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Foreword

This manuscript is a preliminary version of (hopefully) a future book whose aim is
not only to describe the state-of-the-art for Hamilton-Jacobi Equations with discon-
tinuities, but also to provide new results and applications, in particular for problems
with boundary conditions.

We have decided to put this version online to have some reactions on this probably
imperfect first attempt: we are conscious that some points in the presentation can
be improved; some ideas can be, at the same time, generalized and simplified; some
results may also be added (actually some parts are still missing) and of course, refer-
encing can be improved. Moreover, some sections are just announced and not drafted
yet. For all these reasons, please, do not hesitate to send us all the remarks you may
have on what is written down or on what we should write; we will try to give credits
to all valuable contributions in a suitable way.

What is the aim of this book and how is it written?

Our first aim was to revisit the recent progress made in the study of Hamilton-
Jacobi Equations with discontinuities and related topics which had some influence on
it, like problems set on networks (a subject which we had to consider a little bit even if
we did not want to enter too deeply into it). Revisiting means that we are not merely
copy-pasting with few modifications the existing articles. Instead we have tried to
emphasize the main common ideas, either technical or more fundamental ones. This
is why, while thinking about all the common points in several works, we have decided
to dedicate an entire part to the “basic results”, which are common bricks, used very
often under perhaps slightly different forms, to prove the main results. This has the
advantage to lighten the presentation of the main results and their proofs, but that
creates a rather technical — and perhaps difficult to read— part, although it is not
uninteresting to see some classical ideas revisited in (sometimes) an unusual way.

A second part consists in describing and comparing different notions of solutions
for codimension-1 type discontinuities: we begin with the classical Ishii’s notion of
viscosity solutions but we consider also different approaches used for networks. We
have tried to analyze all these different approaches in full detail, trying to give to the
reader the most precise comparison of their advantages and disadvantages in terms
of the generality of assumptions and results. Even if they are different, they share a
lot of common points which partly justifies our first part on common tools. A very



intriguing question is the convergence of the vanishing viscosity approximation, for
which one has a complete answer in this codimension-1 framework but which remains
open in more general situations, like on chessboard-type configuration for example.

The largest part of this book is dedicated to stratified problems where we can have
discontinuities of any co-dimensions: this opens a very large range of applications,
new ones being for problems with boundary conditions (a part which is not com-
pletely drafted here). Some a priori very singular problems can be addressed and
even treated, the most fascinating ones being in the boundary conditions case. Here,
to our point of view, the main message is the identification of what we believe as be-
ing the “right framework” for studying discontinuities in Hamilton-Jacobi Equations,
namely the assumptions of “tangential continuity”, "normal controllability” and the
right notion of solution. The reader who is familiar with either exit time, state-
constraint control problems or boundary conditions for Hamilton-Jacobi Equations
will recognize some common features. With these assumptions, it is surprising to see
how some applications can be treated without major additional difficulty compared
to the continuous case.

We hope that the reader of this manuscript will enjoy reading it. Again, please,
feel free to react in any possible way on this version: we do not promise to take into
account all reactions (except the references, of course) but we promise to study all of
them very carefully.

We thank you in advance!

G. Barles E. Chasseigne
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Chapter 1

General introduction

In 1983, the introduction of the notion of viscosity solutions by Crandall and Lions
[41] solved the main questions concerning first-order Hamilton-Jacobi Equations (HJE
in short), at least those set in the whole space RY, for both stationary and evolution
equations: this framework provided the right notion of solutions for which uniqueness
and stability hold, allowing to prove (for example) the convergence of the vanishing
viscosity method. In this founding article the definition was very inspired by the
works of Kruzkov [76, 77, 79, 78] and, in fact, viscosity solutions appeared as the L>°-
analogue of the L-entropy solutions for scalar conservation laws. This initial, rather
complicated Kruzkov-type definition, was quickly replaced by the present definition,
given in the article of Crandall, Evans and Lions [39], emphasizing the key role of
the Maximum Principle and of the degenerate ellipticity, thus preparing the future
extension to second-order equations.

The immediate success of the notion of viscosity solutions came from both its sim-
plicity but also universality: only one definition for all equations, no matter whether
the Hamiltonian was convex or not. A single theory was providing a very good
framework to treat all the difficulties connected to the well-posedness (existence,
uniqueness, stability...etc.) but it was also fitting perfectly with the applications to
deterministic control problems, differential games, front propagations, image analysis
ete.

Of course, a second key breakthrough was made with the first proofs of comparison
results for second-order elliptic and parabolic, possibly degenerate, fully nonlinear
partial differential equations (pde in short) by Jensen [74] and Ishii [72]. They allow
the extension of the notion of viscosity solutions to its natural framework and open the
way to more applications. The article of Ishii and Lions [70] was the first one in which
the comparison result for second-order equations was presented in the definitive form;
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we recommend this article which contains a lot of results and ideas, in particular for
using the ellipticity in order to obtain more general comparison results or Lipschitz
regularity of solutions.

We refer to the User’s guide of Crandall, Ishii and Lions [40] for a rather complete
introduction of the theory (See also Bardi and Capuzzo-Dolcettal9] and Barles [18]
for first-order equations, Fleming and Soner [49] for second-order equations together
with applications to deterministic and stochastic control, Bardi, Crandall, Evans,
Soner and Souganidis [8] ot the CIME course [1] for a more modern presentation of
the theory with new applications). This extension definitively clarifies the connec-
tions between viscosity solutions and the Maximum Principle since, for second-order
equations, the Maximum Principle is a standard tool and viscosity solutions (for de-
generate equations) are those for which the Maximum Principle holds when testing
with smooth test-functions.

Despite all these positive points, the notion of viscosity solutions had a little weak-
ness: it only applies with the maximal efficiency when solutions are continuous and,
this is even more important, when the Hamiltonians in the equations are continuous.
This fact is a consequence of the keystone of the theory, namely the comparison re-
sult, which is mainly proved by the “doubling of variables” technic, relying more or
less on continuity both of the solutions and the Hamiltonians.

Yet, a definition of discontinuous solutions has appeared very early (in 1985) in Ishii
[71] and a first attempt to use it in applications to control problems was proposed
in Barles and Perthame [12]. The main contribution of [12] is the “half-relaxed limit
method”, a stability result for which only a L°°-bound on the solutions is needed.
But this method, based on the Ishii’s notion of discontinuous viscosity solutions for
discontinuous Hamiltonians, uses discontinuous solutions more as an intermediate
tool than as an interesting object by itself.

However, in the late 80’s, two other types of works considered discontinuous solu-
tions and Hamiltonians, breaking the universality feature of viscosity solutions. The
first one was the study of measurable dependence in time in time-dependent equation
(cf. Barron and Jensen [24], Lions and Perthame [81], see also the case of second-
order equations in Nunziante [86, 87|, Bourgoing [28, 29] with Neumann boundary
conditions, and Camilli and Siconolfi [34]): in these works, the pointwise definition of
viscosity solutions has to be modified to take into account the measurable dependence
in time. It is worth pointing out that there was still no difference between convex
and non- convex Hamiltonians.

On the contrary, Barron and Jensen [23] in 1990 considered semi-continuous so-
lutions of control problems (See also [17]): they introduced a particular notion of
viscosity solution which differs according to whether the control problem consists in
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minimizing some cost or maximizing some profit; thus treating differently convex
and concave Hamiltonians. This new definition had the important advantage to pro-
vide a uniqueness result for lower semi- continuous solutions in the case of convex
Hamiltonians, a very natural result when thinking in terms of optimal control.

In the period 1990-2010, several attempts were made to go further in the under-
standing of Hamilton-Jacobi Equations with discontinuities. A pioneering work is the
one of Dupuis [44] whose aim was to construct and study a numerical method for a
calculus of variation problem with discontinuous integrand, motivated by a Large De-
viations problem. Then, problems with a discontinuous running cost were addressed
by Garavello and Soravia [54, 53] and Soravia [99] who highlight some non-uniqueness
feature for the Bellman Equations in optimal control, but identify the maximal and
minimal solutions. To the best of our knowledge, all the uniqueness results use either
a special structure of the discontinuities or different notions solutions, which are in-
troduced to try to tackle the main difficulties as in [42, 43, 56, 57, 62] or an hyperbolic
approach as in [5, 38]. For the boundary conditions, Blanc [25, 26] extended the [12]
and [23] approaches to treat problems with discontinuities in the boundary data for
Dirichlet problems. Finally, even the case of measurability in the state variable was
considered for Eikonal type equations by Camilli and Siconolfi [33].

Before going further, we point out that we do not mention here the LP-viscosity
solutions nor viscosity solutions for stochastic pdes, two very interesting subjects but
too far from the scope of this book.

In this period, the most general contribution for first-order Hamilton-Jacobi-Bellman
Equations was the work of Bressan and Hong [30] who considered the case of control
problems in stratified domains. In their framework, the Hamiltonians can have dis-
continuities on submanifolds of RY of any codimensions and the viscosity solutions
inequalities are disymmetric between sub and supersolutions (we come back on this
important point later on). In this rather general setting, they are able to provide
comparison results by combining pde and control methods. Of course, we are very
far from the context of an universal definition but it seems difficult to have more gen-
eral discontinuities. Before going further, we refer the reader to Whitney [102, 101]
for the notion of Whitney stratified space.

In the years 2010’s, a lot of efforts have been spent to understand Hamilton-Jacobi
Equations on networks and, maybe surprisingly, this had a key impact on the study
of discontinuities in these equations. An easy way to understand why is to look
at an HJ-equation set on the real line R, with only one discontinuity at x = 0.
Following this introduction, it seems natural to jump on to Ishii’s definition and to
address the problem as an equation set on R. But another point of view consists in
seeing R as a network with two branches R~ and R*™. This way, © = 0 becomes the
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intersection of the two branches and it is conceivable that the test-functions could
be quite different in each branch, leading to a different notion of solution. Moreover,
a “junction condition” is needed at 0 which might come from the two Hamiltonians
involved (one for each branch) but also a specific inequality at 0 coming from the
model and the transmission condition we have in mind. Therefore, at first glance,
these “classical approach” and “network approach” seem rather different.

Surprisingly (with today’s point of view), these two approaches were investigated
by different people and (almost) completely independently until Briani, Imbert and
the authors of this book made the simple remark which is described in the last above
paragraph. But, in some sense, this “mutual ignorance” was a good point since
different complementary questions were investigated and we are going to described
these questions now.

For the “classical approach”, in the case of the simplest codimension 1 discontinuity
in R or RV and for deterministic control problems, i.e. with convex Hamiltonians,
these questions were

(7) Is Ishii’s definition of viscosity solutions providing a unique solution which is
the value-function of an associated control problem?

(72) If not, can we identify the minimal and maximal solutions in terms of value
functions of ad hoc control problems?

(737) In non-uniqueness cases, is it possible to recover uniqueness by imposing some
additional condition on the discontinuity?

(7v) Can the limit of the vanishing viscosity method be identified? Is it the maximal
or minimal solution? Or can it change depending on the problem?

These questions were investigated by Rao [90, 91], Rao and Zidani [92], Rao, Siconolfi
and Zidani [89] by optimal control method, and Barles, Briani and Chasseigne [10, 11]
by more pde methods. In [10, 11], there are some complete answers to questions (7)
and (i7), almost complete for (izi) and really incomplete for (iv).

For the “network approach”, in the case of two (or several) 1—dimensional (or
multi-dimensional) branches, the questions were different and the convexity of the
Hamiltonians appears as being less crucial

v) What is the correct definition of solution at the junction? What are the different
J
possible junction conditions and their meanings in the applications?

(vi) Does a comparison result for such network problems hold?



HJ-Equations with Discontinuities: Introduction 13

(vii) Does the Kirchhoff condition (involving derivatives of the solution in all branches)
differ from tangential conditions (which just involve tangential derivatives)?

(vidi) What are the suitable assumptions on the Hamiltonians to get comparison?

(1z) Can we identify the limit of the vanishing viscosity method?

Questions (v)-(vi) were investigated under different assumptions in Schieborn [94],
Camilli and Marchi [31], Achdou, Camilli, Cutri and Tchou [2], Schieborn and Camilli
[95], Imbert, Monneau and Zidani [68], Imbert and Monneau [66] for 1-dimensional
branches and Achdou, Oudet and Tchou [3, 4], Imbert and Monneau [67] for all di-
mensions; while Graber, Hermosilla and Zidani [59] consider the case of discontinuous
solutions. The most general comparison result (with some restrictions anyway) is the
one of Lions and Souganidis [84, 85] which is valid with very few, natural assumptions
on the Hamiltonians, and not only in the case of Kirchhoff conditions but also for
general junction conditions. It allows to answer in full generality to question (ix)
which is also investigated in Camilli, Marchi and Schieborn [32].

In fact, taking into account the very general ideas of the comparison result of
Lions and Souganidis, Question (viii) seems to disappear but Question (vii) becomes
crucial since the junction condition plays a key role in the uniqueness of the associated
viscosity solution. Unfortunately, the universality of the Lions-Souganidis proof is
in some sense lost here since the junction condition and its form will depend on the
convexity or concavity of the Hamiltonians. Imbert and Monneau [66, 67] have studied
completely the junction conditions (through the “flux limiter” approach) and proved
the connection between general Kirchhoff conditions and flux-limiters, allowing the
identification of the vanishing viscosity limit in the quasi-convex case.

In this book, our aim is to consider various problems with different type of discon-
tinuities and to describe the different approaches to treat them. Thinking about all
the common points that can be found in the works mentioned above, we have decided
to dedicate an entire part to the “basic results”, which are common bricks, used very
often under perhaps slightly different forms. This has the advantage to lighten the
presentation of the main results and their proofs, but that creates a rather technical
— and perhaps difficult to read— part. But we also think it is interesting to see some
classical ideas revisited in sometimes unusual ways.

Then, the first problems we address are “simple” co-dimension 1 discontinuities (a
discontinuity along an hyperplane or an hypersurface, for example) in the whole space
RY. For these problems, we provide in Part II a full description of the “classical ap-
proach” and the connections with the “network approach” with different comparison
proofs (the Lions-Souganidis one and the Barles, Briani, Chasseigne and Imbert one).
We also analyze their advantages and disadvantages.
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In this second part, we make a point to emphasize the following important issues
which will play a key role in all the other parts and seem to be the key assumptions
to be used in problems with discontinuities in order to have a continuous solution and
a comparison result between sub and supersolutions

(NC) Normal controlability (or coercivity): for control problems, this property
means that one should be able to reach the interface (here the codimension 1
manifold where we have the discontinuity) because a more favorable situation
(in terms of cost) may exist there. Such assumption ensures that this poten-
tially favorable situation is “seen”. This is translated into a coercivity-type
assumptions in the normal coordinates on the associated Hamiltonian.

(TC) Tangential continuity : with respect to the coordinates of the interface, the
Hamiltonians have to satisfy standard comparison RV-type assumptions.

We insist on the fact that these assumptions will be used for ANY type of results:
comparison but also stability and connections with control. These are really key
assumptions and we will find them everywhere throughout all the books, expressed
in different ways.

The third part is devoted to the case of “stratified problems” in the whole space
R i.e. to the case where discontinuities of any codimension can appear. In Part III,
we describe the extension of Bressan and Hong [30] obtained in [21] with some ex-
tensions and applications: we present the main ideas, using in key way (NC)-(TC),
and these ideas are also used in Part IV where we consider the “stratified problems”
set in a domain with state-constraint boundary conditions. It is worth pointing out
that this stratified formulation allows to treat various boundary conditions (Dirichlet,
Neumann, sliding boundary conditions,...) in the same framework, without assuming
the boundary of the domain to be smooth, and taking also into account some un-
bounded control features. For this reason, we think that if the formulation may seem
a little bit weird or difficult, the range of applications it allows to treat fully justifies
its introduction.

Different approaches for control problems in stratified frameworks, more in the
spirit of Bressan & Hong have been developed by Hermosilla, Wolenski and Zidani
[64] for Mayer and Minimum Time problems, Hermosilla and Zidani [65] for classical
state-constraint problems, Hermosilla, Vinter and Zidani [63] for (very general) state-
constraint problems (including a network part).

We conclude this introduction by a remark on “how to read this book?” vs “how
not to read this book?”.

As we already mentioned it above, we have decided to start by an entire part (Part I)
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gathering basics results which are identified as the key bricks appearing in any type
of problems involving Hamilton-Jacobi Bellman Equations and deterministic control
problems. This part is unavoidably a “little bit technical” and admittedly hard to
read without a serious motivation... Which we hope can be found in the next parts!

We have tried to draft all the proofs by emphasizing the role of the related key
bricks but in order to be readable without knowing the details of these bricks: in that
way, one can avoid reading the different independent sections of Part I before being
completely convinced that it is necessary.

Part II is certainly the most unavoidable one since it describes all the challenges
and potential solutions at hand in a rather simple context of a co-dimension 1 dis-
continuity. Yet the difficulty of this part is to extract a clear global vision and we try
to provide our point of view in Section 10.3.

Stratified problems require a non-neglectable investment but we have tried to point
out the main ideas to keep in mind and to start from the easiest case and then go to
the most sophisticated ones. We hope that the general treatment of singular boundary
conditions in non-smooth domains will be a sufficient motivation for suffering all the
difficulties! But also the applications of Chapter 15.
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Chapter 2

The basic (continuous) framework
and the classical assumptions
revisited

In order to go further in the presentation of both the results contained in this book and
the assumptions we use, let us describe first the most classical continuous framework.
Then, we make comments on the general approach we introduce afterwards. As we
will only sketch the approach and results in this chapter since they are classical, we
refer the reader to well-known references on this subject for more details: Lions [82],
Bardi and Capuzzo-Dolcetta [9], Fleming and Soner [49], the CIME courses [8, 1] and
Barles [18].

We consider a finite horizon control problem in RY on the time interval [0, 7] for
some T' > 0, where, for z € RN and ¢ € [0, 7], the dynamic is given by

X(s) =b(X(s),t—s,a(s)), X(0)=z R,

Here, a(-) € A := L>(0,T; A) is the control which takes values in the compact metric
space A and b is a continuous function of all its variables. More precise assumptions
are introduced later on.

For a finite horizon problem, the value function is classically defined by

Ue.t) = inf {/Otl(X(s),t—s,a(s))eXp </OSC(X(T),t—T,a(T))dT) ds

a(-)eA

ug(X (1)) exp (/Ot (X ()t — 7, W))m) } ,

17
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where [ is the running cost, ¢ the discount factor and wug is the final cost. All these
functions are assumed to be continuous on RY x [0,7] x A (for [ and ¢) and on R¥
(for ug) respectively.

The most classical framework use the following assumptions which will be refered
below as (HERS op) for Basic Assumptions on the Control Problem — Classical case:

(i) The function ug : RY — R is a bounded, uniformly continuous function.
(it) The functions b, ¢,! are bounded, uniformly continuous on RY x [0, 7] x A.

(ii7) There exists a constant C; > 0 such that, for any x,y € RN, ¢t € [0,T], a € A,
we have
|b<£L‘,t,Ck) - b<y7t> Oé)‘ < Cl|x - y| :

One of the most classical results connecting the value function with the associated
Hamilton-Jacobi-Bellman Equation is the

Theorem 2.0.1 If Assumption (HE%> op) holds, the value function U is continuous
on RN x [0,T] and is the unique viscosity solution of

w + H(z,t,u, Dyu) =0 in RY x (0,T), (2.1)
u(z,0) = up(x) in RY . (2.2)

where
H(z,t,r,p) i= sup {—b(z,t,0) - p+ c(z,t,)r — U(z,t,a)} .
acA
In Theorem 2.0.1, we have used the notation u; for the time derivative of the function
(x,t) — u(z,t) and D,u for its derivatives with respect to the space variable z. These
notations will be used throughtout this book.

Sketch of Proof — Of course, there exists a lot of variants of this result with different
assumptions on b, ¢,l and uy but, with technical variants, the proofs use mainly the
same steps:

(a) The first one consists in proving that U satisfies a Dynamic Programming Principle
(DPP in short), i.e. that it satisfies for 0 < h < t,

a(-)eA

Ue,t) = inf {/Ohl(X(s),t—s,a(s))eXp (/O c(X<T),t—T,a(T))dT) ds
FUX(h), £ — h)exp (/Oh (X (7)1, a(7))d7> } |
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This is done by using the very definition of U and taking suitable controls.

(b) If U is smooth, using the DPP on [0, h], after dividing by h and sending h — 0 we
deduce that U is a classical solution of (2.1)-(2.2). If U is not smooth, this has to be
done with test-functions and we obtain that U is a viscosity solution of the problem.

(¢) Finally one proves a comparison result for (2.1)-(2.2), which shows that U is the
unique viscosity solution of (2.1)-(2.2).
Q.E.D.

We point out that, in this sketch of proof, the continuity (or uniform continuity) of
U can be either obtained directly, by working on the definition of U and maybe using
the DPP, or as a consequence of the comparison result. We insist on the fact that in
this classical framework, we are mainly interested in cases where U is continuous and
therefore in assumptions ensuring this continuity.

Concerning Assumption (HE%> op), it is clear that (i) together with (i7) ensure

that we have a well-defined trajectory, for any control a(-), by the Cauchy-Lipschitz
Theorem. Moreover, this trajectory X(-) exists for all time by the boundedness of b.
On the other hand, the boundedness of [, ¢ allows to show that U(x,t) is well-defined,
bounded in RY x [0, 7] and even here uniformly continuous. Therefore it gives all the
necessary information at the control level.

But Assumption (HE%> «p) plays also a key role at the pde level, in view of the
comparison result: indeed, it implies that the Hamiltonian H satisfies the following
property: for any R > 1

There exists M > 0, Cy and a modulus of continuity m : [0, +00) — [0,+00) such
that, for any z,y € RN, t,s € [0,T], —-R<r  <r, < R€R and p,q € RY

|H(x,t,r1,p) = H(y, 5,71, p)| < (Cilw =y +m([t = s]) [pl +m ((l2 —y[ + [t = s R),

H(l',t,']"g,]?) - H<x7t7T17p) 2 _M(TQ - 7al) )
| H(z,t,r1,p) — H(x,t,m1,q)] < Mlp—q] .

Of course, these properties are satisfied with M = max(||b||o, ||¢||oo, [[||0c) and m is
the modulus of uniform continuity of b, ¢, (.

Remarks on the comparison proof — we want to insist on two points here,
that are important throughout this book. First point: if one wants to compare
a subsolution u and a supersolution v (See Section 3.1), the initial step is to re-
duce to the case when r — H(z,t,7,p) is increasing (or even non-decreasing) for
any x,t,p. This can be done through the classical change of unknown function



20 Barles & Chasseigne

u(z,t) — a(z,t) = u(z,t)exp(—Kt), v(z,t) — v(x,t) = v(z,t)exp(—Kt) for some
K > M; the Hamiltonian H is changed in

H(CC, t T7p) = Sup {—b(ZE, t O./) eXp(_Kt) P+ [C(Z’, l a) + K]T’ - l(l’, t Oé) eXp<_Kt)} )
acA

thus allowing to assume that we can reduce to the case when either c(z,t,a) > 0
for any x,t,« or even > 1. We will always assume in this book that, one way or the
other, we can reduce to the case when ¢ > 0.

The second point we want to emphasize is the t-dependence of b. It is well-know
that, in the comparison proof, the term “(Ci|z — y| + m(|t — s|)) |p|” is playing a key
role and to handle the difference in the behavior of b in z and ¢, one has to perform
a proof with a “doubling of variable” technique which is different in x and ¢, namely
to consider the function

N e
B

where 0 < f < ¢ < 1and 0 < n < 1. We recall that the n-term ensures that this
function achieves its maximum and the ¢, 8-terms ensure (z,t) is close to (y,s) and
therefore the maximum of this function looks like supgn (4 — 0).

(.%,Zf,y, 8) = ﬂ(l’,t) - 17(3/7 S) 77("7:‘2 + |y‘2) )

The idea of this different doubling in x and t is that we need a term like
(Cilz =yl +m(|t = s])) Ipl

to be small. Since |p| behaves like o(1)e™!, |x — y| like o(1)e and |t — s| like o(1)},
the product Ci|z — y||p| is indeed small, but in order to ensure that the product
m(|t — s|)|p| is also small, we need to choose /5 small enough compared to .

In the following, since we want to handle cases when b, c,[ can be discontinuous
on submanifolds in RY x [0, 7] which may depend on time, there will be no reason
to have different assumptions in x and ¢. On the other hand, we will use in a more
central way the Lipschitz continuity of H in p to have a more local comparison proof.

Basic Assumptions — The previous remarks lead us to replace (HE%X* op) by the
following

(Hga_cp) Basic Assumptions on the Control Problem:

(i) The function ug : RY — R is a bounded, continuous function.
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(it) The functions b, ¢,! are bounded, continuous functions on RY x [0,7] x A and
the sets (b,c,1)(z,t, A) are convex compact subsets of R¥*2 for any » € RV,
telo,1) M,

(4ii) For any ball B C RY, there exists a constant C;(B) > 0 such that, for any
r,y €RY t€0,T], a € A, we have

|b(,t, ) = b(y, s,0)] < CL(B) (|z =y + [t —s]) .

We will explain in Section 16.1 how to handle a more general dependence in time
when the framework allows it. In terms of equation, and although the following
assumption is not completely equivalent to (Hga_cp), we will use the

(Hpa_n3y) Basic Assumptions on the Hamilton-Jacobi equation:

There exis