q.E.D.

We now prove that a complementary subsolution inequlity holds on H:
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Proposition 8.3.2 Assume that the “standard assumptions in the co-dimension-1
case” are satisfied. Then the value function U− satisfies the viscosity inequality

(U−)∗t +HT

(
x, t, (U−)∗, DT (U−)∗

)
≤ 0 on H× (0, Tf ) .

We point out that in Proposition 8.3.2, the H × (0, Tf )-viscosity inequality means
that we look at maximum points of (U−)∗ − φ on H × (0, Tf ) where φ is a smooth
test-function on H× (0, Tf ).

Remark 8.3.3 In other words, U− is an Ishii solution satisfying a complemented
HT -inequality on H. As we will see in Part IV, this can be interpreted as U− being a
stratified solution of the problem. We will actually prove that it is the unique stratified
solution.

Proof — If φ is a smooth test-function on H × (0, Tf ), we have to prove that, if
(x, t) ∈ H× (0, Tf ) is a maximum point on H× (0, Tf ) of (U−)∗− φ, then (assuming
without loss of generality that (U−)∗(x, t) = φ(x, t)),

φt(x, t) +HT (x, t, φ(x, t), DTφ(x, t)) ≤ 0 on H× (0, Tf ) .

(a) Using the dymamic programming principle — By Lemma 8.2.3, we can pick a
sequence (xn, tn) → (x, t) such that U−(xn, tn) → (U−)∗(x, t) with xn ∈ H for all
n ∈ N. By the dynamic programming principle, for any τ > 0 and any trajectory
(Xn, an) in T (xn, tn) we have

U−(xn, tn) ≤
∫ τ

0

l
(
Xn(s), tn−s, an(s)

)
e−Dn(s) ds+U−(Xn(τ), tn− τ) e−Dn(τ) . (8.8)

Our aim is to show that this inequality implies

φt(x, t)− b ·Dφ(x, t) + cφ(x, t)− l ≤ 0 ,

for any (b, c, l) ∈ BCLT (x, t), which will give the conclusion HT ≤ 0. However,
replacing U− by φ above can be done only for trajectories which stay on H, at least
for some interval [0, τ ].

(b) Constructing a trajectory which stays on H — We start from the fact that by
definition of BCLT (x, t), (b, c, l) can be expressed as a convex combination of the
(bi, ci, li) for i = 1, 2, namely

(b, c, l) = µ1(b1, c1, l1) + µ2(b2, c2, l2)
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with µ1 + µ2 = 1, µ1, µ2 ∈ [0, 1] and (µ1b1 + µ2b2) · eN = 0. We denote by αi the
control which is associated to (bi, ci, li)

Slightly modifying b1 and b2 by using the normal controllability on H, we may
assume without loss of generality that b1 · eN 6= 0 and b2 · eN 6= 0 while keeping
(µ1b1 + µ2b2) · eN = 0. Therefore, either b1 · eN < 0 < b2 · eN or b1 · eN > 0 > b2 · eN
but in both cases Lemma 8.3.1 provides us with a function ψ that we use to solve the
ode

(Ẋn(s), Ḋn(s), L̇n(s)) = ψ(Xn(s), tn − s) ,

with (Xn(0), Dn(0), Ln(0)) = (xn, 0, 0).

Because of the properties of ψ, the Cauchy-Lipschitz Theorem implies that there
exists a unique solution which, for (xn, tn) close enough to (x, t), is defined on a small
but fixed (i.e. independent of n) interval of time [0, τ ] and (Xn, Dn, Ln) ∈ T (xn, tn)
for any n. Moreover, Xn ∈ H on [0, τ ].

(c) Deriving the tangential inequality — Since U−(xn, tn) = (U−)∗(x, t) + on(1) =
φ(x, t) + on(1) while U− ≤ φ on H× (0, Tf ), using Xn in (8.8) we get

φ(xn, tn) + on(1) ≤
∫ τ

0

L̇n(s) e−Dn(s) ds+ φ(Xn(τ), tn − τ) e−Dn(τ) . (8.9)

We first let n tend to infinity. Due to the Lipschitz property of ψ, up to extraction
we see that (Xn, Dn, Ln)→ (X,D,L) in W 1,∞ where at least on [0, τ ],

(Ẋ(s), Ḋ(s), L̇(s)) = ψ(X(s), t− s) ,

X(s) ∈ H for any s ∈ [0, τ ] and (X(0), D(0), L(0)) = (x, 0, 0). So, passing to the limit
in (8.9) yields

φ(x, t) ≤
∫ τ

0

L̇(s) e−D(s) ds+ φ(X(τ), t− τ) e−D(τ) .

On the other hand, since φ is smooth on H× (0, Tf ), the following expansion holds:

φ(X(τ), t− τ))e−D(τ) = φ(x, t) +

∫ τ

0

(
Dxφ(ξs)Ẋ(s)− ∂tφ(ξs)− Ḋ(s)φ(ξs)

)
e−D(s) ds

where ξs stands for (X(s), t− s). Combining both integrals, we arrive at

0 ≤
∫ τ

0

(
− ∂tφ(ξs) + Ẋ(s) ·Dφ(ξs)− Ḋ(s)φ(ξs) + L̇(s) e−D(s)

)
exp(−D(s)) ds .
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Finally, after divinding by τ and sending τ → 0 the conclusion follows from the fact
that ψ is continuous and ψ(x, t) = (Ẋ(0), Ḋ(0), L̇(0)) = (b, c, l): we get

φt(x, t)− b ·Dφ(x, t) + cφ(x, t)− l ≤ 0

for any (b, c, l) ∈ BCLT (x, t), which implies that HT (x, t, φ,Dφ) ≤ 0.
Q.E.D.

8.4 A characterization of U−

The previous section showed that U− satisfies an additional subsolution inequality
on H × (0, Tf ). The aim of this section is to prove that this additional inequality is
enough to characterize it.

The precise result is the

Theorem 8.4.1 Assume that the “standard assumptions in the co-dimension-1 case”
are satisfied. Then U− is the unique Ishii solution of (7.1) such that

ut +HT (x, t, u,DTu) ≤ 0 on H× (0, Tf ) . (8.10)

Proof — The proof is obtained by a combination of arguments which will also be used
in Part IV for stratified problems.

We recall that we already know (cf. Proposition 8.2.2) that U− is the minimal Ishii
supersolution of (7.1). Therefore we only need to compare U− with subsolutions u
such that ut+HT (x, t, u,DTu) ≤ 0 onH×(0, Tf ), showing that U− ≥ u in RN×[0, T ].

Though the proof can be reduced to a mere list of several arguments already exposed
in Part I, we provide below more explanations and redo most of them in the simpler
hyperplane context for the readers’s convenience.

Step 1: Reduction to a local comparison result (LCR) – As already noticed in Part I
(see Remarks on page 28), setting ũ(x, t) := exp(Kt)u(x, t) for K > 0 large enough
allows to reduce the proof to the case where ci ≥ 0 for any (bi, ci, li) ∈ BCLi(x, t),
i = 1, 2. As a consequence, we can assume that the Hi (i = 1, 2) are nondecreasing in
the u-variable, and that HT enjoys the same property.

Then, rewriting here some arguments already given in Section 3.2 and using that
the ci are positive, we notice that, for δ > 0 small enough, ψ(x, t) = −δ(1 + |x|2)1/2−
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δ−1(1 + t) is not only a δ/2-strict subsolution (7.1), but also for the HT -equation on
H× (0, Tf ) and we can also assume that ψ ≤ u in RN × [0, Tf ]. For µ ∈ (0, 1), setting

uµ(x, t) := µu(x, t) + (1− µ)ψ(x, t)

yields an η-strict subsolution uµ for some η(µ, δ) > 0. By this, we mean that each
inequality in (7.1) is η-strict for uµ but also that (uµ)t + HT (x, t, uµ, Duµ) ≤ η < 0
on H× (0, Tf ). This claim is obvious for the initial data, let us prove it for instance
for H1.

Using the convexity property of H1 in r, p, we get successively

(uµ)t +H1(x, t, uµ, Duµ)

= µut + (1− µ)ψt +H1(x, t, µu+ (1− µ)ψ, µDu+ (1− µ)Dψ)

≤ µut + (1− µ)ψt + µH1(x, t, u,Du) + (1− µ)H1(x, t, ψ,Dψ)

≤ µ
{
ut +H1(x, t, u,Du)

}
+ (1− µ)

{
ψt +H1(x, t, ψ,Dψ)

}
≤ µ

{
ut +H1(x, t, u,Du)

}
− (1− µ)(δ/2) ≤ −(1− µ)(δ/2) < 0 .

The same is valid for H2 and HT for similar reasons. Moreover, by construction
uµ−U− → −∞ as |x| → +∞ since ψ(x, t)→ −∞ as |x| → +∞, so that (LOC1) is
satisfied for any of those Hamiltonians.

Checking (LOC2) is easier: if we are looking for a comparison result around the
point (x0, t0), it is enough to use

uδ′(x, t) := u(x, t)− δ′(|x− x0|2 + |t− t0|2)

for δ′ > 0 small enough. Thus we are in the situation where a (LCR) is enough to
ensure a (GCR).

In order to prove that (LCR) holds, we introduce Qx,t
r,h, a (small) cylinder around

(x, t) where we want to perform the (LCR). Notice that of course, if x ∈ Ω1 or
Ω2, then taking r small enough reduces the proof to the standard comparison result
since in this case, Qx,t

r,h does not intersect with H. Thus, we assume in the following

that x ∈ H. Our aim is to use Lemma 5.4.1 with M := (H × [0, Tf ]) ∩ Qx,t
r,h and

FM(x, t, r, (px, pt)) := pt +HT (x, t, r, px).

Step 2: Approximation of the subsolution – We wish to use an approximation by
convolutions (inf-convolution and usual convolution with a smoothing kernel) for the
subsolution as in Proposition 3.4.7; to do so, we introduce a slightly larger cylinder
Qx,t
r′,h′ where r′ > r and h′ > h are fixed in order to have some “room” for those

convolutions. From Step 1, we know that uµ is an η-strict subsolution of (7.1) in
Qx,t
r′,h′ for some η = η(µ, δ).
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Since (HConv), (NC), (TC) and (Mon-u) are satisfied for all the Hamiltonians, we

deduce from Proposition 3.4.7 that there exists a sequence (uµ,ε)ε of C0(Qx,t
r,h)∩C1(M)

functions which are all (η/2)-strict subsolutions of (7.1) in some smaller cylinder
Q(ε) ⊂ Qx,t

r′,h′ , and Q(ε) → Qx,t
r′,h′ as ε → 0 in the sense of the euclidian distance

in RN+1. Hence, for ε small enough, we can assume with no restriction that Qx,t
r,h ⊂

Q(ε) ⊂ Qx,t
r′,h′ so that uµ,ε is an (η/2)-strict subsolution in Qx,t

r,h.

This has two consequences:

(a) for any ε > 0 small enough, (uµ,ε)t + HT (x, t, uµ,ε, DTuµ,ε) ≤ −η/2 < 0 in M
and in a classical sense since uµ,ε is C1 on M;

(b) since uµ,ε is an (η/2)-strict subsolution in O := Qx,t
r,h \M (for the Hamiltonians

H1, H2) and a (LCR) holds there, we use the subdynamic programming prin-
ciple for subsolutions (cf. Theorem 5.3.3) which implies that each uµ,ε satisfies
an (η/2)-strict dynamic programming principle in Qx,t

r,h[Mc].

These two properties allow us to make a (LCR) in Qx,t
r,h in the final step.

Step 3: Performing the local comparison – From the previous step we know that
for each ε > 0, u = uµ,ε satisfies the hypotheses of Lemma 5.4.1. Using v := U− as
supersolution in this lemma, we deduce that

∀(y, s) ∈ Qx,t
r,h \ ∂PQ

x,t
r,h , (uµ,ε −U−)(y, s) < max

Qx,tr,h

(uµ,ε −U−) .

Using that uµ = lim sup∗ uµ,ε, this yields a local comparison result (with inequality in
the large sense) between uµ and U− as ε→ 0. By step 1, we deduce that the (GCR)
holds: uµ ≤ U− in RN × [0, Tf ], and sending finally µ→ 1 gives that u ≤ U−.

The conclusion is that if u is an Ishii solution such that ut + HT (x, t, u,DTu) ≤ 0
on H, necessarily u ≡ U−, which ends the proof.

Q.E.D.
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Chapter 9

A Less Natural Value-Function,
Regular and Singular Dynamics

While studing U− we introduced the set BCLT , containing the dynamics tangent to
H in order to examining the trajectories which remain on H. The new point in this
section is to remark that there are two different kinds of dynamics that allow to stay
on H, leading to the construction of a second value function.

9.1 Introducing U+

Let us first begin with regular trajectories:

Definition 9.1.1 We say that b ∈ BT (x, t) is regular if b = µ1b1 + µ2b2 while the
condition b1 · eN ≤ 0 ≤ b2 · eN holds. We denote by

BCLreg
T (x, t) :=

{
(b, c, l) ∈ BCLT (x, t) : b is regular

}
the set containing the regular tangential dynamics, and T reg(x, t) the set of controlled
trajectories with regular dynamics on H, i.e.

T reg(x, t) :=
{

(X,D,L) solution of (8.2) such that

Ẋ(s) ∈ Breg
T (X(s), t− s) a.e. when X(s) ∈ H

}
.

In other terms, a regular dynamic corresponds to a “push-push” strategy: the trajec-
tory is maintained onH because it is pushed onH from both sides, using only dynam-
ics coming from Ω1 and Ω2; we may also have tangent dynamics, i.e. b1·eN = b2·eN = 0.

177
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On the contrary, the dynamic is said singular if b1 · eN > 0 and b2 · eN < 0, which is
a “pull-pull” strategy, a quite instable situation where the trajectory remains on H
because each side pulls in the opposite direction. We also recall the notations (8.3)
that we use throughout this chapter.

We remark that, by (NCH), the sets BCLT (x, t) and BCLreg
T (x, t) are non-empty

for any (x, t) ∈ H (see Lemma 8.3.1). Next, for (x, t) ∈ H × (0, Tf ), r ∈ R and
p = (p′, 0) ∈ RN , we define a second tangential Hamiltonian

Hreg
T (x, t, r, p) := sup

BCLreg
T (x,t)

{
− b · p+ cu− l

}
, (9.1)

and a second value-function can be defined by minimizing only on regular trajectories:

U+(x, t) := inf
T reg(x,t)

{∫ ∞
0

l(X(s), t− s, a(s)) exp(−D(s)) ds

}
.

Of course it is clear that U− ≤ U+ in RN × [0, Tf ] but we are going to prove more
interesting properties on U+.

The Hamiltonian Hreg
T satisfies (TC) on H × [0, Tf ]; in particular, Hreg

T is con-
tinuous with respect to (x, t). Contrarily to HT , this does not follow directly from
Lemma 5.5.2, but a carefull look at the proof will convince the reader that the ar-
guments also apply to Hreg

T . As it is the case for HT , an alternative proof consists in
using the representation formulas given by Lemma 10.2.1.

Proving the dynamic programming principle for U+ is done as for U− (see Theo-
rem 4.3.3), but using regular trajectories. So, we skip the proof of the

Lemma 9.1.2 Under hypothesis (HBCL), the value function U+ satisfies

U+(x, t) = inf
T reg(x,t)

{∫ θ

0

l
(
X(s), t−s, a(s)

)
exp(−D(s)) ds+U+

(
X(θ), t−θ) exp(−D(θ))

}
,

for any (x, t) ∈ RN × (0, Tf ], θ > 0.

The dynamic programming principle naturally leads to a system of pde’s satisfied by
U+. But before proving this result, we want to make the following important remark:
most of the results we provided in the previous chapter for U− were more or less
direct consequences of results given in Chapter 4, in particular all the supersolution
inequalities using Lemma 8.2.1. However, this is not the case for U+ which requires
specific adaptations.
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Proposition 9.1.3 Assume that the “standard assumptions in the co-dimension-1
case” are satisfied. Then the value function U+ is an Ishii solution of (7.1). Moreover
U+ satisfies on H× (0, Tf ) the inequality

(U+)∗t +Hreg
T (x, t, (U+)∗, DT (U+)∗) ≤ 0 on H× (0, Tf ) .

Proof — Of course, the only difficulties comes from the discontinuity on H× (0, Tf ),
therefore we concentrate on this case.

(a) Ishii supersolution condition in RN — Since a priori U+ is not continuous, we
have to use semi-continuous envelopes as we did for U−. In order to prove that (U+)∗
is a supersolution we assume that (x, t) ∈ H× (0, Tf ) is a strict local minimum point
of (U+)∗ − φ where φ is a smooth test-function in RN × (0, Tf ), and we can suppose
w.l.o.g that (U+)∗(x, t) = φ(x, t).

The first part consists in using the dynamic programming principle and follows
the same lines as several proofs we already established so we condense a little bit
some of the arguments below. By definition of (U+)∗, there exists a sequence (xn, tn)
which converges to (x, t) such that U+(xn, tn) → (U+)∗(x, t) and by the dynamic
programming principle,

U+(xn, tn) = inf
T reg(xn,tn)

{∫ τ

0

L̇n(s) e−D(s) ds+ U+
(
Xn(τ), tn − τ

)
e−D(τ)

}
,

where τ � 1 and the n-index is to recall that this trajectory is associated with
Xn(0) = xn. We use that (i) U+(xn, tn) = (U+)∗(x, t) + on(1) where on(1) → 0, (ii)
U+
(
Xn(τ), tn− τ

)
≥ (U+)∗

(
Xn(τ), tn− τ

)
and (iii) the minimum point property, to

obtain

φ(xn, tn) + on(1) ≥ inf
T reg(xn,tn)

{∫ τ

0

L̇n(s) e−D(s) ds+ φ
(
Xn(τ), tn − τ

)
e−D(τ)

}
.

Next we use the expansion of φ along the trajectory of the differential inclusion,
writing ξs = (Xn(s), tn − s) for simplicity:

φ(Xn(τ), tn−τ) e−D(τ) = φ(xn, tn)+

∫ τ

0

(
−∂tφ(ξs)+Ẋn(s)·Dφ(ξs)−Ḋn(s)φ(ξs)

)
e−D(s) ds .

Pluging this expansion into the dynamic programming principle and using that the
global Hamiltonian H is the sup over all the (b, c, l), we are led to

on(1) ≤
∫ τ

0

(
∂tφ(ξs) +H(Xn(s), tn − s, φ(ξs), Dφ(ξs)

)
e−D(s) ds .
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Using the smoothness of φ and the upper semicontinuity of H together with the facts
that |Xn(s)−x|, |(tn−s)− t| = on(1)+O(s), e−D(s) = 1+O(s), we can replace Xn(s)
by x and tn − s by t in the integral. Hence, for τ small enough

on(1) ≤ τ
(
∂tφ(x, t) +H(x, t, φ(x, t), Dφ(x, t))

)
+ τon(1) + o(τ) .

It remains to let first n→∞, then divide by τ > 0 and send τ → 0, which yields that
∂tφ(x, t) +H(x, t, φ,Dφ) ≥ 0. Hence U+ satisfies the Ishii supersolution condition on
H× (0, Tf ).

(b) The Ishii subsolution condition in RN — We have to consider (x, t) ∈ H×(0, Tf ),
a local maximum points of (U+)∗−φ, φ being a smooth function and we assume again
that (U+)∗(x, t) = φ(x, t).

By definition of the upper semicontinuous envelope, there exists a sequence (xn, tn)→
(x, t) such that U+(xn, tn) → (U+)∗(x, t) and we first claim that we can assume
xn ∈ H. To prove this claim, we use exactly the same argument as in the proof of
Lemma 8.2.3 for U− since it relies only on the normal controllability assumption
(NCH) at (x, t).

Therefore, assuming that xn ∈ H, using the maximum point property we insert the
test-function φ in the dynamic programming principle and get that for any regular
control a(·),

φ(xn, tn)+on(1) ≤
∫ τ

0

l
(
Xn(s), tn−s, a(s)

)
e−D(s) ds+φ(Xn(τ), tn−τ) e−D(τ) . (9.2)

Then we argue by contradiction: if

min
{
φt(x, t) +H1

(
x, t, φ(x, t), Dφ(x, t)

)
, φt(x, t) +H2

(
x, t, φ(x, t), Dφ(x, t)

)}
> 0 ,

there exists some (α1, α2) ∈ A1 × A2, such that, for all i = 1, 2

φt(x, t)− bi(x, t, αi) ·Dφ(x, t) + ci(x, t, αi)φ(x, t)− li(x, t, αi) > 0 , (9.3)

and the same is true, for n large enough, if we replace (x, t) by (xn, tn). Notice that,
though the control a(·) in (9.2) is regular, this may not be the case a priori for α1, α2.
Now we separate the proof in three cases according to the different configurations. For
the sake of simplicity of notations, we just note below by bi the quantity bi(x, t, αi).

Case 1 – Either b1 · eN > 0 or b2 · eN < 0. In the first case, we use the trajectory
(Xn, Dn, Ln) defined by with the constant control α1. In particular

Ẋn(s) = b1(Xn(s), tn − s, α1) , Xn(0) = xn. (9.4)
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Then there exists a time τ > 0 such that Xn(s) ∈ Ω1 for s ∈ (0, τ ]. Choosing such
constant control α1 in (9.2) and arguing as above, we are led to

φt(x, t)− b1(x, t, α1) ·Dφ(x, t) + c1(x, t, α1)φ(x, t)− l1(x, t, α1) ≤ 0 ,

which yields a contradiction with (9.3). And the proof is the same in the second case,
considering the trajectory associated with the constant control α2 in b2.

We point out that this case could have been also covered by arguments of Proposi-
tion 3.5.1, by extending the equation to the boundary.

Case 2 – if b1·eN < 0 < b2·eN , then borrowing arguments of the proof of Lemma 8.3.1,
for (y, s) close enough to (x, t), we can set

µ]1(y, s) :=
b2(y, s, α2) · eN

(b2(y, s, α2)− b1(y, s, α1)) · eN
, µ]2 := 1− µ]1 .

By this choice we have 0 ≤ µ]1, µ
]
2 ≤ 1 and

(
µ]1(y, s)b1(y, s, α1) + µ]2(y, s)b2(y, s, α2)

)
·

eN = 0, hence we have a regular dynamic that we use in (9.2).

We solve the ode

Ẋ](s) = µ]1(X](s), tn− s)b1(X](s), tn− s, α1) + µ]2(X](s), tn− s)b2(X](s), tn− s, α2) .

By our hypotheses on b1 and b2, the right-hand side is Lipschitz continuous so that
the Cauchy-Lipschitz theorem applies and gives a solution X](·) which remains on
H, at least until some time τ > 0.

Using X](·) in (9.2) together with the associated discount and cost and arguing as
above, we are led to

µ]1

(
φt(x, t)− b1(x, t, α1) ·Dφ(x, t) + c1(x, t, α1)φ(x, t)− l2(x, t, α1)

)
+µ]2

(
φt(x, t)− b2(x, t, α2) ·Dφ(x, t) + c2(x, t, α2)φ(x, t)− l2(x, t, α2)

)
≤ 0 ,

a contradiction.

Case 3 – The last case is when we have either b1·eN = 0 < b2·eN or b1·eN < 0 = b2·eN .
But using (NCH), we can slightly modify b1 or b2 by a suitable convex combination
in order to be in the framework of Case 1 or Case 2. This completes the proof that
the Ishii subsolution condition holds on H× (0, Tf ).

(c) The Hreg
T -inequality — We do not give a specific proof here since this property

holds for any Ishii subsolution (hence for U+ too), see Lemma 9.4.1. Alternatively,
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this property can also be proved by similar arguments as for the HT -inequality for
U−, but using of course regular trajectories.

Q.E.D.

9.2 More on regular trajectories

Let us begin by stating the stability of regular trajectories:

Lemma 9.2.1 Assume that all the (bi, ci, li) satisfy (HBA−CP). For any ε > 0, let
(X,D,L)ε ∈ T reg(x, t) be a sequence of regular trajectories converging uniformly to
(X,D,L) on [0, t]. Then (X,D,L) ∈ T reg(x, t).

Though it may seem quite natural, this result is quite difficult to obtain. It is a
direct corollary of Proposition 9.5.1 (with constant BCL and initial data) which we
prove in Subsection 9.5 below. We recall here that since T (s) = t − s, we just use
trajectories in the form (X,D,L) instead of (X,T,D, L).

Let us focus now on the immediate consequences:

Corollary 9.2.2 Assume that all the (bi, ci, li) satisfy (HBA−CP). Then, for any
(x, t) ∈ RN × (0, Tf ), there exists a regular trajectory (X,D,L) ∈ T reg(x, t) such
that

U+(x, t) =

∫ t

0

l
(
X(s), t− s, a(s)

)
e−D(s) ds+ u0(X(t))e−D(t) , (9.5)

therefore there is an optimal trajectory. Moreover, the value-function U+ satisfies the
sub-optimality principle, i.e., for any (x, t) ∈ RN × [0, Tf ] and 0 < τ < t, we have

(U+)∗(x, t) ≤ inf
T reg(x,t)

{∫ τ

0

l
(
X(s), t− s, a(s)

)
e−D(s) ds+ (U+)∗(X(τ), t− τ)e−D(τ)

}
,

and the super-optimality principle, i.e.

(U+)∗(x, t) ≥ inf
T reg(x,t)

{∫ τ

0

l
(
X(s), t− s, a(s)

)
e−D(s) ds+ (U+)∗(X(τ), t− τ)e−D(τ)

}
.

Corollary 9.2.2 provides slightly different (and maybe more direct) arguments to
prove that U+ is an Ishii solution of (7.1) but it relies on the extraction of regular
trajectories, which is again a rather delicate result to prove.



HJ-Equations with Discontinuities: Codimension-1 Discontinuities 183

Proof — We just sketch things here since everything is a straightforward application
of Lemma 9.2.1. For the existence of an optimal trajectory, we consider ε-optimal
trajectories (Xε, Dε, Lε), i.e. trajectories which satisfy

U+(x, t) ≤
∫ t

0

l
(
Xε(s), t− s, aε(s)

)
e−D

ε(s) ds+ u0(Xε(t))e−D
ε(t) + ε .

By applying Ascoli’s Theorem on the differential inclusion, we can assume without
loss of generality that (Xε, Dε, Lε)→ (X,D,L) in C([0, t]) and L̇ε → L̇ in L∞-weak?,
so that for some control a(·), we have∫ t

0

l
(
Xε(s), t− s, aε(s)

)
e−D

ε(s) ds→
∫ t

0

l
(
X(s), t− s, a(s)

)
e−D(s) ds.

Then, applying Lemma 9.2.1 shows that (X,D,L) is actually a regular trajectory and
(9.5) holds.

The proofs of the sub and super-optimality principle follow from similar argu-
ments considering, for example, a sequence (xk, tk) → (x, t) such that U+(xk, tk) →
(U+)∗(x, t) and passing to the limit in an analogous way.

Q.E.D.

9.3 A magical lemma for U+

Now we turn a key result in the proof that U+ is the maximal Ishii solution of (7.1).

Theorem 9.3.1 Assume that the “standard assumptions in the co-dimension-1 case”
are satisfied. Let φ ∈ C1

(
H× [0, Tf ]

)
and suppose that (x, t) ∈ H × (0, Tf ) is a local

minimum point of (z, s) 7→ (U+)∗(z, s) − φ(z, s) in H × [0, Tf ]. Then the following
alternative holds

A) either there exist η > 0, i ∈ {1, 2} and a control αi(·) such that the associated
trajectory (X,D,L) satisfies X(s) ∈ Ω̄i with Ẋ(s) = bi(X(s), t − s, αi(s)) for all
s ∈]0, η] and

(U+)∗(x, t) ≥
∫ η

0

li(X(s), t− s, αi(s))e−D(s) ds+ (U+)∗(X(η), t− η)e−D(η) ; (9.6)

B) or the following viscosity inequality holds

∂tφ(x, t) +Hreg
T

(
x, t, (U+)∗(x, t), DHφ(x, t)

)
≥ 0. (9.7)
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Proof — Using the result and the proof of Corollary 9.2.2, for any 0 < η < t, there
exists a regular trajectory X and a control a such that

(U+)∗(x, t) ≥
∫ η

0

l
(
X(s), t− s, a(s)

)
e−D(s) ds+ (U+)∗(X(η), t− η)e−D(η) .

Indeed, for any η the infimum in the sub-optimality principle is achieved. Now there
are two cases:

(i) Either there exists η > 0 and i ∈ {1, 2} such that X(s) ∈ Ω̄i with Ẋ(s) =
bi(X(s), t− s, αi(s)) for all s ∈]0, η], from which A) follows.

(ii) Or this is not the case, which means that there exists a sequence (ηk)k converging
to 0 such that ηk > 0 and X(ηk) ∈ H.

In this second case,

(U+)∗(x, t) ≥
∫ ηk

0

l
(
X(s), t− s, a(s)

)
e−D(s) ds+ (U+)∗(X(ηk), t− ηk)e−D(ηk) ,

and, assuming w.l.o.g that φ(x, t) = (U+)∗(x, t), the minimum point property on H
yields

φ(x, t) ≥
∫ ηk

0

l
(
X(s), t− s, a(s)

)
e−D(s) ds+ φ(X(ηk), t− ηk)e−D(ηk) .

Using the notation ξs = (X(s), t− s), we rewrite this inequality as∫ ηk

0

A[φ](s) ds ≥ 0 , where

A[φ](s) :=
(
φt(ξs)− Ẋ(s) ·Dxφ(ξs) + c

(
ξs, a(s)

)
φ(ξs)− l

(
ξs, a(s)

))
e−D(s) .

In order to prove B), we argue by contradiction, assuming that

∂tφ(x, t) +Hreg
T

(
x, t, (U+)∗(x, t), DHφ(x, t)

)
< 0 , (9.8)

and to get a contradiction we examine the sets Ei := {s ∈ (0, ηk) : X(s) ∈ Ωi} and
EH := {s ∈ (0, ηk) : X(s) ∈ H}.

(a) The case EH is easy: since Ẋ(s) = bH(X(s), t − s, a(s)) a.e. if X(s) ∈ H, by
definition of Hreg

T as the supremum we get directly∫ ηk

0

A[φ](s)1I{s∈EH} ds ≤
∫ ηk

0

{
∂tφ(ξs) +Hreg

T

(
ξs, (U

+)∗(ξs), DHφ(ξs)
)}

1I{s∈EH} ds ,
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and this integral is stricly negative provided ηk is small enough, thanks to (9.8) and
the continuity of Hreg

T .

(b) On the other hand, the sets Ei are open and therefore Ei = ∪k(ai,k, bi,k) with
ai,k, bi,k ∈ H. On each interval (ai,k, bi,k), Ẋ(s) = bi(X(s), t−s, αi(s)

)
and introducing

the function d(y) = |yN |, we have

0 = d(X(bi,k))− d(X(ai,k)) =

∫ bi,k

ai,k

eN · bi(X(s), t− s, αi(s)
)

ds . (9.9)

By the regularity of (bi, ci, li) with respect to X(s) we have∫ bi,k

ai,k

(bi, ci, li)
(
ξs, αi(s)

)
ds =

∫ bi,k

ai,k

(bi, ci, li)
(
x, t, αi(s)

)
ds+O(ηk)(bi,k − ai,k) .

Then, using the convexity of the images of BCLi, there exists a control a[i,k such that∫ bi,k

ai,k

(bi, ci, li)
(
ξs, a(s)

)
ds = (bi,k − ai,k) (bi, ci, li)

(
x, t, α[i,k

)
ds+O(ηk)(bi,k − ai,k) ,

and (9.9) implies that bi
(
x, t, α[i,k

)
·eN = O(ηk). In terms of BCL, this means we have

a (b[i, c
[
i, l

[
i) ∈ BCLi(x, t) such that b[i · eN = O(ηk).

Using the normal controllabilty and regularity properties of BCLi, for ηk small
enough, there exists a (b]i, c

]
i, l

]
i) ∈ BCLi(x, t) which is O(ηk)-close to (b[i, c

[
i, l

[
i) such

that b]i · eN = 0. This means that there exists a control α]i,k ∈ Ai such that still∫ bi,k

ai,k

(bi, ci, li)
(
ξs, a(s)

)
ds = (bi,k − ai,k) (bi, ci, li)

(
x, t, a]i,k

)
ds+O(ηk)(bi,k − ai,k)

holds, and bi
(
x, t, a]i,k

)
·eN = 0. In other words, this specific control provides a regular

dynamic.

Hence, using the regularity of φ, since a]i,k is regular we get∫ bi,k

ai,k

A[φ](s) ds = (bi,k − ai,k)
{
φt(x, t)− bi(x, t, a]i,k) ·Dxφ(x, t)

+ c(x, t, a]i,k)φ(x, t)− li(x, t, a[i,k) +O(ηk)
}
,

≤ (bi,k − ai,k)
{
∂tφ(x, t) +Hreg

T

(
x, t, (U+)∗(x, t), DHφ(x, t) +O(ηk)

}
< 0 .

Therefore, for ηk small enough, on each connected component of E1, E2 and on EH,
the integral is strictly negative and we get the desired contradiction.

Q.E.D.
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Remark 9.3.2 Notice that the alternative above with Hreg
T only holds for U+, and

not for any arbitrary supersolution (see Theorem 8.4.1 where HT is used and not
Hreg
T ).

9.4 Maximality of U+

In order to prove that U+ is the maximal subsolution, we need the following result
on subsolutions

Lemma 9.4.1 Assume that the “standard assumptions in the co-dimension-1 case”
are satisfied. If u : RN × (0, Tf )→ R is an u.s.c. subsolution of (7.1), then it satisfies

ut +Hreg
T (x, t, u,DTu) ≤ 0 on H× (0, Tf ) . (9.10)

Proof — Let φ be a C1–test-function on H × (0, Tf ). Using the decomposition of
x ∈ RN in (x′, xN) with x′ ∈ RN−1, we can assume that φ is just a function of x′ and
t, and we can see φ as a function defined in RN × (0, Tf ) as well.

If (x̄, t̄) ∈ H × (0, Tf ) is a strict local maximum point of u(x, t) − φ(x′, t) on H ×
(0, Tf ), we have to show that

φt(x̄
′, t̄) +Hreg

T (x̄, t̄, u(x̄, t̄), DTφ(x̄, t̄)) ≤ 0 ,

where DTφ(x̄, t̄) is nothing but Dx′φ(x̄′, t̄) and we also identify it below with the
vector (Dx′φ(x̄′, t̄), 0). So, setting a = φt(x̄

′, t̄) and pT = DTφ(x̄, t̄), we have to prove
that for any (b, c, l) ∈ BCLreg

T (x̄, t̄),

I := a− b · pT + cu(x̄, t̄)− l ≤ 0 .

By definition of BCLreg
T (x̄, t̄), we can write

(b, c, l) = µ1(b1, c1, l1) + µ2(b2, c2, l2) ,

with b1 · eN ≤ 0 ≤ b2 · eN and µ1 + µ2 = 1. Using the normal controllability and an
easy approximation argument, we can assume without loss of generality that b1 ·eN <
0 < b2 · eN . Of course, even if we do not write it to have simpler notations, (b1, c1, l1)
is associated to a control α1 and (b2, c2, l2) to a control α2.

For i = 1, 2, we consider the affine functions

ψi(δ) := a− bi · (pT + δeN) + ciu(x̄, t̄)− li .
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By the above properties we have: (i) ψ1 is strictly increasing; (ii) ψ2 is strictly de-
creasing; (iii) µ1ψ1(δ) + µ2ψ2(δ) = I, which is independent of δ.

We argue by contradiction, assuming that I > 0 and choose δ̄ such that ψ1(δ̄) =
ψ2(δ̄). Notice that this is possible due to the strict monotonicity properties and the
fact that ψ1(R) = ψ2(R) = R. We have therefore ψ1(δ̄) = ψ2(δ̄) = I > 0.

Next, for 0 < ε� 1, we consider the function

(x, t) 7→ u(x, t)− φ(x′, t)− δ̄xN −
x2
N

ε2
,

defined in RN × (0, Tf ). Since (x̄, t̄) is a strict local maximum point of u − φ on
H × (0, Tf ), there exists a sequence (xε, tε) of local maximum point of this function
which converges to (x̄, t̄), with u(xε, tε) converging to u(x̄, t̄).

Our aim is to show that none of the H1 or H2 viscosity inequality holds for u on H,
which will contradict the fact that u is a viscosity subsolution. Assume for instance
that the the H1-inequality holds. Then (xε)N ≥ 0 and by the regularity of φ,

a− b1(xε, tε, α1) · (pT + δ̄eN +
2(xε)N
ε2

eN) + c1(xε, tε, α1)u(x̄, t̄)− l1(xε, tε, α1) ≤ oε(1) .

But since (xε, tε)→ (x̄, t̄), b1(xε, tε, α1)→ b1(x̄, t̄, α1) and therefore b1(xε, tε, α1)·eN <
0 for ε small enough. Using that (xε)N ≥ 0, this inequality implies

a− b1(xε, tε, α1) · (pT + δ̄eN) + c1(xε, tε, α1)u(x̄, t̄)− l1(xε, tε, α1) ≤ oε(1) .

By the definition and properties of δ̄ and the fact that I > 0, this inequality cannot
hold for ε small enough, showing that the H1 inequality cannot hold neither. A similar
argument being valid for the H2 inequality, we have a contradiction and therefore
I ≤ 0, and the proof is finished.

Q.E.D.

Theorem 9.4.2 Assume that the “standard assumptions in the co-dimension-1 case”
are satisfied. Then U+ is continuous and it is the maximal Ishii solution of (7.1).

Proof — Let u be any subsolution of (7.1). We want to show that u ≤ (U+)∗ in RN ×
[0, Tf ) and to do so we first notice that, as we did in the proof of the characterization
of U− (Theorem 8.4.1), we can reduce the proof to a local comparison argument since
(LOC1) and (LOC2) are satisfied. So, let Qx,t

r,h be a cylinder in which we want to
perform the (LCR) between u and (U+)∗.
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Using again the arguments of the proof of Theorem 8.4.1, we may assume without
loss of generality that u is a strict subsolution of (7.1) and in particular a strict
subsolution of (8.10). Finally we can regularize u in order that it is C1 on H× (0, Tf ).

Using Theorem 5.3.3 to show that u satisfies a sub-dynamic programming prin-
ciple with trajectories in T (x, t), we see that we are (almost) in the framework of
Lemma 5.4.1, the usual FM-inequality for u being replaced by (9.10).

Using in an essential way Theorem 9.3.1(1), it is easy to see that the result of
Lemma 5.4.1 still holds in this slightly different framework and yields

max
Qx,tr,h

(u− (U+)∗) ≤ max
∂Qx,tr,h

(u− (U+)∗) ,

and the (GCR) follows: u ≤ (U+)∗ in RN × [0, Tf ].

Concerning the continuity statement, consider u = (U+)∗. By definition, (U+)∗ ≥
(U+)∗ but the comparison result above applied to (U+)∗ which is a subsolution shows
that in the end U+ = (U+)∗ = (U+)∗. Hence U+ is continuous and is maximal
amongst Ishii subsolutions.

Q.E.D.

9.5 Appendix: stability of regular trajectories

This appendix is about proving the convergence property of regular trajectories,
Lemma 9.2.1. We actually prove a more general result here:

Proposition 9.5.1 Let t > 0 be fixed and for each ε > 0 let BCLε be a set-valued
map satisfying (HBCL)fund. and let (X,T,D, L)ε be solution of the differential inclu-
sion

∀s ∈ (0, t) , (X,T,D, L)ε(s) ∈ BCLε(Xε(s), t− s) .

(i) If BCLε converges to BCL locally unformly in RN × (0, t) (for the Hauss-
dorf distance on sets) and (X,T,D, L)ε(0) → (x, t, d, l), then up to extraction,
(X,T,D, L)ε converges to some trajectory (X,T,D, L) which satisfies

∀s ∈ (0, t) , (X,T,D, L)(s) ∈ BCL(X(s), t− s)

with inital value (X,T,D, L)(0) = (x, t, d, l).

(1)which replaces the arguments for the supersolution v in the proof of Lemma 5.4.1 (cf. Re-
mark 5.4.2).
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(ii) If moreover each trajectory Xε is regular, then the limit trajectory X is also
regular.

This result is obtained through several lemmas. The first one proves part (i) of the
proposition, which is not very difficult.

Lemma 9.5.2 If BCLε converges to BCL locally unformly in RN × (0, t) (for the
Haussdorf distance on sets) and (X,T,D, L)ε(0) → (x, t, d, l), then up to extraction,
(X,T,D, L)ε converges to some trajectory (X,T,D, L) which is a solution of the dif-
ferential inclusion associated with BCL, with the corresponding initialization.

Proof — Notice first that since the BCLε all satisfy (HBCL)fund with constants in-
dependent of ε, and the initial value converges, the trajectories (X,T,D, L)ε are equi-
Lipschitz and equi-bounded on [0, t]. Hence we can extract a subsequence (X,T,D, L)εn

converging to (X,T,D, L) uniformly on [0, t]. Moreover, for any κ > 0 small enough,
if n is big enough we have

∀s ∈ (0, t) , BCLε(Xεn(s), t− s) ⊂ BCL(X(s), t− s) + κBN+3

where BN+3 is the unit ball of RN+3. Passing to the limit as εn → 0, we deduce that
(X,T,D, L) satisfies the differential inclusion associated with BCL, and of course its
initial data is (X,T,D, L)(0) = (x, t, d, l).

Q.E.D.

Now we need several results in order to prove part (ii) which is much more involved.
Before proceeding, let us comment a little bit: using the control representation of the
differential inclusion (Lemma 8.1.2), there exist some controls αεi , a

ε such that

Ẋε(s) =
∑
i=1,2

bεi
(
Xε(s), t− s, αεi (s)

)
1{Xε∈Ωi}(s) + bεH

(
Xε(s), t− s, aε(s)

)
1{Xε∈H}(s) .

Recall that the control aε is actually complex since it involves αε1, α
ε
2 but also αε0. In

other words, bH is a mix of b0, b1, b2 with weights µε0, µ
ε
1, µ

ε
2. However, notice that fo-

cusing on regular dynamics, the b0-term is not a problem since it is already tangential
(hence, regular).

In order to send ε→ 0 we face two difficulties: the first one is that we have to deal
with weak convergences in the bεi , b

ε
H-terms. But the problem is increased by the fact

that some pieces of the limit trajectory X(·) on H can be obtained as limits of trajec-
tories Xε(·) which lie either on H, Ω1 or Ω2. In other words, the indicator functions
1{Xε∈H}(·) do not necessarily converge to 1{X∈H}(·), and similarly the 1{Xε∈Ωi}(·) do
not converge to 1{X∈Ωi}(·).
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From Lemma 9.5.2 we already know that Ẋε converges weakly on (0, t) to some
Ẋ which can be represented as for Xε above, by means of some controls (α1, α2, a).
The question is to prove that this control a yields regular dynamics on H. In order
to to do, we introduce several tools. The first one is a representation of X by means
of some regular controls (α]1, α

]
2, a

]). Those controls may differ from (α1, α2, a), but
they are an intermediate step which will help us to prove the final result.

Lemma 9.5.3 For any s ∈ (0, t) there exists three measures ν1(s, ·), ν2(s, ·), νH(s, ·)
on A1, A2, A respectively and three controls (α]1(s), α]2(s), a](s)) ∈ A1 × A2 × A such
that

(a) ν1, ν2, νH ≥ 0, ν1(s, A1) + ν2(s, A2) + νH(s, A) = 1 ;

(b) up to extraction, bε1(Xε(s), t− s, αε1)→ b1(X(s), t− s, α]1(s)) · νi(s, A1) ,
and the same holds for b2, bH with measures ν2, νH and controls α]2, α

]
H ;

(c) for i = 1, 2, bi(X(s), t− s, α]i(s)) · eN = 0 νi-a.e. on {X(s) ∈ H} .

In particular, the dynamic obtained by using (α0, α
]
1, α

]
2) is regular.

Proof — We use a slight modification of the procedure leading to relaxed control as
follows. We write

bε1
(
Xε(s), t− s, αε1(s)

)
1{Xε∈Ω1}(s) =

∫
A1

bε1
(
Xε(s), t− s, α

)
νε1(s, dα) ,

where νε1(s, ·) stands for the measure defined on A1 by νε1(s, E) = δαε1(E)1{Xε∈Ω1}(s),
for any Borelian set E ⊂ A1. Similarly we define νε2 and νεH for the other terms.
Notice that νεH is a bit more complex measure since it concerns controls of the form
a = (α1, α2, µ) on A, but it works as for νε1 so we omit the details.

Note that, for any s, νε1(s, A1)+νε2(s, A2)+νεH(s, A) = 1 and therefore the measures
νε1(s, ·), νε2(s, ·), νεH(s, ·) are uniformly bounded in ε. Up to successive extractions of
subsequences, they all converge in L∞(0, Tf ;E) weak-∗ (where E = A1, A2, A) to
some measures ν1, ν2, νH. Since moreover the total mass is 1, we obtain in the limit
ν1(s, A1) + ν2(s, A2) + νH(s, A) = 1.

Using that up to extraction Xε converges uniformly on [0, t], using the local uniform
convergence of the bε1, we get that∫

A1

bε1
(
Xε(s), t− s, α

)
νε1(s, dα) −→

ε→0

∫
A1

b1

(
X(s), t− s, α

)
ν1(s, dα),
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weakly in L∞(0, Tf ). Introducing π1(s) :=
∫
A1
ν1(s, dα) and using the convexity of A1

together with a measurable selection argument (see [11, Theorem 8.1.3]), the last inte-
gral can be written as b1

(
X(s), σ(s), α]1(s)

)
π1(s) for some control α]1 ∈ L∞(0, Tf ;A1).

The same procedure for the other two terms provides the controls α]2(·), a](·) and
functions π2(·), πH(·), which yields (a) and (b).

We now turn to property (c) that we prove for b1, the proof being identical for
b2. Since (Xε

N)+ := max(Xε
N , 0) is a sequence of Lipschitz continuous functions which

converges uniformly to (XN)+ on [0, t], up to an additional extraction of subsequence,
we may assume that the derivatives converge weakly in L∞ (weak–∗ convergence). As
a consequence, d

ds

[
(Xε

N)+

]
1{X∈H} converges weakly to d

ds

[
(XN)+

]
1{X∈H}.

By Stampacchia’s Theorem we have

d

ds

[
(Xε

N)+

]
= Ẋε

N(s)1{Xε∈Ω1}(s) for almost all s ∈ (0, t).

Therefore, the above convergence reads, in L∞(0, Tf )weak–∗

Ẋε
N(s)1{Xε∈Ω1}(s)1{X∈H}(s) −→ ẊN(s)1{X∈Ω1}(s)1{X∈H}(s) = 0 .

Using the expression of Ẋε(s),
(
bε1
(
Xε(s), t−s, αε1(s)

)
· eN
)
1{Xε∈Ω1}(s)1{X∈H}(s)→ 0

in L∞(0, Tf ) weak–∗ which implies that(
b1

(
X(s), t− s, α]1(s)

)
· eN

)
πi(s) = 0 a.e. on {X(s) ∈ H} , (9.11)

which yields property (c). This means that bi(X(s), t − s, α]i(s)) is tangential on H
so that combining them with some b0 (which is tangential by definition), we get a
regular dynamic on H.

Q.E.D.

We now want to prove that the controls (α1, α2, a) yield regular strategies, not only
the (α]1, α

]
2, a

]). In order to proceed we introduce the set of regular dynamics:

∀(z, s) ∈ H × [0, t] , K(z, s) :=
{
bH
(
z, s, a∗

)
, a∗ ∈ Areg

0 (z, s)
}
⊂ RN .

We notice that, for any z ∈ H and s ∈ [0, Tf ], K(z, s) is closed and convex, and the
mapping (z, s) 7→ K(z, s) is continuous on H for the Hausdorff distance. Then, for
any η > 0, we consider the subset of [0, t] consisting of times s for which one has
singular (η-enough) dynamics for the control a(·), namely

Eη
sing :=

{
s ∈ [0, t] : X(s) ∈ H and dist

(
bH
(
X(s), t− s, a(s)

)
;K
(
X(s), t− s

))
≥ η

}
.
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If s ∈ Eη
sing 6= ∅, since K(X(s), t− s) is closed and convex, there exists an hyperplane

separating bH
(
X(s), t − s, a(s)

)
from K(X(s), t − s) and we can construct an affine

function Ψs : RN → R of the form Ψs(z) = A(s)z +B(s) such that

Ψs

(
bH
(
X(s), t− s, a(s)

))
≥ 1 if s ∈ Eη

sing , Ψs ≤ 0 on K
(
X(s), t− s

)
.

In other words, Ψs “counts” the singular dynamics.

Since the mapping s 7→ bH
(
X(s), t−s, a(s)

)
is measurable and s 7→ K

(
X(s), t−s

)
is

continuous, we can assume that s 7→ A(s), B(s) are measurable and bounded (because
the distance η > 0 is fixed), which allows to define the quantity

I(η) :=


∫ t

0

(
Ψs(Ẋ(s)

)
1Eηsing

(s) ds if Eη
sing 6= ∅

0 if Eη
sing = ∅ .

By definition, it is clear that I(η) ≥ |Eη
sing| (the Lebesgue measure of Eη

sing). The
following result gives a converse estimate

Lemma 9.5.4 For any η > 0, I(η) ≤ 0.

Proof — Let η > 0. If Eη
sing = ∅ there is nothing to do so let us assume that this is

not the case, and take some s ∈ Eη
sing. Since Ψs is affine, using the weak convergence

of Ẋε we know that

I(η) = lim
ε→0

Iε(η) :=

∫ t

0

(
Ψs(Ẋ

ε(s)
)
1Eηsing

(s) ds .

The strategy is to use Lemma 9.5.3 to pass to the limit and estimate Iε(η), knowing
that at each level ε > 0, the dynamics are regular. In order to keep this information
in the limit, dealing with the bεi -terms is handled by property (c) of Lemma9.5.3. But
the bεH-term is more delicate: we need first to fix a regular control independent of ε.

To do so, we start by noticing that for fixed ε > 0 and s ∈ [0, t], for each aε(s) ∈
Areg

0 (Xε(s), t− s) there exists a ãε(s) ∈ Areg
0 (X(s), t− s) such that

bεH(Xε(s), t− s, aε(s)) = bH(X(s), t− s, ãε(s)) + oε(1) .

Indeed, this comes from a measurable selection argument and the fact that Xε con-
verges uniformly to X, while bεH also converges locally uniformly (with respect to its
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first variable). So, rewriting the expansion of Ẋε and using that Ψs is affine we get

Iε(η) =

∫ t

0

Ψs

(∑
i=1,2

bεi
(
Xε(s), t− s, αεi (s)

)
1{Xε∈Ωi}(s)

)
1Eηsing

(s) ds

+

∫ t

0

A(s)
(
bH
(
X(s), t− s, ãε(s)

)
1{Xε∈H}(s)

)
1Eηsing

(s) ds+ oε(1) .

Moreover, by construction and using again a measurable selection argument (see
Filippov’s Lemma [11, Theorem 8.2.10]), there exists a control a?(s) ∈ K(X(s), t−s)
such that

A(s)bH(X(s), t− s, a?(s)) = max
a∈K(X(s),t−s)

A(s)bH(X(s), t− s, a).

Therefore,

Iε(η) ≤
∫ t

0

Ψs

{∑
i=1,2

bεi
(
Xε(s), t− s, αεi (s)

)
1{Xε∈Ωi}(s)

+bH
(
X(s), t− s, a?(s)

)
1{Xε∈H}(s)

}
1Eηsing

(s) ds+ oε(1) .

Now we pass to the weak limit, using Lemma 9.5.3 but with a constant bH instead
of bεH and, more importantly, a constant control a?. In other words, the measure νεH
is actually independent of ε in this situation. We get some measures ν1, ν2, νH and
some controls α]1, α

]
2 and a] = a∗ here, for which

lim
ε→0

Iε(η) ≤
∫ t

0

Ψs

{∑
i=1,2

bi
(
X(s), t− s, α]i(s)

)
νi(s, Ai)

+bH
(
X(s), t− s, a?(s)

)
νH(s, A)

}
1Eηsing

(s) ds .

Recall that by construction bH(X(s), t − s, a?(s)) ∈ K(X(s), t − s) and that α]1, α
]
2

are regular controls. Therefore, since ν1(s, A1) + ν2(s, A2) + νH(s, A) = 1 and the set
K(X(s), t− s) is convex, we deduce that the convex combination satisfies

Ψs

{∑
i=1,2

bi
(
X(s), t− s, α]i(s)

)
νi(s, Ai) + bH

(
X(s), t− s, a?(s)

)
νH(s, A)

}
≤ 0 .

The conclusion is that I(η) = limε→0 I
η(η) ≤ 0 and the result is proved.

Q.E.D.
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Proof of Proposition 9.5.1 — The first part (i) is done in Lemma 9.5.2. As for (ii),
we proved above that for any η > 0, |Eη

sing| ≤ I(η) = 0, so that set Eη
sing is of zero

Lebesgue measure. Hence, using a countable union of negligeable sets we deduce that{
s ∈ [0, t] : X(s) ∈ H and bH

(
X(s), t− s, a(s)

)
/∈ K

(
X(s), t− s

))}
is also of zero Lebesgue measure. This means that for almost any s ∈ (0, t), the
strategy obtained by choosing a as control is regular, which concludes the proof.

Q.E.D.



Chapter 10

Uniqueness and Non-Uniqueness
Features

In this chapter, we investigate the question of the uniqueness for Ishii solutions of
Problem (7.1), which can be summarized as: when are the value functions U+, U−

equal? It is rather clear that, in general, they are different since the restriction to use
only regular controls can really penalize the controller, leading to the fact that U+ is
strictly larger than U−. We give an example of this non-uniqueness situation in the
first section of this chapter.

Then we provide some conditions under which uniqueness holds, using a pde point-
of-view: as a consequence of Theorem 8.4.1 and Proposition 9.1.3, we know that
U+ = U− if HT = Hreg

T , and we give a simple condition under which this last
equality is true.

10.1 A typical example where U+ 6≡ U−

We consider a one-dimensional finite horizon problem where

Ω1 = {x > 0}, Ω2 = {x < 0}, H = {x = 0} .

The reader will find in [16] a detailed study of this situation for infinite horizon
control problems, a general description of the structure of solutions, the link between
the minimal and maximal Ishii solutions with state-constraint solutions as well as
several explicit examples. Here we restrict ourselves to exposing an explicit example
of non-uniqueness for illustration purposes.

195
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We consider the dynamics

Ẋ(t) = α1(t) in Ω1 , Ẋ(t) = α2(t) in Ω2 ,

where α1(·), α2(·) ∈ L∞
(
0,+∞; [−1, 1]

)
are the controls. In other words, A1 = A2 =

[−1, 1] and b1(x, t, α1) = α1, b2(x, t, α2) = α2. As for the costs, we choose

l1(x, t, α1) = 1− α1 + min(|x|, 1) in Ω1 , l2(x, t, α2) = 1 + α2 + min(|x|, 1) in Ω2 .

Finally, we set c1(x, α1) = c2(x, α2) = 1 for the discount factor and also g = min(|x|, 1)
for the final cost. Therefore,

U−(x, t) = inf
T (x,t)

{∫ t

0

l(X(s), t− s, a(s))e−s ds+ g(X(t))e−t
}
,

where l is either l1, l2 or a convex combination of both for x = 0, and a(·) = (α1, α2, µ)
is the extended control. The definition for U+ is similar, the infimum being taken over
T reg(x, t).

Computing U−(0, t). It is clear that l1(x, α1), l2(x, α2) ≥ 0 and these running costs
are even strictly positive for x 6= 0. Therefore, U−(x, t) ≥ 0 for any x ∈ R and t ≥ 0.
On the other hand, for x = 0, we have access to a 0-cost strategy by choosing the
singular “pull-pull” strategy a = (α1, α2, µ) = (1,−1, 1/2) which gives

b(0, t− s, a) = µα1 + (1− µ)α2 = 0 ,

l(0, t− s, a) = µ(1− α1) + (1− µ)(1 + α2) = 0 .

As a consequence, it is clear that this is the best strategy for x = 0 and U−(0, t) = 0
for any t ≥ 0.

Computing U+(0, t). For simplicity, we compute it only for t ≤ 1 here. In this
case any trajectory satisfies |X(s)| ≤ 1 for any 0 ≤ s ≤ t and min(|X(s)|, 1) can be
replaced by |X(s)| everywhere (in the running cost and terminal cost).

If X is any trajectory starting from X(0) = 0 and associated to a regular control
and if X(s) > 0, then

l(X(s), t− s, a(s))e−s =(1− Ẋ(s) +X(s))e−s

=e−s − (X(s)e−s)′ .

With analogous computations for X(s) < 0, we end up with l(X(s), t− s, a(s))e−s =
e−s − [|X|e−s]′(s) if X(s) 6= 0.

It remains to examine the case when X(s) = 0. It is easy to see that, if b(0, t−s, a) =
0 is a regular dynamic, then l(0, t−s, a) ≥ 1 since α1 ≤ 0, α2 ≥ 0 and l(0, t−s, a) = 1
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if and only if α1 = α2 = 0. Therefore, for X(s) = 0, the above formula is changed into
l(X(s), t−s, a(s))e−s ≥ e−s−[|X|e−s]′(s) since |X ′(s)| = 0 a.e. on the set {X(s) = 0}.
And actually, equality is attained for the above mentioned choice of a. Therefore∫ t

0

l(X(s), t− s, a(s))e−s ds+ g(X(t))e−t =

∫ t

0

(
e−s − [|X|e−s]′(s)

)
ds+ g(X(t))e−t

=1− e−t > 0 ,

proving that U+(0, t) = 1− e−t > U−(0, t) = 0 at least for 0 < t ≤ 1. The conclusion
is that U+ 6= U− and uniqueness does not hold in the class of Ishii solutions.

10.2 Equivalent definitions for HT and Hreg
T

We recall that we defined HT and Hreg
T in Section 8.3, using the subsets BCLT (x, t)

and BCLreg
T (x, t): for x ∈ H, t ∈ (0, Tf ), r ∈ R, p ∈ RN

HT (x, t, r, p) := sup
(b,c,l)∈BCLT (x,t)

{
− b · p+ cu− l

}
, (10.1)

while the second Hamiltonian is defined similarly but by considering only regular
tangential dynamics b

Hreg
T (x, t, r, p) := sup

BCLreg
T (x,t)

{
− b · p+ cu− l

}
. (10.2)

On the other hand, for any x, t, r, p′, the functions f(s) := H1(x, t, r, p′ + seN) and
g(s) := H2(x, t, r, p′ + seN) are convex and, thanks to Section 6.2, we can introduce
the nonincreasing and nondecreasing parts f ], f[, g

], g[ of f and g. It is easy to see
that

f ](s) = sup
(b1,c1,l1)∈BCL1(x,t)

b1·eN≤0

{
− b1 · (p′ + seN) + c1u− l1

}
:= H−1 (x, t, r, p′ + seN) ,

and similarly we define “H−2 = g]”, “H+
1 = f[” and “H+

2 = g[” , the choice of “+” or
“−” in H±i being related to the sign of bi · eN in its definition.

In order to provide equivalent definitions of HT ,Hreg
T , we follow Section 6.2 where

we introduced M(s) := max(f(s), g(s)) and M reg(s) := max(f ](s), g[(s)), which leads
to consider the Hamiltonians defined for x ∈ H, t ∈ (0, Tf ), r ∈ R, p ∈ RN by

H̃(x, t, r, p) := max
(
H1(x, t, r, p), H2(x, t, r, p)

)
, (10.3)
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H̃reg(x, t, r, p) := max
(
H−1 (x, t, r, p), H+

2 (x, t, r, p)
)
. (10.4)

The following representation holds

Lemma 10.2.1 For any (x, t, r, p′) ∈ H × (0, Tf )× R× RN ,

HT (x, t, r, p′) = min
s∈R

H̃(x, t, r, p′ + seN) , (10.5)

Hreg
T (x, t, r, p′) = min

s∈R
H̃reg(x, t, r, p′ + seN) . (10.6)

Moreover, there exist ν1 ≤ ν2 such that for any λ ∈ [ν1, ν2],

Hreg
T (x, t, r, p′) = H−1 (x, t, r, p′ + λeN) = H+

2 (x, t, r, p′ + λeN) . (10.7)

Proof — Notice first that (10.7) is a direct consequence of Lemma 6.2.3. Now, con-
cerning (10.5) and (10.6), We only provide the full proof in the case of HT , the one for
Hreg
T follows from the same arguments, just changing the sets of (b1, c1, l1), (b2, c2, l2)

we consider.

We introduce the function ϕ : R→ R defined by

ϕ(s) := max(H1(x, t, r, p′ + seN), H2(x, t, r, p′ + seN)) .

This function is convex, continuous and coercive since both H1, H2 have these proper-
ties and therefore there exists s̄ ∈ R such that ϕ(s̄) = mins∈R ϕ(s). As a consequence,
0 ∈ ∂ϕ(s̄), the convex subdifferential of ϕ.

We apply a classical result on the subdifferentials of convex functions defined as
suprema of convex (or C1) functions (cf [150]): here

ϕ(s) = sup {−b1 · (p′ + seN) + c1r − l1;−b2 · (p′ + seN) + c2r − l2} ,

where the supremum is taken over all (b1, c1, l1) ∈ BCL1(x, t) and (b2, c2, l2) ∈
BCL2(x, t).

The functions s 7→ −bi · (p′ + seN) + cir− li for i = 1, 2 and (bi, ci, li) ∈ BCLi(x, t)
are all C1 and ∂ϕ(s̄) is the convex hull of their gradients for all the (bi, ci, li) such
that ϕ(s̄) = −bi · (p′ + seN) + cir − li. Since BCL1(x, t),BCL2(x, t) are convex, this
means that one of the following cases holds

(a) either the above supremum is only achieved at a unique (bi, ci, li) but then ϕ is
differentiable at s̄ and 0 = ϕ′(s̄) = −bi · eN ;
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(b) or there exists (b1, c1, l1) ∈ BCL1(x, t), (b2, c2, l2) ∈ BCL2(x, t) and µ ∈ [0, 1]
such that{

ϕ(s̄) = −b1 · (p′ + s̄eN) + c1r − l1 = −b2 · (p′ + s̄eN) + c2r − l2
0 = µ(−b1 · eN) + (1− µ)(−b2 · eN) i.e. (µb1 + (1− µ)b2) · eN = 0 .

In case (b), we deduce that

ϕ(s̄) = µ(−b1 · (p′ + s̄eN) + c1r − l1) + (1− µ)(−b2 · (p′ + s̄eN) + c2r − l2)

= −(µb1 + (1− µ)b2) · p′ + (µc1 + (1− µ)c2)r − (µl1 + (1− µ)l2)

≤ HT (x, t, r, p′) .

But on the other hand, for any (b̃1, c̃1, l̃1) ∈ BCL1(x, t), (b̃2, c̃2, l̃2) ∈ BCL2(x, t) such
that (µ̃b̃1 + (1− µ̃)b̃2) · eN = 0 for some µ̃ ∈ [0, 1], the definition of ϕ implies that

ϕ(s̄) ≥ µ̃(−b̃1 · (p′ + s̄eN) + c̃1r − l̃1) + (1− µ̃)(−b̃2 · (p′ + s̄eN) + c̃2r − l̃2)

= −(µ̃b̃1 + (1− µ̃)b̃2) · p′ + (µc̃1 + (1− µ)c̃2)r − (µl̃1 + (1− µ)l̃2),

which, taking the supremum on all such (b̃1, c̃1, l̃1), (b̃2, c̃2, l̃2) and µ̃, gives ϕ(s̄) ≥
HT (x, t, r, p′). Therefore, the equality holds, which gives the result.

Dealing with case (a) follows from the same arguments as in case (b), with µ = 0
or 1. Hence the Lemma is proved.

Q.E.D.

10.3 A sufficient condition to get uniqueness

Applying directly Proposition 6.2.4 yields a condition under which HT = Hreg
T .

Lemma 10.3.1 We denote by m+
1 (x, t, r, p′) the largest minimum point of the func-

tion s 7→ H1(x, t, r, p′ + seN) and m−2 (x, t, r, p′) the least minimum of the function
s 7→ H2(x, t, r, p′ + seN). If m+

1 (x, t, r, p′) ≤ m−2 (x, t, r, p′) for any (x, t, r, p′) then
HT = Hreg

T on H× [0, Tf ]× R× RN−1.

The importance of this lemma is to give the

Corollary 10.3.2 If m+
1 (x, t, r, p′) ≤ m−2 (x, t, r, p′) for any (x, t, r, p′) ∈ H× [0, Tf ]×

R× RN−1, there is a unique solution of (7.1) in the sense of Ishii.
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Therefore we have an easy-to-check sufficient condition in order to have U− =
U+, i.e. the uniqueness of the Ishii solution. Moreover this condition can be checked
directly on the Hamiltonians H1, H2 without coming back to the control problem.

Remark 10.3.3 In Part III, we consider the more general case when H1, H2 are
only quasi-convex. We point out that the above results, namely Lemma 10.2.1 and
10.3.1 are of course still valid in the quasi-convex setting (in the codimension 1 case),
provided that we use the definition of the H±i through f ], f[, g

], g[. Indeed, in that way,
the definitions do not require a control formulation. We come back later on this.

10.4 More examples of uniqueness and non-uniqueness

In this section, we give two simple 1-d examples to illustrate Corollary 10.3.2. The
first one is 

ut + |ux − 1| = 0 in (−∞, 0)× (0,+∞) ,

ut + |ux + 1| = 0 in (0,+∞)× (0,+∞) ,

u(x, 0) = |x| in R .

In this case, m+
1 (x, t, r, p′) = −1 < m−2 (x, t, r, p′) = 1, uniqueness occurs and it is easy

to compute the value functions

U−(x, t) = U+(x, t) = 2(|x| − t)+− |x| − (t− |x|)+ =

{
2(|x| − t)+ − |x| if |x| ≥ t ,

−t otherwise.

Next, consider the problem
ut + |ux + 1| = 0 in (−∞, 0)× (0,+∞) ,

ut + |ux − 1| = 0 (0,+∞)× (0,+∞) ,

u(x, 0) = |x| in R .

Here, on the contrary, m+
1 (x, t, r, p′) = 1 > m−2 (x, t, r, p′) = −1, Corollary 10.3.2 does

not apply and actually the value functions are different

U−(x, t) =

{
|x| if |x| ≥ t

2|x| − t if |x| ≤ t

while U+(x, t) = |x| .



Chapter 11

Adding a Specific Problem on the
Interface

This chapter is devoted to explain the main adaptations and differences when we
consider the more general problem

ut +H1(x, t, u,Du) = 0 for x ∈ Ω1 ,

ut +H2(x, t, u,Du) = 0 for x ∈ Ω2 ,

ut +H0(x, t, u,DTu) = 0 for x ∈ H ,
u(x, 0) = u0(x) for x ∈ RN .

(11.1)

Here, since H0 is only defined on H, the gradient DTu consists only on the tangential
derivative of u if x = (x′, xN) ∈ RN−1 × R, DTu = Dx′u (or (Dx′u, 0) depending
on the convention we choose). In order to simplify some formula, we may write Du
instead of DTu and therefore H0(x, t, u,Du) instead of H0(x, t, u,DTu), keeping in
mind that H0 depends only on p = Du through pT = DTu.

As we explained in Section 3.1, the conditions on H for those equations have to be
understood in the relaxed (Ishii) sense, namely for (11.1)max

(
ut +H0(x, t, u,DTu), ut +H1(x, t, u,Du), ut +H2(x, t, u,Du)

)
≥ 0 ,

min
(
ut +H0(x, t, u,DTu), ut +H1(x, t, u,Du), ut +H2(x, t, u,Du)

)
≤ 0 ,

(11.2)
meaning that, for the supersolution [ resp. subsolution ] condition, at least one of the
inequations has to hold.

In this section, we use the notation with H0 as a sub/superscript in the mathemat-
ical objects to differentiate from the “non”-H0 case since these are not exactly the
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same, in particular of course, the value functions differ whether we have a specific
control problem on H or not.

We say here that the “standard assumptions in the co-dimension-1 case” are satisfied
for (11.1) if (HBA−CP) holds for (bi, ci, li), i = 0, 1, 2 and (NCH) holds for H1 and
H2.

11.1 The control problem

The control problem is solved exactly as in the case of (7.1) that was considered above.
We just need to add a specific control set A0 and triples (b0, c0, l0), defining BCL0(x, t)
when x ∈ H as for BCL1 and BCL2. Since the case i = 0 is specific because H can
be identified with RN−1×{0}, we set for all (x, t, α0), b0(x, t, α0) = (b′0(x, t, α0), 0) so
that b0 · p reduces to the scalar product of the first (N − 1) components.

Using this convention, we define now the new BCL as

BCLH0(x, t) :=


BCL1(x, t) if x ∈ Ω1 ,

BCL2(x, t) if x ∈ Ω2 ,

co(BCL0,BCL1,BCL2)(x, t) if x ∈ H ,

where the convex hull takes into account here the three sets BCLi for i = 0, 1, 2 so
that of course, on H we make a convex combination of all the (bi, ci, li), i = 0, 1, 2.

Lemma 11.1.1 The set-valued map BCLH0 satisfies (HBCL).

The proof is an obvious adaptation of Lemma 8.1.1, therefore we skip it.

In order to describe the trajectories of the differential inclusion with BCLH0 , we
have to enlarge the control space with A0 (and introduce a new parameter µ0 for the
convex combination)

AH0 := A0 × A1 × A2 × ∆̃ , and AH0 := L∞(0, Tf ;A
H0) .

Here, ∆̃ = {(µ0, µ1, µ2) ∈ [0, 1]3 : µ0 + µ1 + µ2 = 1}, so that the extended control
takes the form a = (α0, α1, α2, µ0, µ1, µ2) and if x ∈ H,

(bH, cH, lH) = µ0(b0, c0, l0) + µ1(b1, c1, l1) + µ2(b2, c2, l2) ,

with µ0 + µ1 + µ2 = 1.

With this modification, solving the differential inclusion with BCLH0 and the de-
scription of trajectories is similar to that in the BCL-case (see Lemma 8.1.2), except
that the control has the form a(·) = (α0, α1, α2, µ0, µ1, µ2)(·) ∈ AH0 .
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Then we define U−H0
by

U−H0
(x, t) := inf

TH0
(x,t)

{∫ t

0

l(X(s), t− s, a(s)) exp(−D(s)) ds+ u0(X(t)) exp(−D(t))

}
,

where TH0(x, t) is the space of trajectories associated with BCLH0 .

11.2 The minimal solution

As far as the value-function U−H0
is concerned, only easy adaptations are needed to

handle H0 and the related control problem. Of course we assume that H0 also satisfies
(HConv), (NC), (TC) and (Mon-u), as it is the case for H1 and H2.

Lemma 8.2.1 holds here with

HH0(x, t, u, p) := sup
(b,c,l)∈BCLH0 (x,t)

(
− b · p+ cu− l

)
,

FH0(x, t, u, (px, pt)) := pt +HH0(x, t, u, p) ,

and of course we have to add H0 in the max of the right-hand sides

HH0(x, t, r, p) = max
(
H0(x, t, r, p), H1(x, t, r, p), H2(x, t, u, p)

)
,

FH0(x, t, u, (px, pt)) = max
(
pt +H0(x, t, r, p), pt +H1(x, t, u, p), pt +H2(x, t, u, p)

)
.

Then, minimality of U−H0
follows exactly as in Proposition 8.2.2

Proposition 11.2.1 Assume that the “standard assumptions in the co-dimension-
1 case” are satisfied for (11.1). Then the value function U−H0

is an Ishii viscosity
solution of (11.1). Moreover U−H0

is the minimal supersolution of (11.1).

Notice that a tangential dynamic b ∈ BH0
T (x, t) is expressed as a convex combination

b = µ0b0 + µ1b1 + µ2b2 (11.3)

for which µ0 + µ1 + µ2 = 1, µ0, µ1, µ2 ∈ [0, 1] and (µ1b1 + µ2b2) · eN = 0 since, here,
by definition, b0 · eN = 0.

Then, all the results of Section 8.3 apply, except that we need a little adaptation
for Lemma 8.3.1 in order to take into account the b0-contribution.
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Proof of Lemma 8.3.1 in the BCLH0-case — The only modification consists in rewrit-
ing the convex combination as

µ0b0(x, t, α0) + (1− µ0)

(
µ1

1− µ0

b1(x, t, α1) +
µ2

1− µ0

b2(x, t, α2)

)
,

and we apply the arguments of Lemma 8.3.1 to the convex combination

µ1

1− µ0

b1(x, t, α1) +
µ2

1− µ0

b2(x, t, α2) .

Then, setting

ψH0(y, s) := µ0b0(x, t, α0) + (1− µ0)
(
µ]1(y, s)(b1, c1, l1) + µ]2(y, s)(b2, c2, l2)

)
,

it is easy to check that the lemma holds for the BCLH0-case.
Q.E.D.

Finally, the minimal solution U−H0
can also be characterized through HH0

T . The proof
follows exactly the “non-H0” case with obvious adaptations so that we omit it.

Theorem 11.2.2 Assume that the “standard assumptions in the co-dimension-1 case”
are satisfied for (11.1). Then U−H0

is the unique Ishii solution of (11.1) such that

ut +HH0
T (x, t, u,DTu) ≤ 0 on H× (0, Tf ) ,

where, for x ∈ H, t ∈ [0, Tf ], r ∈ R, p ∈ RN−1,

HH0
T (x, t, r, p) := sup

(b,c,l)∈BCL
H0
T (x,t)

(
− b · p+ cu− l

)
,

BCLH0
T (x, t) being the subset of all (b, c, l) ∈ BCLH0(x, t) for which b ∈ BH0

T (x, t).

11.3 The maximal solution

Surprisingly, for the maximal solution, the case of (11.1) is very different. And we
can see it on the result for subsolutions, analogue to Lemma 9.4.1

Lemma 11.3.1 If u : RN × (0, Tf ) → R is an u.s.c. subsolution of (7.1), then it
satisfies

ut + min
(
H0(x, t, u,DTu), Hreg

T (x, t, u,DTu)
)
≤ 0 on H× (0, Tf ) . (11.4)
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We omit the proof since it is the same as that of Lemma 9.4.1 (taking into account
the b0-terms), but of course the conclusion is that the H0-inequality necessarily holds
if the Hreg

T does not, hence the min.

The important fact in Lemma 11.3.1 is that, while, without H0, (9.10) keeps the
form of an HJB-inequality for a control problem, it is not the case anymore for
(11.4) where the min looks more like an Isaacs equation associated to a differential
game. As we already mention it in the introduction of this part, this is the analogue
for discontinuities of the phenomena which arises in exit time problems/Dirichlet
problem where the maximal Ishii subsolution involves a “worse stopping time” on the
boundary: we refer to [23] and [31] for details.

As an illustration, let us provide the form of the maximal solution of (11.1) in the
particular case when for any x ∈ H, t ∈ (0, Tf ), r ∈ R and pT ∈ RN−1

H0(x, t, r, pT ) ≤ Hreg
T (x, t, u, pT ) . (11.5)

Proposition 11.3.2 Assume that the “standard assumptions in the co-dimension-1
case” are satisfied and assume that (11.5) holds. Let V : H × (0, Tf ) → R be the
unique solution of

ut +H0(x, t, u,DTu) = 0 on H× (0, Tf ) ,

with the initial data (u0)|H. For i = 1, 2, let Vi : Ωi × [0, Tf ] → R be the unique
solutions of the problems

ut +Hi(x, t, u,Du) = 0 on Ωi × (0, Tf ) ,

u(x, t) = V (x, t) on H× (0, Tf ) ,

u(x, 0) = (u0)|Ωi on Ωi .

Then the maximal (sub)solution of (11.1) is given by

U+
H0

(x, t) =

{
Vi(x, t) if x ∈ Ωi

V (x, t) if x ∈ H .

Before giving the short proof of Proposition 11.3.2, we examine a simple example
in dimension 1 showing the main features of this result. We take

BCL1(x, t) := {(α, 0, 0); ‖α| ≤ 1} ,

BCL2(x, t) := {(α, 0, 1); |α| ≤ 1} ,
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and BCL0(0, t) = {(0, 0, 2)}. In which case

H1(p) = |p| , H2(p) := |p| − 1 , Hreg
T = 0 , H0 = −2 .

Hence (11.5) holds. It is easy to check that, if u0(x) = 0 for all x ∈ R

V (t) = 2t , V1(x, t) = 0 , V2(x, t) = t for x ∈ R, t ≥ 0.

This example shows several things: first, the value-function U+
H0

is discontinuous al-
though we have controllability/coercivity for the Hamiltonians H1 and H2; it is worth
pointing out anyway that the global coercivity is lost since we use the Hamiltonian
min(H0, H1, H2) on H for the subsolutions instead of min(H1, H2).

Then, the values of V (t) may seem strange since we use the maximal cost 2 but as
we mention it above, this phenomena looks like the “worse stopping time” appearing
in exit time problems. Finally, and this is even more surprising, the form of U+

H0

shows that no information is transfered from Ω1 to Ω2: indeed, from the control point
of view, starting from x < 0 where the cost is 1, it would seem natural to cross the
border 0 to take advantage of the 0-cost in Ω1 but this is not the case, even if x < 0
is close to 0. We have here two state-constraint problems, both in Ω1 × [0, Tf ] and
Ω2× [0, Tf ]. This also means that the differential games features not only implies that
one is obliged to take the maximal cost at x = 0 but also may prevent the trajectory
to go from a less favourable region to a more favourable region.

Unfortunately we are unable to provide a general formula for U+
H0

, i.e. which would
be valid for all cases without (11.5). Of course, trying to define U+

H0
as in Proposi-

tion 11.3.2 but V being the solution of

ut + min
{
H0(x, t, u,DTu), Hreg

T (x, t, u,DTu)
}

= 0 on H× (0, Tf ) , (11.6)

does not work as the following example shows. In dimension 1, we take H1(p) =
H2(p) = |p|, H0 > 0 and u0(x) = −|x| in R. Since Hreg

T = 0, we have H0 > Hreg
T and

solving the above pde gives V = 0. Computing V1 and V2 as above gives −|x| − t in
both cases. Hence V1 and V2 are just the restriction to Ω1 × [0, Tf ] and Ω2 × [0, Tf ]
respectively of the solution of

ut + |ux| = 0 in R× (0, Tf ) ,

with the initial data u0. Now defining U+
H0

as in Proposition 11.3.2, we see that we
do not have a subsolution: indeed the discontinuity of U+

H0
at any point (0, t) implies

that (0, t) is a maximum point of U+
H0
− px for any p ∈ R and therefore we should

have the inequality
min(H0, |p|, |p|) ≤ 0 ,

which is not the case if |p| > 0.
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Remark 11.3.3 Even if we were are able to provide a general formula for U+
H0

, we
have some (again strange) information on this maximal subsolution: first U+

H0
≥ U+

in RN × (0, Tf ) since U+ is a subsolution of (11.1). A surprising result since it shows
that adding H0 on H× (0, Tf ) does not decrease the maximal subsolution as it could
be thought from the control interpretation. On the other hand, Lemma 11.3.1 provides
an upper estimate of U+

H0
on H× (0, Tf ), namely the solution of (11.6).

Proof of Proposition 11.3.2 — First, by our assumptions, V exists and is continuous,
since it is obtained by solving a standard Cauchy problem in RN−1 × [0, Tf ]. Next
by combining the argument of [23] (See also [31]) with the localization arguments
of Section 3.2, V1 and V2 exist and are continuous in Ω1 × [0, Tf ] and Ω2 × [0, Tf ]
respectively, with continuous extensions to Ω1 × [0, Tf ] and Ω2 × [0, Tf ].

Considering the Cauchy-Dirichlet problems in Ω1 and Ω2, we refer the reader to
Proposition 27.1.1-(i) where it is proved that the normal controllability implies

V1(x, t), V2(x, t) ≤ V (x, t) on H× (0, Tf ) .

Hence, defined in that way, U+
H0

is upper semicontinuous (it may be discontinuous as
we already saw above).

It is easy to check that U+ is a solution of (11.1). Indeed the subsolution properties
on Ω1×(0, Tf ),Ω2×(0, Tf ) are obvious. OnH×(0, Tf ) they come from the properties of
V since U+

H0
= V onH×(0, Tf ); hence the H0-inequality for V implies the subsolution

inequality for U+.

For the supersolution ones, they comes from the properties of V1, V2 and V and the
formulation of the Dirichlet problem since (U+

H0
)∗ = min(V1, V2, V ) = min(V1, V2) on

H× (0, Tf ). Indeed if φ is a smooth function in RN × (0, Tf ) and if (x̄, t̄) ∈ H× (0, Tf )
is a minimum point of (U+

H0
)∗ − φ, there are several cases:

(a) if (U+
H0

)∗(x̄, t̄) = V1(x̄, t̄) < V (x̄, t̄), then (x̄, t̄) is a minimum point of V1 − φ on

Ω1 × (0, Tf ) and, since V1 is a solution of the Dirichlet problem in Ω1 × (0, Tf ) with
the Dirichlet data V , we have

max
(
φt(x̄, t̄) +H1(x̄, t̄, V1(x̄, t̄), Dφ(x̄, t̄)), V1(x̄, t̄)− V (x̄, t̄)

)
≥ 0 .

Hence φt(x̄, t̄) +H1(x̄, t̄, V1(x̄, t̄), Dφ(x̄, t̄)) ≥ 0, which gives the answer we wish.

(b) The case when (U+
H0

)∗(x̄, t̄) = V2(x̄, t̄) < V (x̄, t̄) is treated in a similar way.

(c) Finally if (U+
H0

)∗(x̄, t̄) = V1(x̄, t̄) = V2(x̄, t̄) = V (x̄, t̄), we use that (x̄, t̄) is a
minimum point of V − φ on H× (0, Tf ) and therefore

φt(x̄, t̄) +H0(x̄, t̄, V (x̄, t̄), Dφ(x̄, t̄)) ≥ 0 ,
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implying the viscosity supersolution inequality we wanted.

It remains to prove that any subsolution u of (11.1) is below U+
H0

. This comes from
Lemma 11.3.1 which implies, using a standard comparison result on H× [0, Tf ] that
u(x, t) ≤ V (x, t) = U+

H0
(x, t) on H× [0, Tf ].

Q.E.D.



Chapter 12

Remarks on the Uniqueness
Proofs, Problems Without
Controllability

12.1 The main steps of the uniqueness proofs and

the role of the normal controllability

In this part, we have proved several comparison results showing, on one hand, that U−

is the minimal supersolution and the unique solution which satisfies the HT -inequality
and, on the other hand, that U+ is the maximal subsolution and the unique solution
which satisfies the Hreg

T -inequality.

All the proofs of these results are based on a common strategy which will also be
used for stratified problems in Part IV and which can be described in the following
“backwards” way

Step 3: The “Magical Lemma” According to Section 3.2 the comparison result
is reduced to proving that (LCR) holds. For the points located on H, this is a
direct consequence of Lemma 5.4.1 if the subsolution is continuous and C1 in the
tangential variables. This tangential regularity allows to use the subsolution as
a test-function for the “tangential inequalities” (typically the HT or Hreg

T one),
avoiding in particular the usual “doubling of variables” which causes the major
problem in the discontinuous setting.

Step 2: Regularization of the subsolution In order to use the “Magical Lemma”
to obtain the result for any subsolution, we have to be able to regularize any
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subsolution in order that it becomes continuous w.r.t. all the variables, C1 in
the tangent variables, and preserving the subsolution inequalities. This is the
role of Propositions 3.4.4 and 3.4.7.

Step 1: Regularity of the subsolution In order to perform the second step in a
suitable way, we need at least the subsolution to be regular on H. In particular
this is necessary in order that the second step actually provides a subsolution
which is continuous on H (but also on the hyperplanes which are parallel to H).

Going further in the analysis of these three steps, it is clear that the normal con-
trollability assumption (NC) plays a crucial role in Step 1 but even more in Step 2.
Looking at Proposition 3.4.2, recalling that (NC) implies (NCw), Case (a) imme-
diately gives us the complete information we need, even if we can obtain it through
Cases (b) and (c) in some situations, see the examples below.

But this is in Step 2 that (NC) plays the most important (an maybe unavoidable)
role: in order to perform the tangential regularization we have to control, one way or
the other, the normal component of the gradient. This is exactly the role of (NC).

This is why we consider (NC) as a key “natural” assumption in this type of prob-
lems and the fact that the same remarks can be made for stratified problems rein-
forces this certainty. Being unable to perform the regularization process, the “Magical
Lemma” cannot be used and all the proofs collapse.

We also point out that the approach via “Flux-Limited Solutions” described in
Part III provides an alternative strategy which seems to avoid some of the above
constraints, and in particular (NC). The comparison proof is based on an “almost
classical” doubling of variables but the reader can check that this proof actually uses
(NC) in several ways.

However, some problems without normal controllability can also be treated and we
give some examples in the next section.

12.2 Some problems without controllability

In this section, we are not going to examine sophisticated situations: if (NC) is not
satisfied onH and if we have a mixture of the different “simple” situations we describe
below on H, we are led to problems whose difficulties have to be examined separately.
A combination of the arguments which are presented in this book may allow to treat
such problems but, in a general framework, this will not be the case.

In the simple situations we are going to emphasize, we examine the situation sep-
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arately on both sides of the discontinuity and we respectively denote by u1 and u2

the solutions in Ω1 × (0, Tf ) and Ω2 × (0, Tf ). Therefore the value function U of the
control problem in RN × (0, Tf ) will be given by

U(x, t) =

{
u1(x, t) if x ∈ Ω1 ,

u2(x, t) if x ∈ Ω2

while onH×(0, Tf ), either U will be the common value of u1 and u2 or the l.s.c./u.s.c.
envelopes, computed by using values in Ω1 × (0, Tf ) and Ω2 × (0, Tf ).

The simple situations we have in mind are the following

I. For any x ∈ H, t ∈ [0, Tf ], α2 ∈ A2, b2(x, t, α2) · eN > 0. All the dynamics
used in Ω2 are strictly pointing outside Ω2 on H. Here, it is easy to show that
H2 plays the role of a nonlinear Neumann boundary condition on H for the
equation H1 = 0 in Ω1 × (0, Tf )

(1). Therefore, in order to obtain u1, we solve
this nonlinear Neumann problem in Ω1×(0, Tf ). We obtain a unique continuous
solution u1 (which is continuous up to the boundary). Then, in order to compute
u2, we solve the Dirichlet problem in Ω2× (0, Tf ) with u1 as Dirichlet boundary
condition on H×(0, Tf ). This also provides a continuous solution in Ω2×(0, Tf )
and that way, we have defined a continuous function in RN which is the solution
of Problem 7.1 and the value function of the associated control problem.

II. By symmetry the situation is the same if, for any x ∈ H, t ∈ [0, Tf ], α1 ∈ A1,
b1(x, t, α1) · eN < 0.

III. For any x ∈ H, t ∈ [0, Tf ], α2 ∈ A2, b2(x, t, α2) ·eN ≤ 0. Then all the trajectories
of the dynamic starting in Ω2 × (0, Tf ) stay in Ω2 × (0, Tf ). In terms of PDE,
the consequence is that all the viscosity inequalities for sub and supersolutions
hold up to the boundary of Ω2×(0, Tf ), as soon as these sub and supersolutions
are extended up the boundary by upper or lower-semicontinuity. Hence the
associated HJB problem is H2 = 0 on Ω2 × (0, Tf ). As in the whole space
RN , this problem enjoys a comparison result and therefore it provides a unique
solution u2 ∈ C(Ω2 × (0, Tf )). This solution is the value function in Ω2 × Tf ,
extended to Ω2×(0, Tf ) by continuity(2). Therefore the problem in Ω2 completely
ignores the problem in Ω1, and we face 3 different cases for the problem in Ω1

III.1 For any x ∈ H, t ∈ [0, Tf ], α1 ∈ A1, b1(x, t, α1) · eN < 0, a case which is
already treated in II above. But here we are in the case of a simple Dirichlet

(1)We give a proof at the end of this section for the reader’s convenience
(2)Therefore u2 is equal to the RN -value function in Ω2 × Tf but maybe not on H× (0, Tf ).



212 Barles & Chasseigne

problem in Ω1×Tf , the Dirichlet boundary condition on H×Tf being the
value function of the problem in Ω2. Hence there is a unique continuous
solution for Problem 7.1 which is the value function of the control problem
in RN .

III.2 For any x ∈ H, t ∈ [0, Tf ], there exist α1
1, α

2
1 ∈ A1 such that b1(x, t, α1

1) ·
eN > 0 and b1(x, t, α2

1) · eN < 0, i.e. the normal controllability condition
holds. In this case, we also have a Dirichlet problem in Ω1 × Tf with the
Dirichlet boundary condition on H being the value function of the problem
in Ω2 × Tf . However, while in III.1 the boundary data is assumed in a
classical sense and leads to a continuous solution in RN , here it is only
assumed in the viscosity sense. The value function in Ω1 × Tf being not
equal, in general, to the one in Ω2 × Tf in all H × Tf , the value function
of the problem in RN may have discontinuities on H× Tf .

III.3 For any x ∈ H, t ∈ [0, Tf ], α1 ∈ A1, b1(x, t, α1)·eN ≥ 0: here the problem in
Ω1×Tf and Ω2×Tf are completely independent. There exists both a unique
value function in Ω1 × Tf and Ω2 × Tf but their continuous extensions to
H × Tf are different in general, and the value function in RN may have
discontinuities on H × Tf . Anyway the Ishii conditions are satisfied on
H× Tf since both equations hold up to the boundary.

We conclude this section by proving that, as announced in Case I above, dynamics
pointing outward generate a nonlinear Neumann boundary condition.

Proposition 12.2.1 Assume that the “standard assumptions in the co-dimension-
1 case” are satisfied and that, for any x ∈ H, t ∈ [0, Tf ], α2 ∈ A2, b2(x, t, α2) ·
eN > 0. Then any locally bounded u.s.c. subsolution [ resp. l.s.c. supersolution v ] of
Problem 7.1 is a subsolution [ resp. supersolution ] of the nonlinear Neumann problem{

ut +H1(x, t, u,Dxu) = 0 in Ω1 × (0, Tf )
ut +H2(x, t, u,Dxu) = 0 on H× (0, Tf ) .

(12.1)

We recall that Neumann boundary conditions for first-order HJ Equations were
first studied by Lions [135] and then different comparison results for first and second-
order equations were obtained by Ishii [121] and Barles[32]. We refer the reader to the
“User’s guide to viscosity solutions” of Crandall, Ishii and Lions [67] for a complete
introduction of boundary conditions in the viscosity sense and to all these references
for checking that the nonlinearity pt +H2(x, t, r, px) = 0 satisfies all the requirement
for a nonlinear Neumann boundary condition.



HJ-Equations with Discontinuities: Codimension-1 Discontinuities 213

Proof — Of course, we just have to check the boundary condition and we provide
the proof only in the subsolution case, the supersolution one being analogous. Let
φ ∈ C1(RN × (0, Tf )) and let (x̄, t̄) ∈ H × (0, Tf ) be a strict local maximum point of
u− φ. For 0 < ε� 1, we consider the penalized function

(x, t) 7→ u(x, t)− φ(x, t)− [x−N ]2

ε

An easy application of Lemma 6.4.1 in a compact neighborhood of (x̄, t̄) shows the
existence of a sequence (xε, tε) of maximum points for these functions such that
(xε, tε)→ (x̄, t̄) and u(xε, tε)→ u(x̄, t̄). If (xε, tε) ∈ Ω1 × Tf , we have

either φt(xε, tε) +H1(xε, tε, u(xε, tε), Dxφ(xε, tε)) ≤ 0

or φt(xε, tε) +H2(xε, tε, u(xε, tε), Dxφ(xε, tε)) ≤ 0 ,

the derivative of the term
[x−N ]2

ε
being 0. Hence the only difficulty is when (xε, tε) ∈

Ω2 × Tf and

φt

(
xε, tε) +H2(xε, tε, u(xε, tε), Dxφ(xε, tε)−

2x−N
ε
eN

)
≤ 0 .

But examining H2 and using the fact that, for any x ∈ H, t ∈ [0, Tf ], α2 ∈ A2,
b2(x, t, α2) · eN > 0, we see that λ 7→ H2(x, t, r, px + λeN) is decreasing for all x ∈ H,
t ∈ [0, Tf ], r ∈ R and px ∈ RN . Therefore

H2(xε, tε, u(xε, tε), Dxφ(xε, tε)−
2x−N
ε
eN) ≥ H2(xε, tε, u(xε, tε), Dxφ(xε, tε))

and we also get in this case

φt(xε, tε) +H2(xε, tε, u(xε, tε), Dxφ(xε, tε)) ≤ 0 .

In any case

min
(
φt(xε, tε) +H1(xε, tε, u(xε, tε), Dxφ(xε, tε)),

φt(xε, tε) +H2(xε, tε, u(xε, tε), Dxφ(xε, tε))
)
≤ 0 ,

and letting ε→ 0, we obtain the desired inequality

min
(
φt(x̄, t̄) +H1(x̄, t̄, u(x̄, t̄), Dxφ(x̄, t̄)) , φt(x̄, t̄) +H2(x̄, t̄, u(x̄, t̄), Dxφ(x̄, t̄)

)
≤ 0 .

Q.E.D.
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Chapter 13

Further Discussions and Open
Problems

13.1 The Ishii subsolution inequality: natural or

unnatural from the control point of view?

As it is well-known, the Ishii supersolution inequality is very natural from the control
point of view, and even in a very general framework. The reader can be convinced
by this claim by looking at Chapter 4, and in particular at Theorem 4.3.4 and Corol-
lary 4.4.3: involving the natural F-Hamiltonian, the proof that the value function is
a supersolution—and even the minimal supersolution—is rather easy and reflects as
expected the property of the control problem, since it is related to the existence of
an optimal trajectory.

On the contrary, the proof of the subsolution inequality—which has to handle F∗—
is far more involved, cf. Theorem 4.3.5, and no analogue of Corollary 4.4.3 exists.
This rises the question: is this Ishii subsolution inequality so natural from the control
point of view?

Why the Ishii inequality should not hold — We can provide the beginning
of an answer in a rather simple way in the two-domains case. We recall that the role
of the subsolution inequality is to reflect the fact that each control (or trajectory) is
suboptimal.

If U = U− or U+, if (x, t) ∈ H× (0, Tf ) and if α1 is a control such that b1(x, t, α1) ·
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eN > 0, we solve the ode

Ẋ(s) = b1(X(s), t− s, α1) , X(0) = x ,

and we remark that, for s > 0 small enough, X(s) ∈ Ω1. Therefore the trajectory
X(·) is admissible and an easy application of the Dynamic Programming Principle
(where we assume that we already know that U is continuous for simplicity) implies,
for h > 0 small enough

U(x, t) ≤
∫ h

0

l
(
X(s), t− s, α1

)
e−D(s) ds+ U(X(h), t− h) e−D(h) .

We easily deduce that, for such α1

−b1(x, t, α1) ·DU(x, t) + c1(x, t, α1)U(x, t)− l1(x, t, α1) ≤ 0 (13.1)

and this inequality can easily be extended to all α1 such that b1(x, t, α1) · eN ≥ 0.

On the contrary, if b1(x, t, α1) · eN < 0, X(s) ∈ Ω2 for s > 0 small enough and X(·)
is not an admissible trajectory anymore since the dynamic is b2 in Ω2 × (0, Tf ); so
there is no reason why (13.1) should hold.

This implies a fortiori that there is no reason why Ut + H1(x, t, U(x, t), DU(x, t))
should be nonpositive and, since we can argue exactly in the same way with control
α2 associated to the control problem in Ω2× (0, Tf ), there is also no reason why Ut +
H2(x, t, U(x, t), DU(x, t)) should be nonpositive either. Hence, the Ishii subsolution
inequality, namely

min(Ut +H1(x, t, U,DU), Ut +H2(x, t, U,DU)) ≤ 0 on H× (0, Tf ) (13.2)

is not natural at all from the control point of view.

Why the Ishii inequality actually holds — The proof of Proposition 9.1.3
gives a first way to answer this puzzle in the case of U+ (the argument would be
exactly the same in the case of U−).

On one hand, the HT -inequality is natural since it shows that all the admissible
trajectories which stay on H are suboptimal. On the other hand, if U+

t +H1 ≤ 0, the
Ishii inequality holds while if U+

t +H1 > 0, the inequality U+
t +HT ≤ 0 implies that

necessarily U+
t +H2 ≤ 0, since the dynamics such that the X-trajectories stay on H

are convex combinations of the b1 and b2-ones. In any case we obtain (13.2) for U+.

Hence, the Ishii subsolution inequality holds on H× (0, Tf ) as a consequence of the
natural HT -inequality. And one may wonder whether it is not more natural to define
subsolution by just imposing the HT -inequality on H× (0, Tf ), dropping (13.2).
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This is exactly what the notion of Flux-Limited Solutions is doing, cf. Chapter 15.
Indeed, as a by-product of the argument which leads to (13.1), we have natural H+

1

and H−2 inequalities, at least for the value-functions U−,U+.

Moreover it is clear that this last remark remains valid in far more general cases: we
have natural subsolution inequalities for the controls for which the dynamics “move
away from the discontinuities”.

General subsolutions, General discontinuities: the stratified case —
Maybe looking only at value-functions is misleading since we know that Theorem 4.3.5
holds and maybe also that the two-domains case is a very particular situation regard-
ing the Ishii subsolution inequality on the discontinuity.

This suggests a more general question: for unnatural reasons, the F∗ ≤ 0 inequality
holds on discontinuities for value functions; does this “little miracle” hold both for
general subsolutions and for more complicated discontinuities?

Surprisingly the answer is yes in the stratified framework under suitable assump-
tions: in Section 20.5, it is a consequence of a (LCR) in the case of regular subsolu-
tions and this points out that such inequality always holds for any regular subsolution
provided a comparison result holds. Hence the F∗ ≤ 0-inequality on discontinuities
appears more as a consequence than as a required inequality in the definition.

This is confirmed by the fundamental Lemma 5.4.1 which is the keystone to prove
comparison results: this lemma is based on (i) a “tangential inequality” on the dis-
continuity (for example the HT -inequality on H × (0, Tf )) and (ii) a subdynamic
programming principle for the subsolution outside the discontinuity (in Ω1 × (0, Tf )
and in Ω2×(0, Tf ) here). None of these ingredients uses the Ishii subsolution inequality
on H× (0, Tf ).

As a conclusion of this section, we can remark that, thanks to the above arguments,
imposing or not the Ishii subsolution inequality on the discontinuities is not a real
issue: one way or the other, it will hold at least in frameworks where a suitable
comparison result holds.

But as the reader can notice everywhere in this book, even if it is not the only way
to obtain it, the Ishii subsolution inequality on H× (0, Tf ) provides the regularity of
subsolutions, a fundamental ingredient. This is why we make the choice to maintain
it most of the time.
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13.2 The infinite horizon / stationary equation case

The aim of this section is to briefly describe the analogous results in the infinite
horizon case where the HJ-equation is stationary: we will only skim over this problem
since all the results are not only straightforward translations and adaptations of
the finite horizon/evolution equations case but the proofs are even simpler from a
technical point-of-view. We recall that this case was studied in details in the works
of Briani and the authors of this book (cf. [16, 17]) and actually almost all the ideas
and results of this part appear for the first time in these two articles.

From the control point-of-view, we are given for x ∈ Ωi and for i = 1, 2

BCLi(x) := {(bi(x, α), ci(x, α), li(x, α)) : α ∈ A} ,

where, as above, the control set A is a compact metric space and the (bi, ci, li) are
defined on RN ×Ai and satisfy (HBA−CP). We assume, in addition, that there exists
λ > 0 such that, for i = 1, 2,

ci(x, α) ≥ λ in RN × A .

As in the finite horizon case, we define BCL(x) as BCLi(x) if x ∈ Ωi and as the
closed convex envelope of BCL1(x) ∪BCL2(x) if x ∈ H.

Using this BCL, we can solve the differential inclusion equation for (X,D,L)

(Ẋ(s), Ḋ(s), L̇(s)) ∈ BCL(X(s)) ,

with (X(0), D(0), L(0)) = (x, 0, 0). We can also define “regular” and “singular” dy-
namics onH, T (x), T reg(x) and the tangential Hamiltonians HT , H

reg
T . The associated

value functions are

U−(x) := inf
T (x)

{∫ +∞

0

l(X(s), a(s)) exp(−D(s)) ds

}
,

U+(x) := inf
T reg(x)

{∫ +∞

0

l(X(s), a(s)) exp(−D(s)) ds

}
,

where l(X(s), a(s)) is defined as in Theorem 4.2.1.

From the pde point-of-view, the related problem is{
H1(x, u,Du) = 0 in Ω1 ,

H2(x, u,Du) = 0 in Ω2 ,
(13.3)
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with the standard Ishii inequalities on H where, for i = 1, 2,

Hi(x, r, p) := sup
α∈A
{−bi(x, α) · p+ ci(x, α)r − li(x, α)} .

The result is the following

Theorem 13.2.1 Under the above assumptions
(i) the value functions U−,U+ are well-defined and bounded. They are viscosity so-
lutions of (13.3).
(ii) The value function U− satisfies

HT (x, u,Du) ≤ 0 on H , (13.4)

while the value function U+ satisfies

Hreg
T (x, u,Du) ≤ 0 on H , (13.5)

(iii) The value function U− is the minimal viscosity supersolution (and solution) of
(13.3), while U+ is the maximal viscosity subsolution (and solution) of (13.3).
(iv) The value function U− is the unique viscosity solution of (13.3) which satisfies
(13.4).

We leave the proof of this theorem to the reader since, as we already wrote it above,
it is a routine adaptation of the ideas described in this part.

13.3 Towards more general discontinuities: a bunch

of open problems.

13.3.1 A summary of this part and related questions

A very basic and minimal summary of Part II—including the previous section—can
be expressed as follows: for Problem (7.1), we are able to provide an explicit control
formula for the minimal supersolution (and solution) U−, and also an explicit control
formula for the maximal (and solution) U+.

The next natural questions are: is it possible to extend such results to more general
type of discontinuities? It can also be thought that some of them are very particular
cases which only appear because of the codimension 1 discontinuity and that simpler
results may exist for higher codimensions because of some kind of “eliminability
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property” (?). This idea can only be reinforced by the fact that, as we will see it
in Part III, U+ is the limit of the vanishing viscosity method.

Before coming back to this question of U+ or more precisely to the identification of
the maximal subsolution, we consider the case of U−, which may be perhaps consid-
ered as being the more natural solution from the control point of view. Here the answer
to the above question is yes and this is not so surprising since, by Corollary 4.4.3, we
know in a very general framework that U− is the minimal viscosity supersolution of
the Bellman Equations, therefore we already have a lot of informations on U−.

In the Part IV, we provide a rather complete study of stratified solutions in RN

and then, in Part V in general domains, which are the natural generalization of U−

in the case when the codimension-1 discontinuity is replaced by discontinuities on
Whitney stratifications. As in Section 8, we characterize the stratified solution U−

as the unique solution of a suitable problem with suitable viscosity inequalities. The
methods which are used to study Ishii solutions, relying partly on control arguments
and partly on pde ones, can be extended to this more general setting and we will
emphasize the (even more important) roles of the subsolution inequalities, normal
controlability, tangential continuity...etc.

But the case of the maximal subsolution (and solution) U+ is more tricky and
several questions can be asked, in particular

(i) Can one provide an explicit control formula for U+?

(ii) Is it still true that the vanishing viscosity method converges to U+?

Before describing the difficulties which appear even for rather simple configurations,
we give a simple example which shows that we can definitively forget any hope on
“eliminability property”

13.3.2 Non-uniqueness in the case of codimension N discon-
tinuities

We consider the stationary equation

|Du− x

|x|
|+ u = |x| in RN , (13.6)

for which we have only a discontinuity at x = 0. The Ishii inequalities at 0 read

min
|e|=1
|Du− e|+ u(0) ≤ 0 ,
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max
|e|=1
|Du− e|+ u(0) ≥ 0 .

A first clear solution is u1(x) = |x| which is a smooth solution outside 0 and, at
0, the superdifferential of u1 is empty while the subdifferential is B(0, 1) and the
supersolution inequality obviously holds.

Now we look for an other solution of the form u2(x) = ϕ(|x|) for a smooth function
ϕ : [0,+∞)→ R. Outside 0, u2 is smooth and leads to the equation

|ϕ′(s)− 1|+ ϕ(s) = s .

And ψ(s) = ϕ(s)− s satisfies |ψ′(s)|+ψ(s) = 0. If we assume that ψ(0) = λ is given,
we have by uniqueness for this 1 − d HJ-Equation (assuming that ψ is bounded),
ψ(s) = λe−s and this implies that λ ≤ 0. This means that we have a family (uλ2)λ≤0

of candidates for being solutions of (13.6), where the uλ2 are given by

uλ2(x) = |x|+ λe−|x| .

First it is clear that uλ2 is a smooth solution outside 0. At 0, since λ ≤ 0, the superdif-
ferential of uλ2 is empty while its subdifferential is B(0, 1− λ). In particular p = 0 is
in the subdifferential of uλ2 and

max
|e|=1
|0− e|+ λ ≥ 0 .

This means that λ ≥ −1 and all λ ∈ [−1, 0] gives a solution.

Hence we do not have uniqueness despite of this very high codimension of the
singularity. Examining a little bit more carefully the above argument, it is easy to
show that u1 is the maximal subsolution (and solution) while u−1

2 is the minimal
supersolution (and solution) of (13.6) in the space of functions with sublinear growth:
indeed, it suffices as above to consider that a solution of (13.6) is a solution of the
Dirichlet problem

|Du− x

|x|
|+ u = |x| in RN \ {0} , u(0) = λ ,

for which we have a comparison result. Then we notice that, by the equation, λ ≤ 0
and the solution of this Dirirchlet problem is necessarely given by uλ2 for some λ ∈
[−1, 0].

Last but not least, we look at the associated control problem. Outside 0, we have

b(x, α) = α ∈ B(0, 1) , c(x, α) = 1 , l(x, α) = |x| − α · x
|x|

,
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and BCL(0) is obtained by computing the convex enveloppe. It is worth pointing out
that the cost |x| in l(x, α) suggests that the best strategy consists in going to 0 but a

direct path from x to 0 would use the control α = − x

|x|
with a cost |x|+ 1 in l(x, α)

because of −α · x
|x|

-term.

This large cost of controls pointing toward 0 is translated in terms of “regular” and
“singular” strategies to stay at 0: a “regular” strategy can be thought as a convex
combination of controls pointing toward 0, i.e. with −α· x|x| ≥ 0. Therefore the minimal
cost for a “regular” strategy is 0. But if we accept all convex combination, we may use
controls with −α · x|x| < 0 and even −α · x|x| = −1 coming from two opposite directions
x and −x at 0.

This explains the extremal value λ = 0 and λ = −1 and u1 is nothing but a U+

while u−1
2 is nothing but U−.

Last remark: in this case, the convergence of the vanishing viscosity method is easy
to establish since u1 is convex and therefore a subsolution for the vanishing viscosity
equation. Hence the two half-relaxed limits for the vanishing viscosity approximation
are larger that u1 but they are also between the maximal subsolution and the minimal
supersolution of (13.6), i.e. u1 and u−1

2 . Therefore they are both equal to u1.

13.3.3 Puzzling examples

In general, we are unable to give a control formula for the maximal subsolution of
an HJB-Equation with discontinuities of codimensions > 1, and even in very simple
examples. The problem is both to determine what is a “regular” strategy but also to
concretely prove that the associated value function is indeed the maximal subsolution.

In order to be more specific and to fix ideas, we consider two interesting examples:
the first one is the case when we still have two domains but the interface is not
smooth, typically Figure 13.1 below.

Figure 13.1: Two domains with a non-smooth interface

A second very puzzling example is the “cross-case” where R2 is decomposed into
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its four main quadrants, see Figure 13.2 below. And of course, one may also have in
mind “triple-junction configurations” in between these two cases.

Figure 13.2: The cross-case

The importance of the above questions is due to the numerous applications and we
can mention for example front propagations phenomenas or Large Deviations type
results: in both case, one has to identify the limit of the vanishing viscosity method
and an “action functional” which exactly means to answer the above questions if the
diffusions and/or drift involved in these problems are discontinuous.

We refer for example to Souganidis [158] and references therein for the viscosity
solutions’ approach of front propagations in reactions diffusion equations (like KPP
(Kolmogorov-Petrovskii-Piskunov) type equations) and to Bouin [49] and references
therein for front propagation in kinetic equations. For the viscosity solutions’ approach
of Large Deviations problems, we refer to [24] (see also [31]).

Now we turn to the questions (i) and (ii) of Section 13.3.1 which are largely open
even in the two simple cases described above. We first remark that most of the results
of this part, in particular those obtained by pde methods, use in a crucial way the
codimension-1 feature of the problem, via the normal direction which determines
which are the inward and outward dynamics to the Ωi’s but also the H±i , and therefore
the key Hreg

T Hamiltonian.

Concerning Question (i), in terms of control, the additional difficulty is to identify
the “regular strategies” which allow to stay at the new discontinuity point (0 in the
cross-case) and then to show that using only these “regular strategies”, U+ is an Ishii
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solution of the problem. For Question (ii), the proofs which are given above use either
U+ (and therefore require an answer to Question (i)) or the codimension-1 feature of
the problem via the Kirchhoff condition.

For all these reasons, even in the very simple configurations we propose above, we
DO NOT know the right answer... but we hope that some readers will be able to find
it!

In order to show the difficulty, we provide a “simple” result in the cross-case in R2,
which DOES NOT give the result we wish but which uses the natural ingredients
which should be useful to get it.

We are going to consider the problem

ut +Hi(Du) = 0 in Ωi × (0, Tf ) , for i = 1, 2, 3, 4,

where the Hamiltonian Hi are given by

Hi(p) = sup
αi∈Ai
{−bi(αi) · p− li(αi)} .

where Ai are compact metric spaces. We are in a very simplified framework since we
do not intend to provide general results, so we also assume that the Hamiltonians Hi

are coercive, and even that there exists δ > 0 such that

B(0, δ) ⊂ {bi(αi); αi ∈ Ai} for any i = 1, 2, 3, 4 .

This is natural as a normal controllability assumption.

Of course, these equations in each Ωi have to be complemented by the Ishii condi-
tions on the two axes: except for x = 0, we are in the framework described in this
part since we face a co-dimension 1 discontinuity. Therefore we concentrate on the
case x = 0 where, in order to identify U+, we have to identify the “Hreg

T ”, i.e. the
“regular strategies” which allow to remain at x = 0.

In order to do so, we introduce the set A of controls (α1, α2, α3, α4) such that, on
one hand, bi(αi) ∈ Di for i = 1, 2, 3, 4 where

Di = {bi(αi); bi(αi) · x ≤ 0 for all x ∈ Ωi} ,

and, on the other hand, there exists a convex combination of the bi(αi) such that∑4
i=0 µibi(αi) = 0. Such a convex combination may not be unique and we denote by

∆ the set of all such convex combinations.

Finally we set

Hreg−cross
T := sup

A

{
inf
∆

(
−

4∑
i=0

µili(αi)
)}

.



HJ-Equations with Discontinuities: Codimension-1 Discontinuities 225

Notice that here, since we consider a zero-dimensional set, the Hamiltonian Hreg−cross
T

reduces to a real number. We have the

Lemma 13.3.1 If u : R2 × (0, Tf )→ R is an Ishii subsolution of the above problem
then

ut +Hreg−cross
T ≤ 0 on {0} × (0, Tf ) .

Proof — Let φ be a C1 function on (0, Tf ) and t̄ be a strict local maximum point of
u(0, t)− φ(t). We have to show that φt(t̄) +Hreg−cross

T ≤ 0.

To do so, we consider (αi)i ∈ A and, for δ > 0 small, we consider the affine functions

ψi(p) = φt(t̄)− bi(αi) · p− li(αi)− δ .

Applying Farkas’ Lemma, there are two possibilities; the first one is: there exists
p̄ such that ψi(p̄) ≥ 0 for all i. In that case, we consider the function (x, t) 7→
u(x, t)− ψ(t)− p̄ · x− |x|

2

ε
for 0 < ε� 1.

Since t̄ is a strict local maximum point of u(0, t) − φ(t), this function has a local
maximum point at (xε, tε) and (xε, tε) → (0, t̄) as ε → 0. Wherever the point xε is,
we have an inequality of the type

φt(tε) +Hi(p̄+
2x

ε
) ≤ 0 .

But if such Hi inequality holds, this means that we are on Ωi and in particular

φt(tε)− bi(αi) · (p̄+
2x

ε
)− li(αi) ≤ 0 .

Recalling that bi(αi) ∈ Di, this implies

φt(tε)− bi(αi) · p̄− li(αi) ≤ 0 .

For ε small enough, this inequality is a contradiction with ψi(p̄) ≥ 0 and therefore
this first case cannot hold.

Therefore, we are always in the second case: there exists a convex combination of

the ψi, namely
4∑
i=0

µiψi which gives a negative number. In that case, it is clear that

we have
4∑
i=0

µibi(αi) = 0 and φt(t̄)−
4∑
i=0

µili(αi)− δ ≤ 0 .
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This implies that

φt(t̄) + inf
∆

(
−

4∑
i=0

µili(αi)
)
− δ ≤ 0 ,

and since this is true for any (αi)i ∈ A and for any δ > 0, we have the result.
Q.E.D.

The interest of this proof is to show the two kinds of arguments which seem useful
to obtain an inequality for the subsolutions at 0: (i) to find the suitable set ∆ of
“regular strategies” which allow to stay fixed at 0; (ii) to have suitable properties on
the bi’s which allow to deal with the 2x/ε-term in the Hamiltonians, in other words
we have to define suitable “outgoing strategies”.

Again this result is not satisfactory and we do not think that it leads to the desired
result in the cross case.



Part III

Hamilton-Jacobi Equations with
Codimension One Discontinuities:

the “Network” Point-of view
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Chapter 14

Introduction

Contrarily to Part II where the question of a co-dimension 1 discontinuity in Hamilton-
Jacobi Equations is mainly addressed in the case of convex Hamiltonians by using
control arguments, the aim of this part is to describe several complementary pde
points-of-view which allow to obtain more general results, and most of them for non-
convex equations. However we often choose to present them in the framework of
Part II for justifying the assumptions we use and showing the interest of the results.

14.1 The “network approach”: a different point-

of-view

In order to present these other pde approaches, let us focus first on a simple 1 dimen-
sional configuration, the terminology “network point-of view” originating from this
situation. Considering an Hamilton-Jacobi Equation with a discontinuity at x = 0,
we have in mind the picture in Fig. 14.1 below

-•
x

H2 = 0 H1 = 0

Figure 14.1: The Ishii point of view

Here, Ishii’s definition of viscosity solutions in R is quite natural and involves
min(H1, H2) and max(H1, H2) at x = 0.
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But, since the equations are different in the sets {x > 0} and {x < 0}, we can see
as well the picture as two segments joining at x = 0:

� •�
�
�
�
�
�
��

x2

x1

H2 = 0
H1 = 0

Figure 14.2: The network point of view

Now, J1 = {x > 0} and J2 = {x < 0} become two different branches of a (simple)
network and it becomes natural to introduce adapted coordinates on J1, J2, which are
nothing but x1 = x on J1 and x2 = −x on J2.

14.1.1 A larger space of test-functions

The first main consequence of this different point of view is that the “natural” test-
functions are not the same as in the Ishii approach since they can be chosen differently
in J1 and J2, with just a continuity assumption at x = 0.

In our original framework in RN with Ω1,Ω2,H introduced in Section 3.1 where an
analogous remark holds, just replacing J1 by Ω1, J2 by Ω2 and 0 by H, this suggests
the space of “natural” test-functions as

Definition 14.1.1 We denote by PC1(RN×[0, Tf ]) the space of piecewise C1-functions
ψ ∈ C(RN × [0, Tf ]) such that there exist ψ1 ∈ C1(Ω̄1× [0, Tf ]), ψ2 ∈ C1(Ω̄2× [0, Tf ])
such that ψ = ψ1 in Ω̄1 × [0, Tf ] and ψ = ψ2 in Ω̄2 × [0, Tf ].

An important point in this definition is that ψ = ψ1 = ψ2 on H × [0, Tf ] and
DHψ = DHψ1 = DHψ2 on H × [0, Tf ], ψt = (ψ1)t = (ψ2)t on H × [0, Tf ]. We recall
here that DH is the tangential derivative.

This change of test-functions is a first step but it remains of course to examine the
kind of “junction condition” we can impose on H× [0, Tf ], since, contrarily to what
happens for the Ishii definition, no obvious choice seems to stand out.

The first attempt could be to try the standard Ishii inequalities with this larger
set of test-functions with the convention (since the test-functions are not necessarely
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smooth on H × [0, Tf ]) to use the derivatives of ψ1 in the H1-inequalities and those
of ψ2 in the H2-inequalities. On the simplest example where the equations are{

ut +H1(x, t, u,Du) = 0 in Ω1 × (0, Tf ) ,

ut +H2(x, t, u,Du) = 0 in Ω2 × (0, Tf ) ,
(HJ-gen)

and without additional Hamiltonian on H, these conditions are{
min(ut +H1(x, t, u,Du), ut +H2(x, t, u,Du)) ≤ 0 on H× (0, Tf ) ,

max(ut +H1(x, t, u,Du), ut +H2(x, t, u,Du)) ≥ 0 on H× (0, Tf ) .

But it is easy to check that, with test-functions in PC1(RN × [0, Tf ]), there is no
subsolutions if H1, H2 are both coercive. The argument is the following: if u − ϕ
has a maximum at some point (0, t) ∈ H × (0, Tf ), then u − (ϕ + C|xN |) also has
a maximum at the same point and since ϕC(x, t) := ϕ(x, t) + C|xN | belongs to
PC1(RN×[0, Tf ]) we can use it to test the inequalities. But, since the Hamiltonians are
coercive, taking C > 0 large enough yields an impossibility since both |D(ϕC)1(x, t)|
and |D(ϕC)2(x, t)| can be taken as large as we wish.

14.1.2 Different types of junction conditions

As a consequence of the simple remark above, it is clear that the question of the right
junction condition to be imposed on H becomes crucial. And it obviously depends on
the type of applications we have in mind.

(a) Flux-limited condition — From Chapter 7, it seems obvious that in the framework
of control problems, a natural contidition on x = 0 is the following

ut +G(x, t, u,DHu) = 0 on H× (0, Tf ) . (FL)

Indeed, for applications to optimal control, one may have in mind a specific control
on H, i.e. a specific dynamic, discount and cost as in Chapter 11. In the network
litterature (cf. Imbert and Monneau [113, 114, 116]), the associated terminology is
“flux-limited condition” (See Section 18.2 for a partial justification of this terminol-
ogy). Concrete modellings and applications lead to a variety of different flux-limited
conditions at the boundary, including more general ones

G(x, t, u, ut, DHu) = 0 on H× (0, Tf ) , (GFL)
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where G satisfies: there exists γ > 0 such that, for any x ∈ H, t ∈ [0, Tf ], r ∈ R,
p′ ∈ H and a2 ≥ a1, one has

G(x, t, r, a2, p
′)−G(x, t, r2, a1, p

′) ≥ γ(a2 − a1) . (14.1)

In fact, if (14.1) holds, it is a simple exercise to show that there exists G̃ such that
G(x, t, r, a, p′) and a + G̃(x, t, r, p′) have the same signs. In other words, a general
flux-limited condition (GFL) is equivalent to a simple flux-limited condition (FL)
(both for the sub and supersolution condition), and pushing the exercise a little bit
further, the reader will notice that the assumptions on G can be transfered without
any difficulty to G̃.

For this reason, in the sequel we focus on the study of Conditions (FL) but either
by doing the above exercise or repeating readily the arguments, it will be clear that
all the definitions and results extend without any difficulty to (GFL).

(b) Kirchhoff type conditions — This second type of condition involves the normal
derivatives of the solution on H. The simplest one, used in various applications and
in particular for networks, is the Kirchhoff condition

∂u

∂n1

+
∂u

∂n2

= 0 on H× (0, Tf ) , (KC)

where, for i = 1, 2, ni(x) denotes the unit normal to ∂Ωi pointing outward Ωi at
x ∈ ∂Ωi.

(c) General junction conditions — More generally, a junction type condition may
have the form

G
(
x, t, u, ut, DHu,

∂u

∂n1

,
∂u

∂n2

)
= 0 on H× (0, Tf ) , (GJC)

where G(x, t, r, a, p′, b, c) has at least to satisfy the following monotonicty assumption:
there exists α, β ≥ 0 such that, for any x ∈ H, t ∈ (0, Tf ), r1 ≥ r2, p′ ∈ H, a1 ≥ a2,
b1 ≥ b2, c1 ≥ c2,

G(x, t, r1, a1, p
′, b1, c1)−G(x, t, r2, a2, p

′, b2, c2)

≥ α(a1 − a2) + β(b1 − b2) + β(c1 − c2) .
(14.2)

In the sequel, we will often drop the dependence in r in junction condition (GJC),
just to simplify a little bit the technicalities. But taking into account such dependence
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with a suitable monotonicity assumption does not cause major problems. Precise
assumptions are given in next section.

Roughly speaking, each of these conditions is treated in the literature by using a
different notion of solution. In the case of (FL)-conditions, and in particular if one has
in mind applications to control problems, the natural notion of solutions is the “Flux-
Limited solutions”, which is introduced and extensively studied in [113, 114, 116].
However, this kind of solution is not well-adapted for dealing with Kirchhoff type
conditions, where a notion of “Junction viscosity solution” is needed.

This second notion of solution, rather similar to classical viscosity solutions is called
“relaxed solutions” in [113] and extensively used in the works of Lions and Souganidis
[137, 138].

14.2 The “good assumptions” used in Part III

In this part, most of the results we present are obtained using PDE methods. For this
reason, the control interpretation, and therefore the convexity of the Hamiltonians,
is not playing a key role. Depending on the chapter or the section, we are going to
consider either convex, quasi-convex or merely continuous Hamiltonians. This is why
depending on the context we have to translate in this section the “good framework
for HJ-Equations with discontinuities” in the particular case of a co-dimension 1
discontinuity already discussed in Section 5.5.3.

We refer first the reader to Section 2.3 where Basic Assumptions (HBA−CP) and
(HBA−HJ) are defined. Then, in order to satisfy (Mon), we denote by

(HBA−HJ)+ : assumption (HBA−HJ) in which we assume γ(R) ≥ 0 for any R.

(HBA−CP)+ : assumption (HBA−CP) in which we assume c(x, t, α) ≥ 0 for any x, t, α.

These reductions are only done in order to simplify matters, in any case a change
u→ u exp(Kt) for a suitable constant K allows to reduce to the above assumptions.
We also point out that, thanks to Chapter 3.2, (HBA−HJ)+ and (HBA−CP)+ imply
(LOC1), (LOC2) because of the Lipschitz continuity in p of the Hamiltonians.
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14.2.1 Good assumptions on H1, H2

We need here to translate the normal controllability and tangential continuity as-
sumptions to the case of general Hamiltonians:

(NC-HJ) Normal controllability for general Hamiltonians — For any R > 0, there
exists constants CR

2 , C
R
3 , C

R
4 > 0 such that, for any (x, t) ∈ H× (0, Tf ) with |x| ≤ R,

|u| ≤ R and p = (p′, pN) with p′ ∈ RN−1, pN ∈ R,

H(x, t, u, p) ≥ CR
2 |pN | − CR

3 |p′| − CR
4 .

(TC-HJ) Tangential Continuity for general Hamiltonians — for any R > 0, there
exists CR

1 > 0 and a modulus of continuity mR : [0,+∞[→ [0,+∞[ such that for
any x = (x′, xN), y = (y′, xN) with |x|, |y| ≤ R, |xN | ≤ R−1, t, s ∈ [0, Tf ], |u| ≤ R,
p = (p′, pN) ∈ RN ,

|H(x, t, u, p)−H(y, s, u, p)| ≤ CR
1 (|x′ − y′|+ |t− s|)|p′|+mR

(
|x′ − y′|+ |t− s|

)
.

With these assumptions we can formulate several “good assumptions” depending
on the context:

(GA-Gen) General case — H1, H2 satisfy (HBA−HJ)+ and (NC-HJ).

(GA-Conv) Convex case — H1, H2 satisfy (GA-Gen) and are convex in p.

(GA-QC) Quasi-convex case — H1, H2 satisfy (GA-Gen) and (HQC).

(GA-CC) Control case — (HBA−CP)+ and (NCH) are satisfied.

Remark 14.2.1 A priori, the variable t being a “tangential variable”, (TC-HJ)
should be formulated with a right hand side like CR

1 (|x′−y′|+ |t−s|)(|p′|+ |pt|) instead
of CR

1 (|x′− y′|+ |t− s|)|p′|; but since H does not depend on pt, the above formulation
seems more natural. However, using the equation which gives pt = −H, it is probably
possible to change this assumption into the more general one, including a term like
CR

1 (|x′ − y′|+ |t− s|)(|p′|+ max(|H(x, t, u, p)|, |H(y, s, u, p)|)) in the right-hand side
of (TC-HJ). We leave this open question to the reader.

14.2.2 Good assumptions on the interface

We now turn to the assumptions on the function G which appears in (FL) or (GJC),
recalling that we are assuming it is independent of r for simplicity. To do so, we first
formulate a continuity requirement, where the role of ε0 will be clear later on.
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(GA-ContG) For any R > 0, there exist constants CR
5 , C

R
6 such that, for any x, y ∈

H, t, s ∈ [0, Tf ], |r| ≤ R, p′1, p
′
2 ∈ RN−1, a, b, c, a′, b′, c′ ∈ R

|G(x, t, a, p′1, b, c)−G(y, s, a, p′1, b, c)| ≤ CR
5 (|x−y|+|t−s|)

(
1+|p′1|+ε0(|a|+|b|+|c|)

)
.

|G(x, t, a′, p′2, b
′, c′)−G(x, t, a, p′1, b, c)| ≤ CR

6 (|p′2− p′1|+ (|a′− a|+ |b′− b|+ |c′− c|)
)
.

The “Good Assumptions” on G in the various cases are then the following

(GA-G-FL) Flux-Limiter — G is independent of a, b, c and (GA-ContG) holds
with ε0 = 0.

(GA-G-GKT) Kirchhoff type — (GA-ContG) holds with ε0 = 0 and (14.2) holds
with α ≥ 0, β > 0.

(GA-G-FLT) Flux-limited type — G(x, t, a, p′, b, c) = G1(a, p′, b, c) + G2(x, t, a, p′)
where G1 is a Lipschitz continuous function which satisfies (14.2) with α > 0, β = 0
while G2 satisfies (GA-G-FL).

The first two assumptions seem relatively natural, only the third one requires some
comments: in order to provide comparison results for the general junction condition
(GJC), we are going to present the Lions-Souganidis approach which is based on a
“tangential regularization” of both the sub and supersolution in the spirit of Sec-
tions 3.4.3 and 3.4.4. While we are able to perform these regularizations in a rather
general setting if G is of “Kirchhoff type” since (14.2) holds with β > 0, this is not the
case anymore if (14.2) holds only with β = 0. For this reason, we need (GA-G-FLT)
which is (roughly speaking) the analogue of (TC-s).

14.3 What do we do in this part?

In the next two chapters of this part, we successively describe the notions of “Flux-
Limited Solutions” and “Junction Viscosity Solutions”, and their properties. For each
of them, we provide

(i) a general comparison result;

(ii) a stability result;

(iii) a convergence result of the vanishing viscosity method by specific arguments
related to the corresponding notion of solution.
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Moreover, for “Flux-Limited solutions”, we also describe the connections with con-
trol problems.

It is worth pointing out that the notion of “Junction Viscosity Solutions” and the
arguments of Lions and Souganidis [137, 138] allow to obtain results which are valid
without any convexity assumption on the Hamiltonians, and in particular a very
general comparison result, despite some limitations due to (TC). The theory for this
notion of solutions is quite complete, with very natural stability properties because
of a definition which is very similar to the standard viscosity solutions one.

Despite being very different, we prove in Chapter 17 that these notions of solutions
are “almost equivalent” in the case of flux-limited conditions (FL), at least in the
framework of quasi-convex Hamiltonians. We wrote “almost” because flux-limited
subsolutions are automatically regular as an easy consequence of their definition, while
this is not the case for junction viscosity subsolutions in general. Hence, complete
equivalence holds if we assume that the junction viscosity subsolutions are regula
—which is true for instance in the case of Kirchhoff conditions.

In Chapter 17, we provide the characterizations of the maximal and minimal Ishii
solutions in terms of other solutions. Last but not least, we show that junction viscos-
ity sub and supersolutions of various general junction conditions (GJC) of Kirchhoff
type are flux-limited sub and supersolutions. The associated “flux-limiter” can be
identified explicitly in terms of the Hamiltonians H1, H2 of the equations in Ω1,Ω2

and of the nonlinearity of the general junction conditions. These connections between
general junction conditions (GJC) of Kirchhoff type and flux-limited conditions were
extensively studied in [113, 114, 116] and they are quite important because they allow
to take advantage of the good stability properties of “Junction Viscosity Solutions”
and the good connections of “Flux-Limited Solutions” with control problems at the
same time. The applications to the vanishing viscosity method and to the KPP prob-
lem shows the efficiency of this machinery.

We conclude this part by a chapter describing all the results in a simple 1-d frame-
work very similar to the scalar conservation law and then by various remarks on
possible extensions or open problems.



Chapter 15

Flux-Limited Solutions for Control
Problems and Quasi-Convex
Hamiltonians

In the control case, as it is clear from Chapter 7, one may have in mind a specific
control problem on H, i.e. a specific dynamic, discount and cost as in Section 8. In
this setting, the most natural condition on H× (0, Tf ) takes the form

ut +G(x, t, u,DHu) = 0 on H× (0, Tf ) , (FL)

which is called a “flux-limited condition” in the network litterature (cf. Imbert and
Monneau [113, 114, 116]). Concrete modelizations and applications lead to a variety
of different flux-limited conditions at the boundary, expressed as specific functions G.

15.1 Definition and first properties

Let us first turn to the definition of “flux-limited sub and supersolutions” which
requires the introduction of some notations.

In the case of control problems, for i = 1, 2 the Hamiltonians are given by

Hi(x, t, r, p) := sup
αi∈Ai

{−bi(x, t, αi) · p+ ci(x, t, αi)r − li(x, t, αi)} . (15.1)

We then set A−i := {αi ∈ Ai : bi(x, t, αi) · eN ≤ 0} and similarly A+
i := {αi ∈ Ai :

bi(x, t, αi) · eN > 0}, then

H−i (x, t, r, p) := sup
αi∈A−i

{−bi(x, t, αi) · p+ ci(x, t, αi)r − li(x, t, αi)} , (15.2)

237
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H+
i (x, t, r, p) := sup

αi∈A+
i

{−bi(x, t, αi) · p+ ci(x, t, αi)r − li(x, t, αi)} . (15.3)

Notice that the +/− notation refers to the sign of bi · eN in the supremum, which
implies that H−i (i = 1..2) is nondecreasing with respect to pN (the normal gradient
variable) while the H+

i is nonincreasing with respect to pN .

Finally, for the specific control problem on H, we define for any x ∈ H, t ∈ [0, Tf ],
r ∈ R, and pH ∈ RN−1

G(x, t, r, pH) := sup
α0∈A0

{−b0(x, t, α0) · pH + c0(x, t, α0)r − l0(x, t, α0)} . (15.4)

For i = 1...2, bi, ci, li are at least bounded continuous functions defined on Ω̄i×[0, Tf ]×
Ai and b0, c0, l0 are also bounded continuous functions defined on H × [0, Tf ] × A0.
Therefore H1, H2 and G are continuous.

In the case where the Hamiltonians are quasi-convex in p, Section 6.2.3 provides us
with a definition of H+

i (x, t, r, p), H−i (x, t, r, p) and we assume that these functions
and G are continuous.

With these notations, we can give the definition of flux-limited viscosity sub and
supersolutions —(FLSub) and (FLSuper) in short:

Definition 15.1.1 (Flux-limited solutions for quasi-convex Hamiltonians)

A locally bounded function u : RN × (0, Tf ) → R is a (FLSub) of (HJ-Gen)-(FL) if
it is a classical viscosity subsolution of (HJ-Gen) and if, for any test-function ψ ∈
PC1(RN × [0, Tf ]) and any local maximum point (x, t) ∈ H × (0, Tf ) of u∗ − ψ in
RN × (0, Tf ), at (x, t) the following inequality holds

max
(
ψt +G(x, t, u∗, DHψ), ψt +H+

1 (x, t, u∗, Dψ1), ψt +H−2 (x, t, u∗, Dψ2)
)
≤ 0 ,

where u∗ = u∗(x, t).

A locally bounded function v : RN × (0, Tf ) → R is a (FLSuper) of (HJ-Gen)-(FL)
if it is a classical viscosity supersolution of (HJ-Gen) and if, for any test-function
ψ ∈ PC1(RN × [0, Tf ]) and any local minimum point (x, t) ∈ H× (0, Tf ) of v∗ − ψ in
RN × (0, Tf ), at (x, t) the following inequality holds

max
(
ψt +G(x, t, v∗, DHψ), ψt +H+

1 (x, t, v∗, Dψ1), ψt +H−2 (x, t, v∗, Dψ2)
)
≥ 0 ,

where v∗ = v∗(x, t).
A locally bounded function is a flux-limited solution if it is both a (FLSub) and a
(FLSuper).



HJ-Equations with Discontinuities: The Network Approach 239

Several remarks have to be made on this definition which is very different from the
classical ones: first we have a “max” both in the definition of supersolutions AND
subsolutions; then we do not use the full Hamiltonians Hi in the junction condition
on H but H+

1 and H−2 . These changes are justified when looking at the interpretation
of the viscosity solutions inequalities in the optimal control framework. Indeed

(i) the subsolution inequality means that any control is sub-optimal, i.e. if one tries
to use a specific control, the result may not be optimal. But, of course, such a
control has to be associated with an “admissible” trajectory: for example, if we
are on H, a “b1” pointing towards Ω2 cannot be associated to a real trajectory,
therefore it is not “admissible” and this is why we use H+

1 . And an analogous
remark justifies H−2 . Finally the “max” comes just from the fact that we test
all sub-optimal controls.

(ii) Analogous remarks hold for the supersolution inequality, except that this in-
equality is related to the optimal trajectory, which has to be admissible anyway.

With these remarks, the reader may be led to the conclusion that an “universal”
definition of solutions of (HJ-Gen) with the condition (FL) can hardly exist: if we
look at control problems where the controller tries to maximize some profit, then
the analogue of the H+

1 , H−2 above seem still relevant because of their interpretation
in terms of incoming dynamics but the max should be replaced by min in both
the definitions of sub and supersolutions. Therefore it seems that such particular
definitions have to be used in each case since, again, the Kirchhoff condition does not
seem natural in the control framework.

As in the case of classical Ishii sub and supersolutions, we can define (FLSub) and
(FLSuper) using the notions of sub and superdifferentials. We refer the reader to
Section 3.5 for the introduction of these notions and various properties. Following

this section, for i = 1, 2, we denote by Qi = Ω1 × (0, Tf ) and Qi
`

= Ω1 × (0, Tf ).
As in Section 3.5, we restrict ourselves to the case of u.s.c. subsolution and l.s.c.
supersolutions to simplify the notations but, in the general case, these results have to
be reformulated with either the u.s.c. envelope of the subsolution or the l.s.c. envelope
of the supersolution.

Proposition 15.1.2 — Flux-limited viscosity solutions via sub superdifferentials.

An u.s.c., locally bounded function u : RN × (0, Tf ) → R is a (FLSub) of (HJ-Gen)-
(FL) if and only if

(i) for any (x, t) ∈ Qi (i = 1, 2) and for any (px, pt) ∈ D+

Qi
`u(x, t)

pt +Hi(x, t, u(x, t), px) ≤ 0,
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(ii) for any (x, t) ∈ H × (0, Tf ) and for any pH ∈ H, p1, p2, pt ∈ R such that
((pH, pi), pt) ∈ D+

Qi
`u(x, t) for i = 1, 2, noting u = u(x, t),

max
(
pt+G(x, t, u, pH), pt+H

+
1 (x, t, u, pH+p1eN), pt+H

−
2 (x, t, u, pH+p2eN)

)
≤ 0 .

A l.s.c., locally bounded function v : RN × (0, Tf ) → R is a (FLSuper) of (HJ-Gen)-
(FL) if and only if

(i) for any (x, t) ∈ Qi (i = 1, 2) and for any (px, pt) ∈ D−
Qi

`v(x, t)

pt +Hi(x, t, v(x, t), px) ≥ 0 ,

(ii) for any (x, t) ∈ H × (0, Tf ) and for any pH ∈ H, p1, p2, pt ∈ R such that
((pH, pi), pt) ∈ D−

Qi
`v(x, t) for i = 1, 2, noting v = v(x, t),

max
(
pt+G(x, t, v, pH), pt+H

+
1 (x, t, v, pH+p1eN), pt+H

−
2 (x, t, v, pH+p2eN)

)
≥ 0 .

We omit the proof of Proposition 15.1.2 since it is an easy consequence of Lemma 3.5.3
and Lemma 3.5.6. As we already remark after the statement of Lemma 3.5.6, we point
out that this equivalent definition via sub and superdifferentials allows to show that,
instead of using general PC1 test-functions, we may consider only test-functions of
the form χ(xN) + ϕ(x, t) where χ ∈ PC1(R) and ϕ ∈ C1(RN × (0, Tf )). The reader
will notice that we mainly use test-function of this form in comparison proof, but this
property is also useful to simplify the proofs of several results.

Remark 15.1.3 Definition 15.1.1 provides the notion of “flux-limited viscosity solu-
tions” for a problem with a co-dimension 1 discontinuity but it can be used in different
frameworks, in particular in problems with boundary conditions: we refer to Guerand
[105] for results on state constraints problems and [104] in the case of Neumann con-
ditions where “effective boundary conditions and new comparison results are given,
both works being in the case of quasi-convex Hamiltonians.

We give a first important property of (FLSub)

Proposition 15.1.4 Assume that (GA-QC) holds and that the Hamiltonian G sat-
isfies (GA-G-FL). Any u.s.c.(FLSub) is regular on H.
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Proof — It is an immediate application of Proposition 3.4.2 since the Hamiltonian G
defined for x ∈ RN , t ∈ (0, Tf ), r ∈ R, (p, pt) ∈ RN+1 by

G(x, t, r, (p, pt)) := pt +Hi(x, t, r, p) if x ∈ Ωi,

G(x, t, r, (p, pt)) := max(pt+H
+
1 (x, t, r, p), pt+H

−
2 (x, t, r, p), pt+G(x, t, r, p′)) if x ∈ H,

satisfies the assumptions of this proposition with y = (x′, t), z = xN , and in particular
the normal controllability in the xN -direction.

Q.E.D.

15.2 Stability of flux-limited solutions

In this section, we provide a result on the stability of flux-limited solutions. As the
proof will show it, such result is not an immediate extension of Theorem 3.1.4; indeed,
if the change of test-functions does not really cause any problem, the formulation of
flux-limited sub and supersolutions with global Hamiltonians which are not l.s.c. or
u.s.c. is the source of difficulties.

The result is the

Theorem 15.2.1 Assume that, for ε > 0, uε is a (FLSub) [ resp. (FLSuper) ] for
the problem with Hamiltonians Hε

1 , H
ε
2 , G

ε. We assume that Hε
1 , H

ε
2 , G

ε are continuous
and Hε

1 , H
ε
2 satisfy (HQC). If Hε

1 , H
ε
2 , G

ε converge locally uniformly to respectively
H1, H2, G and if the functions uε are uniformly locally bounded on RN , then u =
lim sup∗ uε [ resp. u = lim inf ∗ uε ] is a (FLSub) [ resp. (FLSuper) ] for the problem
with Hamiltonians H1, H2, G.

Proof — Due to the dissymmetry in the definitions of (FLSub) and (FLSuper), we
have to give the proof in both cases.

(a) We start by the (FLSub) one. Of course, we have just to prove the result on H
since, in Ω1,Ω2, the result is an easy application of Theorem 3.1.4. Let ψ = (ψ1, ψ2) ∈
PC1(RN × [0, Tf ]) and let (x, t) ∈ H × (0, Tf ) be a strict local maximum point of
u− ψ. We have to show that

max
(
ψt +G(x, t, u,DHψ), ψt +H+

1 (x, t, u,Dψ1), ψt +H−2 (x, t, u,Dψ2)
)
≤ 0 .

By Lemma 3.1.6, there exists a subsequence (xε′ , tε′) of maximum point of uε′ − ψ
which converges to (x, t) and such that uε′(xε′ , tε′) converges to u(x, t). To get the
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G-inequality, we replace ψ by ψ + K|xN |. Using the quasi-convexity property of H1

and H2, for K large enough we get

ψt +H1(x, t, u,Dψ1) > 0 and ψt +H2(x, t, u,Dψ2) > 0 .

Applying the result of Lemma 3.1.6 to this new ψ, we see that necessarily xε′ ∈ H.
Then, passing to the limit in the (FLSub) inequality for (Hε′

1 )+, (Hε′
2 )−, Gε′ , we end

up with ψt +G(x, t, u,DHψ) ≤ 0 since the term K|xN | does not affect DHψ.

It remains to prove the H+
1 and H−2 inequalities and to do so, we come back to the

original ψ. We assume that ψt + H+
1 (x, t, u,Dψ1) > 0 and change ψ into ψ + Kx−N ,

for K large enough.

For ε′ small enough, xε′ cannot be in Ω1: sinceH1 ≥ H+
1 implies ψt+H1(x, t, u,Dψ1) >

0, hence the Hε′
1 inequality cannot hold for ε′ small enough. Similarly, xε′ cannot be

on H because of the H+
1 inequality. Finally xε′ cannot be in Ω2 for K large enough,

therefore we reach a contradiction which implies that ψt +H+
1 (x, t, u,Dψ1) ≤ 0.

Arguing the same way for the case ψt + H−2 (x, t, u,Dψ2) > 0, the subsolution
inequality is proved.

(b) For the (FLSuper) case, again we just have to treat the inequalities on H and
we assume that (x, t) ∈ H × (0, Tf ) is a strict local minimum point of u − ψ where
ψ = (ψ1, ψ2) ∈ PC1(RN × [0, Tf ]). We have to show that

max
(
ψt +G(x, t, u,DHψ), ψt +H+

1 (x, t, u,Dψ1), ψt +H−2 (x, t, u,Dψ2)
)
≥ 0 .

We argue by contradiction assuming that the three quantities in the max are strictly
negative. Similarly to the (FLSub) case, we claim that we can choose K1, K2 ≥ 0
such that

ψt +H1(x, t, u,Dψ1 −K1eN) < 0 and ψt +H2(x, t, u,Dψ2 +K2eN) < 0 ,

which follows here also from the quasi-convexity of H1 and H2. To use it, we change
ψ in ψ −K1x

+
N −K2x

−
N and notice that (x, t) is still is a strict local minimum point

of u− ψ for this new ψ.

Applying again Lemma 3.1.6, there exists a subsequence (xε′ , tε′) of minimum points
of uε′−ψ which converges to (x, t) and such that uε′(xε′ , tε′) converges to u(x, t). And
we examine the possible inequalities for (xε′ , tε′). Clearly xε′ can be neither in Ω1

nor in Ω2 for ε′ small enough because of the above property. Hence xε′ ∈ H and the
(FLSuper) inequality holds for (Hε′

1 )+, (Hε′
2 )−, Gε′ . But passing to the limit as ε′ → 0

in these inequalities yields a contradiction, so the supersolution inequality holds.
Q.E.D.
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Remark 15.2.2 The main weakness of Theorem 15.2.1 is to be strictly restricted to
the framework of flux-limited solutions for problems with quasi-convex Hamiltonians.
Therefore it is not very flexible, in particular if we compare it with Theorem 16.2.1
in the case of junction viscosity solutions.

15.3 Comparison results for flux-limited solutions

and applications

This section is devoted to prove comparison results for flux-limited solutions; the
original proofs given in [113, 114] were based on the rather technical construction of
a “vertex function”. We present here the simplified proof(s) of [18].

15.3.1 Comparison results in the convex case

The main result here is the following.

Theorem 15.3.1 (Comparison principle)
Assume that either (GA-Conv) or (GA-CC) holds, that the Hamiltonian G(x, t, r, p′)
is convex in (r, p′) and satisfies (GA-G-FL). If u, v : RN × (0, Tf ) → R are respec-
tively an u.s.c. bounded flux-limited subsolution and a l.s.c. bounded flux-limited super-
solution of (HJ-Gen)-(FL) and if u(x, 0) ≤ v(x, 0) in RN , then u ≤ v in RN × (0, Tf ).

Proof — In order to simplify the proof, we provide it only in the case when the
Hamiltonians H1, H2, G are independent of u; the general case only contains minor
additional technical difficulties.

(a) Reduction of the proof — First we follow Section 3.2 and check (LOC1)-evol: the
function χ : RN × (0, Tf )→ R defined by

χ̄(x, t) := −Kt− (1 + |x|2)1/2 − 1

Tf − t
,

is, for K > 0 large enough, a strict subsolution of (HJ-Gen)-(FL) with χ̄(x, t)→ −∞
when |x| → +∞ or t→ T−f . We replace u by either uµ := u+(1−µ)χ̄ (a choice which
does not use the convexity of the Hamiltonians) or uµ := µu+(1−µ)χ̄ (a choice which
uses the convexity of the Hamiltonians). Borrowing also the arguments of Section 3.2,
(LOC2)-evol also holds and therefore we are led to show that (LCR)-evol is valid in
the case when u is an η-strict subsolution of (HJ-Gen)-(FL).
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For a point (x̄, t̄) where x̄ ∈ Ω1 or x̄ ∈ Ω2, the proof of (LCR)-evol in Qx̄,t̄
r,h is

standard, hence we have just to treat the case when x̄ ∈ H. At this point, we make
an other reduction in the proof: using Section 3.4, with y = (t, x′) and z = xN , since
(GA-Conv) or (GA-CC) are nothing but Assumptions (TC),(NC) and (Mon),
Theorem 3.4.4 applies. As a consequence, we can assume w.l.o.g. that u is Lipschitz
continuous with respect to all variables and semi-convex in the (t, x′)-variables. But
we may also use the ideas of Proposition 3.4.7 to obtain a subsolution which is C1

in (t, x′) with ut and Dx′u continuous w.r.t. all variables: indeed, we can apply the
ideas of the proof of Proposition 3.4.7 separately in Ω1, Ω2 and H to obtain the H1,
H2 and G inequalities for the regularized function, while the H+

1 and H−2 ones are
deduced from Proposition 3.5.1.

Then we assume that
M := max

Qx,tr,h

(u− v) > 0 .

If this maximum is achieved on ∂pQ
x,t
r,h, the result is obvious so we may assume that

it is achieved at (x̃, t̃) /∈ ∂pQ
x,t
r,h. Again, if x̃ ∈ Ω1 or x̃ ∈ Ω2, we easily obtain a

contradiction and therefore we can assume that x̃ ∈ H.

(b) Building the test function — Setting a = ut(x̃, t̃), p
′ = Dx′u(x̃, t̃), we claim that

we can solve the equations

a+H−1 (x̃, t̃, p̃′ + λ1eN) = −η/2 , a+H+
2 (x̃, t̃, p̃′ + λ2eN) = −η/2 ,

where we recall that−η is the constant which measures the strict subsolution property
of function u.

In order to prove the existence of λ1, we look at maximum points of

u(x, t)− |x− x̃|
2

ε2
− |t− t̃|

2

ε2
− ε

xN

in (Qx,t
r,h) ∩ (Ω1× : [0, Tf ]), and for 0 < ε� 1. This function achieves its maximum at

(xε, tε) which converges to (x̃, t̃) as ε→ 0 and by the semi-convexity of u in t and x′,
one has

ut(xε, tε) +H1(xε, tε, Dx′u(xε, tε) + λεeN) ≤ −η ,
for some λε ∈ R. Moreover, λε is bounded w.r.t. ε since u is Lipschitz continuous.
Letting ε tend to 0 and using that ut(xε, tε) → a,Dx′u(xε, tε) → p′ by the semi-
convexity property of u, together with the extraction of a subsequence for (λε)ε, we
get a λ̄ ∈ R such that

a+H1(x̃, t̃, p̃′ + λ̄eN) ≤ −η .
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Since H−1 ≤ H1, it follows that a + H−1 (x̃, t̃, p̃′ + λ̄eN) ≤ −η. Then we use the
fact that λ 7→ a + H−1 (x̃, t̃, p̃′ + λeN) is continuous, nondecreasing on R and tends
to +∞ when λ → +∞ to get the existence of λ1 > λ̄ solving the equation with
−η/2. In this framework, λ1 is necessarily unique since the convex function λ 7→
a + H−1 (x̃, t̃, p̃′ + λeN) only has flat parts at its minimum, while clearly λ1 is not a
minimum point for this function. The proof for λ2 is analogous and we skip it.

In order to build the test-function, we set h(t) := λ1t+−λ2t− where t+ = max(t, 0),
t− = max(−t, 0), and

χ(xN , yN) := h(xN)− h(yN) =


λ1(xN − yN) if xN ≥ 0 , yN ≥ 0 ,
λ1xN − λ2yN if xN ≥ 0 , yN < 0 ,
λ2xN − λ1yN if xN < 0 , yN ≥ 0 ,
λ2(xN − yN) if xN < 0 , yN < 0 .

(15.5)

Then, for 0 < ε� 1 we define a test function as follows

ψε(x, t, y, s) :=
|x− y|2

ε2
+
|t− s|2

ε2
+ χ(xN , yN) + |x− x̃|2 + |t− t̃|2 .

In view of the definition of h, we see that for any (x, t) ∈ RN × [0, Tf ] the func-
tion ψε(x, ·, t, ·) ∈ PC1(RN × [0, Tf ]) and for any (y, s) ∈ RN × [0, Tf ] the function
ψε(·, y, ·, s) ∈ PC1(RN × [0, Tf ]).

We now look at the maximum points of

(x, t, y, s) 7→ u(x, t)− v(y, t)− ψε(x, t, y, s) in
[
Qx,t
r,h

]2

.

By standard arguments, this function has maximum points (xε, tε, yε, sε) such that
(xε, tε, yε, sε)→ (x̃, t̃, x̃, t̃). Moreover, using the semi-convexity of u, we have

p′ε =
2(x′ε − y′ε)

ε2
→ p′ and

2(tε − sε)
ε2

→ a ,

which the Lipschitz continuity of u implies that (pε)N = 2((xε)N − (yε)N)/ε2 remains
bounded.

(c) Getting contradictions — We have to consider different cases depending on the
position of xε and yε in RN . Of course, we have no difficulty for the cases xε, yε ∈ Ω1

or xε, yε ∈ Ω2, and even less because of the above very precise properties on the
derivatives of the test-function; only the cases where xε, yε are in different domains
or on H cause problem. So, we are left with considering three cases

1. xε ∈ Ω1, yε ∈ Ω2 or xε ∈ Ω2, yε ∈ Ω1.
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2. xε ∈ H, yε ∈ (Ω1 ∪ Ω2).

3. xε ∈ H, yε ∈ H.

Case 1: If xε ∈ Ω1, yε ∈ Ω2 ∪ H, we use that u is an η-strict H1-subsolution and
taking into account the specific form of the test-function above we get

a+ oε(1) +H1(xε, tε, p
′ + o(1) + λ1eN + (pε)NeN) ≤ −η . (15.6)

Then, using that H1 ≥ H−1 and the fact that every term in H1 remains in a compact
subset, we also have

a+H−1 (x̃, t̃, p′ + λ1eN + (pε)NeN) ≤ −η + oε(1) .

Now, since (pε)N ≥ 0, thanks to the monotonicity of H−1 in the eN -direction we obtain

a+H−1 (x̃, t̃, p′ + λ1eN) ≤ −η + oε(1) ,

which is a contradiction with the definition of λ1. The case xε ∈ Ω2, yε ∈ Ω1 ∪ H is
of course analogue and we skip it.

Case 2: Since xε ∈ H, the subsolution inequality holds

max
(
a+G(x̃, t̃, p′) ; a+H+

1 (x̃, t̃, p′ + λ1eN + (pε)NeN) ;

a+H−2 (x̃, t̃, p′ + λ1eN + (pε)NeN)
)
≤ −η + oε(1) .

On the other hand, if yε ∈ Ω1, since v is a H1-supersolution in Ω1 and of course
(yε, tε)→ (x̃, t̃),

a+H1(x̃, t̃, p′ + λ1eN + (pε)NeN) ≥ oε(1) . (15.7)

Now the aim is to show that the same inequality holds for H+
1 and to do so, we

evaluate this quantity for H−1 : taking into account the fact that here (pε)N ≤ 0, the
monotonicity of H−1 in the eN -direction yields

a+H−1 (x̃, t̃, p′ + λ1eN + (pε)NeN) ≤ −η/2 +Oε(1) < 0 if ε is small enough.

But since H1 = max(H−1 , H
+
1 ), from (15.7) we actually deduce that

a+H+
1 (x̃, t̃, p′ + λ1eN + (pε)NeN) ≥ oε(1) ,

which gives a contradiction when compared with the subsolution property on H. The
same contradiction is obtained in the case yε ∈ Ω2, using λ2 and H+

2 instead of λ1

and H−1 .

Case 3: If xε ∈ H, yε ∈ H, we have viscosity sub and supersolution inequalities for
the same Hamiltonian and the contradiction follows easily. So, the proof is complete.

Q.E.D.
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15.3.2 A comparison result in the quasi-convex case

In fact, Theorem 15.3.1 extends without difficulties in the “quasi-convex” case and
we have the

Theorem 15.3.2 — Comparison principle in the quasi-convex case.

The result of Theorem 15.3.1 remains valid if (GA-QC) holds and G satisfies (GA-
G-FL).

Proof — We just sketch it since it follows very closely the proof of Theorem 15.3.1.
The only difference here is that Section 3.4 only allows to reduce to the case when the
strict subsolution u is Lipschitz continuous and semi-convex in the (t, x′)-variables,
not C1. This obliges us to first look at a maximum of

(x, t, y, s) 7→ u(x, t)− v(y, s)− |x
′ − y′|2

ε2
− |t− s|

2

ε2
,

where x = (x′, xN), y = (y′, xN), which is, of course, an approximation of max
Qx,tr,h

(u−v).

If (x̃, t̃, ỹ, s̃) is a maximum point of this function, the semi-convexity of u implies
that u is differentiable w.r.t. x′ and t at (x̃, t̃) and we have

a :=
2(t̃− s̃)
ε2

= ut(x̃, t̃) and p′ :=
2(x̃′ − ỹ′)

ε2
= Dx′u(x̃, t̃) .

Then we solve the (λ1, λ2)-equations with such a and p′; it is worth pointing out that
λ1 and λ2 are not uniquely defined but this is not important in the proof.

Finally we consider the maxima of the function

(x, t, y, s) 7→ u(x, t)− v(y, s)− |x
′ − y′|2

ε2
− |t− s|

2

ε2

− χ(xN , yN)− |xN − yN |
2

γ2
− |x− x̃|2 − |t− t̃|2 ,

where 0 < γ � 1 is a parameter devoted to tend to 0 first. Using the normal contro-
lability assumption with variables X = (x′, t), Z = xN , it is easy to show that

|(pε)N | =
2|(xε)N − (yε)N |

γ2
= O(|p′ε|+ |a|+ 1) ,

which is bounded since u is Lipschitz continuous in the tangent variables (x′, t).
This allows to perform all the arguments of the proof as in the convex case. Notice
that, even if it is not C1-smooth, the semi-convexity of u ensures that ut(xε, tε) →
a,Dx′u(xε, tε)→ p′.

Q.E.D.
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15.4 Flux-limited solutions and control problems

In this section, we come back on the control problem of Section 8 which we address
here from a different point of view.

In order to do that, we first have to define the admissible trajectories among all
the solutions of the differential inclusion: we say that a solution (X,T,D, L)(·) of the
differential inclusion starting from (x, t, 0, 0) is an admissible trajectory if

1. there exists a global control a = (α1, α2, α0) with αi ∈ Ai := L∞(0,∞;Ai) for
i = 0, 1, 2;

2. there exists a partition I = (I1, I2, I0) of (0,+∞), where I1, I2, I0 are measurable
sets, such that X(s) ∈ Ωi for any s ∈ Ii if i = 1, 2 and X(s) ∈ H if s ∈ I0;

3. for almost every 0 ≤ s ≤ t

(Ẋ, Ḋ, L̇)(s) =
2∑
i=0

(bi, ci, li)(X(s), t− s, αi(s))1IIi(s) . (15.8)

In Equation (15.8), we have dropped T (s) since we are in the bt ≡ −1 case and
therefore T (s) = t− s for s ≤ t. The set of all admissible trajectories (X, I, a) issued
from a point X(0) = x ∈ RN (at T (s) = t) is denoted by Tx. Notice that, under
the controllability assumption (NCH), for any point x ∈ Ω1, there exist trajectories
starting from x, which stay in Ω1, and the same remark holds for points in Ω2. These
trajectories are clearly admissible (with either I1 ≡ I or I2 ≡ I) and therefore Tx is
never void.

Remark 15.4.1 It is worth pointing out that, in this approach, the partition I0, I1, I2

which we impose for admissible trajectories, implies that there is no mixing on H
between the dynamics and costs in Ω1 and Ω2, contrarily to the approach of Section 8.
A priori, on H, either we have an independent control problem or we can use either
(b1, c1, l1) or (b2, c2, l2), but no combination of (b1, c1, l1) and (b2, c2, l2).

The value function is then defined as

UFL
G (x, t) := inf

(X,I,a)∈Tx

{∫ t

0

( 2∑
i=0

li(X(s), t− s, αi(s))1IIi(s)
)
e−D(s) ds+ u0(X(t))

}
,

where u0 ∈ C(RN).

As always, the first key ingredient to go further is the
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Lemma 15.4.2 (Dynamic Programming Principle) Under assumption (GA-CC),
the value function UFL

G satisfies: for all (x, t) ∈ RN × (0, Tf ] and τ < t

UFL
G (x, t) = inf

(X,I,a)∈Tx

{∫ τ

0

( 2∑
i=0

li(X(s), t− s, αi(s))1IIi(s)
)
e−D(s) ds+ UFL

G (X(τ), t− τ)

}
.

We leave the easy proof of this lemma to the reader, which is standard. Now, using
standard arguments based on the Dynamic Programming Principle and the compar-
ison result, we have the

Theorem 15.4.3 Under assumption (GA-CC) and if u0 ∈ C(RN), the value func-
tion UFL

G is the unique flux-limited solution of (HJ-Gen)-(FL) with G = H0 given
by

H0(x, t, r, p) = sup
α0∈A0

{−b0(x, t, αi) · p+ c0(x, t, αi)r − l0(x, t, αi)} .

Proof — We describe some non-obvious parts of the proof, in particular those to show
that the value function UFL

G is a flux-limited solution of (HJ-Gen)-(FL). As we will
explain at the end of the proof, continuity of UFL

G and its uniqueness are an immediate
consequence of Theorem 15.3.1.

(a) Subsolution property.

Of course, the only difficulty is to prove this property on H × (0, Tf ], the cases of
Ω1 × (0, Tf ] and Ω2 × (0, Tf ] being classical. To do so, we have to show that

(UFL
G )∗t − bi(x, t, αi) ·D(UFL

G )∗ + ci(x, t, αi)(U
FL
G )∗ − li(x, t, αi) ≤ 0 , (15.9)

for any i = 0, 1, 2 any αi ∈ Ai with b1(x, t, αi) · eN ≥ 0 if i = 1 and b2(x, t, αi) · eN ≤ 0
if i = 2. The proof of these inequalities is standard once we use the following two
remarks:

1. By the arguments of Theorem 21.1.1 which give such result in a more general
setting, if UFL

G (xε, tε)→ (UFL
G )∗(x, t), we can assume without loss of generality

that (xε, tε) ∈ H × (0, Tf ]. This first remark allows to prove (15.9) in the case
i = 0 using classical arguments.

2. The convexity of BCL1(x, t) = {(b1(x, t, α1), c1(x, t, α1), l1(x, t, α1)) : α1 ∈ A1}
together with the normal controllability assumption implies that the set{

(b1(x, t, α1), c1(x, t, α1), l1(x, t, α1)) : b1(x, t, α1) · eN ≥ 0, α1 ∈ A1

}
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is the closure of the set{
(b1(x, t, α1), c1(x, t, α1), l1(x, t, α1)) : b1(x, t, α1) · eN > 0, α1 ∈ A1

}
,

and an analogous property holds for i = 2. This remark reduces the proof of
(15.9) for α1 and α2 such that b1(x, t, α1) · eN > 0 and b2(x, t, α2) · eN < 0. And
this allows to use classical arguments since, for s ∈ (0, τ ] and τ small enough,
trajectories X(s) which are associated to such dynamics with constant controls
remains in Ω1 in the first case and in Ω2 in the second one.

We point out that Property (a) plays a key role to obtain the three types of inequalities
for i = 0, 1, 2.

(b) Supersolution property.

Again the only non-classical case concerns points of H × (0, Tf ]. Let (x, t) ∈ H ×
(0, Tf ] be a minimum point of (UFL

G )∗ − φ where φ = (φ1, φ2) ∈ PC1(RN × [0, Tf ]).
We assume w.l.o.g. that (UFL

G )∗(x, t) = φ(x, t).

We first fix 0 < τ � 1 and, for 0 < ε � 1, we consider (xε, tε) such that
UFL
G (xε, tε) ≤ (UFL

G )∗(x, t) + ετ with |(xε, tε)− (x, t)| ≤ ετ . Then we choose a global
ε-optimal control aε = (αε1, α

ε
2, α

ε
0) and denote by Zε

i = Zε
i (s) =

(
Xε(s), tε− s, αei (s)

)
for simplicity of notations. In other words,

UFL
G (xε, tε) ≥

∫ τ

0

( 2∑
i=0

li(Z
ε
i )1IIi(s)

)
e−D

ε(s) ds+ UFL
G (Xε(τ), tε − τ)− ετ ,

where Xε, Dε are the trajectory and the discount term computed with the global
control aε. Using the minimum point property, we have

φ(xε, tε) ≥
∫ τ

0

( 2∑
i=0

li(Z
ε
i )1IIi(s)

)
e−D

ε(s) ds+ φ(Xε(τ), tε − τ)− 2ετ ,

and by classical computations we obtain∫ τ

0

2∑
i=0

(
(φi)t(X

ε(s), tε − s)− bi(Zε
i ) ·Dφi(Xε(s), tε − s)

+ ci(Z
ε
i )φi(X

ε(s), tε − s)− li(Zε
i )

)
1IIi(s)e

−Dε(s) ds ≥ −2ετ ,

where, by convention, φ0 denotes φ1 = φ2 on H× (0, Tf ].
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Then, by using the regularity of φi (i = 1, 2),

∫ τ

0

2∑
i=0

(
(φi)t(xε, tε)− bi(Zε

i ) ·Dφi(xε, tε)

+ ci(Z
ε
i )φi(xε, tε)− li(Zε

i )

)
1IIi(s)e

−Dε(s) ds ≥ −2ετ + o(τ) .

In order to conclude, we have to consider several cases

(i) If I0 = (0, τ), the proof just follows classical arguments.

(ii) If I1 = (0, τ), i.e. the trajectory Xε remains in Ω1, we notice that

1

τ

∫ τ

0

b1(Zε
i )ds · eN =

1

τ
(Xε(τ)− xε) · eN ≥ −ε ,

because of the choice of (xε, tε). Using the convexity and the compactness of
BCL1(x, t), we conclude that as τ, ε→ 0, up to the extraction of a subsequence,
we may assume that

1

τ

∫ τ

0

(
b1(Zε

1), c1(Zε
1), l1(Zε

1)
)

ds→
(
b1(x, t, ᾱ1), c1(x, t, ᾱ1), l1(x, t, ᾱ1)

)
for some ᾱ1 ∈ A1 such that b1(x, t, ᾱ1) ·eN ≥ 0. From there, one concludes easily
that the H+

1 -term is non-negative.

(iii) If I2 = (0, τ), the same arguments allow to conclude that the H−2 -term is non-
negative.

(iv) The remaining case is when two of these three sets are non-empty, and the main
difficulty is when one of the open sets (or both) {s : Xε(s) ∈ Ωi} is non-empty.
We assume, for example, that it is the case for i = 1 and write

{s : Xε(s) ∈ Ω1} =
⋃
k

]sk, sk+1[ .

If sk > 0 and sk+1 > τ , we necessarily X(sk) ∈ H and X(sk+1) ∈ H, therefore

1

sk+1 − sk

∫ sk+1

sk

b1(Zε
1) ds · eN =

1

τ
(Xε(sk+1)−Xε(sk)) · eN = 0 .
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Using again the convexity and the compactness of BCL1(x, t), together with
the regularity properties of b1, c1, l1, we deduce that

1

sk+1 − sk

∫ sk+1

sk

(
(φ1)t(xε, tε)− b1(Zε

1) ·Dφi(xε, tε)

+ c1(Zε
1)φi(xε, tε)− l1(Zε

i )

)
e−D

ε(s) ds

≤ (φ1)t(x, t) +H+
1 (x, t, φ1(x, t), Dφ1(x, t)) + 2ετ + o(τ) .

To obtain this last inequality, we have used that if

H+
1,η(x, t, r, p) := sup

αi∈A+
1,η

{−bi(x, t, αi) · p+ ci(x, t, αi)r − li(x, t, αi)} ,

where A+
1,η := {α1 ∈ A1 : b1(x, t, αi) ·eN ≥ η} and η can be positive or negative,

then H+
1,η(x, t, r, p) → H+

1 (x, t, r, p) locally uniformly when η → 0, a property
which can be easily proved using the normal controllability.

Using similar ideas, one can easily treat the cases sk = 0 or sk+1 = τ and,
of course, the case when {s : Xε(s) ∈ Ω2} is not empty. Gathering all these
informations, we end up showing that a convex combination of φt + H+

1 , φt +
H−2 , φt +H0 is non-negative, hence the result.

(c) Continuity and uniqueness.

The function UFL
G being a discontinuous flux-limited solution of (HJ-Gen)-(FL),

Theorem 15.3.1 shows that (UFL
G )∗ ≤ (UFL

G )∗ in RN × [0, Tf ]; indeed it is easy to show
that (UFL

G )∗(x, 0) = (UFL
G )∗(x, 0) = u0(x) in RN . Therefore UFL

G is continuous and
the uniqueness comes from the same comparison result.

Q.E.D.

Before considering the connections with the results of Section 8, we want to point
out that among all these “flux-limited value-functions”, there is a particular one which
corresponds to either no specific control on H (i.e. we just consider the trajectories
such that I0 ≡ ∅) or, and this is of course equivalent, to a cost l0 = +∞. This value
function is denoted by UFL.

The aim is to show that the value functions of regional control are flux-limited
solutions.

Theorem 15.4.4 Under the assumptions of Theorem 15.3.1 (comparison result), for
any Hamiltonian H0 we have
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(i) U− ≤ U+ ≤ UFL in RN × [0, Tf ].

(ii) U− = UFL
G in RN × [0, Tf ] where G = HT and U−H0

= UFL
G in RN × [0, Tf ] where

G = max(HT , H0).

(iii) U+ = UFL
G in RN × [0, Tf ] where G = Hreg

T .

This result shows that, by varying the flux-limiter G, we have access to the different
value functions described in Section 8.

Proof — For (i), the inequalities can just be seen as a consequence of the definition of
U−,U+,UFL remarking that we have a larger set of dynamics-costs for U− and U+

than for UFL. From a more pde point of view, applying Proposition 3.5.1, it is easy
to see that U−,U+ are flux-limited subsolutions of (HJ-gen)-(FL) since they are of
course subsolutions of

ut +H+
1 (x, t, u,Du) ≤ 0 in Ω1 × [0, Tf ] ,

ut +H−2 (x, t, u,Du) ≤ 0 in Ω2 × [0, Tf ] .

Then Theorem 15.3.1 allows us to conclude.

For (ii) and (iii), we have to prove respectively that U− is a solution of (HJ-gen)-
(FL) with G = HT , U−H0

is a solution of (HJ-gen)-(FL) with G = max(HT , H0) and
U+ with G = Hreg

T . Then the equality is just a consequence of Theorem 15.3.1.

For U−, the subsolution property just comes from the above argument for the
H+

1 , H
−
2 -inequalities and from Proposition 8.3.2 for the HT -one. The supersolution

inequality is a consequence of the proof of Lemma 5.4.1: alternative A) implies that
one of the H+

1 , H
−
2 -inequalities hold while alternative B) implies that the HT -one

holds. The same is true for U−H0
.

For U+, the subsolution property follows from the same arguments as for U−,
both for the H+

1 , H
−
2 -inequalities and from Proposition 9.1.3 for the Hreg

T -one. The
supersolution inequality is a consequence of Theorem 9.3.1: alternative A) implies
that one of the H+

1 , H
−
2 -inequalities hold while alternative B) implies that the Hreg

T -
one holds.

And the proof is complete.
Q.E.D.

Notice that inequalities in Theorem 15.4.4-(i) can be strict: various examples are
given in [16]. The following one shows that we can have U+ < UFL in R.
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Example 15.1 — Let Ω1 = (0,+∞), Ω2 = (−∞, 0). We choose c ≡ 0, u0(x) = 0 in
R and

b1(α1) = α1 ∈ [−1, 1] , l1(α1) = α1 ,

b2(α2) = α2 ∈ [−1, 1] , l1(α2) = −α2 .

It is clear that the best strategy—i.e. with the minimal cost—is to use α1 = −1 in
Ω1, α2 = 1 in Ω2. We can also use these strategies at 0 since

1

2
b1(α1) +

1

2
b2(α2) = 0 ,

a combination which yields a cost of −1. Therfore, an easy computation gives

U+(x, t) =

∫ t

0

−1.dt = −t ,

other words, the “push-push” strategy at 0 allows to maintain the −1 cost.

But, for UFL, this “push-push” strategy at 0 is not allowed and, since the optimal
trajectories are necessarily monotone, the best strategy when starting at 0 is to stay
at 0. Here, the best possible cost is 0.

Hence UFL(0, t) = 0 > U+(0, t) = −1, and in fact it can be shown that

UFL(x, t) = −|x| > U+(x, t) = −t if |x| < t .

On the contrary, for |x| ≥ t, UFL(x, t) = U+(x, t) = −t since the above strategy with
α1 = −1 in Ω1, α2 = 1 in Ω2 can be applied for all time.

Theorem 15.4.4 can be interpreted in several ways but the key point is to chose the
kind of controlled trajectories we wish to allow on H. Then, depending on this choice,
different formulations have to be used for the associated HJB problem. It could be
thought that the flux-limited approach is more appropriate, in particular because of
Theorem 15.3.1 which is used intensively in the above proof.

15.5 Convergence of the vanishing viscosity ap-

proximation (I): via (FL)-solutions

In the framework of classical viscosity solutions, getting the convergence of the van-
ishing viscosity method is just a simple exercice done either with a stability result,
or the combination of the half-relaxed limit method with a strong comparison result.
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However, in the present discontinuous framework, although classical viscosity solutions—
(CVS) in short—still have good stability properties as described in Section 3.1, the
lack of uniqueness makes this stability far less effective: the two half-relaxed limits are
lying between the minimal one U− and the maximal one U+ and one cannot really
obtain the convergence in that way, except if U+ = U−.

An interesting idea is to turn to flux-limited solutions for which a general compari-
son result holds. But, in order to identify the limit of the vanishing viscosity method,
a limit flux-limiter is required and to the best of our knowledge, there is no obvious
way to determine it. Actually we refer the interested reader to Section 13.3 for a
discussion on more general discontinuities where the problem is still open.

We also refer anyway to [113, 114] for general stability results for (FLS) and to
Camilli, Marchi and Schieborn [56] for the first results on the convergence of the
vanishing viscosity method.

In this book, we give several different proofs of the vanishing viscosity result. Tthe
first one below is inspired from [18] and uses only the properties of U+ as flux-limited
solution.

Contrary to the proof relying on (JVS) via the Lions-Souganidis approach, the
arguments we use in this section strongly rely on the structure of the Hamiltonians
and on the arguments of the comparison proof. It has the advantage anyway to identify
the limit in terms of control problems. An other way to do the proof goes through
the connections between the Kirchoff condition and Flux-Limited Conditions (See
Section 17.3).

Theorem 15.5.1 (Vanishing viscosity limit) Assume that (GA-CC) holds. For
any ε > 0, let uε be a viscosity solution of

uεt − ε∆uε +H(x, t, uε, Duε) = 0 in RN × (0, Tf ) , (15.10)

uε(x, 0) = u0(x) in RN , (15.11)

where H = H1 in Ω1 and H2 in Ω2, and u0 is bounded continuous function in RN . If
the uε are uniformly bounded in RN × (0, Tf ) and C1 in xN in a neighborhood of H,
then, as ε→ 0, the sequence (uε)ε converges locally uniformly in RN × (0, Tf ) to U+,
the maximal Ishii subsolution of (7.1).

Remark 15.5.2 A priori (15.10)-(15.11) is a uniformly parabolic problem and the
regularity we assume on (uε) is reasonnable. Indeed the function uε is expected to be
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C1 since it is also expected to be in W 2,r
loc (for any r > 1). On the other hand, it is

worth pointing out that, as long as ε > 0, it is not necessary to impose a condition
on H because of the strong diffusion term: a codimension 1 set is not “seen” by the
diffusive equation.

Proof — We first recall that, by Theorem 9.4.2, U+ is the maximal subsolution —
and Ishii solution— of (7.1) and we proved in Theorem 15.4.4 that it is the unique
flux-limited solution of (HJ-Gen)-(FL) with G = Hreg

T . We recall that the flux-limited
condition consists in complementing (HJ-Gen) with the condition

max
(
ut+H

reg
T (x, t,DHu), ut+H

+
1 (x, t,Dxu), ut+H

−
2 (x, t,Dxu)

)
= 0 on H×(0, Tf ) ,

in the sense of Definition 15.1.1. We refer to Section 3.1 for a definition of the usual
half-relaxed limits

u(x, t) := liminf∗ u
ε(x, t) , u(x, t) := limsup∗ uε(x, t) .

(a) Reduction of the proof — We observe that we only need to prove the following
inequality

U+(x, t) ≤ u(x, t) in RN × [0, Tf ). (15.12)

Indeed, the maximality of U+ implies u(x, t) ≤ U+(x, t) in RN × [0, Tf ). Moreover,
by definition we have u(x, t) ≥ u(x, t) in RN × (0, Tf ), therefore if we prove (15.12)
we can conclude that U+(x, t) ≤ u(x, t) ≤ u(x, t) ≤ U+(x, t) which implies that (uε)ε
converges locally uniformly to U+ in RN × [0, Tf ).

In order to prove the inequality, U+ ≤ u in RN × [0, Tf ), we are going to make
several reductions along the lines of Chapter 3 by changing U+ but we keep the
notation U+ for the changed function for the sake of simplicity of notations. In the
same way, we should argue on the interval [0, T ′] for 0 < T ′ < Tf but we keep the
notation Tf for T ′.

First, thanks to the localization arguments of Chapter 3, we can assume that U+

is a strict subsolution such that U+(x, t) → −∞ as |x| → +∞, uniformly w.r.t.
t ∈ [0, Tf ]. Therefore there exists (x̄, t̄) ∈ RN × [0, Tf ] such that

M := U+(x̄, t̄)− u(x̄, t̄) = sup
(x,t)∈RN×[0,Tf ]

(
U+(x, t)− u(x, t)

)
.

We assume by contradiction that M > 0 and of course this means that t̄ > 0. The
cases when x̄ ∈ Ω1 or x̄ ∈ Ω2 can be treated by classical methods, hence we may
assume that x̄ ∈ H.
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Next, by the regularization arguments of Chapter 3 we can assume in addition that
U+ is C1-smooth at least in the t, x1, . . . , xN−1 variables. Finally we can suppose that
(x̄, t̄) is a strict maximum point of U+ − u.

(b) Construction of the test-function — Since U+ is C1 in the (t, x′)-variables, the
strict flux-limited subsolution condition can be written as

(U+)t(x̄, t̄) +Hreg
T (x̄, t̄, Dx′U

+(x̄, t̄)) ≤ −η ,

where η > 0 measures the strict subsolution property. Therefore

Hreg
T (x̄, t̄, Dx′U

+(x̄, t̄)) ≤ −(U+)t(x̄, t̄)− η ,

and, as in the proof of Theorem 15.3.1, there exist two solutions λ1, λ2, with λ2 < λ1,
of the equation

H̃reg
(
x̄, t̄, Dx′U

+(x̄, t̄) + λeN

)
= −(U+)t(x̄, t̄)− η/2 .

Notice that, since x̄, t̄, a = −(U+)t(x̄, t̄) and p′ = Dx′U
+(x̄) are fixed, λ1, λ2 are

independent of the parameter ε > 0 that is to come below.

We proceed now with the construction of the test-function: let χ(xN , yN) be defined
as in (15.5) and

ψε(x, y, t, s) :=
|t− s|2

ε1/2
+
|x′ − y′|2

ε1/2
+ χ(x, y) +

|xN − yN |2

ε1/2
.

Note that ψε(·, y, ·, s), ψε(x, ·, t, ·) ∈ PC1(RN × [0, Tf ]).

Since (x̄, t̄) is a strict global maximum point of U+−u while u(x̄, t̄) = liminf∗u
ε(x̄, t̄),

the function U+(x, t)−uε(y, s)−ψε(x, y, t, s) has local maximum points (xε, yε, tε, sε)
which converge to (x̄, x̄, t̄, t̄). For the sake of simplicity of notations, we drop the ε
and just denote by (x, y, t, s) such a maximum point.

(c) Getting a contradiction — We now consider 3 different cases, depending on the
position of (x, y, t, s).

Case 1: xN > 0 and yN ≤ 0 (or xN < 0 and yN ≥ 0).

We use the subsolution condition for U+ in Ω1: recalling that U+ is C1-regular in the
(t, x′)-variables, we write the condition as

(U+)t(x, t) +H1

(
x, t,Dx′U

+(x, t) + λ1eN +
2(xN − yN)

ε1/2

)
≤ −η ,



258 Barles & Chasseigne

where we have used the regularity of U+ to deduce that

(U+)t(x, t) =
2(t− s)
ε1/2

and Dx′U
+(x, t) =

2(x′ − y′)
ε1/2

. (15.13)

Moreover, using further the regularity of U+ and recalling that (U+)t and Dx′U
+ are

continuous not only in t, x′ but also xN , we have (U+)t(x, t) = (U+)t(x̄, t̄) + oε(1),
Dx′U

+(x, t) = Dx′U
+(x̄, t̄) + oε(1). Therefore,

(U+)t(x̄, t̄) +H1

(
x, t,Dx′U

+(x̄, t̄) + λ1eN +
2(xN − yN)

ε1/2

)
≤ −η + oε(1) .

Next, using that H−1 is non decreasing in pN , H−1 ≤ H1 and (xN − yN) > 0 we get
from the above property

H−1
(
x, t,Dx′U

+(x̄, t̄) + λ1eN
)
≤ H−1

(
x, t,Dx′U

+(x̄, t̄) + λ1eN +
2(xN − yN)

ε1/2

)
≤ −(U+)t(x̄, t̄)− η + oε(1) .

From this inequality, since Dx′U
+(x̄, t̄) + λ1eN remains bounded with respect to ε,

using the continuity of H−1 yields

H−1
(
x̄, t̄, Dx′U

+(x̄, t̄) + λ1eN
)
≤ −(U+)t(x̄, t̄)− η + oε(1) .

The contradiction is obtained for ε small enough from the fact that, by construction
of λ1,

H−1
(
x̄, t̄, Dx′U

+(x̄, t̄) + λ1eN
)

= −(U+)t(x̄, t̄)− η/2 .

The case xN < 0 and yN ≥ 0 is completely similar, using H2 instead of H1.

Case 2: xN = 0 and yN > 0 (or < 0).

We use the supersolution viscosity inequality for uε at (y, t), using (15.13):

O(ε1/2) + (U+)t(x, t) +H1

(
y, s,Dx′U

+(x, t) + λ1eN +
2(xN − yN)

ε1/2
+ oε(1)

)
≥ 0 .

(15.14)
Notice that, using the arguments of Case 1 and the fact that here xN−yN = −yN < 0,
we are led by the definition of λ1 to

O(ε1/2) + (U+)t(x, t) +H−1

(
y, s,Dx′U

+(x, t) + λ1eN +
2(xN − yN)

ε1/2
+ oε(1)

)
< 0 ,

from which we deduce that (15.14) holds true with H+
1 .
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Moreover, by the subsolution condition of U+ on H we have

(U+)t(x, t) +H+
1

(
x, t,Dx′U

+(x, t) + λ1eN +
2(xN − yN)

ε1/2
+ oε(1)

)
≤ −η ,

therefore the conclusion follows by standard arguments putting together the two
inequalities for H+

1 and letting ε tend to zero. If yN < 0, we can repeat the same
argument using this time H−2 instead of H+

1 .

Case 3: xN = yN = 0.

Let us remark that this case is not possible. Indeed the maximum point property
on U+ − uε − ψε implies that 0 is a minimum point of zN 7→ uε((y′, zN), s) +
ψε(x, (y

′, zN), t, s)). But, by definition of ψε and in particular of χ, this also means
that we have a minimum point for the function

ζ : zN 7→ uε((y′, zN), s)− h(zN) +
|zN |2

ε1/2
.

Both zN 7→ |zN |2 and uε are C1-smooth, but the function h is only Lipschitz con-
tinuous at zN = 0. So, using that the left derivative of ζ is negative while the right
one is positive leads to −h′(0−) ≤ −h′(0+), i.e. λ2 ≥ λ1. But this contradicts the
construction of function χ which requires λ2 < λ1.

Q.E.D.

15.6 Classical viscosity solutions as flux-limited so-

lutions

The aim of this section is to show that, under suitable assumptions, a classical vis-
cosity sub or supersolution of

ut +H(x, t, u,Dxu) = 0 in RN × (0, Tf ) , (15.15)

where H is a continuous quasi-convex Hamiltonian, is a (FLSub) or (FLSuper) of the
problem with H1 = H2 = H and G = HT where, for x ∈ H, t ∈ [0, Tf ], r ∈ R and
p′ ∈ H

HT (x, t, r, p′) = min
s∈R

H(x, t, r, p′ + seN) .

We refer the reader to Section 10.2 and in particular to Lemma 10.2.1 for a motivation
of the definition of HT in the convex case but we are going to consider below the more
general quasi-convex case.

The precise result is the
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Proposition 15.6.1 Assume that (GA-QC) holds with H1 = H2 = H and that G =
HT satisfies (GA-G-FL). Then u is a classical Ishii subsolution [ resp. supersolution ]
of (15.15) if and only if it is a (FLSub) [ resp. (FLSuper) ] of (HJ-Gen)-(FL) with
H1 = H2 = H and G = HT .

The interest of this result is to be able to introduce an artificial discontinuity when
it is useful. We refer the reader to Section 17.7 for an example of such situation.

Proof — To prove that a (FLSub) (or (FLSuper)) is a classical Ishii subsolution (or
supersolution) is easy using that (i) C1 test-functions are PC1 test-functions and (ii)
max(H+, H−, HT ) = H.

We only prove the converse for the subsolution case, the supersolution one being
essentially analogous; we just provide below a tiny additional argument to treat this
supersolution case. Of course, only the properties on H × (0, Tf ) are different and
therefore we concentrate on this case.

Let u be a classical Ishii subsolution of (15.15) and let (x, t) ∈ H × (0, Tf ) be a
strict local maximum point of u−ϕ where ϕ = (ϕ1, ϕ2) ∈ PC1(RN× [0, Tf ]). We have
to look at two different cases

(i) λ :=
∂ϕ1

∂xN
(x, t) ≤ µ :=

∂ϕ2

∂xN
(x, t).

(ii) λ > µ.

Case (i) is easy: if p′ = Dx′ϕ(x, t) and pt = ϕt(x, t) then, for any λ ≤ τ ≤ µ,
((p′, τ), pt) ∈ D+

Ωi×(0,Tf )
u(x̄, t̄) for i = 1 and i = 2; hence ((p′, τ), pt) ∈ D+

RN×(0,Tf )
u(x̄, t̄)

and therefore
pt +H(x, t, u(x, t), p′ + τeN) ≤ 0 .

Using that max(H+, H−, HT ) = H, we easily obtain the desired inequalities by choos-
ing τ = λ and then τ = µ.

Case (ii) is more tricky: by Lemma 3.5.6, we can assume without loss of generality
that ϕ = χ+ ψ where ψ is C1 in RN × (0, Tf ) and

χ(xN) :=

{
λxN if xN ≥ 0 ,

µxN if xN ≤ 0 .

We mollify the function χ by using a mollifying kernel with compact support and
we obtain a sequence of C1-functions (χε)ε and then a sequence (ϕε)ε given by ϕε =
χε + ψ. Moreover, by standard convolution arguments, we have

µ ≤ ∂χε
∂xN

(xN) ≤ λ for any xN .
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Let (xε, tε) be a sequence of maximum points of u − ϕε which converges to (x, t)
and such that u(xε, tε) → u(x, t) (such sequence exists since (x, t) is a strict local
maximum point of u− ϕ and ϕε → ϕ locally uniformly). We have

∂ψ

∂t
(xε, tε) +H(xε, tε, u(xε, tε), Dx′ψ(xε, tε) +

∂χε
∂xN

(xε, tε)eN) ≤ 0 .

Introducing

H̃(τ) :=
∂ψ

∂t
(x, t) +H(x, t, u(x, t), Dx′ψ(x, t) + τeN) ,

and denoting respectively by H̃+, H̃−, H̃T , functions which are defined in the same
way, replacing H by H+, H− or HT , we deduce from the continuity of H, the above
properties and the C1 character of ψ, that

H̃(
∂χε
∂xN

(xε, tε)) ≤ oε(1) .

This inequality can be rewritten as

max(H̃+, H̃−, H̃T )(
∂χε
∂xN

(xε, tε)) ≤ oε(1) ,

and using the monotonicity of H̃+, H̃−, we have, because HT is independent of the
xN -derivative

max(H̃+(λ), H̃−(µ), H̃T ) ≤ oε(1) ,

and we conclude by letting ε→ 0.

For supersolutions, the analogue of Case (ii) is treated exactly in the same way.
Case (i)–which is now λ ≥ µ–required the following additional arguments: with the
above notations, we have

max(H̃+(τ), H̃−(τ), H̃T ) ≥ 0 ,

for any µ ≤ τ ≤ λ and we have three cases

• If H̃T ≥ 0, we are done.

• If H̃T < 0, by choosing τ = λ, we have max(H̃+(λ), H̃−(λ)) ≥ 0. If H̃+(λ) ≥ 0,
we are done. In the same way, by choosing τ = µ, we have max(H̃+(µ), H̃−(µ)) ≥
0. If H̃−(µ) ≥ 0, we are done.
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• If H̃T < 0, H̃+(λ) < 0 and H̃−(µ) < 0, then necessarely H̃−(λ) ≥ 0 and
H̃+(µ) ≥ 0. Hence

(H̃+ − H̃−)(λ) < 0 , (H̃+ − H̃−)(µ) > 0 ,

and there exists τ ∈ (µ, λ) such that H̃+(τ) = H̃−(τ). But, for such τ , we have
H̃+(τ) = H̃−(τ) = HT . Therefore using such τ in the above inequality yields
HT ≥ 0, a contradiction which means that we are in one of the two first cases.

And the proof is complete.
Q.E.D.

15.7 Extension to second-order equations (I)

In this section, we consider second-order equations of the form

ut +Hi(x, t,Du)− Tr(ai(x)D2u) = 0 in Ωi × (0, Tf ) ,

where ai (i = 1, 2) are continuous functions which are assumed to be on the standard
form, i.e. ai = σi · σTi where σTi is the transpose matrix of σi. We suppose that the
σi’s are bounded, Lipschitz continuous functions and in order that the definition of
flux-limited solutions make sense, the following property has to be imposed

σi((x
′, 0)) = 0 for i = 1, 2 and for all x′ ∈ RN−1.

The main question we adress here concerns the comparison result in this framework.
There are several difficulties that we list below:

(i) in general, we cannot regularize the subsolution as we did above;

(ii) because of the second-order term, the normal controllability cannot be used
efficiently outside H;

(iii) a two-parameter proof as in the non-convex case is difficult to handle with the
second-order term.

We take this opportunity to remark that the above comparison proofs has several
common points with the comparison proof for nonlinear Neumann boundary condi-
tions: in fact, it can be described as a “double Neumann” proof since H−1 (almost)
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plays the role of a Neumann boundary condition for the equation in Ω2 while con-
versely H+

2 (almost) plays the role of a Neumann boundary condition for the equation
in Ω1, see Proposition 12.2.1 for more explanations.

There is anyway a crucial additional difficulty: H−1 , H
+
2 are NOT strictly monotone

functions w.r.t. the normal gradient direction. Therefore, if a general “one-parameter
proof”, avoiding the use of γ � ε may be possible, it is probably rather technical
and may require additional assumptions on Hamiltonians Hi.

Instead, the following result gives some conditions under which the proof of Theo-
rem 15.3.2 still works.

Theorem 15.7.1 (Comparison principle in the second-order case) Under the
assumptions of Theorem 15.3.2, the result of Theorem 15.3.1 is valid provided that
the two following assumptions hold, for i = 1, 2, in a neighborhood of H:

(i) Hi(x, t, p) = Hi,1(x′, t, p′) +Hi,2(xN , pN),
(ii) σi = σi(xN) with σi(0) = 0, σi being locally Lipschitz continuous and bounded.

It is worth pointing out that this result holds for non-convex Hamiltonians, but
requires rather restrictive assumptions on Hi and σi. We refer to Imbert and Nguyen
[116] for general results for second-order equations in the case of networks where not
only comparison results are obtained but the notions of (FLS) and (JVS) are discussed
and applications are given.

Proof — The proof follows readily the proof of Theorem 15.3.2, we just add here some
comments:

– The structure conditions we impose on (Hi, σi)i=1,2 ensures that we can perform
a regularization of the subsolution by sup-convolution in the spirit of Proposi-
tion 3.4.9: in particular, the Hamiltonians both satisfy (TC-s). This is the first
reason to assume (i) and (ii).

– Once this regularization is done, we still have to control the dependence in the
derivatives in xN (or all the terms involving the parameter γ): this is where the
special dependence in xN of Hi and σi plays a role.

– In all the steps where the properties of λ1, λ2 are crucial, the second-order term
is small since |σi(xN)| = O(|xN |) and therefore |ai(xN)| = O(x2

N). This can be
combined with the facts that

|(xε)N − (yε)N |2

γ2
→ 0 as γ → 0 ,

and the second-order derivatives are a O(γ−2).
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Q.E.D.

Remark 15.7.2 Anticipating the main result of Section 17.3 showing that the Kirch-
hoff boundary conditions is equivalent to a flux-limited boundary condition with G =
Hreg
T under the assumptions of Theorems 15.3.1 or 15.3.2, these two results also pro-

vide the comparison for the (KC)-condition. The proof(s) would apply readily if we
were able to show that we can choose λ1 > λ2 in the test-function (the function χ)
but this is not obvious at this point and this property will be clarified in Section 17.3.



Chapter 16

Junction Viscosity Solutions

Even if flux-limited viscosity solutions have their advantages, it may seem more nat-
ural to consider a definition of viscosity solution with a min /max condition on the
junction involving H1 and H2 instead of their nondecreasing/nonincreasing parts.

In the next sections, we present the general notion of junction viscosity solutions,
which is called “relaxed solution” in [113]. However, because of the similarity to the
classical notion of viscosity solutions, it seems to us that “junction viscosity solutions”
is more appropriate.

16.1 Definition and first properties

We introduce the notion of junction viscosity sub/supersolution for (HJ-Gen) associ-
ated with a (GJC) given by a nonlinearity G as follows (1)

Definition 16.1.1 (Junction Viscosity Solutions)

A locally bounded function u : RN × (0, Tf ) → R is a (JVSub) of (HJ-Gen)-(GJC)
if it is a classical viscosity subsolution of (HJ-Gen) and if, for any test-function ψ =
(ψ1, ψ2) ∈ PC1(RN × [0, Tf ]) and any local maximum point (x, t) ∈ H × (0, Tf ) of
u∗ − ψ in RN × (0, Tf ),

min
(
G(x, t, ψt, DHψ,

∂ψ1

∂n1

,
∂ψ2

∂n2

), ψt +H1(x, t, u∗, Dψ1), ψt +H2(x, t, u∗, Dψ2)
)
≤ 0 ,

(16.1)
where u∗ and the derivatives of ψ, ψ1, ψ2 are taken at (x, t).

(1)We recall that we assume that G(x, t, r, a, p′, b, c) is independent of r.

265
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A locally bounded function v : RN × (0, Tf )→ R is a (JVSuper) of (HJ-Gen)-(GJC)
if it is a classical viscosity supersolution of (HJ-Gen) and if, for any test-function
ψ = (ψ1, ψ2) ∈ PC1(RN × [0, Tf ]) and any local minimum point (x, t) ∈ H × (0, Tf )
of v∗ − ψ in RN × (0, Tf ),

max
(
G(x, t, ψt, DHψ,

∂ψ1

∂n1

,
∂ψ2

∂n2

), ψt +H1(x, t, v∗, Dψ1), ψt +H2(x, t, v∗, Dψ2)
)
≥ 0 ,

(16.2)
where v∗ and the derivatives of ψ, ψ1, ψ2 are taken at (x, t).
A (JVS) (i.e. a junction viscosity solution) is a locally bounded function which is both
(JVSub) and (JVSuper).

As in the case of (FLSub) and (FLSuper), we can define (JVSub) and (JVSuper) us-
ing the notions of sub and superdifferentials. With the notations of Proposition 15.1.2,
we have the (2)

Proposition 16.1.2 — Junction viscosity solutions via sub superdifferentials.

An u.s.c., locally bounded function u : RN × (0, Tf ) → R is a (JVSub) of (HJ-Gen)-
(GJC) if and only if

(i) for any (x, t) ∈ Qi (i = 1, 2) and any (px, pt) ∈ D+

Qi
`u(x, t)

pt +Hi(x, t, u(x, t), px) ≤ 0 ,

(ii) for any (x, t) ∈ H × (0, Tf ) and for any pH ∈ H, p1, p2, pt ∈ R such that
((pH, pi), pt) ∈ D+

Qi
`u(x, t) for i = 1, 2, noting u = u(x, t),

min
(
G(x, t, pt, pH, p1, p2), pt+H(x, t, u, pH+p1eN), pt+H2(x, t, u, pH+p2eN)

)
≤ 0 .

A l.s.c., locally bounded function v : RN × (0, Tf ) → R is a (JVSuper) of (HJ-Gen)-
(GJC) if and only if, for (x, t) ∈ RN × (0, Tf ),

(i) for any (x, t) ∈ Qi (i = 1, 2) and for any (px, pt) ∈ D−
Qi

`v(x, t)

pt +Hi(x, t, v(x, t), px) ≥ 0 ,

(2)Again we formulate the result for u.s.c. subsolution and l.s.c. supersolution but the reader can
easily transpose it to general sub and supersolutions
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(ii) for any (x, t) ∈ H × (0, Tf ) and for any pH ∈ H, p1, p2, pt ∈ R such that
((pH, pi), pt) ∈ D−

Qi
`v(x, t) for i = 1, 2, noting v = v(x, t),

max
(
G(x, t, pt, pH, p1, p2), pt+H(x, t, u, pH+p1eN), pt+H2(x, t, u, pH+p2eN)

)
≥ 0 .

As for Proposition 15.1.2, we leave the proof of this result to the reader since it is
an easy consequence of Lemma 3.5.3 and Lemma 3.5.6. We again point out that this
equivalent definition via sub and superdifferentials allows to show that instead of using
general PC1 test-functions, we may only use test-functions of the form χ(xN)+ϕ(x, t)
where χ ∈ PC1(R) and ϕ ∈ C1(RN × (0, Tf )). The reader will notice that we mainly
use test-function of this form in the comparison result but this property is also useful
to simplify the proofs of several results.

Before considering the regularity properties of (JVSub) and (JVSuper), we point
out that one of the advantages of the notion of junction viscosity solution is that it
can be applied to a wider class of junction conditions without any convexity/quasi-
convexity type assumption. On the other hand, its similarity with the classical notion
of viscosity solutions should easily convince the reader that the notion enjoys the
stability properties of classical viscosity solutions.

16.1.1 Lack of regularity of subsolutions

This notion has a slight defect since u.s.c. junction viscosity subsolutions are not
necessarily regular, contrarily to flux-limited solutions, because of the “min” in the
definition. To show it, we consider the following 1-d example

ut + |ux| = 0 in R \ {0} × (0,+∞) ,

ut(0, t) = 0 in (0,+∞) ,

u(x, 0) = −|x| in R .

It is worth pointing out that this problem is far from being pathological since H1(p) =
H2(p) = |p| satisfy all the “good assumptions”, in particular (NC). One checks easily
that the expected solution is U(x, t) = −|x| − t but we also have the non-regular
subsolution given by

u(x, t) =

{
U(x, t) if x 6= 0 ,

0 for x = 0 .

It is clear that u is u.s.c. and a subsolution for x 6= 0, and it is a subsolution for x = 0
because ut(0, t) ≡ 0 and the “min” in the definition allows such inexpected feature.
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16.1.2 The case of Kirchhoff-type conditions

We refer to Section 14.1.2 for the complete and precise definitions of different junction
conditions on the inferface. Let us just recall here that Kirchhoff-type conditions
essentially satisfy (dropping the u-dependance)

G(x, t, a1, p
′, b1, c1) − G(x, t, a2, p

′, b2, c2) ≥ α(a1−a2)+β(b1−b2)+β(c1−c2) (16.3)

for some α ≥ 0, β > 0. Of course the typical example is the standard Kirchhoff
condition for which G(x, t, a, p′, b, c) = b+ c, encoding ∂u/∂n1 + ∂u/∂n2 = 0.

Proposition 16.1.3 Assume that H1, H2, G are continuous functions and that H1,
H2 satisfy (NC-HJ). Then junction viscosity subsolutions are regular provided (GJC)
is of Kirchhoff type.

Proof — We only provide the proof in the subsolution case, the supersolution one
being analogous. Assume that u : RN × (0, Tf )→ R is an u.s.c.(JVSub) of (HJ-Gen)-
(GJC) and let (x, t) be a point of H × (0, Tf ). We argue by contradiction: if, for
instance, u is not Ω1-regular at (x, t), this means that

u(x, t) > lim sup
(y,s)→(x,t)

y∈Ω1

u(y, s) . (16.4)

We introduce the function

Ψ : (y, s) 7→ u(y, s)− |y − x|
2

ε2
− |s− t|

2

ε2
− C1y

+
N − C2y

−
N ,

where 0 < ε � 1 and C1 ∈ R, C2 > 0 are constants to be chosen. Notice that
y 7→ C1y

+
N + C2y

−
N belongs to PC1(RN × [0, Tf ]).

Choosing ε small enough and C1 = 0, Ψ has a maximum point (xε, tε) near (x, t)
and (xε, tε) → (x, t), u(xε, tε) → u(x, t) as ε → 0. We see that if C2 is large enough,
the H2-subsolution inequality cannot hold, therefore (xε, tε) ∈ H. Moreover, if ε is
small enough, (16.4) is also true at (xε, tε) and, as a consequence, (xε, tε) is a local
maximum point of Ψ for any C1 ∈ R.

In the same way, choosing now C1 < 0 large enough implies that the H1-subsolution
inequality cannot hold. But neither can the G-one, provided G is of Kirchhoff-type:
since G behaves like Kε + β(C2 − C1) for some constant Kε, it is strictly positive if
C1 is very negative.
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Hence, none of the subsolution inequalities can hold on the interface and we get the
desired contradiction.

Q.E.D.

On the contrary, junction viscosity supersolutions are not necessarely regular, even
if (GJC) is of Kirchhoff type as shown by the following example.

Example 16.1 — The solution u : R× [0,+∞[ of

ut + |ux| = 0 in R× (0,+∞) ,

u(x, 0) = u0 in R ,

where u0(x) := (1− |x|)+ is given by u(x, t) = (1− |x| − t)+.

Now we look at

v(x, t) =

{
u(x, t) if x ≤ 0 ,

1 if x > 0 .

Then one checks easily that v is (i) l.s.c., (ii) a (JVSuper) for (HJ-Gen)-(KC) with
H1(p) = H2(p) = |p| and (iii) is not regular at x = 0. As the reader has probably
already noticed it, the (JVSuper) property comes from the fact that u is a solution of
the state-constraint problem in (−∞, 0]×(0,+∞), hence ut+H2(ux) ≥ 0 even on the
boundary {0}× (0,+∞). This may be seen as a little defect of the network approach
which, by using PC1-test-functions, leads to a slight decoupling of the domains Ω1 ×
(0,+∞) and Ω2 × (0,+∞).

16.2 Stability of junction viscosity solutions

Contrarily to the case of flux-limited viscosity solutions, the stability result for (JVS)
is almost an immediate extension of Theorem 3.1.4: the change of test-functions, using
PC1(RN × [0, Tf ]) implies only minor modifications which is why we skip the proof
of the

Theorem 16.2.1 Assume that

(i) For any ε > 0, Hε
1 , H

ε
2 , G

ε are continuous and converge locally uniformly respec-
tively to H1, H2, G .

(ii) For any ε > 0, uε is a (JVSub) [ resp. (JVSuper) ] for the problem with Hamil-
tonians Hε

1 , H
ε
2 , G

ε .
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(iii) The functions uε are uniformly locally bounded on RN × [0, Tf ].

Then u = lim sup∗ uε [ resp. u = lim inf ∗ uε ] is a (JVSub) [ resp. (JVSuper) ] for
the problem with Hamiltonians H1, H2, G.

Remark 16.2.2 Contrarily to Theorem 15.2.1, Theorem 16.2.1 turns out to be very
flexible, without any restriction on the Hamiltonians and with general junction con-
ditions; in particular, it can be used to address the problem of the convergence of the
vanishing viscosity method.

16.3 Comparison results for junction viscosity so-

lutions: the Lions-Souganidis approach

In this section we expose the Lions-Souganidis approach of the comparison proof for
(JVS) and apply it to the case of general Kirchhoff conditions, as well as second-order
equations.

16.3.1 Preliminary lemmas

We begin with a simple one-dimensional lemma which can be seen as a little bit more
precise version of Proposition 3.5.4 in this context

Lemma 16.3.1 Let H : R → R be a continuous function and u : [0, r] → R be a
Lipschitz continuous subsolution of H(ux) = 0 in (0, r). Defining

p := lim inf
x→0

[
u(x)− u(0)

x

]
≤ lim sup

x→0

[
u(x)− u(0)

x

]
=: p ,

then H(p) ≤ 0 for all p ∈ [p, p].

Remark 16.3.2 In Lemma 16.3.1, the subsolution is assumed to be Lipschitz con-
tinuous and this is consistent with the fact that we consider equations with coercive
Hamiltonians, or at least satisfying (NC). This assumption ensures that p and p are
bounded, but this is not really necessary as the proof will show.

Without this assumption, we can still prove at least that if p < +∞, H(p) ≤ 0 for
all p ∈]p, p[. The importance of this remark is more for supersolutions: we use below
an analogous result for them and it is less natural to assume them to be Lipschitz
continuous.
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Proof — Let us first notice that since u is assumed to be Lipschitz, both p and p are
not infinite.

(a) We first assume that p < p.

Let (xk)k be a sequence of points of (0, r) such that xk → 0 and
(
u(xk)−u(0)

)
/xk → p .

We pick any p < p < p and consider the function ψ(y) = u(y) − u(0) − py on the
interval [0, xk]. Since

ψ(0) = 0 , ψ(xk) < 0 , lim sup
x→0

ψ(x)

x
= p− p > 0 ,

there exists a maximum point x̃k ∈ (0, xk) of ψ. The subsolution property at x̃k yiels
the desired inequality: H(p) ≤ 0. Moreover, the continuity of H implies that the same
property holds true for all p ∈ [p, p].

(b) Now we turn to the case p = p.

For 0 < ε � 1, we consider v(x) = u(x) + εx sin(log(x)). The function x 7→
x sin(log(x)) is C1 for x > 0 and Lipschitz continuous. Therefore, H(vx) ≤ oε(1).
Moreover

v(x)− v(0)

x
=
u(x)− u(0)

x
+ ε sin(log(x)) ,

which implies that

lim inf
x→0

[
v(x)− v(0)

x

]
= p− ε < lim sup

x→0

[
v(x)− v(0)

x

]
= p+ ε .

Since p− ε < p < p+ ε, case (a) above implies that H(p) ≤ oε(1) and the conclusion
follows by letting ε tend to 0.

Q.E.D.

Remark 16.3.3 Of course, analogous results hold for supersolutions: if v is a su-
persolution of H(vx) ≥ 0 in (0, r), it suffices to use that u=-v(x) is a subsolution of
−H(−ux) ≤ 0 in (0, r).

In order to connect the 1-d and multi-dimensional situations and therefore to give
a more precise formulation of Proposition 3.5.4 in the framework which is the one of
the comparison proof, let us consider a set

Q :=
{

(y, x) : y ∈ V , x ∈]0, δ[
}
⊂ Rp+1
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where V is a neighborhood of 0 in Rp, and δ > 0. If w : Q → R, we denote by D+

Q
w

and D−
Q
w the super and sub-differentials of w with respect to both variables (y, x).

If w is differentiable with respect to y at (0, 0), it can be expected that these
sub/super-differentials of w in both variables have the forms

(Dyw(0, 0), D−x w(0, 0)) and (Dyw(0, 0), D+
x w(0, 0)) .

But in view of Lemma 16.3.1 and using Section 6.1, we can give a more precise result

Lemma 16.3.4 Let w : Q → R be a function such that the functions y 7→ w(y, x)
are Lipschitz continuous in V uniformly with respect to x ∈ [0, δ[ and y 7→ w(y, 0) is
differentiable at 0.

(a) Superdifferential case

We assume moreover that w is upper-semicontinuous in Q and that, for any
x ∈ [0, δ[, the function y 7→ w(y, x) is semi-convex in V. If

p = lim sup
x→0

[
w(0, x)− w(0, 0)

x

]
exists and is finite, then

(Dyw(0, 0), p) ∈ D+
Qw(0, 0) if and only if p ≥ p .

(b) Subdifferential case

We assume moreover that w is lower-semicontinuous in Q and that, for any
x ∈ [0, δ[, the function y 7→ w(y, x) is semi-concave in V. If

q = lim inf
x→0

[
w(0, x)− w(0, 0)

x

]
exists and is finite, then

(Dyw(0, 0), q) ∈ D−Qw(0, 0) if and only if q ≤ q .

The interest of this lemma is clear: under suitable assumptions, we can connect
1-d and multi-d sub or super-differentials. This will be a key step for applying
Lemma 16.3.1 to multi-d problems. We point out anyway that Lemma 16.3.1 gives
an important additional information on the interval [p, p] if p 6= p.
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Proof — We only do the proof in case (a), the other case working with obvious
adaptations.

For p ≥ p̄, we set

w(y, x) := w(y, x)− w(0, 0)−Dyw(0, 0) · y − px .

If (Dyw(0, 0), p) ∈ D+
Qw(0, 0), then w(y, x) ≤ o(|y|+x). Choosing y = 0 and dividing

by x > 0, we obtain
w(0, x)− w(0, 0)

x
− p ≤ o(1) ,

and therefore p ≤ p by taking the lim sup as x→ 0.

Conversely, if p ≥ p, we want to show that (Dyw(0, 0), p) ∈ D+
Qw(0, 0), i.e. w(y, x) ≤

o(|y| + x). To do so, we argue by contradiction assuming that there exists η > 0
and a sequence (yk, xk)k converging to (0, 0) such that xk > 0 for all k w(yk, xk) ≥
η(|yk|+ xk).

Using the upper semicontinuity of w, hence of w, we easily deduce that w(yk, xk)→
w(0, 0) = 0 and the Lipschitz continuity of y 7→ w(y, xk) implies that w(0, xk) →
w(0, 0) = 0.

Next we use the decomposition

w(y, xk) = [w(y, xk)− w(0, xk)] + w(0, xk) .

By the definition of p̄ and p ≥ p̄, w(0, xk) = w(0, xk)−w(0, 0)−pxk ≤ o(xk). Therefore
it remains to estimate the bracket to obtain a contradiction.

To do so, we introduce a regularization by convolution of y 7→ w(y, xk) for all fixed
xk. Let (ρε)ε be a sequence of approximate identities in Rp, i.e. a sequence of positive,
C∞-functions on Rp with compact support in B∞(0, ε) such that

∫
Rp ρε(z)dz = 1.

Then we set

wε(y, xk) :=

∫
Rp
w(y + z, xk)ρε(z) dz .

For any k, the functions y 7→ wε(y, xk) are C1 in a neighborhood of 0 and therefore

wε(y, xk)− wε(0, xk) =

∫ 1

0

Dywε(sy, xk) · y ds .

Now we examine Dywε(sy, xk). Since, for any k, y 7→ w(y, xk) is Lipschitz continuous,
hence differentiable almost everywhere by Rademacher’s Theorem, we have

Dywε(sy, xk) =

∫
Rp
Dyw(sy + z, xk)ρε(z) dz .
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Moreover, using again the Lipschitz continuity of y 7→ w(y, xk), we have w(y, xk) →
w(0, 0) = 0 when y → 0 and k → +∞; therefore, by the semi-convexity assump-
tion, it follows from Proposition 6.1.1-(iv) that we have Dyw(y, xk) = Dyw(y, xk) −
Dyw(0, 0) → 0 when (y, xk) → (0, 0). This implies that Dywε(sy, xk) = ok(1) +
oy(1) + oε(1) as (y, xk, ε) → (0, 0, 0), uniformly with respect to s ∈ [0, 1]. Therefore
wε(y, xk)−wε(0, xk) = |y|(ox(1) + oy(1) + oε(1)). Letting ε tend to 0, we end up with

w(y, xk)− w(0, xk) = o(|y|) + |y|ox(1) = o(|y|) for k large enough,

which yields the desired contradiction.
Q.E.D.

16.3.2 A comparison result for the Kirchhoff condition

Before considering other junction conditions, we first provide a comparison result for
the problem (HJ-Gen)-(KC), namely

ut +H1(x, t, u,Du) = 0 in Ω1 × (0, Tf ) ,

ut +H2(x, t, u,Du) = 0 in Ω2 × (0, Tf ) ,

∂u

∂n1

+
∂u

∂n2

= 0 on H× (0, Tf ) ,

where for i = 1, 2, ni(x) denotes the unit outward to ∂Ωi at x ∈ ∂Ωi. We recall that
this Kirchhoff condition has to be taken in the (JVS) sense, namely

min
(
ut +H1(x, t, u,Du), ut +H2(x, t, u,Du),

∂u

∂n1

+
∂u

∂n2

)
≤ 0 on H × (0, Tf ) ,

for the subsolution condition and

max
(
ut +H1(x, t, u,Du), ut +H2(x, t, u,Du),

∂u

∂n1

+
∂u

∂n2

)
≥ 0 on H× (0, Tf ) ,

for the supersolution condition, using test-functions in PC1.

In order to formulate and prove a comparison result for (HJ-Gen)-(KC), we face
several difficulties: first, we are not readily in the “good framework for HJ-Equations
with discontinuities” because of the min in the subsolution junction condition and the
(KC) condition which prevents (NC) to be satisfied. As a consequence it is not clear a
priori that subsolutions are regular—a general problem for (JVS)—nor supersolutions.
This last point is important since, in order to apply the Lions-Souganidis approach,
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we have to regularize both the sub and supersolution, needing both to be regular.
Fortunately for subsolutions, this problem is solved by Proposition 16.1.3, but not
for supersolutions. Last but not least, it is not completely clear that we can apply
Proposition 3.2.1 in order to prove only (LCR).

We can overcome all these difficulties under some suitable assumptions

Theorem 16.3.5 Assume that H1 and H2 satisfy (GA-Gen). Then the (GCR)
holds for any bounded subsolution u and supersolution v provided

(i) either v satisfies (3.19), i.e. there exists C > 0 such that for all (x′, t)

|v((x′, xN), t)− v(x′, yN), t)| ≤ C|xN − yN | ;

(ii) or (TC-HJ) holds for both H1 and H2.

Of course, the main interest of this result is to allow to prove a (GCR) which
is valid for non convex Hamiltonians H1 and H2. In addition, it is easy to see that
the proof we give below (and which is almost exactly the Lions-Souganidis one) can
provide a comparison result for different types of “junction conditions” on H and also
for more general networks problems; we come back on this point in the next section.

Proof — This proof consists first in reducing to a one-dimensional proof thanks to
various reductions and using the preliminary lemmas of the previous section.

(a) Reduction to a (LCR) with semiconvex/concave functions.

Thanks to Section 3.2, we are not going to prove a (GCR) but only a (LCR): the
results of this section apply since the modifications we perform on the subsolution u
are C1 and therefore do not affect the (KC) condition. The next point concerns the
regularity of u and v on H: both are regular by Proposition 16.1.3.

Now, proving the (LCR) means that if u is a subsolution and v is a supersolution
of (HJ-Gen)-(KC), we want to prove that there exists r > 0 and 0 < h < t such that,

denoting by K := Qx,t
r,h, if maxK(u− v) > 0, then

max
K

(u− v) = max
∂pK

(u− v) .

Considering a point point (x̄, t̄) where maxK(u − v) > 0 is achieved, we can assume
of course that t̄ > 0 and (x̄, t̄) /∈ ∂pK otherwise the result obviously holds. It is also
clear that we can assume w.l.o.g. that x̄ ∈ H, otherwise only the H1 or H2 equation
plays a role and we are in the case of a standard proof.

The proof of the theorem is based on the arguments of Section 3.4, and more
precisely on Propositions 3.4.4 and 3.4.9: by using Proposition 3.4.4 and adding to u
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a term of the form ηχ(xN) where χ ∈ PC1(R) is a bounded function which satisfies
χ′(0+) = 1 and χ′(0−) = −1, we can assume w.l.o.g. that u is a Lipschitz continuous,
η-strict subsolution of the equation and that u is semi-convex in x′ and t.

Using similar arguments, it is also possible to assume that v is semi-concave in x′

and t but only under the conditions of Proposition 3.4.9, hence assumptions (i) or (ii)
above. We point out that these reductions allow to have a supersolution v which is
Lipschitz continuous in x′ and t, uniformly in xN , but which can still be discontinuous
in xN , we come back on this point below by modifying v into some supersolution ṽ.

A key consequence of the semi-convexity of u and of the semi-concavity of v in the
variables x′, t is that u, v are differentiable in x′ and t at the maximum point (x̄, t̄)
and

Dx′u(x̄, t̄) = Dx′v(x̄, t̄) and ut(x̄, t̄) = vt(x̄, t̄) .

For a precise result, see Proposition 6.1.1-(v). Moreover, as a consequence of Re-
mark 6.1.2 (since the semi-convexity of u holds only in the tangent variables), if we
denote by (p′, pN , pt) any element in the superdifferential of u at (y, s) close to (x̄, t̄),
then (p′, pt)→ (Dx′u(x̄, t̄), ut(x̄, t̄)) as (y, s) tends to (x̄, t̄).

For the supersolution v however, the same property may not be true for the elements
of the subdifferential since v can be discontinuous at (x̄, t̄). To turn around this
difficulty we introduce

ṽ((x′, xN), t) := min
(
v((x′, xN), t) , v((x′, 0), t) +K|xN |

)
,

where K > 0. If we choose K large enough, function ṽ is a supersolution of the
equation for xN 6= 0, as the minimum of two supersolutions and is continuous at
(x̄, t̄). As a consequence of this continuity property, ṽ being still semi-concave in
(x′, t) as the minimum of semi-concave functions in (x′, t), for any element (p′, pN , pt)
in the subdifferential of ṽ at (y, s) close to (x̄, t̄), the following limit holds: (p′, pt)→
(Dx′ ṽ(x̄, t̄), ṽt(x̄, t̄)) = (Dx′v(x̄, t̄), vt(x̄, t̄)) as (y, s) tends to (x̄, t̄).

(c) Reduction to a stationary, one-dimensional proof.

These properties of u and ṽ allow us to argue only in the xN variable since, taking
into account the regularity of H1, H2, we have

H̃1(uxN ) ≤ −η < 0 ≤ H̃1(ṽxN ) for xN > 0 ,

H̃2(uxN ) ≤ −η < 0 ≤ H̃2(ṽxN ) for xN < 0 ,

where for i = 1, 2,

H̃i(pN) = ut(x̄, t̄) +Hi(x̄, t̄, u(x̄, t̄), (Dx′u(x̄, t̄), pN)) + o(1) ,
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the o(1) tending to 0 as r̄ → 0 if we consider the equations in B((x̄, t̄), r̄). It is
worth pointing out that for the Hi-equations for v, we have used the fact that both
r 7→ Hi(x, t, r, p) are increasing and that u(x̄, t̄) > ṽ(x̄, t̄) = v(x̄, t̄).

In order to proceed, we compute the superdifferentials for u in the two directions
xN > 0 and xN < 0. We recall that since the test-functions are different in Ω1 and Ω2,
these superdifferentials are different. For xN > 0, we have D+

1 u(0) = [p1,+∞) where
p1 is defined as the p in Lemma 16.3.1, but we are referring here to Ω1. For xN < 0,
we have D+

2 u(0) = [−∞,−p2) where p2 is defined as the p in Lemma 16.3.1 but for
u(−xN), in Ω2.

Using the definition of viscosity subsolution together with Lemma 16.3.1 and 16.3.4,
we obtain, since n1 = −eN and n2 = eN

min(−p1 + p2, H̃1(p1) + η, H̃2(p2) + η) ≤ 0 ,

for any p1 ≥ p1 and p2 ≤ −p2; moreover

H̃1(p1) + η ≤ 0 if p1 ∈ [p
1
, p1] ,

H̃2(p2) + η ≤ 0 if p2 ∈ [−p2,−p2
] .

For the supersolution v, we argue through ṽ but the aim is really to identify the
subdifferential of v at (x̄, t̄). We first notice that, (x̄, t̄) being a maximum point of
u−v, then u(x, t)−v(x, t) ≤ u(x̄, t̄)−v(x̄, t̄) for any (x, t) and the Lipschitz continuity
of u implies

−C|(x, t)− (x̄, t̄)| ≤ u(x, t)− u(x̄, t̄) ≤ v(x, t)− v(x̄, t̄) ,

for C large enough, and in particular in the xN -direction

−C|xN | ≤ v((x̄′, xN), t̄)− v(x̄, t̄) . (16.5)

Hence the subdifferentials of v at (x̄, t̄) in both directions, namely D−1 v(0) and D−2 v(0)
are non empty.

Moreover, applying Lemma 16.3.1 to ṽ, we obtain that

H̃1(q1) ≥ 0 if q1 ∈ [q
1
, q1] ,

H̃2(q2) ≥ 0 if q2 ∈ [−q2,−q2
] ,

where D−1 ṽ(0) = (−∞, q
1
] and D−2 ṽ(0) = [−q

2
,+∞).

On the other hand, using Lemma 16.3.4, (Dx′v(x̄, t̄), q1, vt(x̄, t̄)) ∈ D−
Q1

` ṽ(x̄, t̄) (3)

for any q1 ≤ q
1
.

(3)We recall that D−
Q1

` ṽ(x̄, t̄) denotes the subdifferential related to Q1
`

of the function ṽ at (x̄, t̄)
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In order to connect the sub-differentials of v and ṽ, we use the following classical
result whose proof is an exercise left to the reader.

Lemma 16.3.6 Let w1, w2 : A ⊂ Rp → R be two l.s.c. functions such that w1(z0) =
w2(z0) for some z0 ∈ A. Then

D−A min(w1, w2)(z0) ⊂ D−Aw1(z0) ∩D−Aw2(z0) .

Applying the result with A := Ω1 × [0, Tf ], z0 := (x̄, t̄), w1(x, t) = v(x, t) and
w2(x, t) = v((x′, 0), t) + K|xN |, we deduce that (Dx′v(x̄, t̄), q1, vt(x̄, t̄)) ∈ D−

Q1
`v(x̄, t̄).

Of course, the same arguments can be used for D−
Q2

`v(x̄, t̄).

Hence, for any q1 ≤ q
1

and q2 ≥ −q2
,

max(−q1 + q2, H̃1(q1), H̃2(q2)) ≥ 0 .

(c) Using the viscosity inequalities to get contradictions.

Case 1 : Either [p
1
, p1] ∩ [q

1
, q1] 6= ∅ or [−p2,−p2

] ∩ [−q2,−q2
] 6= ∅ : this means that

there exists p such that we have

either H̃1(p) + η ≤ 0 ≤ H̃1(p) , or H̃2(p) + η ≤ 0 ≤ H̃2(p) ,

and in each case we reach a contradiction.

Case 2 : Otherwise, since 0 is a maximum point of u−v, we have necessarily p1 ≤ q1

and therefore p
1
≤ p1 < q

1
≤ q1. Considering the function p 7→ H̃1(p) which is less

that −η in [p
1
, p1] and positive in [q

1
, q1], we see that there exists p1 < r1 < q

1
such

that H̃1(r1) = −η/2.

Similarly, −q2 ≤ −q2
< −p2 ≤ −p2

and there exists −q
2
< r2 < −p2 such that

H̃2(r2) = −η/2. Then, choosing δ > 0 small enough and p1 = r1 − δ, p2 = r2 + δ, we
have p1 ≥ p1 and p2 ≤ −p2. Therefore the viscosity inequalities give

min(−p1 + p2, H̃1(p1) + η, H̃2(p2) + η) ≤ 0 ,

but with the choice of δ, H̃1(p1) + η > 0, H̃2(p2) + η > 0, which implies −p1 + p2 ≤ 0,
in other words −r1 + r2 + 2δ ≤ 0.

On the other hand, choosing q1 = r1 + δ and q2 = r2 − δ and using H̃1(q1) < 0,
H̃2(q2) < 0, we also get −q1 + q2 ≥ 0 which leads to a contradiction because this
implies −r1 + r2 − 2δ ≥ 0.
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The conclusion is that maxK(u − v), if positive, cannot be reached inside K but
necessarily on ∂PK, which ends the proof(4).

Q.E.D.

16.3.3 Some remarks on the comparison proof and on some
possible variants

In the above proof, the following points are crucial

(a) Because of the “normal controllability assumption”, the tangential regulariza-
tion of the subsolution does not cause any problem and provides us with a Lipschitz
continuous subsolution to which the Lions-Souganidis Lemma (Lemma 16.3.1) fully
applies: as a consequence, we can argue as if the problem was 1-dimensional and we
obtain informations on the equation and the junction condition not only for the el-
ements of the superdifferentials D+

1 u(0) = [p1,+∞) and D+
2 u(0) = [−∞,−p2), but

also on H̃1(p1) for p1 ∈ [p
1
, p1] and H̃2(p2) for p2 ∈ [−p2, p2

], i.e. a priori on larger
intervals than the expected ones.

(b) The situation is completely different for the supersolution, mainly because the
“normal controllability assumption” cannot play the same role. This first generates
Assumptions (i) or (ii) in order to be able to do the tangential regularization of
the supersolution but we end up with a function which is Lipschitz continuous and
semi-concave in the tangential variables but which can still be discontinuous in xN .
In particular at xN = 0. This is a difficulty to apply the Lions-Souganidis approach
because we cannot prove that H̃i(vxN ) ≥ 0 for any xN since we cannot use Proposi-
tion 6.1.1-(iv) which provides some kind of ”continuity” for the tangential derivatives
but only if we have the right continuity property on v. In the above proof, we have
chosen a strategy which consists in fully applying Lions-Souganidis Lemma to the
supersolution but this requires the introduction of ṽ. With this trick, whose aim is to
superimpose the continuity of the supersolution at xN = 0, the case of the superso-
lution can be treated as the subsolution one.

(c) Is this trick necessary/unavoidable? This question is important to extend the
result of Theorem 16.3.5 to more general junction conditions and in particular to
(FL) or (GJC) of flux-limited types for which such trick may not work. A first natural

(4)The authors wish to thank Peter Morfe for pointing out several unclear points in this proof
which led us to several improvements, in particular the statements of Lemma 16.3.4 and 16.3.6.
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reaction could be to accept the discontinuity in xN of the regularized supersolution
and to try to prove Lemma 16.3.1 in this framework. This may be feasible but a
natural assumption to do that would be (at least) to have a regular supersolution,
an assumption that we would like to avoid. Before going further, we remark that the
proof of Theorem 16.3.5 consists in examining carefully the properties of the elements
of the different super and subdifferentials of the sub and supersolution (and even more
for the subsolution as we mention it above). At this point, it is worth mentionning
that the maximum point property (16.5) yields

u(xN)− u(0) ≤ v(xN)− v(0) , (16.6)

and the first consequence of this inequality and of the Lipschitz continuity of u is
that D−1 v(0) and D−2 v(0) are non-empty. Hence we have, for any q1 ∈ D−1 v(0) and
q2 ∈ D−2 v(0)

max(−q1 + q2, H̃1(q1), H̃2(q2)) ≥ 0 . (16.7)

Then we argue in the following way

• If D−1 v(0) = (−∞, q
1
], then (16.7) holds but Lemma 16.3.4 applies and gives,

in addition, H̃1(q
1
) ≥ 0. And, of course, we may use a similar argument if

D−2 ṽ(0) = [−q
2
,+∞).

• Or D−1 v(0) = R – this is the case, in particular, if v is not Ω1×(0, Tf )-regular at
(x̄, t̄) and (16.7) holds for any q1 ∈ R and q2 ∈ D−2 v(0). In addition, H̃1(q1) ≥ 0
if q1 ≥ q

1
for some q

1
by the coercivity of H̃1. And, of course, a similar argument

holds if D−2 v(0) = R.

In summary, by applying Lemma 16.3.4 instead of Lemma 16.3.1, not only we have
more informations than we could have obtained by applying the Lions-Souganidis
Lemma but we can also avoid introducing ṽ.

(d) Last very important point: in Equation 16.6, for xN > 0, we can divide by xN
and take the lim inf: by using Lemma 16.3.1 for u and Lemma 16.3.4 for v, we obtain
the inequality p

1
≤ q

1
where the information on p

1
becomes crucial (we again insist

on the fact that p
1
/∈ D+

1 u(0)).

With all these ingredients, we will be able in the next section to extend the result
of Theorem 16.3.5 to a large class of (GJC) without assuming any regularity on the
supersolution.
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16.3.4 Comparison results for more general junction condi-
tions of (FL) or (GJC) type

Theorem 16.3.5 can be generalized for (FL) and (GJC) conditions under some hy-
potheses:

Theorem 16.3.7 Assume that H1 and H2 satisfy (GA-Gen) and (TC-HJ). Then
(GCR) holds

• in the case of (FL): for any bounded REGULAR subsolution u and supersolution
v if G satisfies (GA-G-FL).

• in the case of (GJC) of “Kirchhoff type”, i.e. if G satisfies (GA-G-GKT): for
any bounded subsolution u and supersolution v.

• in the case of (GJC) of “Flux-limited type”, i.e. if G satisfies (GA-G-FLT):
for any bounded REGULAR subsolution u and supersolution v.

Moreover, if v is locally Lipschitz continuous in xN , uniformly in x′, t, then these
three results hold true without assuming (TC-HJ) for H1, H2 and, in the last case
by assuming only that G satisfies (GA-ContG) with ε0 = 1 and (14.2) holds with
α > 0, β = 0.

Several remarks can be made on Theorem 16.3.7. First, for (FL) type conditions,
we face the difficulty that sub and supersolutions may not be regular and we have to
add these properties as an assumption.

But the main one follows along the lines of the remark we made when introduc-
ing the assumptions (GA-G-FL), (GA-G-GKT), (GA-G-FLT). Using the Lions-
Souganidis approach as in the proof of Theorem 16.3.5 requires a “tangential regular-
ization” both for the sub and the supersolution in the spirit of Sections 3.4.3 and 3.4.4
in order to reduce to a 1-dimensional proof. While this regularization does not cause
much problem in the first case of (FL)—except that we have to impose (TC-HJ)
for H1 and H2—, it requires a particular treatment when G is of “Kirchhoff type”,
and a particular form of G when it is of “flux-limited type”. For this reason, we need
(GA-G-FLT) which is roughly speaking the analogue of (TC-s).

Proof — We are not going to give the full proof of Theorem 16.3.7 since most of
the arguments are those of the proof of Theorem 16.3.5, using in an essential way
the Lions-Souganidis approach. We just indicate the additional arguments which are
needed.
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We first comment (LOC1),(LOC2): in the case of (FL) or when (GJC) is of “Flux-
limited type”, the checking can be made exactly as in Section 3.2.2, the ut-term
playing the main role. In the case when (GJC) is of “Kirchhoff type”, one has to
add a αϕ(xN) (or δϕ(xN)) term where ϕ ∈ PC1(R) is a bounded function which
behaves like L|xN | in a neighborhood of xN = 0. With this additional argument,
(LOC1),(LOC2) hold in the three cases and we can reduce the proof to a (LCR).

The next important point concerns the regularization of both the sub and superso-
lution which we examine case by case.

(a) (FL) case — the regularity of the sub and supersolution is a key assumption since
we have seen that (JVSub) and (JVSuper) are not necessarely regular but the rest of
the proof follows readily the arguments of Sections 3.4.3 and 3.4.4 because (TC-s) is
ensured by (TC-HJ) or (GA-G-FL), even if, for the subsolution, the equation does
not satisfy (NC) on H.

(b) “Flux-limited type” (GJC)— The same comments are true here and explain the
restrictive assumptions we have to impose in this case.

(c) “Kirchhoff type” (GJC)— This is the most complicated case where we need the

Lemma 16.3.8 Under the assumptions of Theorem 16.3.7 in the case of (GJC) of
“Kirchhoff type”, if u and v are respectively a sub and supersolution of (HJ-Gen)-
(GJC), then, for K2 large enough and K1 large compared to K2, the functions

uε(x′, xN , t) := max
(y′,s)

{
u(y′, xN , s)− exp(K1t) exp(−K2|xN |)

( |x′ − y′|2
ε2

+
|t− s|2

ε2

)}
,

vε(x′, xN , t) := min
(y′,s)

{
v(y′, xN , s) + exp(K1t) exp(−K2|xN |)

( |x′ − y′|2
ε2

+
|t− s|2

ε2

)}
,

are respectively approximate (JVSub) and (JVSuper) of (HJ-Gen)-(GJC).

Proof of Lemma 16.3.8 — The proof follows essentially the proofs of the regular-
ization results of Sections 3.4.3 and 3.4.4 with the following additional arguments:
first, we notice that we can use a PC1-term exp(−K2|xN |). If xN > 0 or xN < 0, this
term produces a “bad term” in the xN -derivative which has to be controlled by the
t-derivative coming from the exp(K1t)-term.

At xN = 0, if the G-inequality holds, the ut-term cannot control the “bad terms”
anymore but the exp(K1t)-term has the “good sign” and, since β > 0, the derivatives
of exp(−K2|xN |) allow to control all the error terms.

Q.E.D.
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Once this regularization is done, we can in each case transform the approximate
subsolution into a strict subsolution using either a −ηt term or a ηϕ(xN) term where
ϕ is the function we already used at the beginning of the proof.

From this point, we can follow readily the proof of Theorem 16.3.5 to conclude.
Q.E.D.

16.3.5 Extension to second-order problems (II)

The same approach allows to deal with second-order problems, with similar structure
assumptions on the Hamiltonians.

Theorem 16.3.9 (Comparison in the second-order case – LS-version)
Under the assumptions of Theorem 16.3.7, the comparison result remains valid for
Lipschitz continuous sub and supersolutions of second-order equations of the form

ut − Tr(ai(x)D2u) +Hi(x, t, u,Du) = 0 in Ωi × (0, Tf ) , (16.8)

provided that, for i = 1, 2, ai = σiσ
T
i for a bounded, Lipschitz continuous function σi,

depending only on xN in a neighborhood of H.

Of course, the most restrictive assumption in Theorem 16.3.9 is the Lipschitz con-
tinuity of the sub and supersolutions to be compared. But if we examine the proof in
the first-order case, we remark that the tangential regularization provides a Lipschitz
continuous subsolution because of the normal controllability and the regularized su-
persolution “behaves” like a Lipschitz continuous function because of the maximum
point property in the proof of the (LCR). All these arguments, and in particular the
first one, fail here because of the second-order term and we need to replace them by
the ad hoc assumption.

The proof follows the arguments of the proof of Theorem 16.3.7, except that we
need the following extension of the Lions-Souganidis Lemma (Lemma 16.3.1).

Lemma 16.3.10 We assume that for some r > 0, u : B(0, r)×[0, r] ⊂ RN−1×R→ R
is an u.s.c. subsolution [ resp. l.s.c. supersolution ] of

−Tr(a(xN)D2w) + H̃(wxN ) = 0 in B(0, r)× (0, r) ,

where H̃ is a continuous function and a(xN) = σ(xN)σT (xN) for some bounded Lip-
schitz continuous function σ. If moreover
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(i) u(x′, xN) is Lipschitz continuous and semi-convex [ resp. semi-concave ] in x′,
uniformly for xN ∈ [0, r] ,

(ii) there exists a constant k > 0, such that u(0, xN)− u(0, 0) ≤ kxN

[ resp. u(0, xN)− u(0, 0) ≥ kxN ] for 0 ≤ xN ≤ r ,

(iii) the function u is differentiable w.r.t. x′ at (0, 0) ,

then H̃(p) ≤ 0 [ resp. H̃(p) ≥ 0 ] for all p ∈ [p, p] where

p := lim inf
xN→0

[
u(0, xN)− u(0, 0)

xN

]
≤ p := lim sup

xN→0

[
u(0, xN)− u(0, 0)

xN

]
.

We first point out that the assumption on u implies that it is continuous at (0, 0)
but may still have discontinuities outside (0, 0).

The additional difficulty in this lemma (compared to Lemma 16.3.1) is the x′ ∈
RN−1-dependence in the D2u-term which cannot be dropped by the semi-convex (or
semi-concave) assumption on u.

Proof — We only give the proof in the subsolution case, the supersolution one being
analogous.

Replacing u(x′, xN) by the subsolution u(x′, xN) − u(0, 0) − Dx′u(0, 0) · x′, we
can assume w.l.o.g. that u(0, 0) = 0 and Dx′u(0, 0) = 0. Also, as in the proof of
Lemma 16.3.1, we first assume that p < p.

(a) The first step consists in giving some estimates on u for (x′, xN) close to (0, 0).
By the semi-convexity assumption, if u is differentiable in x′ at (x′, xN) and if (x′, xN)
is close to (0, 0), then |Dx′u(x′, xN)| is also close to |Dx′u(0, 0)| = 0 and we deduce
from this property that

u(x′, xN)− u(0, xN) = |x′|ε(x′, xN) ,

where ε(x′, xN)→ 0 when (x′, xN)→ (0, 0).

(b) For r′ ≤ r, we consider the domain Dr′ := {(x′, xN) : |x′| ≤ xN , 0 ≤ xN ≤ r′}
and the function

ψ(x′, xN) := u(x′, xN)− |x
′|4

x4
N

− p · xN , where p < p < p .

This function ψ is defined in Dr′ \ {(0, 0)} but we can extend it at (0, 0) by setting
ψ(0, 0) = 0, which yields an u.s.c. function on Dr′ .
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(c) We consider a sequence (sk)k such that sk > 0 for all k, sk → 0 and

u(0, sk)− u(0, 0)

sk
=
u(0, sk)

sk
→ p ,

and we choose r′ = sk. We claim that the maximum of ψ on Dsk is achieved in the
interior of the domain.

Indeed, if |x′| = xN , ψ(x′, xN) = u(x′, xN) − 1 − pxN ≤ −1 + o(1), while for
xN = r′ = sk, by the estimate in (a) above,

ψ(x′, sk) ≤|x′|ε(x′, sk) + u(0, sk)− psk
≤(p− p)sk + o(sk) < 0 .

Finally ψ(0, 0) = 0 and we conclude that ψ ≤ 0 on ∂Dsk .

On the other hand, there exists a sequence (rl)l such that rl > 0 for all l, rl → 0
and

u(0, rk)− u(0, 0)

rk
=
u(0, rk)

rk
→ p .

For l large enough, we have rl < sk and

ψ(0, rk) ≤u(0, rk)− prk = (p− p)rk + o(rk) > 0 .

Therefore the maximum of ψ is achived in the interior of Dsk .

(d) We can now apply the viscosity subsolution inequality at the maximum point
(x′, xN) of ψ. To do so, we first remark that u is differentiable w.r.t. x′ at this maximum
point by the semi-convexity property and

Dx′u(x′, xN) =
4|x′|2x′

x4
N

,

therefore 4|x′|3/x4
N → 0 as sk → 0 . On the other hand, the term corresponding to

the second derivative, taking into account that a(xN) = O(x2
N) is estimated by

−Tr(a(xN)D2ψ) = O(x2
N) ·O

(
|x′|2

x4
N

+
|x′|3

x5
N

+
|x′|4

x6
N

)
→ 0 as sk → 0 .

We deduce that

H̃
(
p− 4|x′|4

x5
N

)
≤ o(1) ,

but since 4|x′|4/x5
N → 0 as sk → 0, the conclusion follows: H̃(p) ≤ 0.
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(e) The case when p = p or p follows from the continuity of H̃, and the case p = p is
treated exactly as in the first-order case, so the proof is complete.

Q.E.D.

Using Lemma 16.3.10, the proof of Theorem 16.3.9 follows along the lines of Theo-
rem 16.3.7, the Lipschitz continuity of u and v ensuring that the regularization process
allows to use the lemma.

16.4 Convergence of the vanishing viscosity ap-

proximation (II): via (JVS)

In this section, we use the Lions-Souganidis comparison result to show that the vanish-
ing viscosity approximation converges to the unique solution of the Kirchhoff problem;
this gives another version of Theorem 15.5.1 in a non-convex setting.

Theorem 16.4.1 Assume that, for any ε > 0, uε is a continuous viscosity solution
of

uεt − ε∆uε +H(x, t,Duε) = 0 in RN × (0, Tf ) , (16.9)

uε(x, 0) = u0(x) in RN , (16.10)

where H = H1 in Ω1 and H2 in Ω2, and u0 is bounded continuous function in RN .
Under the assumptions of Theorem 16.3.5 and if the sequence (uε)ε is uniformly
bounded in RN × (0, Tf ), C1 in xN in a neighborhood of H, then, as ε → 0, the
sequence (uε)ε converges locally uniformly to the unique solution of the Kirchhoff
problem in RN × (0, Tf ).

This second result on the convergence of the vanishing viscosity approximation may
appear as being more general than Theorem 15.5.1 since it covers the case of non-
convex Hamiltonians. But we point out that Theorem 16.3.5 requires either (3.19) or
(TC-s) which limit its range of applications. This also suggests connections between
solutions with (FL) and (KC) junctions conditions: we study these connections in the
next section.

The proof is almost standard since we use the half-relaxed limits method to pass to
the limit, coupled with a strong comparison result to conclude, here Theorem 16.3.5.
So, the only difficulty consists in proving lemma 16.4.2 below which, despite its very
classical formulation, is not standard at all: the formulation involves test-function
which are not smooth across H. Therefore, this is not an usual stability result for
viscosity solutions.
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Lemma 16.4.2 The half-relaxed limits u = lim sup∗ uε and u = lim inf ∗ u
ε are re-

spectively sub and supersolution of the Kirchhoff problem.

Proof — We prove the result for u, the one for u being analogous. Let φ ∈ PC1(RN ×
[0, Tf ]) be a test-function and let (x̄, t̄) be a strict local maximum point of u−φ. The
only difficulty is when x̄ ∈ H and therefore we concentrate on this case.

By standard arguments, uε−φ has a local maximum point at (xε, tε) and (xε, tε)→
(x̄, t̄) as ε→ 0.

a) If there exists a subsequence (xε′ , tε′) with xε′ /∈ H, the classical arguments can be
applied and passing to the limit (along another subsequence) in the inequality

φt(xε, tε)− ε∆φ(xε, tε) +H(xε, tε, u
ε(xε, tε), Dφ(xε, tε)) ≤ 0

yields the result.

(b) The main difficulty is when xε ∈ H for all ε small enough since φ is not smooth
at (xε, tε). Here we use

a :=
∂φ

∂xN
((x̄′, 0+), t̄) = lim

xN→0,xN>0

∂φ

∂xN
((x̄′, xN), t̄)

and

b :=
∂φ

∂xN
((x̄′, 0−), t̄) = lim

xN→0,xN<0

∂φ

∂xN
((x̄′, xN), t̄) .

If −a+ b ≤ 0, the Kirchoff subsolution condition is satisfied and the result holds.

(c) The last possibility is that −a + b > 0, and since uε is smooth, the maximum
point property at (xε, tε) implies that

∂uε
∂xN

((x′ε, 0), t̄) ≤ ∂φ

∂xN
((x′ε, 0+), t̄) ,

and
∂uε
∂xN

((x′ε, 0), t̄) ≥ ∂φ

∂xN
((x′ε, 0−), t̄) .

Therefore

− ∂φ

∂xN
((x′ε, 0+), t̄) +

∂φ

∂xN
((x′ε, 0−), t̄) ≤ 0 ,

and using that both partial derivatives are continuous in x′, we reach a contradiction
for ε small enough (remember that −a+ b > 0 here).

Q.E.D.
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Chapter 17

From One Notion of Solution to
the Others

The aim of this chapter is to connect the three notions of solutions we have at hand:
Ishii solutions, flux-limited solutions and junction viscosity solutions.

We first show that Ishii solutions for (7.1) can be seen as (FLS) associated with an
HT or Hreg

T flux-limiter in the case of quasi-convex Hamiltonians. We point out that
the definitions of HT and Hreg

T are extended to the case of quasi-convex Hamiltonians
by (10.5) and (10.6), and we refer the reader to Section 6.2 for useful results on them.
Through this (FLS) interpretation, we complement the results of Part II both by
taking into account more general Hamiltonians but also by considering a notion of
solution which allows a pure pde approach of the problem.

Then we compare (FLS) and (JVS) in the context of flux-limited conditions: here
the formulation of the notion of solutions on H is the key point.

Finally, we prove that junction viscosity solutions associated with Kirchhoff condi-
tions are flux-limited solutions for a specific flux-limiter which we identify explicitly.
We do the analysis first for the most classical Kirchhoff condition and then for gen-
eralized ones.

17.1 Ishii solutions and (FLS)

The main result of this section is the

Proposition 17.1.1 Assume that (HQC) holds. Then

289
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(i) An u.s.c. function u : RN × (0, Tf ) → R is an Ishii subsolution of (7.1) if and
only if it is a (FLSub) of (HJ-Gen)-(FL) with the flux-limiter Hreg

T .

(ii) A l.s.c. function v : RN × (0, Tf ) → R is an Ishii supersolution of (7.1) if and
only if it is a (FLSuper) of (HJ-Gen)-(FL) with the flux-limiter HT .

An immediate corollary of this result is the

Corollary 17.1.2 Under the assumptions of Theorem 15.3.2 with G = HT or Hreg
T

(i) If U+ is the unique (FLS) of (HJ-Gen)-(FL) with the flux-limiter Hreg
T , it is the

maximal Ishii subsolution of (7.1).
(ii) If U− is the (FLS) of (HJ-Gen)-(FL) with the flux-limiter HT , it is a minimal
Ishii supersolution of (7.1).

Proof of Proposition 17.1.1 — Of course, only the viscosity inequalities on H×(0, Tf )
are different and therefore we concentrate on them.

(a) Generalities — Throughout the proof we consider elements of the superdifferential
of u or the subdifferential of v at (x, t) ∈ H × (0, Tf ) of the form (px + λeN , pt), and
inequalities for H1, H2 and HT or Hreg

T . In all these inequalities, only the dependence
in λ is going to play a role and, in order to simplify the notations, we set, for i = 1, 2

Fi(λ) := pt +Hi(x, t, r, px + λeN) ,

where x, t, px and r = u(x, t) or v(x, t) are assumed to be fixed. We define analogously
F±i . We also use the notations

FT = pt +HT (x, t, r, px) , F
reg
T = pt +Hreg

T (x, t, r, px) ,

for, again, x, t, r = u(x, t) or v(x, t) and px being fixed. We also recall that, in the
quasi-convex case,

HT (x, t, r, px) = min
λ∈R

max(H1(x, t, r, px + λeN), H2(x, t, r, px + λeN)) ,

Hreg
T (x, t, r, px) = min

λ∈R
max(H−1 (x, t, r, px + λeN), H+

2 (x, t, r, px + λeN)) ,

i.e. FT = minλ max(F1(λ), F2(λ)) and similarly F reg
T = minλ max(F−1 (λ), F+

2 (λ)).
From these representations we deduce easily from Section 6.2.2 the existence of
(λ, λ) ∈ R2 such that F reg

T = F−1 (λ) = F+
2 (λ) and

FT =


either F1(λ) = F2(λ)

or F1(λ) = minF1(λ) if F1 ≥ F2

or F2(λ) = minF2(λ) if F2 ≥ F1 .

(17.1)
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(b) Subsolution case — Before providing the proof, we point out that (HQC) implies
that (NCw) holds for all the Hamiltonians involved in the Ishii and flux-limited
formulations, cf. Remark 3.4.3. Hence all the subsolutions we are going to consider
are regular on H.

If u is an Ishii subsolution of (7.1) and if we pick (px + λ1eN , pt) ∈ D+

Q1
u(x, t),

(px + λ2eN , pt) ∈ D+

Q2
u(x, t), we have to show that

max(F+
1 (λ1), F−2 (λ2), F reg

T ) ≤ 0 .

Notice that Ishii subsolutions are Lipschitz continuous. Therefore, not only are they
regular on H but the normal components of their superdifferentials are bounded from
below in Q1 and from above in Q2. Proposition 3.5.4 can then be applied, which
gives existence of µ1 ≤ λ1 and µ2 ≥ λ2 such that (px + µ1eN , pt) ∈ D+

Q1
u(x, t),

(px + µ2eN , pt) ∈ D+

Q2
u(x, t) and

F1(µ1) ≤ 0 , F2(µ2) ≤ 0 .

Since these inequalities imply F+
1 (µ1) ≤ 0 and F−2 (µ2) ≤ 0, we deduce from the

monotonicity of F+
1 and F−2 that F+

1 (λ1) ≤ 0 and F−2 (λ2) ≤ 0.

It remains to prove that F reg
T ≤ 0. To do so, we argue by contradiction: if F reg

T > 0,
then F−1 (λ) = F+

2 (λ) > 0. Since F−1 (µ1) ≤ 0 and F+
2 (µ2) ≤ 0, we deduce from the

monotonicity of F−1 and F+
2 that µ1 < λ < µ2. But this double inequality implies

that
(px + λeN , pt) ∈ D+

RNu(x, t)

and therefore min(F1(λ), F2(λ)) ≤ 0 because u is an Ishii subsolution of (7.1). This
is a contradiction with the fact that F−1 (λ) = F+

2 (λ) > 0, and we deduce that the
(FLSub) condition hold son H.

Conversely, if u is (FLSub) of (HJ-Gen)-(FL) associated with the flux-limiter Hreg
T

and if (px + λeN , pt) ∈ D+
RNu(x, t), we want to show that

min(F1(λ), F2(λ)) ≤ 0 .

By the (FLSub) property, we know that

max(F+
1 (λ), F−2 (λ), F reg

T ) ≤ 0 ,

and therefore it remains to prove that min(F−1 (λ), F+
2 (λ)) ≤ 0. We argue by contra-

diction assuming that this min is strictly positive. Using again the monotonicity of
F−1 , F

+
2 and the fact that F reg

T ≤ 0, we deduce that λ > λ and λ > λ which is clearly
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a contradiction, proving that u is an Ishii subsolution. The proof for the subsolution
case is then complete.

(c) Supersolution case — Contrarily to the case of subsolutions, the supersolutions
are not necessarily regular on H but as we see below, this does not pose any problem.

If v is an Ishii supersolution of (7.1) and if (px + λ1eN , pt) ∈ D−
Q1
v(x, t), (px +

λ2eN , pt) ∈ D−Q2
v(x, t), we want to show that

max(F+
1 (λ1), F−2 (λ2), FT ) ≥ 0 .

In order to apply Proposition 3.5.4, we consider several cases

1. If the set J1 = {λ ∈ R : (px+λDd(x), pt) ∈ D−
Q1

lv(x, t)} is bounded from above,

there exists µ1 ≥ λ1 such that (px + µ1eN , pt) ∈ D−Q1
v(x, t) and F1(µ1) ≥ 0.

2. If the set J2 = {λ ∈ R : (px+λDd(x), pt) ∈ D−
Q2

lv(x, t)} is bounded from below,

there exists µ2 ≤ λ2 such that (px + µ2eN , pt) ∈ D−Q2
v(x, t) and F2(µ2) ≥ 0.

3. Otherwise, for any µi ∈ R, (px + µieN , pt) ∈ D−
Ωi
v(x, t) and therefore, by the

coercivity of Fi, Fi(µi) ≥ 0 for some µi such that µi ≥ λ1 if i = 1 or µi ≤ λ2 if
i = 2.

In any case, if either F+
1 (µ1) ≥ 0 or F−2 (µ2) ≥ 0, we are done by using the mono-

tonicity of F+
1 and F−2 . Therefore we can assume without loss of generality that

F−1 (µ1), F+
2 (µ2) ≥ 0 and we have to prove that FT ≥ 0.

We argue by contradiction assuming that FT < 0 and using (17.1), we see that
there are three options.

(i) If there exists λ such that FT = F1(λ) = F2(λ) < 0, then by the monotonicity
of F−1 and F+

2 , it follows that µ1 > λ > µ2. Hence (px + λeN , pt) is both
in D−

Q1
lv(x, t) and in D−

Q2
lv(x, t), and therefore in D−RNv(x, t) and by the Ishii

supersolution property, we get max(F1(λ), F2(λ)) ≥ 0, a contradiction.

(ii) If FT = F1(λ) = minF1(λ) < 0 with F1 ≥ F2, we still have F2(λ) < 0 and we
conclude in the same way.

(iii) Of course this is also the case when FT = F2(λ) = minF2(λ) < 0 with F2 ≥ F1.
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In conclusion, FT ≥ 0 and v is (FLSuper) associated to the flux-limiter HT .

Conversely, if v is (FLSuper) of (HJ-Gen)-(FL) with the flux-limiter HT and if
(px + λeN , pt) ∈ D−RNv(x, t), we have to show that

max(F1(λ), F2(λ)) ≥ 0 .

By the (FLSuper) property, we already know that

max(F+
1 (λ), F−2 (λ), FT ) ≥ 0 ,

which implies that: (i) either F1(λ) ≥ F+
1 (λ) ≥ 0 or F2(λ) ≥ F−2 (λ) ≥ 0, in which

case we are done; (ii) or FT ≥ 0, but using that max(F−1 (λ), F+
2 (λ)) ≥ FT ≥ 0

implies that max(F1(λ), F2(λ)) ≥ 0 and we also get the conclusion. The proof for the
supersolution case is then complete.

Q.E.D.

17.2 (FLS) and (JVS) for flux-limited conditions

We now prove the equivalence of both notions of solutions in the case of Flux-Limited
conditions. We point out that, since (JVSub) are not necessarily regular, we have to
make this non-trivial assumption. However, as we saw in Proposition 16.1.3, this
assumption is automatically satisfied in the case of Kirchhoff-type conditions.

Proposition 17.2.1 Assume (GA-QC) and that G satisfies (HBA−HJ). Then

(i) an u.s.c., locally bounded function u : RN × (0, Tf ) → R is a flux-limited sub-
solution of (HJ-Gen)-(FL) with flux-limiter G if and only if it is a regular G-
(JVSub).

(ii) a l.s.c., locally bounded function v : RN × (0, Tf )→ R is a flux-limited superso-
lution of (HJ-Gen)-(FL) if it is a G-(JVSuper).

Proof — In all this proof, ψ is always a generic test-function in PC1(RN × [0, Tf ]) and
the maximum or minimum of u−ψ in RN × (0, Tf ) is always denoted by (x, t), which
we assume to be located on H× (0, Tf ).

(a) Subsolutions – We just sketch the proof here since this case is easy. If u is a flux-
limited subsolution, it clearly satisfies (16.1). Indeed, if u−ψ has a maximum at (x, t),
then ψt + G(x, t, v,DHψ) ≤ 0 because of the “max” in the definition of flux-limited
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subsolutions. To prove the converse, we use in an essential way the regularity of the
(JVSub): using Proposition 3.5.1 with L = H+

1 or H−2 , we see that (x, t) ∈ H×(0, Tf ),
local maximum point of u− ψ in RN × (0, Tf ) then

ψt +H+
1 (x, t, u,Dψ1) ≤ 0 , ψt +H−2 (x, t, u,Dψ2) ≤ 0 .

It remains to prove that ψt + G(x, t, v,DHψ) ≤ 0, which is done as follows: for any
C > 0, u− (ψ+C|xN |) has also a maximum at (x, t) ∈ H× (0, Tf ) but taking C > 0
large enough in (16.1) yields that the min cannot be reached by the H1/H2-terms
since both Hamiltonians are coercive. Thus necessarily, the non-positive min is given
by the junction condition and the result follows.

(b) Supersolutions – This case is a little bit more delicate. Of course, a flux-limited
supersolution v satisfies (16.2) since H1 ≥ H+

1 and H2 ≥ H−2 . The main point is then
to prove that supersolutions of (16.2) are flux-limited supersolutions.

If (x, t) ∈ H× (0, Tf ) is a local maximum point of u− ψ, (16.2) holds and we wish
to show that

max
(
ψt +G(x, t, v,DHψ), ψt +H+

1 (x, t, v,Dψ1), ψt +H−2 (x, t, v,Dψ2)
)
≥ 0 .

Assuming this is not the case, then necessarily all three quantities above are strictly
negative and (16.2) implies

max
(
ψt +H−1 (x, t, v,Dψ1), ψt +H+

2 (x, t, v,Dψ2)
)
≥ 0 .

Let us assume for example that ψt+H
−
1 (x, t, v,Dψ1) ≥ 0, the other case being treated

similarly.

Refering the reader to Section 10.2 and Remark 10.3.3 where the properties of
H+

1 , H
−
2 are described we see that, if Dψi = piT + piNeN for i = 1, 2, where piT ∈ H

and piN ∈ R, then these inequalities imply for instance

−ψt(x, t) > H+
1 (x, t, v, p1

T + p1
NeN) , therefore −ψt(x, t) > min

s
(H1(x, t, v, p1

T + seN)) .

Denoting by s∗ ∈ R a real such that −ψt(x, t) = H−1 (x, t, v, p1
T +seN), we deduce that

s∗ > m+
1 (x, t, v, p1

T ), the largest point of where s 7→ H1(x, t, v, p1
T + seN) reaches its

minimum. On the other hand, the inequality ψt + H−1 (x, t, v,Dψ1) ≥ 0 implies that
p1
N ≥ s∗, so that finally p1

N > m+
1 (x, t, v, p1

T ).

There are now two cases. In the first case ψt + H+
2 (x, t, v,Dψ2) ≥ 0 and similarly

as above, p2
N < m−2 (x, t, v, p1

T ), the least minimum point for H2. Here, we set

ψ̃(x, t) :=

{
ψ̃1(x, t) = ψ1(x, t) + (m+

1 (x, t, v, p1
T )− p1

N)xN if xN > 0

ψ̃2(x, t) = ψ2(x, t) + (m−2 (x, t, v, p2
T )− p2

N)xN if xN < 0 .
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This new test-function still belongs to PC1(RN×[0, Tf ]) and v−ψ̃ has still a minimum
point at (x, t), therefore (16.2) holds with ψ̃. But, since by construction Dψ̃1(x, t) =
m+

1 (x, t, v, p1
T ) while Dψ̃2(x, t) = m−2 (x, t, v, p2

T ), it follows that for i = 1, 2,

ψ̃t +Hi(x, t, u,Dψ̃i) = ψ̃t + min
s

(Hi(x, t, v, p
i
T + seN)) < 0 .

Therefore ψ̃t +G(x, t, v,DHψ̃) ≥ 0, which obviously implies ψt +G(x, t, v,DHψ) ≥ 0,
so that the flux-limited condition holds.

If, on the contrary, ψt + H+
2 (x, t, v,Dψ2) < 0, then ψt + H2(x, t, v,Dψ2) < 0 and

the change of test-function reduces to

ψ̃(x, t) :=

{
ψ̃1(x, t) = ψ1(x, t) + (m+

1 (x, t, v, p1
T )− p1

N)xN if xN > 0

ψ̃2(x, t) = ψ2(x, t) if xN < 0 ,

but we conclude as in the first case, which ends the proof.
Q.E.D.

17.3 The Kirchhoff condition and flux-limiters

Here we compare the sub/supersolution of (HJ-Gen) associated with the Kirchhoff
condition (KC) on one hand, and (FL)-conditions on the other hand in the framework
of quasi-convex Hamiltonians. We also consider the cases of more general Kirchhoff
type conditions. To simplify matter, we also drop here the dependence of the Hamil-
tonians in u since this does not create much more difficulty in the proofs.

The results of this section are based on the analysis of various properties of the
Hamiltonians (in particular Hreg

T ) which first appear in Section 10.2, taking into ac-
count Remark 10.3.3. We again recall that the definitions of HT and Hreg

T are extended
to the case of quasi-convex Hamiltonians by (10.5) and (10.6) and we refer the reader
to Section 6.2 for useful results on them. Notice that these sections are written in
a slightly more general form, where the Hamiltonians depend on u for the sake of
completeness but the results apply here, of course.

Our main result is

Proposition 17.3.1 Assume (GA-QC).

(i) An u.s.c. function u is a (JVSub) of (HJ-Gen)-(KC) if and only if u is a
(FLSub) with G = Hreg

T .
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(ii) A l.s.c. function v is a (JVSuper) of (HJ-Gen)-(KC) if and only if v is a (FLSu-
per) with G = Hreg

T .

It is worth pointing out that this result holds both in the convex and non-convex
case, provided that (HQC) is satisfied.

Proof — Of course, in both results, only the viscosity inequalities on H are different
and therefore we concentrate on this case. Again we are going to use the results of
Section 10.2 in light of Remark 10.3.3.

(a) We begin with the simpler implication that a (FLSub) [ resp. (FLSuper) ] with
G = Hreg

T is a (JVSub) [ resp. (JVSuper) ] of (HJ-Gen)-(KC). This is a consequence
of the properties

Hreg
T (x, t, p′) = min

s∈R
max

(
H−1 (x, t, p′ + seN), H+

2 (x, t, p′ + seN)
)

= max
s∈R

min
(
H−1 (x, t, p′ + seN), H+

2 (x, t, p′ + seN)
)
,

(17.2)

the first equality being the definition of Hreg
T , the second one being and easy conse-

quence of the monotonicity property of H−1 , H
+
2 .

We just sketch the proof dropping the variables x, t, p′ and keeping only the one
corresponding to the xN -derivative for the sake of clarity and denote by a the ut-
variable.

For the (FLSub) case, we start from

max(a+H+
1 (p1), a+H−2 (p2), a+Hreg

T ) ≤ 0 (17.3)

and using (17.2) in the max min form, we get both

Hreg
T ≥ min

(
H−1 (p1), H+

2 (p1)
)

and min
(
H−1 (p2), H+

2 (p2)
)
.

Now, there are two possibilities:

1. Either −p1 + p2 ≤ 0, in which case we clearly get the (KC) condition:
max(a+H1(p1), a+H2(p2),−p1 + p2) ≤ 0.

2. Or p1 > p2 and the monotonicity of H+
2 implies Hreg

T ≥ min
(
H−1 (p1), H+

2 (p2)
)
,

which leads to
max

(
a+H−1 (p1), a+H+

2 (p2)
)
≤ 0 .

But combining this inequality with (17.3), we also end up with the (KC) con-
dition:

min(a+H1(p1), a+H2(p2),−p1 + p2) ≤ 0 .
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The (FLSuper) case is done by similar arguments, using this time (17.2) in the
min max form. Now we turn to the proofs that (JVSub) [ resp. (JVSuper) ] of (HJ-
Gen)-(KC) are (FLSub) [ resp. (FLSuper) ] with G = Hreg

T .

(b) Subsolutions – We first recall that, by Proposition 16.1.3, the (JVSub) of (HJ-
Gen)-(KC) are regular on H. As a consequence, the H+

1 , H
−
2 inequalities clearly hold

on H thanks to Proposition 3.5.1 with L = H+
1 or H−2 .

Hence we just have to prove that, if (x̄, t̄) ∈ H × (0, Tf ) is a strict local maximum
point of u− ψ for some function ψ = (ψ1, ψ2) ∈ PC1(RN × [0, Tf ]), then

ψt(x̄, t̄) +Hreg
T

(
x̄, t̄, DHψ(x̄, t̄)

)
≤ 0 . (17.4)

In particular, (x̄, t̄) is a strict local maximum point of ((x′, 0), t) 7→ u((x′, 0), t) −
ψ((x′, 0), t) on H. Now, in order to build a specific test-function, we consider for some
small κ > 0

χ(yN) :=

{
(λ− κ)yN if yN ≥ 0 ,

(λ+ κ)yN if yN < 0 ,

where, referring to Lemma 10.2.1, λ is a minimum point of the coercive, continuous
function s 7→ max

(
H−1 (x̄, t̄, Dx′ψ(x̄, t̄)+seN), H+

2 (x̄, t̄, Dx′ψ(x̄, t̄)+seN)
)
. Notice that

by this lemma,

Hreg
T (x̄, t̄, Dx′ψ(x̄, t̄)) = H−1 (x̄, t̄, Dx′ψ(x̄, t̄) + λeN) = H+

2 (x̄, t̄, Dx′ψ(x̄, t̄) + λeN) ,
(17.5)

By standard arguments, the following function

(x, t) 7→ u(x, t)− ψ((x′, 0), t)− χ(xN)− (xN)2

ε2
(17.6)

has a maximum point (xε, tε) near (x̄, t̄) and (xε, tε) → (x̄, t̄) as ε tends to 0 since
(x̄, t̄) is a strict local maximum point of (x, t) 7→ u(x, t)− ψ((x′, 0), t) on H.

Notice that since κ > 0, choosing χ as above prevents the (KC)-condition to hold
on H, hence the condition on H reduces to “min

(
ψt + H1, ψt + H2

)
≤ 0”. Now we

examine the quantity

Qε := H1

(
xε, tε, Dx′ψ((x′ε, 0), tε) + (λ− κ)eN +

2(xε)N
ε2

)
)
,

defined only if (xε)N ≥ 0. Since H1 ≥ H−1 and H−1 is increasing in the eN -direction,
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it follows that

Qε ≥ H−1

(
xε, tε, Dx′ψ((x′ε, 0), tε) + (λ− κ)eN +

2(xε)N
ε2

)
)

≥ H−1
(
xε, tε, Dx′ψ((x′ε, 0), tε) + (λ− κ)eN)

)
≥ H−1

(
x̄, t̄, Dx′ψ(x̄, t̄) + (λ− κ)eN) + oε(1)

= Hreg
T (x̄, t̄, Dx′ψ(x̄, t̄) + λeN) + oε(1) +O(κ) .

An analogous inequality holds if (xε)N ≤ 0 with H2 and H+
2 and we deduce (17.4)

necessarily holds on H.

(c) Supersolutions – Let v be a (JVSuper) of (HJ-Gen)-(KC): we have to prove that
v is a flux-limited supersolution with G = Hreg

T .

To do so, we consider a test-function ψ = (ψ1, ψ2) ∈ PC1(RN × [0, Tf ]) such that
v − ψ reaches a local strict minimum at (x̄, t̄) ∈ H × (0, T ). For i = 1, 2, we use the
notations

a = ψt(x̄, t̄) , p
′ = Dx′ψ(x̄, t̄) , λi =

∂ψi
∂xN

(x̄, t̄) .

By the supersolution property of v, dropping the dependence in x̄, t̄, p′ to simplify the
notations,

max
(
− λ1 + λ2, a+H1(λ1), a+H2(λ2)

)
≥ 0 ,

and we want to prove that

max
(
a+Hreg

T , a+H+
1 (λ1), a+H−2 (λ2)

)
≥ 0 .

We argue by contradiction assuming that in the latter inequality, each term is strictly
negative.

With the notations of Section 3.5, we look at the subdifferential of v at (x̄, t̄),

restricted to each domain Qi
`

:= Ωi × (0, Tf ) for i = 1, 2, and see that ((p′, λi), a) ∈
D−
Qi

`v(x̄, t̄). Now we apply Proposition 3.5.4, denoting by

λ̃1 := sup
{
λ ∈ R : ((p′, λ), a) ∈ D−

Q1
lv(x̄, t̄)

}
,

λ̃2 := inf
{
λ ∈ R : ((p′, λ), a) ∈ D−

Q2
lv(x̄, t̄)

}
,

and we point out that Dd(x) = eN on Ω1 while Dd(x) = −eN on Ω2, which explains
the difference supremum-infimum. We assume that both quantities are finite and
explain at the end of the proof that the other cases can be treated by similar and
simpler arguments.
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The fact that both λ̃1, λ̃2 are finite implies that v is regular at (x̄, t̄) and Proposi-
tion 3.5.4 implies

a+H1(λ̃1) ≥ 0 and a+H2(λ̃2) ≥ 0 . (17.7)

Recall that s 7→ H+
1 (s) is nonincreasing and we are assuming a + H+

1 (λ1) < 0.
Therefore, λ̃1 ≥ λ1 implies that also a+H+

1 (λ̃1) < 0. In the same way, a+H−2 (λ̃2) < 0
which both imply that

a+H−1 (λ̃1) ≥ 0 and a+H+
2 (λ̃2) ≥ 0 . (17.8)

Taking into account the definition of ν1, ν2 in Lemma 10.2.1 and the fact that
we assume a + Hreg

T (p′) < 0, the monotonicity properties of H−1 and H+
2 imply that

λ̃2 < ν1 ≤ ν2 < λ̃1. Moreover, since a+H−1 (ν2) = a+Hreg
T (p′) < 0 and a+H−1 (λ̃1) ≥ 0,

there exists δ2 ∈ (ν2, λ̃1) such that

a+H−1 (δ2) =
1

2

(
a+Hreg

T (p′)
)
.

Since H−1 (δ2) > H−1 (ν2), it follows that δ2 > m−1 (x, t, p′), in other words δ2 belongs
to the region where s 7→ H−1 (x, t, p′ + seN) is increasing, and as a consequence,
a+H−1 (δ2) = a+H1(δ2)

Similarly, there exists δ1 ∈ (λ̃2, ν1) such that H+
2 (δ̃1) = H2(δ̃1) = (a + Hreg

T (p′))/2
and by Proposition 3.5.4 on the structure of the sub-differential, we see that

((p′, δ2), a) ∈ D−
Q1

lv(x̄, t̄) , ((p′, δ1), a) ∈ D−
Q2

lv(x̄, t̄) ,

which leads to

max
(
− δ2 + δ1, a+H1(p′ + δ2), a+H2(p′ + δ1)

)
≥ 0 .

But we reach a contradiction here: clearly −δ2 + δ1 < 0, and the other terms are
obviously negative by the construction of δ1, δ2.

We finally remark that the key property we use in the proof is (17.8), i.e. roughly
speaking, the existence of λ̃1, λ̃2 in the subdifferential for which such inequalities
hold. If v is not regular on one side (either on Q1 or Q2), then any λ ∈ R is in the
corresponding subdifferential and therefore (17.8) is a consequence of the coercivity
of either H−1 near +∞, or H+

2 near −∞.
Q.E.D.

We conclude this section by a caracterization of the solution associated to Hreg
T in

the non-convex case.
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Proposition 17.3.2 Under the assumptions of Proposition 17.3.1, an u.s.c. function
u is an Ishii subsolution of (HJ-Gen) if and only if it is a (FLSub) associated to the
flux-limiter Hreg

T .

Proof — Of course, we are just interested in the inequalities on H× (0, Tf ).

(a) We first show that an Ishii subsolution of (HJ-Gen) is necessarily a subsolution
of (HJ-Gen)-(FL) for the flux limiter Hreg

T .

Let u be an Ishii subsolution of (HJ-Gen)-(FL); by Proposition 3.5.1, we already
know that the H+

1 and H−2 inequalities hold on H× (0, Tf ) and therefore we have just
to check the Hreg

T -one.

To do so, we pick a test-function ψ : RN−1 × (0, Tf ) → R and assume that x′ 7→
u((x′, 0), t) − ψ(x′, t) has a strict, local maximum point at (x̄, t̄) = ((x̄′, 0), t) ∈ H ×
(0, Tf ). Then, for 0 < ε� 1, we consider the function

(x, t) = ((x′, xN), t) 7→ u(x, t)− ψ(x′, t)− λxN −
x2
N

ε2
,

where λ ∈ [ν1, ν2] is fixed, ν1, ν2 being defined in Lemma 10.2.1 at the point (x̄, t̄)
with p′ = Dx′ψ(x̄, t̄). This function has a local maximum point at a point (xε, tε)
which converges to (x̄, t̄).

If (xε, tε) ∈ Ω1 × (0, Tf ), it follows that

ψt(xε, tε) +H1

(
xε, tε, Dx′ψ(xε, tε) + λeN +

2xN
ε2

eN

)
≤ 0 .

Using that H1 ≥ H−1 , the monotonicity property of H−1 (which allows to drop the
2xNε

−2-term), together with the continuity of both H−1 and the derivatives of ψ, we
obtain

ψt(x̄, t̄) +H−1 (x̄, t̄, Dx′ψ(x̄, t̄) + λeN) ≤ oε(1) ,

and since λ ∈ [ν1, ν2], we get

ψt(x̄, t̄) +Hreg
T (x̄, t̄, Dx′ψ(x̄, t̄) + λeN) ≤ oε(1) .

The conclusion follows by letting ε tend to 0. The two other cases (xε, tε) ∈ Ω2×(0, Tf )
and (xε, tε) ∈ H × (0, Tf ) can be treated similarly.

(b) Conversely, assuming that u is a subsolution with the flux limiter Hreg
T , we have to

show that it satisfies the right Ishii subsolution inequalites on H. Let ϕ be a smooth
function and (x̄, t̄) ∈ H× (0, Tf ) be a maximum point of u−ϕ, we have to show that

min
(
a+H1(x̄, t̄, p′ + λeN), a+H2(x̄, t̄, p′ + λeN)

)
≤ 0 , (17.9)
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where a = ϕt(x̄, t̄), p
′ = Dx′ϕ(x̄, t̄), λ =

∂ϕ

∂xN
(x̄, t̄) . Since the flux-limited condition

on H× (0, Tf ) reads

max
(
a+H+

1 (x̄, t̄, p′ + λeN) , a+H−2 (x̄, t̄, p′ + λeN) , a+Hreg
T (x̄, t̄, p′ + λeN)

)
≤ 0 ,

it is enough to prove either a + H−1 (x̄, t̄, p′ + λeN) ≤ 0 or a + H+
2 (x̄, t̄, p′ + λeN) ≤ 0

in order to deduce (17.9).

Now, if ν1 = ν1(x̄, t̄, p′) and ν2 = ν2(x̄, t̄, p′) are given by Lemma 10.2.1, the result
is obvious if ν1 ≤ λ ≤ ν2. On the other hand, if λ < ν1,

a+H−1 (x̄, t̄, p′ + λeN) ≤ a+H−1 (x̄, t̄, p′ + ν1eN) = a+Hreg
T (x̄, t̄, p′ + λeN) ≤ 0 ,

while if λ > ν2,

a+H+
2 (x̄, t̄, p′ + λeN) ≤ a+H+

2 (x̄, t̄, p′ + ν2eN) = a+Hreg
T (x̄, t̄, p′ + λeN) ≤ 0 .

Hence in any case, (17.9) holds and the proof is complete.
Q.E.D.

17.4 General Kirchhoff coondition and flux-limiters

The aim of this section is to give an extension of Proposition 17.3.1 to the case of
general Kirchhoff conditions. The identification of the flux-limited condition leads to
a (GFL) given by the function

A(x, t, a, p′) := min
s1,s2

Φ(s1, s2) = max
s1,s2

Φ̃(s1, s2) where

Φ(s1, s2) := max
(
a+H−1 (x, t, p′ + s1eN) , a+H+

2 (x, t, p′ + s2eN) , G(x, t, a, p′,−s1, s2)
)
,

Φ̃(s1, s2) := min
(
a+H−1 (x, t, p′ + s1eN) , a+H+

2 (x, t, p′ + s2eN) , G(x, t, a, p′,−s1, s2)
)
.

(17.10)

Theorem 17.4.1 Assume (GA-QC) and that G is a (GJC) of Kirchhoff type. Then
u is a regular (JVSub) [ resp. (JVSuper) ] of (HJ-Gen)-(GJC) if and only if it is a
(FLSub) [ resp. (FLSuper) ] of (HJ-Gen)-(GFL) with general flux-limiter A(x, t, a, p′)
given by (17.10).
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Here we face a general flux-limited condition, namely

A(x, t, ut, DHu) = 0 on H× (0, Tf ) . (17.11)

and to show that we have indeed a (GFL), we prove below that we are in the frame-
work described in Section 14.1.2, i.e. (14.1) holds.

Proof — First we leave out the proof of (FLSub) [ resp. (FLSuper) ] implies (JVSub)
[ resp. (JVSuper) ] since, as in the proof of Proposition 17.3.1, it relies on easy
manipulations of the definitions.

On the other hand, since in all the proof, the dependence in x, t, p′ does not play
a role, we drop these arguments in H1, H2 and G. In other words, we essentially
provide the proof in dimension 1 because there is no additional difficulty in higher
dimension. Notice however that these dependences may generate some smaller terms
oε(1) as ε→ 0 below.

(a) Subsolution case — If u is a (JVSub) for the generalized Kirchhoff condition
G, we have to show that it is a (FLSub) with the general flux limiter A, i.e. if
ϕ = (ϕ1, ϕ2) ∈ PC1(RN × [0, Tf ]) and (x, t) = ((x′, 0), t) is a strict local maximum
point of u− ϕ then setting

a = ϕt(x, t) , p1 =
∂ϕ1

∂xN
(x, t) , p2 =

∂ϕ2

∂xN
(xs, t) ,

we have to deduce that max(a+H+
1 (p1), a+H−2 (p2), A(a)) ≤ 0 from the the (JVSub)

property, namely

min(a+H1(p1), a+H2(p2), G(a,−p1, p2)) ≤ 0 .

The inequalities a+H+
1 (p1) ≤ 0, a+H−2 (p2) ≤ 0 are direct consequences of Proposi-

tion 3.5.1, therefore we have just to show that A(a) ≤ 0.

Let us assume by contradiction that A(a) > 0 and denoting by

f(t) = a+H−1 (t) , g(s) = a+H+
2 (s) , h(t, s) = G(a,−t, s) ,

let us use Lemma 6.3.1, which states that

A(a) = min
t,s
{max(f(t), g(s), h(t, s))} = max

t,s
{min(f(t), g(s), h(t, s))} ,

that both the min and max are achieved at the same point which we denote by (p̄1, p̄2),
and finally that A(a) = a+H−1 (p̄1) = a+H+

2 (p̄2) = G(a,−p̄1, p̄2) .
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We now consider the PC1-function

ψ(yN) :=

{
p̄1yN if yN ≥ 0 ,

p̄2yN if yN ≤ 0 ,

and we look at maximum points of

χ(y, s) = u(y, s)− ϕ((y′, 0), s)− ψ(yN)− y2
N

ε2
.

Since on H × (0, Tf ), (x, t) is a strict local maximum point of u(y, t) − ϕ((y′, 0), s),
there exists a sequence (yε, sε) of maximum points of χ which converges to ((x′, 0), t).
Examining the (JVSub) inequality at (yε, sε), we see that, if yε ∈ Ω1, then

a+H1

(
p̄1 +

2(yε)N
ε2

)
≤ 0 .

But, for ε small enough

a+H1

(
p̄1 +

2(yε)N
ε2

)
≥ a+H−1

(
p̄1 +

2(yε)N
ε2

)
≥ a+H−1 (p̄1) + oε(1) > 0 ,

since H−1 is increasing in the normal direction eN and because a+H−1 (p̄1) = A(a) > 0
(we recall that the oε(1)-term reflects the dependence on (xε, tε, p

′
ε)).

Therefore yε cannot be in Ω1, nor Ω2 by a similar argument using H+
2 . Hence

yε = x but here also we get a contradiction: using as above that H1 ≥ H−1 , H2 ≥ H+
2

we obtain
min(a+H1(p̄1), a+H2(p̄2), G(a,−p̄1, p̄2)) = A(a) > 0 .

This proves that A(a) ≤ 0 and the proof is complete in the subsolution case.

(b) Supersolution case — If v is a (JVSuper) for the generalized Kirchhoff condition
G, we have to show that it is a (FLSuper) with the flux limiter A, i.e. if ϕ = (ϕ1, ϕ2) ∈
PC1(RN × [0, Tf ]) and if (x, t) = ((x′, 0), t) is a strict local minimum point of v − ϕ
then, with the same notations as above, we have to deduce that

max(a+H+
1 (p1), a+H−2 (p2), A(a)) ≥ 0 ,

from the (JVSuper) property, namely

max
(
a+H1(p1), a+H2(p2), G(a,−p1, p2)

)
≥ 0 .

We argue by contradiction assuming that a + H+
1 (p1) < 0, a + H−2 (p2) < 0 and

A(a) < 0. Repeating exactly the arguments of the proof of Proposition 17.3.1, we
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voluntarily shorten some passages below. Notice that a key ingredient in the proof
is Proposition 3.5.4 which describes the structure of sub and superdifferentials on
H× (0, Tf ), on both side.

Using the same notations as in Proposition 3.5.4 and assuming also that λ̃1, λ̃2 are
both finite, the arguments in Proposition 17.3.1 first yield

a+H1(λ̃1) ≥ 0 and a+H2(λ̃2) ≥ 0 ,

and then

a+H−1 (λ̃1) ≥ 0 and a+H+
2 (λ̃2) ≥ 0 .

Now, since

a+H1(p̄1) = a+H2(p̄2) = G(a,−p̄1, p̄2)) = A(a) < 0 ,

we get a + H−1 (p̄1), a + H+
2 (p̄2) < 0 and therefore p̄1 < λ̃1, p̄2 > λ̃2. Moreover, there

exists p̄1 < s1 < λ̃1 and λ̃2 < s2 < p̄2 such that

a+H−1 (s1) = a+H+
2 (s2) = A(a)/2 .

The inequality a + H−1 (s1) > a + H−1 (p̄1) implies that s1 belongs necessarily to the
interval where H1 = H−1 , and a similar argument being also true for s2 we arrive at

a+H−1 (s1) = a+H1(s1) and a+H+
2 (s2) = a+H2(s2) .

But the fact that s1 < λ̃1 and λ̃2 < s2 means that s1, s2 are respectively in the
subdifferential relatively to Q1 and Q2, hence

max(a+H1(s1), a+H2(s2), G(a,−s1, s2)) ≥ 0 .

However, each terms of the max is strictly negative: this is clear for the two first ones,
and for the last one we use that, by the monotonicity properties of G,

G(a,−s1, s2) ≤ G(a,−p̄1, p̄2)) = A(a) < 0 .

So, we reach a contradiction and the proof is then complete.
Q.E.D.

Now we show that the function A(x, t, a, p′) given by Theorem 17.4.1 is equivalent
to a (FL) condition, since it is strictly monotone in a.
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Proposition 17.4.2 Under the assumptions of Theorem 17.4.1, there exists γ̄ > 0
such that, for any x ∈ H, t ∈ [0, Tf ], p

′ ∈ RN−1 and a2 > a1

A(x, t, a, p′)− A(x, t, a, p′) ≥ γ̄(a2 − a1) .

Moreover, junction condition (17.11) is equivalent to (FL) for a function G which
satisfies (HBA−HJ).

Proof — In order to prove the first part of the result, we drop the variable x, t, p′

which are fixed for the sake of simplicity of notations and therefore we assume that
H−1 (x, t, p′ + s1eN), H+

2 (x, t, p′ + s2eN), G(x, t, a, p′,−s1, s2) and A are functions of
s1, s2 and a only.

(a) By Lemma 6.3.1, for any a ∈ R there exists s1(a), s2(a) such that

A(a) = a+H−1 (s1(a)) = a+H+
2 (s2(a)) = G(a,−s1(a), s2(a)) .

In fact, this lemma does not apply readily since H−1 is not increasing but only non-
decreasing and H+

2 is not decreasing but only non-increasing. However, this property
remains true by easy approximations arguments, using the linear growth of H−1 at
+∞ and H+

2 at −∞ coming from (NC), to keep s1(a), s2(a) bounded.

Examining A(a2)− A(a1) there are three cases.

(i) If s1(a2) ≥ s1(a1), then

A(a2)− A(a1) = a2 − a1 +H−1 (s1(a2))−H−1 (s1(a1)) ≥ a2 − a1 ,

since H−1 is non-decreasing and the desired property is satisfied with γ̄ = 1.

(ii) If s2(a2) ≥ s2(a1), then

A(a2)− A(a1) = a2 − a1 +H+
2 (s2(a2))−H+

2 (s1(a1)) ≥ a2 − a1 ,

since H+
2 is non-decreasing and the desired property is satisfied with γ̄ = 1.

(iii) If s1(a2) < s1(a1) and s2(a2) < s2(a1), then we use the three above represen-
tations for A(a2), A(a1): if C is the Lipschitz constant of H1, H2 in p and using the
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monotonicity of G in a, s1, s2

(2α + C)(A(a2)− A(a1)) = α
(
a2 − a1 +H−1 (s1(a2))−H−1 (s1(a1))

)
+ α

(
a2 − a1 +H+

2 (s1(a2))−H+
2 (s1(a1))

)
+ C

(
G(a2,−s1(a2), s2(a2))−G(a1,−s1(a1), s2(a1))

)
≥ α

(
a2 − a1 − C|s1(a2)− s1(a1)|

)
+ α

(
a2 − a1 − C|s1(a2)− s1(a1)|

)
− αC

(
(s1(a2)− s1(a1)) + (s2(a2))− s2(a1))

)
≥ 2α(a2 − a1) .

Gathering the three cases, we see that the result holds with γ̄ = 2α/(2α + C).

(b) This monotonicity property implies that that there exists G(x, t, p′) such that

A(x, t, a, p′) = 0 ⇔ a+ G(x, t, p′) = 0 .

And the fact that G satisfies (HBA−HJ) can easily be proved by using the definition
of A— which implies that A satisfies (HBA−HJ)—and the monotonicity of A in a.

Q.E.D.

17.5 Convergence of the vanishing viscosity ap-

proximation (III)

In this section, we revisit the convergence of the vanishing viscosity method in the
cases of quasi-convex Hamiltonians. By using the connections between flux-limited
and junction viscosity solutions of problems with (FL) and (KC), we are able to obtain
more general results for this type of Hamiltonians, with more complete formulations
and more natural proofs. Indeed, we can combine the advantages of these two notions
of solutions, the (JVS) being more flexible in terms of stability while more general
comparison results are available for (FLS) (as far as quasi-convex Hamiltonians are
concerned) since they do not require the restrictive assumption (TC-s).

The result is the
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Theorem 17.5.1 For any ε > 0, let uε ∈ C(RN × [0, T )) be a viscosity solution of

uεt − ε∆uε +H(x, t, uε, Duε) = 0 in RN × (0, Tf ) , (17.12)

with the initial data

uε(x, 0) = u0(x) in RN , (17.13)

where H(x, t, r, p) = H1(x, t, r, p) if x ∈ Ω1 and H(x, t, r, p) = H2(x, t, r, p) if x ∈ Ω2

and u0 is bounded continuous function in RN . We assume that both Hamiltonians
H1, H2 satisfy (GA-QC).

If the uε are uniformly bounded in RN × (0, Tf ) and C1 in xN in a neighborhood of
H, then, as ε → 0, the sequence (uε)ε converges locally uniformly in RN × (0, Tf ) to
a continuous function u which is at the same time

(i) the maximal Ishii subsolution of (7.1),
(ii) the unique (JVS) of the Kirchhoff problem,
(iii) the unique (FL) associated to the flux-limiter Hreg

T .

Proof — It consists in the following steps.

1. We use the stability result of Lemma 16.4.2: u = lim sup∗ uε and u = lim inf ∗ u
ε

are respectively (JVSub) and (JVSuper) of the Kirchhoff problem.

2. By Proposition 17.3.1, u and u are (FLSub) and (FLSuper) with the flux-limiter
G = Hreg

T .

3. By the comparison result for (FLS) in the quasi-convex setting (Theorem 15.3.2),
u ≤ u in RN × [0, Tf ))

4. By the usual argument, we deduce that uε → u := u = u in C(RN × [0, Tf )).

We conclude the proof by remarking that Proposition 17.3.1 provides the equivalence
of properties (ii) and (iii) while (i) comes from the fact that an Ishii subsolution of
(7.1) is also a subsolution with (KC), hence a (FLSub) with the flux-limiter G = Hreg

T .
Again the comparison comes from Theorem 15.3.2.

Q.E.D.

Remark 17.5.2 The above proof shows how much we can take advantage of Propo-
sition 17.3.1 and more generally of all the results of Chapter 17 in order to use all
the different qualities of (FLS) and (JVS).
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17.6 A few words about existence

In general, existence of viscosity solutions is not an issue: the Perron method of
Ishii [119] (see also the User’s guide [67]) provides existence of solutions in such a
general framework that adressing the question of existence has quickly become ir-
relevant. On the contrary, when applying Perron method, strong comparison results
are crucial in order to obtain the existence of continuous viscosity solutions: indeed,
the basic arguments of this method consists in building an u.s.c. subsolution u such
that u∗ is a supersolution and then the (SCR) implies the continuity of u since it
gives u ≤ u∗, hence u = u∗ since of course u∗ ≤ u by definition. Therefore u = u∗ is
both u.s.c. and l.s.c., hence continuous. Of course, this general argument is valid for
equations with discontinuous Hamiltonians (or with junctions), which yields another
reason why it is important to extend such (SCR) to more and more general contexts.

As we know, (SCR) holds both for (FLS) and (JVS) but is it so clear that the
basic arguments of the Perron method work in these frameworks? The answer is yes
but with some difficulties, which is the reason why this section exists.

To be more precise we formulate the

Proposition 17.6.1 (Existence of solutions)

(i) Under the assumptions of Theorem 15.3.2, if u0 is a bounded continuous func-
tion, there exists a unique bounded, continuous solution of (7.1) with the flux-
limited condition given by the flux-limiter G.

(ii) Under the assumptions of Theorem 16.3.7, if u0 is continuous there exists a
unique bounded, continuous solution of (7.1) both for (GJC) of Kirchhoff type
and for (FL) conditions.

Proof — Here we just sketch the proof since it readily follows the “classical Perron
method” approach and only focus on some specificities below. To simplify the presen-
tation, we assume that u0 is C1 with a bounded gradient: in fact, once this particular
case is treated, the general case follows by standard approximation arguments and
stability, using in a crucial way a (SCR) to conclude.

We first consider the (FL) case and we introduce u(x, t) := u0(x) − Ct, u(x, t) :=
u0(x) + Ct. If C > 0 is large enough, these functions are respectively (FLSub) and
(FLSuper) of (7.1). We then introduce the function uFL : RN × [0, Tf ] → R defined
at each point (x, t) by

uFL(x, t) := sup
{
w(x, t) : u ≤ w ≤ u , w is an (FLSub)

}
.
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Similarly, we define uGJC for the (GJC) case and, in the rest of the proof, u denotes
either uFL or uGJC since many arguments work equally for both. Notice that the
subsolution property is checked using u∗ and the supersolution uses u∗ because u is
not continuous a priori.

(a) The subsolution property — This part is easy and follows the standard procedure,
whether in the (FL) or (JVS) case. It is done in three steps

1. The maximum of two subsolutions is a subsolution: a result which does not
cause any problem in the discontinuous framework using the following property
which is analogous to the one given in Lemma 16.3.6: for any u.s.c. functions
u1, u2 : RN×[0, Tf ]→ R, for any (x, t) ∈ H×(0, Tf ) such that u1(x, t) = u2(x, t)
and i = 1, 2 we have

D+

Ωi×[0,Tf ]
max(u1, u2)(x, t) ⊂ D+

Ωi×[0,Tf ]
u1(x, t) ∩D+

Ωi×[0,Tf ]
u2(x, t) .

A similar property holds if (x, t) ∈ Ω1 × (0, Tf ) or (x, t) ∈ Ω2 × (0, Tf ).

2. The supremum of a countable number of subsolutions is a subsolution: this is a
consequence of Theorem 15.2.1 or Theorem 16.2.1. Indeed, if (un)n is a sequence
of u.s.c. subsolutions(1) then vn := maxk≤n uk is a sequence of subsolutions by
Point 1. Then, it is a simple exercice to show that since (vn) is non-decreasing,
setting u := supn≥0 vn yields u∗ = lim sup∗n vn, were we recall that the relaxed
limsup is given by

lim sup∗n vn = lim sup
n→∞

(y,s)→(x,t)

vn(y, s) .

3. The supremum of any set of subsolutions (possibly not countable) is a subso-
lution: indeed, for each (x, t) ∈ RN × [0, Tf ], there exists a sequence (un)n =

(u
(x,t)
n )n of subsolutions, whether (FLSub) or (JVSub), such that u∗(x, t) =

lim sup∗n un(x, t). For this specific sequence (u
(x,t)
n )n, if we set

ũ(y, s) := lim sup∗n u
(x,t)
n (y, s) , (y, s) ∈ RN × [0, Tf ] ,

the following holds: (i) ũ is a subsolution by point 2.; (ii) ũ ≤ u∗ everywhere
and u∗(x, t) = ũ(x, t); (iii) by a similar property as the one used in point 1.,

D+

Ωi×[0,Tf ]
u∗(x, t) ⊂ D+

Ωi×[0,Tf ]
ũ(x, t) , for any (x, t) ∈ Ωi × [0, Tf ] .

Hence the subsolution property of ũ is automatically transfered to u.

(1)We may assume that they are u.s.c. by replacing un by u∗n if necessary.
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As a by-product of the above arguments, u∗ is a subsolution which satisfies u ≤ u∗ ≤
u, hence u ≥ u∗, which means that u = u∗, i.e. u is u.s.c..

(b) The (JVS) case — Proving that the maximal subsolution u is also a supersolu-
tion is done via a “bump function” argument. The reader can easily check that this
argument applies without any difficulty in the case of (ii), i.e. for (JVS), when the
junction condition is of Kirchhoff type.

The reason is the following: if u∗ is not a supersolution, this is of course because of
the junction condition. Indeed, elsewhere classical Ishii’s arguments apply. This means
that there exist (x, t) ∈ H × (0, Tf ) and a test-function ψ = (ψ1, ψ2) ∈ PC1(RN ×
[0, Tf ]) such that u∗ − ψ has a strict local minimum point at (x, t) and

max(ψt +H1(x, t, u∗, Dxψ1), ψt +H2(x, t, u∗, Dxψ2), G(· · · )) < 0 ,

where all functions are evaluated at (x, t) and G at x, t, u∗(x, t), ψt(x, t), DHψ(x, t),
∂ψ1

∂n1
(x, t), ∂ψ2

∂n2
(x, t). We may also assume that u∗(x, t) = ψ(x, t).

The first consequence of this property is that u∗(x, t) < u(x, t); otherwise, u∗ would
satisfy the supersolution requirement at (x, t) by the same argument as Point 3. above
since we would have u∗ ≤ u and u∗(x, t) = u(x, t), hence, for i = 1, 2

D−
Ωi×[0,Tf ]

u∗(x, t) ⊂ D+

Ωi×[0,Tf ]
u(x, t) .

The second consequence is that that ψ is a (JVSub) in a neighborhood of (x, t)
since in particular

ψt +H1(x, t, u∗, Dxψ1) < 0 and ψt +H2(x, t, u∗, Dxψ2) < 0 ,

the fact that G < 0 giving the subsolution property on H× (0, Tf ). Hence, using also
the strict minimum point property, there exists a small neighborhood V of (x, t) such
that, for ε > 0 small enough, ψ+ε is a (JVSub) in V and ψ+ε < u in a neighborhood
of ∂V . If we set uε := max(u, ψ + ε) in V and uε = u on the complementary of V ,
then uε is a (JVSub) and, for ε small enough, we have u ≤ uε ≤ u.

To get a contradiction, we have to show that there exists at least one point (y, s)
where uε(y, s) > u(y, s) since this will be a contradiction with the definition of u.
But, by definition of u∗, there exists a sequence (yk, sk)k converging to (x, t) such
that u(yk, sk)→ u∗(x, t) = ψ(x, t). Hence

u(yk, sk)− (ψ + ε)(yk, sk)→ −ε < 0 ,

and therefore u(yk, sk) < (ψ + ε)(yk, sk) if k is large enough. Finally uε(yk, sk) =
(ψ + ε)(yk, sk) > u(yk, sk), a contradiction which implies that u∗ is a supersolution.
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Finally, since subsolutions are regular when (GJC) is of Kirchhoff type—cf. Propo-
sition 16.1.3—, Theorem 16.3.7 shows that u ≤ u∗ in RN × [0, Tf ], proving the conti-
nuity of u and showing that u is the unique solution of (7.1) with the (GJC) junction
condition.

(c) The (FL) case — On the contrary, in case (i) of the argument by contradiction
leads to

max(ψt +H+
1 (x, t, u∗, Dxψ1), ψt +H−2 (x, t, u∗, Dxψ2), G(· · · )) < 0 ,

which does not imply the same H1, H2 inequalities. In other words, it is not clear
that ψ is a subsolution in a neighborhood of (x, t) and therefore we cannot apply the
“bump function” argument directly.

To turn around this difficulty we use Proposition 17.2.1 back and forth, being
a little bit careful with the regularity. Since u = uFL is a (FLSub), it is regular on
H×(0, Tf ) and therefore it is a (JVSub) for the (FL) condition. The “bump function”
argument, used exactly in the same way as above in the (JVS) formulation, shows
that u∗ is also a (JVSuper) for the (FL) condition. Indeed, this argument consists in
building a (JVSub) which is strictly larger that u at some point and the construction
preserves the regularity of subsolutions. Hence this (JVSub) is also a (FLSub) by
Proposition 17.2.1.

By the same argument as above, this shows that u is a continuous (JVS) of (7.1)
with the (FL) junction condition (by Theorem 16.3.7), hence a continuous (FLS) by
applying again Proposition 17.2.1.

Q.E.D.

17.7 Where the equivalence helps to pass to the

limit

The aim of this section is to describe an example where using at the same time several
notions of solutions helps to pass to the limit in an asymptotic problem.

To fix ideas and to simplify matters, we consider an example which looks like the
one we study in Part II but with two “close” hyperplanes instead of one. The reader
may have in mind a control problem where we only allow regular strategies on one
of the hyperplanes and all the strategies, including singular ones, on the other one.
But, in the sequel, we consider general flux-limiter on each hyperplane.

In terms of pdes, for 0 < ε� 1, we consider the solution uε ∈ C(RN × [0, Tf ]) of

ut +H2(x, t, uε, Dxuε) = 0 in {xN < −ε} × (0, Tf ) ,
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ut +H0(x, t, uε, Dxuε) = 0 in {−ε < xN < ε} × (0, Tf ) ,

ut +H1(x, t, uε, Dxuε) = 0 in {xN > ε} × (0, Tf ) ,

with a flux limiter G2 on the hyperplane {xN = −ε} and G1 on the hyperplane
{xN = ε}. Taking into account the results and methods of Chapter 15, both the
pde and control ones, using also the equivalence results of Chapter 17, the associated
value-function is the unique (FLS) or (JVS) solution of the problem with the flux-
limiters G1 and G2. We point out that most of the arguments being local, in particular
the (LCR), taking into account these two hyperplanes case is not more difficult than
to consider only one hyperplane.

Our result is the following

Proposition 17.7.1 Assume that H0, H1, H2 satisfy (HBA−HJ)+ and (NC-HJ) and
G1, G2 satisfy (GA-G-FL). Then uε converges locally uniformly to the unique solu-
tion u of (HJ-Gen)-(FL) with the flux limiter G := max(G1, G2, (H0)T ) where

(H0)T (x, t, r, p′) = min
s∈R

H0(x, t, r, p′ + seN) .

Proof — We first recall that, by Proposition 17.2.1, uε is either a (FLS) or (JVS)
solution of the associated flux-limiter problem and the natural idea is to use the
half-relaxed limits method for the (JVS) formulation which has the most general and
flexible stability result. If u = lim sup∗ uε and u = lim inf ∗ uε, we easily obtain the
H2-inequality in Ω2 × (0, Tf ), the H1-inequality in Ω1 × (0, Tf ) and, dropping the
arguments in the Hamiltonians for the sake of notational simplicity

min(ut +H0, ut +H1, ut +H2, ut +G1, ut +G2) ≤ 0 ,

max(ut +H0, ut +H1, ut +H2, ut +G1, ut +G2) ≥ 0 .

But none of these inequalities is satisfactory since they are very far from the result
we wish to prove. In particular, using the normal controllability, the first one implies

min(ut +G1, ut +G2) ≤ 0 ,

while we need (at least) a max.

To improve these results, we first consider the case of u. We suppose that (x̄, t̄) ∈
H × (0, Tf ) is a strict local maximum point of u − ϕ where ϕ ∈ PC1(RN × [0, Tf ]).
We are going to consider, for C > 0, the following functions

(x, t) 7→ uε(x, t)− ϕ((x′, xN + ε), t)− C|xN + ε| ,
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(x, t) 7→ uε(x, t)− ϕ((x′, xN), t)− C|xN | ,

(x, t) 7→ uε(x, t)− ϕ((x′, xN − ε), t)− C|xN − ε| .

For each of these functions, there exists a subsequence (xε′ , tε′) of maximum points
converging to (x̄, t̄) such that uε′(xε′ , tε′) → u(x̄, t̄). Now we examine the possible
viscosity inequalities at (xε′ , tε′) and to do so, we use that uε′ is a (FLS) subsolution
on the hyperplanes {xN = −ε} and {xN = ε} but also on the hyperplane {xN = 0}
with the flux-limiter (H0)T by Proposition 15.6.1.

By the normal controllability, if we choose C large enough, it is clear that, for the
first function, xε′ is necessarely on {xN = −ε} and the G2-inequality holds, while for
the second one, xε′ is necessarely on {xN = 0} and the (H0)T -inequality holds, and
the third one leads to the G1-inequality. Hence

max(ut +G1, ut +G2, ut + (H0)T ) ≤ 0 on H× (0, Tf ).

The next step consists in proving that u is regular on H × (0, Tf ): indeed this
information is crucial, on one hand, to show that the H−2 and H+

1 inequalities hold
by using Proposition 3.5.1 and, on the other hand, to be able to use Theorem 16.3.7
later to get the full result.

If this is not the case, there exists (x̄, t̄) ∈ H × (0, Tf ) such that

either u(x̄, t̄) > lim sup
(y,s)→(x̄,t̄)

(y,s)∈Ω1×(0,Tf )

u(y, s) or u(x̄, t̄) ≥ lim sup
(y,s)→(x̄,t̄)

(y,s)∈Ω2×(0,Tf )

u(y, s) .

We assume, for example, that u(x̄, t̄) ≥ lim sup
(y,s)→(x̄,t̄)

(y,s)∈Ω1×(0,Tf )

u(y, s) + η for some η > 0, the

other case being treated similarly.

For 0 < β � 1 and some large C > 0, we introduce the function

ψβ,C(y, s) = u(x, t)− |x− x̄|
2

β
− |t− t̄|

2

β
+ CxN .

We first consider this function in Ω2 × (0, Tf ): if β is small enough, ψβ,C achieves
its maximum at some point (xβ, tβ) close to (x̄, t̄) and, if C is chosen large enough
compared to β−1, we even have (xβ, tβ) ∈ H × (0, Tf ) by the normal controllability
assumption because the H2 inequality cannot hold. And, by subtracting a term like
|x − xβ|2 + |t − tβ|2, we can even assume that it is a strict local maximum point in
Ω2 × (0, Tf ).
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On the other hand, if (y, s) ∈ Ω1× (0, Tf ) is close enough to (xβ, tβ), hence to (x̄, t̄),
we have

ψβ,C(y, s) = u(y, s)− |y − x̄|
2

β
− |s− t̄|

2

β
+ CyN

≤ u(x̄, t̄)− η

2
+ CyN

< u(x̄, t̄) = ψβ,C(x̄, t̄) if CyN < η/2 ,

and therefore ψβ,C(y, s) < ψβ,C(xβ, tβ). Hence (xβ, tβ) is a strict local maximum point
in RN × (0, Tf )

Now, for fixed β and C, we consider the functions ψε(y, s) := uε(x, t) − |x−x̄|2
β
−

|t−t̄|2
β

+CxN : there exists a subsequence (xε′ , tε′) of maximum points of ψε′ converging

to (x̄, t̄) such that uε′(xε′ , tε′)→ u(x̄, t̄). If C is chosen large enough compared to β−1,
a case-by-case study, using the (FLS) formulation and the normal controllability, leads
to a contradiction since no subsolution inequality can hold at (xε′ , tε′) if ε′ is small
enough(2), wherever xε′ is because of the coercivity of the Hi’s or the fact that the
H+
i are positive thanks to the −CeN -term in the derivative of the test-function. This

shows that we cannot have u(x̄, t̄) > lim sup (y,s)→(x̄,t̄)
(y,s)∈Ω1×(0,Tf )

u(y, s). The proof showing

that we cannot have u(x̄, t̄) > lim sup (y,s)→(x̄,t̄)
(y,s)∈Ω2×(0,Tf )

u(y, s) can be done analogously

and the proof of the regularity is complete.

As we explain it above, this implies that u is a (JVS)-Sub with the flux-limiter
max(G1, G2, (H0)T ) and the proof for u is complete.

Now we turn to the supersolution properties for u. We have to prove that u satisfies

max(ut +H1, ut +H2, ut +G) ≥ 0 .

As above, we suppose that (x̄, t̄) ∈ H×(0, Tf ) is a strict local minimum point of u−ϕ
where ϕ = (ϕ1, ϕ2) ∈ PC1(RN × [0, Tf ]). We argue by contradiction assuming that

max(ϕt +H1, ϕt +H2, ϕt +G) = −η < 0 .

We consider the function

(x, t) 7→ uε(x, t)− ϕ(x, t)− εχ
(xN
ε

)
,

(2)in order to have C(xε′)N < η/2.
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where χ : R→ R is defined in the following way

χ(y) =


−δ2 if y ≤ −1 ,

δ2y if − 1 ≤ y ≤ 0 ,

δ1y if 0 ≤ y ≤ 1 ,

δ1 if y ≥ 1 ,

where δ1, δ2 will be chosen later on.

As above, there exists a subsequence (xε′ , tε′) of minimum points of this function
converging to (x̄, t̄) such that uε′(xε′ , tε′)→ u(x̄, t̄). In order to examine the possible
viscosity inequalities at (xε′ , tε′), we set for F = H0, H1, H2, G1, G2

F̃ (τ) := ϕt(x̄, t̄) + F (x̄, t̄, u(x̄, t̄), Dx′ϕ(x̄, t̄) + τeN) .

By assumption, we have

H̃1(
∂ϕ1

∂xN
) ≤ −η < 0 , H̃2(

∂ϕ2

∂xN
) ≤ −η < 0 ,

and the constants (in τ) G̃1, G̃2, (H̃0)T are also less than −η < 0 .

Now we examine the different possibilities

(a) (xε′)N < −ε′: then, by the continuity of H2 and the fact that ϕ2 is C1, we

should have H̃2(
∂ϕ2

∂xN
) ≥ o(1) but clearly this inequality cannot hold for ε′ small

enough.

(b) (xε′)N = −ε′: using again the continuity of the Hamiltonians and of ϕ2, the
(FLSuper) inequality should read

max((H̃2)−(
∂ϕ2

∂xN
), (H̃0)+(

∂ϕ2

∂xN
+ δ2), G̃2) ≥ o(1) .

Here G̃2 < 0, (H̃2)− ≤ H̃2 < 0 and we choose δ2 in order that
∂ϕ2

∂xN
+ δ2 is a

minimum point of H̃0, hence

(H̃0)+(
∂ϕ2

∂xN
+ δ2) = (H̃0)T < 0 .

With this choice of δ2, this second case turns out to be impossible.
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(c) −ε′ < (xε′)N < 0: with our choice of δ2, the H0-inequality cannot hold for ε′

small enough and this case cannot happen neither.

(d) (xε′)N = 0: we choose δ1 such that
∂ϕ1

∂xN
+ δ1 is a minimum point of H̃0, hence

(H̃0)+(
∂ϕ1

∂xN
+ δ1) = (H̃0)T < 0 .

With this choice, the (FLSuper) inequality which reads

max((H̃0)−(
∂ϕ2

∂xN
+ δ2), (H̃0)+(

∂ϕ1

∂xN
+ δ1), (H̃0)T ) ≥ 0 ,

cannot hold for ε′ small enough.

(e) 0 < (xε′)N < ε′: this case is the exact symmetric of (c),

(f) (xε′)N = ε′: this case is the exact symmetric of (b),

(g) (xε′)N > ε′: this case is the exact symmetric of (a),

and in the three cases (e), (f), (g), we also conclude that the (FLSuper) inequality
cannot hold for ε′ small enough. Hence, whereever xε′ is, the (FLSuper) inequality
cannot hold. This gives a contradiction and prove that

max(ϕt +H1, ϕt +H2, ϕt +G) ≥ 0 .

Hence u is a (JVSuper) with the flux-limiter G.

The classical arguments of the half-relaxed limits method to gether with the com-
parison result for (JVS) solutions (Theorem 16.3.7), taking into account that u is a
regular subsolution, implies u ≤ u in RN × [0, Tf ]. Hence u = u = u is continuous
and the unique (JVS) with the flux-limiter G. And the local uniform convergence of
uε to u follows by classical arguments.

Q.E.D.



Chapter 18

Applications and Emblematic
Examples

The aim here is to give an overview of the results of Part II in the context of Hamilton-
Jacobi equations corresponding to 1D scalar conservations laws with a discontinuous
flux. This chapter is especially intented for the (partial) reader of this book who
wishes

(i) to get an idea of what can be done in this context ...

(ii) ... without reading the totality of this book!

Thus, the reader will find here some redundancy concerning definitions, results,
ideas... with respect to the previous sections. We try to keep it simple and refer
to those previous sections for more precise results and proofs.

18.1 HJ analogue of a discontinuous 1D-scalar con-

servation law

The starting point here is the problem

ut +H(x, ux) = 0 in R× (0, Tf ) , (18.1)

where Hamiltonian H is given by

H(x, p) =

{
H1(p) if x > 0 ,

H2(p) if x < 0 .

317
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Equation (18.1) has to be complemented by an initial datum

u(x, 0) = u0(x) in R , (18.2)

where u0 is assumed to be bounded and continuous in R.

In this definition of H, H1, H2 are continuous functions which are coercive, i.e.

H1(p), H2(p)→ +∞ as |p| → +∞ ,

and we consider two main cases: the “Lipschitz case” where both Hamiltonians are
supposed to be Lipschitz continuous in R and the “convex case” where they are
supposed to be convex, but not necessarily Lipschitz continuous, even if this case is
not completely covered by the results of Part II (1).

In the “Lipschitz case”, a natural sub-case is the one when the Hi (i = 1, 2) are
quasi-convex (2), i.e. built as the maximum of an increasing and a decreasing function.
For this reason, we write

H1 = max(H+
1 , H

−
1 ) and H2 = max(H+

2 , H
−
2 ) ,

where H+
1 , H

+
2 are the decreasing parts of H1, H2 respectively and H−1 , H

−
2 their

increasing parts. Using these notations for the monotone Hamiltonians may seem
strange but the reader has to keep in mind that characteristics—or dynamics in terms
of control problems—play a key role in these problems. A way to better understand
this remark is to consider the convex control case where the dynamic is given by b1

and where H1(p) = supb1∈B{−b1 · p− l1}; in this case

H+
1 (p) = sup

b1≥0
{−b1 · p− l1} ,

which means that we keep in H+
1 only the dynamics pointing toward the positive

direction, explaining the “+”.

Of course, the case of quasi-concave (or concave) Hamiltonians can be treated in the
same way since, by changing u in −u, we change H1(p), H2(p) in −H1(−p),−H2(−p),
the latter being quasi-convex (or convex) if the former are quasi-concave (or concave).

18.1.1 On the condition at x = 0

Of course, the first key question is: what kind of condition has to be imposed at x = 0
where the Hamiltonian H is discontinuous?

(1)but we trust the reader to be able to fill up the gaps!
(2)We refer the reader to Section 6.2 for a short presentation of the notion of quasi-convexity and

for the related properties we use throughout this book.
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Viscosity solutions theory provides a default answer which is the notion of Classical
Viscosity Solutions ((CVS) in short) introduced by by Ishii [118]. These conditions
are

min(ut +H1(ux), ut +H2(ux)) ≤ 0 on {0} × (0, Tf ) ,

max(ut +H1(ux), ut +H2(ux)) ≥ 0 on {0} × (0, Tf ) .

These sub and supersolutions properties have to be tested with test-functions which
are C1 in R× (0, Tf ). We do not detail them here, referring the reader to Section 3.1
for more informations.

Unfortunately (or fortunately?), this classical notion of solution has two main de-
fects: on one hand, (CVS) are not unique in general and, on the other hand, in concrete
applications, the modelling may lead to other “transfer conditions” at x = 0. To be
convinced by this claim, it suffices to look at the well-known Kirchhoff condition

−ux(0+, t) + ux(0
−, t) = 0 on {0} × (0, Tf ) , (18.3)

for which testing with C1(R × (0, Tf ))-test-functions is of course meaningless, this
condition being automatically satisfied for smooth test-functions. Clearly we need a
larger set of testing possibilities in order to take into account in a right way such
conditions and to have a hope for a well-posed problem (in particular, comparison
and uniqueness results).

18.1.2 Network viscosity solutions

For the Kirchhoff condition but also for more general conditions like

G(ut,−ux(0+, t), ux(0
−, t)) = 0 on {0} × (0, Tf ) , (18.4)

where G(a, b, c) is a continuous function which is increasing in a, b and c(3), one has to
use a notion of “Network viscosity solution” based on testing the viscosity properties
with continuous, “piecewise C1”-test-functions, denoted by PC1. More precisely φ ∈
C(R× (0, Tf )) is a suitable test-function if there exists two functions φ1, φ2 which are
C1 in R× (0, Tf ) such that

φ(x, t) =

{
φ1(x, t) if x > 0,

φ2(x, t) if x < 0,

with φ1(0, t) = φ2(0, t) for any t ∈ (0, Tf ). In order to define “Network viscosity
solutions” in the viscosity properties at a point (0, t) we use the derivatives of φ1 for

(3)Precise assumptions will be given later on.
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the H1 and ux(0
+, t)-term, and the derivatives of φ2 for the H2 and ux(0

−, t)-term.
Notice that both time-derivatives (φ1)t and (φ2)t coincide on x = 0.

However, the notion of “Network viscosity solution” with condition at x = 0 can
be used in at least two slightly different ways.

(a) The “flux limited” notion of solutions of Imbert-Monneau—(FL) in short—which
is valid in the quasi-convex case, i.e. in a more general framework than the “convex
case”. A general flux limited condition at x = 0 takes the form

ut + A = 0 on {0} × (0, Tf ) , (18.5)

where A is a real constant called the flux limiter. In terms of viscosity inequalities at
x = 0, the condition reads (4){

max
(
ut +H+

1 (ux), ut +H−2 (ux), ut + A
)
≤ 0 on {0} × (0, Tf ) ,

max
(
ut +H+

1 (ux), ut +H−2 (ux), ut + A
)
≥ 0 on {0} × (0, Tf ) .

Why using only H+
1 and H−2 ? As we already explain it above, the most (vague but)

convincing answer is probably through the characteristics, or dynamics in the control
viewpoint: we use inequalities which test characteristics entering each domain, i.e.
[0,+∞) for H1 and (−∞, 0] for H2. We respectively call these conditions the sub and
supersolution (FL) conditions. In the definition above, we can replace the ut+A-term
by a more general χ(ut)-term where the function τ 7→ χ(τ) is strictly increasing.

(b) The notion of “junction viscosity solutions” (JVS) which is closer to the Ishii
formulation since the inequalities for x = 0 read{

min
(
ut +H1(ux), ut +H2(ux), G(ut,−ux(0+, t), ux(0

−, t))
)
≤ 0 ,

max
(
ut +H1(ux), ut +H2(ux), G(ut,−ux(0+, t), ux(0

−, t))
)
≥ 0 .

We refer to Section 15.1 and Section 16.1 for a more precise definition of (FLS) and
(JVS). Let us point out three key differences between these notions of solutions:

(i) the notion of (JVS) can take into account both general Kirchhoff type conditions
like Equation 18.4 but also flux-limited conditions by assuming that G(a, b, c) =
a + A in Equation 18.4. On the contrary, the notion of (FLS) is restricted to
flux-limited conditions;

(ii) while the notion of (FL) solutions requires the Hamiltonians to be quasi-convex,
the (JVS) notion is valid for any continuous Hamiltonians;

(4)with the above mentioned conventions
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(iii) while the (FLS) one uses a pair of “max-max” inequalities, the (JVS) one uses
a classical “min-max” ones.

These three differences seem to indicate that the notion of (JVS) is more general
and more adapted than the (FLS) one but the notion of (FLS) is more natural to
address control problems (see Section 15.4) and therefore is useful in order to obtain
explicit formulas à la Oleinik-Lax.

18.1.3 Main results

We now expose briefly the main results and connections between the different notions
of solutions, (CVS), (FLS), (JVS).

The convergence of the vanishing viscosity method is a natural entrance door since,
in the classical framework, it selects the “right solution”.

(a) On the vanishing viscosity method and the Kirchhoff junction solution — In the
absence of discontinuities, passing to the limit in this method simply relies on the
stability properties of classical viscosity solutions. However here, in presence of dis-
continuous Hamiltonians, we need to identify the right condition on the interface.
The result is the

Theorem 18.1.1 (Convergence of the vanishing viscosity method)

For each ε > 0, let uε be a continuous viscosity solution of

uεt − εuεxx +H(x, uεx) = 0 in R× (0, Tf ) , (18.6)

uε(x, 0) = u0(x) in R . (18.7)

If the uε are uniformly bounded in R× [0, Tf ) and C1 in x in a neighborhood of x = 0
for t > 0, then, as ε→ 0, the sequence (uε)ε converges locally uniformly to the unique
(JVS) solution of the Kirchhoff problem (18.1)-(18.2)-(18.3).

We first point out that Theorem 18.1.1 is valid for any continuous Hamiltonians
H1, H2 without any type of convexity (or concavity) assumption.

The formal idea to prove this result is straightforward: uε being C1 in x in a neigh-
borhood of x = 0 for t > 0, it satisfies the Kirchhoff condition

−uεx(0+, t) + uεx(0
−, t) = 0 on {0} × (0, Tf ) ,
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and it suffices to pass to the limit using the good stability properties of viscosity
solutions, but written with piecewise C1 test-functions and then to use an adapted
comparison result.

This formal proof can be justified using the notion of (JVS) solutions via Lions-
Souganidis arguments for the comparison result. Indeed, on one hand, this notion
of solutions allows to extend the classical stability argument for viscosity solutions:
the half-relaxed limits of uε are “junction sub and supersolution” of the Kirchhoff
problem, i.e.{

min(ut +H1(ux), ut +H2(ux),−ux(0+, t) + ux(0
−, t)) ≤ 0 ,

max(ut +H1(ux), ut +H2(ux),−ux(0+, t) + ux(0
−, t)) ≥ 0 .

Hence we have a stability result which is as similar as it could be to the classical
one, despite of the different spaces of test-functions. It is worth pointing out that the
notion of (JVS) is not only necessary to define properly the Kirchhoff condition but
it also plays a key role here via this stability result. And then the Lions-Souganidis
arguments provide the “Strong Comparison Result” which is needed to conclude.

We actually provide three different proofs of the convergence of the vanishing vis-
cosity method in Part II: a first one via (FLS) solutions, the above one via (JVS)
solutions and a last one which combines both notions in order to identify the limit,
in particular by giving an explicit formula in the control case.

(b) On Classical Viscosity Solutions and the Kirchhoff condition — The result of
Theorem 18.1.1 suggests two natural questions

1. Is it possible to characterize the unique (JVS) of (18.1)-(18.2)-(18.3), i.e. the
Kirchhoff solution, in terms of classical viscosity solutions (CVS)?

2. In the “convex case”, is it possible to write down an explicit formula for solu-
tions of the Kirchhoff problem? (à la Oleinik-Lax). In other words, is there an
underlying control problem which gives a control formula for this solution?

Our second result answers these questions, of course in the “convex case” since we are
looking for explicit formulas. We point out that the results are unavoidably a little
bit vague to avoid long statements but precise results can be found in Chapter 7.

Theorem 18.1.2 — Classical Viscosity Solutions.

In the “quasi-convex or convex case”,
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(i) Classical Viscosity Solutions of (18.1)-(18.2) with the natural Ishii conditions
at x = 0 are not unique in general. There is a minimal (CVS) denoted by U−

and a maximal (CVS) denoted by U+. In the convex case, they are both given
explicitly as value functions of suitable control problems.

(ii) If m1 is the largest minimum point of H1 and m2 the least minimum of H2, a
sufficient condition in order to get U− = U+ is m2 ≥ m1.

(iii) The solution of the Kirchhoff problem is U+. Hence the vanishing viscosity
method converges to the maximal (CVS).

This result shows the weakness of (CVS) for equations with discontinuities: although
they are very stable because of the half-relaxed limits method, they are not unique
in this framework and this is, of course, more than a problem. Result (ii) is a last
desesperate attempt to maintain uniqueness in a rather general case but it seems to
be a little bit anecdotic.

Result (iii) is a first bridge between the notions of (CVS) and “junction solutions”
and it is proved using in a key way the notion of “flux-limited solutions”.

We refer to Chapter 17 for various results comparing the (CVS), (FLS) and (JVS)
notions of solutions.

(c) On the characterization via flux limited solutions — The previous results open
the way to the next questions which can be formulated in several different ways, but
which all concern the relations between different notions of solutions.

1. In the case of control problems, two particular value-functions appear in Theo-
rem 18.1.2, U− and U+. Both may be interesting for some particular application
but clearly, the characterization as (CVS) is not appropriate. Is there any other
way to identify them uniquely?

2. From the pde point of view, Result (iii) gives a connection between the “junc-
tion solution” for the Kirchhoff condition and a value-function of some control
problem. But is it possible to prove some similar connexion for more general
conditions (18.4) with a rather explicit way?

The answer is provided in the following result which relies on the notion of (FLS).

Theorem 18.1.3 — Characterizations with flux limiters.

A. In the quasi-convex case
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(i) For any A, there exists a unique flux limited solution of (18.1)-(18.2)-(18.5).
Moreover a comparison principle holds result for this flux limited problem.

(ii) If G satisfies: there exists α, β ≥ 0 with β > 0such that for any a1 ≥ a2, b1 ≥ b2,
c1 ≥ c2

G(a1, b1, c1)−G(a2, b2, c2) ≥ α(a1 − a2) + β(b1 − b2) + β(c1 − c2) ,

then any JVS subsolution [ resp. supersolution ] of (18.1)-(18.2)-(18.4) is a
(FLS) subsolution [ resp. supersolution ] with flux limiter

χ(a) = max
p1,p2

(
min

(
a+H−1 (p1), a+H+

2 (p2), G(a,−p1, p2)
) )

.

B. In the convex case

(i) The value function U− is associated to the flux-limiter

A− = min
s

(
max(H1(s), H2(s))

)
.

(ii) The value function U+ is associated to the flux-limiter

A+ = min
s

(
max(H−1 (s), H+

2 (s))
)
.

The second part of this result shows that value-functions of control problems can be
caracterized as a “flux limited solution” of (18.1)-(18.2) with the right flux limiter at
x = 0. Contrarily to (CVS), a uniqueness result holds but, as the vanishing viscosity
method shows, stability becomes a problem since one has to identify the right flux
limiter for the limiting problem.

Remark 18.1.4 The case of more general junction conditions like (18.1)-(18.2)-
(18.4) can be treated by the Lions-Souganidis approach: in particular, we have a
comparison result for (18.1)-(18.2)-(18.4) in the case of general Hamiltonians H1, H2

without assuming them to be quasi-convex. Of course, the monotonicity properties of
G are necessary not only for having such a comparison result but even for the notion
of “junction solution” to make sense.

We conclude this section by the extension of the Oleinik-Lax formula to our discon-
tinuous framework. To do so, we set Ω1 = {x > 0} and Ω2 = {x < 0} and we denote
by H∗i the Fenchel conjugate of Hi for i = 1, 2.
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Proposition 18.1.5 (Oleinik-Lax Formula)
Under the assumptions of Theorem 18.1.3, we assume moreover that H1, H2 are con-
vex coervive, continuous and set, for x ∈ Ωi and t > 0,

Ui(x, t) := inf
z∈Ωi

(
u0(z) + tH∗i (

x− z
t

)

)
.

Then the following formulas hold:

U+(x, t) = min

Ui(x, t), inf
j=1,2, z∈Ωj
0≤t1≤t2≤t

{
u0(z) + t1H

∗
i (
x

t1
)− A+(t2 − t1) + (t− t2)H∗j (

−z
t− t2

)

} ,

and

U−(x, t) = min

Ui(x, t), inf
j=1,2, z∈Ωj
0≤t1≤t2≤t

{
u0(z) + t1H

∗
i (
x

t1
)− A−(t2 − t1) + (t− t2)H∗j (

−z
t− t2

)

} ,

with the convention that (t− t2)H∗j ( −z
t−t2 ) = 0 if z = 0 and t− t2 = 0.

In order to apply these Oleinik-Lax formulas, we come back on the examples of
Section 10.4. In the first one,

H1(p) = |p+ 1| , H2(p) = |p− 1| ,

therefore A+ = A− = 1 and it follows that uniqueness holds in the Ishii class of
solutions, U+ ≡ U−.

Now, H∗1 (p) = −p if |p| ≤ 1 and +∞ otherwise, while H∗2 (p) = p if |p| ≤ 1 and +∞
otherwise. Hence, since u0(x) = |x| in R, we see thatU1(x, t) := inf

z≥0, |z−x|≤t
(z − (x− z)) = 2(|x| − t)+ − |x| ,

U2(x, t) := inf
z≤0, |z−x|≤t

(−z + (x− z)) = 2(|x| − t)+ − |x| .

Then, in order to compute U+ = U−, we face several cases

(i) If |x| > t, then H∗i ( x
t1

) = +∞ so U+(x, t) = Ui(x, t) = 2(|x| − t)+ − |x|.

(ii) If |x| ≤ t, for the second part of the min, if x, z ∈ Ω1 we get

inf
z≤t−t2,x≤t1
0≤t1≤t2≤t

{z − x− (t2 − t1) + z} = −t ,

since z = 0, t1 = x and t2 = t is clearly optimal. If x, z ∈ Ω2, an analogous
result holds.
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(iii) If |x| ≤ t, for the second part of the min, if x ∈ Ω1, z ∈ Ω2 we get

inf
z≤t−t2,x≤t1
0≤t1≤t2≤t

{−z − x− (t2 − t1)− z} = −t ,

since z = 0, t1 = x and t2 = t is clearly optimal. The case x ∈ Ω2, z ∈ Ω1 gives
an analogous result.

Finally, since for |x| ≤ t, we have 2(|x| − t)+ − |x| ≥ −t, we conclude that

U+(x, t) = U−(x, t) =

{
2(|x| − t)+ − |x| if |x| ≥ t ,

−t otherwise.

In the second example

H1(p) = |p− 1| , H2(p) = |p+ 1| ,

and therefore A+ = 0, A− = 1. This time, the solution U+ and U− are different. We
leave the checking of their formulas to the reader (they are given in Section 10.4).

18.2 Traffic flow models with a fixed or moving

flow constraint

Traffic flows can be studied at the micro or macroscopic level, leading to different,
yet complementary models. Here we focus only on the macroscopic scale, looking at
the density ρ(x, t) of vehicles at each point x of a one-dimensional infinite highway
modelled by R and any time t. It is often more convenient to use the “renormalized
density”, i.e. the ratio between the actual density and a maximal density, therefore
assuming that 0 ≤ ρ(x, t) ≤ 1 for any x and t.

18.2.1 The LWR model

In the context of simple traffic flow without constraints, one of the most famous
macropscopic models is the LWR model, originated in the works of Lighthill and
Whithan [131] and Richards [149]. It consists in describing the evolution of ρ through
a scalar conservation law in R× (0, Tf ), namely

ρt + ∂x(f(ρ)) = 0 in R× (0, Tf ) , (18.8)
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where the flux f : R→ R is given in the simplest case by f(ρ) = ρ(1− ρ).

In one space dimension, a rather easy way to tackle Equation (18.8) is to use the
connections with the Hamilton-Jacobi formulation, cf. Corrias, Falcone and Natal-
ini [65] and Aaibid and Sayah [1]: if u : R × (0, Tf ) → R is the unique Lipschitz
continuous viscosity solution of

ut + f(ux) = 0 in R× (0, Tf ) . (18.9)

with a Lipschitz continuous initial data u0 such that 0 ≤ u′0(x) ≤ 1 in R, then ρ = ux
is the unique entropy solution of (18.8).

At this point, it is worth pointing out that here f is concave, not convex. However,
using that −u is a solution of (18.9) with f being replaced by h(p) = −f(−p) which
is convex, one may use the Oleinik-Lax formula to obtain the explicit form of the
solution:

u(x, t) := sup
y∈R

{
u0(y)− t

4

∣∣∣∣x− yt − 1

∣∣∣∣2
}
.

In particular, if u0(y) = ρ0y in R for some 0 < ρ0 < 1, corresponding to a constant
density ρ0 at time t = 0, then

u(x, t) = ρ0x− ρ0(1− ρ0)t for any (x, t) ∈ R× (0, Tf ) . (18.10)

18.2.2 Constraints on the flux

A more interesting question in the context of this book is to investigate the question of
traffic reduction, due to a car crash or traffic lights located at one point, x = 0. Such
problems were first studied by Colombo and Rosini [64] and Colombo and Goatin [63]
and they lead to a constraint of the type

f(ρ)
∣∣∣
x=0
≤ δ ,

where we we choose here to consider a constant flux limiter δ > 0.

To the best of our knowledge, there is no rigourous result connecting such problems
with Hamilton-Jacobi ones in this framework. We can just guess that the correspond-
ing constraint in the Hamilton-Jacobi case takes the form

ut ≥ −δ at x = 0

since at least formally, f(ρ) = f(ux) = −ut. This formulation corresponds to a flux
limiter G = +δ at x = 0 coupled with Hamiltonians H1 = H2 = f but we recall
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that f being concave we have either to change u in −u or to adapt the results of
the previous sections. In any case, we point out that all these results apply and the
theory can be applies without any difficulty.

Now, let us go back to the same initial data as above: u0(y) = ρ0y in R for some
0 < ρ0 < 1, associated to a flux δ < ρ0(1− ρ0) < 1/4 otherwise the flux is not really
limited, but moreover we assume that δ is close to 0 for simplicity. This corresponds
to a strong limitation on the crossing at x = 0.

Using the control formulation, it is clear that u(0, t) = −δt since the reward −δ for
x = 0 is maximal—recall that we maximize the reward since f is concave. Since u is
identified on x = 0, it only remains to solve a Dirichlet problem for the HJ-Equation
in the domains x > 0 and x < 0 separately. We can also guess that the solution is
piecewise affine,

u(x, t) = at+ bx with a = −b(1− b) ,

and by using this ansatz we solve the equations separately in different regions. Match-
ing everything is done by finding suitable lines originating from (0, 0) so that u is
globally continuous.

(a) If x 6= 0 and t is close to 0 the flux limitation is not interacting yet, so we use
formula (18.10) which yields here also

u(x, t) = ρ0x− ρ0(1− ρ0)t .

(b) If t > 0 and x close to > 0 the flux limitation is acting on the solution and using
the boundary value u(0, t) = −δ, we define ρ1 and ρ2 as the two solutions of the
equation −δ = −b(1− b), namely

ρ1 =
1 + (1− 4δ)1/2

2
close to 1 ,

ρ2 =
1− (1− 4δ)1/2

2
close to 0 .

In this region, the solution is given by u(x, t) = ρ1x−δt if x < 0 and ρ2x−δt if x > 0.

(c) It remains to match everything by continuity. For example, the continuity condi-
tion

ρ0x− ρ0(1− ρ0)t = ρ1x− δt implies x =
δ − ρ0(1− ρ0)

ρ1 − ρ0

t ,

where the coefficient of t is strictly negative since the denominator is positive while
for δ small enough, ρ1 > ρ0. This defines a first line ∆1, located on the left. Similarly,
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∆2 is defined by the matching condition using ρ0 and ρ2, here the coefficient of t is
positive since for δ small enough, ρ2 < ρ0.

Computing ρ = ux, we find that ρ(0−, t) = ρ1 is close to 1, which is reasonnable
since the limited flux implies an accumulation of cars for x < 0 close to 0. On the
contrary, ρ(0+, t) = ρ2 is close to 0 since the flux of cars is limited, therefore only a
few cars go through x = 0. Figure 18.1 gives a typical picture when ρ0 > 1/2.

Figure 18.1: The solution u

We conclude this section by mentioning the case of moving constraints

f
(
ρ(y(t), t)

)
− ẏ(t)ρ(y(t), t) ≤ g(t) ,

where y and g are given functions. Looking at the new function

w(x, t) = u(x+ y(t), t) ,

we end up being in an analogous situation where again the theory of the previous
chapter applies. But, of course, we also use a completely formal argument to connect
this problem with the HJ-one.
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Chapter 19

Further Discussions and Open
Problems

As the title indicates, the aim of this chapter is both to summarize and comment the
results we have provided in the case of co-dimension 1 discontinuities in Part II and
III but also to mention puzzling questions.

Let us first examine the three approaches we have described.

The first one, using Ishii’s notion of viscosity solutions, has the advantage to be
very stable and universal in the sense that it can be formulated for any type of Hamil-
tonians, convex or not. But Chapter 7 shows that it has poor uniqueness properties
in the present situation. In the simple case of the optimal control framework we have
considered, with a discontinuity on an hyperplane H and with perhaps a specific con-
trol onH, we are able to identify the minimal solution (U−) and the maximal solution
(U+): if U− is a natural value-function providing the minimal cost over all possible
controls, U+ completely ignores some controls and in particular all the specific control
on H.

Why can U+ be an Ishii viscosity solution of the Bellman Equations anyway? The
answer is that the Ishii subsolution condition on H is not strong enough in order to
force the subsolutions to see all the particularities of the control problem on H. This
generates unwanted (or not?) subsolutions. We point out that, as all the proofs of
Chapter 7 show, there is a complete disymmetry between the sub and supersolutions
properties in this control setting: this fact is natural and well-known due to the form
of the problem but it is accentuated in the discontinuous framework.

This lack of uniqueness properties for Ishii viscosity solutions leads to consider
different notions of solutions but, in some interesting applications, one may recover
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this uniqueness since U− = U+. We point out Lemma 10.3.1 below which provides
a condition under which HT = Hreg

T and therefore U− = U+. This condition is
formulated directly on the Hamiltonians and can sometimes be easy to check (see for
example, Section 30.5).

In the Network Approach, one can either use the notion of flux-limited solutions or
the notion of junction viscosity solutions. The first one is particularly well-adapted to
control problems and has the great advantage to reinforce the subsolutions conditions
on H and, through the flux-limiter, to allow to consider various control problems at
the same time by just varying this flux-limiter. The value-functions U− and U+

are reinterpreted in this framework as value-functions associated to particular flux-
limiters.

But we are very far from the universality of the definition of viscosity solutions since
this “max-max” definition in the case of convex Hamiltonians has to be replaced by a
“min-min” one in the case of concave ones, and it has no analogue for general ones. On
the other hand, this notion of solution is less flexible in terms of stability properties
compared to Ishii solutions.

The notion of junction viscosity solution tries to recover all the good properties of
Ishii solutions for general Hamiltonians: it is valid for any kind of “viscosity solutions
compatible” junction conditions, it is stable and the Lions-Souganidis proof (even if
there are some limitations in Theorem 16.3.5) is the only one which is valid for general
Hamiltonians with Kirchhoff’s boundary conditions. Though this approach is not as
well-adapted to control problems as the flux-limiter one, it gives however a common
formulation for problems when the controller wants to minimize some cost (which
leads to convex Hamiltonians) or maximize it (which leads to concave Hamiltonians).

The Kirchhoff boundary condition is one of the most natural “junction condition” in
the networks theory but a priori, it has no connection with control problems. However,
as it is shown by Proposition 17.3.1 together with Theorem 15.4.4, this boundary
condition is associated U+. The explanation is maybe in the next paragraph.

In fact, the main interest of the approach by junction solution, using the Lions-
Souganidis comparison result, is to provide the convergence of the vanishing viscosity
method in the most general framework (with the limitations of Theorem 16.3.5),
without using some convexity or quasi-convexity assumption on the Hamiltonians. In
the convex setting, we have several proofs of the convergence to U+ which shows that
it is the most stable value-function if we add a stochastic noise on the dynamic.

In the next parts, we examine stratified solutions in RN or in general domains, i.e.
essentially the generalization of U− which we aim at characterizing as the unique solu-
tion of a suitable problem with the right viscosity inequalities. And we will emphasize
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the (even more important) roles of the subsolution inequalities, normal controllability,
tangential continuity...etc. But we will not consider questions related to U+ and the
vanishing viscosity method, even if some of these questions are really puzzling.

This analysis generates a lot of questions.

The first one may concerns the limitations due to the assumptions of Theorem 16.3.5:
it is not completely clear that (TC-s) is really necessary; maybe a different proof,
avoiding the tangential regularization, can handle general Hamiltonians without this
superfluous hypothesis.

All the other questions concern the extensions to higher codimension discontinuities
of the notions of flux-limited and junction viscosity solutions. Clearly the first step
should be to have the right space of test-functions (like PC1(RN × [0, Tf ]) above). It
is not very difficult to guess what this space could be: in the stratified case, i.e. if
the discontinuities for a stratification M = (Mk)k, one may perhaps use continuous
functions those restrictions to each Mk are C1 and with derivatives which have con-
tinuous extensions to Mk. To write that is one point, to make a concrete proof is an
other one.

We point out anyway how Lemma 5.4.1 is closely related to flux-limited solutions by
looking at trajectories which either leaveM (suggesting a H+

1 −H−2 -type inequality)
or stay onM. It seems clear that a pde analogue of this lemma should exists and allow
to obtain a comparison result for—at least—HJB-equations by a pure pde method,
even in the stratified case of Part IV.

Finally we come back to the question which is clearly the most puzzling for us: one
of the main result of this part is the convergence of the vanishing viscosity method to
U+, the maximal viscosity subsolution in the control framework. What is the analogue
of this result in the case of higher codimension discontinuities? Is the convergence to
the maximal viscosity subsolution always true? And of course, can we identify this
maximal viscosity subsolution in the control framework via an explicit formula?
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Part IV

General Discontinuities: Stratified
Problems
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Chapter 20

Stratified Solutions

20.1 Introduction

Throughout Part IV, we consider Hamilton-Jacobi-Bellman Equations with more
general discontinuities than hyperplanes. Those discontinuities can be of any co-
dimension but with the restriction that they form a “Whitney stratification”, cf.
Section 3.3.

This generality is at the expense of considering only equations which are closely
related to control problems (hence with convex Hamiltonians) but with the advantage
that we do not have to deal with existence results: as can be expected, the value
function of the associated control problem is a solution, even if this fact will not be
completely obvious, cf. Chapter 21.

We always assume that we are in the “good framework for discontinuities”: even if
some of these assumptions can certainly be weakened, this general framework seems
the most natural for us since, as we have already pointed out several times, the basic
hypothesis we impose are useful—if not unavoidable—in the proof of any results.

This chapter is devoted to introduce the notion of Stratified Solutions in this frame-
work and to present a comparison result which is valid under “natural” assumptions.
We also show that the stratified solution corresponds to the minimal Ishii supersolu-
tion (see Section 21.2).

We give here two notions of stratified solution: a weak one and a strong one, the
strong notion involving additional inequalities with respect to the weaker one. The
difference between these notions can be understood in a better way after reading Sec-
tion 13.1: for the strong one, we impose the F∗ ≤ 0-inequality on the discontinuities
while, for the weak one, we just impose “tangential inequalities”. Each notion may
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have a specific interest, in particular for stability results but also for further develop-
ments, but they turn out to be the same in the “good framework” which we always
use, see (HBA−SF) below (see Section 20.5).

More concretely, we are given a general HJB Equation of the form

F(x, t, U,DU) = 0 in RN × [0, Tf ] , (20.1)

where DU = (DxU,DtU) and

F(x, t, r, p) := sup
(b,c,l)∈BCL(x,t)

{
− b · p+ cr − l

}
, (20.2)

where BCL : RN× [0, T ]→ RN+3 is a set-valued map (cf. Section 4.1). And we define
the initial Hamiltonian as

Finit(x, r, px) = sup
((bx,0),c,l)∈BCL(x,0)

{
− bx · px + cr − l

}
. (20.3)

The fundamental assumptions we make in this part are the following

(HBA−SF) Basic Assumptions on the Stratified Framework

(i) There exists a stratification M = (Mk)k=0...(N+1) of RN × (0, Tf ) such that
(x, t) 7→ F(x, t, r, p) is continuous on MN+1 and may be discontinuous on M0 ∪
M1∪· · ·∪MN . Moreover (0RN , 1) /∈ (T(x,t)M

k)⊥ for any (x, t) ∈Mk and for any
k = 1...N (1). In the same way, there exists a stratification M0 = (Mk

0)k=0...N

of RN such that the Hamiltonian x 7→ Finit(x, r, px) is continuous on MN
0 and

may be discontinuous on M0
0 ∪M1

0 ∪ · · · ∪MN−1
0 .

(ii) The “good framework for HJB Equations with discontinuities” holds for Equa-
tion (20.1) in O = RN × (0, Tf ) associated to the stratification M.

(iii) The “good framework for HJB Equations with discontinuities” holds for the
equation Finit = 0 in O = RN , associated to the stratification M0.

We recall that the assumptions for a “Good Framework for HJ Equations with
Discontinuities” are that (HBCL), (TC-BCL) and (NC-BCL) hold. We refer to
Section 5.5 where the connections with Hamiltonian assumptions (Mon), (TC),
(NC) are described.

(1)This assumption, whose aim is to avoid “flat part” of Mk in time, will be redundant to the
normal controllability assumption in RN × (0, Tf ).
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20.2 Definition and comparison principle

In order to state a definition, we introduce Hamiltonians Fk, defined as follows: if
(x, t) ∈Mk, r ∈ R and p ∈ T(x,t)M

k, we set

Fk(x, t, r, p) := sup
(b,c,l)∈BCL(x,t)

b∈T(x,t)M
k

{
− b · p+ cr − l

}
. (20.4)

Similarly, for t = 0 we define

Fkinit(x, r, px) := sup
((bx,0),c,l)∈BCL(x,0)

bx∈TxMk
0

{
− bx · px + cr − l

}
. (20.5)

We may also use these definitions for p ∈ RN+1 or px ∈ RN since it is clear that there
is no contribution from the (T(x,t)M

k)⊥ or (T(x,t)M
k
0)⊥ part of p or px.

In the framework of Part II, as the reader may guess, we have MN = H× (0, Tf ),
MN+1 = (Ω1 ∪ Ω2)× (0, Tf ) and HT is exactly FN , while M0, · · ·MN−1 = ∅ .

In the sequel, the notation (HJB-S) refers to problem (20.1), seen in the context
of stratified solutions, that we detail below. The notion of stratified supersolution,
denoted by (S-Super), is nothing but the usual Ishii supersolution definition involving
F∗ = F. On the other hand, we introduce two notions of weak and strong subsolutions,
respectively denoted by (w-S-Sub) and (s-S-Sub), recalling that, because of (HBA−SF),
the Hamiltonians Fk,Fkinit are continuous for all k.

Definition 20.2.1 — Stratified sub and supersolutions of (HJB-S).

1. — (S-Super): A locally bounded function v : RN × [0, Tf [→ R is a stratified super-
solution of (HJB-S) if it is an Ishii supersolution of (20.1).

2. — (w-S-Sub): A locally bounded function u : RN × [0, Tf [→ R is a weak stratified
subsolution of (HJB-S) if

(a) for any k = 0, ..., (N + 1), u∗ is a viscosity subsolution of

Fk
(
x, t, u∗, Du∗

)
≤ 0 on Mk,

(b) similarly, for t = 0, and k = 0..N , u∗(x, 0) is a viscosity subsolution of

Fkinit(x, u∗(x, 0), Dxu
∗(x, 0)) ≤ 0 on Mk

0 .
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3. — (s-S-Sub): A locally bounded function u : RN × [0, Tf [→ R is a strong stratified
subsolution of (HJB-S) if it is a (w-S-Sub) and satisfies additionally

(a) F∗
(
x, t, u∗, Du∗

)
≤ 0 in RN × (0, Tf) ,

(b) (Finit)∗(x, u∗(x, 0), Dxu
∗(x, 0)) ≤ 0 in RN .

4. — A weak or strong stratified solution is a function which is both a (S-Super) and
either a (w-S-Sub) or a (s-S-Sub).

As usual, we will say that u is an η-strict (weak or strong) stratified subsolution if
the various subsolution inequalities of the type “G ≤ 0” are replaced by a “G ≤ −η”
inequality, the constant η > 0 being independent of (x, t).

The difference between weak and strong stratified solutions can be better under-
stood through the discussion in Section 13.1, let us comment on this now.

The notion of “strong” stratified (sub)solution which was used in [35] is the easiest
to interpret and maybe the more natural one from the viscosity solutions—or pde—
point of view: Part II teaches us that a subsolution inequality is missing on the
discontinuity H× (0, Tf ) in order to get a uniqueness property, and that adding the
right one solves this problem. Therefore, it is not surprising to introduce the concept
of “stratified solution” by super-imposing additional subsolutions inequalities on each
set of discontinuity Mk, including those at time t = 0. We point out that these
additional subsolution conditions are real “Mk-inequalities”, i.e. they are obtained
by looking at maximum points of u∗ − ϕ on Mk where ϕ is a test-function which is
smooth on Mk.

Of course, at first glance, removing the F∗ ≤ 0-inequality does not seem to go in
the right direction since some subsolution property is clearly missing. This is why, in
[35], looking for “additional” (and not different) subsolution properties seems more
natural; and Section 20.5 gives an other a posteriori justification of the interest of
“strong” stratified subsolutions.

But, on the other hand, from the control point of view, the F∗-inequality (as well
as the (Finit)∗-one) is not so natural for reasons explained in Section 13.1. In that
sense, a controller may understand in a better way the notion of “weak” stratified
(sub)solution since all the inequalities have a clear sense in terms of control.

However, the defect of the notion of “weak” stratified (sub)solution is that it com-
pletely decouples the subsolution inequalities on the different Mk and by doing so,
opens the possiblity to generate “artificial” subsolutions with uncorrelated values on
these discontinuities.
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The reconciliation of these two points of view involves in a central way the question
of the regularity of subsolutions on the various Mk. Spoiling the results of Section 20.5,
we can summarize the answer as

if (HBA−SF) holds, then regular (w-S-Sub) = (s-S-Sub).

Roughly speaking, this means that under Assumption (HBA−SF), the F∗ and (Finit)∗
inequalities are just used to obtain the regularity of subsolutions and, once this reg-
ularity is obtained, only the “weak” notion of stratified subsolution plays a role.
Actually, as far as the regularity issue is concerned, F∗ and (Finit)∗ are not playing
any special role in the definition of (s-S-Sub); in fact they could be replaced by other
Hamiltonians satisfying (NC) which is the real key point in order to get regularity.
This remark may seem anecdotical here but it will play a real role in Part V.

In the rest of the book, since we will always use Assumption (HBA−SF), we will
always be in a context where “weak” and “strong” stratified solutions coincide and
we will use mainly strong stratified solutions (or we will mention the difference if
there is one). Therefore the terminologies “sub/supersolution of (HJB-S)” or “strat-
ified sub/supersolution of (20.1)” refer to the above definition combining (s-S-Sub)
and (S-Super). We also sometimes use the terminology Standard Stratified Problem
(SSP) referring to a problem in the form of (20.1)–(20.2)–(20.3) satisfying (HBA−SF),
understanding sub and supersolutions in the strong sense of Definition 20.2.1.

The next section is devoted to show that (s-S-Sub) are regular, being more precise
about the term “regular”itself. Then we will show that, under Assumption (HBA−SF),
a comparison holds between regular (w-S-Sub) and (S-Super), which will allow us to
prove also that regular (w-S-Sub) and (s-S-Sub) are the same.

20.3 The regularity of strong stratified subsolu-

tions

We recall that the regularity of discontinuous functions is defined in Definition 3.4.1;
based on it, we define the regularity of stratified subsolutions (weak or strong).

Definition 20.3.1 Let u : RN × [0, Tf ] → R be a u.s.c. weak or strong stratified
subsolution of (20.1). We say that u is a regular subsolution if

(i) for any k < N + 1, u is ωk-regular on Mk, where

ωk = Mk+1 ∪Mk+2 ∪ · · · ∪MN+1 .
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In other words, for any (x, t) ∈Mk and k < N + 1,

u(x, t) = lim sup{u(y, s), (y, s)→ (x, t), (y, s) ∈ ωk} . (20.6)

Moreover, for the special case where (x, t) ∈MN , we also have

u(x, t) = lim sup{u(y, s), (y, s)→ (x, t), (y, s) ∈M (x,t)
+ }

= lim sup{u(y, s), (y, s)→ (x, t), (y, s) ∈M (x,t)
− }, (20.7)

where, for r small enough, M
(x,t)
+ ,M

(x,t)
− ⊂ MN+1 ∩ B((x, t), r) are the locally

disjoint connected components of
(
(RN × (0, Tf )) \MN

)
∩B((x, t), r).

(ii) For t = 0, for any k < N , the function x 7→ u(x, 0) is ωk0 -regular on Mk
0 where

ωk0 = Mk+1
0 ∪Mk+2

0 ∪ · · · ∪MN
0

and, in the special case where (x, 0) ∈MN−1
0 , we also have

u(x, 0) = lim sup{u(y, 0), y → x, (y, 0) ∈M (x,t)
0,+ }

= lim sup{u(y, s), y → x, (y, 0) ∈M (x,t)
0,− }, (20.8)

where, for r > 0 small enough, M
(x,t)
0,+ ,M

(x,t)
0,− ⊂ MN

0 ∩ (B(x, r) × {0}) are the

locally disjoint connected components of
(
(RN ×{0})\MN−1

0

)
∩ (B(x, r)×{0}).

The result on strong stratified subsolutions is the following.

Proposition 20.3.2 Assume that (HBA−SF) holds. Then any strong stratified sub-
solution is regular.

We leave the proof of this important proposition to the reader since it is a routine
application of Proposition 3.4.2 after a suitable flattening of the Mk we are interested
in, using the definition of a (RS).

Remark 20.3.3 Again we insist on the very anecdotical role played by the Hamilto-
nians F∗, (Finit)∗ and the F∗, (Finit)∗ ≤ 0 inequalities in this result: only Assumption
(NC-BCL) is playing a key role. As a consequence, if we replace the F∗, (Finit)∗ ≤ 0
inequalities in the definition of (s-S-Sub), by some other ones like G∗, (Ginit)∗ ≤ 0
with G∗, (Ginit)∗ satisfying (NC-BCL), we would still get regular subsolutions. This
remark is important when dealing with stability results: given a sequence (uε)ε of (s-
S-Sub) for Hamiltonians (Fε)ε, then lim sup∗ uε is a subsolution for F := lim inf ∗ Fε.
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With suitable assumptions, F may satisfy (NC-BCL), while, in general, it is not
clear that F = (F)∗, where F = lim sup∗ Fε. Hence a stability result for “strong”
solutions is far more delicate to obtain than for “weak” solution.

This remark yields another justification for introducing the notion of (w-S-Sub),
apart from being natural from the control viewpoint: while their needed regularity may
come indeed from F∗, (Finit)∗ inequalities—referring to strong solutions—it may also
come from other inequalities coming for Hamiltonians satisfying (NC-BCL). But
also, it can derive from a particular situation where (NC-BCL) may not even be
satisfied. We refer the reader to Section 26.4 where the connections between the regu-
larity of subsolutions and the existence of certain viscosity inequalities on the boundary
are discussed for state-constraint problems; such arguments can also be applied on Mk

for standard stratified problems.

As an example, the reader may consider the cases when all the dynamics are pointing
toward Mk for some k: clearly (NC-BCL) is not satisfied but the subsolutions are
expected to be regular on Mk. Under suitable assumptions, it should be possible to
handle such cases by solving a problem on Mk, and then by using the solution on Mk

as a Dirichlet data for the problem in RN × (0, Tf ).

Despite we are not going to use it in this part, let us mention an immediate con-
sequence of Proposition 20.3.2 which will be useful in the case of state-constraint
problems.

Corollary 20.3.4 Assume that (HBA−SF) holds and let u : RN × [0, Tf ] → R be an
u.s.c. strong stratified subsolution of (20.1). Then, for any k < N + 1, u is MN+1-
regular on Mk. Similarly for t = 0, for any k < N , the function x 7→ u(x, 0) is
MN

0 -regular on Mk
0.

Proof — We just sketch it in the case of Mk (i.e. for t > 0) because it is an easy
consequence of Proposition 20.3.2 by backward induction. The case t = 0 is of course
similar. Notice first that the result clearly holds for k = N as a direct application of
Proposition 20.3.2.

Now, assume that the result holds for k = N, · · · , (N− l) and take (x, t) ∈MN−l−1.
By Proposition 20.3.2, u(x, t) = lim supε u(xε, tε) with (xε, tε) ∈MN−l ∪ · · · ∪MN+1.

But we can use the MN+1-regularity at (xε, tε) ∈ MN−l ∪ · · · ∪MN+1 to build a
new sequence (x′ε, t

′
ε) ∈MN+1 such that u(x, t) = lim supε u(x′ε, t

′
ε), implying that the

induction works since the regularity result holds true for k = N − l − 1.
Q.E.D.
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20.4 The comparison result

The main advantage of the concept of (weak and strong) stratified solutions is reflected
in the comparison principle which we state now.

Theorem 20.4.1 — Comparison result for stratified solutions.

(i) Assuming (HBA−SF), a comparison result holds between bounded regular (w-S-
Sub) and bounded (S-Super) of Equation (20.1).

(ii) Assuming (HBA−SF), a comparison result holds between bounded (s-S-Sub) and
bounded (S-Super) of Equation (20.1).

Proof — Of course, the second part of the result is an immediate consequence of the
first one because of Proposition 20.3.2.

Now we turn to the proof of the first part. Essentially the proof follows the main
steps as the proof of Theorem 8.4.1 where it is shown that U− is the unique solution
of the Bellman Equation with the HT -complemented inequality, which turns out to
be an MN -inequality in the stratified setting. The only difference is that we have to
use the more sophisticated form of Theorem 5.3.1.

Before describing these main steps, let us introduce some notations and perform
some reductions. Let u, v : RN × [0, Tf [→ R be respectively a bounded u.s.c. regular
stratified subsolution and a bounded l.s.c. stratified supersolution of Equation (20.1).
Our aim is to show that u ≤ v in RN × [0, Tf [

(2).

This inequality is proved via two successive comparison results: first, one has to
show that u(x, 0) ≤ v(x, 0) in RN which derives from a comparison result associated
to the stationary equation Finit = 0. Then, to prove that u ≤ v in RN×]0, Tf [, using a
comparison for the evolution problem. The global strategy to obtain the comparison
is the same in both cases and the changes to pass from one to the other are minor.
Therefore we are going to provide the full proof only in the evolution case, admitting
that u(x, 0) ≤ v(x, 0) in RN .

Reductions — In order to prove these comparison results, we perform the following
changes which are based on Assumption (HBCL)struct. We first use the by-now classical
change

ū(x, t) = exp(−Kt)u(x, t) and v̄(x, t) = exp(−Kt)v(x, t) ,

(2)The reason why we do not include Tf in the comparison will be clarified later on.
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which, according to (HBCL)struct-(ii), allows to reduce to the case when c ≥ 0 for
any (b, c, l) ∈ BCL(x, t) and (x, t) ∈ RN × [0, Tf ]. We may also assume that c ≥ 1 if
−bt ≥ c given by (HBCL)struct-(iv). Notice that Assumption (HBCL)struct-(ii) implies
that c ≥ 0 if t = 0 and bt = 0, hence the Hamiltonian Finit(x, r, px) is increasing in r.

Next, adding C1t + C2 to ū and v̄ and using (HBCL)struct-(iv), we can assume
without loss of generality that l ≥ c for any element (b, c, l) ∈ BCL(x, t), for any
(x, t) ∈ RN × [0, Tf ].

In the comparison proofs, both for t ∈ (0, Tf ) and t = 0, we use in a key way that
c ≥ 0 and l ≥ c for any element (b, c, l) ∈ BCL(x, t), any (x, t) ∈ RN× [0, Tf ]. Indeed,
these properties together with the convexity of F and Finit allow us to reduce to the
case of strict subsolutions, a favorable situation both in the stationary and evolution
case.

Then, the comparison proof in RN×]0, Tf [ is done in five steps.

Step 1: Reduction to a local comparison result (LCR)-evol – Using the assumptions
on the BCL, one easily proves that

ψ(x, t) := −δ(1 + |x|2)1/2

is a smooth stratified subsolution for δ is small enough, and even a η-strict subsolution
for some η > 0: indeed, by (HBCL)fund and the above reductions, if δ is small enough

−b · (Dxψ(x, t), Dtψ(x, t)) + cψ(x, t)− l ≤ δM + 0− c < −c/2.

Therefore changing ū(x, t) into

ūµ(x, t) = µū(x, t) + (1− µ)ψ(x, t) ,

for 0 < µ < 1, we are left to the case of comparing a (1−µ)η-strict subsolution ūµ and
a supersolution v such that ūµ(x, t)−v(x, t)→ −∞ when |x| → +∞. In other words,
(LOC1) is satisfied. And so is (LOC2) by considering ūµ(x, t)− δ′(|x− x̄|2 + |t− t̄|2)
where (x̄, t̄) is the point where we wish to check (LOC2), δ′ > 0 being a small enough
constant.

Thanks to Section 3.2, and since all the above reductions does not affect the reg-
ularity of the subsolution, we are reduced to prove local comparison results between
regular subsolutions and supersolutions. For the sake of simplicity of notations, we
just denote by u a strict regular stratified subsolution and v a stratified supersolution
in the following.

Step 2: Local comparison and argument by induction – In order to prove (LCR)-evol
we argue by induction. But using Theorem 5.3.1 we have to show, at the same time
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a local comparison result not only for Equation (20.1) but also for equations of the
type max(F(x, t, w,Dw), w − ψ) = 0 where ψ is a continuous function. In fact, with
the assumptions we use, there is no difference when proving (LCR)-evol for these
two slightly different equations but, in order to be rigourous, we have to consider the
“obstacle” one, which reduces to the F–one if we choose ψ(x) = K where the constant
K is larger than max(||u||∞, ||v||∞).

For the sake of simplicity, we use below the generic expression ψ–Equation for the
equation max(F(x, t, w,Dw), w − ψ) = 0 and we will always assume that ψ is a
continuous function, at least in a neighborhood of the domain we consider.

We are then reduced now to show that, for any (x̄, t̄) ∈ RN × (0, Tf ):

LCRψ(x̄, t̄): There exists r = r(x̄, t̄) > 0 and h = h(x̄, t̄) ∈ (0, t̄) such that, if u and v
are respectively a strict regular stratified subsolution(3) and a stratified supersolution
of some ψ–Equation in Qx̄,t̄

r,h and if max
Qx̄,t̄r,h

(u− v) > 0, then

max
Qx̄,t̄r,h

(u− v) ≤ max
∂pQ

x̄,t̄
r,h

(u− v) ,

where we recall that ∂pQ
x̄,t̄
r,h stands for the parabolic boundary of Qx̄,t̄

r,h, namely here

∂B(x̄, r)× [t̄− h, t̄] ∪B(x̄, r)× {t̄− h}.

It is clear that LCRψ(x̄, t̄) holds in MN+1 since FN+1 and all the ψ–Equations
satisfy all the property ensuring a standard comparison result in the open set MN+1;
therefore LCRψ(x̄, t̄) is satisfied for r and h small enough—see Section 3.2.4.

In order that it holds for (x̄, t̄) in any Mk, we use a (backward) induction on k and
more precisely, we introduce the property

P(k):=
{

LCRψ(x̄, t̄) holds for any (x̄, t̄) ∈Mk ∪Mk+1 ∪ · · · ∪MN+1
}

.

Since P(N + 1) is true, the core of the proof consists in showing that P(k + 1)
implies P(k) for 0 ≤ k ≤ N . To do so, we assume that (x̄, t̄) ∈Mk and want to prove
that LCRψ(x̄, t̄) holds provided P(k + 1) is satisfied.

Step 3: Regularization of the subsolution – In order to apply the ideas of Section 3.4.3,

(3)According to the type of obstacle ψ we have to use in the proof of Theorem 5.3.1, we can assume

w.l.o.g. that u ≤ ψ − δ for some δ > 0 in Qx̄,t̄r,h and therefore a strict subsolution of F = 0 or of the
ψ-Equation have essentially the same meaning.
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we use the definition of a regular stratification which allows us to assume that x̄ = 0,
t̄ > 0 and that we are in the case of a flat stratification in a neighborhood of (x̄, t̄) =
(0, t̄). We can also assume that Mk is the k-dimensional manifold parametrized by
(t, x1, · · · , xk−1), given by the equations xk = xk+2 =, · · · ,= xN = 0. This reduction
is based on a W 2,∞-change of variable in x which is done only for the regularization
step and then we come back to the initial framework by the inverse of the change.

In the new setting, we keep the notations F, Fj (for all j) and u. We just point
out here that the t-variable is always part of the tangent variables which explains
some restriction in the assumption concerning the behavior of Fl in t, cf. (TC).
Before proceeding, we emphasize the fact that, since r and h may depend on (x̄, t̄),
we can handle without any difficulty the localization to reduce to the case of a flat
stratification.

Since (x̄, t̄) = (0, t̄) ∈ Mk, we may assume that Qx,t
r,h only contains points of

Mk,Mk+1, · · · ,MN+1 and, by assumption(4), we know that the subsolution u is ωk-
regular on Mk where ωk = Mk+1 ∪Mk+2 ∪ · · · ∪MN+1.

In order to regularize the subsolution and apply Proposition 3.4.4, we make the
change of functions

ũ(x, t) = − exp(−αu(x, t)) and ṽ(x, t) = − exp(−αv(x, t)) .

Indeed, a priori the initial F and Fj do not satisfy (Mon) while the new Hamiltonians
obtained after this exponential change satisfy (Mon-u) if α is small enough. However,
these new Hamiltonians are not necessarily convex in r and p.

Hence we first apply Proposition 3.4.4 to regularize the strict subsolution in Qx,t
r,h,

using the variables y = (t, x1, · · · , xk−1), z = (xk, xk+2, · · · , xN) and the G((y, z), u, p)
corresponding to max(F∗(x, t, r, p),Fj(x, t, r, p), u−ψ) but with the new Hamiltonian
obtained with the above change of variable. This approximation by a sup-convolution
in the tangential variables leads to a Lipschitz continuous subsolution which is semi-
convex in the tangential variables y.

To proceed in order to obtain a sequence of strict stratified subsolutions which
are C1 in the variables y = (t, x1, · · · , xk−1), there are two options: either we use
Proposition 3.4.7 with Remark 3.4.8 since the new Hamiltonians satisfy (Mon-u) but
are not necessarily convex in r or we make the change back and we use Lemma 3.4.6
to avoid assumption (Mon-u).

In any case, applying back the change of variables if necessary, and using that the
above procedure gives a strict stratified subsolution in a neighborhood of (x̄, t̄) =

(4)or by using using Proposition 20.3.2 for the reader who is just interested in strong stratified
subsolutions.
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(0, t̄), we find that there exists r, h > 0, t′ > t̄ and a sequence (uε)ε of subsolutions of

the stratified problem in Qx̄,t′

r,h , which are in C0
(
Qx̄,t′

r,h

)
∩C1

(
Mk ∩Qx̄,t′

r,h

)
and are all

(η/2)-strict subsolutions of Equation (4.8) inQx̄,t′

r,h . Moreover, because of Remark 3.2.5,

we can assume as well that each uε is a (η/2)-strict subsolution on Qx̄,t̄
r,h

(5).

Step 4: Properties of the regularized subsolution – Step 3 has two consequences

(a) for any ε > 0 small enough, Fk(x, t, uε, Duε) ≤ −η/2 < 0 on Mk ∩ Qx̄,t̄
r,h in a

classical sense;

(b) since uε is an (η/2)-strict (w-S-Sub) of the ψ-Equation in O := Qx̄,t̄
r,h \ Mk

and since (LCR) holds there because P(k + 1) holds, we use the subdynamic
programming principle for subsolutions (cf. Theorem 5.3.1) which implies that
each uε satisfies an (η/2)-strict dynamic programming principle in O(6).

These two properties allow us to have (LCR)-evol in Qx̄,t̄
r,h in the final step.

Step 5: Performing the local comparison – From the previous step we know that
for each ε > 0, uε satisfies the hypotheses of Lemma 5.4.1 and we deduce from this
lemma that

∀(y, s) ∈ Qx̄,t̄
r,h , (uε − v)(y, s) < max

∂pQ
x̄,t̄
r,h

(uε − v) .

Using that u = lim sup∗ uε, this yields a local comparison result (with inequality in
the large sense) between u and v as ε→ 0.

Therefore we have shown that P(k + 1) implies P(k), which ends the proof.
Q.E.D.

Remark 20.4.2 As it is clear in the above proof, the special structure of M does
not play any role and time-dependent stratifications do not differ so much from time-
independent ones. We remark anyway that a difference is hidden in the normal con-
trollability assumption is that we cannot have a normal direction of the form (0RN ,±1)
for Mk and this, for any k.

(5)This regularization step cannot be done if t̄ = Tf : this is why the comparison may only be
proved on RN × [0, Tf − δ] for any δ > 0.

(6)We leave to the reader the careful checking that the proof of Theorem 5.3.1 uses only P(k + 1)
in O and never the F∗-inequalities.
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20.5 Regular weak stratified subsolutions are strong

stratified subsolutions

As the title of the section indicates it, the main result is the

Proposition 20.5.1 If (HBA−SF) holds, then any regular weak stratified subsolution
is a strong stratified subsolution.

It is a little bit surprising to see that, provided (HBA−SF) holds, the “unnatu-
ral” F∗, (Finit)∗ inequalities necessarily hold for regular weak stratified subsolution.
Besides, the rather indirect proof of Proposition 20.5.1 below—via the comparison
result—confirms how artificial these inequalities are.

But, for the purpose of this book, this has a clear consequence: since (HBA−SF) is
a basic assumption which is supposed to hold everywhere in this book, regular weak
or strong stratified subsolutions make no difference. For this reason, in the sequel, we
almost only use the notion of (s-S-Sub).

Proof — We only show that a regular weak stratified subsolution satisfies the F∗
inequality, the (Finit)∗ one being similar.

Let u be a regular weak stratified subsolution and (x, t) ∈ RN × (0, Tf ) be a strict
local maximum point of u−φ where φ is a C1-function in RN×[0, Tf ]. We may assume
w.l.o.g. that u(x, t) = ψ(x, t). If F∗(x, t, φ(x, t), Dφ(x, t) ≤ 0, we are done. Hence we
assume by contradiction that F∗(x, t, φ(x, t), Dφ(x, t) = 2δ > 0.

But F∗ being l.s.c. and φ being smooth, F∗(y, s, φ(y, s), Dφ(y, s) ≥ δ > 0 in Qx,t
r,h for

r, h > 0 small enough and we may also assume because of the strict local maximum
point property that u−φ < 0 on ∂pQ

x,t
r,h. Since F∗ ≤ F, φ is a (S-Super) in Qx,t

r,h and the
(LCR) for the equation which holds as a by-product of the proof of Theorem 20.4.1—
choosing perhaps smaller r, h—leads to

0 = u(x, t)− ψ(x, t) ≤ max
∂pQ

x,t
r,h

(u− φ) < 0 ,

i.e. a contradiction to the maximum point property. Hence F∗(x, t, φ(x, t), Dφ(x, t) ≤
0 and the result is proved.

Q.E.D.
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Chapter 21

Connections with Control
Problems and Ishii Solutions

In this chapter we connect the notions of stratified solution to control problems and
classical Ishii solutions. Given a set-valued map, we first identify the natural value
function as the unique (strong) stratified solution of the associated Bellman equation.
As can be expected, we prove that it corresponds to the minimal Ishii solution. We
also present some partial results connecting Ishii and stratified subsolutions.

21.1 The value-function as a stratified solution

In Section 4.2, it is already shown that the value-function U defined by

U(x, t) := inf
T (x,t)

{∫ +∞

0

l
(
X(s), T (s)

)
e−D(s) ds

}
is an Ishii supersolution of F = 0, therefore it is a stratified supersolution. But in
order to get the subsolution properties, the behaviour of the dynamic is playing a key
role via Assumptions (TC-BCL) and (NC-BCL).

In the sequel, we treat in details the subsolution properties on Mk (0 ≤ k ≤ N+1),
i.e. those for t > 0. The case t = 0 and the corresponding inequalities on the Mk

0

follow readily from the same arguments.

Theorem 21.1.1 — Subsolution Properties.

Under Assumption (HBA−SF), the value-function U is a regular weak stratified sub-
solution. More precisely,

351
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(i) For any k = 0..N , U∗ = (U |Mk)∗ on Mk ;

(ii) for any k = 0..(N + 1), U∗ is a Ishii subsolution of

Fk(x, t, U∗, DU∗) = 0 on Mk .

In this result, we recall again that, for k = 0..N , (ii) is a viscosity inequality for
an equation restricted to Mk, which means that if φ is a smooth function on Mk (or
equivalently on RN × (0, Tf ) by extension) and if (x, t) ∈ Mk is a local maximum
point of U∗ − φ on Mk, then

Fk(x, t, U∗(x, t), Dφ(x, t)) ≤ 0 .

This is why point (i) is an important fact since it allows to restrict everything (in-
cluding the computation of the u.s.c. envelope of U) to Mk.

Of course, the case k = N + 1 is particular since FN+1 = F∗ = F on MN+1, because
(HBA−SF) implies that F is continuous on MN+1.

This result already shows that U∗ is a weak stratified subsolution of the problem.
But the reader has probably already understood that, since (NC-BCL) holds, U∗ is
also going to be a strong stratified subsolution by Proposition 20.5.1.

Proof — Since all the results are local, we can assume w.l.o.g. that we are in the case
of an (AFS), a complete proof being obtained via a simple change of variable.

(a) Proof of (i) — For k = 0..N , we consider (x, t) ∈Mk and a sequence (xε, tε) →
(x, t) such that

U∗(x, t) = lim
ε→0

U(xε, tε) .

We have to show that we can assume that (xε, tε) ∈Mk. In all the sequel, we assume
that ε > 0 is small enough so that all the points remain in B((x, t), r), the ball given
by (NC-BCL).

Given a sequence (xε, tε), we build a sequence (x̄ε, t̄ε)ε such that (x̄ε, t̄ε) ∈ Mk

for any ε and with U∗(x, t) = limε U(x̄ε, t̄ε). Notice that of course if (xε, tε) already
belongs to Mk we can set (x̄ε, t̄ε) = (xε, tε) so let us assume that this is not the case.

By Theorem 4.3.3, for any solution (X,T,D, L) of the differential inclusion starting
from (xε, tε, 0, 0) and any θ > 0,

U(xε, tε) ≤
∫ θ

0

l
(
X(s), T (s)

)
exp(−D(s))ds+ U

(
X(θ), T (θ)) exp

(
−D(θ)

)
.

Now let (x̃ε, t̃ε) be the projection of (xε, tε) onto Mk and let us denote by nε the
vector nε := (x̃ε, t̃ε)− (xε, tε) ∈ V ⊥k . Using (NC-BCL) we know that, for any (y, s) ∈
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B((x, t), r), there exists b ∈ B(y, s) with normal component 2−1δ.nε|nε|−1 ∈ B(0, δ).
More precisely, there exist b which can be decomposed as b = b> + b⊥ with b> ∈ Vk,
b⊥ ∈ V ⊥k , and b⊥ := 2−1δ.nε|nε|−1. We denote by B̃CL(y, s) the set of all (b, c, l) ∈
BCL(y, s) for which b is of this form.

Clearly, the map (x, t) 7→ B̃CL(y, s) has compact, convex images and is upper
semi-continuous. Solving the associated differential inclusion starting from (xε, tε), we
get a solution (X,T,D, L) such that (X(s), T (s)) ∈ B((x, t), r) for s small enough,
independent of ε. Moreover, for sε = 2|nε|/δ,

(x̄ε, t̄ε) = (X(sε), T (sε)) = (xε, tε) + sεb = (x̃ε + yε, t̃ε + τε) ,

where (yε, τε) ∈ Vk, |(yε, τε)| = O(|x̃ε−xε|+ |t̃ε−tε|). Indeed, sεb⊥ = nε and therefore
(xε, tε) + sεb ∈ (x̃ε, t̃ε) + Vk.

Therefore, (x̄ε, t̄ε) ∈ Mk by Lemma 3.3.3 and using the Dynamic Programming
Principle above with θ = sε yields

U(xε, tε) ≤ O(sε) + U
(
X(sε), T (sε)

)
exp(−D(sε)) = O(sε) + U

(
x̄ε, t̄ε

)
(1 +O(sε)) .

Finally since sε → 0 as ε→ 0, we deduce that

lim sup
ε→0

U
(
x̄ε, t̄ε

)
≥ lim sup

ε→0
U(xε, tε) = U∗(x, t) ,

which shows (i) since (x̄ε, t̄ε
)
∈Mk.

(b) Proof of (ii) – As we already mentioned above, the result for k = N + 1 is given
by Theorem 4.3.5. Hence it remains to examine the cases k = 0..N .

For such k, let φ be a smooth function on Mk and let (x, t) ∈ Mk be a local
maximum point of U∗ − φ on Mk, we have to show that

Fk(x, t, U∗(x, t), Dφ(x, t)) ≤ 0 .

Using (i), we can consider a sequence (xε, tε) ∈Mk such that U(xε, tε) → U∗(x, t)
and use Theorem 4.3.3, which implies

U(xε, tε) ≤
∫ θ

0

l
(
X(s), T (s)

)
exp(−D(s))ds+ U

(
X(θ), T (θ)

)
exp

(
−D(θ)

)
, (21.1)

for any solution (X,T,D, L) of the differential inclusion starting from (xε, tε, 0, 0).

But now we can use the result of Lemma 5.5.2: for any (b, c, l) ∈ BCLk(x, t) and
η > 0, BCLk(y, s)∩B((b, c, l), η) 6= ∅ if (y, s) is close enough to (x, t). Solving locally
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the differential inclusion with BCLk(y, s) ∩ B((b, c, l), η) instead of BCL and using
the associated solution in (21.1) allows to obtain the viscosity inequality for (b, c, l)
as in the standard case.

Since this is true for any (b, c, l) ∈ BCLk(x, t), the result is complete.
Q.E.D.

An immediate consequence of Theorem 21.1.1—and of its analogue for t = 0—,
using also Theorem 20.4.1 and Proposition 20.5.1, is the

Corollary 21.1.2 Under the assumptions of Theorem 21.1.1, the value-function U is
continuous in RN× [0, Tf [ and is the unique (strong) stratified solution of the Bellman
Equation.

21.2 Stratified solutions and classical Ishii viscos-

ity solutions

The aim of this section is to compare the two notions of solutions, in particular under
the assumptions of Theorem 20.4.1. Of course, (weak or strong) stratified solutions
and classical Ishii viscosity solutions can coincide only when the latter are uniquely
identified and the case of codimension-1 discontinuities shows that this clearly requires
some additional assumptions, cf. Part II.

We present two kind of results in this section: the first one, which is just an easy
remark, is that the stratified solution is the minimal Ishii (super)solution; the second
one provides a particular case where we can show that Ishii subsolutions are (strong)
stratified subsolutions.

21.2.1 The stratified solution as the minimal Ishii solution

Before addressing the question of identifying conditions under which classical Ishii
viscosity solution and stratified solution coincide, we begin with an easy consequence
of Theorem 20.4.1.

Corollary 21.2.1 If (HBA−SF) holds, the unique stratified solution of Equation (20.1)
is also the minimal Ishii viscosity supersolution and solution of Equation (20.1).

The proof of this result is obvious since Ishii viscosity supersolutions and stratified
supersolutions are the same; therefore Corollary 21.2.1 is a straightforward application
of Theorem 20.4.1.



HJ-Equations with Discontinuities: Stratified Problems 355

In the case of codimension-1 discontinuities (see Part II), Corollary 21.2.1 implies
that U− is the unique stratified solution and actually the reader can check that The-
orem 8.4.1 is nothing but the first uniqueness (and comparison) result for a stratified
solution in this book, HT providing the subsolution inequality on MN .

21.2.2 Ishii subsolutions as stratified subsolutions

The next very natural question is: under which conditions can it be proved that a
classical Ishii viscosity subsolution is a stratified (strong) subsolution? Of course, this
question is meaningful only for subsolutions since the supersolutions are the same.
Notice that when this is the case, we conclude that uniqueness holds for the Ishii
formulation since the unique stratified subsolution is also the unique classical Ishii
viscosity solution.

This question then appears as a generalization in the direction of looking for con-
ditions which ensure, in one dimension, that U+ ≡ U−. A partial but rather general
answer is given by Lemma 10.3.1. The reader can check on examples that this lemma
is of a rather simple use as it can be seen on Chapter 30.

In the more complicated framework of stratified problems, we are also looking for
simple conditions which can easily be checked for more general types of discontinuities.
The ones we propose in this section are unavoidably rather restrictive but they cover
anyway some interesting cases as we will illustrate below by several examples.

As in the previous section, we treat only the case of the subsolution inequalities on
the Mk, i.e. those for t > 0, but similar arguments gives the same results for the Mk

0

if t = 0.

A way to obtain the Fk-subsolution inequalities by using the Ishii subsolution con-
dition F∗ ≤ 0 consists in

(i) “shifting” Mk into some Mk
ε ⊂MN+1 such that Mk

ε →Mk;

(ii) using the Ishii inequality F∗ ≤ 0 on Mk
ε , since it is contained in MN+1, in order

to obtain a Fkε ≤ 0-inequality on Mk
ε ;

(iii) passing to the limit through a stability property to get Fk ≤ 0 on Mk as ε→ 0.

In order to perform this stability strategy in a quite general way we need to take
into account the fact that Mk may be approached by several Mk,i

ε ⊂ MN+1, and of
course we only need to choose one which yields the result. We refer to the example
below to better understand this remark. Notice that using stability in the stratified
setting is by no means a routine exercise as it is in the classical continuous case, cf.
Chapter 22, but here we use a “simple” stability result since the Fkε -inequalities are
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set on the Mk
ε , which are just copies of Mk and which converge to Mk in a strong

enough way.

To be more precise, let us assume that O ⊂ RN+1 is an open set and that for
(x, t) ∈ O,

F(x, t, r, p) = sup
(b,c,l)∈BCL(x,t)

{
− b · p+ cr − l

}
for some set-valued map BCL : O → P(RN+3).

Definition 21.2.2 For k = 0..N , we say that Mk is locally MN+1-approached by a
family of k-dimensional manifolds (Mk,i

ε )i∈I at (x, t) ∈Mk if there exists r > 0 such
that B((x, t), r̄) ⊂ O and for all i ∈ I,{

Mk,i
ε ∩B((x, t), r̄) ⊂MN+1 ,

Mk,i
ε ∩B((x, t), r̄)→Mk ∩B((x, t), r̄) in the C1-topology .

In such a situation, for (y, s) ∈Mk,i
ε , we set

Fk,iε (y, s, r, p) := sup
(b,c,l)∈BCL(y,s)

b∈T(y,s)M
k,i
ε

{
− b · p+ cr − l

}
.

Proposition 21.2.3 Let us assume that (HBA−SF) holds and that u be an u.s.c.
classical Ishii viscosity subsolution of

F(x, t, u,Du) ≤ 0 in O ⊂ RN+1 .

We also assume that Mk is MN+1-approached by (Mk,i
ε ) at (x, t). If

Fk ≤ max
i∈I

(
lim inf Fk,iε

)
in Mk ∩B((x, t), r̄) , (21.2)

then
Fk(x, t, u,Du) ≤ 0 in Mk ∩B((x, t), r̄) .

The idea of this proposition is very simple and follows the above described program:
if, on the “shifted” Mk,i

ε , the (approximate) Fk,iε -inequalities follow from the F∗-one, we
can conclude by “stability” that lim inf Fk,iε ≤ 0 on Mk. Then by using any possible
choice of these “shifted” families (Mk,i

ε )i,ε, it is enough to have (21.2) in order to
conclude that the Fk-inequality holds.
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We point out that this result takes a simpler form in the (AFS) case since we can
typically use manifolds Mk,i

ε which are nothing but eεi + Mk for some suitable choice
of eεi ∈ RN+1, i.e. on some copy of Mk which is included in MN+1. Typically, we need
at least one of these copies on each connected components of MN+1 \Mk.

From a control point-of-view, the interpretation of Proposition 21.2.3 is the follow-
ing: the best strategy to stay on Mk is to use tangential dynamics which already exist
in one of the connected components of MN+1, without combining incoming or out-
going dynamics coming from several of these connected components. Such situation
clearly leads to U+ = U− in the two-domains case.

We also insist on the fact that we have treated the case of F but an analogous result
also holds for Finit.

Proof — Using Proposition 22.2.1 later in this book, the Fk,iε -inequalities on the Mk,i
ε

are direct consequences of the F-one on MN+1. Hence Fk,iε ≤ 0 on Mk,i
ε ∩ B((x, t), r̄)

and, by stability we deduce that lim inf Fk,iε ≤ 0 on Mk ∩ B((x, t), r̄). This implies
that maxi(lim inf Fk,iε ) ≤ 0 on Mk ∩B((x, t), r̄) and the result follows.

Q.E.D.

An interesting direct consequence is the

Corollary 21.2.4 If the assumptions of Proposition 21.2.3 hold for any (x, t) ∈Mk

for k = 1..N , then any Ishii subsolution in RN × (0, Tf ) is a stratified subsolution.
As a consequence, Ishii sub and supersolutions are the same as stratified sub and
supersolutions in RN × (0, Tf ).

We have decided to restrict Proposition 21.2.3 and this corollary to the domain
RN × (0, Tf ) but, of course, similar results can be obtained at t = 0 and for general
stationary problems. We leave these generalization to the reader.

The example below shows a simple situation where the result can be applied, leading
to uniqueness for the Ishii problem.

Example 21.1 — We consider the equation

ut + a(x)|Du| = g(x) in R2 × (0, Tf ) ,

where a = ai and g = gi in Ωi where the Ωi are in Figure 13.2 and the functions ai, gi
are continuous. Of course, we assume that ai(x) ≥ 0 for any x ∈ Ωi, 1 ≤ i ≤ 4.

(a) Let us first consider M2 and the part {x1 = 0, x2 > 0}. Here

F2(x, t, (px, pt)) = pt + sup {−(θa1v1 + (1− θ)a2v2) · px − (θg1 + (1− θ)g2)} ,
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where the supremum is taken on all |v1|, |v2| ≤ 1 and all 0 ≤ θ ≤ 1 such that
(θa1v1 + (1− θ)a2v2) · e1 = 0.

It is obvious that F2 can be computed by choosing v1, v2 such that v1 ·e1 = v2 ·e1 = 0,
i.e. by taking dynamics which are in the direction of M2 and writing

−(θa1v1+(1−θ)a2v2).px−(θg1+(1−θ)g2) = θ(−a1v1 ·px−g1)+(1−θ)(−a2v2 ·px−g2) ,

it follows that

F2(x, t, (px, pt)) = max(pt + a1|(px)2| − g1, pt + a2|(px)2| − g2) ,

where (px)2 is the second component of px, i.e. the tangential part of the gradient in
space.

(b) Examining the condition to be checked for Proposition 21.2.3, we see that we can
choose M2,i = (−1)i+1εe1 + M2 and for F2,i

ε , we have

F2,i
ε (x+ (−1)i+1εe1, t, (px, pt)) = pt + ai(x+ (−1)i+1εe1)|(px)2| − gi(x+ (−1)i+1εe1) ,

and Gi(x, t, (px, pt)) = pt + ai(x)|(px)2| − gi(x). Therefore we have F2 = max(G1, G2),
we can apply the result and of course the same property holds for the three other
parts of M2.

(c) For M1 := {(0, 0)} × (0, Tf ), the checking is even simpler by considering (0, 0)±
εe1±εe2, one can easily check that the F1 condition, i.e. pt−min(gi) ≤ 0, is satisfied.

Remark 21.2.5 As the above example shows, the result of Proposition 21.2.3 is not
very sophisticated but it has the advantage to be very simple to apply.

21.3 Concrete situations that fit into the stratified

framework

In this section, we consider stratified problems through a different point of view,
maybe closer to concrete applications. We give general frameworks in which (HBA−SF),
(NC)/(NC-BCL) and (TC)/(TC-BCL) are satisfied so that the connections be-
tween the control and pde approaches are satisfied.
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In the following two subsections, we assume that we are given a general regular
stratification (Mk)k of RN and each manifold Mk is written as the union of its con-
nected components Mk,j

Mk =

J(k)⋃
j=1

Mk,j ,

where J(k) ∈ N ∪ {+∞}.

21.3.1 A general control-oriented framework

Here we start from a collection of specific control problems on each Mk,j.

The control problems — On each Mk,j, we are given a space of control Ak,j
and functions (bk,j, ck,j, lk,j) representing the dynamic, discount factor and cost for a
control problem on Mk,j. For the sake of simplicity, we assume that all these function
are defined in RN × [0, Tf ] × Ak,j with the condition bk,j(x, t, αk,j) ∈ TxMk for any
(x, t) ∈ Mk,j and αk ∈ Ak in order that the dynamic preserves Mk,j at least for a
short time.

The Hamiltonians — If (x, t) ∈Mk,j, we introduce the associated Hamiltonian

H̃k,j(x, t, r, p) := sup
αk,j∈Ak,j

{
−bk,j(x, t, αk,j) · p+ ck,j(x, t, αk,j)r − lk,j(x, t, αk,j)

}
,

which is defined for r ∈ R and a priori only for p ∈ TxMk but we can as usual extend
this definition for p ∈ RN × R.

If (x, t) ∈ RN × (0, Tf ), setting L(x, t) := {(k, j); (x, t) ∈Mk,j} and define

BCL(x, t) = Conv

 ⋃
(k,j)∈L(x,t)

{(bk,j, ck,j, lk,j)(x, t, αk,j), αk,j ∈ Ak,j}

 ,

F(x, t, r, p) = sup
(k,j)∈L(x,t),
αk,j∈Ak,j

{
− bk,j(x, t, αk,j) · p+ ck,j(x, t, αk,j)r − lk,j(x, t, αk,j)

}
.

Assumptions — In order to have Assumption (TC) satisfied, it is enough that each
(bk,j, ck,j, lk,j) satisfies (HBACP) and for (NC), we have to assume that if (x, t) ∈Mk̄,
then the set

Conv

 ⋃
(k,j)∈L(x,t),

k>k̄

{(bk,j, ck,j, lk,j)(x, t, αk,j), αk,j ∈ Ak,j}

 ,
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satisfies (NC-BCL) (instead of B).

21.3.2 A general pde-oriented framework

On the contrary, here, we start from a general equation and define all the Fk by
induction. Unfortunately this pde-oriented example will not be completely formulated
in terms of pde and Hamiltonians, the difficulty being analogous to defining HT in
Part II. To simplify, we treat the case when the stratification does not depend on
times, i.e. Mk+1 = M̃k × (0, Tf ) for all 0 ≤ k ≤ N , where (M̃k)k is a stratification of
RN .

The case k = N + 1 — We start from MN+1 which we write as the union of its
connected components

MN+1 =

J(N+1)⋃
j=1

M̃N,j × (0, Tf ) .

We consider the case when

FN+1(x, t, r, (px, pt)) = pt + H̃N,j(x, t, r, px) in M̃N,j × (0, Tf ) ,

for all j where the Hamiltonians H̃N,j are defined by

H̃N,j(x, t, r, p) = sup
αN,j∈AN,j

{
−bN,j(x, t, αN,j) · p+ cN,j(x, t, αN,j)r − lN,j(x, t, αN,j)

}
,

where the control sets AN,j are compact metric spaces. A simple but natural situation
is when all these Hamiltonians can be extended as continuous in RN×[0, Tf ] functions
satisfying (HBA−HJ). These Hamiltonians are the analogues of H1, H2 in Part II.

Induction for k < N + 1 — It remains to define F and Fk+1 on all M̃k × (0, Tf ) for
k < N and this has to be done by induction. For k = N − 1, if

MN =

J(N)⋃
j=1

M̃N−1,j × (0, Tf ) ,

we can assume that, on each M̃N−1,j × (0, Tf ), we have an Hamiltonian H̃N−1,j and

we have, for any (x, t) ∈ M̃N−1,j × (0, Tf )

F(x, t, r, (px, pt)) = max
l∈L(x,t)

(
pt + H̃N,l(x, t, r, px), pt + H̃N−1,j(x, t, r, px)

)
,
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with L(x, t) := {l; (x, t) ∈ M̃N,l×(0, Tf )}. On the other hand, FN may be decomposed
into two parts: the analogue of the HT -one in Part II coming from FN+1 and the
specific H̃N−1,j-one reflecting a particular control problem on M̃N−1,j × (0, Tf ). This
means

FN(x, t, r, (px, pt)) = max
(
FN+1
T (x, t, r, (px, pt)), pt + H̃N−1,j(x, t, r, px)

)
,

where FN+1
T (x, t, r, (px, pt)) is built in the following way: as in the previous section,

we set
Conv

( ⋃
l∈L(x,t)

{(bN,j, cN,j, lN,j)(x, t, αN,j), αN,j ∈ AN,j}
)
,

and, for (x, t) ∈ M̃N−1,j × (0, Tf ) we denote by BCLN−1
T (x, t) the subset of (b, c, l) in

this closed convex envelope such that b ∈ TxM̃N−1,j. Then

FN+1
T (x, t, r, (px, pt)) = pt + sup

BCLN−1
T (x,t)

{−b · px + cr − l} .

For any k, the construction is analogous. For any connected component of M̃k,j ×
(0, Tf ) of M̃k× (0, Tf ), F and Fk+1 are constructed in the same way by using, for F, a
maximum of the Fk+2,Fk+3, · · · ,FN+1 nearby and of pt+H̃

k,j(x, t, r, px) where H̃k,j is
a specific Hamiltonian on Mk,j × (0, Tf ), while for Fk+1, one has to built a tangential
Hamiltonian Fk+2

T and take the maximum with pt + H̃k,j(x, t, r, px). The construction
of Fk+2

T is the same as in the previous section and is based on computing the element
of BCL(x, t) for (x, t) ∈ M̃k,j × (0, Tf ) coming from M̃k̄,l × (0, Tf ) for k̄ > k and for

the nearby connected components of the M̃k̄ × (0, Tf ).



362 Barles & Chasseigne



Chapter 22

Stability Results

Stability results are, of course, a fundamental feature of viscosity solutions. A general
stability result for solutions in the Ishii sense (cf. Theorem 3.1.4) is readily available
for Hamiltonians with any type of discontinuities. Therefore it can be used for super-
solutions in the stratified case, stratified supersolutions being nothing but ordinary
Ishii supersolutions.

But clearly the case of subsolutions is far more complicated: passing to the limit in
all the viscosity inequalities Fk ≤ 0 on Mk for all k = 0, .., N + 1 creates difficulties
both at the level of the Hamiltonians and the stratification.

For the Hamiltonians, if we assume that we have a sequence of Hamiltonians (Fε)ε
which are all associated to the same stratification and if lim sup∗ Fε = F, first it is not
clear that lim inf ∗ Fε = F∗ but it is even less clear that for k = 0..N , lim inf ∗ Fkε = Fk,
or at least lim inf ∗ Fkε ≥ Fk, which would be sufficient to get standard subsolution
inequalities for the limiting problem. We point out here that the notion of (w-S-
Sub) may drop the the first difficulty—which is already an important result—but the
second one is, of course, unavoidable.

For the stratification, there are two levels of difficulties: either we just want to take
into account cases for which the local structure of the stratification is unchanged, i.e.
the discontinuities are the same, they are just slightly moved; or we wish to treat cases
where some parts of the stratification are created or deleted, i.e. some discontinuities
may appear or disappear in the Hamiltonians.

In this chapter, we address all these difficulties: we first provide a basic stability
result in the case where the structure of the stratification is unchanged, without
solving the difficulty related to the convergence of the Hamiltonians. Then we show
how the difficulty related to the convergence of the Hamiltonians can be treated and

363
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finally we show how to take into account some modifications in the structure of the
stratification, both when new parts appear and when some parts disappear in the
limit.

22.1 Strong convergence of stratifications when the

local structure is unchanged

As it is clear from the above introduction, a stability result for a stratified problem
requires two ingredients; first a suitable notion of convergence for regular stratifica-
tions and then some assumptions on the convergence of the Hamiltonians. But, of
course, these ingredients should be compatible enough to lead to a stability result.

Let us start from a definition given in [35] for the convergence of regular stratifica-
tions which we adapt to the case of stratifications of RN × (0, Tf ).

Definition 22.1.1 We say that a sequence (Mε)ε of regular stratification of RN ×
(0, Tf ) converges to a regular stratification M if, for each (x, t) ∈ RN × (0, Tf ), there
exists r > 0, an (AFS) M? = M?((x, t), r) in RN , a change of coordinates Ψx,t as
in Definition 3.3.5 and, for any ε > 0, a family of changes of coordinates Ψx,t

ε as in
Definition 3.3.5 (1) satisfying

(i) for any 0 ≤ k ≤ N , if Mk ∩ B((x, t), r) 6= ∅, then Ψx,t(Mk ∩ B((x, t), r)) =
M? ∩ Ψx,t(B((x, t), r)) and, for any ε > 0, Ψx,t

ε (Mk
ε ∩ B((x, t), r)) = M? ∩

Ψx,t
ε (B((x, t), r)).

(ii) the changes of coordinates Ψx,t
ε converge in C1(B((x, t), r)) to Ψx,t and their

inverses (Ψx,t
ε )−1 defined on Ψx,t(B((x, t), r)) also converge in C1 to (Ψx,t)−1.

We denote this convergence by Mε
RS−s−−−→M where RS stands for Regular Stratification

and “s” for “strong” convergence.

This definition essentially means that a sequence (Mε)ε of stratification converges
to M if the Mε are locally just smooth, little deformations of M. Indeed,

Mk
ε∩B((x, t), r) = [Ψx,t

ε ]−1◦Ψx,t
(
Mk∩B((x, t), r)

)
and [Ψx,t

ε ]−1◦Ψx,t → Id in C1 .

Technically, this allows to work locally with a fixed stratification M?, removing com-
pletely the difficulty of the convergence of stratification which is easily described by
the convergence of Ψx,t

ε to Ψx,t.

(1)without imposing Ψx,t
ε (x, t) = (x, t) and Ψx,t(x, t) = (x, t)
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Drawbacks — Unfortunately this definition excludes a lot of interesting cases, the
first one being the regularization of a corner, see Figure 22.1: in R3, we define M by

M1 := {(0, 0, x3), x3 ∈ R} , M2 := {(x1, |x1|, x3), x1 ∈ R \ {0}, x3 ∈ R} ,

and M0 = ∅, M3 = R3 \ (M1 ∪M2). Defining Mε through

M2
ε := {(x1, (x

2
1 + ε2)1/2 − ε, x3), x1 ∈ R \ {0}, x3 ∈ R} ,

and with M0
ε = M0, M1

ε = M1 and M3
ε = R3 \ (M1 ∪M2

ε), we see that we cannot
expect the convergence of Mε in the sense of the above definition. Indeed, the dashed
axis on Figure 22.1 which should converge to the x3-axis of the limiting stratification
does not exist in the approximating stratifications.

Figure 22.1: The ”book” approximation

Another approach uses the following approximation of M: we set M0
ε = ∅,

M1
ε := {(ε, 0, x3), x3 ∈ R} ∪ {(−ε, 0, x3), x3 ∈ R} ,

M2
ε := {(x1 + ε, x1 − ε, x3), x1 > 0, x3 ∈ R} ∪ {(x1 − ε, x1 + ε, x3), x1 < 0, x3 ∈ R} ,

and M3
ε = R3 \ (M1 ∪M2

ε). But this other sequence of stratification Mε does not
converge either to M in the sense of the above definition. This second example is a bit
trickier since the limiting M1 is obtained by merging the two connected components
of the M1

ε, a case which is again clearly excluded by definition 22.1.1.
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22.1.1 Weak convergence of stratifications and the associated
stability result

The aim of this section is to provide a notion of convergence of stratifications which
partially corrects the defects above and allows to take into account the second above
approximation of M (but not the first one yet). This notion of convergence allows the
“merging” of different connected components of Mk

ε but does not permit the emer-
gence of new parts of the stratification (i.e., no creation of new discontinuities for the
equation) nor the disappearance of some of them (no elimination of discontinuities).
We address these questions later in this chapter.

To do so, we concentrate on the equation in RN × (0, Tf ), the case t = 0 being
treated analogously. In order to formulate the stability result, a notion of convergence
of stratifications of [35] is changed into the more general following definition.

Definition 22.1.2 We say that a sequence (Mε)ε of regular stratifications of RN ×
(0, Tf ) converges to a regular stratification M if

(i) for any k = 0 . . . N + 1, Mk
ε →Mk for the Hausdorff distance;

(ii) for any k = 1 . . . N + 1, for any (x, t) ∈Mk, there exists r > 0 and J ≥ 1 such
that, for ε small enough

(a) there exists J connected components (Mk
j,ε)j=1..J of Mk

ε such that Mk
ε ∩

B((x, t), r) = ∪jMk
j,ε ∩B((x, t), r) ;

(b) for any j = 1..J and ε > 0, there exists a C1-change of coordinates Ψx,t
j,ε :

B((x, t), r) → RN × (0, Tf ) such that Ψx,t
j,ε(M

k ∩ B((x, t), r)) = Mk
j,ε ∩

B((x, t), r) ;

(c) the family of changes of coordinates Ψx,t
j,ε and their inverses (Ψx,t

j,ε)
−1 con-

verge in C1 to identity in a neighborhood of (x, t) as ε→ 0 .

We denote this convergence by Mε
RS−w−−−→M where RS stands for Regular Stratification

and “w” for “weak” convergence.

In the previous definition, we were using local changes of coordinates which trans-
form globally one stratification into an other one, typically into an (AFS). Here, on
the contrary, the changes act only on a single Mk with no information on their effects
on the other parts of the stratification. As we mentioned above, this formulation al-
lows the merging of several connected components of the Mk

ε . The reader can easily
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check that it applies without any difficulty to the second approximation of M in the
example of the previous section.

But again we recall that no new part of the stratification (with a dimension l < k)
can be created in this passage to the limit. Similarly, no part of the stratification can
really disappear, except through the merging of connected components with similar
dimension.

Now, for each ε > 0, we consider the associated Hamilton-Jacobi-Bellman problem
in the stratified domain Mε. The meaning of sub and supersolutions is the one that is
introduced in Definition 20.2.1, with the family of Hamiltonians Fε and (Fkε) that are
constructed from Mε and some family BCLε. We write (HJB-S)ε for the stratified
problem associated to Fε and (Fkε).

In order to formulate the following stability result, we have to define limiting Hamil-
tonians for the Fkε(x, t, r, p), which are defined only if p ∈ T(x,t)M

k. The definition of
the RS-convergence gives us the right way to do so: if (x, t) ∈Mk, we set

lim inf ∗ Fkε(x, t, r, p) = lim inf
(xε,tε)∈Mk

ε→(x,t), rε→r
pε∈T(xε,tε)M

k
ε→p, ε→0

Fk(xε, tε, rε, pε) .

Notice that this definition is consistent with Definition 22.1.2 since if pε ∈ T(xε,tε)M
k
ε →

p then p ∈ T(x,t)M
k.

Theorem 22.1.3 Let Sε = (Mk
ε ,Fk)ε,k be a sequence of (SSP) in RN × (0, Tf ) such

that Mε
RS−w−−−→M. Then the following holds:

(i) if for all ε > 0, vε is a l.s.c. supersolution of (HJB-S)ε, then v = lim inf∗ vε is a
l.s.c. supersolution of (HJB-S), associated to F = lim sup∗ Fε ;

(ii) if for ε > 0, uε is an u.s.c. subsolution of (HJB-S)ε and the Hamiltonians
(Fkε)k=0..N satisfy (NC) and (TC) with uniform constants on a uniform neigh-
borhood of M, then ū = lim sup∗ uε is an u.s.c. subsolution of (HJB-S) associated
to Gk := lim inf∗ Fkε for any k = 0..N .

Of course, the “strong” convergence implies the “weak” one and therefore Theo-

rem 22.1.3 a fortiori holds if we replace “Mε
RS−w−−−→M” by “Mε

RS−s−−−→M”.

Important — In the statement of Theorem 22.1.3, we have used the notation Gk

for lim inf ∗ Fkε because it is not clear a priori that the limit problem is a consistent
stratified problem, i.e. that there exists BCL such that F is given by (20.2) and
Gk = Fk is given by (20.4). We refer to the next section for sufficient conditions that
allow to get this property.
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Proof — Result (i) is standard since only the Fε/F-inequalities are involved and there-
fore (i) is nothing but the standard stability result for discontinuous viscosity solutions
with discontinuous Hamiltonians, see [118]. We now focus on getting (ii).

(a) We assume that (x0, t0) ∈ Mk is a strict local maximum point of ū − φ on Mk

where φ is a C1 function in RN × (0, Tf ) and we want to show that

Gk(x0, t0, ū(x0, t0), Dφ(x0, t0) ≤ 0 .

Since we are going to argue locally, we may assume without loss of generality that M
is an (AFS). In particular, Mk = (x0, t0) + Vk where Vk is a k-dimensional subspace
of RN+1.

We consider, in a small neighborhood of (x0, t0),

χε : (x, t) 7→ uε(x, t)− φ(x, t)− Lψε(x, t) ,

where ψε(x, t) = dist((Ψx,t
1,ε)
−1(x, t),Mk), the function dist(·,Mk) denoting the dis-

tance to Mk which is smooth in a neighborhood of Mk, except on Mk. We point out
that we have chosen arbitrarily the change (Ψx,t

j,ε)
−1 of Definition 22.1.2 with j = 1 to

fix ideas.

(b) For ε > 0 small enough, χε has a maximum point (xε, tε) near (x0, t0). From the
definition of an (AFS), we can find a small neighborhood of (x0, t0) excluding any
point of Ml for l < k, and also from connected components of Mk than the one of
(x0, t0) itself. So, for ε > 0 small enough, we know that (xε, tε) ∈Ml

ε for some l ≥ k
not depending on ε.

If (xε, tε) ∈ Ml
ε for l > k, (Ψx,t

1,ε)
−1(xε, tε) does not belong to Mk (otherwise we

would have (xε, tε) ∈Mk,ε
1 ) and therefore ψε is C1 in a neighborhood of (xε, tε). Since

uε is an u.s.c. subsolution of (HJB-S)ε, we deduce that

Flε
(
xε, tε, uε(xε, tε), Dφ(xε, tε) + LDψε(xε, tε)

)
≤ 0 .

Next we remark that, on the one hand, D
[

dist((x, t),Mk)
]

is orthogonal to Vk and
on the other hand

∣∣D[ dist((x, t),Mk)
]∣∣ = 1 where the distance function is differen-

tiable. Therefore, by Definition 22.1.2 and the convergence of (Ψx,t
1,ε)
−1 to identity in

C1, Dψε(xε, tε) is a transverse vector to Mk
ε , hence to all the Mk

j,ε. Moreover, recalling
that we are in the flat case, it is easy to see that

|[Dψε(xε, tε)]⊥| ≥ κ > 0 ,

for some κ ∈ (0, 1) which does not depend neither on ε nor on j. Here we have strongly
used that the distance to Mk is smooth if we are not on Mk.
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Using (NC) which holds in an uniform neighborhood of Mk by assumptions, we
deduce that the Flε-inequality cannot hold if we chosen L large enough, and of course,
L can be chosen independently of ε since it depends only on κ.

We deduce that (xε, tε) ∈ Mk
ε , i.e. (xε, tε) ∈ Mk

j,ε for some j = 1..J , and not
necessarily for j = 1.

(c) Using that (xε, tε) is a local maximum point of χε on Mk
j,ε, we get

Fkε
(
xε, tε, uε(xε, tε), Dφ(xε, tε) + LDψε(xε, tε)

)
≤ 0 .

Now, let us examine Dψε(xε, tε). Of course, this term does not exist if j = 1 since
ψε ≡ 0 on Mk

1,ε. Now, assuming that j 6= 1 we claim that

b ·Dψε(xε, tε) = oε(1) ,

uniformly for b bounded in T(xε,tε)M
k
j,ε. Indeed, we use here that D

[
dist((x, t),Mk)

]
is orthogonal to Vk if (x, t) /∈Mk while if b is tangent to Mk

j,ε, D(Ψx,t
1,ε)
−1b→ b ∈ Vk.

This leads to the inequality

Fkε
(
xε, tε, uε(xε, tε), Dφ(xε, tε)

)
≤ oε(1) .

But using that ū = lim sup∗ uε and that (x0, t0) is a strict local maximum point of
ū− φ on Mk, classical arguments imply that (xε, tε)→ (x0, t0) and the conclusion of
the proof follows as in the standard case.

Q.E.D.

22.1.2 An example showing the difficulty connected to the
convergence of Hamiltonians

We drop here the time dependence for the sake of simplicity and investigate the
following example: If (e1, e2) is the canonical basis of R2, i.e. e1 = (1, 0), e2 = (0, 1),
we consider the stratification M defined by

M1 = Re1 , M2 = R2 \M1 .

Next we introduce BCL(x1, x2) defined in the following way: (bx, c, l) ∈ BCL(x1, x2)
if c = 1, l = 1 and bx ∈ {e1}× [−1, 1] if x2 > 0, bx ∈ {−e1}× [−1, 1] if x2 < 0. Hence,
by the assumptions on BCL, we have

BCL(x1, 0) = ([−1, 1]× [−1, 1])× {1} × {1} ,
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and, if p = (p1, p2), F1 is given on M1 by

F1(x1, r, p) = sup
(b1,0)∈[−1,1]×{0}

{−b1p1 − b2p2 + r − 1} = |p1|+ r − 1 .

Now we consider the approximation of M and BCL by Mε = M and

BCLε(x1, x2) = ({(bεx)1} × [−1, 1])× {1} × {1} ,

where, if χ : R → R is the Lipschitz continuous function given by χ(t) = 0 if t ≤ 0,
χ(t) = t if 0 ≤ t ≤ 1 and χ(t) = 1 if t ≥ 1

(bεx)1 = χ(
x1

ε
)e1 − χ(−x1

ε
)e1 .

Admittedly we are in a continuous setting for ε > 0 but we ignore this point on
purpose, this regularization yielding a smooth transition between −e1 and e1.

Here, specifically at x1 = 0 we see that F1
ε(0, r, p) = r− 1, which has nothing to do

with F1, although it is also clear that

F1(x1, r, p) = lim sup
y1→x1

F1
ε(y1, r, p) .

This example shows that, in general, the Gk in Theorem 22.1.3 are different from
Fk and this is a clear problem for the applications. If we want to correct this flaw, we
need additional assumptions.

22.1.3 Sufficient conditions for stability

We conclude this first part devoted to the basic stability results with some suffi-
cient conditions on BCL correcting the above defect and implying a real stability of
solutions.

Lemma 22.1.4 For any ε > 0, we assume that BCLε satisfies (HBCL), (TC-BCL)
and (NC-BCL) on a uniform neighborhood of a regular stratification Mε with con-
stants independent of ε. Moreover, we assume that there exists a regular stratification

M such that Mε
RS−s−−−→M.

(i) If the following condition holds

BCL(x, t) = lim sup∗
ε→0

BCLε(x, t) =
⋂
δ>0

⋂
ε>0

(
K(x, t, δ, ε)

)
, (22.1)
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where
K(x, t, δ, ε) :=

⋃
|(y,s)−(x,t)|≤δ

0<ε̃≤ε

BCLε̃(y, s) ,

then F = lim sup∗ Fε and the stability result for supersolutions holds.

(ii) If (22.1) holds and if, for any k = 0, .., (N + 1) and any (x, t) ∈Mk,

BCLε([Ψ
x,t
ε ]−1(y, s))→ BCL([Ψx,t]−1(y, s))

for any (y, s) ∈ Ψx,t(B((x, t), r)) in the sense of the Haussdorff distance where
r,Ψx,t

ε ,Ψ
x,t are as in Definition 22.1.1, then Theorem 22.1.3 holds true for sub-

solutions with Gk = Fk.

Proof — We treat successively (i) and (ii).

The supersolution case — If (b, c, l) ∈ BCL(x, t), (22.1) implies that, for all δ, ε >
0 small enough, there exists |(y, s)− (x, t)| ≤ δ, 0 < ε̃ ≤ ε and (b̃, c̃, l̃) ∈ BCLε̃(y, s)
such that |b− b̃|+ |c− c̃|+ |l− l̃| ≤ ε. Therefore, if |p|+ |r| ≤ R and |p̃−p|+ |r̃−r| ≤ 1,

−b · p+ cr − l ≤ −b̃ · p̃+ c̃r̃ − l̃ + ε(2R + 1) ≤ Fε̃(y, s, r̃, p̃) + ε(2R + 1) .

Taking the lim sup in δ, ε → 0 but also on r̃ → r, p̃ → p and using the definition of
the lim sup∗ , we deduce that

−b · p+ cr − l ≤ lim sup∗ Fε(x, t, r, p) .

Since this is true for any (b, c, l) ∈ BCL(x, t), we get that for any (x, t, r, p),

F(x, t, r, p) ≤ lim sup∗ Fε(x, t, r, p) .

To get the conversely inequality, we consider a sequence (xε̃, tε̃, rε̃, pε̃)→ (x, t, r, p)
such that

Fε̃(xε̃, tε̃, rε̃, pε̃)→ lim sup∗ Fε(x, t, r, p) .

Since the sets BCLε are compact, there exists (bε̃, cε̃, lε̃) ∈ BCLε̃(xε̃, tε̃) such that

Fε̃(xε̃, tε̃, rε̃, pε̃) = −bε̃ · pε̃ + cε̃rε̃ − lε̃ . (22.2)

Now we pick δ, ε > 0. It is clear that, for ε̃ small enough, (bε̃, cε̃, lε̃) ∈ K(x, t, δ, ε).
But, since K(x, t, δ, ε) is compact, we can assume without loss of generality that

(bε̃, cε̃, lε̃)→ (b, c, l) ∈ K(x, t, δ, ε) .
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This property being true for all δ and ε, we have by assumption (b, c, l) ∈ BCL(x, t).
Letting ε̃→ 0 in (22.2), we get

lim sup∗ Fε(x, t, r, p) = −b · p+ cr − l ≤ F(x, t, r, p) ,

which proves that (i) holds: F = lim sup∗ Fε.

The subsolution case — For the proof of (ii), we only have to examine the conver-
gence of the Hamiltonians Fkε , and not lim inf ∗ Fε. We recall that this is a consequence
of “weak subsolutions=strong subsolutions” in this framework.

Because of the assumptions, we can assume w.l.o.g. that we are in a flat (and static)
situation and that all the Hamiltonians Fkε are all defined on the same set. On the
other hand, by (TC-BCL), all these Hamiltonians are equicontinuous on Mk = Mk

ε

for any ε. Combining the convergence of BCLε to BCL with (NC-BCL) implies
that (BCLε)|k (the restriction to Mk× [0, Tf ]) converges to BCL|k. It follows directly
that

Fkε(x, r, p) := sup
(b,c,l)∈BCLε(x,t)

b∈TxMk

{
−b·p+cr−l

}
−→ sup

(b,l)∈BCL(x,t)

b∈TxMk

{
−b·p+cr−l

}
= Fk(x, r, p) .

Combining this pointwise convergence with Ascoli’s Theorem, we obtain the local
uniform convergence of the Fkε to Fk on Mk, and the result is proved.

Q.E.D.

Corollary 22.1.5 Under the assumptions of Lemma 22.1.4, for any ε > 0 let Uε is
the unique solution of (HJB-S)ε. If the functions Uε are uniformly bounded, then

Uε → U locally uniformly in RN × [0,∞) ,

where U is the unique solution of the limit problem (HJB-S) associated to (Fk)k=0..N .

Proof — The proof is immediate: by Lemma 22.1.4, the half-relaxed limits of the Uε
are sub and supersolutions of the limit problem (HJB-S) thanks to Theorem 22.1.3.
Then, the comparison result—Theorem 20.4.1—implies that lim inf ∗ Uε = lim sup∗ Uε,
so that all the sequence converges to the common limit, U , locally uniformly by the
classical half-relaxed limits method, see Lemma 3.1.7.

Q.E.D.
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22.2 Stability under structural modifications of Stan-

dard Stratified Problems

In the previous section, we have provided a stability result in the case when the
structure of the stratification remains unchanged. On the contrary, in this section,
we consider cases where this structure can be changed by the appearance of new
discontinuity sets or the disappearance of existing ones. Anyway, the first stability
property shown in the previous section is be the keystone of this improved result.
So, we have to show how to introduce a new part of Mk or remove an existing one
in order to manage these changes of stratifications. Again we only treat the case of
RN × (0, Tf ), the case t = 0 following similar principles.

It is important to notice that here, such structural modifications of the stratification
have an impact on the associated Hamiltonians and conversely. So, a generalized
stability result necessarily implies considering both at the same time.

22.2.1 Introducing new parts of the stratification

The result is the

Proposition 22.2.1 Let S = (Mk,Fk)k be a (SSP) and u : RN × (0, Tf ) → R an
u.s.c. subsolution of this problem. If M is a C1-smooth l-dimensional submanifold
of Mk for some l < k and if the normal controlability assumption is satisfied in a
neighborhood of M, then

FM(x, t, u,Du) ≤ 0 ,

where for x ∈M, t ∈ (0, Tf ), r ∈ R, p = (px, pt) ∈ RN × R
FM(x, t, r, p) := sup

(b,c,l)∈BCL(x,t)
b∈T(x,t)M

{
− b · p+ cr − l

}
.

This result means that, a priori, we can create an artificial Ml-component in M
since M can be seen as some new part of Ml.

But of course, for a concrete use, there are conditions in order that replacing Ml

by Ml ∪M in M leads to a new, consistant (SSP): M may have a boundary which
has to be taken into account, and new viscosity inequalities have also to be checked
on this boundary.

Example 22.1 —M = (−1, 1)×{0} in the whole space R2 generates a new M1-part
but also a M0-set with ({−1} × {0}) ∪ ({1} × {0}). Moreover, for the equation, one
also has to examine the F0-inequalities at these two points.
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Proof — Since the result is local, we can assume without loss of generality that Mk =
Rk and that M is an affine subspace of Rk. If φ : RN × [0, Tf ] → R is a smooth
function and (x̄, t̄) ∈M is a strict, local maximum point of u− φ on M, we have to
show that

FM(x̄, t̄, u(x̄, t̄), Dφ(x̄, t̄)) ≤ 0 .

To do so, for 0 < ε� 1, we consider the function defined for (x, t) ∈Mk = Rk

(x, t) 7→ u(x, t)− φ(x, t)− [d(x, t)]2

ε
,

where d(x, t) = d((x, t),M) is the distance function to M which is C1 outside M
but not on M. On the contrary, (x, t) 7→ [d(x, t)]2 is C1 even on M.

By standard arguments, this function has a maximum point at (xε, tε) and

(xε, tε)→ (x̄, t̄) u(xε, tε)→ u(x̄, t̄) and
[d(xε, tε)]

2

ε
→ 0 as ε→ 0 .

Since u is a subsolution of the stratified problem,

Fk
(
xε, tε, u(xε, tε), Dφ(xε, tε) +

2d(xε, tε)Dd(xε, tε)

ε

)
≤ 0 .

In order to deduce the result from this inequality, we use the tangential continuity
property on Mk: if (yε, sε) is the unique projection of (xε, tε) onM (recall that locally
we are reduced to consider affine subspaces), then |yε − xε|+ |tε − sε| = d(xε, tε) and

Fk
(
yε, sε, u(xε, tε), Dφ(xε, tε) +

2d(xε, tε)Dd(xε, tε)

ε

)
≤ oε(1) .

On the other hand, if b1 ∈ T(yε,sε)M then b1 · Dd(xε, tε) = 0 because (yε, sε) is the
unique projection of (xε, tε) onM. Therefore, restricting the above inequality to sich
vectors b1, it follows that

FM
(
yε, sε, u(xε, tε), Dφ(xε, tε)

)
≤ oε(1) .

In order to conclude, we use again the tangential continuity on Mk = Rk combined
with the normal controllability: if (b, c, l) ∈ BCL(x̄, t̄) with b ∈ T(x̄,t̄)M, there exists
(b1
ε, c

1
ε, l

1
ε) ∈ BCL(yε, sε) with b1

ε ∈ T(yε,sε)M and such that (b1
ε, c

1
ε, l

1
ε) → (b, c, l) as

ε→ 0. Using this property, the result is obtained by letting ε tend to 0.
Q.E.D.
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22.2.2 Eliminable parts of the stratification

In this section, the aim is to remove “artificial” parts of the stratification, that is,
parts on which there is no real discontinuity and the viscosity inequalities are just a
consequence of those coming from lower codimensions manifolds. Our result is the

Proposition 22.2.2 Let S = (Mk,Fk)k be a (SSP) and u : RN × (0, Tf ) → R an
u.s.c. subsolution of this problem. Let M ⊂ Mk be a C1-smooth submanifold such
that

(i) M⊂Ml for some l > k ;

(ii) M∪Ml is a l-dimensional submanifold of RN ;

(iii) BCL satisfies the tangential continuity assumption on M∪Ml .

Then u is a subsolution of

F̃l(x, t, u,Du) ≤ 0 on M∪Ml ,

where, for x ∈M∪Ml, t ∈ (0, Tf ), r ∈ R, p = (px, pt) ∈ RN × R

F̃l(x, t, r, p) := sup
(b,c,l)∈BCL(x,t)

b∈T(x,t)(M∪Ml)

{
− b · p+ cr − l

}
.

In other words, this proposition means that Ml can be replaced by M∪Ml: the
higher co-dimension discontinuity manifold M can be removed and integrated into
Ml. Such a result can be used when a standard continuous HJ-Equation is approxi-
mated by a problem with discontinuities: to recover the right equation at the limit,
one has to remove the artificial discontinuities created by the approximation.

Concerning assumption (ii), notice that of course, including M into Ml may com-
pletely change its decomposition into connected components: for instance, adding {0}
to M1 = (−∞; 0) ∪ (0; +∞) leads to a unique connected component, R itself.

Example 22.2 — we consider a case similar to the one described at the beginning
of the stability chapter: in R3 we define M by

M1 := {(0, 0, x3), x3 ∈ R} , M2 := {(x1, x
2
1, x3), x1 ∈ R \ {0}, x3 ∈ R} ,

and M0 = ∅, M3 = R3 \ (M1 ∪M2). In this setting, it seems relevant to remove M1

and see if we can replace M2 by {(x1, x
2
1, x3), x1 ∈ R, x3 ∈ R}. This can be done

provided a suitable continuity of the Hamiltonian (assumption (iii) above) holds.
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Proof — Again we can assume without loss of generality that Ml = Rl and thatM is
an affine subspace of Rl. If φ : RN × [0, Tf ]→ R is a smooth function and (x̄, t̄) ∈M
is a strict, local maximum point of u− φ on (M∪Ml), we have to show that

F̃l(x̄, t̄, u(x̄, t̄), Dφ(x̄, t̄)) ≤ 0 .

Here the difficulty is that the set (b, c, l) ∈ BCL(x, t) with b ∈ T(x,t)(M ∪Ml) is
larger than the set for which b ∈ T(x,t)M.

If b ∈ T(x,t)M, the desired inequality is nothing but a consequence of the Fk-
inequality on M, therefore we can assume w.l.o.g. that b /∈ T(x,t)M. We decompose

b = b> + b⊥ with b> ∈ T(x,t)M, b⊥ in its orthogonal space.

For 0 < ε� 1, we consider on D =
{

(x, t) ∈Ml = Rl; (x− x̄, t− t̄) · b⊥ > 0
}

the
function

(x, t) 7→ u(x, t)− φ(x, t)− ε

(x− x̄, t− t̄) · b⊥
.

We first remark that the normal controllability assumption on Mk (and therefore on
M) implies the regularity property

u(x̄, t̄) = lim sup
(x,t)→(x̄,t̄)

(x,t)∈D

u(x, t) ,

and because of this property, standard arguments show that this function has a max-
imum point at (xε, tε) ∈ D satisfying

(xε, tε)→ (x̄, t̄) , u(xε, tε)→ u(x̄, t̄) and
ε

(xε − x̄, tε − t̄) · b⊥
→ 0 as ε→ 0 .

Using assumption (iii), there exists (b1
ε, c

1
ε, l

1
ε) ∈ BCL(xε, tε) with b1

ε ∈ T(xε,tε)M
l

such that (b1
ε, c

1
ε, l

1
ε)→ (b, c, l) as ε→ 0. The Fl-inequality for such triplet yields

−b1
ε ·
(
Dφ(xε, tε)−

εb⊥

((xε − x̄, tε − t̄) · b⊥)2

)
+ c1

εu(xε, tε)− l1ε ≤ 0 .

But (−b1
ε) · (−b⊥) → |b⊥|2 > 0 as ε → 0 and therefore the corresponding term is

positive for ε small enough. We deduce that for such ε,

−b1
ε ·Dφ(xε, tε) + c1

εu(xε, tε)− l1ε ≤ 0 ,

and the conclusion follows by letting ε tend to 0.
Q.E.D.
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22.2.3 Sub/Super-stratified problems and a generalized sta-
bility result

The two preceeding sections lead us to introduce the following definition

Definition 22.2.3 Let S = (Mk,Fk)k, S̃ = (M̃k, F̃k)k be two (SSP) associated with
the same BCL set.

(i) S̃ is said to be a super-stratified problem of S if it can be deduced from M by
applying a finite (or countable) number of time Proposition 22.2.1.

(ii) S̃ is said to be a sub-stratified problem of S if it can be deduced from M by
applying a finite (or countable) number of time Proposition 22.2.2.

Before commenting these definitions, we use them to extend the notion of conver-
gence of stratified problems.

Theorem 22.2.4 Let Sε = (Mk
ε ,Fkε)k,ε be a sequence of standard stratified problems

such that there exists S = (Mk,Fk)k, a sequence S̃ε = (M̃k
ε , F̃kε)k,ε and S̃ = (M̃k, F̃k)k

such that

(i) for any ε > 0, S̃ε is a super-stratified problem of Sε ;

(ii) M̃ε
RS−w−−−→ M̃ ;

(iii) S is a sub-stratified problem of S̃.

Then the stability results of Theorem 22.1.3 remain valid, taking into account the
addition and removal of subsolution inequalities due to the super/sub stratification
induced by S̃ and S̃ε.

Theorem 22.2.4 makes precise a very simple and natural idea: of course, the con-
ditions imposed by Theorem 22.1.3 on the convergence of stratified problems are
very restrictive and do not cover (for example) the convergence of problems with-
out discontinuities (like, for instance, Fillipov’s approximation) to a problem with
discontinuities.

To correct this defect, it suffices to introduce suitable “artificial” elements of strat-
ification, using Proposition 22.2.1 (thus creating a super-stratified problem) then to
use Theorem 22.1.3 and, at the end, we can drop some useless part of the obtained
stratification using the elimination result of Proposition 22.2.2. Of course, all these
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operations require suitable tangential continuity or normal controllability assump-
tions.

Example 22.3 — Denoting by x = (x1, x2) the points in R2, let us consider a
stationary discontinuous problem along the curve

M1
ε :=

{
x2 = γε(x1) :=

√
x2

1 + ε2 : x2 ∈ R
}
,

the set BCLε being given by:

BCLε(x) :=


B(0, 1)× {1} × {1} if x2 > γε(x1) ,

B(0, 1)× {1} × {0} if x2 < γε(x1) ,

B(0, 1)× {1} × [0, 1] if x2 = γε(x1) .

(22.3)

The associated Hamiltonians are easy to compute: F2
ε(x, r, p) = r + |p| − 1I{x2>γε(x1)}

and F1
ε(x, r, p

′) = r + |p′| − 1. We recall that in F1, p′ is the tangential component of
the gradient.

The singular point {0, 0} appears as a specific singularity in the limit stratification
M, which is given by M1 = {x2 = −x1 : x1 < 0} ∪ {x2 = x1 : x1 > 0}, M0 = {(0, 0)}
and M2 = R2 \ (M1 ∪M0). So, in order to understand the limit as ε → 0, we creat
an artificial singularity M̃0

ε = {(0, 0)} in Mε, respecting the structure of M. Let also
M̃1

ε := {x2 = γε(x2) : x1 < 0} ∪ {x2 = γε(x1) : x1 > 0} and M̃2 = R2 \ (M̃1 ∪ M̃0).
The associated set of Hamiltonians is essentially the same, except that there is a new
one: F0

ε((0, 0), r, p) = r − 1.

Now, passing to the limit we get

lim sup∗ Fε(x, r, p) = r + |p| − 1I{x2>|x1|} in R2 ,

lim inf ∗ Fε(x, r, p) = r + |p| − 1I{x2≥|x1|} in R2 ,

lim inf ∗ F̃2
ε(x, r, p) = r + |p| − 1I{x2>|x1|} in M̃2 ,

lim inf ∗ F̃1
ε(x, r, p) = r + |p| − 1 on M̃1 ,

lim inf ∗ F̃0
ε(0, r, p) = r − 1 at M̃0 .

On the other hand, the limit BCL is given by (22.3) with γ(x1) := |x1| instead of γε.
So, we see that the lim inf ∗ above coincide with the various Hamiltonians associated
with BCL and the stability property works. Notice that here we do need to perform
a substratification (step (iii) in Theorem 22.2.4).



Chapter 23

Applications

23.1 A crystal growth model – where the stratified

formulation is needed

The following problem concerns a model of 2-d nucleation in crystal growth phe-
nomenon. In [101], Giga and Hamamuki use concave Hamiltonians but we re-formulate
the equations with convex ones to be in the framework of this book. Moreover, we
consider the problem in RN instead of R2 since this does not create any additional
difficulty.

The simplest equation takes the form

ut + |Dxu| = I(x) in RN × (0, Tf ) (23.1)

where the function I : RN → R is given by

I(x) =

{
1 if x 6= 0,

0 if x = 0.

This equation is associated with a bounded, continuous initial data

u(x, 0) = u0(x) in RN . (23.2)

23.1.1 Ishii solutions

Of course, the key difficulty in this problem comes from the discontinuity of I. In
terms of classical viscosity solutions’ theory, Ishii’s definition yields the subsolution

379
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condition
ut + |Du| ≤ I∗(x) = 1 in RN × (0, Tf ) ,

and the important information that I(0) = 0 completely disappears here. As a con-
sequence, one easily checks that u(x, t) = t is an Ishii subsolution associated to the
initial data u0(x) = 0 in RN .

On the other hand, and formally for the time being, the classical control interpre-
tation of (23.1) is that the system can evolve at any velocity bx with |bx| ≤ 1, with
cost l = 1 outside 0 and l = 0 at 0. In the case u0 = 0, the natural value function
is U(x, t) = min(|x|, t) in RN × [0, Tf ] by adopting the strategy to go as quickly as
possible to x = 0 and then to stay there.

Clearly u(x, t) > U(x, t) if |x| < t although U should be the “good solution”
and u is a subsolution. Therefore, we cannot expect any comparison result in this
framework. But it is also clear that u is a kind of “unnatural” subsolution, due to the
fact that Ishii’s definition erases the value 0 of I at x = 0 as we saw it above, which
is undoubtedly an important information.

23.1.2 The stratified formulation

In this context, the stratified approach could certainly be simplified but let us stick to
our framework: if t > 0, taking into account the upper semi-continuity and convexity
of BCL, we introduce

BCL(x, t) = BCL(x) =


{(

(bx,−1), 0, 1
)
; |bx| ≤ 1

}
, if x 6= 0 ,{(

(bx,−1), 0, l
)
; |bx| ≤ 1, 0 ≤ l ≤ 1

}
, if x = 0 .

And if t = 0, BCL(x, 0) is the convex hull of BCL(x) ∪
{(

(0, 0), 1, u0(x)
)}

.

The stratification of RN × (0, Tf ) just contains M1 = {0} × (0, Tf ) and MN+1 =
(RN \ {0})× (0, Tf ) and, since I(x) = 1 in MN+1,

FN+1(x, t, p) = pt + |px| − 1 .

While, since b = (bx,−1) ∈ T(0,t)M
1 is equivalent to bx = 0, it follows that

F1(t, p) = max
(b,c,l)∈BCL(0)

bx=0

{pt − l} = pt .

For t = 0, we just get the classical initial condition since bt ≡ −1 for any (b, c, l) ∈
BCL(x) and for any x.
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Therefore, a subsolution(1) of the problem is an u.s.c. function u : RN × [0, Tf ]→ R
satisfying

ut + |Dxu| ≤ 1 in RN × (0, Tf ) , (23.3)

ut ≤ 0 on M1 , (23.4)

this last subsolution inequality being understood as a 1-d inequality which is obtained
by looking at maxima of u(0, t) − φ(t) for smooth functions φ, while the first one is
just the classical Ishii subsolution definition.

A supersolution of the problem is a l.s.c. function v : RN × [0, Tf ] → R which
satisfies

vt + |Dxv| ≥ I(x) in RN × (0, Tf ) . (23.5)

As we developed in the previous chapters, the stratified formulation consists in
super-imposing the right subsolution inequalities on M1, while the supersolution con-
dition is nothing but the classical Ishii conditions. Finally it is easy to see that the
Finit-conditions reduce to

u(x, 0) ≤ u0(x) ≤ v(x, 0) in RN . (23.6)

In this framework, several results hold

Theorem 23.1.1 — Crystal growth problem.

(i) A comparison result between stratified sub and supersolutions of (23.1)–(23.2),
i.e. sub and supersolutions which satisfy (23.3)–(23.4) and (23.5) respectively,
with (23.6).

(ii) There exists a unique stratified solution of (23.1)–(23.2), which is given by

U(x, t) = inf

{∫ t

0

I(X(s))ds+ u0(X(t)); X(0) = x, |Ẋ(s)| ≤ 1

}
.

(iii) This solution is the minimal Ishii viscosity solution.

(iv) Finally, if (Ik)k is a sequence of continuous functions such that

lim inf ∗
k

Ik(x) = I(x) and lim sup∗
k

Ik(x) = I∗(x) = 1 ,

then the unique (classical) viscosity solutions uk associated to Ik converges lo-
cally uniformly to U .

(1)Here we use the notion of “strong stratified subsolution” to have the F∗ ≤ 0-inequlity at x = 0.
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Proof — The proof just consists in applying the result of Chapters 20, 21 and 22, and
therefore in checking the normal controllability and tangential regularity assumptions,
which are obvious here. Then, comparison result (i) is just a very particular case of
Theorem 20.4.1, (ii) is obtained by examining carefully the value function of the
stratified problem.

For (iii), it is enough to remark that any Ishii supersolution is a supersolution of
the stratified problem, as it was done in Corollary 21.2.1.

Finally, (iv) is a straightforward adaptation of Chapter 22: indeed, there exists a
sequence xk → 0 such that Ik(xk)→ 0 and using the stratification M1

k = {xk}×(0, Tf )
and MN

k =
(
RN × (0, Tf )

)
\M1

k, Proposition 22.2.1 shows that

(uk)t ≤ Ik(xk) in M1
k .

Using the stability result (Corollary 22.1.5) and part (i) of Theorem 23.1.1 lead di-
rectly to (iv).

Q.E.D.

Remark 23.1.2 In [101], Giga and Hamamuki tested several notions of solutions for
(23.1)–(23.2) and remarked that most of them were not completely adapted: for the
notion of D or D̄-solutions, they tried to impose on M1 an Ishii subsolution inequality
with I(x), not I∗(x). But this was a RN × (0, Tf )- inequality, not a M1-one. Although
imposing a stronger subsolution condition on M1 was going in the right direction,
this inequality was too strong compared to (23.4), at least the D̄-ones, and they found
that the problem has no D̄-solution in general. They ended up considering enveloppe
solutions, i.e. using Result (iii) of Theorem 23.1.1.

23.1.3 Generalization

Of course, the simplest case we study above can be generalized in several ways, even
if we wish to stay in a similar context: it is clear enough that the case when I vanishes
at several points instead of one can be treated exactly in the same way, just changing
M1. A more intriguing case which is considered in [101] is when

I(x) =

{
1 if x /∈ S ,
0 if x ∈ S ,

for some closed subset S of RN .

Giga and Hamamuki aim at treating the case of very general closed subsets S, which
does not seem possible in our framework—though maybe we are missing something
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here. A natural assumption for us is the following: there exists a stratification M̃ =
(M̃k)k of RN such that

M̃N = Sc ∪ Int (S) ,

where Int (S) denotes the interior of S, and

∂S = M̃N−1 ∪ M̃N−2 · · · ∪ M̃0 .

Once this hypothesis holds, we then set Mk = M̃k−1 × (0, Tf ) for 1 ≤ k ≤ N + 1.

Clearly this assumption on S implies that ∂S has some regularity properties but,
at least, it allows to use all the stratification arguments and therefore all the above
results can be extended thoroughly.

23.2 Combustion – where the stratified formula-

tion may unexpectedly help

In [39], motivated by a model of solid combustion in heterogeneous media, Roquejoffre
and the first author studied the time-asymptotic behaviour of flame fronts evolving
with a periodic space-dependent normal velocity. By using the “level-set approach”,
the authors introduce an Eikonal Equation

ut +R(x)|Du| = 0 in RN × (0,+∞) , (23.7)

where, in the most standard case, R : RN → R is a positive, Lipschitz continuous
function.

In [39], results on the propagation are given, in particular on the asymptotic velocity
but only in the case of Lipschitz continuous functions R. However, an interesting
case—which is the purpose of an entire but formal section in [39]—concerns the case
when R is discontinuous, given in R2 by

R(x) = R(x1, x2) =

{
M if x1 ∈ Z
m otherwise,

where m,M are positive constants. The interesting case is when m � M for which
we have “lines with maximal speed”.

The stratified approach allows to bridge the gap between the formal results in [39]
in the discontinuous case, and detailed proofs. This section is devoted to expose such
content and we hope this will help the reader be convinced that the classical proofs for
the homogenization of Hamilton-Jacobi Equations extend easily to the discontinuous
case provided the right stratified formulation is used.
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23.2.1 The level-set approach

We recall that the “level-set approach” consists in identifying a moving front Γt with
the zero-level-set of a solution u of a “geometric type” equation, for which one has a
unique viscosity solution, i.e. Γt = {x ∈ RN : u(x, t) = 0},

Based on an idea appearing in Barles [28] for constant normal velocity, the “level-set
approach” was first used for numerical computations by Osher and Sethian [142] who
did these computations for more general normal velocities, in particular curvature
dependent ones. Then Evans and Spruck [78], Chen, Giga and Goto [59] developed
the theoretical basis. We also refer to Souganidis [159, 158] and to [40] for a complete
description of the “level-set approach” but also for applications to the study of moving
fronts in reaction-diffusion equations.

As we already mentioned above, the key idea here is to represent the moving front
t 7→ Γt using the level-set, and in general the 0-level-set, of a continuous function
u : RN × [0,+∞) → R, typically a solution of Equation (23.7) or a more general
parabolic equation

ut + F (x, t,Dxu,D
2
xxu) = 0 in RN × (0, T ) . (23.8)

where F satisfies suitable properties. But, in fact, one remarks that a more adapted
way of describing things consists in saying that the “level-set approach” actually
describes the evolution of a domain t 7→ Ωt, whose boundary is precisely Γt. In
combustion, Ωt typically represents the “burnt region” while Γt is the flame front and
RN \ (Ωt ∪ Γt) is the “unburnt region”.

The key result of the “level-set approach” can be described in the following way:
suppose that we can solve (23.8) to gether with any initial data

u(x, 0) = u0(x) in RN , (23.9)

where u0 ∈ C(RN) represents the front at time t = 0 in the sense that Γ0 = {x :
u0(x) = 0} and, for example, Ω0 = {x : u0(x) < 0} and RN \ (Ω0 ∪ Γ0) = {x :
u0(x) > 0}. Then the sets

Ωt = {x : u(x, t) < 0}, Γt = {x : u(x, t) = 0} and RN \(Ωt∪Γt) = {x : u(x, t) > 0}

are independent of the choice of u0 satisfying the above conditions, but they depend
only on Ω0, Γ0 and F . Of course, opposite signs can be chosen for u0 in Ω0 and
RN \ (Ω0 ∪ Γ0): a similar result holds and we come back on the effect of this change
later.

Without entering into details, the above result is based on two key properties of the
equation: first a comparison result for bounded continuous sub and supersolutions
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and then the fact that (23.8) is invariant by change of unknown function u → ϕ(u),
for all C1-change ϕ such that ϕ′ > 0 in R.

Clearly Equation (23.7) satisfies these two conditions when R is a positive, Lipschitz
continuous function since the classical existence and uniqueness theory applies. This
allows to define t 7→ Γt as the level-set evolution of Γ0 with normal velocity R. In
addition, the solution u is given by the control formula

u(x, t) = inf
{
u0(γ(t)) : γ(0) = x, |γ̇(s)| ≤ R(γ(s))

}
(23.10)

where γ is taken among all piecewise C1 curves.

On this example, the role of the choice of the signs of u0 is clear: by Equation (23.7),
ut ≤ 0 and therefore, if the burnt region is defined by Ωt = {x : u(x, t) < 0}, it
increases, an expected phenomena. With the choice of the other sign, the unburnt
region would increase, which would be unsatisfactory from the modelling point of
view.

Hence, the choice of the signs of u0 in Ω0 and RN \ (Ω0 ∪ Γ0), to gether with the
equation, gives the direction of propagation of the front by implying the expansion
or shrinking of Ωt, the direction of propagation for Γt being either outward or inward
to Ωt in one or the other case. Such property holds in general for level-sets equations,
even if, for the Mean Curvature Equation,

ut −∆u+
〈D2

xxuDxu,Dxu〉
|Dxu|2

= 0 in RN × (0, T ) ,

the signs of u0 are irrelevant.

As we said, the reader will find in [39] results on this propagation and on the
asymptotic velocity in the case of Lipschitz continuous functions R, the discontinuous
case being only considered formally.

23.2.2 The stratified formulation

We extend the discontinuous R2-framework to a RN -one by setting

R(x) = R(x′, xN) = R(x′) =

{
M if x′ ∈ ZN−1

m otherwise,

where, as usual x = (x′, xN) with x′ ∈ RN−1, addressing the problem through the
stratified formulation. More precisely, we consider the stratification RN × (0,+∞) =
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M2 ∪MN+1 where M2 = (ZN−1×R)× (0,+∞), and MN+1 is its complementary set
in RN × (0,+∞). Next, let

BCL(x, t) = BCL(x) =


{

((mv,−1), 0, 0); v ∈ RN , |v| ≤ 1
}

if x ∈MN+1 ,{
((Mv,−1), 0, 0); v ∈ RN , |v| ≤ 1

}
if x ∈M2 .

Notice that, since M > m, BCL is actually uppersemi-continuous on M2. Therefore
a (strong) stratified subsolution u : RN × (0,+∞) of (23.7) is an u.s.c. function with
satisfies

ut +m|Du| ≤ 0 in RN × (0,+∞) , (23.11)

ut +M |Du| ≤ 0 in M2 × (0,+∞) , (23.12)

while a stratified supersolution v : RN×(0,+∞) of (23.7) is a l.s.c. function satisfying

vt +R(x)|Dv| ≥ 0 in RN × (0,+∞) . (23.13)

Using results of Section 20.4, one can easily prove the

Theorem 23.2.1 For any u0 ∈ C(RN), problem (23.7)-(23.9) has a unique stratified
solution given by (23.10). Moreover, a comparison result holds for this problem.

We leave the proof to the reader since it comes from a simple checking of the
assumptions required in Section 20.4.

23.2.3 Asymptotic analysis

The next question concerns the asymptotic velocity when t→ +∞. A classical method
consists in looking first at initial data of the form u0(x) = p · x for some p ∈ RN , in
order to obtain the velocity when the normal direction is p.

The classical hyperbolic scaling (x, t)→ (x/ε, t/ε), which preserves velocities, allows
to reduce to finite times the asymptotic behaviour, leading to study the equation
satisfied by the rescaled function uε(x, t) := εu(x/ε, t/ε), namely

(uε)t +R(
x

ε
)|Duε| = 0 in RN × (0,+∞) . (23.14)

We also notice that the initial data is unchanged by the scaling, i.e. uε(x, 0) = p · x.
We can formulate the result in the following simple form



HJ-Equations with Discontinuities: Stratified Problems 387

Theorem 23.2.2 The following limit holds

lim
ε→0

uε(x, t) = p · x− tH̄(p)

where, for p = (p1, p2, · · · , pN), H̄(p) = max(M |pN |,m|p|).

This theorem implies in particular that if |p| = 1, H̄(p) is the velocity of the front in
the direction p. Let us first remark that, by Theorem 23.2.1, since m ≤ R(x) ≤M in
RN ,

p · x−Mt ≤ uε(x, t) ≤ p · x−mt in RN × (0,+∞) .

Therefore uε is uniformly locally bounded.

Now, in order to prove the convergence result we provide two proofs. The more
general consist in following the method of Lions, Papanicolaou and Varadhan [132]
together with the perturbed test-function method of Evans [79, 80] as in the article
of Briani, Tchou and the two authors [34]. These arguments allows to treat far more
general problems but here we can also provide simplified arguments.

Proof of Theorem 23.2.2: the common ingredients —

The first step is the

Lemma 23.2.3 For any p ∈ RN , there exists a unique constant H̄(p) such that the
equation

R(x)|p+Dxw| = H̄(p) in RN (23.15)

has a bounded, Lipschitz continuous stratified solution w = w(x, p). Moreover, H̄(p) =
max(M |pN |,m|p|).

Proof — This lemma is classical and so is its proof, except that, in our case, R is
discontinuous but the method remains the same.

(a) for 0 < α� 1, we consider the equation

R(x)|p+Dxw
α|+ αwα = 0 in RN . (23.16)

Borrowing arguments in Section 20.4 and Chapter 22, it is easy to prove that (23.16)
has a unique stratified solution: if R is Lipschitz continuous, such result is standard
and can easily be obtained by the Perron method of Ishii [119]. Here we can use an
approximation of R by Lipschitz continuous functions from above since R is u.s.c.
and then to use the stability results of Chapter 22.
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Now, wα depends only on x′ since R depends only on x′ and it is ZN−1-periodic since
R is ZN−1-periodic: indeed, wα(x′, xN) and wα(x′+k, xN+h) are solutions of the same
equation for any k ∈ ZN−1 and h ∈ R and therefore they are equal. Hence, for k = 0,
wα(x′, xN) = wα(x′, xN +h) for any h ∈ R and for h = 0, wα(x′, xN) = wα(x′+k, xN)
for any k ∈ ZN−1, proving the claims.

Moreover, thanks again to the comparison results, −M |p| ≤ αwα(x) ≤ −m|p| in
RN since −M |p|/α and −m|p|/α are respectively sub and supersolution of (23.16).
Finally, the wα are equi-Lipschitz continuous since αwα is uniformly bounded and the
term R(x)|p+ q| is coercive in q, uniformly in x. We point out that, in all the proof,
we use extensively the comparison result for stratified solutions of (23.16).

(b) Applying Ascoli’s Theorem to the sequence (wα(·) − wα(0))α which is equi-
Lipschitz continuous and equi-bounded by the periodicity of each wα, we can extract
a subsequence (wα

′
(·)−wα′(0))α′ which converges uniformly in RN (by periodicity) to

a periodic, Lipschitz continuous function w. Moreover, we can assume that α′wα
′
(0)

converges to a constant −λ. By the stability result for stratified solutions, w is a
stratified solution of

R(x)|p+Dxw| = λ in RN .

In order to prove that λ is unique, we assume by contradiction that there exists a
bounded stratified solution w′ of

R(x)|p+Dxw
′| = λ′ in RN ,

for some different constant λ′.

Since the functions (x, t) 7→ w(x)−λt and (x, t) 7→ w′(x)−λ′t are stratified solutions
of the same equation, therefore for any t > 0

||(w(x)− λt)− (w′(x)− λ′t)||∞ ≤ ||w(x)− w′(x)||∞ ,

an inequality which can hold for large t only if λ = λ′, proving the claim about the
uniqueness of λ.

(c) It remains to show that λ = H̄(p) is given by max(M |pN |,m|p|). By the Dynamic
Programming Principle, we have, for any θ > 0

w(x) = inf

{∫ θ

0

(b(s) · p+ H̄(p))ds+ w(X(θ)); X(0) = x, Ẋ(s) = b(s) ∈ B(X(s))

}
,

where B(y) = MB(0, 1) if y ∈ ZN−1 and B(y) = mB(0, 1) if y /∈ ZN−1. Here we trust
the reader will be able to translate in this setting the framework of Chapters 20 and
21 without any difficulty, even if we have dropped the bt-term since bt ≡ −1.
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In order to compute the infimum in the above formula, there are several choice for
b(s). First, at any point of RN , one can choose |b(s)| = m which comes associated to
a minimal cost b(s) · p = −m|p|; if X(s) ∈ ZN−1, we can choose b(s) = +/ −MeN
to stay on ZN−1 and then the minimal cost becomes b(s) · p = −M |pN |. The optimal
choice, at least if x ∈ M2 is min(−m|p|,−M |pN |) = −max(m|p|,M |pN |) since, by
the above choice of b(s), we have X(s) ∈ M2 if the maximum is M |pN |. Choosing
this strategy for x ∈M2, we see that for any θ > 0,

w(x) ≤ θ(−max(m|p|,M |pN |) + H̄(p)) + w(X(θ))

and therefore H̄(p) ≥ max(m|p|,M |pN |).
To prove the equality, we examine the two different cases: if the maximum is m|p|

and p 6= 0 (the case p = 0 is obvious and H̄(0) = 0 since w can be taken as a constant),
we notice that, for any b(s), b(s) · p ≥ −m|p|. Hence b(s) · p+ H̄(p) ≥ −m|p|+ H̄(p)
and if −m|p|+ H̄(p) ≥ η > 0, we get for any choice of b(s)∫ θ

0

(b(s) · p+ H̄(p))ds ≥ θη,

which leads to a clear contradiction with the boundedness of w.

If the maximum is M |pN |, we cannot have H̄(p) ≥ M |pN | + η ≥ m|p| + η exactly
by the same argument: either X(s) ∈ ZN−1 and the minimal cost is b(s) = −M |pN |,
while if X(s) /∈ ZN−1, it is −m|p|. In any case, b(s) · p + H̄(p) ≥ η and we conclude
as above.

Q.E.D.

We now continue by the

A.– Simplified proof.

Because of the very simple form of the initial data for uε and even more, the simple
form of the limit of the {uε}, there is a very quick proof to conclude. Indeed the
function χε(x, t) := p · x− tH̄(p)− εw (x/ε, p) is a solution of (23.14) and moreover

χε(x, 0)− ε||w(·, p)||∞ ≤ uε(x, 0) ≤ χε(x, 0) + ε||w(·, p)||∞ .

Therefore, using that χε +C is also a solution for any constant C, by the comparison
result we get

χε(x, t)− ε||w(·, p)||∞ ≤ uε(x, t) ≤ χε(x, t) + ε||w(·, p)||∞ .

Taking into account the form of χε and the boundedness of w, this gives the result.
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Now we turn to

B.– A more general proof.

Now we provide more general arguments, which allow to take care of more general
initial data and limits. Here, proving the convergence of the sequence {uε} relies on
the perturbed test-function method of Evans [79, 80] as in the article of Briani, Tchou
and the two authors [34].

Let us introduce the half-relaxed limits u = lim sup∗ uε and u = lim inf ∗ uε which
are well-defined since the sequence {uε} is locally uniformly bounded. We recall that
for each p ∈ RN , Lemma 23.2.3 provides a unique real denoted by H̄(p) such that
there exists a solution w of ergodic problem (23.15). The key step is the

Lemma 23.2.4 The functions u and u are respectively (classical) viscosity sub and
supersolution of

ut + H̄(Du) = 0 in RN × (0,+∞) , (23.17)

u(x, 0) = p · x in RN . (23.18)

Proof — We provide the proof only for u, the one for u being analogous.

(a) Let φ : RN × (0,+∞) → R be a smooth test-function and let (x̄, t̄) be a strict
local maximum point of u − φ. Since we may assume w.l.o.g. that (u − φ)(x̄, t̄) = 0,

we know that for r, h > 0 small enough, (u − φ)(x, t) ≤ 0 in Qx̄,t̄
r,h. Moreover, there

exists some δ = δ(r, h) > 0 such that (u− φ)(x, t) ≤ −2δ on ∂pQ
x̄,t̄
r,h.

We want to show that φt(x̄, t̄) + H̄(Dφ(x̄, t̄)) ≤ 0 and to do so, we argue by contra-
diction, assuming on the contrary that φt(x̄, t̄) + H̄(Dφ(x̄, t̄)) > 0.

(b) The first step consists in considering the perturbed test-function

φε(x, t) := φ(x, t) + εw
(x
ε
,Dφ(x̄, t̄)

)
where w is defined in Lemma 23.2.3, and to look at (φε)t(x, t) + R(

x

ε
)|Dφε(x, t)| in

Qx̄,t̄
r,h. Formally, using the equation satisfied by w(·, Dφ(x̄, t̄)), we have

(φε)t(x, t) +R(
x

ε
)|Dφε(x, t)| = φt(x, t) +R(

x

ε
)
∣∣∣Dφ(x, t) +Dxw(

x

ε
,Dφ(x̄, t̄))

∣∣∣
= φt(x̄, t̄) +R(

x

ε
)
∣∣∣Dφ(x̄, t̄) +Dxw(

x

ε
,Dφ(x̄, t̄))

∣∣∣+O(r) +O(h)

= φt(x̄, t̄) + H̄(Dφ(x̄, t̄)) +O(r) +O(h),



HJ-Equations with Discontinuities: Stratified Problems 391

the terms O(r), O(h) coming from the replacement of φt(x, t) by φt(x̄, t̄) and of
Dφ(x, t) by Dφ(x̄, t̄). Therefore, taking potentially r, h, δ smaller, we have

(φε)t(x, t) +R(
x

ε
)|Dφε(x, t)| ≥ δ > 0 in Qx̄,t̄

r,h.

The formal computations above can be justified by looking carefully at the stratifica-
tion formulation but such checking does not present any difficulty, it only consists in
adding the specific tangential inequality on the lines in M2 = ZN−1 × R× (0,+∞).

(c) From the first part of this proof, we know that φ(x, t) ≥ u + 2δ on ∂pQ
x̄,t̄
r,h.

Therefore, by the definition of u, it follows that for ε small enough φε(x, t) ≥ uε + δ

on ∂pQ
x̄,t̄
r,h.

Using the local comparison result for stratified solutions, we conclude that for any
ε > 0 small enough, φε(x, t) ≥ uε + δ in Qx̄,t̄

r,h. Then, passing to the lim sup∗ yields

φ(x, t) ≥ u+ δ in Qx̄,t̄
r,h ,

which contradicts the fact that (u− φ)(x̄, t̄) = 0. Hence we conclude that u is indeed
a (classical) subsolution of (23.17)–(23.18).

Q.E.D.

Notice that in the above proof we use the classical notion of viscosity solutions for
the limit problem (23.17) while we use stratifed solutions for the construction of the
perturbed test-function at level ε > 0. The proof now follows easily

Since χ(x, t) := p · x − tH̄(p) is an explicit solution of (23.17)-(23.18) for which a
(classical) comparison result holds, we deduce that

u(x, t) ≤ p · x− tH̄(p) ≤ u(x, t) in RN × [0,+∞) .

Using the usual arguments of the half-relaxed limits method cf. Section 3.1.2, we
conclude that uε → u = u = u and the result is proved.

Q.E.D.

23.3 Large time behavior

This section enters a little bit more in the description of open problems, that we
consider mainly in Chapter 24. However here we give substantially more information
and some partial result. Before considering the case where discontinuities occur, let
us (very) briefly recall the situation in the simple periodic framework.
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23.3.1 A short overview of the periodic case

We consider here Hamilton-Jacobi Equations of the form

ut +H(x,Du) = 0 in RN × (0,+∞) ,

where H(x, p) is convex and coercive in p, and periodic in x; for example, let us
assume that it is ZN -periodic in x.

In this framework, the expected large time behavior of the solution u(x, t) is an
ergodic behavior, i.e.

u(x, t) = λt+ φ̄(x) + o(1) as t→ +∞,

where λ, the ergodic constant, is the unique constant such that the following ergodic
or additive eigenvalue problem has a periodic solution φ

H(x,Dφ) = −λ in RN ,

and φ̄ is one of the solutions of this ergodic problem(2).

We refer to [132] for the introduction of the ergodic problem which is nothing
but the “cell problem” in homogenization and for the proof of the uniqueness of λ.
Actually we already met this type of ergodic problem in Section 23.2: some of the
basic arguments to study it are given in the proof of Lemma 23.2.3, while a concrete
use of its solution is done in the proof of Lemma 23.2.4.

The proof of such ergodic behaviors can be done in two different ways: either by
the “Weak KAM” theory initiated by Fathi [82, 83], based on dynamical systems
arguments using control formulas; or by PDE-type methods.

The first results in this direction were obtained by Namah and Roquejoffre [139] for
equations with a particular structure. In order to be a little bit more specific on the
kind of results they obtained and the methods they used, we consider the simplest
example where we can describe them, namely the case when the Hamiltonian is given
by

H(x, p) = |p| − f(x) for x ∈ RN , p ∈ RN ,

the function f being periodic, continuous, positive and K = {x : f(x) = 0} being a
non-empty set. In this case, it can easily be proved that λ = 0 and the large time
behavior is obtained by noticing first that u(x, t) is decreasing in t on K; therefore it

(2)We remark that, if φ is a solution of the ergodic problem then φ + C is also a solution for any
constant C ∈ R; hence the ergodic problem has always many solutions and this invariance by the
addition of constants is not, in general, the only cause of non-uniqueness.
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converges on K. On the other hand, the half-relaxed limit method associated with a
comparison result allows to deduce the convergence to a function φ̄ on RN \K; here
the key point to have such a comparison result is the fact that 0 is (locally) a strict
subsolution. We conclude this short description by pointing out that here, periodicity
does not play an important role, nor the convexity of H in p but only the fact that

H(x, p) ≥ H(x, 0) in RN × RN and max
RN

H(x, 0) = 0(3) .

Results in the general framework of strictly convex Hamiltonians were then obtained
by Fathi [82, 83] using the “Weak KAM” theory. In fact, they were not generalizations
of the Namah and Roquejoffre results since, as the reader can see on the example we
have chosen above, their result does not require strict convexity.

To give an idea of the “Weak KAM” theory, we first notice that we can assume
w.l.o.g. that λ = 0 by replacing u by u(x, t)−λt and H by H+λ. Using such reduction,
we then recall that when H is strictly convex, we can introduce the Lagrangian L,
which is the Legendre-Fenchel transform of H, namely

L(x, v) = sup
q∈RN

{
v · q −H(x, q)

}
,

and the solution of the evolution equation can be written in terms of the Lagrangian
as

u(x, t) = inf

{∫ t

0

L(γ(s), γ̇(s))ds+ u0(γ(0)); γ(t) = x

}
,

where u0 is the initial data of u.

Furthermore, the solution of the ergodic problem satisfies some dynamical program-
ming property like

φ(x) = inf

{∫ t

0

L(γ(s), γ̇(s))ds+ φ(γ(0)); γ(t) = x

}
for any t > 0 .

In the “Weak KAM” theory, the main point is to identify the large time behavior of
geodesics for the action functional∫ t

0

L(γ(s), γ̇(s))ds ,

the main result being that the large time behavior of (γ, γ̇) is described in terms of
the Aubry-Mather set. Here “large time” means both that t is large AND (t − s) is

(3)We recall that H(x, 0) is ZN -periodic.
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large too: more precisely, if we set γ̃(s) = γ(s + t) for −t ≤ s ≤ 0, we are interested
in the behavior of (γ̃(s), ˙̃γ(s)) as s→ −∞.

One of the key results of Fathi was to prove that, for t and t− s large enough (for
example if s is bounded), the geodesics satisfy(4)

H

(
γ(s),

∂L

∂v
(γ(s), γ̇(s))

)
' 0 .

One way or the other, this property is a cornerstone to obtain the large time behavior
of u using the “Weak KAM” theory.

This approach was then revisited, simplified, developed in several directions and
generalized by Roquejoffre [151], Davini and Siconolfi [69], Fathi and Siconolfi [85].
Of course, this short list of references is far from being complete. We refer to the book
of Fathi [81] and his survey [84] for a more satisfactory one.

This general case can also be treated by PDE methods, with slightly more general
assumptions than convexity, which was first done in Barles and Souganidis [27]. Here
the idea was to show that (ut)

− → 0 as t→ +∞. Roughly speaking, the consequence
is that the solution looks like a subsolution of H = 0 for large t: indeed, if (ut)

− → 0,
then ut ≥ −o(1) and, using the equation ut +H = 0, we deduce that H ≤ o(1).

But, if the initial data is a subsolution, the behavior is well-known since u(x, t) is
increasing in t. Using this argument together with the “compactness” given by the
periodic feature of the problem, one concludes easily. Such compactness is crucial and
we refer to [41] for counter-examples in the case where we still have (ut)

− → 0 as
t→ +∞ but without “compactness”.

Before considering the discontinuous case, we point out that both approaches can
be extended to problems with boundary conditions, cf. for example Ishii [122] Barles,
Mitake and Ishii [37].

23.3.2 The discontinuous framework

After this quick overview of the “continuous” theory, the question is: what could we
expect to be easily extendable to the “discontinuous” case? Of course, because of the
above framework where we aim at treating discontinuities of H(x, p) in x, the natural
stratifications of RN × R we have to deal with take the form

M = M̃ × R where M̃ is a stratification of RN ,

hence we are not looking at general stratifications in x and t.

(4)we recall that λ = 0, otherwise we would have −λ at the right-hand side here.
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Let us give some ideas for the PDE approach and let people who are more experts
than us to have a look at the “Weak KAM” theory in the discontinuous case (5)

(i) One point is clear: under suitable assumptions, we do not see any major diffi-
culty to extend Namah-Roquejoffre type results in the discontinuous framework:
they only rely on the half-relaxed limit method and comparison results, both
ingredients which are available in the stratified case.

(ii) The Barles-Souganidis approach is more tricky since—even if it is completely
transparent in the continuous case—the method involves at the same time sub
and supersolutions properties, i.e. H∗ and H∗, and, in general, a tripling of
variables. This does not seem very convenient in the discontinuous case where
doubling variables is already a major difficulty.

(iii) We believe that the (ut)
−-estimate can be done by rewriting completely the

Barles-Souganidis proof in terms of a comparison result but this is not com-
pletely straightforward and far beyond the scope of this book.

Let us check anyway that a relatively easy proof can be done under the stronger
assumption (6)

(Hasymp) For any ε > 0, there exists a bounded, C1-function (φε)ε such that

H∗(x,Dφε(x)) ≤ ε in RN . (23.19)

This assumption may seem too strong because of the use of H∗ (instead of H∗) but
it allows to use the arguments as in [36] to obtain the (ut)

−-estimate through a simple
inf-convolution in t. More precisely, the idea is to introduce

v(x, t) := inf
s≥t

{
u(x, s) + (s− t)η(s)

}
,

for some suitable function η such that η(s) → 0 as s → +∞, and then to use the
stratified comparison result. Under the above assumption and with suitable hypothesis
on H, this argument yields the estimate

ut(x, t) ≥ −η(t)→ 0 .

We point out that the proof uses a classical inf-convolution in a direction which is
parallel to the discontinuities of H, and is therefore not affected by them. But again,
this proof requires the above unnatural assumption to be useful in this context.

(5)a not so easy task since now L is discontinuous, at least on an hyperplane...
(6)We also assume here that λ = 0
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23.3.3 An example

We consider the 1-d example

ut + |ux + p|2 = V (x) in R× (0,+∞) ,

where p ∈ R is a parameter and V (x) = 0 if x ∈ Z and V (x) = 1 if x ∈ R \ Z.
Applying the above approach, the 1-d computations are easy

λ(p) =

{
0 if |p| ≤ 1,

1− |p|2 otherwise.

Concerning φ, it is given (up to an additive constant) by

• if |p| ≤ 1, and x ∈ [0, 1],

φ(x) =

{
(1− p)x if 0 ≤ x ≤ 1+p

2
,

(1 + p)(1− x) if 1+p
2
< x ≤ 1 ,

and then this function is extended by periodicity for x /∈ [0, 1].

• if |p| ≥ 1, φ(x) = 0 for any x ∈ R.

For the large time behavior, the following remarks can be made

(i) The case p = 0 is the Namah-Roquejoffre case which can be handled without
any difficulty.

(ii) On the other hand, if p 6= 0, we are not anymore in the Namah-Roquejoffre
framework and assumption (23.19) requires the existence of C1-functions φε
such that

|φ′ε(x) + p|2 ≤ 1 + ε on R and |φ′ε(x) + p| ≤ ε if x ∈ Z .

If |p| < 1 it is easy to check that the assumption is satisfied. Actually, since
the Hamiltonian is independent of x and since φ has a particular form, we
can even take a single function obtained by smoothing in a suitable way the
solution of the ergodic problem which satisfies the inequality with ε = 0. But,
for |p| ≥ 1, the two properties which are required on φε are incompatible with
its boundedness.
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(iii) If |p| ≥ 1, one can conclude by the following arguments: let w be the unique
solution of

wt + |wx + p|2 = 1 in R× (0,+∞) ,

w(x, 0) = u0(x) in R ,

where u0 is a continuous, periodic initial data. Notice that we have replaced
V (x) by 1 in the equation.

For this equation, the ergodic problem has exactly the same ergodic constant
λ(p) = 1 − |p|2 and the same periodic solutions (the constant functions, this
will be proved below). Since this equation is now continuous, we know that, as
t→ +∞,

w(x, t) = λ(p)t+ φ(x) + o(1) ,

where φ is a solution of the ergodic problem and the o(1) is uniform on R.

The equation for φ reads |φx + p|2 = |p|2 and rewriting it as 2pφx + |φx|2 = 0,
one proves easily that the periodic function pφ is decreasing and therefore pφ
(hence φ) is a constant function. We claim that φ = minR u0.

Indeed, applying the Oleinik-Lax formula to w̃ = w − λ(p)t yields

w̃(x, t) = min
y∈R

(
u0(y) +

1

4t
(x− y − 2pt)2

)
,

and therefore w̃(x+ 2pt, t) ≤ u0(x) for any x(7).

Choosing x such that u0(x) = minR u0 and noticing that, by comparison,
minR u0 ≤ w̃ in R× (0,+∞), we have w̃(x+ 2pt, t) ≡ minR u0. But the uniform
convergence of w̃ to φ on R immediately yields that φ = minR u0.

To conclude, we remark that, by comparison results

min
R
u0 ≤ u(x, t)− λ(p)t ≤ w̃(x, t) in R× (0,+∞) .

Indeed, the constant minR u0 is a subsolution of the equation satisfied by u(x, t)−
λ(p)t, which is itself a subsolution for the w̃-equation. The conclusion immedi-
ately follows from the uniform convergence of w̃ to minR u0.

This last case mixes (in some sense) “weak KAM” arguments and pde ones:
indeed we point out the important role of the geodesic γ(t) = x + 2pt and of
the behavior of the different solutions along the geodesic (of course we are here
in a very simple framework). The key point in this case is that these geodesics
cross the discontinuity in a transversal way, making it irrelevant. This is why u
and w have the same behavior.

(7)The same result can be obtained by a careful examination of the pde satisfied by w̃.
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23.4 Lower semicontinuous solutions à la Barron-

Jensen

The extension of the Barron-Jensen approach to the stratified case requires a change
of definition since it is based on the fact that, when considering equations with a
convex Hamiltonian, one can just look at minimum points when testing both the sub
and supersolutions properties. Of course, the same is true for stratified problems and
leads to a new definition.

23.4.1 A typical l.s.c. Eikonal example

Before providing precise definitions and a comparison result, we want to examine a
key example in order to recall the difficulties which are solved by the Barron-Jensen
approach. We consider the Eikonal Equation

ut + |Dxu| = 0 in RN × (0, Tf ) ,

with a l.s.c. initial data

u(x, 0) = g(x) =

{
1 if x 6= 0

0 otherwise.

Using—at least formally to begin with—the Oleinik-Lax formula, the “natural solu-
tion” is given by

u(x, t) := min
|y−x|≤t

(g(y)) =

{
0 if |x| ≤ 1 ,

1 if |x| > 1 .

Therefore the solution is discontinuous and the approach via a (SCR) is useless in
this l.s.c. framework. One wishes to prove, anyway, that u is the unique solution of
the above problem.

Ishii’s notion of viscosity solution is not well-adapted, in particular for subsolutions:
for example, w(x, t) = 1 in RN × [0, Tf ) is an Ishii viscosity subsolution because it
satisfies the equation and w∗(x, 0) ≤ g∗(x) = 1 in RN . But we are far from having
the expected inequality w ≤ u in RN × [0, Tf ) that a comparison result would give.

On this example, it is clear that the problem comes from the initial data, and more
precisely the way it is taken, since, with the classical viscosity solutions definition, the
upper-semicontinuous enveloppe erases the value g(0) = 0. Similarly to the difficulties
in the stratified framework, the subsolution inequality has to be reinforced at t = 0
but here we cannot impose the “stratification-like” inequality w∗(0, 0) ≤ 0 because
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this inequality for an u.s.c. subsolution is clearly too strong, it is not even satisfied
by u.

Therefore, if we wish to take into account l.s.c. initial data, we have to argue only
with l.s.c. enveloppes and then super-impose subsolution inequalities at t = 0 in a
suitable way in order to be sure that this initial data will be seen. Indeed, the lower
continuous function

ũ(x, t) =

{
1 if t > 0

g(x) if t = 0,

is a l.s.c. subsolution of the problem but ũ “does not see the initial data enough”
since

ũ(0, 0) < lim inf{ũ(y, t), (y, t)→ (0, 0) with t > 0} .

Besides formulating the notions of viscosity sub and supersolution both for l.s.c.
functions (or their l.s.c. enveloppes), an important assumption in the Barron-Jensen
approach is to avoid such problems with the initial data, hence the initial regularity
assumption (23.22) below.

23.4.2 Definition and regularity of subsolutions

We use below the acronym (SBJ) for Stratified Barron-Jensen subsolutions, superso-
lutions and solutions of the general equation

F
(
x, t, u, (ut, Du)

)
= 0 in RN × [0, Tf ] . (23.20)

In order to get a reasonnable comparison result for (23.20), we restrict ourselves to
the following set of assumptions

(HSBJ) Assumptions for the Stratified Barron-Jensen framework.

(i) The stratification does not depend on time: for any k = 0..N ,

Mk+1 = M̃k × R ,

where (M̃k)k is a stratification of RN .

(ii) We are given a classical l.s.c. and bounded initial data g, i.e. we assume the
l.s.c. sub and supersolutions u and v we are considering satisfy

u(x, 0) ≤ g(x) ≤ v(x, 0) in RN .
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(iii) Hamiltonian F is a classical Hamiltonian of the form

F
(
x, t, r, (pt, px)

)
= pt + F̃(x, t, r, px) ,

and there exists 0 < T̃f ≤ Tf such that F̃ is independent of t if 0 ≤ t ≤ T̃f and
coercive, i.e. there exists ν > 0 such that

F̃(x, t, r, px) = F̃(x, T̃f , r, px) ≥ ν|px| −M |r| −M ,

for any x ∈ RN , t ∈ [0, T̃f ], r ∈ R and px ∈ RN , M being the constant appearing
in the assumptions for BCL .

(iv) The “good framework for stratified solutions” is satisfied.

We can now give some precise definitions for the (SBJ) problem.

Definition 23.4.1 — Stratified Barron-Jensen sub and supersolutions.

(i) A locally bounded, l.s.c. function v : RN × [0, Tf [→ R is a (SBJ) supersolution
of Equation (23.20) iff it is an Ishii supersolution of this equation on [0, Tf ].

(ii) A locally bounded, l.s.c. function u : RN × [0, Tf [→ R is a (SBJ) subsolution of
Equation (23.20) iff

(a) it is a Barron-Jensen subsolution of this equation, i.e. for any smooth func-
tion ϕ, at any minimum point (x, t) of u− ϕ,

F
(
x, t, u(x, t), (Dtϕ(x, t), Dxϕ(x, t))

)
≤ 0 ;

(b) for any k = 0, ..., (N+1), for any smooth function ϕ, at any minimum point
(x, t) of u− ϕ on Mk,

Fk
(
x, t, u(x, t), (Dtϕ(x, t), Dxϕ(x, t))

)
≤ 0 ;

(iii) In addition, we will say that u is an η-strict (SBJ) subsolution if the various
“F ≤ 0” or “Fk ≤ 0” subsolution inequalities are replaced by strict “F ≤ −η <
0” “Fk ≤ −η < 0” inequalities, η > 0 being independent of x and t(8).

(8)A notion that we will use only locally.
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We point out that, in this definition, the notion of subsolution is in the spirit of
(s-S-Sub) but we could as well choose to present a notion of “weak Barron-Jensen
subsolution”. However, we have decided not to do so since the aim of this section is
just to present few ideas for the extension of stratified solutions in the case of l.s.c.
data and we do not intend to go too far in this direction. Of course, it is not difficult
to imagine that, in order to deal with “weak Barron-Jensen subsolution”, we have to
assume them to be “regular”, a notion which has to be properly redefined here and
this is the purpose of the next paragraphs.

As we already noticed in the standard stratified framework and throughout this
book, comparison results require some regularity property of the subsolution with
respect to the stratification. Whether this property follows automatically from the
specific structure of the equation or it has to be imposed, we cannot escape it.

In the standard stratified case, since subsolutions are u.s.c., the regularity takes the
form of a limsup property, which is also linked to a regularization by sup-convolution
in a first step. We refer to Section 3.4 for the details.

Here, since subsolutions are l.s.c., we have to change the strategy by using the inf-
convolution tool. The consequence is also that the regularity property for subsolutions
has to be expressed in terms of liminf. But, as we already noticed in Remark 3.4.3-(ii),
such property holds provided the normal controlability assumption is satisfied, which
is the case under (HSBJ) above. More precisely, we have the

Proposition 23.4.2 Assume that (HSBJ) holds and that u is a bounded, l.s.c., (SBJ)
subsolution. Then u is regular: for any (x, t) ∈ M̃k × (0, Tf ) and 0 ≤ k < N ,

u(x, t) = lim inf{u(y, s) ; (y, s)→ (x, t), y ∈ M̃k+1 ∪ · · · ∪ M̃N} . (23.21)

Moreover, if k = N − 1, then locally RN \ M̃N−1 has two connected components
(M̃N−1)+, (M̃N−1)− and the above result is valid imposing to y to be either in (M̃N−1)+

or in (M̃N−1)−.

Notice that this result does not provide any similar regularity property as t→ 0. In
the standard case of u.s.c. subsolutions, this is not needed: the fact that u−v is u.s.c.
implies that if a maximizing sequence (xk, tk) for max(u− v) > 0 is such that tk → 0,
using that lim sup(u− v)(xk, tk) ≤ (u− v)(x, 0) ≤ 0 easily yields a contradiction.

On the contrary, if u is l.s.c. instead of u.s.c., the argument obviously fails and we
have seen in Section 23.4.1 above that simple counter-examples to uniqueness can be
built because of this. Hence, in order to get a comparison result, a specific regularity
requirement has to be made on the subsolution as t→ 0:
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Definition 23.4.3 A (SBJ) subsolution is initially regular if, for any x ∈ RN ,

u(x, 0) = lim inf
{
u(y, t), (y, t)→ (x, 0) with t > 0

}
. (23.22)

23.4.3 The (SBJ) comparison result

In the (SBJ) approach we described above, we are able to present very general results
but we just provide here a uniqueness result using (HSBJ), a framework which slightly
generalizes the one of Ghilli, Rao and Zidani [99].

Theorem 23.4.4 Assume that (HSBJ) holds. Let u and v be two bounded, l.s.c.,
(SBJ) sub and supersolution of (23.20) respectively such that u is initially regular,
i.e. it satisfies (23.22). Then, the comparison result holds

u(x, t) ≤ v(x, t) in RN × [0, Tf ) .

Proof — Of course, the approach of Section 3.2 has to be slightly modified. The

quantities maxK(u− v)+ and max∂pK(u− v)+ where K = Qx,t
r,h[F ] have to be replaced

by maxK[(u − v)+]∗ and max∂pK[(u − v)+]∗. Inded, since u − v is not u.s.c. anymore
there is no reason why (u − v)+ would achieve its supremum. But, with ad hoc
modifications, the ideas of Section 3.2 still apply; we skip these modifications here,
trusting the reader will be able to perform them.

We point out anyway, that we face two different situations: with a standard lo-
calization argument, we can assume that (u − v)(x, t) → −∞ when |x| → +∞ or
t → Tf , and there exists maximizing sequences (xk, tk)k which are bounded, tk re-
maining away from Tf ; then either, at least along a subsequence, we have tk → t > 0
and an analogue of a (LCR) is needed, or tk → t = 0 and we face the difficulty
connected to the way the initial data is assumed and how the initial regularity of u
can be used.

(a) The case t > 0 — Here we can argue in a similar way to the standard stratified case
with the help of the following result, which is an easy adaptation Proposition 3.4.4

Proposition 23.4.5 Under the assumptions of Theorem 23.4.4, if u is a bounded
l.s.c., stratified Barron-Jensen subsolution of (23.20), then for any (x, t) ∈ M̃k ×
(0, Tf ), there exists a sequence of Lipschitz continuous functions (uε,α)ε,α defined in a
neighborhood V of (x, t) such that

(i) each uε,α is a stratified Barron-Jensen subsolutions of (23.20) in V ;
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(ii) each uε,α is semi-concave and C1 on M̃k × (0, Tf ) ,

(iii) supuε,α = limε,α→0 u
ε,α = u in V.

Proposition 23.4.5 is proved exactly as Proposition 3.4.4 except that we use an inf-
convolution instead of a sup-convolution and we treat differently the tangent space
variable (with the parameter ε) and the t-variable (with parameter α). Of course, the
regularity of u in terms of liminf, Proposition 23.4.2, is used to proceed here.

With this adaptation, we get a contradiction in the case t > 0 exactly as in the
standard stratified case.

(b) The case t = 0 — By the coercivity assumption on the time interval (0, T̃f ), u is
a Barron-Jensen subsolution of the (continuous) equation

ut + ν|Dxu| −M(||u||∞ + 1) = 0 in RN × (0, Tf ) .

Therefore, using (23.22), by the uniqueness property for this problem and the Oleinik-
Lax (or control) formula,

u(x, t) ≤ inf
|y−x|≤νt

(u(y, 0)) +M(||u||∞ + 1)t .

On the other hand, a similar (yet reversed) inequality for v holds, either by the same
arguments or using the Dynamic Programming Principle

v(x, t) ≥ inf
|y−x|≤Mt

(u(y, 0))−M(||v||∞ + 1)t .

From these two inequalities we deduce that if δ > 0 is a small constant,

u(x, δ + t) ≤ v(x, t) +Kδ ,

for any 0 ≤ t ≤ νδ

M − ν
and for some constant K which can be computed explicitly.

But the problem is that this inequality is valid for t in a time interval which depends
on δ. To get rid of this dependence, we remark that, thanks to the assumptions
on F on the time interval [0, T̃f ], the function u(x, δ + t) is a subsolution of the
problem. On the other hand, because of the Lipschitz continuity of F(x, t, r, (pt, px)) in
r, v(x, t)+Kδ exp(K̃t) is also a supersolution of the problem for K̃ > 0 large enough.
By using the argument of Step (a) and the fact that u(x, δ+t) ≤ v(x, t)+Kδ exp(K̃t)

for 0 ≤ t ≤ νδ

M − ν
, we can compare them; hence

u(x, δ + t) ≤ v(x, t) +Kδ exp(K̃t) in RN × [0, T̃f − δ) ,
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for any 0 < δ � T̃f . For fixed (x, t) ∈ [0, T̃f/2], we can send δ to 0 using the lower
semi-continuity of u: this yields u ≤ v in RN × [0, T̃f/2]. And the proof is complete.

Q.E.D.

Remark 23.4.6 We point out that the case we treat above is the stratified analogue
of the Barron-Jensen approach with continuous Hamiltonians. For example, the case
of obstacle problems with l.s.c. obstacles ψ, i.e.

max
(
F
(
x, t, u, (ut, Du)

)
;u− ψ

)
= 0 in RN × [0, Tf ] ,

does not enter into the (HSBJ) framework since the tangential continuity may not
be satisfied. But since the functions uε,α built in Proposition 23.4.5 through an inf-
convolution procedure satisfy uε,α ≤ ψε,α ≤ ψ where the ψε,α are built by using exactly
the same procedure, the result extends to this more general case under suitable as-
sumptions on the initial data.

Of course, we think that the Barron-Jensen approach can be extended to a more gen-
eral framework; in particular, it is perhaps possible to remove the restrictive assump-
tion on F near t = 0. But it is worth pointing out that the role of the inf-convolution
in the classical Barron-Jensen argument—typically an inf-convolution in x on the
solution in order to treat the lower-semi-continuity of the initial data—and the inf-
convolution which takes care of the stratification are not completely compatible. This
is what is generating these strong and restrictive assumptions.



Chapter 24

Further Discussions and Open
Problems

We start this section by recalling the main ideas of a comparison proof for stratified
solutions

(i) We localize, i.e. we reduce the proof of a GCR to the proof of a LCR.

(ii) In order to show that the LCR holds, we first regularize the subsolution by
a partial sup-convolution procedure using the tangential continuity and the
normal controllability and then (still tangentially) with a standard convolution
with a smoothing kernel.

(iii) After Step (ii) the subsolution is Lipschitz continuous w.r.t. all variables and
C1 w.r.t. the tangent variable and we use the “magical lemma” (Lemma 5.4.1)
to conclude.

Analyzing these 3 steps in conjunction with Section 3.2 and the examples therein, it
seems rather clear that the localisation procedure can be made via various arguments
and is not a limiting step—even if we agree that there are more complicated situations
where this might become a problem. In the same way, Step (iii) is not really a limiting
step, especially the way we use it in the proof by induction.

Hence, in the generalizations we wish to present here, the main issue comes from
Step (ii) and more precisely from the first part, i.e. the tangential sup-convolution
procedure. This is why we mainly insist on this point.

405
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24.1 More general dependence in time

A quite restrictive—or at least unusual—assumption we have used so far concerns
the time dependence of the Hamiltonians and on the dynamics of the control prob-
lems. In general, it is well-known that a simple continuity assumption is a sufficient
requirement.

In stratified problems however, we face two main cases: the general case when the
stratification may depend on time for which space and time play a similar role; and
the case when the stratification does not depend on time. While, in the first case, it
seems natural to impose similar assumptions on x and t for the Hamiltonians, this is
no longer the case for the second one and actually this particular structure allows to
weaken the assumptions on the time dependence.

Indeed, in this second case, we can write the stratification as

Mk+1 = M̃k × R ,

where M̃ = (M̃k)k is a stratification of RN and M = (Mk)k is the resulting one in
RN × [0, Tf ], which is here presented as the trace on RN × [0, Tf ] of a stratification
on RN × R.

As far as Section 3.4 is concerned, the t-variable is always a tangent variable —
this is the main difference with the general case— and we can use, as it is classical
in all the comparison proofs in viscosity solutions’ theory, a “double parameters sup-
convolution”. More precisely, if u : RN× [0, Tf ]→ R is a sub-solution, M̃k is identified
with Rk and x = (y, z) with y ∈ Rk and z ∈ RN−k, we set

uε,β(x, t) := max
y′∈Rk,s∈[0,Tf ]

{
u((y′, z), s)− (|y − y′|2 + ε4)

α/2

εα
− (|t− s|2 + β4)

α/2

βα

}
,

where the parameter β governing the regularization in time satisfies 0 < β � ε.

We drop all the details here but we are sure that they will cause no problem to the
reader.

24.2 Unbounded control problems

In the case of unbounded control problems we face two difficulties: (i) the localization
that we treat—probably in a non-optimal way—in Section 3.2, cf. the “convex case’;
(ii) the sup-convolution regularization.
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In order to treat this difficulty, we refer the reader to Section 3.2.4, in particular to
Theorem 3.2.8 and Assumption (HBA−HJ−U). Indeed, in the sup-convolution proce-
dure, if we examine the proof of Theorem 3.4.4, we have to manage the error made
by replacing y by y′ and this is done by using the dependence in u of the Hamilto-
nian. This is exactly what Assumption (HBA−HJ−U) means: performing the Kruzkov
change of variable u → − exp(−u), one compensates the large terms in “DxH” by
large terms in “DuH”.

The same ideas can be used in the stratified framework: we drop the details here
since a lot of very different situations can occur. It would be impossible and maybe
useless to try to describe all of them.

We refer to [147] and [148] where unbounded control problems are studied in the
hyperplane case under the assumption

lim
|α|→+∞

l(x, α)

1 + |b(x, α)|
= +∞ ,

locally uniformly in x. This assumption which appears in [29] allows to recover some
compactness of trajectories since fast-moving trajectories get associated with high
costs.

24.3 Large deviations type problems

The sections of this book in which we consider KPP-type problems give an idea of
what can be done in the context of Large Deviations, but also of the limitations: in
the cases where only codimension-1 discontinuities are present, Part II provides all the
needed tools to completely analyze the problem. We point out that, as it was already
remarked in Imbert and Nguyen [116], this allows not only to treat in a rather easy
way the problem of Boué, Dupuis and Ellis [48] but even to generalize it, by allowing
the diffusion matrix to be discontinuous on the hyperplane, cf. Section 30.5.

For more general discontinuities, the situation is not so well understood. Section 30.5
only gives few arguments to treat very particular cases. We can summarize the diffi-
culty in one sentence: we have learned from the codimension-1 case that the vanishing
viscosity method converges to the maximal Ishii subsolution (and solution) of the lim-
iting Hamilton-Jacobi Equation. Though we think that it is still the case for any type
of discontinuities, we are unable to identify this maximal subsolution, which implies
TWO open problems: the identification of the maximal subsolution and the conver-
gence of the vanishing viscosity method.

Most of Large Deviations problems involve boundary conditions and for these prob-
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lems, there are two different cases: either there is no specific difficulty with the bound-
ary conditions (as it is mainly the case in the four examples presented in [31]) and we
believe that the above mentioned tools apply; or there is some specific difficulties with
the boundary conditions. In this latter case, the problem and its solution may not
only be related to discontinuities in the Hamiltonians and/or boundary conditions,
see for example [33].

24.4 Homogenization

We first point out that the arguments which are used in Section 23.2, which are
strongly inspired by those appearing in Barles, Briani, Chasseigne and Tchou [34],
are very flexible: the identification of the effective Hamiltonian and the application
of the perturbed test-function method of Evans [79, 80] rely on basic results of the
theory (existence of solutions, comparison results and stability). They can therefore
be used in a very general framework.

Among all possible applications, the first one we have in mind concerns homoge-
nization in a chessboard-type configuration, this problem is treated in Forcadel and
Rao [89]. The approach we describe above together with the results of this book lead
to more general results with simpler proofs; typically the case of all periodic strati-
fied domains can be addressed without additional difficulties, of course under suitable
assumptions.

Let us conclude this section with some additional references. Some of them may
have been put in the networks section but we think that they are relevant here since
some methods are either similar or share common features. In addition to [34], the
most specific one on HJ Equations with discontinuities is Achdou, Oudet and Tchou[5]
for the two-domain case, while in the networks configurations, the reader can check
Achdou and Tchou [7], Galise, Imbert and Monneau [96], Forcadel and Salazar [90].

24.5 Convergence of numerical schemes and esti-

mates

For first-order Hamilton-Jacobi Equations, the convergence of numerical schemes is
usually obtained by using the half-relaxed limit method and a comparison result.
Therefore we seem to have the key tools in the stratified framework.

Actually, in [54], Cacace and Camilli introduce a semi-Lagrangian approximation
scheme for a general stratified problem and prove the convergence by using these
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tools, and in particular the comparison result.

The estimates are generally obtained by a comparison result, combined with the
consistency of the scheme and the regularity of the solution. Here the difficulty may
come from the different nature of the equation and the scheme which may appear
as being more problematic than in the continuous case. Maybe the scheme has, in
some sense, to “respect” the discontinuities and it does not seem so easy to produce
a general theory.

We did not find so many specific references—we apologize if we have missed some
works—but the work of Guerand and Koumaiha [106] addresses the key difficulties
we have in mind.

24.6 About Ishii inequalities and weak stratified

solutions

We show in Section 20.5 that, roughly speaking, Ishii subsolutions’ inequalities are
a consequence of the (LCR) for weak stratified solutions. One way or the other,
this type of property is connected to several existing results in the viscosity solutions
literature which show the links between this notion of solutions and monotonicity.

For example, Alvarez, Guichard, Lions & Morel [9] (see also Biton [45]) prove un-
der suitable assumptions that a monotone semi-group acting on a space of continuous
functions is necessarily the semi-group of viscosity solutions for a possibly fully non-
linear parabolic equation. In a different framework, the “geometrical approach to front
propagation problems” of Souganidis and the first author [40] allows to define a weak
motion of subsets of RN which is almost equivalent to the Level-Set Approach by
using: (i) the monotonicity property of sets for the inclusion relation; (ii) the use of
suitable smooth moving sets, which can be seen as the analogue of test-functions in
the geometrical framework.

This second example is closer in the spirit to what is done in Section 20.5 and it
seems interesting to re-formulate the idea of Section 20.5 in a more general, abstract
way, even if we are going to do so a little bit formally. We consider here a “stationary”
framework which, as it is the case in Section 3.2, is easier to describe, but we trust
the reader to be able to extend the following to the evolution case.

We assume that, for a local equation F(x, u,Dxu) = 0 in O, we are given two
“abstract” sets of functions: a set of locally bounded, u.s.c. “subsolutions” Ssub and
a set of locally bounded, l.s.c. “supersolutions” Ssup with the following properties
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(sub) — For any x ∈ O, r > 0 such that B(x, r) ⊂ O, any smooth function φ in O
such that F∗(x, φ,Dxφ) ≥ 0 in B(x, r), we have, for any u ∈ Ssub,

u(y)− φ(y) ≤ max
∂B(x,r)

(u− φ) for any y ∈ B(x, r).

(sup) — For any x ∈ O, r > 0 such that B(x, r) ⊂ O, any smooth function φ in O
such that F∗(x, φ,Dxφ) ≤ 0 in B(x, r), we have, for any v ∈ Ssub,

φ(y)− v(y) ≤ max
∂B(x,r)

(φ− v) for any y ∈ B(x, r).

We point out that properties (sub) and (sup) can be interpreted as (LCR) between
either subsolutions and smooth local supersolutions or supersolutions and smooth
local subsolutions. In this context, it follows that the Ishii inequalities are satisfied.
More precisely

(i) for any u ∈ Ssub, F∗(x, u,Dxu) ≤ 0 in O in the viscosity sense;

(ii) for any v ∈ Ssup, F∗(x, v,Dxv) ≥ 0 in O in the viscosity sense.

This result is an easy consequence of the arguments of Section 20.5 by looking at strict
local maxima and minima. Take for instance u ∈ Ssub and suppose that F∗(x, u,Du) ≤
0 does not hold in the viscosity sense. Then, there exists a test-function φ such that
u − φ has a strict local maximum at x in B(x, r) and F∗(x, φ,Dφ) > 0. But using
property (sub) above we get a contradiction with the fact that u−φ has a strict local
maximum at x.
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Chapter 25

Introduction to State-Constraint
Problems

In this part we extend the results of Part IV to the case of problems set in a bounded
or unbounded domain of RN with state-constraint boundary conditions.

As we are going to see it, this readily includes the classical Dirichlet, Neumann,
Robin etc. boundary conditions in a unique framework. But more importantly, the
state-constraint stratified approach allows to deal at the same time with (i) singular
(discontinuous) boundary value problems; (ii) non-smooth boundaries; (iii) a mix of
various boundary conditions on different portions of the boundary.

25.1 Why only state-constraint problems?

To begin with, let us first recall that in Chapter 4 on “Control Tools”, we have already
presented finite horizon control problems in a state-constraint framework. Indeed, the
space-time trajectory (X,T ) has to satisfy the constraint T (s) ∈ [0, T ] for any s ≥ 0.
As a consequence of this general framework, the usual initial data (the terminal cost)
was not given but it has to be computed by solving the Finit-equation. It is therefore
natural to investigate problems for which this constraint in T is complemented by a
constraint in X, like X(s) ∈ Ω for some domain Ω of RN .

However, this “natural extension”argument does not explain the “only” part in the
title of this section.

Traditionally, Dirichlet, Neumann, Robin, state-constraint problems etc. are con-
sidered as separate, different problems with specific boundary conditions. But in fact,
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the main reason for choosing to consider only state-constraint boundary condition
problems in the stratified approach is because it allows to treat within the same
global framework all these different types of boundary conditions—almost all the
usual ones—both for smooth and non-smooth domains, as well as combinations of
them even in rather singular settings.

To convince the reader and to give a more concrete idea of what we mean in the
previous paragraph, we describe in the next section a deterministic control prob-
lem proposed by P.L. Lions [136] in one of his lessons at the Collège de France in
2016—the “Tanker problem”—which was one of our main motivation to look at such
formulations.

A second reason for considering such state-constraints boundary conditions for
stratified problems is that they can be treated with the methods of Part IV with
only few additional difficulties, and more precisely with ONE additional difficulty:
the regularity of subsolutions on the boundary.

Boundary regularity — To be more precise, we recall that the question of the
“regularity” of subsolutions is crucial in the stratified approach: either as an assump-
tion for weak stratified solutions or as a property for the strong ones, this regularity
is used on each part of the stratification in the comparison proof and it is a key prop-
erty to make the comparison proof work. However checking this regularity becomes
trickier on the boundary.

Indeed, for strong stratified subsolutions, the regularity property in the RN×(0, Tf )-
case is a consequence of the F∗ ≤ 0 inequality (or maybe of a similar inequality with
a suitable Hamiltonian in the cases of weak ones) and the “normal controllability”
assumption. We recall that the subsolution inequalities can be interpreted by “all
trajectories are sub-optimal” or equivalently “all choices of the dynamic are sub-
optimal” from the control point-of-view. But, on the boundary, we cannot use all the
trajectories, only those which stay in Ω × (0, Tf ). Hence the F∗ ≤ 0 inequality does
not hold on ∂Ω × (0, Tf ), and we have to find a suitable substitute providing the
regularity of subsolutions.

Of course, the first natural idea is to use an Hamiltonian built out of all the dynamics
pointing inside Ω but this a priori optimal choice may be complicated in general since
Ω is not necessarily smooth so that the definition of “pointing inside Ω” may be rather
complicated. Another choice is to use only ONE dynamic pointing inside Ω but we
still need to make precise the sense of this property. In the sequel, we mainly use this
second option.

We point out that such difficulty with the regularity of sub and supersolutions on
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the boundary already appears when studying state-constraints or Dirichlet boundary
conditions, even in the most standard continuous cases. It is clear that such boundary
conditions in the viscosity sense allow the sub and supersolutions to have “artificial
values” on ∂Ω (they may be non-regular in the language of this book). In particular,
this is obviously the case for the subsolutions of “classical” state-constraints problems
since they do not satisfy anything on the boundary. Therefore, one way or the other,
some additional properties have to be imposed to solve this difficulty.

In the pionneering works of Soner [154, 155], the “cone condition” appears involving
both some regularity of the boundary (interior cone regularity) but also some property
of the dynamic (one of the control fields has to enter in this cone). From these first
articles on the subject, it was clear that a comparison result holds if the subsolution
is not only Ω-regular at each point of the boundary but is also K-regular where K is
the interior cone.

Then, in their systematic study of Dirichlet problems, Perthame and the first author
[22, 23, 24] obtain comparison results avoiding the direct use of a cone condition by
showing, under (NC) type conditions, that on some parts of the boundary, these sub
and supersolutions are regular while on other parts, one can redefine their values on
the boundary in order to transform them in regular sub and supersolutions.

Finally, and perhaps closer in the spirit of what we suggest above, Ishii and Koike
[123] have formulated the state-constraint boundary condition in a different way, with
an unusual subsolution condition on the boundary, by looking only at dynamics which
are pointing inside the domain on the boundary: as can be guessed, their boundary
condition “ut + Hin ≤ 0” avoids non-regular subsolution provided there is an inner
dynamic and Lemma 26.4.1 below justifies this natural idea.

In all this part, we are going to avoid this difficulty connected to the regularity
of sub and supersolutions by proving several results only for regular ones, i.e. for
sub and/or supersolutions which boundary values are essentially limits of their values
inside Ω. Of course, the next natural question is to identify some stable viscosity
inequalities implying that, in particular, subsolutions are “regular” : we refer the
reader to Section 26.4 for a discussion. For supersolutions, this regularity is treated
in a more classical way.

Boundary conditions — Coming back on the connections between general state-
constraint problems with different boundary conditions, in this part we show that
the case of control problems, classical Dirichlet, Neumann or even mixed boundary
conditions for the associated Hamilton-Jacobi Bellman Equation can be reformulated
as stratified problems with state-constraints boundary conditions. Moreover, this can
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be done also in the case of non-smooth domains since globally a stratification is not
smooth—it may contains crosses, for example.

This remark allows us to revisit Dirichlet and Neumann boundary conditions in de-
terministic control problems and extend some results to far more general frameworks:
discontinuous Hamiltonians of course, non-smooth boundary conditions, mixing of
boundary conditions and treatment of rather singular cases (including the above ex-
ample).

We conclude this introduction by pointing out that other approaches for treating
state-constraint problems in stratified situations appear in Hermosilla and Zidani
[112], Hermosilla, Wolenski and Zidani [111], Hermosilla, Vinter and Zidani [110].

25.2 A tanker problem mixing boundary condi-

tions

In this situation, a controller has to manage a tanker: the aim is to decide when
and where it will unload its cargo depending typically on the market price for the
goods in the cargo. Of course, this price may depend on the location—typically the
country—therefore to the harbour where the unloading takes place.

In the simplest modelling, the sea is identified with a smooth domain Ω ⊂ R2 and
the harbours are isoled points P1, P2, · · · , PL on the boundary ∂Ω. The tanker has
to be controlled in such a way that it stays far from the coast and keeps its cargo if
prices are low or, on the contrary, comes to one of the harbours, unloads and sells its
cargo when they become higher at this harbour. The choice of the harbour is clearly
part of the problem and there is no reason why all harbours should be equivalent.
Of course, there is an underlying state constraint boundary condition on ∂Ω outside
P1, P2, · · · , PL since the tanker cannot accost where no harbour exists!

In terms of boundary conditions, we are facing a non-standard and rather singular
problem involving a state-constraint boundary condition on ∂Ω\{P1, P2, · · · , PL} and
P.L. Lions suggested Neumann boundary conditions for the harbours to model the
flux of goods which are sold, leading to a mathematical fomulation as follows:

ut +H(x, t,Du) = 0 in Ω× (0, Tf ) ,

ut +H(x, t,Du) ≥ 0 on ∂Ω \ {P1, P2, · · · , PL} × (0, Tf ) ,

∂u

∂n
= gi(t) at Pi , for i = 1, · · · , L.

(25.1)

To the best of our knowledge, there is no work on such type of boundary condi-
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tions: here the mixing of state-constraint and Neumann boundary conditions (which is
already not so standard) is even more complicated since the Neumann boundary con-
ditions take place only at isolated points. In fact, even if one can give a sense to such
problems using viscosity solutions’ theory, these problems are ill-posed in the sense
that no uniqueness result holds in general, cf. Section 25.3 for a counter-example.

The important point is that the Neumann boundary conditions, imposed only at
isolated points, are “not sufficiently seen” to give sufficient constraints on solutions
to provide a uniqueness result.

To overcome this difficulty, we use below a re-formulation in terms of stratified
problems, allowing discontinuities in the Hamiltonians as well as in the boundary
conditions as we will develop here. The point is also that the definition of viscos-
ity solutions for stratified problem consists in “super-imposing” some (subsolutions)
inequalities on the discontinuity sets of the Hamiltonians, which can be not only of
codimension 1 but also of higher codimension. This is exactly what is lacking for
obtaining uniqueness, as described in the previous paragraph.

25.3 A counter-example for the tanker problem

Let us examine problem (25.1) in the following case: Ω = {xN > 0} ⊂ RN ; there is
only one harbour P1 = 0 ∈ ∂Ω; the equation is given by

ut + |Du| = 1 in Ω× (0,+∞) ,

and the Neumann boundary condition is

∂u

∂n
= g at 0 for all t ∈ (0,+∞) ,

for some constant g ∈ R. For the initial data, we choose u(x, 0) = 0 on Ω.

To compute a solution, we argue formally: the associated control problem is a
problem with a reflection at 0 and the controlled trajectory is given by (1)

Ẋ(s) = α(s) ds− 1{X(s)=0}n(X(s)) d|k|s , X(0) = x ∈ Ω ,

where α(·) is the control taking values in B(0, 1). The term −1{X(s)=0}n(X(s)) d|k|s
is the reflection at 0, (|k|s)s being the intensity of the reflection and n(X(s)) = −eN
is the outward unit normal vector to ∂Ω at X(s). The value function is

U(x, t) = inf
α(·)

{∫ t

0

1 ds+

∫ t

0

g1{X(s)=0} d|k|s
}
.

(1)We give here a general formula which the reader will recognize for a reflection term
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In this case, the term 1{X(s)=0} d|k|s is nothing but 1{X(s)=0}α(s) · n(0) ds.

If g < 0—a favorable case to unload the cargo—the clear strategy to minimize the
cost is to maximize the integral of |g|1{X(s)=0} d|k|s. Therefore, the strategy is to reach
0 as soon as possible and then to have α(s) · n(0) = 1, i.e. α(s) = n(0). Since |x| is
the time which is necessary to reach 0 from x and then we integrates g till time t,
this gives the solution:

U(x, t) = t+ g(t− |x|)+ ,

Now take g < g′ < 0 and consider V (x, t) = t + g′(t − |x|)+. We claim that V is
still a subsolution of (25.1): indeed, since changing g into g′, we just have to check
the inequality at x = 0, for t > 0. But, if (y, s) ∼ (0, t), then (s − |y|)+ > 0 and
V (y, s) = s + g′(s − |y|). Now, since g′ < 0 the super-differential of V is empty at
(0, t), leaving us with no subsolution inequality to check.

Therefore V is a subsolution of the problem but clearly V > U for t > |x| and this
shows that no comparison result can hold.

The interpretation of this counter-example is that the Neumann boundary condition
at only one point (or at isolated points) is not seen enough by the notion of viscosity
solution, at least not sufficiently to imply comparison/uniqueness. This defect will be
corrected by the stratified formulation which superimposes an inequality at 0 for all t.



Chapter 26

Stratified Solutions for
State-Constraint Problems

26.1 Control problems, stratifications and state-

constraint conditions

In this section, we consider finite horizon, deterministic control problems with state-
constraints in Ω× [0, Tf ] where Ω is a domain in RN which a priori is neither bounded
nor regular. To formulate it, we are going to assume that the dynamics, discounts
and costs are defined in RN × [0, Tf ] (this is not a loss of generality) and may be
discontinuous on subsets Mk ⊂ Ω for k < N where Mk is a collection of k-dimensional
submanifolds of RN . More precise assumptions will be given later on.

Following Section 4.2, we first define a general control problem associated to a
differential inclusion. As we mention it above, at this stage, we do not need any
particular assumption concerning the structure of the stratification, nor on the control
sets. We also use the same notations and assumptions as in Section 4.2.

The control problem — as we said, we embed the accumulated cost in the
trajectory by solving a differential inclusion in RN×R, namely (4.1) and we introduce
the value function which is defined only on Ω× [0, Tf ] by

U(x, t) = inf
T (x,t)

{∫ +∞

0

l
(
X(s), T (s)

)
exp(−D(s))ds

}
,

where T (x, t) stands for all the Lipschitz trajectories (X,T,D, L) of the differential
inclusion which start at (x, t) ∈ Ω × [0, Tf ] and such that (X(s), T (s)) ∈ Ω × [0, Tf ]
for all s > 0.

419
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Contrarily to Section 4.2, we point out that assumptions are needed in order to
have T (x, t) 6= ∅ for all (x, t) ∈ RN × (0, Tf ]: indeed, if there is no problem with
the boundary {t = 0}, there is a priori no reason why there exists trajectories X
satisfying the constraint to remain in Ω for any x ∈ Ω and t ∈ [0, Tf ]. Therefore, the
fact that T (x, t) is non-empty will be an assumption in all this part: we will say that
(HU) is satisfied if the value-function U is locally bounded on Ω × [0, Tf ] which is
almost equivalent.

A first standard result gathers Theorem 4.3.3 and 4.3.4

Theorem 26.1.1 (Dynamic Programming Principle and Supersolution’s Prop-
erty) Under Assumptions (HBCL) and (HU), then U satisfies

U(x, t) = inf
T (x,t)

{∫ θ

0

l
(
X(s), T (s)

)
exp(−D(s))ds+ U

(
X(θ), T (θ)) exp(−D(θ))

)}
,

for any (x, t) ∈ RN× (0, Tf ], θ > 0. Moreover, if F is defined by (20.2), then the value
function U is a viscosity supersolution of

F(x, t, U,DU) = 0 on Ω× [0, Tf ] , (26.1)

where we recall that DU = (DxU,DtU).

We point out that, in the same way as Theorem 4.3.3 and 4.3.4, Theorem 26.1.1
holds in a complete general setting, independently of the stratification we may have
in mind.

We conclude this first part by the analogue of Lemma 4.4.2 showing that supersolu-
tions always satisfy a super-dynamic programming principle, even in this constrainted
setting: again we remark that this result is independent of the possible discontinuities
for the dynamic, discount and cost.

Lemma 26.1.2 Under Assumptions (HBCL), (HU) and (HSub), if v is a bounded
l.s.c. supersolution of F(x, t, v,Dv) = 0 on Ω×(0, Tf ], then, for any (x̄, t̄) ∈ Ω×(0, Tf ]
and any σ > 0,

v(x̄, t̄) ≥ inf
T (x̄,t̄)

{∫ σ

0

l
(
X(s), T (s)

)
exp(−D(s)) ds+ v

(
X(σ), T (σ)

)
exp(−D(σ))

}
(26.2)

Proof — The idea is to use Lemma 4.4.2 with a penalization type argument.
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To do so, as in the proof of Lemma 4.4.2, we are going to prove Inequality (26.2)
for fixed (x̄, t̄) and σ, and to argue in the domain B(x̄,Mσ)× [0, t̄] where M is given
by (HBCL), thus in a bounded domain. Next, for δ > 0 small, we set

vδ(x, t) :=

{
v(x, t) if x ∈ Ω

δ−1 otherwise

Since we argue in B(x̄,Mσ)× [0, t̄], vδ is l.s.c. in B(x̄,Mσ)× [0, t̄].

Next we change BCL into BCLδ in the following way: if x ∈ Ω, BCLδ(x, t) =
BCL(x, t), while if x /∈ Ω, then (bδ, cδ, lδ) ∈ BCLδ(x, t) iff, either (bδ, cδ, lδ) = (b, c, l+
δ−1d(x,Ω)) where (b, c, l) ∈ BCL(x, t) and d(·,Ω) denotes the distance to Ω, or
(bδ, cδ, lδ) = (0, 1, δ−1).

If we set for (x, t) ∈ B(x̄,Mσ)× [0, t̄]

Fδ(x, t, r, p) := sup
(bδ,cδ,lδ)∈BCLδ(x,t)

{
− bδ · p+ cδr − lδ

}
,

then vδ is a l.s.c. supersolution of Fδ(x, t, vδ, Dvδ) = 0 in B(x̄,Mσ) × (0, t̄). Indeed,
we have, at the same time Fδ ≥ F if x ∈ Ω and Fδ(x, t, r, p) ≥ r − δ−1 if x /∈ Ω.

Therefore Lemma 4.4.2 implies

vδ(x̄, t̄) ≥ inf
{∫ σ

0

lδ
(
Xδ(s), t−s

)
exp(−Dδ(s)) ds+vδ

(
Xδ(σ), Tδ(σ)

)
exp(−Dδ(σ))

}
,

the infimum being taken on all the solutions (Xδ, Dδ, Lδ) of the BCLδ differential
inclusion.

To conclude the proof, we have to let δ tend to 0 in the above inequality where we
can notice that vδ(x̄, t̄) = v(x̄, t̄). To do so, we pick an optimal or δ-optimal trajectory
(Xδ, Dδ, Lδ).

By the uniform bounds on Ẋδ, Ḋδ, L̇δ, Ascoli-Arzela’ Theorem implies that up to
the extraction of a subsequence, we may assume that XδDδ, Lδ converges uniformly
on [0, σ] to (X,D,L). And we may also assume that they derivatives converge in L∞

weak-* (in particular L̇δ = lδ).

We use the above property for the δ-optimal trajectory, namely∫ σ

0

lδ
(
Xδ(s), t− s

)
exp(−Dδ(s)) ds+ vδ

(
Xδ(σ), Tδ(σ)

)
exp(−Dδ(σ))− δ ≤ v(x̄, t̄) ,

in two ways: first by multiplying by δ, using that lδ ≥ −M + δ−1d(x,Ω)) and the
definition of vδ outside Ω, we get∫ σ

0

d(Xδ(s),Ω)) exp(−Ms)ds+ 1IXδ(σ)/∈Ω exp(−Mσ) = O(δ) .
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The uniform convergence of Xδ implies that both terms in the left-hand side tend to
0, meaning that X(s) ∈ Ω for any s ∈ [0, σ]. And the proof is complete.

Q.E.D.

26.2 Admissible stratifications for state-constraint

problems

In this section, we extend the notions of admissible stratification for a Bellman Equa-
tions set on Ω× (0, Tf ).

Definition 26.2.1 (Admissible Stratification)
We say that a family of subsets M0,M1, · · · ,MN+1 of Ω × (0, Tf ) is an Admissible
Stratification of Ω× (0, Tf ) if

Ω× (0, Tf ) = M0 ∪M1 ∪ · · · ∪MN+1 ,

∂Ω× (0, Tf ) ⊂M0 ∪M1 ∪ · · · ∪MN ,

and the family M̃ = (M̃k)k defined by M̃0 = M0, M̃1 = M1, · · · , M̃N = MN and
M̃N+1 = (MN+1 ∪ [Ω

c × (0, Tf )]) is an admissible stratification of RN × (0, Tf ).

In this definition, the only difference comes from the boundary ∂Ω× (0, Tf ) and the
following result explains the structure of the Mk’s on Ω× (0, Tf ).

Proposition 26.2.2 (Structure of the Mk)
For any 0 ≤ k ≤ N , if Mk

i is a connected component of Mk, we have either Mk
i ⊂

∂Ω× (0, Tf ) or Mk
i ⊂ Ω× (0, Tf ).

As a consequence, there is no interaction between Ω × (0, Tf ) and ∂Ω × (0, Tf )
through the Mk’s: no connected component can have some part in Ω × (0, Tf ) and
the complementary in ∂Ω × (0, Tf ). This does not mean that the closure of some
Mk

i ⊂ Ω × (0, Tf ) cannot contain some points of ∂Ω × (0, Tf ) but then they are
in some Ml for some l < k. As an example of such situation, where we drop the
time-variable in order to simplify the example, we can have:

Ω := {(x1, x2) ∈ R2; |x1|+ |x2| < 1} ,

and we have a stratification of Ω by setting

M0 = {(0,−1), (1, 0), (0, 1), (−1, 0), (0, 0)} ,
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M1 = {(x1, 0); 0 < |x1| < 1} ∪ {(0, x2); 0 < |x2| < 1} ∪
(
∂Ω \M0

)
,

M2 = Ω \
(
M1 ∪M0

)
.

Of course, Proposition 26.2.2 applies but the two first connected components of M1

are not bounded away from ∂Ω.

As we will see it later on, this will have a key importance in the definition of
stratified subsolutions since either we will consider interior points and, of course, this
will be analogous to the RN × (0, Tf ) case, or we will consider Fk- inequalities at
points of the boundary and we will not see any influence from Ω× (0, Tf ) since, Mk

being included in ∂Ω in a neighborhood of these points, these inequalities are just
“tangent” inequalities.

Proof of Proposition 26.2.2 — It is an easy consequence of the

Lemma 26.2.3 If (x, t) ∈Mk ∩ ∂Ω× (0, Tf ) for some 0 ≤ k ≤ N , then for r small
enough, Mk ∩B((x, t), r) ⊂ ∂Ω× (0, Tf ).

Indeed, if Mk
i is a connected component of Mk, we have two cases

– either Mk
i ⊂ Ω× (0, Tf ) and we are done.

– Or there exists (x, t) ∈ Mk
i ∩ ∂Ω × (0, Tf ). If Mk

i is not entirely contained in
∂Ω× (0, Tf ), then the two subsets of Mk

i defined by

Mk
i,1 = Mk

i ∩ ∂Ω× (0, Tf ) , Mk
i,2 = Mk

i ∩ Ω× (0, Tf ) ,

are both non-empty, open (by Lemma 26.2.3 for Mk
i,1) and we have Mk

i = Mk
i,1∪Mk

i,2.
A situation which is a contradiction with the connectedness of Mk

i . Hence Mk
i ⊂

∂Ω× (0, Tf ) and the proof is complete.
Q.E.D.

Now we turn to the proof of Lemma 26.2.3.

Proof — The result being local, we can assume without loss of generality that we are
in the (AFS) case, i.e. there exists r > 0 such that Mk ∩B((x, t), r) = [(x, t) + Vk] ∩
B((x, t), r) where Vk is a k dimensional vector space.

Lemma 26.2.3 is a consequence of Lemma 3.3.3 using the M̃-stratification. If, for
some v ∈ Vk, (x, t) + v ∈ [Ω× (0, Tf )] ∩B((x, t), r), then there exists 0 < δ � r such
that B((x, t) + v, δ) ⊂ [Ω × (0, Tf )] ∩ B((x, t), r). On the other hand, B((x, t), δ) ∩
[Ωc × (0, Tf )] 6= ∅ and if (xδ, tδ) ∈ B((x, t), δ) ∩ [Ωc × (0, Tf )] ⊂ B((x, t), r) ∩ M̃N+1,

we have (xδ, tδ) ∈ M̃N+1. By Lemma 3.3.3, (xδ, tδ) + Vk ⊂ M̃N+1 but (xδ, tδ) ∈
M̃N+1 ∩ [Ωc × (0, Tf )] and (xδ, tδ) + v ∈ M̃N+1 ∩ [Ω × (0, Tf )] since (xδ, tδ) + v ∈
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B((x, t) + v, δ) ⊂ [Ω × (0, Tf )]. Therefore (xδ, tδ) + Vk has a point in ∂Ω × (0, Tf )

which is a contradiction since there is no point of M̃N+1 on ∂Ω× (0, Tf ).
Q.E.D.

26.3 Stratified solutions and comparison result

Now we turn to the notion of stratified solution; as in the RN -case, we present both
a weak and a strong notion.

Definition 26.3.1 (Stratified sub and supersolutions for state-constraint
problems)
(i) A locally bounded function v : Ω× [0, Tf [→ R is a stratified supersolution of

F(x, t, w,Dw) = 0 on Ω× [0, Tf [ , (26.3)

if and only if it is an Ishii supersolution of this equation on Ω× [0, Tf [.

(ii) A locally bounded function u : Ω × [0, Tf [ is a weak stratified subsolution of
Equation (26.3) if, for any k = 0, ..., (N + 1), it is a viscosity subsolution of

Fk(x, t, u∗, (Dtu
∗, Dxu

∗)) ≤ 0 on Mk, for t > 0,

and it is a viscosity subsolution of

Fkinit(x, u∗, Dxu
∗) ≤ 0 on Mk

0.

The function u is a strong stratified subsolution of Equation (26.3) if it is a weak
stratified subsolution and if it is a viscosity subsolution of this equation in Ω× (0, Tf )
and it also satisfies

(Finit)∗(x, u∗, Dxu
∗) ≤ 0 in Ω .

In addition, we will say that u is a strict (weak or strong) stratified subsolution if the
≤ 0-inequalities are replaced by a ≤ −η < 0-inequality where η > 0 is independent of
x and t.

Several remarks on the definition: for the supersolution, we have the classical Ishii’s
inequality, and up to the boundary ∂Ω× (0, Tf ) as it is classical for state-constraint
problems. Of course at time t = 0, the analogue of Proposition 5.1.1 implies that F
can be replaced by Finit.

For the subsolution case, there is no change in Ω × (0, Tf ), the main feature of
stratified subsolutions are preserved, i.e. we have to super-impose Fk-inequalities on
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all Mk (including at time t = 0). What may be more suprising and unusual in
this state-constraint framework is the fact that there are subsolutions inequalities
on ∂Ω × (0, Tf ) but, on one hand, these inequalities are on Mk ∩ [∂Ω × (0, Tf )] for
k = 0, ..., N and therefore they take into account only the dynamics which stay on Mk,
i.e. on ∂Ω× (0, Tf ); on the other hand, to take into account these inequalities on the
boundary is not a real difficulty here as long as we deal with “regular subsolutions
on the boundary”, a notion that we define precisely below but which is a natural
extension of the notion of regular subsolutions that we have seen in Part IV.

In fact, the new difficulty which is caused by the boundary is the following: in
the RN -case, the regularity of subsolutions is ensured by the inequality F∗ ≤ 0 and
(NC). This is one of the reasons why weak=strong. But here, on ∂Ω × (0, Tf )], the
F∗ ≤ 0 inequality cannot hold and the regularity of subsolutions is a real issue: we
have to find a way to prove that subsolutions are “regular” on the Mk which lies on
the boundary. This is THE additional difficulty for state-constraint problems.

To address this question, we need to introduce a notion of boundary regularity for
subsolutions.

Definition 26.3.2 Given an admissible stratification M of Ω × (0, Tf ), we say that
an u.s.c. function u : Ω × [0, Tf [→ R is regular at the boundary (with respect to the
stratification M) if it satisfies the following conditions:

(i) for any (x, t) ∈ [∂Ω× (0, Tf )] ∩Mk,

u(x, t) = lim sup
{
u(y, s); (y, s)→ (x, t), (y, s) ∈Mk+1 ∪ · · · ∪MN+1

}
; (26.4)

(ii) for any x ∈ ∂Ω ∩Mk
0,

u(x, 0) = lim sup
{
u(y, 0); (y, 0)→ (x, 0), (y, 0) ∈Mk+1

0 ∪ · · · ∪MN+1
0

}
. (26.5)

We can then conclude this part by the comparison result.

Theorem 26.3.3 In the “good framework for HJ Equations with discontinuities”
which is described above, the comparison results between bounded stratified weak sub-
solutions and supersolutions of Equation (26.3) holds provided that the subsolution is
regular in Ω× (0, Tf ), u(x, 0) is regular in Ω and both are regular at the boundary. In
the case of strong subsolutions, the result holds for subsolutions which are regular at
the boundary.

As we point out above, to have “strong subsolutions” implies that they are regular
in Ω × (0, Tf ) and in, for t = 0, in Ω but we have to keep the assumption that they
are regular at the boundary.
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As the reader may guess, the proof is (almost) exactly the same as the proof of
Theorem 20.4.1 and this is easy to explain why: the fact that some parts of the
stratification are on the boundary does not cause any problem and the key ingredients
were already used in the RN -case. The only difference comes from the regularity of the
subsolution at the boundary whose aim is, of course, to eliminate “artificial values”
on the boundary.

As we will see below, this condition is analogous to the “cone condition” which is
used in state-constraint or Dirichlet problems for standard continuous equations. We
will see in Section 26.4 how an analogue of the F∗-inequality and Proposition 3.4.2
for boundary points can be used to obtained (26.4) and/or (26.5); this point may be
important for stability reasons.

26.4 On the boundary regularity of subsolutions

As we keep pointing it out, the “regularity” of subsolutions plays a central role since
this is a keystone argument of the comparison result in the stratified case when we
deal with subsolutions. We recall that such regularity allows to obtain continuous sub-
solutions after “tangential regularization” by sup-convolution. In RN , this property
is, in general, a consequence of the standard Ishii subsolution inequality F∗ ≤ 0, pro-
vided that the normal controllability assumption is satisfied (cf. Proposition 3.4.2);
in other words, strong stratified subsolutions are regular weak subsolutions (cf. Sec-
tion 20.3). Of course, in the present context, the same is true if we consider parts of
the stratification which are inside the domain Ω× (0, Tf ).

However, the situation is a completely different on ∂Ω×(0, Tf ) since the subsolution
inequality F∗ ≤ 0 does not hold, in general, on the boundary. It is replaced by the
Fk-ones, involving only tangential dynamics which, therefore, cannot give information
on the values of the subsolution in Ω× (0, Tf ) near the boundary. Actually, it is well-
known that, even in classical cases, (sub)solutions of the Dirichlet problems may have
“artificial” values on the boundary which have no connections with interior ones (cf.
[22, 23, 24] or [31]). We come back on that classical case below.

We propose two ways to circumvent this difficulty: the first one is when some ad
hoc inequalities on the boundary play the role of the “F∗ ≤ 0”-one, allowing to prove
the regularity of subsolutions. The second one, inspired by the “continuous case”,
is completely different, which consists in redefining the subsolution on the different
portions Mk of the boundary in order to have (26.4). Of course this second way is
far more restrictive since it requires that no real discontinuity (in terms of BCL) is
present on the boundary. But it may be useful though, since the stratified approach
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allows non-smooth boundaries.

Before providing our results, let us come back to the classical case and point out that
such type of difficulty is classical in state-constraint or Dirichlet problems, even if it
is in general formulated in a slightly different way: from the very first articles of Soner
[154, 155] on state-constraint problems, the “cone condition” (or related properties)
is known to play a role in comparison results for such problems. Here also, one needs
to get some kind of continuity property of the subsolution on the boundary, at least
to avoid artificial values.

Concerning Dirichlet problems, Perthame and the first author [22, 23, 24] have
worked on this difficulty by either showing such continuity property (even in a weaker
sense) or by redefining the subsolution on the boundary in order to get it, two pos-
sibilities that we investigate below. Ishii and Koike [123] have formulated the state-
constraint boundary condition in a different way, with an unusual subsolution con-
dition on the boundary, by looking only at dynamics which are pointing inside the
domain on the boundary: Lemma 26.4.1 below shows that their boundary condition
“ut +Hin ≤ 0” avoids non-regular subsolution if there is an inner dynamic.

Finally we point out that some results for first but also second-order equations are
obtained by Katsoulakis [125] or Rouy and the first author [25]: in [25], a blow-up
argument allows to show that the cone condition holds under suitable assumptions for
first-order equations and that we have a related property for the second-order case.

Our first result is the

Lemma 26.4.1 Assume that Ω × (0, Tf ) is a stratified domain and that (x0, t0) ∈
Mk ∩ [∂Ω × (0, Tf )]. Assume also that there exist r,M, τ̄ , δ > 0 and a continuous
function b : [Ω × (0, Tf )] ∩ B((x0, t0), r) → RN such that, for any y ∈ ∂Ω ∩ B(x0, r)
and 0 < τ < τ̄ ,

B(y + τb(x0, t0), δτ) ⊂ Ω . (26.6)

If u is a subsolution of

ut − b(x, t) ·Du ≤M on [∂Ω× (0, Tf )] ∩B((x0, t0), r) (1) , (26.7)

then (26.4) holds at (x0, t0), more precisely

u(x0, t0) = lim sup{u(y, s), (y, s)→ (x0, t0), y ∈Mk+1 ∪ · · ·MN} .

Before proving this lemma, we want to point out that, as the proof is going to show,
this is a very basic result ; a more interesting point is to give general (and if possible,

(1)in the sense that, for any smooth test-function φ if u− φ has a local maximum point relatively
to Ω× (0, Tf ) at (x, t) then φt(x, t)− b(x, t) ·Dφ(x, t) ≤M .
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natural) conditions under which a subsolution of the stratified problem is a viscosity
subsolution of an equation like (26.7). Of course, but this has to be formulated a little
bit more precisely, such property is, in general, a consequence of (i) an interior cone
condition like (26.6) and (ii) the normal controllability, with a suitable compatibility
between them.

Proof — Throughout the proof, we assume that we are in the flat case, namely Mk ∩
B((x0, t0), r) = [(x0, t0)+Vk]∩B((x0, t0), r), where Vk is a k-dimensional vector space
in RN × (0, Tf ], taking perhaps r smaller in (26.6). We first claim that (b(x0, t0),−1)
cannot be in Tx0M

k.

This property is an easy consequence of Lemma 26.2.3: indeed, otherwise we would
have that the distance from (x0 + τb(x0, t0), t0 − τ) to Mk would be a o(τ) which
would contradict the assumption on b which says that the distance to ∂Ω× (0, Tf )—
and therefore to Mk—is at least δτ (δ > 0).

The above property on b(x0, t0) implies that there exists a vector e ∈ RN , such that
(e, 0) is orthogonal to Tx0M

k, such that b(x0, t0) · e > 0. Then, in Ω × (0, Tf ), we
consider the function

(x, t) 7→ u(x, t)− |x− x0|2

ε2
+

2

ε
e · (x− x0)− |t− t0|

2

ε
.

Using the properties satisfied by a stratification, if (26.4) does not hold then, for
0 < ε � 1, this function necessarily achieves its maximum on Mk at (xε, tε) and, as
a consequence of the maximum point property we have

u(x0, t0) ≤ u(xε, tε)−
|xε − x0|2

ε2
− |tε − t0|

2

ε
+

1

ε
e · (xε − x0)

= u(xε, tε)−
|xε − x0|2

ε2
− |tε − t0|

2

ε
,

the equality coming from the definition of e and the fact that we have a flat stratifi-
cation.

By Lemma 6.4.1 (or at least by using the underlying arguments), this implies that

the penalisation terms
|xε − x0|2

ε2
,
|tε − t0|2

ε
tend to 0 when ε → 0 and in particular,

we have (xε, tε)→ (x0, t0). Writing the viscosity subsolution inequality yields

2(tε − t0)

ε
− b(xε, tε) · (

2(xε − x0)

ε2
− 2

ε
e) ≤M ,

which gives, thanks to the previous properties

o(1)

ε
+

2

ε
b(xε, tε) · e ≤M .
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But, by the continuity of b, b(xε, tε) · e→ b(x0, t0) · e > 0, and we get a contradiction
in this above inequality for ε small enough.

Q.E.D.

The next result shows how (26.7) can be obtained and the kind of compatibility
conditions which are needed to get it, combining the cone condition (26.6) and the
dynamic in the control problem.

Lemma 26.4.2 Assume that Ω × (0, Tf ) is a stratified domain, that (NC-BCL),
(TC-BCL) hold and that (x0, t0) ∈Mk ∩ [∂Ω× (0, Tf )]. Assume also that there exist
r,M, τ̄ , δ > 0 and a continuous function b defined on [Ω × (0, Tf )] ∩ B((x0, t0), r)
and taking values in RN such that, for any y ∈ ∂Ω ∩ B(x0, r) and 0 < τ < τ̄ ,
(26.6) holds. Assume, in addition, that there exists κ > 0 such that, for any (x, t) ∈
[Ω× (0, Tf )] ∩B((x0, t0), r), κ(b(x, t),−1) ∈ B(x, t).

If u is a subsolution of the stratified state constraint problem in [Ω × (0, Tf )] ∩
B((x0, t0), r) and if (26.4) holds for any (x, t) ∈ [∂Ω× (0, Tf )] ∩B((x0, t0), r) then u
is a subsolution of (26.7).

This corollary means that, in some sense, the property (26.4) is equivalent to a
natural “control” inequality (as it is the case in Ω) and that such inequality should
be automatically extended to the boundary if the boundary values are the limit of
the interior ones.

Proof — Using the regularization procedure of Section 3.4, we can assume without
loss of generality that u is Lipschitz continuous on [Ω × (0, Tf )] ∩ B((x0, t0), r). We
point out that (26.4) plays a key role in this property to avoid any discontinuity on
the boundary.

If φ is a smooth test-function and if (x̄, t̄) ∈ [∂Ω× (0, Tf )]∩B((x0, t0), r) is a strict
local maximum point of u−φ in [Ω× (0, Tf )]∩B((x0, t0), r), we consider the function

Ψ(x, t, y, s) = u(x, t)− φ(y, s)− |x− y − εb(x0, t0)|2

ε2
− |t− s|

2

ε
.

which achieves its maximum at (xε, tε, yε, sε). Since u is Lipschitz continuous, we have
u(x̄+ εb(x0, t0), t̄) = u(x̄, t̄) + oε(1) and therefore

u(x̄, t̄)−φ(x̄, t̄)+oε(1) ≤ Ψ(x̄+εb(x0, t0), t̄, x̄, t̄) ≤ Ψ(xε, tε, yε, sε) ≤ u(x̄, t̄)−φ(x̄, t̄)+oε(1) ,

the last inequality coming from the fact that xε − yε, tε − sε are O(ε) and therefore
(xε, tε) = (yε, sε) +O(ε).
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By Lemma 6.4.1 (or at least by using the underlying arguments), we deduce that,
not only (xε, tε), (yε, sε)→ (x̄, t̄) but we also have

|xε − yε − εb(x0, t0)|2

ε2
+
|tε − sε|2

ε
→ 0 ,

as ε→ 0. In particular xε ∈ B(yε+εb(x0, t0), kε) ⊂ Ω since |xε−yε−εb(x0, t0)| = o(ε)
if ε is small enough.

We can write down the viscosity subsolution inequality for u

F∗(xε, tε, u(xε, tε), (pε, αε)) ≤ 0 ,

where αε =
2(tε − sε)

ε
= φt(yε, sε) by the maximum point property in s, while pε =

2(xε − yε − εb(x0, t0))

ε2
= Dφ(yε, sε) if yε ∈ Ω but not necessarely if yε ∈ ∂Ω.

In order to estimate F∗, we recall that

F(x, t, u, p) ≥ −b · p+ cr − l ,

where (b, c, l) ∈ BCL(x, t). In particular, by the assumption on (b(x, t),−1), we have
F(x, t, u, p) ≥ κpt − κb(x, t) · p − M̃ for some constant M̃ since c, u, l are bounded.
And therefore F∗(x, t, u, p) ≥ κpt − κb(x, t) · p− M̃ .

Using this estimate, we conclude easily if we know that yε ∈ Ω at least for a
subsequence of ε tending to 0, with M = M̃/κ.

If yε ∈ ∂Ω, we write for 0 < τ � 1

Ψ(xε, tε, yε, yε + τb(yε), tε) ≤ Ψ(xε, tε, yε, sε) ,

and this variation gives −b(yε, tε) ·Dφ(yε, sε) ≤ −b(yε, tε) · pε. The conclusion follows
easily. And the proof is complete.

Q.E.D.

Now we turn to the second possibility which is a little bit more restrictive.

Lemma 26.4.3 Assume that Ω × (0, Tf ) is a stratified domain and that (NC),
(TC) hold. Let (x0, t0) ∈ Mk be a point such that there exists r > 0 such that
Mk ∩ B((x0, t0), r) = ∂Mk+1 ∩ B((x0, t0), r). If, for any (x, t) ∈ Mk ∩ B((x0, t0), r)
and any (y, s) ∈Mk+1 ∩B((x0, t0), r), we have the following property

for any (b, c, l) ∈ BCL(x, t) such that b ∈ T(x,t)M
k, there exists (b′, c′, l′) ∈ BCL(y, s)

with b′ ∈ T(x,t)M
k+1 and |b′ − b| ≤ C(|x − y| + |t − s|) for some constant C,
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|c− c′|+ |l − l′| = o(1) as (y, s)− (x, t)→ 0

and if u is a subsolution of the Fk+1- equation in Mk+1∩B((x0, t0), r) then the function
ũ defined on Mk ∩B((x0, t0), r) by

ũ(x, t) = lim sup{u(y, s), (y, s)→ (x, t) y ∈Mk+1}

satisfies the Fk-inequality in Mk ∩B((x0, t0), r).

Proof — We consider a smooth test-function φ and (x, t) ∈ Mk ∩ B((x0, t0), r), a
strict local maximum point of ũ−φ on Mk ∩B((x0, t0), r). By definition of ũ, we can
approximate this maximum by maximum points on Mk+1 ∩B((x0, t0), r)

(y, s) 7→ u(y, s)− φ(y, s)− α

d(y,Mk)
− d(y,Mk)

ε
,

by choosing in a proper way the parameters ε, α which are devoted to tend to 0.

If the maximum is achieved at (x̄, t̄) depending on α and ε, the Fk+1-inequality has
to be written as a supremum for all (b, c, l) ∈ BCL(x̄, t̄) with b ∈ T(x̄,t̄)M

k+1 but
we are going to argue in a different way: if (b̄, c̄, l̄) ∈ BCL(ȳ, s̄) where (ȳ, s̄) is the
projection of (x̄, t̄) on Mk then, on one hand, there exists (b, c, l) ∈ BCL(x̄, t̄) with
|b− b̄| ≤ C(|x̄− ȳ|+ |t̄− s̄|) = Cd((x̄, t̄),Mk) and |c̄− c|, |l̄− l| are o(1) in α, ε if we
let first α and then ε tend to 0. On the other hand, the Fk+1-inequality reads

−b · (Dxφ(x̄, t̄) + Pα,ε, φt(x̄, t̄)) + cu(x̄, t̄)− l ≤ 0 ,

where Pα,ε denotes the derivatives of the two last terms, for which we have |Pα,ε|d((x̄, t̄),Mk)→
0 as α, ε → 0 (again with the proper choice we have to make). Taking into account
the fact that u(x̄, t̄)→ u(x, t), we are lead to

−b̄ · (Dxφ(x̄, t̄), φt(x̄, t̄)) + c̄u(x, t)− l̄ ≤ o(1) ,

and since this is true for any (b̄, c̄, l̄) ∈ BCL(ȳ, t̄) and therefore for any (b̄, c̄, l̄) ∈
BCL(x, t) by tangential continuity, the result follows.

Q.E.D.

The above lemma suggests the following procedure if Mk ⊂ ∂Mk+1 for any k: we
first redefine u on MN−1 and, after this step, (26.4) holds on MN−1. Then we repeat
the same operation on MN−2 and inductively until M0.
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Chapter 27

Classical Boundary Conditions and
Stratified Formulation

In this chapter, we are going to investigate the connections between stratified problems
with state-constraints and classical (or almost classical) problems with boundary
conditions (Dirichlet, Neumann or mixed boundary conditions). Of course, the interest
of the stratified formulation is to allow to treat cases where the boundary is not smooth
or the boundary conditions may present discontinuities, and also both at the same
time.

Clearly our aim cannot be to give extremely general results: this would be unread-
able and of a poor interest. In fact, what is done in Section 27.3.2 for the Tanker
Problem shows that the stratified formulation allows to treat very general problems
with even exotic “boundary conditions”, if we can still call them like that since, in
this framework, there is no main difference between the equation and the boundary
conditions. As a consequence, most of the Dirichlet, Neumann, oblique derivatives
and mixed problems we are going to consider have a unique stratified solution pro-
vided that we formulate them in the right way and that the “natural assumptions”
are satisfied.

Instead, we address the following two complementary questions, mainly in very
simple frameworks, whose answers may emphasize the role and the interest of the
stratified formulation

(i) in which cases classical Ishii viscosity solutions and stratified solutions are the
same? Of course, in such cases, the theory which is developed in the previous
chapter provides complete comparison results;

(ii) on the contrary, in which cases is the stratified formulation needed because the

433
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Ishii formulation is not precise enough to identify the “good” solution?

In order to do so, we are just going to consider standard problems where the diffi-
culty only comes from the boundary and boundary data, and for which the equation
inside the domain is continuous. More precisely, we are interested throughout this
chapter in a standard Hamilton-Jacobi-Bellman Equations associated with a classical
initial condition, namely{

ut +H(x, t,Dxu) = 0 in Ω× (0, Tf )

u(x, 0) = u0(x) in Ω
(27.1)

where Ω is a domain in RN and where H has the form

H(x, t, p) := sup
α∈A
{−b(x, t, α) · p− l(x, t, α)} , (27.2)

for any x ∈ Ω, t ∈ [0, Tf ], p ∈ RN , where A is a compact metric space and b, l are
continuous functions on Ω× [0, Tf ]×A taking respectively values in RN , R and R. We
assume that b, l and u0 satisfy (HBA−CP) which implies that H satisfies (HBA−HJ).

Clearly, our results would need to be extended to treat problems where we have
also discontinuities inside: some of these extensions are easy using some ideas of this
chapter (typically if the discontinuities of H inside Ω × [0, Tf ] are apart from the
boundary) but some other ones are more delicate (if the discontinuities of H inside
Ω× [0, Tf ] interfere with the boundary).

On the other hand, and this is obvious from the definition of stratified solutions,
we are going to concentrate on subsolution properties since a stratified supersolution
is nothing but a classical viscosity supersolution in the sense of Ishii. Of course, we
are going to place ourselves in the “good framework for HJ Equations with disconti-
nuities”, in particular (NC) will hold on the boundary), which implies that most of
the time we will be able to assume without loss of generality that the subsolutions
are Lipschitz continuous by the by-now standard tangential regularization procedure.

27.1 On the Dirichlet problem

We are interested in this section in the Dirichlet problem for Hamilton-Jacobi-Bellman
Equations, namely (27.1) associated with the boundary condition

u(x, t) = ϕ(x, t) on ∂Ω× (0, Tf ) . (27.3)
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where we first assume that ϕ is a continuous function which satisfy the compatibility
condition

u0(x) = ϕ(x, 0) on ∂Ω .

In this classical case, there are two kinds of results which are described in the book
[31] and are originated from the works of Perthame and the first author [22, 23, 24].

• The first one is the “discontinuous approach” where one tries to determine the
minimal and maximal solution of (27.1)-(27.3) in full generality, i.e. without
any particular additional assumption on the dynamic and cost, and without
assuming the boundary of Ω to be smooth. The result is that there exist a
minimal solution U− and a maximal solution U+ which are value-functions
of exit time problems, U− being associated to the best stopping time on the
boundary, while U+ is associated to the worst stopping time on the boundary.

• The second one is the “continuous approach” in which one looks for conditions
under which the value function is continuous and the unique solution of (27.1)-
(27.3): in [24], the result is obtained under classical assumptions on the dynamics
and cost, plus an hypothesis of normal controllability on the boundary which
looks like very much (NC). This second type of results required some regularity
of the boundary (W 2,∞ in general).

In this section, our aim is to reformulate the Dirichlet problem in the “stratified”
framework, in order to investigate the cases when it is equivalent to the classical
viscosity solutions formulation and then to examine the type of extensions that we
can get in that way.

27.1.1 The stratified formulation for the most classical case

For the reformulation, the idea is very clear and classical: if (x, t) ∈ Ω × [0, Tf ], we
set

BCLe(x, t) := {((b(x, t, α),−1), 0, l(x, t, α)); α ∈ A} ,

“e” for “equation” and, if (x, t) ∈ ∂Ω× [0, Tf ], we introduce

BCLbc(x, t) := {((0, 0), 1, ϕ(x, t))} ,

“bc” for “boundary condition”. Indeed, at the level of the general Hamiltonian F, this
produces the expected term on the boundary, namely

−b · p+ cu− l = u− ϕ(x, t) ,



436 Barles & Chasseigne

and, for the control point of view, this provides a 0-dynamic allowing to stop at the
point (x, t) and pay a cost which is ϕ(x, t), the discount factor being 1.

Of course BCL(x, t) = BCLe(x, t) if (x, t) ∈ Ω × (0, Tf ] and it is the closure of
the convex enveloppe of BCLe(x, t) ∪BCLbc(x, t) if (x, t) ∈ ∂Ω× (0, Tf ]. For t = 0,
but this is by now classical, we have also to add a term (b, c, l) = ((0, 0), 1, u0(x)) to
take into account the initial data and BCL(x, 0) is given by the closure of the convex
enveloppe of either BCLe(x, 0) ∪ {((0, 0), 1, u0(x))} or BCLe(x, 0) ∪ BCLbc(x, 0) ∪
{((0, 0), 1, u0(x))} depending whether x is in Ω or ∂Ω.

With this point of view, we have just a state-constraint problem since the trajectory
(X,T ) exists for all times and stays on Ω×[0, Tf ], the Dirichlet condition just allowing
a choice b = 0 on the boundary, exactly as it is the case for the initial data at t = 0
since bt = −1 for any (b, c, l) in BCLe(x, 0) for which b 6= 0.

Since H is continuous on Ω× [0, Tf ], the stratified approach consists in considering,
for t > 0, the stratification MN+1 = Ω× (0, Tf ) and MN = ∂Ω× (0, Tf ). In order to
apply the above results, we have to impose

(i) some regularity of ∂Ω: here W 2,∞ (exactly as in [24]) is natural in general since
we have to flatten MN , by keeping the needed property on H (in particular
(TC)). But this can be reduced to C1 if H is coercive, to the cost of sophisti-
cating a little bit our arguments, treating differently the variables t and x.

(ii) some normal controlability assumptions which turn out to be also the same
as in [24], namely, for any (x, t) ∈ ∂Ω × [0, Tf ], the existence of two controls
αi = αi(x, t) for i = 1, 2 such that

b(x, t, α1) · n(x) < 0 , b(x, t, α2) · n(x) > 0 , (27.4)

where n(x) is the unit, outward normal vector to ∂Ω at x.

We come back later on the advantages of this new approach but let us examine first
the boundary condition from the stratified point of view. To do so, we have to compute
FN(x, t, p) if (x, t) ∈MN where we recall that p = (px, pt).

Taking into account the form of BCL(x, t) if (x, t) ∈ ∂Ω× (0, Tf ] which is obtained
by considering the convex enveloppe of elements of the form

(b, c, l) = ((b(x, t, α),−1), 0, l(x, t, α)) ∈ BCLe(x, t)

[associated to the Hamiltonian H] and of ((0, 0), 1, ϕ(x, t)) associated to the Dirichlet
boundary condition; therefore we have to consider all the

(µ(b(x, t, α),−1), (1− µ), µl(x, t, α) + (1− µ)ϕ(x, t))
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for 0 ≤ µ ≤ 1 but with

µb = µ(bx,−1) ∈ T(x,t)M
N ,

in other words bx ∈ Tx∂Ω.

In order to compute FN(x, t, r, p), we have to look at the supremum in µ and
(b, 0, l) ∈ BCL(x, t) with bx ∈ Tx∂Ω, of

−µb · p+ (1− µ)u− (µl + (1− µ)ϕ(x, t)) = µ(b · p− l) + (1− µ)(u− ϕ(x, t)) ,

and clearly this supremum is achieved either for µ = 0, or µ = 1. Hence the Dirichlet
boundary condition

max(ut +HN(x, t,Dxu), u− ϕ(x, t)) ≤ 0 on MN , (27.5)

where

HN(x, t, px) = sup
b(x,t,α)∈Tx∂Ω

{−b(x, t, α) · px − l(x, t, α)} .

This is a rather unusual inequality which, to the best of our knowledge, never
appears in the study of Dirichlet boundary conditions for HJ-Equations. But, on the
other hand, it is rather natural from the control point of view; indeed the inequality
ut + HN(x, t,Dxu) ≤ 0 just says that the tangent dynamics are sub-optimal and, in
the same way, the inequality u−ϕ(x, t) ≤ 0 reflects the sub-optimality of the strategy
consisting in stopping at (x, t) and paying the cost ϕ(x, t). We point out anyway that
the normal controllability plays a role here since such strategy is available to the
controller as soon as the state (X,T ) comes close to ∂Ω× (0, Tf ) since he can choose
to quickly exit the domain via a dynamic pointing outward Ω × (0, Tf ); then, when
(X,T ) is on ∂Ω × (0, Tf ), he can either stop and pay the ϕ-cost or continue on the
boundary with the dynamic b(x, t, α) ∈ Tx∂Ω, waiting a better stopping time on
∂Ω× (0, Tf ).

It is also worth remarking that the non-tangential dynamics are taken into account
in the Ishii viscosity subsolution inequality

min(ut +H(x, t,Dxu), u− ϕ(x, t)) ≤ 0 on ∂Ω× (0, Tf ) .

Now we turn to the first key question: does a classical viscosity subsolution always
satisfy such HN -inequality in the stratified framework? And, in the case of a less
regular boundary -but still in a stratified framework-, does an analogous one hold on
Mk for 1 ≤ k ≤ N?
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27.1.2 Ishii and stratified solutions for the Dirichlet problem

In this section, we address the above questions in a full generality under the as-
sumptions on H which are given at the beginning of the chapter (in particular H is
continuous) but ∂Ω× (0, Tf ) is not smooth anymore. More precisely, we assume that
there is a stratification M = (Mk)k of Ω× R such that

MN+1 = Ω× R , M1 ∪ · · ·MN = ∂Ω× R .

Under these conditions, we will say that we have a stratified domain.

We begin with the

Proposition 27.1.1 Assume that the above assumption on M holds, that ϕ is con-
tinuous on MN and that we are in the good framework for stratified problem. Then,

(i) if u is any viscosity subsolution of the Dirichlet problem, u ≤ ϕ on MN .

(ii) If ũ is given by ũ = u in Ω× (0, Tf ) and

ũ(x, t) = lim sup
(y,s)→(x,t)

y∈Ω

u(y, s) ,

then ũ is still a classical viscosity subsolution of the Dirichlet problem and (27.5)
holds for ũ on MN .

We first want to point out that, in Proposition 27.1.1, the essential consequence of
the “good framework for stratified problem” is that (27.4) holds on MN .

The introduction of the function ũ in order to redefine u on the boundary is classical:
in fact, it is needed because the viscosity subsolution inequality is not strong enough
to avoid artificial values of u on the boundary. Indeed since the viscosity subsolution
property is ensured by the fact that u ≤ ϕ on MN , u could be changed into any
u.s.c. function which lies below ϕ on MN , with no link whatsoever with the values
inside Ω× (0, Tf ). The introduction of ũ consists in imposing the “natural” values of
the subsolution on MN since they are consistent with those in Ω× (0, Tf ). Once this
“cleaning” of the boundary values is done, then we have the desired result, namely
that viscosity subsolutions are stratified subsolutions.

A different point of view is the regularity of subsolutions on the boundary: we
have insisted, since the beginning of Part V, that this is a key difficulty in state-
constraint problem. Here we face it and Proposition 27.1.1 solves it in the case when
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MN = ∂Ω×(0, Tf ) by replacing the non-regular subsolution by a regular one, changing
only its values on the boundary.

Proof — We start proving that, if u is an u.s.c. viscosity subsolution of the Dirichlet
problem then u ≤ ϕ on MN . We can argue locally and therefore assume that ∂Ω ×
(0, Tf ) = MN is smooth, hence ∂Ω is smooth. If d denotes the distance to ∂Ω, d is at
least C1 and we recall that Dd(y) = −n(y) if y ∈ ∂Ω.

If (x, t) ∈MN , we consider the function

(y, s) 7→ u(y, s)− (s− t)2

ε2
− |y − x|

2

ε2
− Cεd(y) ,

where Cε > 0 is a large constant to be chosen later. This function has a maximum
point (yε, tε) near (x, t) and, by classical arguments, we have (yε, tε) → (x, t) and
u(yε, tε)→ u(x, t). If the H-inequality holds at (yε, tε), we would have

2(sε − t)
ε2

+H(yε, sε,
2(yε − x)

ε2
+ CεDxd(yε)) ≤ 0 .

But Dxd(yε) = Dxd(x) + o(1) = −n(x) + o(1) and, by the normal controllability
assumption (cf. (27.4)), this inequality cannot hold if we choose Cε large enough. As
a consequence, we have both (yε, tε) ∈ ∂Ω× (0, Tf ) and u(yε, tε) ≤ ϕ(yε, tε).

Letting ε→ 0, we obtain the desired result since ϕ is continuous on MN .

As we already mentioned it above, the viscosity subsolution inequality being reduced
to u ≤ ϕ on MN , since ũ ≤ u, it follows that ũ is also a viscosity subsolution of the
Dirichlet problem.

Next we have to show that the FN -inequality holds for ũ. We may assume without
loss of generality that ũ is Lipschitz continuous because we can perform the regular-
ization in the tangent variables (including t), and then use the normal controllability
property. In the same way, we can assume that the boundary is flat and use the defi-
nition of HN not only when x ∈ ∂Ω but also for x ∈ Ω. We notice that HN(x, t, p) ≤
H(x, t, p) if x ∈ ∂Ω since the supremum is taken on a smaller set than BCL and, if
n is the unit outward normal to ∂Ω (which is flat), HN(x − εn, t, p) → HN(x, t, p)
when ε→ 0 as a consequence on the (HBA−CP)-assumptions and of the normal con-
trollability. Hence HN(x− εn, t, p) ≤ H(x, t, p) + oε(1) where the oε(1) is uniform for
bounded p.

As in Proposition 21.2.3, it is clear that ũε(x, t) := ũ(x+ εn, t) is a subsolution of

ũεt +HN(x+ εn, t,Dxũ
ε) ≤ oε(1) on MN ,
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and passing to the limit by a standard stability result (since ũε converges to ũ uni-
formly and since the oε(1) is uniform for bounded p), we obtain (27.5).

Q.E.D.

Remark 27.1.2 Two remarks can be made on the above proof.

(i) The first one concerns the inequality u(x, t) ≤ ϕ(x, t). In fact, even if ϕ is discon-
tinuous, the inequality u(x, t) ≤ ϕ∗(x, t) (with the u.s.c. enveloppe of ϕ) can be proved
not only for points in MN but for any point where the exterior sphere condition holds,
i.e. there exists x̄ ∈ RN , r̄ > 0 such that

B(x̄, r̄) ∩ Ω = {x} .

Indeed, it is enough to reproduce the above proof replacing the function d(y) by
χ(y) := |y − x̄| − r̄. Indeed, if x is a minimum point of χ on ∂Ω and therefore,
if (x, t) ∈ Mk, (Dχ(x), 0) is orthogonal to T(x,t)M

k, allowing to use (NC). This
inequality is therefore a general fact, but unfortunately not convenient for the strati-
fication formulation which requires the more restrictive inequality u(x, t) ≤ ϕ∗(x, t).

(ii) On the other hand, in order to obtain the HN -inequality, we use very few proper-
ties, namely the characterization of the stratification (the fact that we have a parallel
hyperplane to MN inside MN+1) and the inequality HN ≤ H, both arguments being
true for any Mk.

In order to go further we introduce the

Definition 27.1.3 Assume that Ω × (0, Tf ) is a stratified domain and ϕ : ∂Ω ×
(0, Tf ) → R is a lower-semicontinuous function. We say that ϕ is adapted to the
stratification if for any 1 ≤ k ≤ N , ϕ|Mk is continuous. Moreover, ϕ is said to be
W-adapted (“well-adapted”) to the stratification if, in addition, for any x ∈Mk and
for any k

ϕ(x, t) = lim inf
(y,s)→(x,t)

(y,s)∈MN

ϕ(y, s) .

The result for W-adapted boundary conditions is the following

Proposition 27.1.4 Assume that the above assumption on M holds and that we
are in the good framework for stratified problems. If ϕ : ∂Ω × [0, Tf ) → R is a
lower-semicontinuous function which is W-adapted to the stratification and if u is
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viscosity subsolution of the Dirichlet problem, then ũ : Ω × [0, Tf ] → R defined by
ũ(x, t) = u(x, t) if x ∈ Ω and

ũ(x, t) = lim sup
(y,s)→(x,t)

y∈Ω

u(y, s) if x ∈ ∂Ω ,

is a stratified subsolution of the problem.
If, in addition, we assume that

(i) u0 ∈ C(Ω) and u0(x) ≤ ϕ∗(x, 0) on ∂Ω ,

(ii) For any x ∈ ∂Ω, there exists a C1-function φ defined in a neighborhood V of x
such that φ(y) = 0 if y ∈ ∂Ω ∩ V , φ(y) > 0 if y ∈ Ω ∩ V , and

sup
BCL(y,s)

{bx ·Dxφ(y)} ≥ 0 ,

for any y ∈ Ω ∩ V and for small s,

then, for any viscosity supersolution of the Dirichlet problem, we have

ũ ≤ v on Ω× [0, Tf ) .

In particular, there exists a unique continuous viscosity solution of the Dirichlet prob-
lem (up to a modification of its values on the boundary).

The first part of this proposition says that, under suitable “standard” assumptions
and modification of the subsolution on the boundary, then Ishii viscosity subsolutions
and stratified subsolution are the same. For a complete application of this first result,
one needs to treat the initial data and, as it will be clear in the proof, Conditions (i)
and (ii) imply that

ũ(x, 0) ≤ u0(x) ≤ v(x, 0) on Ω .

Notice that this double inequality prevents maximum points of u− v to be achieved
on ∂Ω× {0} if this maximum is assumed to be strictly positive.

Example 27.1 — A standard example where Proposition 27.1.4 can be applied is
the square [0, 1] × [0, 1] in R2, with

ϕ(x) = ϕi(x, t) on Si,

where S1 =]0, 1[×{0}, S2 = {1}×]0, 1[ , S3 =]0, 1[×{1} S4 = {0}×]0, 1[, each ϕi being
continuous on Si. Of course, in order to have a function ϕ which is W-adapted to the



442 Barles & Chasseigne

stratification, the values at the four corners are imposed by the values on each Si and
obtained by computing their lower semi-continuous extensions. For example, at (0, 0)
we have min(ϕ1(0, t), ϕ4(0, t)). We point out that ϕ is still adapted if the values at
the four corners are below these values.

If H satisfies all the controllability conditions, then the first part Proposition 27.1.4
applies.

For the second one, the compatibility condition on ∂Ω×{0} should hold and for φ,
we can choose the distance to the boundary if x is not located on one of the corners.
In case of a corner, say (0, 0), we may choose, noting x = (x1, x2), the function
φ(x) = x1x2, while for (0, 1), we may choose φ(x) = x1(1 − x2), i.e. in each case the
product of the distances to the adjacent sides. The controllability condition ensures
that the requirement on Dxφ is satisfied.

Proof of Proposition 27.1.4 — The first part of the result is easy: by Proposi-
tion 27.1.1, ũ is a stratified solution on MN and it remains to show that it is true on
any Mk.

If (x, t) ∈ Mk, using a tangential regularization in a neighborhood of (x, t), we
obtain a Lipschitz continuous function which is below ϕ on each connected component
of MN and therefore ũ(x, t) ≤ ϕ(x, t), since (as in the above example) the lower
semicontinuous enveloppe of ϕ can just be computed using points of MN .

The Fk-inequality of Mk can be obtained exactly as for the FN -one in the proof of
Proposition 27.1.1 (cf. the second part of Remark 27.1.2): we can also here assume
without loss of generality that Mk is flat and consider inequalities on Mk + εe ⊂
MN+1, where e is a suitable vector, normal to Mk.

For the comparison, the only additional difficulty is t = 0 and more precisely the
points of ∂Ω× {0} where we have to show that ũ ≤ u0 and v ≥ u0.

The proof for v is easy since the viscosity supersolution inequality reads v ≥
max(u0, ϕ∗) ≥ u0 on ∂Ω× {0}.

But for the subsolution case, we only have ũ ≤ max(u0, ϕ
∗) on ∂Ω × {0} and this

is not sufficient. To turn around this difficulty and to show that the right inequality
holds at (x, 0), x ∈ ∂Ω, we introduce the function

(y, s) 7→ ũ(y, s)− s

ε
− |y − x|

2

ε
− α

φ(y)
,

where 0 < α � ε � 1 are parameters devoted to tend to 0 and φ is the function
associated to x in Assumption (ii).
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By classical arguments, this function has a local maximum point (yε, sε) in a neigh-
bordhood of (x, 0) and (yε, sε) → (x, 0) with ũ(yε, sε) → ũ(x, 0) at least if α, ε → 0
with α� ε (1).

Because of the φ-term, yε ∈ Ω. If sε > 0, the H-inequality holds and we have

1

ε
+H

(
yε, sε, pε −

αDxφ(yε)

[φ(yε)]2

)
≤ 0 ,

where pε =
2(yε − x)

ε
=
o(1)

ε
. Examining the H-term, it can be estimated by

1

ε
−M(

o(1)

ε
+ 1) + sup

BCL(yε,sε)

{
bx · αDxφ(yε)

[φ(yε)]2

}
≤ 0 ,

where M takes into account the Lipschitz constant of H(x, t, p) in p (coming from
boundedness of b) and the boundedness of l.

By the assumption on φ the supremum is positive and therefore this inequality
cannot hold for ε small enough. Therefore we necessarily have sε = 0 and ũ(yε, sε) ≤
u0(yε). And letting α, ε→ 0 with α� ε, we obtain ũ(x, 0) ≤ u0(x).

These inequalities at time t = 0 being proved, we have just to apply the comparison
result for the stratified problem and the proof is complete.

Q.E.D.

Remark 27.1.5 We are not going to push further away the question of the existence
of the functions φ which play the role of a distance function and which are used in a
key way to obtain the desired property at time 0. But we think that the existence of
such functions is not a problem in general, even if it might be difficult to provide a
very general result regarding such existence.

A convincing example is the case when Ω is a convex set given by

Ω :=
⋂
i

{x : pi · x ≥ qi} ,

where the pi are in RN and the qi in R. The example of the square above can be
generalized in the following way: if x ∈ ∂Ω and if I(x) is the set of indices i for which
pi · x = qi, then one can choose

φ(y) :=
∏
i∈I(x)

(pi · x− qi) .

(1)By the definition of ũ, the values of ũ on the boundary are the limits of the values of ũ in
Ω× (0, Tf ) and for α small enough, we keep track of the boundary values of ũ
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It is easy to check that the condition on Dxφ is satisfied as an easy consequence of
the normal controllability since the pi’s are clearly orthogonal to the space of Mk at
x is in Mk.

This first part where we describe a general framework for which the stratified for-
mulation and the classical viscosity solutions’ one are (in some sense) equivalent,
also suggests the cases when the stratified formulation is unavoidable: if ϕ is a l.s.c.
function which is adapted but not W-adapted to the stratification, i.e. if, on some
connected component of some Mk, we have

ϕ(x, t) < lim inf
(y,s)→(x,t)

(y,s)∈MN

ϕ(y, s) ,

for some (x, t) ∈ Mk, there is no way that a subsolution (even after “cleaning” it)
should satisfy u ≤ ϕ on Mk. This property has to be superimposed through the
stratification formulation since the Ishii one (using ϕ∗) will simply erase the small
values of ϕ.

In this case we have the

Proposition 27.1.6 Assume that the above assumption on M holds and that we are
in the good framework for stratified problem. Let ϕ : ∂Ω × [0, Tf ) → R be a lower-
semicontinuous function which is adapted to the stratification.

If u is an u.s.c. viscosity subsolution of the Dirichlet problem such that

u(x, t) ≤ ϕ(x, t) for any (x, t) ∈MN−1 ∪ · · · ∪M1 , (27.6)

then ũ : Ω× [0, Tf )→ R defined by ũ(x, t) = u(x, t) if x ∈ Ω and

ũ(x, t) = lim sup
(y,s)→(x,t)

y∈Ω

u(y, s) if x ∈ ∂Ω ,

is a stratified subsolution of the problem.
If, in addition, we have

(i) u0 ∈ C(Ω) and u0(x) ≤ ϕ∗(x, 0) on ∂Ω ,

(ii) For any x ∈ ∂Ω, there exists a C1-function φ defined in a neighborhood V of x
such that φ(y) = 0 if y ∈ ∂Ω ∩ V , φ(y) > 0 if y ∈ Ω ∩ V , and

sup
BCL(y,s)

{bx ·Dxφ(y)} ≥ 0 ,

for any y ∈ Ω ∩ V and for small s,
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then, for any viscosity supersolution of the Dirichlet problem, we have

ũ ≤ v on Ω× [0, Tf ) .

In particular, there exists a unique continuous viscosity solution of the Dirichlet prob-
lem which satisfies (27.6).

As we already explain it above, the key difference between Propositions 27.1.4
and 27.1.6 is that the first one applies to all Ishii viscosity solutions while, in the
second case, Condition 27.6 has to be imposed.

The Proof of Proposition 27.1.6 follows the ideas of the proof of Proposition 27.1.4,
namely

(i) For any k, the condition on Mk, i.e.

max(ut +Hk(x, t,Dxu), u− ϕ(x, t)) ≤ 0 on Mk ,

where
Hk(x, t, px) = sup

b∈TxMk

{−bx · px − l} ,

is obtained by combining (27.6) with an approximation “from inside”, following Re-
mark 27.1.2.

(ii) The comparison result follows from the stratified formulation, while the existence
is provided by the value-function of the associated control problem.

We conclude by an example showing the interest of the stratified formulation and
related to Proposition 27.1.6.

Example 27.2 — We come back to an example in the square S = [0, 1] ×[0, 1] ⊂ R2.
The equation is

ut + |Du| = 1 in S × (0, 1) ,

with the initial data u(x, 0) = 0 in S and the Dirichlet boundary condition

ϕ(x) = 1 on ∂S \ {0} and ϕ(0) = 0 .

Since ϕ∗(x) ≡ 1 on ∂S, it is easy to check that u1(x, t) = t is a classical viscosity
solution of this problem for 0 ≤ t ≤ 1. This first solution completely ignores the fact
that ϕ(0) = 0.

On the other hand, we can consider u2(x, t) = min(t, |x|). It is also easy to check
that u2 is an other solution of our problem but it also satisfies u2(0, t) ≤ 0, i.e.
Condition (27.6). On this example, one can verify that Condition (27.6) is nothing
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but the main missing stratified inequality on M1, the other ones on M2 being also
satisfied. We also point out that, at time t = 0, it is important to have the stratified
inequality u ≤ min(u0, ϕ) on ∂S to recover the correct initial data, solving the Finit
equation.

27.2 On the Neumann problem

27.2.1 The case of continuous data

As for the Dirichlet problem, we begin with the most standard framework: an oblique
derivative problem in a smooth enough domain, namely (27.1) associated with the
boundary condition

∂u

∂γ
= g(x, t) on ∂Ω× (0, Tf ) , (27.7)

where γ and g are, at least, continuous functions and γ satisfies

γ(x, t) · n(x) ≥ ν > 0 ,

for some ν > 0 and for any (x, t) ∈ ∂Ω×(0, Tf ), where n(x) is the unit outward normal
to ∂Ω at x. As in Section 27.1, H is given by (27.2) with b, l satisfying (HBA−CP)
and therefore H satisfies (HBA−HJ). We assume also that the normal controllability
assumption (27.4) holds. Because of these hypothesis, we have MN+1 = Ω × (0, Tf )
and MN = ∂Ω× (0, Tf ).

The first key difference with the Dirichlet problem is that viscosity subsolutions
are regular at the boundary and therefore we do not need to redefine them on the
boundary. More precisely

Proposition 27.2.1 Under the above assumptions on H, γ and g and if Ω is a C1-
domain, subsolutions of (27.1)-(27.7) are regular at the boundary for t > 0.

Proof — Let u be an u.s.c. subsolution of (27.1)-(27.7) and (x, t) ∈ ∂Ω× (0, Tf ). If u
is not regular at (x, t) this means that

u(x, t) > lim sup
(y,s)→(x,t)

(y,s)∈MN+1

u(y, s) .

We consider, for 0 < ε� 1, the function defined on MN by

(y, s) 7→ u(y, s)− (s− t)2

ε2
− |y − x|

2

ε2
.
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This function has a local maximum point at (yε, sε) near (x, t) and u(yε, sε)→ u(x, t)
as ε → 0. But the jump of u on the boundary implies that necessarely (yε, sε) ∈
∂Ω × (0, Tf ) and(yε, sε) is also a local maximum point of the function defined on
Ω× (0, Tf )

(y, s) 7→ u(y, s)− (s− t)2

ε2
− |y − x|

2

ε2
− λd(y) ,

FOR ANY λ ∈ R, where d denotes the distance function to the boundary ∂Ω which
is C1 in a neighborhood of ∂Ω by the assumption on the regularity of Ω. Hence we
have

min(aε +H(yε, sε, pε − λn(yε)), (pε − λn(yε)) · γ(yε)− g(yε, sε)) ≤ 0 ,

where

aε :=
2(sε − t)

ε2
and pε :=

2(yε − x)

ε2
.

Of course, for λ < 0 large enough, we have a contradiction because of the normal
controllability assumption on H and the assumption on γ.

Q.E.D.

In this simple case, it remains to identify the FN -inequality on MN and to show
the equivalence between Ishii viscosity (sub)solutions and stratified (sub)solutions. As
we did for the Dirichlet case, we enlarge the set BCL on the boundary to take into
account the boundary condition. Here, the enlargement consists in adding triplets
of the form ((−γ(x, t), 0), 0, g(x, t)), assigning the cost g(x, t) to a reflection-type
boundary dynamic −γ(x, t) on ∂Ω.

The result is the following

Proposition 27.2.2 Assume that ∂Ω is a C1-domain and that the above assumptions
on H, γ and g hold. Then if u is a viscosity subsolution of the oblique derivative
problem, it is a stratified subsolution of the problem with

FN(x, t, (px, pt)) = sup {θpt − (θbx − (1− θ)γ) · px − (θl + (1− θ)g)} on MN ,

where the supremum is taken on all (b, 0, l) ∈ BCL(x, t) such that there exists θ ∈
(0, 1) such that (θbx − (1− θ)γ) · n(x) = 0, where n(x) is the unit outward normal to
∂Ω at x.

In Proposition 27.2.2, we have used lighter notations but it is clear that bx =
b(x, t, α) for some α ∈ A, l = l(x, t, α) and b = (bx,−1).
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Proof — We have to show that, if φ is a smooth function and if (x, t) ∈MN is a strict
local maximum point of u− φ then

θφt(x, t)− (θbx − (1− θ)γ) ·Dxφ(x, t)− (θl + (1− θ)g) ≤ 0 ,

for any b, l, θ satisfying the conditions of Proposition 27.2.2.

To do so, we introduce λ ∈ R which is the unique solution of the equation

γ(x, t) · (Dxφ(x, t)− λn(x)) = g(x, t) , (27.8)

which is well-defined since γ(x, t) · n(x) 6= 0. Then, we consider the function

(y, s) 7→ u(y, s)− φ(y, s)− (λ− δ)d(y)− [d(y)]2

ε2
,

for 0 < ε � 1 and for some small δ > 0. We recall that, as above, d denotes the
distance function to the boundary ∂Ω and we recall that Dxd(x) = −n(x) on ∂Ω; we
will use the notation n(x) for −Dxd(x) even if x is not on the boundary.

We first fix δ. If ε is small enough, this function has a local maximum point at
(xε, tε) and (xε, tε)→ (x, t) as ε→ 0 by the maximum point property of (x, t).

If (xε, tε) ∈ ∂Ω× (0, Tf ), we claim that the γ-inequality cannot hold. Indeed other-
wise

γ(xε, tε) · (Dxφ(xε, tε)− (λ− δ)n(xε)) ≤ g(xε, tε) ,

but this inequality cannot be valid for ε small enough because of the definition of λ
and the facts that δ > 0 and γ(xε, tε) · n(xε) ≥ ν > 0. Hence the H-inequality holds.

For any (b, 0, l) ∈ BCL(x, t), we have bx = b(x, t, α) and l = l(x, t, α) and choosing
(bε, 0, lε) ∈ BCL(xε, tε) such that (bxε , 0, lε) = ((b(xε, tε, α),−1), 0, l(xε, tε, α), we have,
as a particular case of the H-inequality

φt(xε, tε)− bxε · [Dxφ(xε, tε)− (λ− δ)n(xε)−
2d(xε)

ε2
n(xε)]− lε ≤ 0 .

If we take (b, 0, l) ∈ BCL(x, t) and θ such that the property (θbx−(1−θ)γ) ·n(x) = 0
holds, we first deduce that θ > 0 since γ(x, t) · n(x) > 0 and then that bx · n(x) > 0.

Therefore, if ε is small enough, bxε ·n(xε) > 0 and we can drop the term
2d(xε)

ε2
bxε ·n(xε)

in the above inequality. Letting ε→ 0, this yields

φt(x, t)− bx · [Dxφ(x, t)− (λ− δ)n(x)]− l ≤ 0 .

Next we let δ → 0 in this inequality and the conclusion follows by using the θ-convex
combination of this inequality with (27.8).

Q.E.D.

Several remarks after this result.
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(i) It is clear enough from the proof that the case of sliding boundary conditions, i.e.

ut +
∂u

∂γ
= g(x, t) on ∂Ω× (0, Tf ) ,

can be treated exactly in the same way.

(ii) Less obviously (but this is still easy), the case where there is a control on the
reflection

sup
β
{γβ ·Dxu− gβ} = 0 on ∂Ω× (0, Tf ) ,

where the set of (γβ, gβ) is convex and continuous in (x, t), can also be treated(2).
It is easy to check that one has just to repeat the above arguments for (b, l) and
(γβ, gβ) such that (θbx − (1− θ)γβ) · n(x) = 0.

(iii) But, as it may be expected, the stratified formulation does not bring new results
as long as all data are continuous...

Remark 27.2.3 For a Neumann boundary condition of the form

∂u

∂n
= g(x, t) on ∂Ω× (0, Tf ) ,

we have

FN(x, t, (px, pt)) = sup {θpt − (θbx − (1− θ)n(x)) · px − (θl + (1− θ)g)} on MN ,

where the supremum is taken on all (b, 0, l) ∈ BCL(x, t) such that there exists θ ∈
(0, 1) such that (θbx − (1− θ)n(x)) · n(x) = 0.

This means that we have

θbx · n(x)− (1− θ) = 0 .

and therefore bx · n(x) ≥ 0 and θ = (1 + bx · n(x))−1. If bx = bx,⊥ + bx,> where bx,⊥ is
projection of bx on the normal direction and bx,> on the tangent space of ∂Ω at x, we
have to look at the supremum of θ(pt− bx,> · px− (l+ b · ng(x, t))) for bx · n ≥ 0 since
(1− θ) = θbx · n(x). But θ cannot vanish and the condition reduces to

ut + sup
bx·n(x)≥0

(
bx,> ·Dxu− (l + b · ng(x, t))

)
≤ 0 .

(2)In general this set is not convex but we can take a convex enveloppe and this does not change
the “sup” in the boundary condition.
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When looking at the reflected trajectory for a control problem, one has to solve an
ode like

Ẋ(s) = bx(s)− 1{X(s)∈∂Ω}n(X(s)).d|k|s ,

where |k|s is the process with bounded variation which keeps the trajectory inside Ω
and the associated cost is ∫ t

0

l(s)ds+

∫ t

0

g(X(s), s)d|k|s .

It is easy to see that d|k|s = 1{X(s)∈∂Ω}b(s).n(X(s))ds if b(s)x · n(X(s)) ≥ 0 and the
cost becomes ∫ t

0

(l(s) + 1{X(s)∈∂Ω}b
x(s).n(X(s)))ds ,

which is exactly what the stratified formulation is seeing on the boundary.

27.2.2 Oblique derivative problems in stratified domains

In [74], Dupuis and Ishii prove comparison results for oblique derivative problems in
non-smooth domains: roughly speaking, they treat the case of a smooth enough di-
rection of reflection in domains which satisfy only an interior-exterior cone condition.
Our aim is to provide here a stratified version of their result.

In the following result, we assume that Ω × (0, Tf ) is a stratified domain with a
t-independent stratification such that

MN+1 = Ω× (0, Tf ) and Mk ⊂ ∂Ω× (0, Tf ) for 1, 2, · · · , N.

We assume that γ = γ(x) ∈ C1(RN) and that, for any x ∈ ∂Ω, there exists δ̄, η > 0
such that, for any 0 < δ ≤ δ̄

B(x+ δγ(x), ηδ) ⊂ Ωc and B(x− δγ(x), ηδ) ⊂ Ω .

It is worth pointing out that this condition on γ provides a regularity property on Ω
since it implies an exterior-interior cone condition.

Proposition 27.2.4 Under the above assumptions and if g is a continuous func-
tion, a classical viscosity subsolution of (27.1)-(27.7) is also a stratified subsolution
of (27.1)-(27.7). Therefore we have a comparison result for classical viscosity sub and
supersolutions of (27.1)-(27.7).
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Proof — Let u be an Ishii subsolution of (27.1)-(27.7). We have to prove that if
(x, t) ∈ Mk, for any smooth function, if u − φ has a strict local maximum point at
(x̄, t̄) on Mk then

θφt(x̄, t̄)− (θbx − (1− θ)γ(x̄)) ·Dxφ(x̄, t̄) ≤ (θl + (1− θ)g(x̄, t̄)) ,

for any ((bx,−1), 0, l) ∈ BCL(x̄, t̄) and 0 ≤ θ ≤ 1 such that (θbx − (1 − θ)γ(x̄)) ∈
T(x̄,t̄)M

k.

Because of our assumptions on the stratification, we can assume that Mk is an affine
space but taking also into account the fact that (bx, l) = (b(x̄, t̄, ᾱ), l(x̄, t̄, ᾱ)) and that
we can use (b(x, t, ᾱ), l(x, t, ᾱ)) for nearby points, it is easy to see the coordinates on
Mk are not playing a key role, nor the term (θbx − (1− θ)γ(x̄)) ·Dxφ(x̄, t̄).

In order to simplify the proof and to emphasize the main ideas, we just examine
the case when k = 1, x̄ = 0, γ(0, t̄) = −eN and Mk = M1 is {0} × (0, Tf ). With this
reduction, the inequality we want to obtain is

θφt(t̄) ≤ (θl + (1− θ)g(0, t̄)) ,

for any smooth function φ of t such that u(0, t)−φ(t) has a strict local maximum point
at t̄, and for any ((bx,−1), 0, l) ∈ BCL(0, t̄), 0 ≤ θ ≤ 1 such that (θbx−(1−θ)γ(x̄)) =
0.

We borrow the arguments Dupuis and Ishii [74] for proving this inequality. By the
conditions on γ and denoting x = (x′, xN) with x′ ∈ RN−1, we have

{(x′, xN) : xN > 0, |x′| ≤ ηxN} ⊂ Ω and{(x′, xN) : xN < 0, |x′| ≤ −ηxN} ⊂ Ωc .

We consider the function

u(x, t)− φ(t)− 1

ε
ψε(x

′, xN) + (g(0, t̄)− δ)xN ,

for 0 < ε� 1, where x = (x′, xN) and

ψε(x
′, xN) =

√
[(η2x2

N − |x′|2)+]2 + ε4 + |x′|2 .

This function is an ad hoc regularized version of [max(|x′|, ηxN)]2. Since, for all x,
ψε(x

′, xN) ≥ ν|x|2 + ε2 for ν small enough, the above function has a local maximum
point at (xε, tε) near (0, t̄) and (xε, tε)→ (0, t̄) as ε→ 0.

Now we examine the different possibilities for the subsolution inequality: if xε ∈ ∂Ω
then, the condition on γ implies that |(xε)′| > η|(xε)N | and therefore the space-
derivative of the test-function is nothing but 2(xε)

′/ε− (g(0, t̄)− δ)eN . Hence, if the
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oblique derivative inequality were satisfied, we would get(
2(xε)

′

ε
− (g(0, t̄)− δ)eN

)
· γ(xε) ≤ g(xε, tε) .

But, using the Lipschitz continuity of γ, the continuity of g and γ(0) = eN , we have

2(xε)
′

ε
· γ(xε) =

2(xε)
′

ε
· (γ(xε)− γ(0)) +

2(xε)
′

ε
· γ(0)

=
2(xε)

′

ε
· (γ(xε)− γ(0))

= O

(
|xε|2

ε

)
= o(1) ,

while
−(g(0, t̄)− δ)eN · γ(xε, tε) = g(xε, tε) + δ + o(1) .

Therefore such γ-inequality cannot hold and necessarily the H-one does. In particular,
we see that, for (bε, lε) = (b(xε, tε, ᾱ), l(xε, tε, ᾱ))

φ′(tε)−
1

ε
Dxψε · bxε + (g(0, t̄)− δ)bxε · eN ≤ lε .

Assume for the moment that

−1

ε
Dxψε · bxε ≥ o(1) ,

letting ε→ 0, we obtain

φ′(t̄) + (g(0, t̄)− δ)bx · eN ≤ l ,

which is the desired inequality (up to letting δ → 0) since θbx = −(1− θ)eN : in order
to conclude, it is enough to multiply the above inequality by θ(3).

It remains to prove the claim. For the |x′|2-term in ψε, the proof is already done
above while checking that the oblique derivative inequality cannot hold: we get a o(1)
as ε→ 0.

It remains to treat the other term (with the root) when η2x2
N > |x′|2. Notice that

the sign of −Dxψε · bxε is the same as the one of −(2η2xNeN − 2x′) · bxε and therefore
the same as for (2η2xNeN − 2x′) · eN . Now, on this last formula, it appears clearly
that this sign is positive, which concludes the proof.

Q.E.D.

(3)We point out that θ is bounded away from 0 since θbx · eN = −(1 − θ) and therefore θ 6= 0,
bx · eN ≤ 0 and θ = (1− bx · eN )−1.
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27.2.3 Discontinuities in the direction of reflection and do-
mains with corners: the R2-case.

We start by a standard evolution problem in 2-d described by Fig. 27.1

Figure 27.1: Standard Neuman problem with corner

Here we have

M3 = {(x1, x2); x1 > 0, x2 > 0} × (0, Tf ) ,

M2 = {(x1, x2); x1 = 0, x2 > 0 or x1 > 0, x2 = 0} × (0, Tf ) ,

M1 = {(0, 0)} × (0, Tf ) .

Of course the analysis of the previous section gives the stratified formulation on all
the boundary except on M1, i.e at the points ((0, 0), t) for t ∈ (0, Tf ), which require
a specific treatment.

For M1, the answer is given by the following result in which we denote by BCL
the set of dynamic-discount factor and cost related to H. We also point out that, in
order to simplify, we argue as if γ1, γ2, g1, g2 were constants but the reader can check
that all the arguments work if they are continuous functions of x and t.

Proposition 27.2.5 We assume that

(i) either γ1 · e1 = γ2 · e2 = 0

(ii) or γ1 · e1, γ2 · e2 have the same strict sign and det(γ1, γ2) < 0.

If u is a viscosity subsolution of the above oblique derivative problem, it is a stratified
subsolution of the problem with

F1((px, pt)) = sup {θ3pt − (θ3l − θ1g1 − θ2g2)} on M1 ,
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where the supremum is taken on all (b, 0, l) ∈ BCL(0, t) such that there exists θ1, θ2, θ3 ∈
(0, 1) such that θ1 + θ2 + θ3 = 1 and θ1γ1 + θ2γ2 − θ3b

x = 0.

Proof — Let φ be a C1-function on R and t be a strict local maximum point of the
function s 7→ u(0, s) − φ(s). We have to show that, if θ1, θ2, θ3, γ1, γ2, b satisfy the
property which is required in Proposition 27.2.5, then

θ3φ
′(t)− (θ3l − θ1g1 − θ2g2) ≤ 0 .

It is worth pointing out that we can do that only if (b, 0, l) is in the interior of
BCL(0, t), a point that we will use in the proof.

To do so, we first construct pδ such that

pδ · γ1 = g1 + δ , pδ · γ2 = g2 + δ , (27.9)

notice that such a pδ exists because of the assumptions on γ1, γ2.

Next, we introduce the function

(y, s) 7→ u(y, s)− φ(s)− pδ · y −
Ay · y
ε2

.

where A is a symmetric, positive definite matrix A. Additional properties on A will
be needed and described all along the proof. At the end, we will show that such a
matrix exists.

This function has a maximum point at (xε, tε) and (xε, tε) → (0, t) as ε → 0 by
the maximum point property of (0, t). Now we examine the different possibilities: if
xε = ((xε)1, 0) = (xε)1e1 with (xε)1 ≥ 0 and e1 = (1, 0), we have[

pδ +
2Axε
ε2

]
· γ1 = g1 + δ +

2xε
ε2
· Aγ1

= g1 + δ +
2(xε)1e1

ε2
· Aγ1 .

Hence if Aγ1 · e1 ≥ 0, the inequality “
∂u

∂γ1

≤ g1” cannot hold.

In the same way, if xε = (0, (xε)2) = (xε)2e2, (xε)2 ≥ 0 and e2 = (0, 1), the inequality

“
∂u

∂γ2

≤ g2” cannot hold provided Aγ2 · e2 ≥ 0.

Therefore, whereever xε is, the H-inequality holds and, since (b, 0, l) is in the interior
of BCL(0, t), for ε small enough, (b, 0, l) ∈ BCL(xε, tε) and we have

φ′(tε)− bx · [pδ +
2Axε
ε2

] ≤ l .
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Now we examine the bx-term, remarking that θ3 cannot be 0

−bx · 2Axε
ε2

=− 1

θ3

(θ1γ1 + θ2γ2) · 2Axε
ε2

=− 1

θ3

(θ1Aγ1 + θ2Aγ2) · 2xε
ε2

,

(recall that, being a symmetric matrix, the transpose of A is A itself). Since we want
this term to be positive for any xε = ((xε)1, (xε)2) with (xε)1, (xε)2 ≥ 0, we have to
require that all the coordinates of the vector θ1Aγ1 + θ2Aγ2 be negative.

If these properties hold true, we end up with

φ′(tε)− bx · pδ ≤ l .

Letting ε tend to 0, and using a convex combination with (27.9) provides the answer,
after letting δ tend to 0.

It remains to show that such matrix A exists under the conditions of Proposi-
tion 27.2.5. We point out that this matrix may depend on the convex combination,
hence on θ1, θ2, θ3 since the above proof is done for any fixed such convex combination.

We recall that the three conditions are

Aγ1 · e1 ≥ 0 , Aγ2 · e2 ≥ 0 ,

θ1Aγ1 + θ2Aγ2 ≤ 0 ,

this last condition meaning that all the components of the vector are negative.

Looking at these conditions, a natural choice would be

Aγ1 = −λ1e2 and Aγ2 = −λ2e1 .

where λ1, λ2 are non-negative constants which have to be chosen properly, or equiva-
lently

A−1e1 = −(λ2)−1γ2 and A−1e2 = −(λ1)−1γ1 .

Therefore

A−1 =

(
−(λ2)−1γ2,1 −(λ1)−1γ1,1

−(λ2)−1γ2,2 −(λ1)−1γ1,2

)
.

In order that A satisfies the required condition to be a symmetric, positive definite
matrix, we have just to check that A−1 satisfies these properties. Recalling that γ1·e2 =
γ1,2 < 0 and γ2 · e1 = γ2,1 < 0 by the oblique derivatives conditions, this leads to the
following conditions
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(i) A−1 is symmetric if either γ1,1 = γ2,2 = 0 or γ1,1, γ2,2 have the same strict sign.
Then we can choose λ1 = |γ1,1| and λ2 = |γ2,2|.

(ii) The trace of A is non-negative since γ2,1, γ1,2 < 0 by the conditions on the
directions of reflection.

(iii) det(A−1) = (λ1λ2)−1 det(γ2, γ1) > 0 by assumption.

Hence we can conclude if one of the two conditions holds
1. γ1,1 = γ2,2 = 0 with A = Id.
2. γ1,1, γ2,2 have the same strict sign and det(γ1, γ2) < 0.

In order to investigate the other cases and to show that A does not exist in these
cases, we assume (without loss of generality) that γ1 = (γ1,1,−1), γ2 = (−1, γ2,2) and
we write A as

A =

(
α β
β γ

)
,

where β can be chosen as 0, 1 or −1 since A can be replaced by λA for λ > 0.

The constraint can be written as

αγ1,1 − β ≥ 0 ,

−β + γγ2,2 ≥ 0 ,

θ1(αγ1,1 − β) + θ2(−α + βγ2,2) ≤ 0 ,

θ1(βγ1,1 − γ) + θ2(−β + γγ2,2) ≤ 0 .

We begin with the case when γ1,1 ≥ 0, γ2,2 ≤ 0. In this case, the (necessary) choice
β = −1 yields

αγ1,1 + 1 ≥ 0 ,

1 + γγ2,2 ≥ 0 ,

θ1(αγ1,1 + 1) + θ2(−α− γ2,2) ≤ 0 ,

θ1(−γ1,1 − γ) + θ2(1 + γγ2,2) ≤ 0 .

The first constraint gives no limitation on α, while the second one imposes (a priori)
γ to be small enough. For the two next ones we recall that θ3b = θ1γ1 + θ2γ2 and
therefore

θ3b1 = θ1γ1,1 − θ2 , θ3b2 = −θ1 + θ2γ2,2 < 0 .
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Hence the two last constraints can be written as

αb1 − b2 ≤ 0 ,

−b1 + γb2 ≤ 0 .

Clearly one can conclude only if b1 < 0 by choosing α large and with

b1

b2

≤ γ ≤ − 1

γ2,2

.

We have indeed the existence of such γ since

b1

b2

≤ − 1

γ2,2

is equivalent to det(b, γ2) ≤ 0 and det(b, γ2) =
θ1

θ3

det(γ1, γ2) ≤ 0.

But, given γ1, γ2, in order to have b1 < 0 for any choice of the convex combination,
the only possibility is γ1,1 = 0. And the same conclusion holds in the case γ1,1 ≤ 0,
γ2,2 ≥ 0.

The proof is then complete.
Q.E.D.

Example 27.1 — We consider the following problem where Q = (0, 1)× (0, 1)
ut + a(x, t)|Dxu| = f(x) in Q× (0, Tf )

u(x, 0) = u0(x) in Ω
∂u

∂ni
= gi(x, t) on ∂Qi × (0, Tf ) ,

(27.10)

where ∂Q1 = (0, 1)×{0}, ∂Q2 = {1}×(0, 1), , ∂Q3 = (0, 1)×{1}, ,∂Q4 = {1}×(0, 1)
and ni is the exterior unit normal vector to ∂Qi.

If a is a Lipschitz continuous function (in particular in x) satisfying a(x, t) > 0
on Q × [0, Tf ], and u0, f, g1, · · · g4 are continuous, there exists a unique viscosity so-
lution of this problem which coincides with the stratified solution. This result is a
straightforward consequence of the preceeding results which shows that the notions
of viscosity solutions and stratified solutions are the same. It is worth remarking on
this example that, despite we did not insist above on that point, the Hamiltoniant
F1,F2 satisfy the right conditions: indeed these Hamiltonians fullfill the required con-
tinuity assumptions because in the above convex combinations like θ1 + θ2 + θ3 = 1
and θ1γ1 + θ2γ2 − θ3b

x = 0, θ3 is bounded away from 0.
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In the present exemple, on ∂Qi

F2(x, t, (px, pt)) = max(θ(pt − a(x, t)v · px − f(x)) + (1− θ)(ni · px − gi)) ,

the maximum being taken on all |v| ≤ 1 and θ ∈ [0, 1] such that [θa(x, t)v − (1 −
θ)ni] · ni = 0

Writing v = v⊥+v>, where v⊥ is the normal part of v (i.e. the part which is colinear
to ni) and v> the tangent part, we have θa(x, t)v⊥ · ni = (1− θ) and we take divide
by θ to have

F2(x, t, (px, pt)) = max
|v>|2+|v⊥|2=1

(pt − a(x, t)v> · px − f(x) + a(x, t)v⊥ · nigi) .

On an other hand, at x = 0, a simple computation gives

F1(0, t, pt) = max(pt − f(x)− g1; pt − f(x)− g4) .

Remark 27.2.6 We do not know if the conditions given in Proposition 27.2.5 are
optimal or not. Clearly they are stronger than those given in Dupuis and Ishii [74, 73]
inspired by those of Harrison and Reiman [109] and Varadhan and Williams [160].

Maybe a different choice of test-function, namely the term
Ay · y
ε2

, could lead to more

general cases but we have no idea how to build such a function which necessarely will
be C1 but not C2 at 0.

Now we turn to the case of a “flat” discontinuity in R2, as depicted in Fig. 27.2
below

Figure 27.2: Flat discontinuous Neuman problem
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Proposition 27.2.7 Assume that γ1, γ2 satisfy det(γ1, γ2) ≤ 0. Then the same result
as in Proposition 27.2.5 holds.

Proof — The proof follows exactly along the same lines, only the constraints on A
are different. Indeed, we should have

Aγ1 · e1 ≥ 0 , Aγ2 · e1 ≤ 0 ,

and Ab = −λe2 for some λ > 0. In this last property, we can take λ = 1 without loss
of generality and therefore the symmetric matrix A−1 has the form(

α −b1

−b1 −b2

)
,

for some suitable parameter α > 0. Moreover,

A = [det(A−1)]−1

(
−b2 b1

b1 α

)
.

Hence Aγ1 · e1 = γ1 · Ae1 has the same sign as det(b, γ1) and Aγ2 · e1 = γ2 · Ae1 has
the same sign as det(b, γ2).

Therefore A exists (taking α > 0 large enough) if det(b, γ1) ≥ 0 and det(b, γ2) ≤ 0.
But θ3b = θ1γ1 + θ2γ2 and therefore these conditions reduce to det(γ1, γ2) ≤ 0.

Q.E.D.

Remark 27.2.8 If we assume that γ1·e2 = γ2·e2 = −1, then the condition det(γ1, γ2) ≤
0 reduces to the tangential components inequality γ2,1 ≤ γ1,1. Fig. 27.3 below shows dif-
ferent types of situation where γ1, γ2 and their oppposite (in dashed lines) are shown,
those opposites being involved in the reflexion process that occurs on the boundary.

From the first two examples it could be guessed that the trajectories in the good case
are more of a “regular” type. However, the other examples show that we can also allow
some cases where the reflexions go in the same direction, provided some “squeezing”
effect holds.

27.2.4 Discontinuities in the direction of reflection and do-
mains with corners: the RN-case.

Of course, in RN , there exists a lot of possibilities and we are going to investigate the
following three situations



460 Barles & Chasseigne

Figure 27.3: Configurations for discontinuous Neuman problem

Case 1: a simple 1-dimensional corner

MN+1 = {(x1, · · · , xN); x1 > 0, x2 > 0} × (0, Tf ),

MN = {(x1, · · · , xN); x1 = 0, x2 > 0 or x1 > 0, x2 = 0} × (0, Tf ) ,

MN−1 = {(x1, · · · , xN); x1 = 0, x2 = 0} × (0, Tf ) .

Case 2: a simple discontinuity in the oblique derivative boundary condition

MN+1 = {(x1, · · · , xN); x2 > 0} × (0, Tf ),

MN = {(x1, · · · , xN); x1 6= 0, xN = 0} × (0, Tf ) ,

MN−1 = {(x1, · · · , xN); x1 = 0, x2 = 0} × (0, Tf ) .

Case 3: a multi-dimensional corner

MN+1 = {(x1, · · · , xN); x1 > 0 · · ·xN > 0} × (0, Tf ),

MN =
⋃
i

{(x1, · · · , xN); x1 ≥ 0 · · ·xN ≥ 0, xi = 0} × (0, Tf ) ,

MN−1 = {(x1, · · · , xN); xN−1 = 0, xN = 0} × (0, Tf ) .

In each case, the question is: when is the classical notion of subsolution equivalent
to the stratification formulation?

The answer is simple in the two first cases. Let us write

γ1 = (γ
(1)
1 , γ

(1)
2 , · · · , γ(1)

N ) and γ2 = (γ
(2)
1 , γ

(2)
2 , · · · , γ(2)

N ) ,



HJ-Equations with Discontinuities: State-Constraint Problems 461

and introduce the two vectors of R2

γ̃1 = (γ
(1)
1 , γ

(1)
2 ) and γ̃2 = (γ

(2)
1 , γ

(2)
2 ) .

The result is

Proposition 27.2.9 In Case 1 and 2, the classical viscosity formulation and the
stratified formulation are equivalent if γ̃1, γ̃2 satisfy the condition of Proposition 27.2.5
in Case 1 and Proposition 27.2.7 in Case 2.

Proof — In Case 1, we have to show that a viscosity subsolution u is also a stratified
subsolution on MN−1. To do so, we denote any x ∈ RN by (x1, x2, x

′) where x′ =
(x3, · · · , xN).

If (x̄, t̄) ∈ MN−1 is a maximum point of x′ 7→ u(0, 0, x′, t) − φ(x′, t) where φ is a
smooth function, we have to show that, if we have a convex combination (−θ1γ1 −
θ2γ2 + θ3b

x,−θ3) ∈ T(x̄,t̄)M
N−1 with (b, 0, l) ∈ BCL(x̄, t̄) and b = (bx,−1). Then

θ3φt + (θ1γ1 + θ2γ2 − θ3b
x) ·Dxφ(x̄′, t̄) ≤ −θ1g1 − θ2g2 + θ3l .

As in the proof of Proposition 27.2.5, we introduce pδ such that

pδ · γ1 = g1 + δ , pδ · γ2 = g2 + δ ,

and the function

(y, s) 7→ u(y, s)− φ(y′, s)− pδ · y −
Aỹ · ỹ
ε2

,

where ỹ = (y1, y2) and A is a 2× 2 symmetric, positive definite matrix.

It is clear on this formulation that, only the ỹ terms plays a real role and we are in
the same situation as in R2. This explains the statement of the result and shows that
the proof for Case 2 follows from the same arguments.

Q.E.D.

Example 27.2 — A standard example for Case 2 is the case when we look at an
oblique derivative problem in a smooth domain Ω ⊂ RN whose boundary is splitted
into three components

∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ Γ ,

where ∂Ω1, ∂Ω2 are smooth (N − 1)-dimensional manifolds and Γ a smooth (N − 2)-
dimensional manifold. The idea is to have the oblique derivative boundary condition

∂u

∂γi
= gi on ∂Ωi × (0, Tf ) ,
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for i = 1, 2.

The question is when the classical viscosity solution coincides with the stratified
one and therefore is unique?

To answer to this question is not completely obvious since we have to apply the
above result for Case 2 in the right way on Γ. To do so, we consider x ∈ Γ and we
introduce two unit vectors: n the unit outward normal to ∂Ω at x and r ∈ Tx∂Ω a
unit vector which is normal to TxΓ and which is pointing toward Ω1.

With these notations, the answer to the above question is yes if the determinant∣∣∣∣ γ1 · r γ2 · r
−γ1 · n −γ2 · n

∣∣∣∣ ≤ 0 .

For Case 3, we introduce theN×N -matrix Γ whose columns are given by γ1, γ2, · · · γn
and we formulate the

Proposition 27.2.10 In Case 3, the classical viscosity formulation and the stratified
formulation are equivalent if there exists a N × N-diagonal matrix D with strictly
positive diagonal terms such that Γ.D−1 is a symmetric, negative definite matrix.

Proof — The proof follows along the arguments of the proof of Proposition 27.2.5:
the key (and only) point is to find a symmetric, positive definite matrix A such that

Aγi = −diei with di > 0, for any 1 ≤ i ≤ N .

This property can be written as A.Γ = −D and therefore A = −DΓ−1 = −(Γ.D−1)−1.
The assumption ensures the existence of A.

Q.E.D.

This result can, of course, be extended to the case of more general convex domains
like

Ω :=
⋂
i

{x : ni · x < qi} ,

with a direction of reflection γi on {x : ni · x = qi} by the

Proposition 27.2.11 The classical viscosity formulation and the stratified formula-
tion are equivalent if there exists a N ×N symmetric, positive definite matrix A such
that

Aγi = dini with di > 0, for any 1 ≤ i ≤ N .

.
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Remark 27.2.12 Clearly, as in the case of the 2-dimensional corner we have no
idea if these conditions are optimal or not but, at least, they are obviously satisfied if
γi = ni with A = Id and all di = 1.

We conclude this section by an open question in the case of a non-convex domain,
the model case being in 2-d

Ω = {(x1, x2) : x1 > 0 or x2 > 0} ,

with normal reflection on the two parts of the boundary, {(x1, 0) : x1 > 0} and
{(0, x2) : x2 > 0}, or different oblique derivative boundary conditions.

The strategy we follow above clearly fails due to the non-convexity of the domain
and,maybe surprisingly, we were unable to obtain any general result in this case (some
particular cases can, of course, be treated). We do not know if this is just a technical
problem or if really they are counterexample where Ishii solutions are not unique
since, otherwise, they coincide with the unique stratified solution.

27.3 Mixing the Dirichlet and Neumann problems

27.3.1 The most standard case

The most standard case is the case when the boundary ∂Ω is smooth and can be
written as

∂Ω = ∂Ω1 ∪ ∂Ω2 ∪H ,

where ∂Ω1, ∂Ω2 are open sets of ∂Ω and H is a (N−2) submanifold of ∂Ω, and where
the boundary condition is of the type


u = ϕ on ∂Ω1 × (0, Tf ) , (27.11)

∂u

∂γ
= g on ∂Ω2 × (0, Tf ) , (27.12)

where ϕ, γ and g are continuous functions on the boundary, γ satisfying the usual
condition, i.e.

γ(x, t) · n(x) ≥ ν > 0 ,

for some ν > 0 and for any (x, t) ∈ ∂Ω × (0, Tf ), where n(x) is the unit outward
normal to ∂Ω at x.
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Figure 27.4: Flat Dirichlet-Neuman problem

Locally, after flattening the boundary in the neighborhood of a point in H, we have
a picture like Fig. 27.4 below.

But we may also be in a slightly less standard case if ∂Ω is not smooth and if, in
terms of stratification, we have

MN = ∂Ω1 ∪ ∂Ω2 × (0, Tf ) , MN−1 = H× (0, Tf ) ,

typically a picture like Fig. 27.5

Figure 27.5: Angular Dirichlet-Neuman problem

Maybe surprisingly both cases can be treated in the same way and the main property
needed is the

Lemma 27.3.1 Assume that Ω × (0, Tf ) is a stratified domain with the above de-
scribed stratification and that we are in the good framework for stratified problems.
Then

u ≤ ϕ on MN−1 = H× (0, Tf ) .

Proof — Let (x̄, t̄) ∈MN−1; we want to prove the inequality u(x̄, t̄) ≤ ϕ(x̄, t̄).
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We first remark that u(x, t) ≤ ϕ(x, t) if x ∈ ∂Ω1, t > 0 as a consequence of the
results for the Dirichlet problem. Hence, if we assume by contradiction that u(x̄, t̄) >
ϕ(x̄, t̄) and if we redefine u on ∂Ω1 by introducing

ũ(x, t) = lim sup
(y,s)→(x,t)

y∈Ω

u(y, s) if x ∈ ∂Ω1 ,

ũ being equal to u otherwise, then ũ is still an u.s.c. subsolution of the problem.

Next, following the arguments of the Neumann part, we have

ũ(x, t) = lim sup
(y,s)→(x,t)

y∈Ω

ũ(y, s) if x ∈ ∂Ω2 .

With all these properties, the regularization procedure of Section 3.4.3 together with
normal controllability properties of H implies that the partial sup-convolution proce-
dure in the MN−1-direction provides a function, still denoted by ũ which is continuous
except perhaps on MN−1 and such that

lim sup
(y,s)→(x̄,t̄)

y∈Ω∪∂Ω1∪∂Ω2

ũ(y, s) ≤ ϕ(x̄, t̄) < ũ(x̄, t̄) .

Now we consider the function (x, t) 7→ ũ(x, t) − |x− x̄|
ε2

− |t− t̄|
ε2

: for ε > 0 small

enough, this function has a maximum point at (xε, tε) near (x̄, t̄) and the above
properties implies:

(i) (xε, tε) ∈MN−1,

(ii) ũ(xε, tε)→ ũ(x̄, t̄) and
|xε − x̄|
ε2

+
|tε − t̄|
ε2

→ 0 as ε→ 0

(iii) for any vector p which is normal to MN−1, (xε, tε) is still a maximum point of

(x, t) 7→ ũ(x, t)− |x− x̄|
ε2

− |t− t̄|
ε2
− p · (x− x̄)

ε
.

Choosing p = n2(x̄) the outward unit normal vector to ∂Ω2 at x̄ and using the normal
controlability assumption, it is clear that the viscosity subsolution inequality at (x̄, t̄)
cannot hold for ε small enough, giving the desired contradiction.

Q.E.D.

The above lemma gives us the

Proposition 27.3.2 Assume that Ω × (0, Tf ) is a stratified domain with the above
described stratification and that we are in the good framework for stratified problem.
Assume that ϕ, γ, g are continuous functions on ∂Ω× [0, Tf ) such that
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(i) ϕ(x, 0) = u0(x) on ∂Ω× {0},

(ii) γ is Lipschitz continuous on ∂Ω× [0, Tf ).

If u is an u.s.c. viscosity subsolution of the mixed problem, then the function ũ :
Ω× [0, Tf )→ R defined by ũ(x, t) = u(x, t) if x ∈ Ω ∪ ∂Ω2 ∪H and

ũ(x, t) = lim sup
(y,s)→(x,t)

y∈Ω

u(y, s) if x ∈ ∂Ω1 ,

is a stratified subsolution of the associated stratified problem with the Hamiltonian
defined on MN−1

FN−1(x, t,Du) :=

max
(
u− ϕ(x, t) ; sup {θpt − (θbx − (1− θ)γ) · px − (θl + (1− θ)g)}

)
,

where the supremum is taken on all (b, 0, l) ∈ BCL(x, t) such that there exists θ ∈
(0, 1) such that (θbx − (1− θ)γ) ∈ T(x,t)M

N−1.

As a consequence, up to a modification of the value of the subsolution on ∂Ω1, one
has a comparison result for the mixed problem and therefore there exists a unique
continuous viscosity solution of the mixed problem up to this modification.

The proof of this result is simple since we use both the ingredients for the Dirichlet
and Neumann problems in ∂Ω1 and ∂Ω2, the only difficulty beingH×(0, Tf ) = MN−1.

The lemma provides the inequality ũ ≤ ϕ on MN−1, while the other part is ob-
tained by a stability result from “inside” MN in the spirit of Remark 27.1.2 or Propo-
sition 21.2.3.

We leave these details to the reader but we provide the following result result which
treats the difficulty connected to the initial data.

Lemma 27.3.3 Under the assumptions of Proposition 27.3.2, if u and v are respec-
tively an u.s.c. viscosity subsolution and a l.s.c. supersolution of the mixed problem,
we have

u(x, 0) ≤ u0(x) ≤ v(x, 0) .

Proof — Of course, the difficulty comes from the points of ∂Ω×{0} which are on H.
We only prove the result for the subsolution, the proof for the supersolution being
analogous.
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If x̄ ∈ H, we want to prove that u(x̄, 0) ≤ u0(x̄). Since we are in a stratified
framework, we can assume that ∂Ω2 ⊂ {x : (x− x̄) ·n2 = 0} where n2 ·γ > 0 on ∂Ω2.

For 0 < ε� 1, we consider the function

(x, t) 7→ u(x, t)− |x− x̄|
2

ε2
− Cεt− εψ

(
(x− x̄) · n2

ε2

)
.

where Cε > ε−1 is a large constant to be chosen later on and ψ : R → R is a C1,
increasing function such that ψ(t) = −1 if t ≤ −1, ψ(t) = 1 if t ≥ 1 and, ψ(0) = 0,
ψ′(0) = 1.

This function has a maximum point at (xε, tε) near (x̄, 0) and we have (xε, tε) →

(x̄, 0), u(xε, tε)→ u(x̄, 0) and
|xε − x̄|
ε2

+ Cεtε → 0 as ε→ 0.

If xε ∈ ∂Ω2, then the oblique derivative inequality cannot holds since in the viscous
sense,

Du · γ =
2(x− x̄)

ε2
+

1

ε
ψ′ (0) =

o(1)

ε
+

1

ε
> 0 ,

for ε small enough. On the other hand, by choosing Cε large enough, the H-inequality
cannot hold wherever is (xε, tε). Hence one of the inequalities u(xε, tε) ≤ ϕ(xε, tε) or
u(xε, tε) ≤ u0(xε) holds and the conclusion follows by letting ε tend to 0.

Q.E.D.

27.3.2 The tanker problem

As an example where the classical Ishii viscosity solutions formulation cannot be
sufficient for treating singular discontinuities, we come back to the example given by
P.L. Lions in his course at the Collège de France, namely the problem (25.1).

At P1, P2, PL, one would like to impose Neumann boundary conditions

∂u

∂n
= gi(t) at Pi ,

(see Fig. 27.6) but such a boundary condition is far from being classical. However,
we can handle it through the stratified formulation by setting MN+1 = Ω × (0, Tf ),
M1 = {P1, P2, · · · , PL} × (0, Tf ) and MN = (∂Ω \ {P1, P2, · · · , PL})× (0, Tf ).

The only point is compute F1 and the computation is done as in the previous section,
except that we are in M1 and we look for dynamics consisting in staying at Pi for
some i.
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Figure 27.6: The tanker problem

At any Pi, we have to consider the convex combinations of (b, c, l) = ((bx,−1), 0, l) ∈
BCL(x, t) and ((−n(Pi), 0), 0, gi(t)), i.e (µb− (1− µ)(n(Pi), 0), 0, µl+ (1− µ)g(x, t))
for 0 ≤ µ ≤ 1 with (since we are on M1) the constraint µbx− (1− µ)n(Pi) = 0 which
leads to

µbx = (1− µ)n(Pi) .

To compute F1(x, t, pt), we have to look at the supremum of µpt−(µl+(1−µ)gi(t))
but taking into account the fact that 1−µ = µb.n(Pi) and since µ cannot vanish and
the condition reduces to

ut + sup
bx=λn, λ≥0

{
− (l + bx · n(Pi)gi(t))

}
≤ 0 .

Adequate controllability assumptions yield uniqueness of the stratified solution for
such problem and of course, we can weaken the regularity assumptions on Ω which
can be a square in R2 if the corners are harbours.



Chapter 28

Stability for Singular Boundary
Value Problems

This section is concerned with some stability results involving Dirichlet and Neuman
problems in presence of singularities. The aim here is to mix results from Sections 22
and 27. However, we do not try to cover all the possible results here since such
formulations would imply a lot of technicalities and make everything very difficult to
read.

We prefer instead to present a few illustrative examples that highlight the important
ideas and results.

So, the main theme of this section is the following: we start from standard, continu-
ous boundary condition problems and we want to pass to the limit when singularities
are created (in the limit) at the boundary.

28.1 Singularites in Dirichlet problems

Starting from a sequence of smooth domain (Ωε)ε>0, and smooth (say continuous)
boundary data (ϕε)ε>0, there are essentially two mechanisms that can yield some
singularities as ε→ 0:

(a) the boundaries ∂Ωε converge to a boundary ∂Ω presenting a non-trivial strati-
fication, ie. ∂Ω is not a C1 hypersurface of RN ;

(b) the sequence ϕε converges to a discontinuous limit boundary condition ϕ.

Of course, a general problem may involve both mechanisms and even at the same
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location in the limit. But here we are going to separate both cases in order to keep
things as simple as possible. The good news being that both situations can be handled
by the stratified framework.

28.1.1 Non-smooth domains

We consider here the case of a square Ω := [0, 1]2 ⊂ R2, already considered in Exam-
ple 1 and a stratified problem

ut +H(x, u,Du) = 0 in Ω× (0, Tf ) ,

u(x, t) = ϕ(x, t) on ∂Ω× (0, Tf ) ,

u(x, 0) = u0(x) in Ω .

(28.1)

where ϕ and u0 are W-adapted to the natural stratification of ∂Ω× (0, Tf ). For sim-
plicity here, let us even assume that ϕ, u0 are continuous and satisfy the compatibility
condition ϕ(x, 0) = u0(x) for x ∈ ∂Ω.

Here the problem is singular due to the geometric nature of Ω wich is clearly only
a Lipschitz domain. As we have already seen, this singular Dirichlet problem can be
handled in the stratified framework under some quite general hypotheses. We refer
to the corresponding Section for all the details. Let us just mention here that there
is an underlying set-valued map BCL defined on Ω̄× [0, Tf ], taking into account the
Dirichlet boundary data ϕ on ∂Ω× (0, Tf ) as well as the initial data u0 on Ω× {0},
which allows to get a unique stratified solution of (28.1).

Of course, the stratification M of Ω × [0, Tf ] is given by M3 := Ω × [0, Tf ], M1 :=
{{Pi} × (0, Tf ); i = 1..4} and M2 is the collection of lateral surfaces of ∂Ω × (0, Tf )
defined by removing the edges.

The question is, can we approximate the stratified solution by a sequence of “‘stan-
dard” problems, defined in smooth domains. Or equivalently, can we identify the limit
of such regular problems when the geometry of the boundary yields some singularities
in the limit ?

In order to answer the question, we approximate the square by a sequence of smooth
domains (Ωε) “converging” to Ω. For simplicity, we choose here

Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε} .

This specific sequence has some advantages like preserving the symmetries of the
problem, being convex, monotone, included in Ω, see Fig. 28.1. However, we could
use more general approximations provided they satisfy some properties, the most
important one being of course the convergence to Ω in the sense of Definition 22.2.4.
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Figure 28.1: Approximation of the square

Concerning the Dirichlet boundary data, we introduce a sequence of continuous
function ϕε defined on ∂Ωε × (0, Tf ), satisfying the following convergence property:
for any sequence of points (xε, tε) ∈ ∂Ωε × (0, Tf ) converging to a point (x, t) ∈
∂Ω× (0, Tf ),

lim
ε→0

ϕε(xε, tε) = ϕ(x, t) .

Moreover, we assume that for each ε > 0, the compatibility condition ϕε(x, 0) = u0(x)
is valid on Ωε. Under these assumptions, we know that for any ε > 0 there is a unique
viscosity solution uε of the following problem

(uε)t +H(x, uε, Duε) = 0 in Ωε × (0, Tf ) ,

uε(x, t) = ϕε(x, t) on ∂Ωε × (0, Tf ) ,

uε(x, 0) = u0(x) in Ωε .

The main result on the convergence is the

Theorem 28.1.1 As ε → 0, the sequence (uε) converges locally uniformly in Ω ×
(0, Tf ) to the stratified solution u of problem (28.1).

Proof — The proof consists just in assembling various results that appear in the
previous parts of this book. However, there are a few things to do before that.

A. Stratifying the problem — Thanks to our assumption on Ωε, we can easily
define four points Qi,ε ∈ Ωε, located on the square diagonals. Notice that Qi,ε actually
minimizes the distance to Pi from Ωε, so that Qi,ε → Pi for each i = 1..4 as ε → 0.
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Those points allow us to define a super-stratification Mε of Ωε × [0, Tf ] where M1
ε =

{Qi,ε× [0, Tf ]; i = 1..4} and the four others parts of ∂Ωε× [0, Tf ] are elements of M2
ε.

B. Defining the sets BCLε and the Hamiltonians — here we follow exactly
Section 27.1: BCLε is just a modification of BCL on ∂Ωε× (0, Tf ), where we extend
it as the convex enveloppe of

BCL(x, t) ∪ {(0, 1, ϕε(x, t))} .

Of course this new BCLε is Mε-adapted.

Using Proposition 22.2.1, we introduce three Hamiltonians: first, F3
ε(x, t, u, p) :=

pt +H(x, t, u, px) defined in Ωε × (0, Tf ), which is just related to the equation inside
Ωε. Then, on each point Qi,ε of M1

ε, we set

F1
ε(x, t, u, p) := u(x, t)− ϕε(x, t) ,

and similarly, we set F2
ε(x, t, u, p) = u(x, t)−ϕε(x, t) when x belongs to ∂Ωε\{Qi,ε; i =

1..4}.
In this setting, uε can be seen as a the stratified solution of Fε(x, t, u,Dxu, ut) = 0,

meaning that for each k = 1..3, a Fkε -subsolution inequality holds on Mk
ε while uε is

a (viscosity) F3-supersolution.

C. Passing to the limit — In the sense of Definition 22.2.4, Mε converges to M,
the stratification of ∂Ω.

In order to apply Theorem 22.2.4, we just notice that by construction, BCLε con-
verges to BCL in the sense of Lemma 22.1.4 (because of our assumption on the
convergence of ϕε). This allows us to use the theorem, and conclude as in Corol-
lary 22.1.5.

Q.E.D.

28.1.2 Non-smooth data

Here we assume that Ω is a fixed smooth domain in R2 and that we have a sequence
of boundary data ϕε continuous on ∂Ω× [0, Tf ], converging to some ϕ which may be
discontinuous at some isolated points of ∂Ω× [0, Tf ]. For simplicity here, we assume
that there is only one point P0 = (x0, t0) with t0 > 0 at which ϕ is not continuous.

We assume that BCL(x, t) is defined in Ω × [0, Tf ] and satisfies the standard as-
sumptions. In order to deal with the boundary data, we extend BCL up to the
boundary, defining BCLε and BCL∗ as above: for any x ∈ ∂Ω and t ≥ 0,

BCL(x, t) = co
(

lim sup
y→x

BCL(y, t) ∪ (0, 1, ϕε(x, t)
)
.
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Similarly, we define BCL∗ on ∂Ω×[0, Tf ] by inserting the boundary data (0, 1, ϕ∗(x, t))
before taking the convex enveloppe. Here,

ϕ∗(x, t) := lim inf
ε→0,y→x
y∈∂Ω

ϕε(y, t) ,

and of course in this simple situatioh ϕ∗(x, t) = ϕ(x, t) for any (x, t) 6= (x0, t0).

From the pde viewpoint, we are considering the following boundary value problem
(uε)t +H(x, uε, Duε) = 0 in Ω× (0, Tf ) ,

uε(x, t) = ϕε(x, t) on ∂Ω× (0, Tf ) ,

uε(x, 0) = u0(x) in Ω

which has a unique viscosity solution since ϕε is continuous, and the singular limit
problem 

ut +H(x, u,Du) = 0 in Ω× (0, Tf ) ,

u(x, t) = ϕ∗(x, t) on ∂Ω× (0, Tf ) ,

u(x, 0) = u0(x) in Ω .

Since ϕ is discontinuous at P0, we have to consider a stratification of ∂Ω × (0, Tf )
involving M1 := {{P0} × (0, Tf )}. The result is the following

Theorem 28.1.2 As ε→ 0, the sequence of viscosity solutions (uε) converges to the
stratified solution of the limit problem, associated with the boundary data ϕ∗.

Proof — The strategy is essentially the same as for the case of a singular boundary:
we introduce a super-stratification M which takes into account the discontinuity at
P0.

With this new stratification (which does not depend on ε), (uε) can be seen as the
stratified solution of Fε(x, uε, Due, (uε)t) = 0, meaning Fkε -subsolution inequalities
(k = 1..3) coupled with a F3

ε-supersolution inequality.

We do not detail every Hamiltonian since they are similar to those that we used in
Theorem 28.1.1. Notice that we only get lim sup∗BCLε(x, t) ⊃ BCL∗(x, t) because
the limsup contains any possible relaxed limit of ϕε, not only ϕ∗.

Using the convergence results of Theorem 22.2.4 and Corollary 22.1.5 we see that
uε converges locally uniformly to the stratifed solution u, associated with the set
lim sup∗BCLε.

However, when minimizing the cost functional, it is clear that the relaxed limits of
ϕε which lie above ϕ∗ are not taken into account since they induce a greater cost. It
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follows that u can be seen as the stratified solution associated with the set BCL∗,
which implies the result.

Q.E.D.

28.2 Singularities in Neuman problems

Figure 28.2: Approximation of Neuman problem
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Further Discussions and Open
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29.1 Introduction

The aim of this part is double: on one hand, we are going to investigate as completely
as possible KPP-type problems and show to obtain general results by using all the
ressources of this book; this means both to look at the case of codimension 1 discon-
tinuities but also more general ones where the stratified approach is needed. On the
other hand, we are going to outline further developments in the directions of problems
with jumps or networks: this will be the opportunity to explain what kind of jumps
can be taken into account by our general assumptions on the control problems (on
the BCL) and the possible (almost free) extensions of the stratified approach.
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Chapter 30

KPP-Type Problems with
Discontinuities

30.1 Introduction: KPP equations and front prop-

agations

In this chapter, we are interested in Kolmogorov-Petrovsky-Piskunov [126] type equa-
tions (KPP in short), whose simplest form is

ut −
1

2
∆u = cu(1− u) in RN × (0,+∞) , (30.1)

where c is a nonnegative constant.

Such reaction-diffusion equation appears in several different models in Physics (com-
bustion for example) and Biology (typically for the evolution of population) and, in
all these applications, one of the main interest comes front the large time behavior
of the solutions which is mainly described in terms of front propagations. One of the
main ingredients to understand this behavior is the study of the existence of travelling
waves solutions, i.e. solutions which can be written as

u(x, t) := q(x · e− αt) ,

where q : R → [0, 1] is a smooth enough function, e ∈ RN is such that |e| = 1, and
α ∈ R. The travelling wave connects the instable equilibrium u = 0 = q(−∞) with
the stable one u = 1 = q(+∞).

The connection between these travelling waves solutions and front propagation
phenomenon is clear: the existence of such a solution implies that the hyperplanes
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x · e = constant propagate with a normal velocity α. And clearly, understanding the
propagation of such flat fronts is a key step towards dealing with more complicated
fronts.

The case of KPP Equations is complicated in terms of travelling waves: while for
other nonlinearities (for example cubic non linearities like f(u) = (u − µ)(1 − u2))
there exists a unique characteristic velocity, KPP Equations admit a critical velocity
α∗ > 0 such that travelling waves solutions exist for all α ≥ α∗. And it is well-
known that the large time behavior of the solutions (in particular the choice(s) of the
velocity) depends on the behavior at infinity of the initial data. Actually this large
time behavior can be rather complicated since it can be explained by the “mixing”
of several different travelling waves as explained in Hamel and Nadirashvili [108].

We are going to concentrate here on the case where the minimal velocity α∗ is
selected. In this case it is known that α∗ =

√
2c and that the large time behavior of

the solutions of the KPP Equation is described by a front propagating with a
√

2c
normal velocity, where the front separates the regions where u is close to 0 and to 1.

In order to prove this result, Freidlin [95] introduced a scaling in space and time

(x, t)→ (
x

ε
,
t

ε
) which has the double advantage to preserve the velocities and to allow

to observe in finite times the large time behavior of the solution by examining the
behavior of the scaled solution as ε→ 0. Hence one has to study the behavior when
ε→ 0 of

uε(x, t) = u

(
x

ε
,
t

ε

)
,

which solves the singular perturbation problem

(uε)t −
ε

2
∆uε =

c

ε
uε(1− uε) in RN × (0,+∞) .

We complement this pde with the initial data

uε(x, 0) = g(x) in RN ,

where g : RN → R is a compactly supported continuous function satisfying 0 ≤
g(x) ≤ 1 in RN .

The reader might be surprised by this unscaled initial data but, in this approach,
the role of g is just to initialize the position of the front, given here by the boundary
of the support of g, Γ0 := ∂ supp(g).

In this context, the following properties can be proved:

uε(x, t) = exp

(
−I(x, t) + o(1)

ε

)
,
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where I is the unique viscosity solution of the variational inequality

min

(
It +

1

2
|DI|2 + c, I

)
= 0 in RN × (0,+∞) ,

with

I(x, 0) =

{
0 if x ∈ G0

+∞ if x ∈ RN\G0.

oreover I = max(J, 0) where J is the unique viscosity solution of

Jt +
1

2
|DJ |2 + c = 0 in RN × (0,+∞) .

The importance of this second part of the result is to allow for an easy computation
of J , and therefore I, through the Oleinik-Lax formula

J(x, t) =
[d(x,G0)]2

t
− ct ,

where G0 = supp(g). Hence uε(x, t) → 0 in the domain {I > 0} = {J > 0} =
{d(x,G0) >

√
2ct} and it can be shown that uε(x, t) → 1 in the interior of the

set {I = 0} = {J ≤ 0} = {d(x,G0) ≤
√

2c t}. Therefore the propagating front is
Γt = {d(x,G0) =

√
2c t} which means a propagation with normal velocity

√
2c as

predicted by the travelling waves.

Such kind of results, in the more general cases of x, t dependent velocities c(x, t),
diffusion and drift terms, were obtained by Freidlin [95] using probabilistic Large De-
viation type methods and later pdes’ proofs, based on viscosity solutions’ arguments,
were introduced by Evans and Souganidis [77, 76]. They were then developed not only
for KPP Equations but for other reaction-diffusion equations by Barles, Evans and
Souganidis [20], Barles, Bronsard and Souganidis [19], Barles, Georgelin and Sougani-
dis [21]. Later, these front propagation problems were considered in connections with
the “levet-set approach”: one of the first articles in this direction was the one by
Evans, Soner and Souganidis [75] (see also Barles, Soner and Souganidis [26]). The
most general results in this direction are obtained through the “geometrical approach”
of Barles and Souganidis [40]. A complete overview of all these developments can be
found in the CIME course of Souganidis [159] where a more complete list of references
is given.

Of course, the aim of the section is to extend the results for KPP Equations to the
case of discontinuous diffusions, drifts and reaction terms.

Before doing so, we come back to the main steps of the above mentioned result
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1. Introduce the change of variable Iε := −ε log(uε) and show that Iε is uniformly
locally bounded.

2. Pass to the limit by using the half-relaxed limit method in the equation satisfied
by Iε.

3. Prove a strong comparison result for the variational inequality which allows to
prove that Iε → I locally uniformly in RN × (0,+∞).

4. Show that I = max(J, 0), when this is true (see just below).

All these steps are classical, except perhaps the last one which is related to the Freidlin
condition: J is given by a formula of representation given by the associated control
problem and Freidlin’s condition holds if the optimal trajectories for points (x, t) such
that J(x, t) > 0 remain in the domain {J > 0}.

It is worth pointing out that this condition is not always satisfied, but keep in mind
that this fourth step is only used to give a simplest form to the result.

30.2 A simple discontinuous example

In order to introduce discontinuities in the KPP Equation, but also to point out
an interesting feature of the fronts associated to this equation, let us consider a 1-d
example borrowed from Freidlin’s book [95] in which we have

ut −
1

2
∆u = c(x)u(1− u) in R× (0,+∞) ,

where c(x) = c1 if x < 1 and c(x) = c2 if x ≥ 1. We also assume that G0 = (−∞, 0),
i.e. the front is located at x = 0 initially.

For the control formulation for the function J , we follow the approach of Part II:
for x ∈ Ω1 := {x < 1}, we set

BCL1(x, t) :=
{(
v1 , 0 , −c1

)
; v1 ∈ RN

}
.

and for x ∈ Ω2 := {x > 1}, we set

BCL2(x, t) :=
{(
v1 , 0 , −c2

)
; v2 ∈ RN

}
.

Therefore the cost −c is discontinuous at x = 1.
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The following formula allows to compute explicitly function J

J(x, t) = inf

{∫ t

0

(
|ẏ(s)|2

2
− c(y(s))

)
ds ; y ∈ H1(0, t), y(0) = x, y(t) ≤ 0

}
.

Notice that, a priori, we should have been careful with this formal formula since the
function c is discontinuous at x = 1 but, at this point of the book, it should be
clear for the reader that the present situation is quite easy to handle. Indeed, if the
trajectory stays on the line x = 1, we are just going to choose c(y(s)) = max(c1, c2),
which yields the minimal possible cost, and with simply a tangential dynamic.

From now on, we assume for our purpose that c2 > c1. And we adress the question:
when does the front, starting from x = 0 reach the value 1? If we just consider the

domain x < 1, the answer should be t1 =
(√

2c1

)−1
since the velocity of the front is√

2c1 in this domain.

But we may also examine J(1, t) and compute the smallest t for which it is 0 (which
indeed corresponds to u = 1). It is clear that an optimal trajectory should stay at
x = 1 on an interval [0, h] and then a straight line to reach x = 0. Therefore

J(1, t) = min
0≤h≤t

(
−c2h+

1

2(t− h)
− c1(t− h)

)
.

An easy computation gives

J(1, t) =


1

2t
− c1t if t ≤ 1√

2(c2 − c1)
,

√
2
√
c2 − c1 − c2t otherwise

,

and the front reaches 1 either at time t1 =
(√

2c1

)−1
or t2 =

√
2

√
c2 − c1

c2

, depending

which one is the smallest one. Hence, an easy computation shows that, if c2 > 2c1,
we have t2 < t1 and, for the front, a picture like
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We observe at time t2 a strange phenomenon: a new front is created at x = 1,
ahead of the front travelling in Ω1 with velocity

√
2c1. This kind of phenomenon can

arise even if c(x) is continuous but the computations are easier to describe in the
discontinuous setting. We also point out that Freidlin’s condition holds true in this
example.

In the next sections, we first provide results for general KPP Equations in the
framework of Part II, i.e. in the case when we have discontinuities on an hyperplane.
Then we consider some extensions to more general type of discontinuities which uses
some particular features of the KPP Equations.

30.3 KPP-type problems with discontinuities (I):

the co-dimension 1 case

With the notations of Part II, we consider the problem

(uε)t −
ε

2
Tr(a(x)D2uε)− b(x) ·Duε =

1

ε
f(x, uε) in RN × (0,+∞) , (30.2)

where, in Ωi, a = a(i), b = b(i), f = f (i) for i = 1, 2, where a(i), b(i), f (i) are bounded
Lipschitz continuous functions taking values respectively in SN , RN and R. We assume
that the following additional properties hold
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(Uniform ellipticity) there exists ν > 0 such that

a(i)(x)p · p ≥ ν|p|2 for any x, p ∈ RN . (30.3)

(KPP-nonlinearity) For i = 1, 2 and for any x ∈ Ωi: u 7→ f (i)(x, u) is differentiable
at 0 and for any u ∈ [0, 1]

f (i)(x, 0) = f (i)(x, 1) = 0, f (i)(x, u) > 0 if 0 < u < 1

c(i)(x) =
∂f (i)

∂u
(x, 0) = sup

0<u<1

(
f (i)(x, u)

u

)
,

(30.4)

with c(i) being bounded Lipschitz continuous on Ωi.

Of course, the prototypal example of f (i) is f (i)(x, u) = c(i)(x)u(1− u) which is not
a globally Lipschitz continuous function of u but since all the solutions uε will take
values in [0, 1], this is not a problem.

Next we complement (30.2) with the initial data

uε(x, 0) = g(x) in RN , (30.5)

where g : RN → R is a compactly supported continuous function such that 0 ≤
g(x) ≤ 1 in RN . As above we denote by G0 the support of g which is assumed to be
a non-empty compact subset of RN with

Int(G0) = G0 .

In order to formulate the result, we introduce the Hamiltonians defined for i =
1, 2 by

Hi(x, p) :=
1

2
a(i)(x)p · p− b(i)(x) · p+ c(i)(x) .

As we already noticed in the previous subsection, keep in mind that in the control
viewpoint, the cost is l(i) = −c(i).

Theorem 30.3.1 As ε→ 0, we have

−ε log(uε)→ I locally uniformly in RN × (0,+∞) ,

where I can be seen as either the unique solution of
min(It +Hi(x,DI), I) = 0 in Ωi × (0,+∞) ,

I(x, 0) =

{
0 if x ∈ G0,
+∞ otherwise ,

(30.6)
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associated to the Kirchhoff condition

∂I

∂n1

+
∂I

∂n2

= 0 on H× (0,+∞) , (30.7)

or equivalently, the maximal Ishii solution of variational inequality (30.6) in RN ×
(0,+∞). oreover we have

uε(x, t)→
{

0 in {I > 0},
1 in the interior of the set {I = 0}.

Finally if Freidlin’s condition holds then I = max(J, 0) where J is either the unique
solution of 

Jt +Hi(x,DJ) = 0 in Ωi × (0,+∞) ,

J(x, 0) =

{
0 if x ∈ G0,
+∞ otherwise ,

(30.8)

associated to the Kirchhoff condition, or equivalently the maximal Ishii solution of
(30.8) in RN × (0,+∞). Function J is given by the following representation formula

J(x, t) = inf

{∫ t

0

l(y(s), ẏ(s))ds; y(0) = x, y(t) ∈ G0, y ∈ H1(0, t)

}
,

where l(y(s), ẏ(s)) =
1

2
[a(i)(y(s))]−1(ẏ(s)− b(i)(y(s))) · (ẏ(s)− b(i)(y(s)))− c(i)(y(s)) if

y(s) ∈ Ωi and with the regular control procedure on H× (0,+∞).

We can summarize this result by saying that the “usual” KPP-result holds true pro-
vided that the “action functional” J is suitably defined, taking only regular controls
on H × (0,+∞), using the links between the maximal Ishii viscosity solution, flux-
limited solutions and junction viscosity solutions for the Kirchhoff condition.

Remark 30.3.2 As the previous paragraph suggests, the proof of Theorem 30.3.1 uses
the most sophisticated results and tools of this part, combining the different approaches
and their connections. We refer the reader to Section 30.5 where a different point of
view is described with the aim of treating more general discontinuities. That point of
view consists in checking whether it is possible to conclude by using only the notion
of Ishii viscosity solution.

Proof — The proof relies on classical arguments which remains valid because of the
results of Theorem 30.4.2 given in Section 30.4.
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The aim is make the change of variable

Iε(x, t) = −ε log(uε(x, t))

and to show that Iε → I locally uniformly in RN × (0,+∞). But, in order to do so,
we first need local uniform bounds on Iε.

We first notice that, by the Maximum Principle, we have

0 ≤ uε(x, t) ≤ 1 in RN × (0,+∞) ,

and therefore Iε(x, t) ≥ 0 in RN × (0,+∞). In addition, Iε is well-defined because
uε(x, t) > 0 in RN × (0,+∞) by the Strong Maximum Principle.

Getting an upper bound on Iε is done by using the trick introduced in [23, 24] (the
reader can look in those references for the details which follow): we set

IAε (x, t) = −ε log (uε(x, t) + exp(−A/ε)) ,

where A� 1. Then o(1) ≤ IAε (x, t) ≤ A, and it is easy to show that

lim sup∗ IAε = min(lim sup∗ Iε, A) .

Therefore controlling IAε uniformly in A provides the same control on Iε.

Next, using that f (i)(x, uε) ≥ 0 in RN × (0,+∞), the function IAε satisfies

(IAε )t−
ε

2
Tr(a(i)(x)D2IAε ) +

1

2
a(i)(x)DIAε ·DIAε − b(i)(x) ·DIAε ≤ 0 in Ωi× (0,+∞) ,

and the ellipticity assumption together with a Cauchy-Schwartz inequality on the
b(i)-term leads to

(IAε )t −
ε

2
Tr(a(i)(x)D2IAε ) +

1

2
ν|DIAε |2 ≤ k(ν) in Ωi × (0,+∞) ,

for some constant k(ν) large enough, depending only on ‖b(i)‖∞ and ν.

Passing to the limit through the half-relaxed limit method and setting ĪA = lim sup∗ IAε ,
we get the following inequality for ĪA:

(ĪA)t + 1
2
ν|DĪA|2 ≤ k(ν) in RN × (0,+∞) ,

ĪA(x, 0) =

{
0 if x ∈ G0,
A otherwise .

The Oleinik-Lax formula then implies

ĪA(x, t) ≤ [d(x,G0)]2

2νt
+ k(ν)t in RN × (0,+∞) ,
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which is the desired uniform bound.

Therefore we can perform the Iε change of function and we obtain

(Iε)t−
ε

2
Tr(a(i)(x)D2Iε)+

1

2
a(i)(x)DIε·DIε−b(i)(x)·DIε ≤ −

f (i)(x, uε)

uε
in Ωi×(0,+∞) ,

where we have kept the notation uε in the right-hand side to emphasize the role of
the quantity f (i)(x, uε)/uε. Indeed we have both

−f
(i)(x, uε)

uε
≥ −c(i)(x) for any x ,

and

−f
(i)(x, uε)

uε
→ −c(i)(x) if uε(x, t)→ 0 ,

and this last case occurs if Iε(x, t) tends to a strictly positive quantity.

Using these properties, Theorem 17.5.1 implies that I = lim sup∗ Iε and I =
lim inf ∗ Iε are respectively sub and supersolutions of the variational inequality (30.6)
associated with Kirchhoff condition on H.

In order to conclude, we have just to use Theorem 30.4.2: with the notations of this
result, we have

I(x, t) ≤ I+(x, t) ≤ I(x, t) in RN × (0,+∞) ,

and, I+ being continuous, this implies that Iε → I+ locally uniformly in RN×(0,+∞).

The proof is complete since the other results can be obtained exactly as in the
standard KPP case.

Q.E.D.

30.4 The variational inequality in the case of a

codimension 1 discontinuity

In this section, we study the control/game problems related to the functions I and
J arising in the statement of Theorem 30.3.1, together with the properties of the
associated Bellman equation or variational inequality.

To do so, we follow the approach of Part II: for x ∈ Ωi, we set

BCLi(x, t) :=
{(
vi , 0 ,

1

2
[a(i)(x)]−1(vi − b(i)(x)) · (vi − b(i)(x))− c(i)(x)

)
; vi ∈ RN

}
.
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This definition can be seen as using v as a control, hence authorizing any possible
dynamic v ∈ RN at any point (x, t), but with a cost l(x, v) = li(x, v) = 1

2
[a(i)(x)]−1(v−

b(i)(x)) · (v − b(i)(x))− c(i)(x) if x ∈ Ωi.

Of course, we are in an unbounded control framework but this does not create any
major additional difficulty.

It remains to define the dynamic/cost on H (regular or not) and for x ∈ H, we
have: (v, 0, l) ∈ BCLT (x, t) if v ∈ H, v = αv1 + (1− α)v2 and

l = αl1(x, v1) + (1− α)l2(x, v2) ,

where as above, li(x, vi) = 1
2
[a(i)(x)]−1(vi − b(i)(x)) · (vi − b(i)(x)) − c(i)(x). The set

BCLreg
T (x, t) is defined in the same way, adding the condition v1 · eN ≤ 0, v2 · eN ≥ 0.

If I0 ∈ Cb(RN), we introduce

J−(x, t) = inf
Tx,t

{∫ t

0

l(X(s), Ẋ(s))ds+ I0(X(t))

}
,

J+(x, t) = inf
T reg
x,t

{∫ t

0

l(X(s), Ẋ(s))ds+ I0(X(t))

}
,

where, in these formulations, we have replaced vi(s) (i = 1, 2) or v(s) by Ẋ(s).

In the same way, we introduce

I−(x, t) = inf
Tx,t,θ

{∫ t∧θ

0

l(X(s), Ẋ(s))ds+ 1It<θI0(X(t))

}
,

I+(x, t) = inf
T reg
x,t ,θ

{∫ t∧θ

0

l(X(s), Ẋ(s))ds+ 1It<θI0(X(t))

}
.

Following the methods of Part II, it is easy to show the following result

Theorem 30.4.1

(i) The value-functions J− and J+ are continuous and respectively the minimal
Ishii supersolution (and solution) and maximal Ishii subsolution (and solution)
of the equation

Jt +H(x,DJ) = 0 in RN × (0,+∞) , (30.9)

where H = Hi in Ωi × (0,+∞) with the initial data

J(x, 0) = I0(x) in RN .
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(ii) (SCR) holds for the flux-limited problems for Equation (30.9) with flux-limiters
HT and Hreg

T on H; J− is the unique flux-limited solution associated to the
flux-limiter HT and J+ is the unique flux-limited solution associated to the flux-
limiter Hreg

T . J+ is also the unique solution associated to the Kirchhoff condition
on H.

(iii) The value-functions I− and I+ are continuous and respectively the minimal Ishii
supersolution (and solution) and maximal Ishii subsolution (and solution) of the
equation

min(It +H(x,DI), I) = 0 in RN × (0,+∞) , (30.10)

where H = Hi in Ωi × (0,+∞) with the initial data

I(x, 0) = I0(x) in RN .

(iv) (SCR) holds for the flux-limited problems for the variational inequality (30.10)
with flux-limiters HT and Hreg

T ; I− is the unique flux-limited solution associated
to the flux-limiter HT and I+ is the unique flux-limited solution associated to
the flux-limiter Hreg

T . I+ is also the unique solution associated to the Kirchhoff
condition on H.

In order to treat the KPP problem, we have to extend this result to the case of
discontinuous I0, with possibly infinite values. Of course, stricto sensu, a (SCR)
cannot hold in this case. Indeed, if u and v are respectively a sub and supersolution
of either (30.9) or (30.10) with initial data I0, the inequalities at time t = 0 are

u(x, 0) ≤ I∗0 (x) and v(x, 0) ≥ (I0)∗(x) in RN ,

and it is false in general that u(x, 0) ≤ v(x, 0) in RN . Therefore we have to extend
the meaning of (SCR) by saying that a (SCR) holds in this context if we have

u(x, t) ≤ v(x, t) in RN × (0,+∞) ,

hence for all t > 0.

With this modified definition, we can formulate a simple result which is exactly
what we need (we do not try to reach the full generality here):

Theorem 30.4.2 Assume that Int(G0) = G0, then the results of Theorem 30.4.1
remain true if I0(x) = A1IG0 for some A > 0, and even if A = +∞.
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Proof — We begin with the case when A < +∞ and we provide the full proof only
in the I-case, the J-one being obtained by similar and even simpler arguments.

Step 1: Approximation of the data.

In order to prove the analogue of (iii), we can approximate I0 by above and below
by sequences ((I0)A)A and ((I0)A)A of bounded continuous initial data such that

(I0)A ↓ I∗0 and (I0)A ↑ (I0)∗ .

We denote by (IA)± and (IA)± the minimal and maximal solutions given by Theo-
rem 30.4.1 with these intial data.

If u, v are respectively a subsolution and a supersolution of the variational inequality
with initial data I0, they are respectively subsolution with (I0)A and supersolution
with (I0)A. Therefore

u ≤ (IA)+ and (IA)− ≤ v in RN × (0,+∞) .

It remains to pass to the limit in the variational formulas for (IA)+ and (IA)−. This
step is easy for (IA)− by the stability of solutions of differential inclusion (one has
just to be careful of the fact that we obtain (I0)∗ in the formula at the limit).

For (IA)+, things are more delicate since we have to deal with regular trajectories.
But here, we can take advantage of the inequality we wish to show and first argue
with a FIXED trajectory (here also one has to be careful because we obtain (I0)∗ in
the formula at the limit).

Step 2: Both functions (IA)+ and (IA)− are continuous.

In order to prove the claim, we can use the approach of the authors in [36], showing
that I = (IA)− or (IA)+ both satify

−η(t) ≤ It(x, t) ≤ C .

for some positive function η which may tend to +∞ when t → 0 and for some
constant C. This inequality is obtained by using the arguments of [36]: we just use a
sup-convolution in time

sup
0≤s≤t

(I(x, s)− η(s)(t− s)) ,

and combine it with a comparison result for flux-limited solutions (with the suitable
flux-limiter for (IA)− and (IA)+).

This argument shows that (IA)− and (IA)+ are Lipschitz continuous in x (for t > 0)
where they are strictly positive. Indeed, if I > 0, variational inequality (30.10) implies
that H(x,DI) = −It ≤ η(t), and the coercivity of H implies a bound on DI. Then,
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it is a simple exercice to extend it to all points in RN × (0,+∞), whether I > 0 or
I = 0.

Step 3: Strong Comparison Result.

For the proofs of the (SCR), we still consider (I0)A, (I0)A but the (SCR) for either
HT , Hreg

T or the Kirchhoff condition. In the case of Hreg
T , for example, we obtain

u ≤ (IA)+ and (IA)+ ≤ v in RN × (0,+∞) .

To conclude in this case, we have to use Proposition 9.5.1 to pass to the limit by
extracting a sequence of trajectories which converges to a regular trajectorie. The
case of HT is simpler.

Step 4: Passing to the limit to treat the case A =∞.

In the case where A = +∞, we first notice that all solutions associated with ini-
tial data like I0(x) = A1IG0 , and slightly enlarging or slightly reducing the set G0

are uniformly locally bounded with respect to A (this can be obtained by choosing
appropriate trajectories such as straight lines). And the limiting function are

I−(x, t) = inf
Tx,t,θ

{∫ t∧θ

0

l(X(s), Ẋ(s))ds; X(t) ∈ G0

}
,

I+(x, t) = inf
T reg
x,t ,θ

{∫ t∧θ

0

l(X(s), Ẋ(s))ds; X(t) ∈ G0

}
.

Now, if u is a subsolution then, for all A and C = maxi(||ci||∞), min(u,A− Ct) is
also a subsolution associated to the initial data A1IG0 . Indeed, sonce the Hamiltonians
are convex, the infimum of two subsolutions remains a subsolution. We then use the
first result to conclude. We can use a similar argument for the supersolution, using
this time a comparison with (IA)±, depending of the result we want.

Q.E.D.

30.5 KPP-type problems with discontinuities (II):

remarks on more general discontinuities

In the proof of Theorem 30.3.1, even if we hide it carefully inside the proof of The-
orem 30.4.2, we use in an essential way the various notions of solutions which are
described in Part II, namely flux- limited solutions and junction solutions together
with results concerning their links.
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This heavy sophisticated machinery is a weakness if we want to address the case
of more general discontinuities for which we are not able to provide such a precise
analysis. Therefore, it is natural to investigate what can be done in those more general
cases.

30.5.1 In which cases can we conclude by using only the stan-
dard notion of Ishii viscosity solution?

In the framework of Chapter 30, i.e. with only a discontinuity of codimension 1 on
an hyperplan, the answer is straightforward and this can be seen from two slightly
different points of view: on one hand, in order to conclude, it is enough that the
functions I+ and I− appearing in Theorem 30.4.1 and Theorem 30.4.2 are equal, and
so are J+ and J−. Lemma 10.3.1 gives conditions under which this happens.

On the other hand, and this is a more general point of view, we can also look for
conditions under which Ishii viscosity subsolutions are stratified subsolutions (since
the supersolutions are the same). The conclusion then follows from the comparison
result for stratified solutions. Since it is easy to see that, on the hyperplane, the
FN -inequality on H× (0, Tf ) is the HT -one, Lemma 10.3.1 still gives the answer.

In order to exploit this result, we recall that we have

Hi(x, p) :=
1

2
a(i)(x)p · p− b(i)(x) · p+ c(i)(x) ,

and the computation of m1(x, p′),m2(x, p′) is easy:

mi(x, p
′) = − 1

a(i)(x)eN · eN
(
a(i)(x)p′ · eN − b(i)(x) · eN

)
.

The condition m2(x, p′) ≥ m1(x, p′) for any (x, p′) which is required in Lemma 10.3.1
in order to have HT = Hreg

T leads to two properties by using the affine dependence in
p′ ∈ H:

a(2)(x)eN
a(2)(x)eN · eN

− a(1)(x)eN
a(1)(x)eN · eN

= 0 , (30.11)

and
b(2)(x) · eN
a(2)(x)eN · eN

≥ b(1)(x) · eN
a(1)(x)eN · eN

. (30.12)

Indeed, the inequality m2(x, p′) ≥ m1(x, p′) for any (x, p′) implies that the left-hand
side of (30.11) is colinear to eN while its scalar product with eN is 0. Notice that in
this computation, we have implicitly assumed that N ≥ 2 but, if N = 1 the result
remains true with only (30.12).
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Under this condition, Theorem 30.3.1 can be proved using only the basic notion of
viscosity solutions.

Remark 30.5.1 Recalling that the costs for the associated control problems are

1

2
[a(i)(x)]−1(v − b(i)(x)) · (v − b(i)(x))− c(i)(x) ,

the stronger condition

∀x ∈ H , b(2)(x) · eN ≥ 0 ≥ b(1)(x) · eN

is quite natural. Indeed with b(1), b(2) pointing towards H, it is clear that a priori
regular controls give better costs than singular ones. Condition (30.12) generalizes
this simple case.

30.5.2 Can we go further?

The answer is yes following Section 21.2 and in particular, Proposition 21.2.3, even if
it leads to very restrictive assumptions.

We consider the following example in the “cross case”: consider Equations (30.2)
which holds in Qi ⊂ R2 where the Qi’s are the four quadrants in R2, namely

Q1 = {x1 > 0, x2 > 0} , Q2 = {x1 < 0, x2 > 0} , Q3 = −Q1 , Q4 = −Q2 .

To be able to apply Proposition 21.2.3, we assume that, for i = 1, 2, 3, 4, the b(i) are
equal to 0 and that a(i)(x) = λ(i)(x)Id in Qi for some bounded, Lipschitz continuous
function λ(i). We assume also the existence of some constant ν > 0 such that λ(i)(x) ≥
ν in Qi for any i.

Then, under natural assumptions on the regularity of the coefficients, the asymp-
totics of uε can easily be obtained in this framework: indeed

(i) I is an Ishii viscosity supersolution of the variational inequality in R2 × (0,+∞),

(ii) I turns out to be a “stratified subsolution” of the variational inequality in R2 ×
(0,+∞). Indeed, on the axes (except 0), i.e. on M2, the above analysis shows that
HT = Hreg

T inequality holds for I and therefore the F2-one holds too. At x = 0 for
t > 0, i.e. on M1, we clearly have

min(I t + max
i

(c(i)(x), I) ≤ 0 ,
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because all the inequalities min(I t + c(i)(x), I) ≤ 0 hold by passage to the limit
(stability) from the Qi domain. This is a case where Proposition 21.2.3 applies in a
very simple way.

Hence, I and I are respectively stratified super and subsolution of the variational
inequality and we can conclude since the comparison result for stratified solutions
easily extend to this framework.

Proposition 21.2.3 allows to treat the following kind of KPP problems: we assume
that M = (Mk)k=0..N is a stratification of RN and that in the framework of Chapter 30,
the uε are solutions of Equation 30.2 where

1. a(i)(x) = λ(i)(x)Id in Ωi where the Ωi are the connected components of MN . We
assume that the functions λ(i) are uniformly bounded and Lipschitz continuous
functions and there exists a constant ν > 0 such that λ(i)(x) ≥ ν in Ωi for any i.

2. b = 0 in RN .

3. f = f (i) in Ωi where the f (i) are KPP-nonlinearities, the c(i) being uniformly
bounded and Lipschitz continuous on Ωi.

Under these conditions, and if the initial data g is as in Chapter 30, the result is
the

Proposition 30.5.2 As ε→ 0, we have

−ε log(uε)→ I locally uniformly in RN × (0,+∞) ,

where I is the unique stratified solution of the equation with
min(It +Hi(x,DI), I) = 0 in Ωi × (0,+∞) ,

I(x, 0) =

{
0 if x ∈ G0,
+∞ otherwise .

(30.13)

oreover we have

uε(x, t)→
{

0 in {I > 0},
1 in the interior of the set {I = 0}.

Finally if Freidlin’s condition holds then I = max(J, 0) where J is the unique stratified
solution of 

Jt +Hi(x,DJ) = 0 in Ωi × (0,+∞) ,

J(x, 0) =

{
0 if x ∈ G0,
+∞ otherwise .

(30.14)
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Function J is given by the following representation formula

J(x, t) = inf

{∫ t

0

l(y(s), ẏ(s))ds; y(0) = x, y(t) ∈ G0, y ∈ H1(0, t)

}
,

where l(y(s), ẏ(s)) =
1

2
[λ(i)(y(s))]−1|ẏ(s)|2 − c(i)(y(s)) if y(s) ∈ Ωi.

Several remarks on this results
(i) We have left this result with a slightly imprecise statement, giving the equations
only in MN × (0, Tf ) and defining l only in MN × (0, Tf ). The next section will (at
least partially) show why this is enough.
(ii) As above in the “cross case”, the proof that I is a stratified subsolution comes
from the arguments given the next section.
(iii) The first part of this result holds for example in the counter-example in dimension
1 given in Chapter 30, the only point is that Freidlin’s condition is not satisfied.



Chapter 31

And What About Jumps?

31.1 The jumps we already take into account

The question we want to address in this section: which kind of control problems with
jumps the formalism of Chapter 4 can take into account? And perhaps a first question
could be: does it even allow to treat some of these problems?

In the formalism of Chapter 4, the dynamic-discount-cost is defined by

(Ẋ, Ṫ , Ḋ, L̇)(s) = (b, c, l)(s) ∈ BCL(X(s), T (s)) .

In this differential inclusion, s can be seen as an “artificial time”: the state of the
system is actually x = X(s) at the “real time” t = T (s). In the equation for T ,
namely Ṫ (s) = bt(s), we can have bt(s) = 0 on some interval [s1, s2]. If this is the
case, the behavior of X can be interpreted as a jump in the “real time”: indeed it is
clear that the trajectory s 7→ X(s) remains continuous but, at time t = T (s1) = T (s2),
we observe a jump for the trajectory X from X(s1) (value of X when we arrive at time
t) to X(s2) (value of X when we leave t). Hence the answer to the second question
above seems to be yes. At least some of them.

To further analyze the situation, we examine a “pure jump” situation where bx =
v ∈ B(0, R) ⊂ RN , bt ≡ 0, c ≡ 0 and l = l(v). More precisely, BCL(x, t) is indepen-
dent of x and t and

BCL = {((v, 0), 0, l(v))}

We assume that l(0) = 0 and the first consequence of the convexity of BCL is that
l(αv) = αl(v) for any v ∈ B(0, R). An other assumption which avoids oscillating
trajectories is that if v = v1 + v2 then l(v) ≤ l(v1) + l(v2). As a consequence of these
two properties of l, l is a convex function of v.

499
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Now we turn to the resolution of a very simple problem which looks like a Finit
problem: if u0 is a continuous function, we want to solve

max(h(Dxu), u− u0) = 0 in RN ,

where h(px) = max|v|≤R (−v · px − l(v)). The control interpretation suggests the so-
lution

u(x) := inf

{∫ θ

0

l(Ẋ(s))ds+ u0(X(θ)) : X(0) = x, |Ẋ(s)| ≤ R, θ > 0

}
.

But by Jensen’s inequality and the homogeneity of l∫ θ

0

l(Ẋ(s))ds ≥ θl

(
1

θ

∫ θ

0

Ẋ(s)ds

)
= θl

(
1

θ
(X(θ)− x)

)
= l (X(θ)− x) ;

and therefore

u(x) = inf
{
u0(X(θ)) + l (X(θ)− x) : X(0) = x, |Ẋ(s)| ≤ R, θ > 0

}
,

or equivalently
u(x) = inf

y∈RN
{u0(y) + l (y − x)} ,

which can be interpreted as the minimal value which can be obtained by making a
jump from x to y = X(θ) with a cost l(y − x) = l (X(θ)− x) for this jump.

This very simple example gives an idea of the type of jumps which can be taken
into account by the framework of Chapter 4. The next section examines cases which
may not enter into this framework but which can be handled.

31.2 The jumps we could take into account

In the control literature, jumps arise in particular in inventory management and lead
to quasi-variational inequality (QVI in short). We refer the reader to Bensoussan and
Lions [44] for a study of such QVI in the framework of stochastic control/elliptic-
parabolic pdes, which was the first situation where they were studied.

In their book, the jumps play a role via an operator M which is typically of the
form

Mu(x) := min
ξ∈Ξ

(u(x+ ξ) + k + C(ξ)) ,

where Ξ is a bounded or unbounded subset of RN , k ≥ 0 is fixed cost and C is a
cost depending on the size of the jump. In general one assume that C is a continuous
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function such that C(ξ) ≥ 0 and C(0) = 0 if 0 ∈ Ξ. If Ξ is unbounded, it is generally
assumed that C is coercive. In [44], a typical case is when Ξ = [0,+∞)N .

In the QVI, the complete Hamiltonian F is of the form max(· · · , u −Mu) and as
a by-product of this form or of the control problem, one has the inequality u ≤Mu
in RN or RN × [0, Tf ].

A favorable situation is when k > 0, both for second-order HJB equations as in
[44] but also for first-order HJ-Equations: we refer for example to [14, 15] for simple
ideas to treat such QVI in the continuous framework, both from the control and pde
points-of-view. We point out that the classical comparison results of the continuous
case extend without any change of assumptions to the QVI-case. And, besides of the
proof via the localization procedure which has to be adapted, there are also no major
changes in the discontinuous framework.

The case when k = 0 is more complicated and even desesperate if minξ∈Ξ (C(ξ)) = 0,
in particular if 0 ∈ Ξ: indeed, in this case, no comparison can hold since, for any
constant c̄, we have

c̄−Mc̄ = c̄−min
ξ∈Ξ

(c̄+ C(ξ)) = −min
ξ∈Ξ

(C(ξ)) = 0 .

Hence all the constants are supersolutions.

Therefore either we are more or less back to the case when k > 0 if 0 /∈ Ξ or we have
to reinterpret the QVI in terms of gradient constraints as we did it in the previous
section in order that these cases enters into the theory. This means that we should
have the classical sublinearity assumption

C(ξ1 + ξ2) ≤ C(ξ1) + C(ξ2) for any ξ1, ξ2 ,

to gether with the homogeneity of degree 1.

Clearly we are not going to study these cases in details but we want to point out
that jumps can help by ensuring the regularity of subsolutions on Mk if 0 ∈ Ξ: indeed
subsolutions of QVI satisfy

u(x) ≤ u(x+ ξ) + C(ξ) for all ξ ∈ Ξ ,

and if there exists a sequence (ξε)ε converging to 0 such that x+ξε /∈Mk, this provides
the regularity on Mk. And, for MN , it suffices to adapt this assumption to have the
regularity from both side, and this is in particular true if B(0, η) ⊂ Ξ for some η > 0.

In the next section, we present an example which is almost entering in the stratified
framework and for which an additional information allows to prove the comparison
result.
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31.3 The jumps we cannot take into account but...

The aim of this section is to examine an HJ-problem which appears in Bouin, Calvez,
Grenier and Nadin [50]; its formulation is highly non-standard and seems rather
far from what we are doing in this book but we show how to analyze the different
difficulties in light of the stratified approach.

The problem consists in looking for a function u : [0, Tf )×RN ×RN → R which is
solution of

max(ut(t, x, v)+v·Dxu(t, x, v)−1, u(t, x, v)−m(t, x)−|v|2) = 0 in (0, Tf )×RN×RN ,

mt(t, x) ≤ 0 and mt(t, x) = 0 if S(t, x) = {0} ,

where m(t, x) = minv′ u(t, x, v′) and S(t, x) is the set of all v′ where this min is
achieved. These equations are complemented by an initial data

u(0, x, v) = u0(x, v) in RN ,

where u0 is a continuous function such that u0(x, v)− |v|2 is bounded.

In order to analyze this problem, it is more convenient to consider w(t, x, v) =
u(t, x, v)−|v|2 which is expected to be a bounded continuous function and which first
solves

max(wt(t, x, v)+v ·Dxw(t, x, v)−1, w(t, x, v)−Mw(t, x)) = 0 in (0, Tf )×RN×RN ,

where
Mw(t, x) := min

v′

(
w(t, x, v′) + |v′|2

)
.

This equation for w generates several remarks: of course, this equation looks like a
quasi-variational inequality which we presented in the previous section, i.e.

Mw(t, x) := min
v′

(w(t, x, v′) + C(v′)) ,

with C(v′) = |v′|2 but here the function C has all the disadvantages: it is not sublinear,
nor homogeneous of degre 1 and minv′ C(v′) = 0. This causes a problem for the initial
data, i.e. for the Finit-equation which is

max(w(0, x, v)− w0(x, v), w(0, x, v)−Mw(0, x)) = 0 in RN × RN , (31.1)

where w0(x, v) = u0(x, v) − |v|2 since any constant is a supersolution and therefore
the Finit-equation does not determine uniquely w(0, x, v).
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Hence we are in the worst case because there is no way that the above equation
could fit into the control framework we have described in Chapter 4.

We are going to try, anyway, to push the arguments as far as possible to show that
we can also take advantage of some features of the QVI along the lines of the remarks
we did at the end of the previous section. And, of course, we are going to forget the
problem with the initial data, by assuming that it is achieved in the classical way:
solving formally (31.1), which consists here as taking the maximal subsolution, the
“natural” initial data should be w(0, x, v) = min(w0(x, v),Mw0(x)).

To start our analysis, we remark that, by the equation, we also have

w(t, x, 0) ≤Mw(t, x) ≤ w(t, x, v′) + |v′|2 for any v′ , (31.2)

and therefore the min is always achieved for v′ = 0. Since w(t, x, v′)+|v′|2 = u(t, x, v′),
we have w(t, x, 0) = m(t, x) and

S(t, x) = {v′; w(t, x, v′) + |v′|2 =Mw(t, x)} .

We deduce two properties from this remark: on one hand, on MN := {(t, x, v); v = 0},
we have the stratified inequality

wt(t, x, 0) ≤ 0 in (0, Tf )× RN ,

and, on the other hand, we have the unusual supersolution inequality

wt(t, x, 0) ≥ 0 if S(t, x) = {0} ,

where S(t, x) is defined above in terms of w and M.

At this level of the analysis, we have a problem which cannot be formulated as a
standard control problem satisfying the (HBCL) assumptions but we have apparently
all the correct stratified inequalities on MN which seems to be a discontinuity for the
cost since the term wt(t, x, v) + v ·Dxw(t, x, v)− 1 in the equation is associated to a
cost 1 while the wt(t, x, 0) ≤ 0 suggests a cost 0 on MN .

Now we turn to the standard assumptions in the stratified framework, namely (TC)
and (NC). For (TC), the Hamiltonian pt + v · px − 1 satisfies (TC-s) and it can
easily be seen that the term w(t, x, v) −Mw(t, x) does not cause any problem for
tangential regularization and we can even remark that a regularization in (t, x) can
be performed even far from MN , allowing to assume that the subsolution are smooth
in t and x. For (NC), (31.2) gives more than needed.

Hence we can almost perform the proof of Theorem 20.4.1 except two additional
difficulties: on one hand, since we are not in a standard control framework, we cannot
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use Lemma 5.4.1. And on the other hand, the localization arguments are more tricky
to apply here.

Complete failure? Not yet!

We sketch the main step to prove a comparison result. If w1 and w2 are respectively
sub and supersolution of the above problem with w1(0, x, v) ≤ w2(0, x, v) in RN×RN ,
we consider, for some parameters 0 < µ < 1 close to 1, δ, α, η > 0 small enough

M = M(µ, δ, η) := max
[0,Tf ]×RN×RN

(µw1(t, x, v)−w2(t, x, v)− δ|v|2−α(|x|2 + 1)1/2− ηt) .

If M > 0, then it cannot be achieved for t = 0 (1) and if (t, x, v) is a maximum point,
we have several cases

1. If w2(t, x, v) < Mw2(t, x), then the conclusion follows easily since (i) because
t > 0, we can assume without loss of generality that w1 is smooth in t and x, (ii) for
α small enough compared to η, µw1(t, x, v) − α(|x|2 + 1)1/2 − ηt is a strict, smooth
subsolution of wt(t, x, v) + v ·Dxw(t, x, v)− 1 = 0 and (iii) this smooth subsolution is
a test-function for w2.

2. Therefore w2(t, x, v) ≥Mw2(t, x) = w2(t, x, v′)+|v′|2 and, using that w1(t, x, v) ≤
w1(t, x, v′) + |v′|2, we have

M ≤ µ(w1(t, x, v′) + |v′|2)− (w2(t, x, v′) + |v′|2)− δ|v|2 − α(|x|2 + 1)1/2 − ηt ,

and, if δ < (1− µ)

M ≤ µw1(t, x, v′)− w2(t, x, v′)− (1− µ)|v′|2 − δ|v|2 − α(|x|2 + 1)1/2 − ηt
≤ µw1(t, x, v′)− w2(t, x, v′)− δ|v′|2 − δ|v|2 − α(|x|2 + 1)1/2 − ηt
≤M − δ|v|2 .

Hence, necessarely v = 0 but examining more carefully the above inequalities and
using δ < (1 − µ), we can also deduce that necessarely v′ = 0. Hence S2(t, x) =
{v′; w2(t, x, v′) + |v′|2} = Mw2(t, x)} = {0} and we have (w2)t(t, x, v) ≥ 0 and we
obtain the contradiction since µw1(t, x, v) − α(|x|2 + 1)1/2 − ηt is a strict, smooth
subsolution of wt(t, x, 0) = 0. And the sketch of the proof is complete.

The reader may think—and he is right—that the above proof works because of
a succession of miracles: it is clear that the “µ-trick”, rather classical in this QVI-
framework, allows to overcome in a perfect way the difficulty due to the non-standard

(1)By adding some large positive constant to w1 and w2, we may assume w.l.o.g that w1, w2 ≥ 0
in [0, Tf ]× RN × RN .
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features of the QVI by leading us to the exact situation where we can use the rather
exotic supersolution property on v = 0.

But the above example is a rare case where (at least in the spirit) some bt = 0-
controls play a key role and the above analysis shows, as we already mentioned it
above, that these jumps can easily be taken into account (in particular in (NC)).
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Chapter 32

And What About Networks?

32.1 Networks and stratified networks

We recall that a simple network in RN is a set containing both points (called nodes)
and segments (called edges), the edges connecting some of the nodes. To be concrete,
we can give the example in R2 of a map with roads (or highways) connecting cities (or
just cross-roads). In this most simple framework, edges are one-dimensional objects
but, of course, more complicated situations can be considered.

One can define control problems and Hamilton-Jacobi Equations on these networks
and Part III is strongly inspired by the theoretical works of Imbert and Monneau
[113, 114, 116]) and Lions and Souganidis [137, 138] for treating various junctions
conditions at nodes. This may give an idea of what can be done in this direction.
Several works have also been devoted to consider applications, and in particular to
traffic problems. We refer the reader to Imbert, Monneau and Zidani [115], Forcadel
and Salazar [88],Forcadel, Salazar, Wilfredo and Zaydan [91], but our list is far from
being complete and up-to-date.

32.1.1 About stratified networks

We want to outline in this section that the framework of stratified problems in Whit-
ney stratification may lead to a rather general point of view for networks but we are
going to do it in a simplified situation.

To do so, we consider the value function U ε : RN × [0, Tf ] defined in the framework
of Chapter 21, with a stratification M = (Mk)k of the form

Mk = M̃k−1 × [0, Tf ] for k ≥ 1 ,
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where (M̃k)k is a (AFS) of RN .On the other hand, (b, c, l) ∈ BCL(x, t) is replaced
by (b, c, l + ε−1d(x)) where d denotes the distance to M0 ∪ · · · ∪MN . Obviously this
change of cost has the objective to make more and more expensive an excursion in
MN+1 and therefore to force the dynamics to stay on the “network”

⋃N
k=1 Mk.

We recall that, by Chapter 21, the value-function U ε is continuous and the unique
solution of F = ε−1d(x) in RN × [0, Tf ] with Fk(x, t, U ε, DU ε) = 0 on Mk. Our main
aim is to provide the asymptotic of U ε and to do so, we first need to establish a key
property of U ε for which have to introduce new Hamiltonians.

To do so, we consider a connected component of M̃k, M̃k
i . By Lemma 3.3.2, M̃k

i =
O ∩ (x + Vk) for some k-dimensional vector space Vk independent of x. If (y, t) ∈
∂M̃k

i × (0, Tf ), we define the “inner dynamics” as

Bk,i
in (y, t) := {b = (bx, bt) ∈ B(y, t) : y + sbx ∈ M̃k

i for s > 0 small enough} ,

and BCLk,i
in (y, t) is the subset of (b, c, l) ∈ BCL(y, t) such that b ∈ Bk,i

in (y, t). Of
course, by the (NC-BCL) assumption, these sets are non empty. Finally we set

Fk,iin (y, t, r, p) = max
(b,c,l)∈BCLk,iin (y,t)

(−b · p+ cr − l) .

Our result is the

Theorem 32.1.1 Under Assumptions (HBCL), (TC-BCL) and (NC-BCL), the
value-functions U ε converge locally uniformly on

⋃N
k=1 Mk to a continuous function

U :
⋃N
k=1 Mk → R which is the unique solution of: for any k = 1, .., N

Fk(x, t, U,DU) = 0 on Mk ,

Fk,iin (x, t, U,DU) = 0 on ∂Mk
i for any i .

Proof — We just sketch it, the details being tedious but straightforward at this point
of the book.
1. The U ε’s are uniformly bounded on

⋃N
k=1 Mk: on one hand, U ε ≥ U∞ where U∞

is the value function obtained by dropping the term ε−1d(x) in the cost and, on the
other hand, the normal controllability implies that once we start from a point in⋃N
k=1 Mk, we can stay on

⋃N
k=1 Mk.

2. We have U = lim inf ∗ U
ε = +∞ in MN+1 but, by the classical stability result, we

have

F(x, t, U,DU) ≥ 0 on
N⋃
k=1

Mk .
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This inequality reduces to

Fk(x, t, U,DU) = 0 on Mk ,

for any k, using that, on each (flat) connected component of Mk, if U − φ has a
minimum point at (x, t) ∈Mk, where φ is a smooth function, then U − φ− p · x has
also a minimum point for any p which is orthogonal to M̃k at x. Then the choice of
p as a minimum point of F(x, t, U(x, t), Dφ(x, t) + p) gives the answer.

3. For the lim sup∗ , we just take it on
⋃N
k=1 Mk and using (of course) only the points

of
⋃N
k=1 Mk. Denoting by U this lim sup∗ , we have,

Fk(x, t, U,DU) = 0 on Mk .

And we can also pass to the limit in the Fk,iin -inequality which gives

min(Fk(x, t, U,DU),Fk,iin (x, t, U,DU)) = 0 on ∂Mk
i for any k and i .

4. Using the arguments of Lemma 26.4.1 with this last inequality allows to show that
U is Mk

i -regular at each point of ∂Mk
i .

5. This last point allows to recopy exactly the stratified proof which provides the key
inequality U ≤ U on

⋃N
k=1 Mk and the continuity/uniqueness of U := U ≤ U .

Q.E.D.

32.1.2 Few examples

We begin with a very easy but relevant example where, in R2 (but this can easily be
generalized to RN)

M̃0 = ZN , M̃1 = (R× Z ∪ Z× R) \ Z× Z ,

and M̃N = R2 \ (M̃1 ∪ M̃0).

On this stratification, one can imagine a lot of control problem by, for instance,
imposing a certain limitation of speed on each edge and a certain cost E−i,j = ((i, j), (i+
1, j)) or E+

i,j = ((i, j), (i, j + 1)). For instance, if x ∈ E−i,j or x ∈ E+
i,j

BCL1(x, t) :=

{
{((bx,−1), 0, |bx|/2), |bx| ≤ 2} if i or j is a prime

{((bx,−1), 0, 2|bx|), |bx| ≤ 1} otherwise ,

the “1” in BCL1 refereeing to M̃1. And if one insists to define BCL(x, t) on M̃N ×
(0,+∞), we can define it as {((bx,−1), 0, ε−1), bx ∈ B(0, 0.1)} and, on M̃0× (0,+∞)
(but also on M̃1 × (0,+∞)), we just use the extension by upper semicontinuity.
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Such example is very simple because each connected component of M̃1 (or M2)
is extremely simple and we have no problem to obtain the regularity by using the
complete controllability.

The second example “ad augusta, per angusta” in R3 is the case where, if (x1, x2, x3)
are the coordinates of x ∈ R3

M̃2 = { x1 = −1, (x2, x3) 6= (0, 0)} ∪ { x1 = +1, (x2, x3) 6= (0, 0)} ,

M̃1 = (−1, 1)× {(0, 0)} , M̃0 = {(−1, 0, 0), (1, 0, 0)} ,

and M̃3 = R3 \ (M̃2 ∪ M̃1 ∪ M̃0).

Here we just define the specific dynamic and cost BCLi on M̃i × (0,+∞)

BCL2(x, t) := {((bx,−1), 0, |bx|/2), |bx| ≤ 2} ,

BCL1(x, t) := {((bx,−1), 0, 2|bx|), |bx| ≤ 1} ,

and we can see BCL3(x, t) as being {((bx,−1), 0, ε−1), |bx| ≤ 2}. On M̃0 × (0,+∞),
we do not impose any particular cost, the BCL at such points (but also elsewhere)
being computed using the upper semi-continuity of BCL.

What could be interesting in such example, at the “network level”, is to force the
dynamic X to go through M̃1 and this can be done by a suitable choice of the initial
data. Choose for example

u0(x1, x2, x3) = −10x1 + (1− x2
2)+ .

If we look at the control problem on (M̃2 ∪ M̃1 ∪ M̃0) × (0,+∞), it is clear that, if
we start from a point like (−1, x2, x3) and if we stay on {x1 = −1}, we are going to
pay (at least) a final cost which is 10.

But if we decide to go directly to (−1, 0, 0), to use the “channel” M̃1 and then to
go to the point (1, 1, 0) the total cost on the long run (i.e. for t large enough) will be

2−1(x2
2 + x2

3)1/2 + 4 + 2−1 − 10 .

The four terms represent successively the cost for joining (−1, 0, 0), crossing the chan-
nel, going to the minimum point (1, 1, 0) and finally the terminal cost.

Of course, if (x2
2 + x2

3)1/2 is not too large, this strategy is far better than the other
one.



Chapter 33

Further Discussions and Open
Problems
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Appendix A

Notations and Terminology

F,G, H Generic Hamiltonians
A, E Generic subsets of RN

O,F Generic open and closed subsets of RN

K Generic compact subset of RN

B(y, r) Open ball of center y ∈ Rk and of radius r > 0 for the Euclidian norm.

A a compact, convex subset of Rp

A the space of controls, A = L∞(0, T ;A)
BCL(·, ·) set-valued map combining all the dynamics, costs, discount factors, p.99
(X,T,D, L) a generic trajectory of the differential inclusion, p.100
T (x, t) space of controled trajectories such that (X,T,D, L)(0) = (x, t, 0, 0), p.103
T reg(x, t) space of regular controlled trajectories such that

(X,T,D, L)(0) = (x, t, 0, 0), p.177

z∗, z
∗ lower and upper semi-continuous enveloppes, p.35

u.s.c., l.s.c. upper/lower semi-continuous function, p.35
Vk k-dimensional vectorial subspace, typically Vk = Rk × {0}N−k, p.518
Qx,t
r,h the open cylinder B(x, r)× (t− h, t).

Qx,t
r,h[F ] the open cylinder

(
B(x, r) ∩ F

)
× (t− h, t), p.50.

USC-Sub(F) set of u.s.c. subsolutions on F , p.44
LSC-Sup(F) set of l.s.c. supersolutions on F , p.44
PC1(RN × [0, Tf ]) piecewise C1-smooth test functions, p.230
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M a general regular stratification of RN , p.66
(AFS) Admissible Flat Stratification, p.63
(RS) Regular Stratification, p.66
(HJB-SD) Hamilton-Jacobi-Bellman in Stratified Domains
(AHG) Assumptions on the Hamiltonian in the General case
(LAHF) Local Assumptions on the Hamiltonians in the Flat case

(TC) Tangential Continuity (pde version), p.79
(TC-BCL) Tangential Continuity (control version)
(NCw) Weak Normal Controllability, p.76
(NC) Normal Controllability (pde version), p.80
(NC-BCL) Normal Controllability (control version)
(Mon) Monotonicity Assumption, p.80

(SCR) Strong Comparison Result, p.41,43
(LCR) Local Comparison Result, p.44
(GCR) Global Comparison Result, p.44

Notions of solutions (see also appendix B for quick reference)

(CVS) Ishii solutions / Classical viscosity solutions, p.160 (see also Section 3.1.1)
(FLS) Flux-Limited Solution, p.238
(JVS) Junction Viscosity solution, p.265

Stratified solutions, p.339

NB: The “good framework for HJ Equations with discontinuities” is defined p.136.
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Assumptions, Hypotheses, Notions
of Solutions

The page number refers to the page where the assumption is stated for the first time
in the book.

Basic or fundamental assumptions

• (Hclass.
BA−CP) Basic Assumptions on the Control Problem – Classical case: p. 26

(i) The function u0 : RN → R is a bounded, uniformly continuous function.

(ii) The functions b, c, l are bounded, uniformly continuous on RN× [0, Tf ]×A.

(iii) There exists a constant C1 > 0 such that, for any x, y ∈ RN , t ∈ [0, Tf ],
α ∈ A, we have

|b(x, t, α)− b(y, t, α)| ≤ C1|x− y| .

• (HBA−CP) Basic Assumptions on the Control Problem: p. 30

(i) The function u0 : RN → R is a bounded, continuous function.

(ii) The functions b, c, l are bounded, continuous functions on RN × [0, Tf ]×A
and the sets (b, c, l)(x, t, A) are convex compact subsets of RN+2 for any
x ∈ RN , t ∈ [0, Tf ]

(1).

(1)The last part of this assumption which is not a loss of generality will be used for the connections
with the approach by differential inclusions.
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(iii) For any ball B ⊂ RN , there exists a constant C1(B) > 0 such that, for any
x, y ∈ RN , t ∈ [0, Tf ], α ∈ A, we have

|b(x, t, α)− b(y, s, α)| ≤ C1(B) (|x− y|+ |t− s|) .

• (HBA−HJ) Basic Assumptions on the Hamilton-Jacobi equation: p. 30

There exists a constant C2 > 0 and, for any ball B ⊂ RN×[0, Tf ], for any R > 0,
there exists constants C1(B,R) > 0, γ(R) ∈ R and a modulus of continuity
m(B,R) : [0,+∞) → [0,+∞) such that, for any x, y ∈ B, t, s ∈ [0, Tf ], −R ≤
r1 ≤ r2 ≤ R and p, q ∈ RN

|H(x, t, r1, p)−H(y, s, r1, p)| ≤ C1(B,R)[|x−y|+|t−s|]|p|+m(B,R)(|x−y|+|t−s|) ,

|H(x, t, r1, p)−H(x, t, r1, q)| ≤ C2|p− q| ,
H(x, t, r2, p)−H(x, t, r1, p) ≥ γ(R)(r2 − r1) .

• (HBA−pt) Basic Assumption on the pt-dependence, p. 52

For any (x, t, r, px, pt) ∈ F×(0, Tf ]×R×RN×R, the function pt 7→ G
(
x, t, r, (px, pt)

)
is increasing and G

(
x, t, r, (px, pt)

)
→ +∞ as pt → +∞, uniformly for bounded

x, t, r, px.

• (HBA−Conv) Basic Assumption in the convex case, p.58

H(x, t, r, p) is a locally Lipschitz function which is convex in (r, p). Moreover,
for any ball B ⊂ RN × [0, Tf ], for any R > 0, there exists constants L =
L(B,R), K = K(B,R) > 0 and a function G = G(B,R) : RN → [1,+∞[ such
that, for any x, y ∈ B, t, s ∈ [0, Tf ], −R ≤ u ≤ v ≤ R and p ∈ RN

DpH(x, t, r, p) · p−H(x, t, u, p) ≥ G(p)− L ,

|DxH(x, t, r, p)|, |DtH(x, t, r, p)| ≤ KG(p)(1 + |p|) ,
DrH(x, t, r, p) ≥ 0 .

Stratification assumptions

• (HST)flat Structure of an admissible flat stratification, p.63

The family M = (Mk)k=0..N of disjoint submanifolds of RN is said to be an
Admissible Flat Stratification of RN if RN = M0 ∪M1 ∪ · · · ∪MN and

(i) If x ∈Mk for some k = 0..N , there exists r = rx > 0 such that
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(a) B(x, r) ∩Mk = B(x, r) ∩ (x+ Vk) for some (x+ Vk) ∈ V (k)(x) ;

(b) For any l < k, B(x, r) ∩Ml = ∅ ;

(c) For any l > k, B(x, r) ∩Ml is either empty or has at most a finite
number of connected components ;

(d) For any l > k, B(x, r) ∩Ml
j 6= ∅ if and only if x ∈ ∂Ml

j.

(ii) If Mk
i ∩Ml

j 6= ∅ for some l > k then Mk
i ⊂Ml

j.

(iii) The following inclusion holds: Mk ⊂M0 ∪M1 ∪ · · · ∪Mk.

• N.B. Convergence in the sense of stratification is defined pp. 364 and 366.

Assumptions for the differential inclusion and the

value-function

• (HBCL)fund Fundamental assumptions on the set-valued map BCL, p.99

The set-valued map BCL : RN × [0, Tf ]→ P(RN+3) satisfies

(i) The map (x, t) 7→ BCL(x, t) has compact, convex images and is upper
semi-continuous;

(ii) There exists M > 0, such that for any x ∈ RN and t > 0,

BCL(x, t) ⊂
{

(b, c, l) ∈ RN+1 × R× R : |b| ≤M ; |c| ≤M ; |l| ≤M
}
,

• (HBCL)struct Structure assumptions on the set-valued map BCL, p.101

There exists c,K > 0 such that

(i) For all x ∈ RN , t ∈ [0, Tf ] and b = (bx, bt) ∈ B(x, t), −1 ≤ bt ≤ 0.
Moreover, there exists b = (bx, bt) ∈ B(x, t) such that bt = −1.

(ii) For all x ∈ RN , t ∈ [0, Tf ], if ((bx, bt), c, l) ∈ BCL(x, t), then −Kbt+c ≥ 0.

(iii) For any x ∈ RN , there exists an element in BCL(x, 0) of the form ((0, 0), c, l)
with c ≥ c.

(iv) For all x ∈ RN , t ∈ [0, Tf ], if (b, c, l) ∈ BCL(x, t) then max(−bt, c, l) ≥ c.

• (HBCL) is just the conjunction of (HBCL)fund and (HBCL)struct.

• (HU) : the value-function U is locally bounded on Ω× [0, Tf ], p.420.
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Normal controllability, tangential continuity, Mono-

tonicity

• (TC) Tangential Continuity, HJ version, p.79

for any x1 = (y1, z), x2 = (y2, z) ∈ B∞(x̄, r), |u| ≤ R, p ∈ RN , then

|G(x1, u, p)−G(x2, u, p)| ≤ CR
1 |y1 − y2|.|p|+mR

(
|y1 − y2|

)
.

• (TC-s) Strong Tangential Continuity, p. 88

For any x1 = (y1, z), x2 = (y2, z) ∈ B∞(X̄, r), |u| ≤ R, p = (py, pz) ∈ RN , then

|G(X1, u, p)−G(X2, u, p)| ≤ CR
1 |y1 − y2|.|py|+mR

(
|y1 − y2|

)
.

• (TC-BCL) Tangential Continuity, control version, in the case when M is an
(AFS) with Mk = (x, t) + Vk, p.139

For any 0 ≤ k ≤ N + 1 and for any (x, t) ∈ Mk, there exists a constant
C1 > 0 and a modulus m : [0,+∞) → R+ such that, for any j ≥ k, if
(y1, t1), (y2, t2) ∈ Mj ∩ B((x, t), r) with (y1, t1) − (y2, t2) ∈ Vk, then for any
(b1, c1, l1) ∈ BCL(y1, t1), there exists (b2, c2, l2) ∈ BCL(y2, t2) such that

|b1−b2| ≤ C1(|y1−y2|+ |t1−t2|) , |c1−c2|+ |l1−l2| ≤ m
(
|y1−y2|+ |t1−t2|

)
.

• (NCw) Weak Normal Controllability, p.76

(i) If N − k > 1, there exists e ∈ RN−k such that, for any R > 0, we have

G(X, u, (pY , Ce))→ +∞ when C → +∞ ,

uniformly for X = (Y, Z) ∈ B∞(X̄, r), |u| ≤ R, |pY | ≤ R.

(ii) If N − k = 1, this property holds for e = +1.

(iii) If N − k = 1, this property holds for e = −1.

• (NC) Normal Controllability, HJ version, p. 80

for any x = (y, z) ∈ B∞(x̄, r), |u| ≤ R, p = (py, pz) ∈ RN , then

G(x, u, p) ≥ CR
2 |pz| − CR

3 |py| − CR
4 .
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• (NCH) Normal Controllability, codimension 1 case, p. 163

For any (x, t) ∈ H × [0, Tf ], there exists δ = δ(x, t) and a neighborhood V =
V(x, t) such that, for any (y, s) ∈ V

[−δ, δ] ⊂ {b1(y, s, α1) · eN , α1 ∈ A1} if (y, s) ∈ Ω1 ,

[−δ, δ] ⊂ {b2(y, s, α2) · eN , α2 ∈ A2} if (y, s) ∈ Ω2 ,

where eN = (0, 0 · · · , 0, 1) ∈ RN .

• (NC-BCL) Normal Controllability, multi-D case control version, p.139

There exists δ = δ(x, t) > 0, such that, for any (y, s) ∈ B((x, t), r) \Mk, one
has

B(0, δ) ∩ V ⊥k ⊂ P⊥ (B(y, t)) .

• (Mon) Monotonicity property, p. 80

For any R > 0, there exists λR, µR ∈ R, such that we have either ΛR > 0 and
for any x ∈ B∞(x̄, r), p = (py, pz) ∈ RN ,

G(x, u2, p)−G(x, u1, p) ≥ λR(u2 − u1) (B.1)

for any −R ≤ u1 ≤ u2 ≤ R, or (B.1) holds with λR = 0, we have µR > 0 and

G(x, u1, q)−G(x, u1, p) ≥ µR(qy1 − py1) , (B.2)

for any q = (qy, pz) with py1 < qy1 and pyi = qyi for i = 2, ..., p.

We say that (Mon-u) is satisfied if (B.1) holds and (Mon-p) is satisfied if (B.2)
holds.

Localisation, convexity, subsolutions

• (LOC1) localization hypothesis 1, p.45

If F is unbounded, for any u ∈ USC-Sub(F), for any v ∈ LSC-Sup(F), there
exists a sequence (uα)α>0 of u.s.c. subsolutions of (3.3) such that uα(x)−v(x)→
−∞ when |x| → +∞, x ∈ F . Moreover, for any x ∈ F , uα(x) → u(x) when
α→ 0.
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• (LOC2) localization hypothesis 2, p.45

For any x ∈ F , r > 0, if u ∈ USC-Sub(Fx,r), there exists a sequence (uδ)δ>0

of functions in USC-Sub(Fx,r) such that buδ − ucx∂Fx,r ≥ η(δ) > 0 for any δ.
Moreover, for any y ∈ Fx,r, uδ(y)→ u(y) when δ → 0.(2)

• (LOC1)-evol localization hypothesis 1, evolution version, p.50

If F is unbounded, for any u ∈ USC-Sub(F× [0, Tf ]), for any v ∈ LSC-Sup(F×
[0, Tf ]), there exists a sequence (uα)α>0 of u.s.c. subsolutions of (3.3) such that
uα(x, t) − v(x, t) → −∞ when |x| → +∞, x ∈ F , uniformly for t ∈ [0, Tf ].
Moreover, for any x ∈ F , uα(x, t)→ u(x, t) when α→ 0.

• (LOC2)-evol localization hypothesis 2, evolution version, p.50

For any x ∈ F , if u ∈ USC-Sub(Qx,t

r,h̄
[F ]) for some 0 < h̄ < t, there exists

0 < h ≤ h̄ and a sequence (uδ)δ>0 of functions in USC-Sub(Qx,t
r,h[F ]) such that

buδ − uc(x,t)∂ latQ
≥ η̃(δ) > 0 with η̃(δ) → 0 as δ → 0. Moreover, for any y ∈ F ,

uδ(y)→ u(y) when δ → 0.

• (HSub−HJ) Existence of a subsolution, p.58

There exists a C1-function ψ : RN × [0, Tf ]→ R which is a subsolution of (3.10)
and which satisfies ψ(x, t) → −∞ as |x| → +∞, uniformly for t ∈ [0, Tf ] and
ψ(x, 0) ≤ u0(x) in RN .

• (HConv) convexity for a general Hamiltonian, p. 84

For any x ∈ B∞(X̄, r), the function (u, p) 7→ G(X, u, p) is convex.

• (HQC−R) Quasiconvex Hamiltonians in R, p. 145

f : R → R is continuous, coercive and quasi-convex, i.e for any a ∈ R, the
lower level set {x : f(x) ≤ a} is convex or equivalently, for any x, y ∈ R and
λ ∈ (0, 1),

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} .

• (HQC) Quasi-convex Hamiltonians in the eN -direction in RN , p. 148

For any fixed (x, t, r, p′), the function h : s 7→ H(x, t, r, p′ + seN) satisfies
(HQC−R). As a consequence, H = max(H+, H−) where s 7→ H+(x, t, r, p′ +
pNeN) is decreasing and s 7→ H−(x, t, r, p′ + pNeN) is increasing.

(2)We recall that
bfcx∂Fx,r := f(x)− max

y∈∂Fx,r
f(y) .
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Comparison results

• (GCR)F Global Comparison Result in F , p.44

For any u ∈ USC-Sub(F), for any v ∈ LSC-Sup(F), we have u ≤ v on F .

• (LCR)F Local Comparison Result in F , p.44

For any x ∈ F , there exists r > 0 such that, if u ∈ USC-Sub(Fx,r), v ∈
LSC-Sup(Fx,r) and maxFx,r(u− v) > 0, then

max
Fx,r

(u− v) ≤ max
∂Fx,r

(u− v) .

• (LCR)-evol Local Comparison Result, evolution case, p.50

For any (x, t) ∈ F × (0, Tf ], there exists r > 0, 0 < h < t such that, if
u ∈ USC-Sub(Qx,t

r,h[F ]), v ∈ LSC-Sup(Qx,t
r,h[F ]) and max

Qx,tr,h[F ]

(u− v) > 0, then

max
Qx,tr,h[F ]

(u− v) ≤ max
∂pQ

x,t
r,h[F ]

(u− v) .

N.B. here, ∂pQ
x,t
r,h[F ] stands for the parabolic boundary:

(∂B(x, r) ∩ F)× [t− h, t] ∪ (B(x, r) ∩ F)× {t− h}.

• LCRψ(x̄, t̄) Local Comparison Result around (x, t) in the stratified case, p.346

There exists r = r(x̄, t̄) > 0 and h = h(x̄, t̄) ∈ (0, t̄) such that, if u and v are
respectively a strict stratified subsolution and a stratified supersolution of some
ψ–Equation in Qx̄,t̄

r,h and if max
Qx̄,t̄r,h

(u− v) > 0, then

max
Qx̄,t̄r,h

(u− v) ≤ max
∂pQ

x̄,t̄
r,h

(u− v) .

N.B. here, ψ-equation means an equation with obstacle ψ, a continuous func-
tion: max(F(x, t, w,Dw), w − ψ) = 0.

Notions of solutions

N.B. The following definitions are just gathered here as a quick reminder, the reader
will find more details and the precise definition on the page given in reference.
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• (CVS) Ishii Solution for the hyperplane case, p.160

This is the “classical” notion of viscosity solution (hence the acronym (CVS))
where on the hyperplane the relaxed condition reads (in the viscosity sense)max

(
ut +H1(x, t, u,Du), ut +H2(x, t, u,Du)

)
≥ 0 ,

min
(
ut +H1(x, t, u,Du), ut +H2(x, t, u,Du)

)
≤ 0 .

The notion is “classical” in the sense that testing is done with test-functions in
C1(RN × [0, Tf ]) contrary to (FLS) and (JVS) below.

• (FLS) Flux-Limited Solution, p.238

We are given a flux-limiter G on H (codim-1 discontinuity). Here, we use the
extended PC1(RN × [0, Tf ])-test-functions.
A locally bounded function u : RN×(0, Tf )→ R is a (FLSub) of (HJ-Gen)-(FL)
if it is a classical viscosity subsolution of (HJ-Gen) and if, for any test-function
ψ ∈ PC1(RN × [0, Tf ]) and any local maximum point (x, t) ∈ H × (0, Tf ) of
u∗ − ψ in RN × (0, Tf ), at (x, t) the following inequality holds

max
(
ψt+G(x, t, u∗, DHψ), ψt+H+

1 (x, t, u∗, Dψ1), ψt+H−2 (x, t, u∗, Dψ2)
)
≤ 0 ,

where u∗ = u∗(x, t).

A locally bounded function v : RN × (0, Tf ) → R is a (FLSuper) of (HJ-Gen)-
(FL) if it is a classical viscosity supersolution of (HJ-Gen) and if, for any test-
function ψ ∈ PC1(RN×[0, Tf ]) and any local minimum point (x, t) ∈ H×(0, Tf )
of v∗ − ψ in RN × (0, Tf ), at (x, t) the following inequality holds

max
(
ψt +G(x, t, v∗, DHψ), ψt +H+

1 (x, t, v∗, Dψ1), ψt +H−2 (x, t, v∗, Dψ2)
)
≥ 0 ,

where v∗ = v∗(x, t).
A locally bounded function is a flux-limited solution if it is both a (FLSub) and
a (FLSuper).

• (JVS) Junction Viscosity solution, p.265

This notion is somehow “consistent” with the usual viscosity definitions. Given
a flux-limiter G we use test-functions in PC1(RN × [0, Tf ]) for which we test as
usual.
A locally bounded function u : RN × (0, Tf ) → R is a (JVSub) of (HJ-Gen)-
(GJC) if it is a classical viscosity subsolution of (HJ-Gen) and if, for any test-
function ψ = (ψ1, ψ2) ∈ PC1(RN×[0, Tf ]) and any local maximum point (x, t) ∈
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H× (0, Tf ) of u∗ − ψ in RN × (0, Tf ),

min
(
G(x, t, ψt, DHψ,

∂ψ1

∂n1

,
∂ψ2

∂n2

), ψt+H1(x, t, u∗, Dψ1), ψt+H2(x, t, u∗, Dψ2)
)
≤ 0,

where u∗ and the derivatives of ψ, ψ1, ψ2 are taken at (x, t).

A locally bounded function v : RN × (0, Tf ) → R is a (JVSuper) of (HJ-Gen)-
(GJC) if it is a classical viscosity supersolution of (HJ-Gen) and if, for any
test-function ψ = (ψ1, ψ2) ∈ PC1(RN × [0, Tf ]) and any local minimum point
(x, t) ∈ H × (0, Tf ) of v∗ − ψ in RN × (0, Tf ),

max
(
G(x, t, ψt, DHψ,

∂ψ1

∂n1

,
∂ψ2

∂n2

), ψt+H1(x, t, v∗, Dψ1), ψt+H2(x, t, v∗, Dψ2)
)
≥ 0,

where v∗ and the derivatives of ψ, ψ1, ψ2 are taken at (x, t).
A (JVS) (i.e. a junction viscosity solution) is a locally bounded function which
is both (JVSub) and (JVSuper).

• Stratified solutions, p.339

1. — (S-Super): A locally bounded function v : RN × [0, Tf [→ R is a stratified
supersolution of (HJB-S) if it is an Ishii supersolution of (20.1).

2. — (w-S-Sub): A locally bounded function u : RN × [0, Tf [→ R is a weak
stratified subsolution of (HJB-S) if

(a) for any k = 0, ..., (N + 1), u∗ is an Ishii subsolution of

Fk
(
x, t, u∗, Du∗

)
≤ 0 on Mk,

(b) similarly, for t = 0, and k = 0..N , u∗(x, 0) is an Ishii subsolution of

Fkinit(x, u∗(x, 0), Dxu
∗(x, 0)) ≤ 0 on Mk

0 .

3. — (s-S-Sub): A locally bounded function u : RN × [0, Tf [→ R is a strong
stratified subsolution of (HJB-S) if it is a (w-S-Sub) and satisfies additionally

(a) F∗
(
x, t, u∗, Du∗

)
≤ 0 in RN × (0, Tf ) ,

(b) (Finit)∗(x, u∗(x, 0), Dxu
∗(x, 0)) ≤ 0 in RN .

4. — A weak or strong stratified solution is a function which is both a (S-Super)
and either a (w-S-Sub) or a (s-S-Sub).
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“Good Assumptions” for the Network Approach

• (HBA−HJ)+ [p. 233]: assumption (HBA−HJ) in which we assume γ(R) ≥ 0 for
any R.

• (HBA−CP)+ [p. 233]: assumption (HBA−CP) in which we assume c(x, t, α) ≥ 0
for any x, t, α.

• (NC-HJ) Normal controllability for general Hamiltonians, p. 234

For any R > 0, there exists constants CR
2 , C

R
3 , C

R
4 > 0 such that, for any

(x, t) ∈ H × (0, Tf ) with |x| ≤ R, |u| ≤ R and p = (p′, pN) with p′ ∈ RN−1,
pN ∈ R,

H(x, t, u, p) ≥ CR
2 |pN | − CR

3 |p′| − CR
4 .

• (TC-HJ) Tangential Continuity for general Hamiltonians, p. 234

for any R > 0, there exists CR
1 > 0 and a modulus of continuity mR : [0,+∞[→

[0,+∞[ such that for any x = (x′, xN), y = (y′, xN) with |x|, |y| ≤ R, |xN | ≤
R−1, t, s ∈ [0, Tf ], |u| ≤ R, p = (p′, pN) ∈ RN ,

|H(x, t, u, p)−H(y, s, u, p)| ≤ CR
1 (|x′− y′|+ |t− s|)|p′|+mR

(
|x′− y′|+ |t− s|

)
.

With these assumptions we can formulate several “good assumptions” on H1, H2

depending on the context

• (GA-Gen) General case, p. 234: H1, H2 satisfy (HBA−HJ)+ and (NC-HJ).

• (GA-Conv) Convex case, p. 234: H1, H2 satisfy (GA-Gen) and are convex in
p.

• (GA-QC) Quasi-convex case, p. 234: H1, H2 satisfy (GA-Gen) and (HQC).

• (GA-CC) Control case, p. 234: (HBA−CP)+ and (NCH) are satisfied.

Assumptions on the junction condition G
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• (GA-ContG) A general assumption, p. 235
For any R > 0, there exist constants CR

5 , C
R
6 such that, for any x, y ∈ H,

t, s ∈ [0, Tf ], |r| ≤ R, p′1, p
′
2 ∈ RN−1, a, b, c, a′, b′, c′ ∈ R

|G(x, t, a, p′1, b, c)−G(y, s, a, p′1, b, c)| ≤ CR
5 (|x−y|+|t−s|)

(
1+|p′1|+ε0(|a|+|b|+|c|)

)
.

|G(x, t, a′, p′2, b
′, c′)−G(x, t, a, p′1, b, c)| ≤ CR

6 (|p′2−p′1|+(|a′−a|+|b′−b|+|c′−c|)
)
.

With this assumption we can formulate several “good assumptions” on G de-
pending on the context

• (GA-G-FL) Flux-Limited, p. 235:G is independent of a, b, c and (GA-ContG)
holds with ε0 = 0.

• (GA-G-GKT) Kirchhoff type, p. 235: (GA-ContG) holds with ε0 = 0 and
(14.2) holds with α ≥ 0, β > 0.

• (GA-G-FLT) Flux-limited type, p. 235: G(x, t, a, p′, b, c) = G1(a, p′, b, c) +
G2(x, t, a, p′) where G1 is a Lipschitz continuous function which satisfies (14.2)
with α > 0, β = 0 while G2 satisfies (GA-G-FL).

“Good Assumptions” for Stratified Problems

(HBA−SF) Basic Assumptions on the Stratified Framework

(i) There exists a stratification M = (Mk)k=0...(N+1) of RN × (0, Tf ) such that
(x, t) 7→ F(x, t, r, p) is continuous on MN+1 and may be discontinuous on M0 ∪
M1∪· · ·∪MN . Moreover (0RN , 1) /∈ (T(x,t)M

k)⊥ for any (x, t) ∈Mk and for any
k = 1...N (3). In the same way, there exists a stratification M0 = (Mk

0)k=0...N

of RN such that the Hamiltonian x 7→ Finit(x, r, px) is continuous on MN
0 and

may be discontinuous on M0
0 ∪M1

0 ∪ · · · ∪MN−1
0 .

(ii) The “good framework for HJB Equations with discontinuities” holds for Equa-
tion (20.1) in O = RN × (0, Tf ) associated to the stratification M.

(iii) The “good framework for HJB Equations with discontinuities” holds for the
equation Finit = 0 in O = RN , associated to the stratification M0.

(3)This assumption, whose aim is to avoid “flat part” of Mk in time, will be redundant to the
normal controllability assumption in RN × (0, Tf ).
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We recall that the assumptions for a “Good Framework for HJ Equations with
Discontinuities” are that (HBCL), (TC-BCL) (p. 139 ) and (NC-BCL) (p. 139 )
hold. We refer to Section 5.5 where the connections with Hamiltonian assumptions
(Mon), (TC), (NC) are described.
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& Applications. Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices
by Maurizio Falcone and Pierpaolo Soravia.

[14] G. Barles. Deterministic impulse control problems. SIAM J. Control Optim.,
23:419–432, 1985.

[15] G. Barles. Quasi-variational inequalities and first-order hamilton-jacobi equa-
tions. Nonlinear Analysis: Theory, Methods & Applications, 9(2):131–148, 1985.

[16] G. Barles, A. Briani, and E. Chasseigne. A Bellman approach for two-domains
optimal control problems in RN. ESAIM Control Optim. Calc. Var., 19(3):710–
739, 2013.

[17] G. Barles, A. Briani, and E. Chasseigne. A Bellman approach for regional
optimal control problems in RN . SIAM J. Control Optim., 52(3):1712–1744,
2014.



HJ-Equations with Discontinuities: Bibliography 531

[18] G. Barles, A. Briani, E. Chasseigne, and C. Imbert. Flux-limited and classical
viscosity solutions for regional control problems. ESAIM, Control Optim. Calc.
Var., 24(4):1881–1906, 2018.

[19] G. Barles, L. Bronsard, and P. E. Souganidis. Front propagation for reaction-
diffusion equations of bistable type. Ann. Inst. Henri Poincaré, Anal. Non
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ume 17 of Mathématiques & Applications (Berlin) [Mathematics & Applica-
tions]. Springer-Verlag, Paris, 1994.

[32] Guy Barles. Nonlinear Neumann boundary conditions for quasilinear degenerate
elliptic equations and applications. J. Differ. Equations, 154(1):191–224, 1999.

[33] Guy Barles and Alain-Philippe Blanc. Large deviations estimates for the exit
probabilities of a diffusion process through some vanishing parts of the bound-
ary. Adv. Differential Equations, 2(1):39–84, 1997.

[34] Guy Barles, Ariela Briani, Emmanuel Chasseigne, and Nicoletta Tchou. Ho-
mogenization results for a deterministic multi-domains periodic control prob-
lem. Asymptot. Anal., 95(3-4):243–278, 2015.

[35] Guy Barles and Emmanuel Chasseigne. (Almost) everything you always wanted
to know about deterministic control problems in stratified domains. Netw.
Heterog. Media, 10(4):809–836, 2015.

[36] Guy Barles and Emmanuel Chasseigne. On the regularizing effect for un-
bounded solutions of first-order Hamilton-Jacobi equations. J. Differ. Equa-
tions, 260(9):7020–7031, 2016.

[37] Guy Barles, Hitoshi Ishii, and Hiroyoshi Mitake. On the large time behavior
of solutions of Hamilton-Jacobi equations associated with nonlinear boundary
conditions. Arch. Ration. Mech. Anal., 204(2):515–558, 2012.

[38] Guy Barles and Espen Robstad Jakobsen. On the convergence rate of approxi-
mation schemes for Hamilton-Jacobi-Bellman equations. M2AN Math. Model.
Numer. Anal., 36(1):33–54, 2002.

[39] Guy Barles and Jean-Michel Roquejoffre. Large time behaviour of fronts gov-
erned by eikonal equations. Interfaces Free Bound., 5(1):83–102, 2003.

[40] Guy Barles and Panagiotis E. Souganidis. A new approach to front propagation
problems: theory and applications. Arch. Ration. Mech. Anal., 141(3):237–296,
1998.

[41] Guy Barles and Panagiotis E. Souganidis. Some counterexamples on the asymp-
totic behavior of the solutions of Hamilton-Jacobi equations. C. R. Acad. Sci.,
Paris, Sér. I, Math., 330(11):963–968, 2000.



HJ-Equations with Discontinuities: Bibliography 533

[42] E. N. Barron and R. Jensen. Semicontinuous viscosity solutions for Hamilton-
Jacobi equations with convex Hamiltonians. Comm. Partial Differential Equa-
tions, 15(12):1713–1742, 1990.

[43] Emmanuel Nicholas Barron and Robert Jensen. Generalized viscosity solutions
for Hamilton-Jacobi equations with time-measurable Hamiltonians. J. Differ-
ential Equations, 68(1):10–21, 1987.

[44] A. Bensoussan and J.-L. Lions. Impulse control and quasi-variational inequali-
ties. Gauthier-Villars, 1984.

[45] Samuel Biton. Nonlinear monotone semigroups and viscosity solutions. Ann.
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[48] Michelle Boué, Paul Dupuis, and Richard S. Ellis. Large deviations for small
noise diffusions with discontinuous statistics. Probab. Theory Relat. Fields,
116(1):125–149, 2000.

[49] Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic
equations. Kinet. Relat. Models, 8(2):255–280, 2015.

[50] Emeric Bouin, Vincent Calvez, Emmanuel Grenier, and Grégoire Nadin. Large
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biologique. Bull. Univ. État Moscou, Sér. Int., Sect. A: Math. et Mécan. 1, Fasc.
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