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Informations:

1. At the beginning of the book, just after the preface, a section called “Survival kit
for the potential reader: how can this book be useful to YOU?” aims at explaining
how to enter into this book without reading it from the first pages. The answer
depending of course on who you are and what you wish to find here.

2. At the end of the book, in addition to the usual index, two appendices gather
the main notations and assumptions which are used throughout this book. Also
included is a list of the different notions of solutions as a quick reference guide.






Preface

The genesis of this book can be traced back to the early 2010’s.

At that time, many researchers in the viscosity solutions community got interested
in Hamilton-Jacobi Equations set on networks. In order to avoid traffic jams on such
research themes, with Ariela Briani we decided to consider problems set in the usual
euclidian space, but having discontinuities.

Of course we first considered the case of a codimension 1 discontinuity. Meanwhile,
we were listening to talks on networks with interest, but as if they concerned different
problems; conversely, people working on networks were clearly thinking that we were
addressing different questions.

Then, inspired by the article of Bressan and Hong [51], we moved to stratified
problems, i.e. problems with discontinuities of any codimensions, but still in the whole
euclidian space. We also started thinking about possible generalizations to problems
set in domains, bounded or not.

End of year 2017, starting the project — Three main facts convinced us that starting
to write a book could be worth considering:

(i) Several discussions with Cyril Imbert made us realize that the methods used
for networks could be useful for treating problems with codimension 1 disconti-
nuities; the article written in collaboration with Ariela Briani and Cyril Imbert
[20] was a first step in this direction. But clearly more had to be said about this
“network approach”.

(77) The Tanker Problem exposed by Pierre-Louis Lions in one of his courses at the
College de France was illuminating on the possible extensions of our stratified
approach to treat a large variety of possibly singular boundary value problems
without much additional effort.

(17i) Last—and perhaps least—, we noticed that some of the techniques we developed
in the stratified context could be useful to extend the “network approach” to a
multi-dimensional framework.

Though exploiting these ideas in publishing a series of articles was tempting, we
decided instead to start writing an “evolutive book”: from the beginning, our plan was



to get an online version available to other researchers, that we would keep improving
with possible contributions or help from readers. And indeed, all the versions were
modified by taking into account such remarks as well as our own progress.

This choice may appear quite particular as, in general, mathematical books are
written when the theory starts being well-established, key results have reached their
(almost) definitive form and a global understanding of the various phenomena has
been validated by the community.

But as we explained, we were not at all in such an idyllic situation when we started
this project. Our aim was to take time to produce a “clean” contribution to the
subject, instead of polluting literature with several unsatisfactory articles. By doing
so, we decided to give ourselves time to correct our own mistakes, be it minor ones in
the proofs or errors in the strategy of those proofs, but also in the presentation and
articulation of the different results.

The least we can say today is that we overused these possibilities.

Early 2018, writing the first pages — The above paragraphs may give the impression
that we were very ambitious but this was not entirely the case. In terms of content,
our initial plans for this book were rather modest: the main idea was to gather in the
same publication simplified versions of the comparison arguments for the hyperplane
case and the stratified framework which were known at that time. Concretely, this
meant putting together:

1. our works on Ishii solutions for the hyperplane case 18, 19] showing the prob-
lems encountered by the classical viscosity solutions approach;

2. the comparison result for flux-limited solutions found in [20], which was simpli-
fying the Imbert-Monneau comparison arguments found in [1 15, 110];

3. the Lions-Souganidis [1410, 141] arguments for junction viscosity solutions;

4. the stratified framework developed in [30], with some “easy” extensions to state-
constrained problems.

This project was thought of as a kind of compendium of 150-ish pages about dis-
continuities in Hamilton-Jacobi equations related to control problems, i.e. restricting
ourselves to the case of convex Hamiltonians. For the “network approach”, our aim
was both to clarify and simplify the existing results and their proofs, as it seemed to
us that there was some room to do so! On the other hand, we wished to show that
the ideas we had for stratified problems can be pushed quite far, in particular with



the aim of treating problems with boundary conditions—though we did not realize
how far and how concrete we could go at that time; but, in any case, we did not plan
to go too far in the treatment of these extensions.

However, even if we were not very ambitious with regards to generality, we were
more so on the contribution of this book: revisiting the recent progresses did not mean
that we were merely copy-pasting existing articles with few modifications. Instead, our
goal was to highlight the main common ideas, whether technical or more fundamental.
With a better understanding of the existing proofs, our hope was to simplify them as
much as possible in order to promote further developments.

All these original plans explain the organization of this book today: while thinking
about all the common points in several works, we decided from the beginning to
dedicate an entire part, Part I, to the “basic results”, which are common bricks, used
very often under perhaps slightly different forms, to prove the main results. This also
has the advantage of lightening the presentation of the main results and their proofs.
But we cannot deny that this creates a rather technical part that may also prove
difficult to read, although it can be interesting to see some classical ideas revisited in
sometimes unusual ways.

Unfortunately (or fortunately?), even the first draft was not along the lines of our
initial objectives: we decided to add “a little more” material and the project soon
reached almost 300 pages—version 1, december 2018. The only rule we respected at
that time was the framework of convexr Hamiltonians for equations with a codimen-
sion 1 discontinuities.

Year 2019, a reorganized and expanded second version — We had to admit that our
decision to restrict ourselves to convex Hamiltonians in the case of codimension 1
discontinuities was a nonsense. Indeed, in the “network approach”, all the results
inspired by the works of Imbert-Monneau [1 15, ] were valid without much change
in their framework of quasi-convexr Hamiltonians.

We then reorganized the book, building an entire part on this “network approach”.
Concerning the arguments of Lions-Souganidis [110, | for junction viscosity solu-
tions, we recall that they work for Hamiltonians which are only continuous.

Moreover, we realized there was far more to be told than what we initially had in
mind:

(1) A comparison between the notions of Ishii, fluz-limited and junction solutions
was not part of the initial plan, despite some results already appearing in
[115, ]. But, pushed by the challenging study of the convergence of the
vanishing viscosity method—and the applications to KPP or Large Deviations



type problems—, we discovered that we were able to make a quite complete
and rather simple description of their links, in particular the conditions under
which they are equivalent notions of solutions.

(77) We noticed that the stratified framework allowed us to deal with far more gen-
eral situations than what we thought, including time-dependent stratifications,
state-constrained and boundary value problems. Though all these themes were
somehow present in the first version, we revisited all the results, simplified and
sometimes generalized them. We even realized that some of what we considered
as being the unavoidable “basic tools” had to be defined or used differently.

The pandemic years, third version — In 2020, the pandemic struck and kept us away
from the project for more than a year for various reasons. This imposed step back
made us realize the numerous weaknesses of our first and second versions. This led
once more to a lot of additions and modifications in 2021-2022 which made the project
go far beyond the 500-page mark.

As the book unfolded, and even if this was not our objective at the beginning,
we ended up developing a very general framework to the cost of some complexities
and technicalities. In particular, it was challenging for the stratified approach to
see how our initial ideas based on the simple assumptions of normal controllability
and tangential continuity could be pushed to solve rather singular problems. And
sometimes without much additional effort.

We are fully aware that the general framework we are presenting today is probably
a bit complex when considering simple and concrete applications. We hope it will not
prevent or stop the reader from delving into it. We have devoted a lot of time and
effort to give non technical explanations as much as possible.

We also made a point from the beginning, not only to give abstract results but also
to explain how they can be applied to concrete applications and contribute to new
results. This explains the use of “illustrative” in the title: we have tried to incorporate
as many examples and counter-examples as we could, provide various applications and
we have pointed out several puzzling open problems.

As we also mentioned in various places, some situations can be treated with weaker
assumptions, through making good use of the specificities of each problem. But we
are now convinced that the assumptions we make are really needed in order to build
quite a general framework, as counter-examples show.

Though we did not fully implement them, we also tried to show how these ap-
proaches can be useful in treating other situations like for instance non-local equations



(trajectories with jumps) or multi-dimensional networks.

Spring 2023, ending the project — Five years after writing the first lines of this book,
we decided to put an end to the writing process of the project.

Version 4 reaching now more than 630 pages in its standard LateX version—a bit
less in the Springer Nature format—, we feel that it is now high time to publish
what we somehow consider to be a final version of the book. Since we have make
even major changes right up to the end, we are convinced that we could still improve
the presentation. We could also probably add some other results and implement new
material.

But of course, this would become an endless pursuit.

Although in its form this book is far from what we initially had in mind, we have
the feeling that we approximately reached what was our aim: to present a collection
of results, approaches, situations that all share some common concepts and provide a
framework which could make everything coexist rather smoothly, even if everything
is certainly still imperfect.

We hope that the reader of this manuscript will enjoy reading it and that its con-
tent will be useful to anyone interested in these topics. Of course, we would be very
happy to hear that some of the open problems we mention here are finally solved in
the future.

G. Barles E. Chasseigne






Survival kit for the potential reader:

how can this book be useful to YOU?

Upon taking this book in your hands, looking at its size and content you might be
a little bit discouraged. Furthermore, the idea that you have to read and digest the
huge first part called the “Toolbox”—containing the basic results which are useful to
solve problems involving Hamilton-Jacobi-Bellman Equations and/or deterministic
control problems with discontinuities—can be more than frightening.

We admit that this part is unavoidably “a bit technical”, hard to read without some
serious motivation... Which we hope can be found in the rest of the book! But, and
this may be good news, we think most of our readers will skip the “Toolbox”, at least
parts of it. We have however to issue a warning:

This book is mot designed for complete beginners in the theory of
viscosity solutions nor in deterministic optimal control problems.

Indeed, it seems clear to us that addressing problems on Hamilton-Jacobi Equa-
tions and/or deterministic control problems with discontinuities requires reasonable
mastery of such problems in the continuous case.

More precisely, we find it unavoidable to assume that the reader is at least familiar
with some notions, results and their related proofs such as: comparison results for
viscosity solutions; stability results for viscosity solutions; connections between stan-
dard finite horizon control problems with Hamilton-Jacobi-Bellman Equations using
the viscosity solution approach. A good test in this direction consists of checking that
you are not lost while browsing Chapter 1.

Coming back to the toolbox, we have tried to draft all the proofs in the book by
emphasizing the role of the related key bricks (introduced in this toolbox), and we
did it in a manner that the arguments remain readable without knowing the details
of such bricks. In this way, one can avoid reading the different independent sections
of Part I at first, before being completely convinced that it may be necessary.

On the other hand, depending on who you are and what you hope to find in this
book, you may consider different (and safer!) entry points than the “Toolbox”. Here
are some suggestions for different readers:



(7)

(iid)

(iv)

You are an “enlightened beginner” and want to learn some basics about
HJB-Equations with discontinuities: Part II is certainly the most unavoidable.
Starting from Chapter 1 which exposes the standard continuous case, this part
then goes on by describing all the challenges and potential solutions at hand in
the rather simple context of a codimension 1 discontinuities. Yet the difficulty
of this part is to extract a clear global vision and we try to provide our point
of view in Chapter 18.

You are interested in stratified problems: this clearly requires a non-
negligible investment since it seems difficult to avoid first reading Chapter 3
on Control Tools, even just to get the notations. Then you can start reading
Part IV: we have tried to point out the main ideas to keep in mind, starting
from the easiest case before going towards the most sophisticated ones. We
hope that the general treatment of singular boundary conditions in non-smooth
domains, Part V, will be a sufficient motivation for enduring all the difficulties!
The applications contained in Chapter 22 may also motivate you.

You are interested in HJ-Equations on networks: Part III is made for
you! Of course, we do not really treat networks (we only consider two-branch
junctions) but this part contains ideas—strongly inspired from Imbert-Monneau
and Lions-Souganidis—which we have simplified as much as we could, that you
will certainly be able to use in far more complicated situations. You can also
have a look at Chapter 31 for some ideas on multi-dimensional networks.

You are interested in scalar conservation laws and the connections
with HJ-Equations: it is brave of you to be here! As a reward for such au-
dacity, we have written Chapter 17 especially for you! We hope to have done a
good enough job there.
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Introduction

Viscosity solutions and discontinuities

In 1983, the introduction of the notion of viscosity solutions by Crandall and Lions
[69] solved the main questions concerning first-order Hamilton-Jacobi Equations (HJE
in short), at least those set in the whole space RY, for both stationary and evolution
equations: this framework provided the right notion of solutions for which uniqueness
and stability hold, allowing to prove (for example) the convergence of the vanishing
viscosity method. In this founding article the definition was very inspired by the
works of Kruzkov [130), , , ] and, in fact, viscosity solutions appeared as the
L>-analogue of the L!'-entropy solutions for scalar conservation laws.

This initial, rather complicated Kruzkov-type definition, was quickly replaced by the
present definition, given in the article of Crandall, Evans and Lions [(7], emphasizing
the key role of the Maximum Principle and of the degenerate ellipticity, thus preparing
the future extension to second-order equations.

A SIMPLE, UNIVERSAL AND EFFICIENT NOTION OF SOLUTION

The immediate success of the notion of viscosity solutions came from both its sim-
plicity but also universality: only one definition for all equations, no matter whether
the Hamiltonian was convex or not. A single theory was providing a very good frame-
work to treat all the difficulties connected to the well-posedness (existence, unique-
ness, stability...) but it was also fitting perfectly with the applications to deterministic
control problems, differential games, front propagations, image analysis etc.

Of course, a second key breakthrough was made with the first proofs of comparison
results for second-order elliptic and parabolic, possibly degenerate, fully nonlinear
partial differential equations (pde in short) by Jensen [126] and Ishii [122]. They allow
the extension of the notion of viscosity solutions to its natural framework and open the
way to more applications. This extension definitively clarifies the connections between

13
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viscosity solutions and the Maximum Principle since, for second-order equations, the
Maximum Principle is a standard tool and viscosity solutions for degenerate equations
are those for which the Maximum Principle holds when testing with smooth test-
functions.

The article of Ishii and Lions [119] was the first one in which the comparison result
for second-order equations was presented in the definitive form; we recommend this
article which contains a lot of results and ideas, in particular in using the ellipticity in
order to obtain more general comparison results or Lipschitz regularity of solutions.

We refer to the User’s guide of Crandall, Ishii and Lions [08] for a rather complete
introduction of the theory. See also Bardi and Capuzzo-Dolcetta[l1] and Barles [32]
for first-order equations, Fleming and Soner [39] for second-order equations together
with applications to deterministic and stochastic control, Bardi, Crandall, Evans,
Soner and Souganidis [13] ot the CIME course [2] for a more modern presentation of
the theory with new applications.

DISCONTINUITIES, A POTENTIAL WEAKNESS OF VISCOSITY SOLUTIONS

Despite all these positive points, the notion of viscosity solutions had a little weak-
ness: it only applies with the maximal efficiency when solutions are continuous and,
this is even more important, when the Hamiltonians in the equations are continuous.
This fact is a consequence of the keystone of the theory, namely the comparison re-
sult, which is mainly proved by the “doubling of variables” technique, relying more
or less on the continuity of both the solutions and the Hamiltonians.

Yet, a definition of discontinuous solutions has appeared very early (in 1985) in Ishii
[120] and a first attempt to use it in applications to control problems was proposed
in Barles and Perthame [24]. The main contribution of [21] is the “half-relaxed limits
method”, a stability result for which only a L*-bound on the solutions is needed.
But this method, based on Ishii’s notion of discontinuous viscosity solutions for dis-
continuous Hamiltonians, uses discontinuous solutions more as an intermediate tool
than as an interesting object by itself.

THE END OF UNIVERSALITY?

However, in the late 80’s, two other types of works considered discontinuous solu-
tions and Hamiltonians, breaking the universality feature of viscosity solutions. The
first one was the study of measurable dependence in time in time-dependent equation
(cf. Barron and Jensen [11], Lions and Perthame [13(], see also the case of second-
order equations in Nunziante [143, 144], Bourgoing [52, 53] with Neumann boundary
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conditions, and Camilli and Siconolfi [58]): in these works, the pointwise definition of
viscosity solutions has to be modified to take into account the measurable dependence
in time. It is worth pointing out that there was still no difference between convex and
non-convex Hamiltonians.

On the contrary, Barron and Jensen [13] in 1990 considered semi-continuous solu-
tions of control problems (See also [31] for a slightly simpler presentation of the ideas
of [13] and Frankowska [91], Frankowska and Plaskacz [96], Frankowska and Mazzola
[95] for different approaches): they introduced a particular notion of viscosity solution
which differs according to whether the control problem consists in minimizing some
cost or maximizing some profit; thus treating differently convex and concave Hamil-
tonians. This new definition had the important advantage to provide a uniqueness
result for lower semi-continuous solutions in the case of convex Hamiltonians, a very
natural result when thinking in terms of optimal control.

In the period 1990-2010, several attempts were made to go further in the under-
standing of Hamilton-Jacobi Equations with discontinuities. A pioneering work is the
one of Dupuis [73] whose aim was to construct and study a numerical method for
a calculus of variation problem with discontinuous integrand, motivated by a Large
Deviations problem. Then, control problems with a discontinuous running cost were
addressed by Garavello and Soravia [100, 99] and Soravia [160] who highlight some
non-uniqueness feature for the Bellman Equations in optimal control, but identify the
maximal and minimal solutions. To the best of our knowledge, all the uniqueness re-
sults use either a special structure of the discontinuities or different notions solutions,
which are introduced to try to tackle the main difficulties as in [71, 72, , , |
or an hyperbolic approach as in [9, 63]. For the boundary conditions, Blanc [17, 18]
extended the approaches found in [24] and [13] to treat problems with discontinuities
in the boundary data for Dirichlet problems. Finally, even the case of measurabil-

ity in the state variable was considered for Eikonal type equations by Camilli and
Siconolfi [57].

Before going further, we point out that we do not mention here LP-viscosity solutions
nor viscosity solutions for stochastic pdes, two very interesting subjects but too far
from the scope of this book.

TOWARDS MORE GENERAL DISCONTINUITIES

In this period, the most general contribution for first-order Hamilton-Jacobi-Bellman
Equations was the work of Bressan and Hong [51] who considered the case of con-
trol problems in stratified domains. In their framework, the Hamiltonians can have
discontinuities on submanifolds of RY of any codimensions which form a Whitney
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stratification and the viscosity solutions inequalities are disymmetric between sub
and supersolutions (we come back on this important point later on). In this rather
general setting, they are able to provide comparison results by combining pde and
control methods. Of course, we are very far from the context of a universal definition
but it seems difficult to have more general discontinuities. Before going further, we
refer the reader to Whitney [165, | for the notion of Whitney stratified space.

NETWORKS

In the years 2010’s, a lot of efforts have been spent to understand Hamilton-Jacobi
Equations on networks and, maybe surprisingly, this had a key impact on the study
of codimension 1 discontinuities in these equations. An easy way to understand why is
to look at an HJ Equation set on the real line R, with only one discontinuity at x = 0.
Following this introduction, it seems natural to jump on to Ishii’s definition and to
address the problem as an equation set on R. But another point of view consists in
seeing R as a network with two branches R~ and R*. This way, x = 0 becomes the
intersection of the two branches and it is conceivable that the test-functions could
be quite different in each branch, leading to a different notion of solution. Moreover,
a “junction condition” is needed at 0 which might come from the two Hamiltonians
involved (one for each branch) but also a specific inequality at 0 coming from the
model and the transmission condition we have in mind. Therefore, at first glance,
these “classical approach” and “network approach” seem rather different.

Surprisingly (with today’s point of view), these two approaches were investigated
by different people and (almost) completely independently until Briani, Imbert and
the authors of this book made the simple remark which is described in the last above
paragraph. But, in some sense, this “mutual ignorance” was a good point since differ-
ent complementary questions were investigated and we are going to described these
questions now.

For the “classical approach”, in the case of the simplest codimension 1 discontinuity
in R or RV and for deterministic control problems, i.e. with convex Hamiltonians,
these questions were

(7) Is Ishii’s definition of viscosity solutions providing a unique solution which is
the value function of an associated control problem?

(72) If not, can we identify the minimal and maximal solutions in terms of value
functions of ad hoc control problems?

(74) In non-uniqueness cases, is it possible to recover uniqueness by imposing some
additional condition on the discontinuity?
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(7v) Can the limit of the vanishing viscosity method be identified? Is it the maximal
or minimal solution? Or can it change depending on the problem?

These questions were investigated by Rao [117, |, Rao and Zidani [119], Rao,
Siconolfi and Zidani [146] by optimal control method, and Barles, Briani and Chas-
seigne [18, 19] by more pde methods. In [18, 19], there are some complete answers to

questions (i) and (77), almost complete for (ii7) and really incomplete for (iv).

For the “network approach”, in the case of two (or several) 1—dimensional (or
multi-dimensional) branches, the questions were different and the convexity of the
Hamiltonians appears as being less crucial:

(v) What is the correct definition of solution at the junction? What are the different
possible junction conditions and their meanings in the applications?

(vi) Does a comparison result for such network problems hold?

(vii) Does the Kirchhoff condition (involving derivatives of the solution in all branches)
differ from tangential conditions (which just involve tangential derivatives)?

(viii) What are the suitable assumptions on the Hamiltonians to get comparison?

(1z) Can we identify the limit of the vanishing viscosity method?

Questions (v)-(vi) were investigated under different assumptions in Schieborn [154],
Camilli and Marchi [55], Achdou, Camilli, Cutri and Tchou [3], Schieborn and Camilli
[155], Imbert, Monneau and Zidani [117], Imbert and Monneau [! 15] for 1-dimensional
branches and Achdou, Oudet and Tchou [, 7], Imbert and Monneau [116] for all di-
mensions; while Graber, Hermosilla and Zidani [105] consider the case of discontinuous
solutions. The most general comparison result (with some restrictions anyway) is the
one of Lions and Souganidis [140, 141] which is valid with very few, natural assump-
tions on the Hamiltonians, and not only in the case of Kirchhoff conditions but also
for general junction conditions. It allows to answer in full generality to question (ix)
which is also investigated in Camilli, Marchi and Schieborn [56].

In fact, Lions and Souganidis use a notion of solution which we call in this book
“junction viscosity solution”, rather close to the classical notion of viscosity solu-
tions; the only difference which is imposed by the network framework is the space of
test-functions but this is a common feature for all the notions of solution in this con-
text. Because of this similarity, the half-relaxed limits’ method extends without any
difficulty and, taking into account the very general ideas of their comparison result,
almost all the above questions seem to be solved by this notion of solution.
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Two questions still remain however: on one hand, despite of its generality, the com-
parison result of Lions and Souganidis requires in higher dimensions some unnatural
hypotheses; on the other hand, this result is originally proved in [110, 141] for Kirch-
hoff type junction conditions which is not the most natural conditions for control
problems, but which appear when studying the convergence of the vanishing viscosity
method. Hence, a very concrete question is the following: in the case of convex or con-
cave Hamiltonian, is it possible s to give formulas of representation for such problems
with Kirchhoff type junction conditions? To answer this question, it seems clear that
one has to investigate the connections between Kirchhoff type junction conditions
and “flux-limited conditions” in the terminology of Imbert and Monneau [I15, ]
which are the natural junction conditions for control problems.

The extensive study of “flux-limited conditions” by Imbert and Monneau [115,

| uses the notion of “flux-limited solutions”: contrarily to the notion of “junction

viscosity solution”, this notion is less general and requires quasi-convex Hamiltonians

on each branch of the network. It has also the defect to lead to a rather complicated

(and limited) stability result. But it perfectly fits with control problems and the
comparison result is proved under very natural and general assumptions.

In this book, we completely describe these two notions of solutions and theirs prop-
erties but we also show the connections between general Kirchhoff conditions and
flux-limited conditions in the quasi-convex case, allowing the complete identification
of the vanishing viscosity limit.

Key considerations related to discontinuities

In this short section, our aim is to highlight a few simple and fundamental ideas that
pervade the whole book.

Let us begin with saying that in order to understand Hamilton-Jacobi Equation with
discontinuities, a first natural step is to look at deterministic control problems. Since
our aim is to extend viscosity solutions theory to this discontinuous framework—in
particular the pillars of the theory which are the comparison and stability results—
we can only do so under some assumptions which ensure that the value function
is continuous and the unique solution of the associated Hamilton-Jacobi-Bellman
Equation. Indeed, these properties are standard consequences of the comparison result
for this equation.

While looking at problems with codimension 1 discontinuities, one quickly realizes
that the standard definition of viscosity solutions in the sense of Ishii, in particular
the subsolution condition, is not strong enough to imply uniqueness; in the worst
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cases, the subsolution condition completely ignores the possibilities that the control
problem offers on the discontinuity. This is particularly the case when the only op-
timal trajectory for the controller consists in staying on the discontinuity, because
the situation is far more favorable there. The reader may have in mind the example
of a car ride where taking advantage of 1-dimensional highways allows to reach the
destination must faster; if the subsolution condition does not see the highway, we
clearly get meaningless subsolutions.

This is the first point to keep in mind for Hamilton-Jacobi-Bellman Equation, i.e.
for Hamilton-Jacobi Equation with convex Hamiltonians:

KEY POINT 1 — A subsolution condition is missing on the discon-
tinuities and we have to super-impose a right one on each of them
in order to build a satisfactory theory.

On the other hand, the example of the car ride and the highway suggests a second
key remark: if you can enter the highway everywhere, you can expect that your travel
time does not depend too much on your departure point, in the sense that, if you
start from two close points, the two travel times are almost the same. But if the
highway has only few entrances and if you take two close points, one on the highway,
one outside, both being far from an entrance, the travel times can be very different.
Hence such situations generate a discontinuity for the value function (that is, the
travel time to a fixed destination) and we have to rule them out.

Yy
Entrance Exit
xr
oo o I
.. _.®
'

Figure 1: Highway generating discontinuities

In the above example, being located on the discontinuity is favorable for the con-
troller but you may also imagine the opposite situation: if the highway is replaced by
a very muddy road where the velocity is far slower than every else. Then you may
probably want to be able to get out of this road. This is the second important point
to keep in mind:

KEY POINT 2 — In such problems having discontinuities, the normal
controllability—or normal coercivity—of the problem is fundamental.
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This property appears below under either the form (NC), i.e. Normal Coercivity
for the equation or (NC-BCL), i.e. Normal Controllability for the control problem.
But most of the time they are exactly the same.

As the above examples shows, in the framework of control problems, this property
means that one should be able either to quickly reach the discontinuity (we will use
it for discontinuities of any codimension) or, on the contrary, to leave it in any direc-
tions, in order to take advantage of a more favorable situation in terms of cost. Such
assumption also ensures that this potentially favorable situation is “seen” by subso-
lutions provided that the right conditions are imposed on the discontinuities. Finally,
at the equation level, this is translated into a partial coercivity-type assumption in
the normal coordinates of the gradient on the associated Hamiltonian.

The last key idea is the tangential continuity, denoted below by either (TC) for
the equation or (TC-BCL) for the control problem. Roughly speaking, if we face a
discontinuity D which is an affine subspace, the Hamiltonian has to satisfy locally
similar continuity hypotheses as those used in standard comparison in RY (or RY x
(0,T%)) on each affine subspace which is parallel to D, with respect to the coordinates
of this subspace.

KEY POINT 3 — Some natural continuity assumptions should hold
with respect to each strata.

We do insist on the fundamental role played by assumptions (NC)-(NC-BCL)
and (TC)-(TC-BCL) throughout all the parts of this book. Not only are they key
ingredients for the comparison result between sub and supersolutions, but also for the
stability and even the connections with control problems, 7.e. to actually prove that
the value function is sub and supersolution with the adapted definition.

Overview of the content

As the reader has probably understood, this book aims at considering various Hamilton-
Jacobi and control problems with different types of discontinuities. Our intention is
to describe the different approaches to treat them and build a consistent framework
in which they can fit altogether. Let us now sketch the content of this book part by
part.

OVERVIEW OF PART I — Thinking about all the common points that can be found

in the works mentioned in the historical introduction above, and because of the cen-
tral roles played by (NC)-(NC-BCL) and (TC)-(TC-BCL), we have decided to
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dedicate an entire part to the “basic results”, which are common bricks, used very
often under perhaps slightly different forms.

This organisation has the advantage to lighten the presentation of the main results
and their proofs, but this clearly creates a rather technical—and perhaps difficult
to read—first part. We think anyway that collecting some classical ideas, sometimes
revisited in unusual ways, presents sufficient advantages to accept this flaw.

OVERVIEW OF PARTS II & III — The first problems we address concern “sim-
ple” codimension 1 discontinuities, i.e. a discontinuity along an hyperplane or an
hypersurface in the whole space RY. For these problems, we provide in Part II a
full description of the “classical approach”. By this, we mean the results that can
be obtained by using only the standard notion of viscosity solutions. In Part III, we
describe the “network approach”, including different comparison proofs (the Lions-
Souganidis one and the Barles-Briani-Chasseigne-Imbert one) and stability results.
We also analyze their advantages and disadvantages, and the connections between all
the notions of solutions.

The main results of these parts are the following.

(7) Identification of the minimal viscosity supersolution and maximal viscosity sub-
solution with explicit controls formulas. Furthermore, we provide an easy-to-
check condition on the Hamiltonians ensuring that these minimal supersolution
and maximal subsolution are equal, i.e. that there is a unique viscosity solution.
This condition turns out to be useful in different applications.

(77) For the different notions of solutions in the “network approach”, we provide
comparison and stability results, and a complete analysis of the connections
between these different types of solutions (classical Ishii viscosity solutions,
flux-limited solutions and junction viscosity solutions).

(17i) Several versions of the convergence of the vanishing viscosity method, for convex
and non-convex Hamiltonians, each of them relying on a particular notion of
solution; the most complete form uses all the results of (i) and (ii) above, in
particular the links between the different notions of solutions in the “network
approach”.

The reader who wants to have a quick idea of all these results can take a look at
Section 17. This section gives a flavor of them in a simple framework, the Hamilton-
Jacobi analogue of 1-d scalar conservation laws with a discontinuous flux.
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OVERVIEW OF PART IV — This part is devoted to the case of time-dependent “strat-
ified problems” in the whole cylinder RY x [0,7}), i.e. the case where discontinuities
of any codimensions can appear, provided they form a Whitney stratification. In this

part, we describe the extensions of the works by Bressan and Hong [54] and by the
authors in [30], with a lot of further applications.
We point out anyway two main differences with [36]: first, we introduce a notion of

weak stratified subsolutions) where, on each manifold of the Whitney stratification,
we only impose inequalities associated to dynamics which are tangent to the manifold.
Such subsolutions are not assumed to satisfy the usual “global” Ishii subsolution
inequality on the manifolds of codimension bigger than 1; hence they are not a priori
Ishii subsolutions. On the contrary, strong stratified subsolutions—as used in [36]—are
weak stratified subsolutions, which are also Ishii subsolutions.

In the stratified setting, the notion of subsolution that has to be imposed on the
discontinuities is a key issue: the concepts of weak and strong stratified subsolutions
turn out to be the weakest and the strongest possible versions. In the different works
on the subject, various other type of definitions appears, from a “quasi-strong” notion
in Bressan and Hong [51] to the use of “essential dynamics” in Rao [117, 118], Rao
and Zidani [119], Rao, Siconolfi and Zidani [116] and Jerhaoui and Zidani [127] where
the authors try to obtain the best possible inequalities from the control point of view.

Despite being rather natural from the control point of view, the notion of weak
stratified subsolutions has the defect to allow “artificial values” on the discontinuities
of the equation since no connection between these values on the different parts of the
Whitney stratification is imposed by the weak subsolution inequalities. This is the
second key difference with [36] where the “global” Ishii subsolution inequality and
(NC) (or (NC-BCL)) imply the “regularity of subsolutions”, i.e. the fact that on a
discontinuity, the values of a subsolution is the limsup of its values outside this dis-
continuity. Hence strong stratified subsolutions are necessarily “regular” while it may
not be the case for the weak ones. And concerning the definitions with “essential dy-
namics”, we point out that, in general, the subsolution conditions which are imposed
imply the regularity of the subsolutions and conversely the inequalities associated to
with “essential dynamics” are automatically satisfied by regular subsolutions.

As it is already remarked in [36], the regularity property for subsolutions is playing
a very important role for all the results, and more particularly for the comparison
one.

To summarize the content of Part IV, let us first mention that all the results of [30]
hold for reqular weak stratified subsolutions. But more precisely:

(MThe situation for supersolutions is simpler since stratified supersolutions are just Ishii superso-
lutions.
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(1) Regular weak stratified subsolutions are strong stratified subsolutions under suit-
able assumptions, which are, in our opinion, the natural hypotheses to be used
in this framework.

(77) The comparison result between either regular weak or strong stratified subso-
lutions and supersolutions; it uses in a key way (NC-BCL)-(TC-BCL) but
also standard reductions presented in Part I.

(i1i) We present different stability results where we improve the one given in [30]
by taking into account changes in the structure of discontinuities: indeed we
handle cases where some discontinuities may either disappear or appear when
we pass to the limit. It is worth remarking that the notion of weak stratified
subsolutions has the advantage to simplify the proofs of these stability results,
even if the regularity of the limiting subsolution becomes a problem.

(1v) We provide conditions under which classical viscosity (sub)solutions are strat-
ified (sub)solutions. Under these conditions, classical viscosity solutions and
stratified solutions are the same, which allows to treat in a rather precise way
some applications. This applies in particular to KPP-type problems, even in
rather complicated domains. Indeed, we can take advantage at the same time of
the good properties of viscosity solutions in terms of stability, and the unique-
ness of stratified solutions.

Different approaches for control problems in stratified frameworks, more in the
spirit of Bressan and Hong [54] have been developed by Hermosilla, Wolenski and
Zidani [113] for Mayer and Minimum Time problems, Hermosilla and Zidani [114]
for classical state-constrained problems, Hermosilla, Vinter and Zidani [112] for (very
general) state-constrained problems, including a network part.

OVERVIEW OF PART V — Here we extend these ideas to consider “stratified prob-
lems” set in a “stratified domain” with state-constraints boundary conditions. With-
out enterinf into too much details here, the reader may imagine that a “stratified
domain” may be far from being smooth and corners are not the only source of irregu-
larity for the boundary. Indeed, the discontinuities in the data itself have to be taken
into account.

Concretely, the advantage of the stratified formulation is to provide an approach
where:

(7) One can treat various boundary conditions (Dirichlet, Neumann, sliding bound-
ary conditions,...) in the same framework.
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(77) The boundary of the domain need not be smooth, nor does the data.

(747) The mixing of mixing boundary conditions in some rather exotic way is allowed.

A typical example of mixing singular boundary conditions is the Tanker problem,
presented at the beginning of this part.

Roughly speaking, all the results of Part IV can be extended to this more general
framework since, essentially, the boundary and the discontinuities in the boundary
conditions just create new parts of the stratification and new associated Hamiltonians.
Only the “one-sided feature” coming from the absence of exterior controllability at
the boundary generates some technical difficulties. For instance, the regularity of
subsolutions which comes automatically from (NC-BCL) in RY is not so simple
here. We show in this part how to reformulate classical boundary conditions and
conclude with the non-standard example of the Tanker problem.

OVERVIEW OF PART VI — In this last part we collect some concrete applications
where the stratified approach helps or may help solving some problems. The study of
fronts propagations for KPP Equation via the Freidlin’s approach ([97]) is a classical
playground for viscosity solutions and we investigate the type of new results that the
methods of this book allow to prove. We also propose some ideas to address problem
with jumps or set on “stratified networks”.

APPENDICES — As this book contains quite a lot of notions, definitions of solutions
and properties, we decided to reference all of them in those two appendices (Notations,
and Assumptions).
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Chapter 1

The Basic Continuous Framework
Revisited

Abstract. In this first chapter, the most classical results in the continuous framework
are presented. The assumptions and methods are discussed and revisited in order to
introduce and partially justify the general approach that is developed afterwards.

Viscosity solutions’ theory relies on two types of key results: comparison results
and stability results. If the “half-relaxed limits” method provides stability in a very
general discontinuous framework where both solutions and Hamiltonians may be dis-
continuous (see Section 2.1), the situation is completely different for comparison. If
most of the classical arguments for comparison can handle discontinuous sub and
supersolutions, none of them can really handle discontinuous Hamiltonians, even in
the simplest cases of discontinuities.

As indicated in the abstract, we first describe one of the most classical result in
the continuous framework and in the simplest framework; it explains the connections
between deterministic optimal control problems and Hamilton-Jacobi-Bellman Equa-
tions, with the role played by viscosity solutions. Even if our presentation is certainly
too sketchy, the reader will notice that this result relies on two key arguments which,
throughout this book, will also be at the origin of most of the presented results: the
Dynamic Programming Principle and the comparison result.

In this chapter, we assume that the reader is more or less familiar with such approach
and classical results. And we refer to well-known references on this subject for more
details: Lions [137], Bardi and Capuzzo-Dolcetta [11], Fleming and Soner [39], the
CIME courses [13, 2] and Barles [32].
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1.1 The value function and the associated pde

We consider a finite horizon control problem in RY on the time interval [0, T}] for
some Ty > 0, where, for z € RY and ¢ € [0,7TY], the state of the system is described
by the solution X(-) of the ordinary differential equation

X(s) =b(X(s),t —s,a(s)), X(0) =z cR" .

Here, a(-) € A := L*>(0,T}; A) is the control which takes values in the compact metric
space A and b is a continuous function of all its variables. More precise assumptions
are introduced later on.

For a finite horizon problem, the value function is classically defined by

U(z,t) = inf {/Otl(X(s),t—s,oz(s))eXp (— /0 c(X(T),t—T,a(T»dT) ds

oljeA
(X () exp (_ /Ot o(X(7),t— T, Oz(T))dT) } ,

where [ is the running cost, ¢ is the discount factor and w is the final cost. All these
functions are assumed to be continuous on RY x [0,7}] x A (for [ and ¢) and on RY
(for ug) respectively.

The most classical framework use the following assumptions which will be refered
below as

(HZ% op) — Basic Assumptions on the Control Problem — Classical case.
(i) The function ug : RY — R is a bounded, uniformly continuous function.

(ii) The functions b,c,l are bounded, uniformly continuous on RN x [0,T}] x A.

(iii) There exists a constant Cy > 0 such that, for any z,y € RN, t € [0, Ty, c € A,
we have
|b((lf,t,0&) - b(y,t,Oé)l < C'1|x - y| :

One of the most classical results connecting the value function with the associated
Hamilton-Jacobi-Bellman Equation is the

Theorem 1.1.1 If Assumption (HER> op) holds, the value function U is continuous
on RY x [0,T}] and is the unique viscosity solution of

up + H(z,t,u, Dyu) =0 in RY x (0,7%), (1.1)

u(z,0) = ug(z) inRY . (1.2)
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where

H(I’,t,’]”,p) ‘= sup {—b(l’,t,Oé) P+ C<I7t7a)r - l(l’,t,Oé)} :
acA

In Theorem 1.1.1, we have used the notation u; for the time derivative of the function
(x,t) — u(z,t) and D,u for its derivatives with respect to the space variable x. These
notations will be used throughout this book.

Sketch of Proof — Of course, there exists a lot of variants of this result with different
assumptions on b, ¢,l and uy but, with technical variants, the proofs use mainly the
same steps.

(a) The first one consists in proving that U is continuous and satisfies a Dynamic
Programming Principle (DPP in short), i.e. that for any 0 < h < t,

Ue,t) = inf {/Ohl(X(s),t—s,a(s))exp (— /OSC(X(T),t—T,a(T))dT> ds

a()eA
FU(X(R),t — h)exp (— /Oh (X (1)t — T, a(T))dT) } .

This is obtained by using the very definition of U and taking suitable controls.

(b) If U is smooth, using the DPP on [0, h] and performing expansions of the different
terms with respect to the variable h, we deduce that U is a classical solution of (1.1)-
(1.2). If U is not smooth, this has to be done with test-functions and we obtain that
U is a viscosity solution of the problem.

(c) Finally one proves a comparison result for (1.1)-(1.2), which shows that U is the
unique viscosity solution of (1.1)-(1.2).

Q.E.D.

We point out that, in this sketch of proof, the continuity (or uniform continuity) of
U is not as crucial as it seems to be. Of course continuity can be obtained directly
by working on the definition of U in this framework. But one may also show that
U is a discontinuous viscosity solution (see Section 2.1) and deduce continuity from
the comparison result. We insist on the fact that in this classical framework, people
are mainly interested in cases where U is continuous and therefore in assumptions
ensuring this continuity.

Concerning Assumption (HE%> op), it is clear that (i) together with (i7) ensure
that for any choice of control a(-) there is a well-defined trajectory, by the Cauchy-
Lipschitz Theorem. Moreover, this trajectory X (-) exists for all times, thanks to the
boundedness of b. On the other hand, the boundedness of [, ¢ allows to show that
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U(z,t) is well-defined, bounded in RY x [0, 7] and even uniformly continuous there.
Therefore we get all the necessary information at the control level.

But Assumption (HEX* op) plays also a key role at the pde level, in view of the
comparison result: indeed, it implies that the Hamiltonian H satisfies the following
property: for any R > 1

There exists M > 0, Cy and a modulus of continuity m : [0,+00) — [0,+00) such
that, for any v,y € RN, t,s € [0,T¢], —R<r; <rpy < RER and p,q € RY
|H (z,t,r1,p)=H(y, s,71,p)| < (Cilx —y[+m(|t — s]) [pl+m ((lz =yl + |t = s)R) ,

H(xat?ﬂ?ap) - H(.I',t,?"l,p) Z _M(TQ - Tl) )
’H(.T,t,?”l,p) - H(x7tvrlaq>| S M‘p_ Q| .

Of course, these properties are satisfied with M = max (|||, ||¢||o, [[||c0) and m is
the modulus of uniform continuity of b, ¢, [.

1.2 Important remarks on the comparison proof

We want to insist on several points here, and highlight several remarks that are
important to understand the methods and strategies we develop throughout this
book.

On proper Hamiltonians — in the process of performing comparison between a
subsolution u and a supersolution v (See Section 2.1), the initial step is to reduce the
proof to the case when r +— H(z,t,r,p) is increasing (or even non-decreasing) for any
x,t, p. Such Hamiltonians are often called “proper”.

This can be done through the classical change of unknown functions
u(z,t) — u(x,t) .= u(x,t) exp(—Kt) ,

and the same for v — ¥, for some K > M. The Hamiltonian H is changed into

H(z,t,rp) = Slelg {=b(z,t,a) exp(—Kt) - p+ [c(z,t,a) + K|r — l(x,t,a) exp(— K1)} .

This allows to reduce to the case where ¢(x,t,a) > 0 for any z,t, o, or even > 1.

NoTE — We will always assume in this book that, one way or the
other, we can reduce to the case when ¢ > 0.
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On the r and ¢-dependence — the second point we want to emphasize is the
t-dependence of b. It is well-know that, in the comparison proof, the term

Q= (Cilzr —yl +m(|t —s])) Ip

is playing a key role. In order to handle the difference in the behavior of b in x and ¢,
one has to perform a proof with a “doubling of variable” technique which is different
in z and t. Namely we have to consider the function

z—yl*  Jt—s]?
= e
where 0 < f < e < 1 and 0 < n < 1. We recall that the n-term ensures that this

function achieves its maximum while the e, 8-terms ensure (x,t) is close to (v, s).
Therefore the maximum of this function is close to supgy (@ — ).

(@, 8,y, ) = a(z, 1) — 0(y, s) n(lz* +1yl)

The idea behind this different doubling in x and ¢ is the following: the proof requires
a quantity similar to Q above to be small. Now, since |p| behaves like o(1)e™!, while
|z — y| is like o(1)e and |t — s| like o(1)3, the product Ci|z — y||p| is indeed small.
But in order to ensure that the product m(|t — s|)|p| is also small, we need to choose
[ small enough compared to €.

In this book, we want to handle cases when b, ¢, [ can be discontinuous on subman-
ifolds of RN x [0,T}]. From a technical point of view, one quickly realizes that the x
and t variables often play a similar role in this framework.

NOTE — Qur assumptions on the behavior of b, c,l or H with respect
to x and t will essentially be the same.

In particular, we will assume that b is also Lipschitz continuous in ¢. This unnatural
hypothesis simplifies the proofs but we indicate in Section 23.1 how it can be removed
at the expense of more technicalities.

On localization arguments — last but not least, this classical comparison proof
does not use a real “localization” procedure. Of course, the role of the —n(|z]* + |y|?)-
term is to ensure that the function associated to the “doubling of variable” achieves
its maximum. However, the way to play with the parameters, letting first n tend to 0
and then sending [ and ¢ to zero afterwards implies that these maximum points do
not remain a priori bounded.

NOTE — In all the arguments in the book, we will use in a central
way either the Lipschitz continuity or the convexity of H in p in
order to have a more local comparison proof.

We systematically develop this point of view in Section 2.2.
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1.3 Basic assumptions

The previous remarks lead us to replace (HE%> op) by the following basic (yet less
classical) set of assumptions on the control problem:

(Hga_cp) — Basic Assumptions on the Control Problem.

(i) The function ug : RY — R is a bounded, continuous function.

(i) The functions b,c,l are bounded, continuous functions on RN x [0,T}] x A and
the sets (b, c,1)(z,t,A) are convex compact subsets of RN*2 for any v € RV,
te [O,Tf] @,

(iii) For any ball B C RY, there exists a constant C1(B) > 0 such that, for any
r,y € RN, t €[0,Tf], a € A, we have

[b(z,t,0) = by, s,a)] < C1(B) (| —y| + |t —s]) .

We will explain in Section 23.1 how to handle a more general dependence in time
when the framework allows it. In terms of equations and Hamiltonians, and although
the following assumption is not completely equivalent to (Hga_cp), we will use the

(Hpa_ny) — Basic Assumptions on the Hamilton-Jacobi equation.

There exists a constant Cy > 0 and, for any ball B C RY x [0,T}], for any R > 0,
there ezists constants C; = Cy(B,R) > 0,7(R) € R and a modulus of continuity
m = m(B,R) : [0,400) — [0,400) such that, for any z,y € B, t,s € [0,T}],
—R<r; <ry<Randp,qcRY

|H (2, t,71,p) = H(y, s,r1,p)| < Cille =yl + [t = sll[p] + m(jz —y[+ [t = s]),

|H(x,t,71,p) — H(z, t,11,q)| < Calp—q ,
H(z,t,ro,p) — H(z,t,11,p) > v(R)(rg —11) -

In the next part “Tools”, we introduce the key ingredients which allow to pass from
the above standard framework to the discontinuous one; they are concerned with

(DThe last part of this assumption which is not a loss of generality will be used for the connections
with the approach by differential inclusions.
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a. Hamilton-Jacobi Equations: we recall the notion of viscosity solutions and
we revisit the comparison proof in order to have an easier generalization to the
discontinuous case. We immediately point out that the regularization of sub
and supersolutions by sup or inf-convolutions will play a more important role
in the discontinuous setting than in the continuous one.

b. Control problems: the discontinuous framework leads to introduce Differ-
ential inclusions in order to define properly the dynamic, discount and cost
when b, ¢, [ are discontinuous. We provide classical and less classical results on
the DPP in this setting.

c. Stratifications: we describe the notion of Whitney stratification which is the
notion used in Bressan and Hong [51] for the structure of the discontinuities
of H or the (b,¢,[) and we introduce the notions of “Admissible Flat Strat-
ification”, “Locally Flattenable Stratification”, and “Tangentially Flattenable
Stratification” which are useful for our approach.

Using these tools requires to make some basic assumptions for each of them, which
are introduced progressively in this next part. Apart from (Hga_my3) and (Hga_cp)
that we introduced above, we will use (Hpcw) and (Hgy) respectively for the Differ-
ential Inclusion and the Stratification.
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Chapter 2

PDE Tools

Abstract. This chapter presents all the tools which involve only pde-type arguments:
while stability results, and in particular the “half-relaxed limits method”, are just de-
scribed, “Strong Comparison Results” are revisited to obtain a version which can be
used in the discontinuous framework. Whitney stratifications are introduced and some
of their properties are studied with the reqularization of subsolutions procedure in
mind, a key step in the proof of comparison results for stratified problems. The impor-
tant notion of “reqularity of discontinuous functions” is exposed. Finally, properties
of wiscosity sub and supersolutions on the boundary are studied with two points of
view, linking their regularity and the approach of Lions-Souganidis for problems set
on networks.

2.1 Discontinuous viscosity solutions for equations
with discontinuities, “half-relaxed limits” method

In this section, we recall the classical definition of discontinuous viscosity solutions
introduced by Ishii[120] for equations which present discontinuities. We have chosen
to present it in the first-order framework since, in this book, we are mainly interested
in Hamilton-Jacobi Equations but it extends without major changes to the case of
fully nonlinear elliptic and parabolic pdes. We refer to the Users’ guide of Crandall,
Ishii and Lions [08], the books of Bardi and Capuzzo-Dolcetta [11] and Fleming and
Soner [29] and the CIME courses [13, 2] for more detailed presentations of the notion
of viscosity solutions in this more general setting.

We (unavoidably) complement this definition by the description of the discontinuous
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stability result, often called “Half-Relaxed Limits Method”, being clearly needed when
dealing with discontinuities. We recall that it allows passage to the limit in fully
nonlinear elliptic and parabolic pdes with just an L>*~bound on the solutions. The
“Half-Relaxed Limits Method” was introduced by Perthame and the first author in
[24] and developed in a series of works [25, 26]. One of its first striking consequences
was the “Perron’s method” of Ishii [159], proving the existence of viscosity solutions
for a very large class of first- and second-order equations (see also the above references
for a complete presentation).

The definition of viscosity solutions uses the upper semicontinuous (u.s.c.) envelope
and lower semicontinuous (l.s.c.) envelope of both the (sub and super) solutions and
of the Hamiltonians and we introduce the following notations: if f: A C R? — R is a
locally bounded function (possibly discontinuous), we denote by f* its u.s.c. envelope

fH(X) = limsup f(X) for X € A,

X=X

and by f, its l.s.c. envelope

fo(X) =liminf f(X) for X € A.

X=X

Throughout this section, we use X € R as the generic variable to cover both the
stationary and evolution cases where respectively, X =z € R" or X = (x,t) € R"xR.

2.1.1 Discontinuous viscosity solutions

We consider a generic Hamiltonian G : O xR x RY — R where O is an open subset
of RY and O denotes its closure. We just assume that G is a locally bounded function
which is defined pointwise.

The definition of viscosity sub and supersolution is the following

Definition 2.1.1 — Discontinuous Viscosity Solutions.

A locally bounded function u: O — R is a viscosity subsolution of the equation
G(X,u,Du) =0 onO (2.1)
if, for any ¢ € CY(O), at a mazimum point Xo € O of u* — ¢, one has

G, (Xo, u* (Xo), Dyp(Xo)) < 0.
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A locally bounded_functz’on v:0—=>Risa viscosity supersolution of Equation (2.1)
if, for any p € CHO), at a minimum point X, € O of v. — @, one has

G*(X(), U*(X()), DQO(X())) Z O .

A (discontinuous) solution is a function which is both viscosity sub and supersolution
of the equation.

Several classical remarks on this definition:

(7) In general, the notion of subsolution is given for u.s.c. functions while the notion
of super-solution is given for l.s.c. functions: this may appear natural when looking at
the above definition where just «* and v, play a role and actually we can reformulate
the above definition for general functions as: u is a subsolution if and only if the
u.s.c. function u* is a subsolution and v is a supersolution if and only if the l.s.c.
function v, is a supersolution. The interest of this more general definition comes from
the applications, for example to control problems, where we face functions which
are a priori neither u.s.c. nor l.s.c. and still we wish to prove that they are sub and
supersolution of some equations. Therefore such a formulation is needed. But when
we will have to give a result which holds for subsolutions (or supersolutions), we
will assume the subsolution to be u.s.c. (or the supersolution to be ls.c.) in order to
lighten the notations in the statement.

(i2) If the space of “test-functions” ¢ which is here C'(O) is changed into C*(0),
Ck(O) for any k > 1 or C*(0O), we obtain an equivalent definition. Then, for a
classical stationary equation (say in R") like

H(z,u,Du) =0 inR",

the variable X is just x, N = n and Du stand for the usual gradient of u in R™. But
this framework also contains the case of evolution equations

u+ H(z,t,u,Dyu) =0 in R" x (0,7%),

where X = (z,t) € R" x (0,77), N =n+1 and Du = (D,u, u;) where u, denotes the
time-derivative of u and D,u is the derivative with respect to the space variables z,
and the Hamiltonian reads

G(X,’I’,P) :pt+H<£E,t,T,px) s

for any (z,t) € R" x (0,7%), r € R and P = (ps, pt).

(77i) This definition is a little bit strange since the equation is set on a closed subset, a
very unusual situation. There are two reasons for introducing it this way: the first one
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is to unify equation and boundary condition in the same formulation as we will see
below. With such a general formulation, we avoid to have a different results for each
type of boundary conditions. The second one, which provides also a justification of
the “boundary conditions in the viscosity sense” is the convergence result we present
in the next section.

To be more specific, let us consider the problem

F(z,u,Du) =0 in O C R",
L(z,u,Du) =0  on 00,

where F), L are given continuous functions. If we introduce the function G defined by

B F(x’r’p) if x € 07
G(z,r,p) = { L(z,r,p) if z € 0.

we can just rewrite the above problem as
G(z,u,Du) =0 on O,

where the first important remark is that G is a priori a discontinuous Hamiltonian.
Hence, even if we assume F' and L to be continuous, we face a typical example which
we want to treat in this book!

_ The interpretation of this new problem can be done by setting the equation in
O instead of O. Applying blindly the definition, we see that w is a subsolution if
Gu(z,u*, Du*) <0 on O, i.e. if

F(z,u*, Du*) <0 in O,
min(F(z,u*, Du*), L(z,u*, Du*)) <0 on 00,
while v is a supersolution if G*(z,v,, Dv,) > 0 on O, i.e. if
F(z,v.,Dv,) >0 in O,
max(F(x,v., Dv,), L(x,vs, Dv,)) >0 on 00 .

Indeed, we have just to compute G, and G* on O and this is where the “min” and
the “max” come from on 00O.

Of course, these properties have to be justified and this can be done by the discon-
tinuous stability result of the next section which can be applied for example to the
most classical way to solve the above problem, namely the vanishing viscosity method

—eAu. + F(z,us, Du.) =0 in O,
L(z,u., Du.) =0 on 00 .
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Indeed, by adding a —eA term, we regularize the equation in the sense that one
can expect to have more regular solutions for this approximate problem—typically in
C*(O)NCYO).

To complete this section, we turn to a key example: the case of a two half-spaces
problem, which presents a discontinuity along an hyperplane. We use the following
framework: in RY, we set Q) = {zy > 0}, Qo = {znx < 0} and H = {zy = 0}. We
assume that we are given three continuous Hamiltonians, H; on Q;, H, on Qy and
Hy on H. Here, X = (z,t) and let us introduce

pe+ Hy(z, t,r,p,) ifxeQ,
G(X7 T7p) = Dt + HQ(.T,t,T,px) if x € QQ ,
pe+ Ho(z,t,r,p,) ifzeH.

Then solving G(X,u, Du) = 0 for X = (z,t) € RV*! means to solve the equations
uy+ H;(z,t,u, Du) = 0 in each €; (i = 1,2) with the “natural” conditions on H given
by the Ishii’s conditions for the sub and super-solutions, namely

0 onH

<
>0 onH.

min(u; + Hy(x, t,u*, Du*), uy + Ha(x, t,u*, Du*), uy + Ho(x, t, u*, Du*))
max(u; + Hy(x,t, v, Dv,), uy + Ho(z,t, vi, Dvy), uy + Ho(x, t, vs, Dvy))

Remark 2.1.2 We have decided to present the definition of viscosity solution on a
closed space O for the reasons we explained above. But we can define as well equations
set in open subset of RN (typically O) or open subsets of O (typically O N B(X,r)
for some X € O and r > 0). The definition is readily the same, considering local
mazimum points of u* —p or minimum points of v,—p which are in O or ONB(X, ).

We end this section with a classical “trick” that is used in many stability results
like the half-relaxed limits method, which is detailed in the next section.

Lemma 2.1.3 When testing the sub or supersolution condition for an equation of
the type G(X,u, Du) = 0, if u — ¢ reaches a local extremum at Xy, we can always
assume that Xo is a strict mazimum or minimum point, without changing Dy(X).

We point out that a immediate consequence of this lemma is that we have an
equivalent definition of viscosity sub and supersolutions by considering only strict
local maximum/minimum points.

Proof — In the case of a maximum point, we just need to replace ¢ by ¥ (X) =
©(X) — | X — Xo|? where ¢ > 0: it is clear that u — 1) has a strict maximum at X, and
moreover since Do(Xy) = D(Xjp), the subsolution condition still takes the form

G(Xo, u(Xo), Dp(Xo)) < 0.
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Of course, the same argument applies for the supersolution condition by adding this
time c|X — Xo|* to .
Q.E.D.

Notice that the same trick works for second-order equations, but in order to keep
the second-order derivatives unchanged we have to use ¢(X) & ¢/ X — X,|*.

2.1.2 The half-relaxed limits method

In order to state it we use the following notations: if A C R? and if (f.). is a sequence
of uniformly locally bounded real-valued functions defined on A, the half-relaxed
limits of (f.). are defined, for any X € A, by

limsup* f(X) = limsup f.(Y) and liminf, f.(X) = liminf f.(Y) .
Y—X Y—%(
e—0 e

Theorem 2.1.4 — Half-relaxed limits.

Assume that, for e > 0, u. is a viscosity subsolution [resp. a supersolution| of the
equation
Ge(X,ue, Dus) =0 on O,

where (Ge): is a sequence of uniformly locally bounded functions in O x R x RY.
If the functions u. are uniformly locally bounded on O, then u = limsup* u. [resp.
w = liminf, u. | is a subsolution [resp. a supersolution] of the equation

G(X,u,Du) =0 on O,
where G = liminf, G.. [resp. of the equation
G(X,u,Du) =0 on O,
where G = limsup* G, ].
In order to compare them, we recall that the first stability result for viscosity

solutions is given in the introductory article of Crandall and Lions [069]: it takes the
form

Theorem 2.1.5 Assume that, for e > 0, u. € C(O) is a viscosity subsolution [resp.
a supersolution] of the equation

Ge(X,ue, Du.) =0 in O,
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where (G.). is a sequence of continuous functions in O x R x RY. If u, — u in C(O)
and if G, — G in C(O x R x RY), then u is a subsolution [resp. a supersolution] of
the equation

G(X,u,Du) =0 inO.

We recall that the convergence in the space of continuous functions (C'(O) or C'(O x
R x RY)) is the local uniform convergence.

Theorem 2.1.5 is, in fact, a particular case of Theorem 2.1.4. Indeed, as the proof
will show, the result of Theorem 2.1.4 remains valid if we replace O by O and if u,
and G, converge uniformly then u =7 =wv and G =G =G.

Hence Theorem 2.1.4 is more general when applied to either sub or supersolutions:
its main interest is to allow the passage to the limit in the notion of sub and su-
persolutions with very weak assumptions on the solutions but also on the equations:
only uniform local L*—bounds. In particular, phenomenas like boundary layers can
be handled with such a result. This is a striking difference with Theorem 2.1.5 which,
in practical uses, requires some compactness of the u.’s in the space of continuous
functions (typically some gradient bounds) in order to have a converging subsequence.

The counterpart is that we do not have a limit anymore, but two half-limits % and
u which have to be connected in order to obtain a real convergence result. In fact,
the complete Half-Relaxed Limit Method is performed as follows

1. Get a locally (or globally) uniform L*-bound for the (u.)..

[\

. Apply the above discontinuous stability result.
3. The inequality © < @ on O holds by definition.

4. To obtain the converse inequality, use a Strong Comparison Result, (SCR)
in short, 7.e. a comparison result which is valid for discontinuous sub and su-
persolutions, which yields

u<wu in O(oron O).

5. From the (SCR), we deduce that @ = u in O (or on O). Setting u := u = u,
it follows that u is continuous (because % is u.s.c. and u is l.s.c.) and it is easy
to show that, u is the unique solution of the limit equation, by using again the

(SCR).

6. Finally, we also get the convergence of u. to u in C(O) (or in C(O)) (see
Lemma 2.1.7 below).
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It is clear that, in this method, (SCR) play a central role and one of the main
challenge in this book is to show how to obtain them in various contexts.

Now we give the Proof of Theorem 2.1.4. We do it only for the subsolution case,
the supersolution one being analogous.

We first remark that limsup* u. = limsup* u? and therefore changing u. in u?, we
can assume without loss of generality that u. is u.s.c.. Recall also that by Lemma 2.1.3,
we are always reduced to consider strict extremum points in viscosity inequalities
testing. The proof is based on the

Lemma 2.1.6 Let (w.). be a sequence of uniformly bounded u.s.c. functions on O
and W = limsup* w.. If X € O is a strict local mazimum point of W on O, there
exists a subsequence (wo). of (w.). and a sequence (Xu)o of points in O such that,
for all £', X is a local mazimum point of w. in O, the sequence (X))o converges to
X and wa (X)) = w(X).

We first prove Theorem 2.1.4 by using the lemma. Let ¢ € C*(O) and let X € O
be a strict local maximum point de uw — . We apply Lemma 2.1.6 to w. = u. — ¢
and W = u — ¢ = limsup* (u. — ¢). There exists a subsequence (u./). and a sequence
(X./)o such that, for all ¢/, X,/ is a local maximum point of u. — ¢ on O. But u. is
a subsolution of the G.-equation, therefore

Ge’ (Xe’a Ug! (X€’>7 D@(XE/)) S 0.

Since X, — X and since ¢ is smooth Dp(X.) — Dp(X); but we have also
uer (Xor) = u(X), therefore by definition of G

@(Xv E(X% DQD(X)) < lim inf Ga’<Xa’; ue’(Xe’)v DQD(Xa’)) :

This immediately yields
G(X,u(X), Dp(X)) <0,

and the proof is complete.

Proof of Lemma 2.1.6 — Since X is a strict local maximum point of @ on O, there
exists r > 0 such that

VWY e ONB(X,r), wY)<wX),

the inequality being strict for Y # X. But O N B(X,r) is compact and w. Is us.c.,
therefore, for all € > 0, there exists a maximum point X, of w. on O N B(X,r). In

other words o
VW eONBX,r), w(Y)<w(X.). (2.2)



HJ-Equations with Discontinuities: PDE Tools 43

Now we take the limsup as ¥ — X and € — 0: we obtain

w(X) < limsup w(X,) .

e—0

Next we consider the right-hand side of this inequality: extracting a subsequence
denoted by ¢/, we have limsup, w.(X.) = lim. w.(X.) and since O N B(X,r) is
compact, we may also assume that X, — X € O N B(X,r). But using again the
definition of the limsup* at X, we get

w(X) < limsup w.(X.) = lim w. (X)) <w(X) .

e—0 e'=0

Since X is a strict maximum point of w in O N B(X,7) and that X € O N B(X, ),
this inequality implies that X = X and that w.(X.) — w(X), so that the proof is
complete.

Q.E.D.

Controlling the liminf and limsup also implies local uniform convergence:

Lemma 2.1.7 If K is a compact subset of O and if © = u on K then u. converges
uniformly to the function u :=u =u on K.

Proof of Lemma 2.1.7 : Since © = v on K and since @ is w.s.c. and u is l.s.c. on O,
u 1s continuous on K. We first consider

M. =sup (u —u) .
K

The function u? being u.s.c. and u being continuous, this supremum is in fact a
maximum and is achieved at a point X.. The sequence (u.). being locally uniformly
bounded, the sequence (M.), is also bounded and, K being compact, we can extract
subsequences such that M. — limsup, M, and X, — X € K. But by the definition
of the limsup*, limsupu? (X.) < w(X) while we have also u(X.) — u(X) by the
continuity of u. We conclude that

limsup M, = lin% M. = lim (ul(Xo) —u(Xy)) <u(X) —u(X)=0.
g/ —

e—0 e'=0

This part of the proof gives half of the uniform convergence, the other part being
obtained analogously by considering M, = sup (u — (u:)«).
K
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2.2 Strong comparison results: how to cook them?

In the previous section, we have seen that (SCR) are key tools which are needed to use
the “Half-Relaxed Limit Method”. We have used the terminology “strong” because
such comparison results have to hold for discontinuous sub and supersolutions, which
are only u.s.c. and l.s.c. respectively. From a technical point of view, it is easier to
compare at least continuous sub and supersolutions and of course, some comparison
results may even fail in the discontinuous framework. However, in this book we mainly
prove (SCR) therefore the expression “comparison result” always refers to a strong
one.

In general, a comparison result is a global inequality (i.e. on the whole domain)
between sub and supersolutions. However, in the case of Hamilton-Jacobi Equations
with discontinuities it is far easier, if not necessary, to argue locally. This is why in
this section we explain how to reduce the proof of global comparison results to the
proof of local comparison results. We do not pretend this section to cover all cases
but we have tried to make it as general as we could.

2.2.1 Stationary equations

In this section we are in the situation where X = z is the space variable in RY or a
subset of it, and no time variable is involved here. We consider a general equation

G(z,u,Du) =0 on F, (2.3)

where F is a closed subset of RY and G is a continuous or discontinuous function on
F xR xRV,

We introduce the following notations: USC-Sub(F) is a subset of u.s.c. subsolutions
of (2.3) while LSC-Sup(F) is a subset of Ls.c. supersolutions of (2.3). We prefer to
remain a little bit vague on these subsets but the reader may have in mind that they
are generally defined by some growth conditions at infinity if F is an unbounded
subset of RY. In these definitions, we may replace below F by a subset (open or
closed) of F and we use below the following notations

FO' = B(x,r)NF and OF"" :=0B(x,r)NF.

Finally we denote by USC-Sub(F*") [resp. LSC-Sup(F*")] the set of u.s.c. [resp.
l.s.c. | functions on F#" which are subsolutions [resp. supersolutions| of G = 0 in

F*T. Notice that, for these sub and supersolutions, no viscosity inequality is imposed
on 0B(z,r).
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By “global” and “local” comparison results we mean the following

(GCR)” — Global Comparison Result in F.
For any u € USC-Sub(F) and v € LSC-Sup(F), we have u < v on F .

(LCR)” — Local Comparison Result in F.

For any x € F, there exists 7 > 0 such that, if u € USC-Sub(F*"), v € LSC-Sup(F*")
then for any 0 <r <7,

max(u v)+ < max(u —v)y

We recall that s, denotes the positive part of s € R while s_ stands for its negative
part and we extend this definition to functions.

Writing the (LCR)” with the (...), inequality is quite standard, see for instance
[104]. The meaning of this formulation is the following: either v < v in F®" and
we are done locally speaking, or the maximum of u — v is positive, but controlled
by the values at the boundary. The reader may be surprised by the formulation of
(LCR)F with both 7 and r but, on one hand, proving such result for all r small
enough (instead of a fixed r > 0) turns out to be the same in general. On the other
hand, this formulation will give us more flexibility while presenting the strategy to
reduce the proof of (GCR)” to (LCR)”.

In the rest of this section, we skip the reference to F in (LCR) and (GCR)
since there is no ambiguity here. It is clear that proving (LCR) seems much easier
because of the compactness of F#" and the fact that we only have to prove them for
0<r<7=r(x).

Indeed, the behavior at infinity of v and v does not play a role anymore and moreover
we only use local properties of G; in particular, if G has discontinuities which form a
stratification, we can use this localization to restrict to a ball where some part of the
stratification is flat with suitable properties nearby, cf. Section 2.3.

Now we formulate a first key assumption in order to reduce (GCR) to (LCR).

(LOC1) — Localization assumption one.

If F is unbounded, for any u € USC-Sub(F), for any v € LSC-Sup(F), there ezists a
sequence (Uq)a>o Of u.s.c. subsolutions of (2.3) such that u,(x) — v(z) = —o0 when
|z| = 400, x € F. Moreover, for any x € F, us(x) — u(x) when o — 0.
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In the above assumption, we do not write that u, € USC-Sub(F) because this is
not the case in general: typically, USC-Sub(F) may be the set of bounded subsolutions
of (2.3) while u, is not expected to be bounded.

The main consequence of (LOC1) is that there exists & € F such that

U (z) —v(Z) = mjz_@x(ua —v),
and the basic ideas of the reduction of (GCR) to (LCR) can be understood through

the two following particular cases which we will generalize afterwards.

(1) Strict local mazimum point — If Z is a strict local maximum point of u, — v for
any o > 0 small enough and 7 := 7(Z) is defined in (LCR)”, then for any 0 < r < 7,
— T) < — )
(1t = 0)+(#) < ppax(ua — v)-
But on the other hand, the strict local maximum point property implies that, if r is
small enough

(uq —v)(Z) > (gl}%?g(ua —v).

So, if (ue — v)(Z) > 0, these two inequalities lead to contradiction and therefore, we

necessarily have (u, —v)(Z) < 0 which implies u, < v in F. Since this is true for any
a > 0 small enough, we let « tend to 0 to conclude that u < v, i.e. (GCR) holds.

Of course, this first case, although being rather illuminating, seems unrealistic.
Indeed, after the standard localization argument producing u, that the reader may
have in mind—or see how we check (LOC1) below—, it is clearly impossible in general
to show that u, — v has at least a strict local maximum point, or to build u, in order
that this property holds. A second argument is needed to possibly transform a local
maximum point into a strict local maximum point, or to be able to perform a similar
proof as above in order to obtain (GCR).

(1) Strict subsolution — This second case is more realistic: let us assume that u,, is
a strict subsolution, i.e. there exists n(a) > 0 such that

G(2, ta, Dus) < —n(a) <0 on F,

and that (r,p,) — G(z,r,p,) is uniformly continuous in R x RY uniformly w.r.t. z.
In this case, for 0 < § < 1 we set

ui(az) = uq(z) — |z — :Y:\Q ,

where 7 is defined as above. Thanks to the assumptions on u, and G, if § is chosen

small enough, we see that, for any 7, ul is a subsolution in F*", and moreover 7 is a
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strict maximum point of u’ — v in F*". Therefore we are in an analogous situation
as in the first case, (u} — v)(Z) = (us — v)(Z) = 0 and we conclude in the same way.

Our aim is to present a generalization of these two particular cases, especially the
second one. As the reader will notice, in the two main frameworks we investigate
below—the “Lipschitz case” and the “convex case”—, only the convex framework
will be really different from case (ii) above; in the “Lipschitz case”, we will only

formulate differently the arguments.

In order to introduce the second localization hypothesis, let us define

Lf oger = fx) = max f(y),

YEOF T

which in some sense measures the variation of f between x and the boundary. Notice
that since max(f+g) < max(f)+max(g), this operator enjoys the following property

Lf L orer + L) 57mer < LF + 9)5 500 - (2.4)

(LOC2) — Localization assumption two.

For any v € F, r > 0, if u € USC-Sub(F>"), there exists a sequence (u’)s>o of
functions in USC-Sub(F®") such that v’ — ulyz.. > n(8) >0 for any §. Moreover,
for any y € F=, u®(y) — u(y) when & — 0.

As we have already used it in the study of the two particular cases above the role
of (LOC1) is clear: (LOC1) leads to a standard localization procedure. Instead of
having to prove the comparison in F which can be unbounded, it allows to do it
only on a compact subset of F. This has several advantages: first, we can consider
maximum points for the u.s.c. function u, — v in such a compact subset, while this
is not, in general, the case for u — v in F since u,v can also be unbounded. But,
reducing the proof to (LCR), we can also have more general assumptions on G: the
reader may compare (HE%* «p) with (Hga_cp) and/or (Hga_g3) in Section 1.3.

The role of (LOC2) is to give a suitable replacement of the construction of u’ in
the second particular case we describe. It is is a technical assumption which allows
to make sure that in (LCR) the max is not attained at the boundary, by replacing u
with another subsolution which has a greater variation between x and the boundary.
This is a key point in the proof of the main result that we give now.

Proposition 2.2.1 — Reduction to a Local Comparison Result.
Assuming (LOC1) and (LOC2), (LCR) implies (GCR).
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Proof — Given u € USC-Sub(F) and v € LSC-Sup(F), we have to prove that u < v
on F.

Instead of comparing v and v, we are going to compare u, and v for u, given
by (LOC1) and then to let a tend to 0. Arguing in that way and droping the «
for simplifying the notations means that we can assume without loss of generality
that u(z) — v(z) — —oo when |z| — 400, z € F and therefore we can consider
M := maxz(u — v) and we argue by contradiction, assuming that M > 0.

Since F is closed, u — v is u.s.c. and tends to —oo at infinity, this function achieves
its maximum at some point € F. Considering r > 0 for which (LCR) holds, this
means that [u —v]5z., > 0.

Now we apply (LOC2). Since u’ € USC-Sub(F*") and (LCR) holds, we get the
following alternative

(a) either «’° < v in F=7, but this cannot be the case for § small enough since
u®(z) —v(z) = u(x) —v(z) > 0;
(b) or maxz+(u® —v) > 0 and

S ) < 5 _ ).
max(u” —v) < max(u’ —v)

In particular, this implies that [u’ — v}z, < 0. But using (2.4), we deduce that
[u = v]grer < Lué - Ujg}'w - Lua - UJgfz,r < -n(0) <0,

which yields a contradiction. The conclusion is that M cannot be positive, hence
e < v in F for any o and we get the (GCR) by sending o — 0.
Q.E.D.

Now an important key question is: how can we check (LOC1) and (LOC2)? We
provide some typical examples.
The Lipschitz case — We assume that there exists a constant ¢ > 0 such that the

function G satisfies, for all z € F, z; < 2z and p,q € RY

G(z,21,p) — G(x, 29,p) > ¢ (21 — ) , (2.5)

|G(z, 21,p) — G(x,21,q9) < clp—q] - (2.6)

In the case when USC-Sub, LSC-Sup are sets of bounded sub or supersolutions then
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(LOC1) is satisfied with ua(7) = u(z) — af(|z|? + 1)/2 + ¢?], indeed

—1 2 1/2 2 2]
G(z,ua(z), Dug(z)) < G(z,u(z), Du(x)) — ¢ af(|z]* + 1) 24 ]+ cam )

< —c Hac?)) + ca = 0.
Concerning (LOC2), for any r» > 0 we can use
u’(y) = u(y) = 8(ly — 2* + k)
for some well-chosen constant k. Indeed
Gy, u’(y), Du’(y)) < Gy, u(y), Duly)) — ¢ *8(ly — «|* + k) + 2cdly — =],
< =Olly —af? + k— 2y — ),

and with the choice k¥ = ¢* we get a subsolution since X? — 2¢2X + ¢* has no real
roots. On the other hand, if y € 0F™"

W (x) —u(z) = =0k > =8|y — 2> + k) + 0r* = 4’ (y) — u(y) + or*,

so that [u® — ulyz... > n(8) = or.

We point out that, even if the assumption on G are slightly different from the ones
we use in the second particular case we describe above, we could have used similar
arguments to treat it.

The convex case — Here we assume that G(z, z, p) is convex in z and p and satisfies
property (2.5).

For the localization (LOC1), we do not propose any explicit building of u, since
it strongly depends on (typically) the growth at infinity of the solutions we want to
handle. But a classical construction is described by the following assumption which
emphasizes not only the role of the growth of solutions (via ) but also of the
convexity of G, via the way the u, are built:

(Subsoll) — Subsolution hypothesis one.

For any v € USC-Sub(F), v € LSC-Sup(F), there exists an u.s.c. subsolution 1, :
F — R such that for any 0 < a < 1, uy(z) := (1 —a)u(z)+ayh (x) satisfies (LOCL).

Concerning (LOC2), the main remark is that, in general, the assumption on the
uniform continuity of G in (r,p,) is not satisfied anymore and the above argument
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based on a perturbation by a term of the form —d|z — Z|*> does not work. But we may
also use a similar construction as for (LOC1) relying on the convexity, assuming for
instance

(Subsol2) — Subsolution hypothesis two.

For any v € USC-Sub(F) and x € F, there exists r > 0 and 1y € USC-Sub(F*")
such that for any 0 < 0 < 1, us(y) = (1 — 0)u(y) + 0vs(y) satisfies (LOC2).

A typical candidate is ¥ (z) = —(K|y — z|* + k) for k > 0 large enough depending
on K; indeed, thanks to (2.5), ¥ is in USC-Sub(F®") if k is sufficiently large.

It follows that if y € OF*",

us(y) — uly) = 0y (y) —u(y)) < —0(Kr* —k —u(y)) ,
while us(z) — u(x) = —0(k + u(z)). Hence, if |u(2)| < m, if z € F*", we get
lus — u)pzer > 6(Kr* —2m,) =n(d) >0,

if K is chosen large enough. This implies that (LOCZ2) holds.

2.2.2 The evolution case

There are some key differences in the evolution case due to the fact that the time-
variable is playing a particular role since we are mainly solving a Cauchy problem,
hence we have to reformulate the results with the “parabolic boundary”. Using here
the variable X = (z,t), we first write the equation as

G(z,t,u, (Dyu,us)) =0 on F x (0,T%], (2.7)

where F is a closed subset of RY and G is a continuous or discontinuous function on
F x [0,Tf] x R x RN+,

This equation has to be complemented by an initial data at time ¢ = 0 which can
be of an usual form, namely

u(z,0) = ug(x) on F, (2.8)

where ug is a given function defined on F, or this initial value of v can be obtained
by solving an equation of the type

Ginit(z,0,u(x,0), Dyu(2,0)) =0 on F, (2.9)
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where Gy, is a continuous or discontinuous function on F x [0,T}] x R X RM.

A strong comparison result for either (2.7)-(2.8) or (2.7)-(2.9) which is denoted
below by (GCR)-evol can be defined in an analogous way as (GCR): subsolutions
(in a certain class of functions) are below supersolutions (in the same class of func-
tions), USC-Sub(F) and LSC-Sup(F) being just replaced by USC-Sub(F x [0,T%])
and LSC-Sup(F x [0,T%]); we just point out that the initial data is included in the
equation in this abstract formulation: for example, a subsolution u satisfies either

u(z,0) < (uo)"(z) on F
in the case of (2.8) or the function = +— u(z,0) satisfies
Ginit(x,0,u(z,0), Dyu(x,0)) <0 on F,

in the viscosity sense, in the case of (2.9).

As it is even more clear in the case of (2.9), a comparison result in the evolution
case consists in two steps

(¢) proving that for any u € USC-Sub(F x [0,7%]) and v € LSC-Sup(F x [0, T¥]),

u(z,0) <v(z,0) on F, (2.10)

(77) showing that this inequality remains true for ¢ > 0, i.e.

uw(z,t) <v(z,t) on F x[0,T] .

Of course, in the case of (2.8), (2.10) is obvious if ug is a continuous function; but, in
the case of (2.9), the proof of such inequality is nothing but a stationary (GCR) in
F x {0}.

Therefore the main additional difficult consists in showing that Property (i7) holds

true and we are going to explain now the analogue of the approach of the previous
section assuming that we have (2.10).

To redefine (LCR), we have to introduce, for z € F, t € (0,7%], r > 0 and
0 < h < t, the sets
QUAF] = (Bla,r) N F) x (t— h,1].

As in the stationary case, we introduce the set USC—Sub(ij’,tl [F]), LSC—Sup(Qf:ﬁ [F])
of respectively u.s.c. subsolutions and 1.s.c. supersolution of G(z, t, u, (D,u, us)) = 0 in
fol [F]. This means that the viscosity inequalities holds in Qf,ﬁ [F] and not necessarily

. _ —
on its closure, but these sub and supersolutions are u.s.c. or Ls.c. on Q7 [F].
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On the other hand, including (B(z,r)NJF) x {t} in the set where the subsolution or
supersolution inequalities hold is important in order to have the suitable comparison
up to time t and we also refer to Proposition 2.2.4 for the connection between sub
and supersolutions in (B(z,r) N F) x (t — h,t) and on (B(z,r) N F) x (t — h,t].

With this definition we have

(LCR)-evol — Local comparison result — evolution case.

For any (x,t) € F x (0,Ty], there exists 7 > 0, 0 < h <t such that, for any 0 <r <T,
0 < h < h, if u € USC-Sub(Q%} [F]), v € LSC-Sup(Q2; [F)),

max (u—v); < max (u—v)y,
QnlF] 0 Q7]

where apr;,’; [F] stands for the parabolic boundary of Qf,’; [F|, composed of a “lateral”
part and an “initial” part as follows

0,nF) = { @B, 1) F) x [t = h A J{ (Bl n F) x {t - n}}
=: O1atQ@ U Oini@ .

We point out that, in the sequel, we are going to play with the parameters r, h
to obtain the comparison result. This explams the formulation of (LCR) where the
local comparison result has to hold in QT , forany 0 <r <7, 0<h < h.

The corresponding evolution versions of (LOC1) and (LOC2) are given by

(LOC1)-evol — Localization assumption one — evolution case.

If F is unbounded, for any uw € USC-Sub(F x [0,T%]), for any v € LSC-Sup(F X
[0,T%]), there exists a sequence (uq)aso Of w.s.c. subsolutions of (2.7) such that
Ug(z,t) —v(x,t) = —00 when |x| — 400, v € F, uniformly fort € [0,Ty]. Moreover,
for any x € F, ua(z,t) = u(z,t) when a — 0.

(LOC2)-evol — Localization assumption two — evolution case.

For any x € F, if u € USC—Sub(Q;’z[}']) for some 0 < 7, 0 < h < t, there ex-
ists 0 < h < h and a sequence (u®)s=o of functions in USC—Sub(Q?:Z[F]) such that
|u® — uJél t)Q > 7(8) > 0 with 7(6) — 0 as § — 0. Moreover u® — u uniformly on
QrylF) when & — 0.
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Notice that (LOCZ2)-evol is only concerned with a property at the lateral boundary.
As we see in the proof, the initial boundary is easily left out by a minimality argument.

With these assumptions, we have the

Proposition 2.2.2 — Reduction to a Local Comparison Result, evolution case.
Assuming (LOC1)-evol and (LOCZ2)-evol, (LCR)-evol implies (GCR)-evol.

Proof — There is no main change in the proof except the following point: using
(LOC1)-evol, we may assume that the maximum of u — v is achieved at some point
(x,t). Here we choose t as the minimal time such that we have a maximum of u — v.
And we assume that this maximum is positive.

(a) Notice first that ¢ > 0 because u < v on F x {0} and, if r and h < h are given
by (LCR)-evol, notice also that by the minimality property of t,

max (u—v) < max (u—v) =u(z,t) —v(z,t).
(B(z,r)NF)x{t—h} Qf:;[]:]

In other words, the maximum of u — v is not attained on the initial boundary, 0;,;Q.
On the other hand, on the lateral boundary we obviously get

|u — ngf’?Q =(u—v)(z,t)— max (u—v)>0.
* D10t @y, [F]

(b) Then we apply (LOC2)-evol. Using the properties of the sequence (u)s=q, we
can choose § small enough in order that again, the maximum of u° — v is not attained
at time t — h.

u’(x,t) —v(z,t) < max (u’ —v) (2.11)
Q]
< max (v’ —v)= max (v’ —v). (2.12)
3pQry 7] 0124Q% 1 [F]

In other words, |u® — v ((;:;)Q < 0 and the rest of the proof follows the same arguments

as in the stationary case

x,t (z,t) (z,t) .
lu— 0§, < [ — Vg — L’ —uly o < —(8) <0,

which leads to a contradiction.
Q.E.D.
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Now we consider (2.7) and the assumptions on G for the Lipschitz case are: there
exists a constant ¢ > 0 such that, for all z € F, t € [0,T}], 21 < 22, p} < pj,
Py, Dy € RY

G(z,t, 2, (9, p7)) — Gla,t, 21, (P, pt)) 2 (0] — p}) (2.13)

|G(I’,t, 21, (p?wpi)) - G(:L‘,t, 21, (palcapg)) < C|pi _pzlc| : (2'14)

In particular, Assumption (2.13) is a key property and, building the u, and u’ turns
out to be easy. Indeed

Ug(z,t) = u(z,t) — of(|z)* + 1)V + Kt]
for K > 0 large enough. And for u°,
u’(y,8) = uly,s) = 6[(ly — « + D* =1+ K(s = )],

where K has to be chosen large enough to have a subsolution and A small enough to
have the right property on the parabolic boundary. This is because of this property
on the parabolic boundary that (LOC2)-evol has this formulation for h.

In the convex case, Assumption (2.13) still holds but Assumption (2.14) is replaced
by the fact that (p,,p:) — G(z,t, 2, (ps, pt)) is convex for any x € F, t € [0,T%], z € R
and by the fact that G(z,t,0,(0,0)) is bounded from above. Then, we build u, and
u? in the following way

uo(z,t) = (1 — a)u(z, t) + ax(z,t)

where x(z,t) := [(Jz|> + 1)/2 4 Kt]. For K > 0 large enough, the above assumptions
imply that y is a subsolution of the G-equation and so is u, by convexity. We may
even take K larger in order that y and w, are stict subsolutions.

On the other hand, for u?,

W(y,s) = (1= 8uly,s) + 5 (y,s),

where ¥ (y,s) := —K|(Jly — z|?> + 1)V/2 — 1] — k(s — t) . Again for any K > 0, there
exists k > 0 large enough such that ¥¥ is a subsolution and so is u® by convexity.

Moreover it is clear that u® — u uniformly on Q7 [F].

It remains to evaluate |u® — u| E’)Il;?cg >n(6) > 0. If (y, s) € 01,t@ then

(u5 - u)(:% 8) = 5[1/}[((3/7 S) - u(y7 S)] <9 (KKTQ + 1)1/2 o 1] + kh — u(y7 5)) )
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while (u® — u)(z,t) = —du(z,t). Hence

|ud — ngCli)Q >0 (K[(r* + 1)Y= 1] — kh +u(y, s) — u(z,1)) .

If m, = max |u(y,s)|, we have

QrulF]

[ —uli > § (K[(r* + 1)"2 = 1] — kh +2m,) .

The new point here is that we have to choose h small enough in order that kh <
271K |[(r? + 1)%/2 — 1], which gives

[0 — )0 > 8 (2 K[+ DY = 1+ 2m,)

and the choice of K large enough provides the desired property.

Remark 2.2.3 We are going to use these localization properties throughout the book
in order to treat discontinuities, so let us make two tmportant comments here.

(7)

(i)

(i)

As the proofs show, both in the stationary and evolution case, in order to have
(GCR), we do not need (LCR) to hold on the whole set F: indeed, if we already
know that u < v on some subset A of F, then (LCR) is required only in F \ A.

Both in the Lipschitz and convez case we can check (LOC1), (LOC2)—and
their evolution variations—in standard ways. It should be noticed that, in both
cases, the localization procedure is independent of the possible discontinuities in
the x-variable. Which is why it will be systematically applied to get the various
(GCR) throughout this book as a first step.

The above checking of (LOC1), (LOC2)—and their evolution variations—
strongly relies on either (2.5) or (2.13) and does not allow to take into account
important examples involving gradient constraints, for instance:

max(G(z,u, Dyu);|Dyul —1) =0

Indeed, the quadratic perturbation above is not be compatible with the constraint
in general. However, we point out that such situations can be handled under
suitable assumptions; the reader may have a look at Lemma 19.4.2 in the proof
of the comparison result in the stratified setting where we develop this idea.
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2.2.3 Viscosity inequalities at ¢ =7 in the evolution case

We conclude this section by examining the viscosity sub and supersolutions inequali-
ties at ¢ = Ty and their consequences on the properties of sub and supersolutions. To
do so, we have to be a little bit more precise on the assumptions on the function G
appearing in (2.7). We introduce the following hypothesis

(Hga_p:) — Basic Assumption for the evolution case.

For any (z,t,7,ps,pi) € F x (0, Tf] x Rx RY x R, the function p; — (G(m, t,r, (px,pt))
is increasing and G(x,t,r, (px,pt)) — 400 as p; — 400, uniformly for bounded
x? t? 7.7 px'

This assumption is obviously satisfied in the standard case, i.e. for equations like
up + H(z,t,u, Dyu) =0 in RY x (0,Ty],

provided H is continuous (or only locally bounded) since in this case G(x, t,r, (p., p1)) =
yg; + H(ZE, t? Tapx)'

Proposition 2.2.4 Under assumption (Hga_p;), we have

(i) If u : F x (0,Tf) — R [resp. v : F x (0,Tf) — R] is an u.s.c. viscosity
subsolution [resp. lsc supersolution| of

G(z,t,w, (Dyw,wy)) =0 on F x (0,T),

then, for any 0 < T" < Ty, u [resp. v] is an w.s.c. viscosity subsolution |[resp.
Isc supersolution| of

G(xz,t,w, (Dyw,w;)) =0 on F x (0,77 .

(73) Under the same conditions on u and v and if

uw(x,Tf) = limsup u(y,s) [resp. v(z,Tf) = liminf w(y,s)], (2.15)
(yzs)*)(vaf) (y)s)ﬁ(m’Tf)
S<Tf S<Tf

then w and v are respectively sub and supersolution of (2.7).

(i19) If u: F x (0,T¢] = R is an u.s.c. viscosity subsolution of (2.7), then, for any
x € F, (2.15) holds for u.
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() If G satisfies G(x,t,r, (pz,pr)) — —00 as py — —oo, uniformly for bounded
x,t,1,pp and if v: F x (0,Tf] = R is a Ls.c. viscosity supersolution of (2.7),
then (2.15) holds for v.

This result clearly shows the particularities of the viscosity inequalities at the ter-
minal time ¢ = Ty or t = T": sub and supersolutions in F x (0,7) are automatically
sub and supersolutions on F x (0,7"] for any 0 < 7" < Ty and even for 7" = T}
provided that they are extended in the right way up to time T, according to (2.15).
And conversely sub and supersolutions on F x (0, T}| satisfy (2.15) provided that G
has some suitable properties which clearly hold for the standard H-equation above.
Here there is a difference between sub and supersolutions due to the disymmetry
of Assumption (Hga_p;). We will come back later on this point with the control
interpretation.

Proof — We only prove the first and second part of the result in the subsolution case,
the proof for the supersolution being analogous.

(a) Let ¢ be a smooth function (say, in F x [0,T%]) and let (z,7”) be a strict local
maximum point of u — ¢ in F x [0,7"]. We introduce the function

(s =T

(y,8) = u(y,s) —o(y,s) — .

An easy application of Lemma 5.4.1 implies that this function has a local maximum
point at (z.,t.) and we have

(v, te) = (2, T) and  w(z,t.) = u(x, T") ase =0,

because of both the strict maximum point property and the e-penalisation. Moreover,
for € small enough, the penalization implies that t. < T7%.

Since u is a subsolution of the G-equation in F x (0,7) and as we noticed, (z.,.)
is a local maximum point in F x (0,7), we have

G* (I& tsa u<xe7 ts)v (ngﬁ(l’e, t6)7 Qot(xaa ts) + 25_1(8 - Tf)—i—)) S 0.

But, by (Hga-pt), G(y, s,7, (ps, p¢)) and therefore G.(y, s, r, (ps, p;)) is increasing in
the p;-variable and we have

G*(x87t€7u<x€7t€)7 (Dwgp(xﬂtf?)? Dt@('xff?tt?))) S 0 N

The conclusion follows from the lower semicontinuity of G, by letting € tend to 0.
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(b) For the proof of (ii), we argue in an analogous way: if (x,T) is a strict local
maximum point of u — ¢ in F x [0, T}], we introduce the function

(y,5) = u(y,s) — ¢y, s) — ﬁ :

By Lemma 5.4.1, this function has a local maximum point at (z.,t.) and we have
(e, te) = (z,Tf) and wu(z.,t.) = u(z,Ty)ase — 0.

It is worth pointing out that, in this case, the proof of such properties uses not only the
strict maximum point property and the fact that the e-penalisation is vanishing, but
also strongly Property (2.15) for v which provides Assumption-(iii) of Lemma 5.4.1.

We are led to

g
G. <$a,ta,u(%,te)7 (Dap(we, te), pr(we, te) + m)) <0,

and we conclude by similar arguments as in the proof of ().

(c) Finally we prove (iii) since the supersolution one, (iv), follows again from similar
arguments with the additional assumption on G.

We pick some (z,77) € F x {T¢} and we aim at proving (2.15). We argue by
contradiction: if this is not the case then u(x,Ty) > limsup u(y, s) as (y,s) = (x, T}),
with s < T%. This implies that for any € > 0 small enough and any C' > 0, the
function

9) > u ) - L s -

can only have a maximum point for s = T, say at y = x. close to x. The viscosity
subsolution inequality reads

2. —

M, C’)) <0.

G* <{E€,Tf,U(I5,Tf), ( 52

But if we fix ¢ (small enough), all the arguments in G, remains bouded, except C.
So, choosing C' large enough, we have a contradiction because of (Hga_p;).

Q.E.D.

Remark 2.2.5 We point out that, even if Proposition 2.2.J only provides the result
for sub or supersolutions inequalities in sets of the form F x (0,T}), a similar result
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can be obtained, under suitable assumptions, for sub and supersolution properties at
any point (x,Ty) of M where M is the restriction to RN x (0,Ty] to a submanifold
of RN x R. Indeed, it is clear from the proof that only Assumption (Hpa_p;) is really
needed to have such properties.

2.2.4 The simplest examples of comparison results: the con-
tinuous case

As a simple example, we consider the standard continuous Hamilton-Jacobi Equation

uy + H(z,t,u, Dyu) =0 in RN x (0,T}), (2.16)

where H : RN x [0,7] x R x RY — R is a continuous function, u, denotes the time-
derivative of v and D,u is the derivative with respect to the space variables x. Of
course, this equation has to be complemented by an initial data

u(z,0) = ug(z) in RY . (2.17)

In this section, we always assume that uy € C'(RY).

We provide comparison results in the two cases we already consider above, namely
the Lipschitz case and the convex case, the later one allowing more general Hamil-
tonians coming from unbounded control problems. In order to formulate the results,
let us introduce

(1) USC-Sub(RY x[0, T}]) the set of u.s.c. subsolution u of (2.16) such that u(z,0) <
up(z) in RY;

(i) LSC-Sup(RY x [0,T%]) is the set of Ls.c. supersolutions v of (2.16) such that
v(z,0) > up(x) in RV,

Our result is the following

Theorem 2.2.6 — Comparison for the Lipschitz case

Under assumption (Hga_n3y), a (GCR)-evol holds for bounded sub and supersolu-
tions of (2.16)-(2.17) in USC-Sub(RY x [0,T}]) and LSC-Sup(RY x [0,T}]) respec-
tively.

Proof — We just sketch it since it is the standard comparison proof that we recast in
a little unsual way.
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(a) By the arguments of the previous section, it suffices to prove (LCR)-evol. There-

fore, we argue in Qf,ﬁ for some 7 € RN, 0 <t < Ty, r,h > 0 and we assume that
max(u — v) > 0 where u € USC—Sub(Qf”fl), (NS LSC—Sup(Qf,’,tl).

z,t
Q'r,h

It is worth pointing out that, in Qf}’fl, taking into account the fact that v and v are
bounded, we have fixed constants and modulus in (Hga_py) that we denote below by
C1, v and m. Moreover, we can assume w.l.o.g. that v > 0 through the classical change
u(z,t) — exp(Kt)u(z,t), v(x,t) — exp(Kt)v(z,t) for some large enough constant K.

(b) We argue by contradiction, assuming that

max(u — v) > max (u —v) ,
Qo Q7
and we introduce the classical doubling of variables

I A el

<x7t7y7 8) = U(.Z‘,t) - U(ya 8) £2 £2

Using Lemma 5.4.1, this u.s.c. function has a maximum point at (z.,%.,y., s.) with
('TE7 t&)? (y€7 SE) e Qf:}i and

S 52 t5_52
LA S

u(we,tz) — v(ye, 5.) — max(u —v) and

7,1
Qr,h

g2 g2

It remains to write the viscosity inequalities which reads
a&‘—i_H(xE?tE?u(xE)tE)?pE) SO a‘nd aE+H(yE7SE7U(yE785)7p€) 207

with

2(t. — se)

o2
Subtracting the two inequalities, we obtain

H(xe,te, u(we, te), pe) — H(Ye, 52, 0(Ye, 82),0:) <0,

that we can write as
H(JJE, te, U(.TE, t5>,p5)—H($5, te, U(Isa ts)ape)

< [H(l‘g, te, U(mey ta)aPe) - H(yaa Se, 'U(ysa Sa)ape)] .

2(376 - ye) .

and p. = =

Az =
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(c) It remains to apply (Hga_mny), leading to
Y(u(@e, te), pe) — v(we, te)) — Cr(|ze — ye| + [te — sel)[pe| — m(|ze — ye| + [t — sc]) < 0.
But, as € = 0, m(|xe — ye| + |t- — se|) — 0 since |z, — y.| + |t — se| = o(e) and

2z —ye|? 2t — sel|re —y
(|ze = ye| + [te = scl)|pe| = |582 2 + e 65|2| - €|_>

Therefore we have a contradiction for € small enough since

V(u(ze, te), pe) — v(:, L)) — ymax(u —v) > 0.

z,t
Qr,h

And the proof is complete.
Q.E.D.

It is worth pointing out the simplifying effect of the localization argument in this
proof: the core of the proof becomes far simpler since we do have to handle several
penalization terms at the same time (the ones for the doubling of variables and the
localization ones).

We have formulated and proved Theorem 2.2.6 in a classical way and in a way which
is consistent with the previous sections but in this Lipschitz framework, we may have
the stronger result based on a finite speed of propagation type phenomena which we
present here since it follows from very similar arguments

Theorem 2.2.7 — Finite speed of propagation

Assume that (Hga—my) holds with v(R) independent of R. Let u be a bounded u.s.c.
subsolution of (2.16) and v be a bounded l.s.c. supersolution of (2.16). If u(x,0) <
v(x,0) for |x| < R for some R > 0, then

u(z,t) <wv(z,t) for|z] < R—Cst,

where Cy is given by (Hpa_ny).

Proof — Let x : (—o0, R) — R be a smooth function such that x(s) =0if s <0, x
is increasing on R and x(s) — 400 when s — R~. We set

(1) == exp(=|y[t)x(lz] + Cat) .

This function is well-defined in C := {(x,t) : |z| + Cot < R}.
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We claim that, for 0 < o < 1, the function us(z,t) = u(x,t) — arp(z,t) in a
subsolution of (2.16) in C and satisfies u,(z,t) — —o0 if (z,t) — IC N {t > 0} and
Ua(2,0) < u(z,0) for |z| < R.

The second part of the claim is obvious by the properties of ¥. To prove the first
one, we first compute formally

(Ua)t + H(z,t, U0, Dyttg) < up + H(x,t,u, Dyu) — a(thy — |10 — Co| D)) .

But an easy—again formal-—computation shows that ¢, —|y|1)—Cs|D,%| > 0in C and
since the justification of these formal computations is straightforward by regularizing
|z| in order that ¢ becomes C!, the claim is proved.

The rest of the proof consists in comparing u, and v in C, which follows from the

same arguments as in the proof of Theorem 2.2.6.
Q.E.D.

Now we turn to the convexr case where we may have some more general behavior
for H and in particular no Lipschitz continuity in p. To simplify the exposure, we do
not formulate the assumption in full generality but in the most readable way:

(HBA_conv) — Basic assumptions in the convex case.

H(z,t,r,p) is a locally Lipschitz function which is convex in (r,p). Moreover, for any
ball B C RY x [0,Ty], for any R > 0, there exists constants L = L(B,R), K =
K(B,R) > 0 and a function G = G(B,R) : RY — [1,400| such that, for any
r,y€ B, t,s€[0,Ty], —-R<u<v<RandpeRY

DpH(l',t,’l“,p) P H($7tvu7p) Z G(p) — L )
| D, H(z,t,r,p)|,|DH(z,t,r,p)| < KG(p)(1+ [p]),
D,.H(x,t,r,p) >0.
On the other hand, we assume the existence of a subsolution

(Hsub_my) — Assumption on the existence of a subsolution.

There exists an C'-function ¢ : RN x [0,Ty] — R which is a subsolution of (2.16)
and which satisfies Y(x,t) — —oo as |r| — +oo, uniformly for t € [0,Tf] and
P(x,0) < ug(z) in RY.

Let us now introduce the sets
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(i) USC-Sub?(RN x [0,T}]), of bounded u.s.c. subsolution u of (2.16) satisfying

lim sup we,t)
|z| =400 1/)(% t)

>0 uniformly for ¢ € [0,TY] .

(#4) LSC-Sup?(RN x [0,T}]), of bounded l.s.c. supersolutions v of (2.16) satisfying

lim inf v(, ?)
|z|—+o0 Y(z, 1)

<0 uniformly for ¢t € [0,TY] .

The result is the

Theorem 2.2.8 — Comparison in the Convex case.

Assume (Hpa_ny-u) and (Hsup_u3). Then a (GCR)-evol holds for sub and su-
persolutions of (2.16)-(2.17) in USC-Sub’ (RN x [0, T}]) and LSC-Sup¥ (RN x [0, T}])
respectively.

Proof — We use a similar approach as in the Lipschitz case, with a few modifications.

(a) The first step consists in replacing u by u, := (1 — a)u + a1 for 0 < a < 1. The
convexity of H(x,t,r,p) in (r,p) implies that u, is still a subsolution of (2.16) and
o (2,0) < ug(z) in RY. Moreover, by the definition of USC-Sub(R" x [0,7}]) and
LSC-Sup(RY x [0, 7)),

lim(uy(z,t) —v(z,t)) = —oo0 as x| — +oo, uniformly for ¢ € [0, T%].

Therefore the subsolution ¢ plays its localization role.

(b) For (LCR)-evol, we argue exactly in the same way as in the proof of Theo-
rem 2.2.6 in Qf”fb—therefore with fixed contants L, K and a fixed function G—but
with the following preliminary reductions: changing u, v in u(x, t)+ Lt and v(x, t)+ Lt,
we may assume that L = 0. Finally we perform Kruzkov’s change of variable

ﬂ(l‘at> = —GXp(—U(ZE,t)) ) 6(:Eut) = —exp(—v(x,t)) :
The function u, v are respectively sub and supersolution of

wy + ﬁ(x,t,w,Dw) =0 in foi )

with I:I(:c,t,r,p) = —TH(I',t, —log(—’r’), —p/r).
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Computing D, H (xz,t, r,p), we find (D,H-p—H)(z,t, —log(—7), —p/r)) = G(—p/r),
while D, H(x,t,r,p), DiH(z,t,r,p) are estimated by |r||D,H (z,t, —log(—r), —p/7)|,
r||DeH (2, t, —log(—r), —p/r)|, i.e. by |r|[KG(=p/r)(1+ [p/r]).

(c) Following the proof of Theorem 2.2.6, we have to examine an inequality like

H(x., te, u(xe, te), pe) — H(Ye, Se, D(Ye, Se )5 De) < 0.

To do so, we argue as if H was C* (the justification is easy by a standard approxi-
mation argument) and we introduce the function

f(p) = H(pae + (1 = p)ye, pte + (1 — p)se, pu(ze, t=) + +(1 = p)o(ye, ), pe)
which is defined on [0, 1]. The above inequality reads f(1) — f(0) < 0 while
f'(1) = DoH.(x. —y.) + DH.(t. — s.) + Dy H. (2, t.) — 9(ye, 52))
where all the H derivatives are computed at the point
(he + (1= pw)ye, pte + (1 — p)se, pii(we, te) + (L — p)0(ye, 52), pe) -

If we denote by r. = pt(z.,t:) + (1 — p)0(ye, S:), we have, by the above estimates,
F(1) > = re| KG(=pe/re) (1 + |pe/rel)(|2e — yel + [te — s2])
+ G(=pe/re)-(ul@e, tc) — 0(Ye, s:))
>G(=pe/re) | — K(|re| + [pe) (e — yel + [te — se|) + (@lze, te) — 0(ye, 58))] :
But if M := max(a —v) > 0, the arguments of the proof of Theorem 2.2.6 show that
@
the bracket is larger than M/2 if ¢ is small enough. Therefore f'(u) > M/2 > 0, a

contradiction with f(1) — f(0) < 0.
Q.E.D.

We conclude this part by an application of Theorem 2.2.6 and 2.2.8.
Example 2.1 — We consider the equation
uy + a(r, )| Dyul? — b(z,t) - Dyu = f(x,t) in RY x (0,T}),

where a, b, f are at least continuous function in RY x [0,7}] and ¢ > 1.

Of course, Theorem 2.2.6 applies if ¢ = 1 and a, b are locally Lipschitz continuous
functions and f is a uniformly continuous function on RY x [0, 7y]. Theorem 2.2.8
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is concerned with the case ¢ > 1 and a(z,t) > 0 in RY x [0,T}] in order to have a
convex Hamiltonian.

Next the computation gives
DPH(I7t7T7p) S H(:):,t,u,p) = a(x,t)(q - 1)|p|q - b(x7t> p+ f(l‘,t) :

and in order to verify (Hga_my_u), we have to reinforce the convexity assumption
by assuming a(z,t) > 0 in RN x [0,7}]. If B is a ball in RY x [0, Ty], we set m(B) =
ming a(z,t) and we have, using Young’s inequality

DpH(ZL',t,’I“,p) -p—H(a:,t,u,p) = m(B)(q_ 1)|p|q+ 1 _L(B) :

Here the “+1” is just a cosmetic term to be able to set G(p) := m(B)(¢—1)|p|?+1 > 1
and L(B) is a constant depending on the L>*-norm of b and f on B.

Finally, a, b, f being locally Lipschitz continuous, it is clear enough that the es-
timates on |D,H(x,t,r,p)|,|D:H(x,t,r,p)| hold. It is worth pointing out that the
behavior at infinity of a, b, f does not play any role since we have the arguments of
the comparison proof are local. But, of course, we do not pretend that this strategy
of proof is optimal...

The checking of (Hguyp_my) is more “example-dependent” and we are not going to
try to find “good frameworks”. If b = 0 and if there exists n > such that

n<a(r,t)<n ' inRY x(0,Ty),
the Oleinik-Lax Formula suggests subsolutions of the form

Y(a,t) = —a(t+1)(|z|” +1) - 8,

where ¢’ is the conjugate exponent of ¢, i.e. E + i, = 1 and «, 8 are large enough
constants. Indeed v
e+ ala, )| Da|” = fla,t) < —a(lz]” + 1) + 57 galt + 1))%z|” — f(a,1) .
If there exists ¢ > 0 such that
flz,t) > —c(|z]7 +1) in RY x (0,Ty),

then, for large o, namely a > n7'[¢’a]? + ¢, one has a subsolution BUT only on a
short time interval [0, 7]. Therefore one has a comparison result if, in addition, the
initial data satisfies for some ¢’ > 0

up(z) > = (|z)7 +1) in RV,
in which case, we should also have o > ¢/.

In the good cases, the comparison result on [0, 7] can be iterated on [r, 27], [27, 37],
etc. to get a full result on [0, 7%].
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2.3 Whitney stratifications

There are mainly two reasons for introducing stratifications in dealing with dis-
continuities. On one hand we may want to solve different equations on different
submanifolds—or strata—of the stratification and make them work coherently; on
the other hand we can consider a general Hamilton-Jacobi equation (or control prob-
lem) posed everywhere, but presenting some discontinuities located on the strata.
Essentially, both questions are two different ways of looking a the same reality.

Now, before going further, let us mention that in this book we use several concepts
of stratifications, labelled as

1. General Stratifications, which is the closest to the general concept of stratifica-
tions in the sense of Whitney.

2. (AFS) for Admissible Flat Stratifications, where the strata are given by affine
subspaces, a particularly simple example of stratification.

3. (LFS) for Locally Flattenable Stratifications, which are stratifications that can
be locally reduced to an (AFS) through a diffeomorphism.

4. (TFS) for Tangentially Flattenable Stratifications, where the flattening can be
relaxed, extending the notion of (LFS) to situations involving some cusps for
instance. This last notion of stratification is really the one that is needed to
make our methods work.

Let us now rapidly review where each type of stratification is used.

In [54], Bressan and Hong study Hamilton-Jacobi-Bellman Equations and control
problems with discontinuities in the case when these discontinuities form a Whitney
stratification, i.e. when they satisfy the Whitney conditions found in [165, ].

In [30], the more restrictive notions of (AFS) and (LFS) are introduced as well-
adapted structures to deal general discontinuities(!). We recall below this approach,
and we also describe the restrictions these notions impose on the Whitney stratifica-
tion.

Finally we define the more general notion of (TFS), which turns out to be the
most suitable framework for setting up the methods we use throughout this book—
especially in Part IV.

Before we begin, notice that, for the moment, we consider stratifications in RY but

(U The terminology is slightly different in [36]
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(1) since the various definitions of (AFS) and (LFS) are purely local, such stratifi-
cations of an open subset @ C RY can be defined exactly in the same way. We
will do it for the (TFS).

(1) When considering time-dependent problems, we have to consider stratifications
in RV*1—or more precisely of RY x (0, T})—, adding one dimension for time and
using the remark of Point (7). This allows to treat the case of time-depending
stratifications, see Chapter 19.

(731) Stratifications can also be considered in a closed set, typically the closure of a
domain Q C R¥. In this case, as we will see in Part V, both the interior of the
set and the boundary—typically Q and 0{2—can be stratified. Of course, this
last point can also be combined with (i) and (i) and this is what we will do in
Part V, looking at stratifications of Q x (0, T}).

2.3.1 General and admissible flat stratifications

The notion of stratification we consider follows those introduced in Bressan and
Hong [54] but the different parts of the stratification are not organized in the same
way. Here we assume that

RY =M°uM!'U..-UM" |

where the MF (k = 0..N) are disjoint k-dimensional submanifolds of R™. While,
in [51], only a finite number of M* are considered—or with our convention, the MP*
can only have a finite number of connected components—, here Definition 2.3.1 states
that each MF has only a locally finite number of connected components. We will write
this decomposition of M* in connected components as

M = | M,
1€Ty
where Z}, are finite or countable sets. The MF are called the “stratas”. In other words,
we gather in M* all the stratas which have the same dimension.

Let us begin with the definition of a general stratification.

Definition 2.3.1 — General Stratifications.

We say that Ml = (MF),—o_n is a General Stratification of RY if the following set of
hypotheses (HER) is satisfied

(i) For any k = 0..N, M* is a k-dimensional submanifold of RY.
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(ii) If M¥ HW # 0 for some | > k then M¥ C W
(i11) For any k=0.N, MFC MCUM'U---UM?*,
(iv) If x € M* for some k = 0..N, there exists r = 1, > 0 such that

(a) B(z,r) N MPF is a connected submanifold of R ;
(b) For anyl <k, B(z,r)NM'=0;

(¢) For anyl >k, B(x,r)NM! is either empty or has at most a finite number
of connected components;

(d) For anyl >k, B(x,r) N M} # 0 if and only if = € M.

We point out that, even if the formulation is slightly different, and forgetting the
number of connected components of each M*, Assumptions (HEEY) are equivalent to
the assumptions of Bressan and Hong [71]. Indeed, we both assume that we have a
partition of RY with disjoints submanifolds but, as we already mention it above, we
define a different way the submanifolds MF¥. The key point is that for us M* is here
a k-dimensional submanifold while, in [54], the M’ can be of any dimension. In other
words, our MF is the union of all submanifolds of dimension k in the stratification of
Bressan and Hong.

With this in mind it is easier to see that our assumptions (HER)-(i7)-(iii) are
equivalent to the following assumption of Bressan and Hong: if M* N M! # ) then
MF c M for all indices [, k without asking { > k in our case. But according to
(HEEY)-(ii1), as we already mention it above, M* N M! = ) if [ < k: indeed for any
x € MF, there exists r > 0 such that B(x,7) N M' = (). This property clearly implies
(HgT)-(iv)(b)-

On the other hand, Assumption (HE)-(iv)(d) is just a consequence of (iv)(c)
provided we choose the radius r, > 0 small enough. Indeed, since, by (iv)(c), there is
only a finite number of connected components Mé for I > k such that B(z, r)ﬂl\/[é # 0,
we can exclude all those such that dist(z, Mé) > 0 by choosing a smaller radius 7.

Finally Condition (HE5)-(iv)(a) implies that the set M, if not void, consists of
isolated points.

A specific and important case of stratification satisfying (HgY') is when the strata

are flat, i.e. they all reduce to portions of vector spaces in RY. We call such stratifi-
cations (AFS), for Admissible Flat Stratifications.

To state a precise definition, we use the notations:

1. for k = 0..N, V® is the set of all k-dimensional affine subspaces of RV:
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2. For x € RN, V®(z) ¢ V(® is the subset of affine subspaces containing z. In
other words, V € V¥ (z) if V = z + Vj, where V} is a k-dimensional vector
subspace of R,

Definition 2.3.2 — Admissible Flat Stratifications.

The stratification M is an (AFS) if it satisfies (HEY), with the exception of property
(HEY)-(iv)(a), which is replaced by

(HEA)-(iv)(a)  B(z,r) "MF = B(z,r) N (x + Vi) for some (z+ Vi) € VP () |

We denote by (HZ4") the set of conditions (i) — (iv) with this replacement.

Before providing several useful properties of (AFS), we consider several examples,
the first one being the simplest relevant example of a flat stratification.

Example 2.2 — We consider in R? a chessboard-type configuration, see Figure 2.1.
In this case, we have the following decomposition:

M’ =ZxZ,
Mlz{(ZxR)U(RxZ)}\ZQ,

and M? = R?\ (M°UM?"). In this simple case, the checking of the (Hg#")-assumptions
is straightforward.

A T2
| o
o ] o
\Ml M2 MO
- - ° ® — - >
\ 0 N M 1
| | M°

Figure 2.1: The chessboard-type configuration
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To emphasize the difference between “flat configurations” which are (or not) an
(AFS), we propose the example

Example 2.3 — Let us consider a flat stratification in R® induced by the upper
half-plane {z3 > 0,25 = 0} and the z,-axis (see figure 2.2).

“— M2 = {23 >0, 23 = 0}

Ml:{ﬂigzﬂ?g:O}
U{:Il?1 = X3 :0}

\ {(0,0,0)}

————— .—>x2

s

MO = {(0,0,0)}

Figure 2.2: Example of a 3-D stratification

e The “good” stratification consists in setting first M? = {x3 > 0,z = 0}. By (HE:")-
(iii), the boundary of M? which is the x;-axis is included in M! U M° and we also
have z,-axis in the stratification. In this case, M' UMY is the cross formed by the z;
and zy-axis but in order for M! to be a manifold, (0,0, 0) has to be excluded and we
have to set here M = {(0,0,0)}. Thus, M consists of four connected components
which are induced by the z;- and z,-axis (but excluding the origin, which is in MP).
Notice that in this situation, the x3-axis has no particular status, it is included in
M2,

o A wrong approach would be the following alternative decomposition:
={23> 0,25 =0}, M' = {2;, =23 = 0}U{zy = 23 = 0}, M® = R*~M*-M".

Because (0,0,0) € M' N M2 but clearly M' is not included in M2, so (HER")-(i1)
forbids this decomposition of R3.

Now we study the properties of (AFS).
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Lemma 2.3.3 Let Ml = (M*),_o.n be an (AFS) of RN. Then, for any k = 0..N and
i € Iy, there exists an open set O = O(i, k) C RN and V;(k) € V® such that

ME=0onvH® .

In other words, there exists a k-dimensional vector space V)i such that for any v € M,
MF=0n(z+ V).

Proof —Let k € {0,..,N}, i € I, and fix z € MF. By (HE2")-(iv)(a), for any
z € MF, there exists V;Eg € V® such that z € Vzgg Now, consider the function

x: MF—{0,1}

Lift V& = v
PR i(2) i(x)
0 otherwise.

This function is obviously locally constant: indeed, by (HEnT)-(iv)(a), if 2 € M
then B(z,r,) "M} = B(z,7r,) N V;Eg and therefore if 2/ € B(z,r,) N MP¥, necessarily
Viteh = Viis)-

Therefore, since M? is connected, it follows that y is in fact constant, so that
i(z) = i(z) =i for all z € MF. In other words, (HE5)-(iv)(a) can be written for all
z € M¥ by means of only one affine subspace

B(z,r)NMF = B(z,r,) NV .

We then set O := U,y B(2,7.) which is an open set in RY. We deduce from the

previous set equality that O N MF = 0O N V;(k).
Q.E.D.

As a consequence of the definition we have following result which will be useful
in a tangential regularization procedure (see Figure 2.3.1 below) but that we will
generalize through the notion of tangentially flattenable stratification.

Lemma 2.3.4 Let M = (MF¥),_o.y be an (AFS) of RY. Let x € M* and r>0, Vg
be as in (Hgp")-(i). Ify € B(x,r) N M} for some | >k and j € T; then x € M. and

B(z,r) N (y+ Vi) C Bz, r) N M} .
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Proof — Notice that by (Hg:")-(iv)(d) we already know that = € W, but moreover

(HEAT)-(44) implies that M¥ C W Using open sets Oy and O, defined in Lemma 2.3.3
we get

OrN(z+V) cONy+V)=0,n(x+V),
the last equality being justified by the fact that x € 01\/12.

This implies that V} is a subspace of V}, so that clearly for any y € Mé», y+ Vi C
y + V;. The result directly follows after intersecting with B(z,r).

Mk

Q.E.D.

y+ Vi

v

Figure 2.3: local situation

Ve

Remark 2.3.5 In this flat situation, the tangent space of M* at x is T, := x + V},
while the tangent space of M! at y is T, :=y + Vi, where | > k. The previous lemma
implies that if (yn)n 1S a sequence converging to x, then the limit tangent plane of
the T, is x + Vi and it contains T,, which is exvactly the Whitney condition—see

[165, 164].

As we will see it below, an (AFS) is a perfect framework where our methods fully
apply, in particular because of Lemma 2.3.4. And clearly a similar remark holds for all
the stratifications which can locally be reduced to (AFS) through a smooth enough
diffeomorphism; this leads us to introduce, in the next section, the notion of Locally
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Flattenable Stratification (LFS). But Section 2.3.3 provides some properties of the
(LFS) which shows that a general stratifications is not, in general, a (LFS). Intu-
itively the reader should realize that “flattening” locally all the M* imposes rather
rigid conditions on the “geometry” of a stratification and we do not know checkable
conditions or characterizations which would allow to decide whether a given stratifi-
cation is a (LFS) or not. On an other hand, a more adapted concept to our approach,
which we call Tangentially Flattenable Stratifications (TFS), consists in looking at
stratifications which satisfy Lemma 2.3.4 after a suitable change of coordinates. This
notion is more general than the (LFS)-one but still the same remark holds: we do not
know checkable conditions or characterizations which would allow to decide whether
a given stratification is an (TFS) or not.

2.3.2 Locally flattenable stratifications (LFS)

Particular—yet quite representative—cases of general stratifications can be obtained
by smooth enough modifications of flat stratifications.

Definition 2.3.6 — Locally Flattenable Stratifications.

We say that Ml = (M*),—o. ~ is a locally flattenable stratification of RN — (LFS) in
short— if it satisfies the two following assumptions denoted by (HEES)

(i) the following decomposition holds: RN = MOUM!'U---UMY;

(i) for any x € RN, there exists r = r(z) > 0 and a CY'-change of coordinates
U : B(z,r) — RY such that ¥*(x) = x and {¥*(M* N B(z,r))}r=o.n is the
restriction to W*(B(xz,r)) of an (AFS) in RV,

We point out that it is easy to check that a (LFS) satisfies (Hg7') and therefore is
a general stratification in the sense of Definition 2.3.1; indeed, all the properties of a
general stratification are local and the way a (LFS) is defined, the diffeomorphisms
U* transfer all the local property of an (AFS), in particular the (HEH)-ones.

Remark 2.3.7 If we need to be more specific, we also say that (M, V) is a stratifica-
tion of RN, keeping the reference W for the collection of changes of variables (¥®),.
This will be usefull in Section 21 when we consider sequences of stratifications.

Tangent spaces — The definition of locally flattenable stratifications (flat or not)
allows to define, for each x € M¥, the tangent space to M* at z, denoted by T, M¥*.
To be more precise, if # € M* and r > 0, Vj, are as in (HE#T)-(iv), then

TM* = (D" (2)) " (Vi) ,
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which can be identified to R¥. Moreover, we can decompose RY = V;, & V-, where V-
is the orthogonal space to Vj,. For any p € RY, we have p = pt +p, with pt € V}, and
p. € Vi-. In the special case z € M, we have V; = {0}, p = p, and T,M° = {0}.

The notion of stratification is introduced above as a pure geometrical tool and it
remains to connect it with the singularities of Hamilton-Jacobi Equations. Our aim is
to define below a “natural framework” allowing to treat Hamilton-Jacobi Equations
(or control problems) with discontinuities, which will involve two types of information:
some conditions on the kinds of singularities we can handle and some assumptions on
the Hamiltonians in a neighborhood of those singularities.

We provide here a first step in this direction by considering the simple example of
an equation set in the whole space RY

H(z,u,Du) =0 in RY

where the Hamiltonian H has some discontinuities (in the z-variable) located on some
set I' € RY. The first question is: what kind of sets I' can be handled?

The approach we systematically use consists in assuming that I" provides a stratifi-
cation Ml = (Mk)kzo__N of RV. This means that M” is the open subset of R where
H is continuous while MF* contains the discontinuities of dimension 0 < k < (N—-1).
Of course, some of the M* can be empty.

What should be done next is to clarify the structure of the Hamiltonian H in
a neighborhood of each point z € MF* and for each k& < (N — 1). This is where
the previous analysis on stratifications allows to reduce locally the problem to the
following situation: if x € MPF, there is a ball B(z,r) for some r > 0, and a C'-
diffeomorphism W such that

k
B(z,r) N ¥(M*) = B(z,r)n | (z+V;) .
§=0
In other words, through a suitable C! change of coordinates, we are in a flat situation
where x is only possibly “touched” by j-dimensional vector spaces for j > k.

2.3.3 Limits of the (LFS) approach

The notion of locally flattenable stratification seems to provide a very general frame-
work in which one could think that many situations can be treated. As we have seen,
several quite special geometric structures can be handled, corresponding to a great
variety of discontinuities in the equations we consider.
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However, there are very simple situations that the stratified framework cannot
handle. Let us focus here on curves in R? in order to better understand the problems
that may occur.

The major restriction that stems directly from the very definition of (LFS) is that
locally, all the elements of the stratification have to be flattenable simultaneously. We
come back later on how the notion of (TFS) allows to relax this hypothesis but let us
mention that this leaves out the following example: consider in R? a continuous curve
v : (0,1) — R? having an infinite length (near s = 0%), such that y(0") = (0,0). The
natural stratification associated to this situation is

M’ = {(0,0)}, M'={(s,7(s)):5€(0,1)}, M?*=R*\ (M UuM').

But we clearly see that locally around (0,0), the (LFS) condition cannot hold, oth-
erwise M' = {(s,7(s))} U{(0,0)} could be flattened through a C*!'-diffeomorphism,
implying that the initial curve is of finite length.

Cusps are also the typical examples of geometric structures which cannot be in-
cluded in (LFS): consider the curve

I={y=+|z]:zeR} CR*.
The natural (and only) stratification of I" would be to set
M’ ={(0,0)}, and M' ={y=v-2:2<0}U{y=+vz:2>0}.

However, condition (iz) of the locally flattenable stratification definition cannot hold.
More precisely, at the singular point z = (0, 0), there is no C! change of variables ¥~
which can transform the cusp into a flat stratification since such a change of variables
could not be even Lipschitz continuous.

A

»»»»»»»»»»»»»»»»»»»»»»»» L RCCEEEETEREED =

Figure 2.4: Left: A cusp; Right: A piecewise smooth example

Nevertheless, a piecewise C! curve I' C R? satisfying a double-sided cone condition
at junction points can always be considered as a locally flattenable stratification, after
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choosing MY as the set of singular points. Indeed, if z € M?, the C*! diffeormorphism
U? just has to “flatten the angle” in order to get a flat stratification (see fig 2.4), which
is of course possible.

In order to give a general result that (LFS) must satisfy, we need to introduce some
objects.

EXTENDED TANGENT SPACES — Let x € M¥ and ¥®, B(z,r) as in the definition of
(LFS). If z € 0M§, then, combining Lemma 2.3.4 and Remark 2.3.5, there exists a
[-dimensional vector space V; ; such that

U (M N B(x,7)) C (2 + Vi) ,
and we can extend the tangent space to Mé up to x by setting

T.M, = D(¥*(2)) (Vi) -

INWARD POINTING CONES — Let M be an (AFS) and fix + € MP? for some k €
{0..N — 1}, i € Z;,. We assume that x € M} for some [ > k. We first introduce the
notion of inward directions to M at x: a direction v € RV\{0} is said to point inward
to M. at 2 if 2 + hv € M} for b > 0 small enough. Since M} = Oy ; N (z + V) is
flat, all these inward directions v belongs to V; ;. Then we define the inward pointing
cone O (1, 7)(x) as the set containing all these inward directions to M} at x. This
vector set is strictly positively homogeneous by definition and it does not contain the
tangential directions in M} nor 0.

More generally, in the case of a (LFS) the definition of the inward pointing cone is
given by
CIMY = (D\yx(a;))-l(oﬂgt(z, j)(x)) c T,M. .

Here also, the vectors in C M{ are pointing strictly inwards Mé-, excluding the di-
rections tangent to OM, at 2 and 0. Notice finally that since (DW*(x))~" is linear,
Cr Mé is also strictly positively homogeneous.

An intrinsic characterization of the inward pointing cone can be given. To do so,
for a given x € 81\/[;, we consider the C'-curves v : R — RY such that v(0) = z and
v(s) € M} if s € (0, s0) for some 59 > 0. We will say that v € Al(z) if there exists
7 > 0 such that

dist(’y(s),@l\/lé) >ns forall s € (0,s) . (2.18)

Then the following characterization holds:
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Lemma 2.3.8 Given x € MF N OM,, we have CTM. = {4(0) : v € AL(z)}.

Proof — We first prove the result in the case of an (AFS).

Direct inclusion — For the inclusion C{f,, (1, j)(x) C C; M}, we have to show that
if v e Cf,(l,7)(x) there exists n > 0 such that v(s) := = + sv satisfies (2.18) for
s € (0, s0), so being small enough. We argue by contradiction: if (2.18) does not hold,
there exists a sequence of positive numbers s, — 0 such that

0 < dist(z + scv, OM}) < es.

(of course the distance is positive because x + s.v is in Mé, not on its boundary).

By (H4")-(iv)-(c) and (i7i), we can extract a subsequence of (s.). (still denoted
in the same way to simplify the exposure) such that the distance is achieved for y. in
the same M, for some n <[ and m € Z,,. Hence, if M}, = (2 + V,, 1) N Oy,

(x + sc.v) — (r+we)| <es. for some w. € V,, , -

We deduce from this property that

)

w
‘v——g <e
Se

and since w./s. € V,,,, for any € > 0, by letting € tend to 0 we deduce that v € V, ..
It follows that « + s.v € (v + V,,,»,) and thus, for ¢ > 0 small enough, x + s.v €
(@ 4+ Vi) N Opm C 81\/[2- which contradicts dist(z + s.v, 81\/[2) > (. Hence (2.18) is
proved.

Converse inclusion — In order to prove that C;f M} € Cff,, (1, 7)(x), we take any v €
A%(x) and we have to show that 4(0) € C, (I, 7)(x). Notice first that (s) € x + Vi
for any s € (0, so) and therefore 4(0) € V, ;. On the other hand, by the differentiability
of v at 0,

V(s) = 2 +7(0)s + o(s) ,

and = 4+ (0)s € x +Vj ;. Now, by (2.18) we see that for s > 0 small enough,
dist(z + 4(0)s, OM)) > dist(v(s), OM}) + o(s) > (n+ o(1))s > 0,

which implies that = + §(0)s € M} for any s > 0 small enough. Hence 4(0) €
Cq. (1, 7)(z) and we are done.

The (LFS) case — Here we use in an essential way the Lipschitz continuity of W*
and its C''-property.
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If v € CFM}, we claim that the curve (s) := (¥%)~'(z 4 sv) belongs to A}(x):
indeed, U7 (y(s)) = = + sv with v € Cf (I,7)(x) and the first part of the proof
implies that it satisfies (2.18) for the (locally) flat stratification. Using the Lipschitz
continuity of U* we deduce that v also satisfies (2.18), for some other parameters
77, So > 0.

Conversely, if v € Al(z), then the curve I'(-) := W*(y(-)) is also in the set Al(z)
(but for the flat stratification) and therefore

[(0) = (D) () (7(0)) € Cf, (1, 4)(x) .

By definition of C;f ML, it follows that 4(0) € C;"M}, and the proof is complete.
Q.E.D.

The main result of this section is the

Proposition 2.3.9 Let M be a locally flattenable stratification of RV, 0 < k < N
and x € M¥ for some i € Tj,. Assume that x € (91\/12 N 81\/1?, for some k < 1,I' < N.

1 (L7) # (), then
(1) the following inclusion holds: My C OM) N ((91\/[?, ;

y k l U —
(i) for any x € My, CFM) N CFMY (z) = 0.

1

Though this proposition is simple in its form, it rules out several cusp-like configura-
tions involving various dimensions (see below examples after the proof). In particular,
in the case of the piecewise smooth curve in dimension N = 2, we recover that the
tangents from both sides of a singular point cannot be equal in the limit at such
point. Notice that of course, they can possibly make a m-angle but in that case, the
inward pointing directions are opposite.

Proof — Concerning (i), the result follows directly from (HE4")-(44): since

we get that M¥ is included in both Eﬂ Mé./,. But since [ > k, M¥ does not intersect
with M} nor with Mé-',, so that (7) holds.

We now turn to (i7) and consider first the case of an (AFS). Since (I, j) # (I',7)
then Mg N Méﬂ = () which clearly implies that the inward pointing cones are disjoint.
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Indeed, as we noticed before, if e € Cf. (1, 7) NCq.. (I, /) then for i small enough, we
get that = + he € Mg N Mé’, which is a contradiction.

In the (LFS) case, the conclusion follows from the fact that since D(¥®(x))™! is
invertible it cannot map two different directions on the same one. More precisely,
assume that

ee CIMLNCIME, £0 .

Then there exist two vectors w € Cf..(4,7), w' € Cq,.(I',j') such that
e = D(¥"(z))" (w) = D(¥"(x)) " (w') .

But since w # w’ because they belong to Cf. (1, 7) and Cy, (I, j') respectively, we get
a contradiction with the bijectivity of D(¥*(x))~'.
Q.E.D.

Remark 2.3.10 The fact that the cones C;fMé do not intersect implies that various
cone conditions hold at z, separating the manifolds touching at this point (which are
in finite number, see (HZE")-(iv)(c) ). However, building explicitly such cones is quite
difficult in all its generality and we wil not try to state it here. But notice that there
1s a lot of freedom in choosing the directions of such cones: if C’jMé N C’;FM?, = (),

any direction e at positive distance from both cones allows to build a separating cone.

TYPICAL SITUATIONS — Of course very complex situations can occur involving dif-
ferent dimensions but let us see two simple situations to understand the meaning of
Proposition 2.3.9-(ii).

Fig. 2.5 — On the left the situation is allowed since at the point {x} = M,
CIM? = M2, CFM3 = M3 and therefore C;"M? N C;FM3 = (). Notice however that
the boundaries intersect, which corresponds to the direction of Mj.

On the right, it is clear that the problem does not come from C;" M7 /2/3 which do not
intersect (although C;FM32 = ), but from the M" manifolds since C;M] N CMj =

M; # (). This cusp-type situation is of course not allowed.

Fig. 2.6 — On the left the situation is allowed since the semi-line M! makes a non-
zero contact angle with the plane M2. However, using for instance the characterization
in Lemma 2.3.8 we see that C;M! = Rfe, while C;;M? = M2 Hence C;M!' N
CIM? = Rfe # ), another cusp-type situation that is not allowed.
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M1 M} M; M}

M2 M2 M? M3
MO MO
Figure 2.5: Examples in 2-D
g p
1\/[1 Ml
<« T
M? M?

—————— ®----- o

MO MO s

Figure 2.6: Examples in 3-D

STRATIFICATIONS IN DOMAINS — The question is whether we can extend or not the
notion of stratification in RY to the case of open sets ().

At this point of the book, we do not enter into details on this because we devote a
complete part of the book (Part V) to the case of state-constrained problems. Let us
just mention that when we consider a domain €2, its boundary 0f2 has to be understood
as a specific part of the stratification. And if the boundary is not regular, we use the
stratified approach to decompose it in various manifolds of different dimensions.

The conditions on the inward pointing cones that we proved above imply that (2
has to satisfy a double-sided cone condition in order to deal with it in the stratified
approach. This cone condition (at least the interior one) is also used in Section 25.3
in order to get a suitable boundary regularity for subsolutions.

2.3.4 Tangentially flattenable stratifications (TFS)

As we have seen in the previous section, the notion of (LFS) is quite restrictive: it
implies that, in a neighborhood of each point of RV, there exists a diffecomorphism
which flattens simultaneously every part of the stratification nearby. In fact, this
property turns out to be stronger than what we need.
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So, let us introduce finally the notion of Tangentially Flattenable Stratification which
is less restrictive, allowing to handle some situations where, for instance, cusps appear.
We even consider the case of extended stratifications not only in RY, but in any
domain @ C R¥: this does not create any additional difficulty since every property
is purely local.

Definition 2.3.11 — Tangentially Flattenable Stratifications.

We say that M = (MP*);_o.n is a Tangentially Flattenable Stratification of O —
(TFS) in short— if the following hypotheses hold:

(1) Hypotheses (HEY) are satisfied;

(i1) for any k, M* is a CYt-submanifold of O; moreover, if v € MF, there exists
r =r, > 0 such that B(z,r) C O and a CY'-diffeomorphism W, defined on
B(z,r) such that V,(x) =z and

U, (B(z,r) " M") = U, (B(x,7)) N (z + V4)
where V;, is a k-dimensional vector subspace of RY ;

(ii1) setting M! := W (B(z,r) N M) and 1\~/I§ = W, (B(x,r) N M}) for any connected
component Mg of M,

(a) for anyl <k, M! = 0;

(b) for any I > k, M is either empty or has at most a finite number of
connected components;

(¢) ifx € OM, and y € ML, W, (B(z,7)) N (y + Vi) C ML .

We denote by (Hgry) this set of assumptions and we will say that a stratification which
satisfies the same properties as (MF¥),—_o. v is em tangentially flat.

The difference between a locally flattenable stratification and a tangentially flat-
tenable one is that, in the (TFS) case, (M');—o_x is not necessarily the restriction of
an (AFS) to B(z,r), hence the M for [ # k are not necessarily affine spaces. They
just have to be “tangentially flat” thanks to (H§F)-(i7) and (éii)-(c). This property
is the one we need in particular to perform the tangential regularization described
in the next section, while flattening all the stratification at the same time is not a

requirement.
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In particular, the following stratification in R? is an (TFS) but not a (LFS):
M°=0 , M'= {(21, 29, 23) : 29 = 0,23 =0},
M? = {(21, 29, 73) : 13 # 0, |z3] = 23},
and M = R3\ (M°UM'UM?). In checking that this is an (TFS), only Condition (ii?)
may cause a problem but it is more than clear here that it is satisfied. On the other
hand, M? forms a cusp on M! and therefore this cannot be a (LFS).

T3 A
M2 ,/ //,

Ml

¥,

Figure 2.7: Left: a cusp. Right: a corrugated sheet.

Remark 2.3.12 [t may be thought that, using the fact that M* is a k-dimensional
submanifold, it can be flatten as in Definition 2.5.11 and maybe (HEF)-(iii) could be
always true. Unfortunately, this is not clear as shown by the example of a “corrugated
sheet”. Suppose that, after the flattening of M*, we end up with

1\7[0:@ s Mlz{($1,l’2,flf3)l ZEQZO,JTg:O},
M? = { (21, 20, x3) : T9 # 0,23 = zosin(zy)}
and M3 = R3\ (M° U M!' UM?). In this situation, it is clear enough that M? does
not satisfy (HER)-(4i7).

The reader could argue that we may use an other change of variables in order
to flatten M?. This is probably right but this means that (i) flattening M" is not
enough; (ii) using an other change of variables to flatten M? may be possible here, but
more difficult and perhaps impossible if we consider an example where M? has several

connected components having M! as boundary. We would face again the difficulty of
“simultaneous flattening”.

Throughout the rest of the book, unless otherwise specified we will always assume
that we are in the framework of tangentially flattenable stratifications.
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2.4 Partial regularity, partial regularization

In this section, motivated by Sections 2.2 and 2.3, we present some key ingredients
in the proof of local comparison results for HJ Equations with discontinuities. The
assumptions we are going to use are those which are needed everywhere in this book
to prove any kind of results and therefore we define at the end of the section a “good
local framework for HJ Equations with discontinuities”.

Local comparison results lead to consider HJ-Equations in a ball, namely
G(X,u,Du) =0 in Byo(X,7), (2.19)

where X € RY and r > 0 are fixed. We recall that the notation X can refer to either
X =z or X = (x,t). Because of the previous section, it is natural to assume that
the discontinuities in this equation have a general (TFS) stratification-type structure
and, near a point of M¥, after a suitable change of variables, we can assume that the
variable X € R can be decomposed as (Y,Z) € R¥ x R¥"* and G is continuous
w.r.t. u, p and Y but not with respect to Z. In particular we have in mind that locally
around X, Hamiltonian G has a discontinuity on I'y = {(Y, Z); Z = 0} which can be
identified with R*.

The properties of discontinuous sub and supersolutions on I' are playing a key role
in the proof of such local comparison results and the aim of the next section is to
introduce the notion of “regular discontinuous function”.

2.4.1 Regular discontinuous functions

The following definition provides several notions of regularity for discontinuous func-
tions.

Definition 2.4.1 — Regular discontinuous functions.
Let ACRF, f: A— R an u.s.c. [resp. L.s.c. | function and w C A.

(1) The function f is said to be w-regular at x € dw N A if

flz) =limsup f(y)  [resp. f(z) =liminf f(y)].

Yy—T
Yyew Yyew

(19) Let £ C dw N A. The function f is said to be w-reqular on & if it is w-reqular
at any point of £.



84 Barles & Chasseigne

(1ii) Let € C A. Given x € € andr > 0, we denote by V(z,r) the set of all connected
components of (A\ &) N B(x,r). We make the following assumption: for any
x € &, there exists ro = ro(x) > 0 such that

for allw € V(z,19) , * € Ow ,
(2.20)
if0<r<ry, V(ie,r) = {wﬂB(x,r) , where w € V(SC,'/’O)} :

The function f is said to be reqular on & if, for any x € € and 0 < r < ro(z),
f is w-reqular at x for allw € V(x,r).

Let first explain the admittedly strange assumption in (2.20). The first one is to
avoid pathological example like

A=UGg)u . =0

Here [A\ &] N (—r,r) contains an infinite numbers of connected components w but
none of them satisfies 0 € w. Clearly this is not the type of situations we wish to
handle and therefore the assumption excludes them.

The second assumption is to avoid appearance of vanishing of connected components
as r — 0: this assumptions means that the decomposition in connected components
does not change for » > 0 small.

On the other hand, we can consider A = [—1,1] x [-1,1] and € = [0,1] x {0}. Tt
is clear that A \ & is connected but we are interested in the local situation, not in
the global one. If x = (21,0) € £ is such that 0 < z; < 1 then, for r small enough,
[A\ &] N B(x,r) has two connected components and “regular” at such point for a
discontinuous function means regular “from both sides” of the segment &, i.e. with
respect to the two connected components. Of course, if x; = 0, we come back to the
case when we only have one connected component.

In this book, this local aspect will always be important since almost all the argu-
ments are local. But concerning A and &, we will often be in a simple situation like
A=RYN x(0,Tf) and & = M x (0,7f) where Ml C RY is a k-dimensional manifold.
We point out anyway that here there are two different cases: if k < N —1, w = A\ &
is connected and there is no difference between (i) and (i7i). But if £ is an hyper-
plane, then, as in the above example, A\ £ has two connected components w;, ws and,
roughly speaking, the regularity property has to hold in both side of £, i.e. both for
wy and wy. This is actually the case which will be studied in Part II and III.

The regularity of u.s.c. subsolution or l.s.c. supersolutions is used in several type of
situations: the most classical one is when we consider a stationary HJ Equation set
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in a domain Q of RY; a natural choice is A = Q, w = Q, £ = 9Q. In the study of
the Dirichlet problem (c¢f. for example [24, 25, 20]), such regularity of the sub and/or
supersolution is needed to have a comparison result up to the boundary. The point is to
avoid “artificial values” of these sub or supersolution on 9d€). For the case of evolution
equations, one may also choose A = Q x (0,T}), w = Q x (0,T}), & = 9Q x (0,T}).
In the same context, some result can be formulated using the w-regularity of the sub
or supersolution at some point of 9 x (0,77), cf. Section 2.5.

In most of these applications, the assumption imposed on ©Q and 9 by Defini-
tion 2.4.1-(i4) is obviously satisfied but, if the domain is less regular, typically as in
the above example

Q=[(~1,1) x (=1,1)] \ [[0,1) x {0}] ,

then a more general notion of regularity can be useful. We refer to Part V for a
discussion of such boundary regularity.

2.4.2 Regularity of subsolutions

The aim of this section is to study subsolutions of (2.19) and to prove that, under
suitable assumptions, they satisfy some “regularity properties”.

We immediately point out that, for reasons which will clear later on in this book,
we are not going to use only subsolutions in the Ishii sense and therefore, we are not
going to use only the lower semi-continuous enveloppe of some Hamiltonian as in the
Ishii definition. To simplify matter, we assume here that the function G contains all
the necessary information for subsolutions. In other words, by subsolution of (2.19),
we mean an u.s.c. function v which satisfies

At any mazimum point X € Bo(X,r) of u — ¢, where ¢ is a smooth test-function,
we have

G(X,u(X),Dp(X)) <0.

In the sequel, we decompose Du as (Dyu, Dzu) (the same convention is used for the
test-functions ¢) and the corresponding variable in G will be p = (py, pz).

In order to state our main result on the “regularity of subsolutions”, let us introduce
the assumption

(NC,) — Weak Normal Controllability.
(i) If N —k > 1, there exists e € RN=% such that, for any R > 0, we have

G(X,u, (py,Ce)) = 400  when C' — +0o0 ,



86 Barles & Chasseigne

uniformly for X = (Y, Z) € Boo(X,7), |u| < R, |py| < R.
(ii) If N — k =1, this property holds for e = +1.
(1i) If N —k =1, this property holds for e = —1.

The results are the following:
Proposition 2.4.2 We consider equation (2.19) in By (X, 7).

(a) Assume that (NC,,) holds. If u be a bounded, u.s.c. subsolution of (2.19) and if
o= Boo(X,r)N{(Y,Z); Z =c}#0, then u is reqular on T, . In particular,
u 18 reqular on I' =T .

(b) If u be a bounded, u.s.c. subsolution of (2.19), if N —k =1 and if (NC,,)-(ii)
holds, then u is reqular on Ty with respect to Boo(X,7) N{Z > 0}. In the same
way, if N—k =1 and if (NC,,)-(ii7) holds, then u is reqular on I'g with respect
to Boo(X,7r)N{Z < 0}.

(¢) Ifu is a subsolution of G = 0 on Boo(X,r)N{Z > 0} and if either (NC,)-(ii) or
(NC,)-(iii) holds then u is is reqular on I'y with respect to Boo(X,r)N{Z > 0}.

This proposition means that in B, (X, r), subsolutions cannot have “singular val-
ues” on affine subspaces of the form {(Y,Z2); Z = ¢}. By singular values we mean
here values which are not given by limits coming from outside of those affine sub-
spaces. The three above results can be interpreted in the following way: (a) is the
general “good case” of a subsolution which is regular on I'y, a set of discontinuity
for G, when we use the entire assumption (NC,). Result (b) is the case when Iy is
an affine hyperplan but only one part of assumption (NC,). Result (¢) deals with
boundary regularity; such regularity property is useful in order to use the results of
Section 2.5.

Proof — We start by (a). We recall that, thanks to Definition 2.4.1, in the case when
k < N — 1, we have to show that, for any X = (Y, Z) € T,

w(X) =limsup{uw(Y',Z") ; Y',Z') = X, Z' #+ Z} . (2.21)

since Buo(X,7)\ T is connected and Z’ # Z is equivalent to (Y, Z") ¢ T'.. Moreover,
if N —k =1, we also have to show
w(X) =limsup{uw(Y', Z"); (Y',Z") = X, Z' > Z}
= limsup{u(Y', Z");(Y',Z") = X, Z' < Z}, (2.22)
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since in this case, Bo(X,7) \ T, has two connected components. In order to prove
(2.21) we argue by contradiction assuming that

w(X) > limsup{u(Y', Z"); Y',Z") = X, Z' + Z} .

Therefore there exists some ¢ > 0 small enough such that u(Y’, Z") < u(X) — ¢ if
(Y, Z") — X| < §, with Z’ # Z. Next, for ¢ > 0, we consider the function

Y—Y/2
Y’Hu(Y’,Z)—Q.
€

If € is small enough, this function has a local maximum point at Y. which satisfies
Y. — Y| < § and u(Y, Z) > u(X). But because of the above property, there exists
a neighborhood V of (Y., Z) such that, if (Y',Z") € V and Z' # Z, u(Y',Z') <
u(Yz, Z) — 0.

This implies that (Y, Z) is also a local maximum point of the function

v — Y

", 2 > u(Y', Z')
g

Ce - (Z' - 7).

for any positive constant C' and the vector e of R¥=* given by (NC,,). But, by the
subsolution property, we have

6 (0 20 2), (2 ce)) <o,

£
But, using (NC,,) with R = max(||u||«, 2de7!), we reach a contradiction for C' large
enough.

For the case N — k = 1, we repeat the same argument by choosing either e = +1
ore=—1.

Indeed, if we assume by contradiction that u(X) > limsup{u(Y’,Z’) ;(Y',Z") —
X, Z' > Z}, we argue as above but looking at a local maximum point of the function

Y -y
-

", 2" = u(Y', Z')
g

c(Z' - 7),

therefore with the choice e = —1. We first look at a maximum point of this function
in compact set of the form

(Y2 )Y =Y|+|Z —Z| <6, Z' < Z} .

Notice that, in this set, the term C'- (Z' — Z) is negative (therefore it has the right
sign) and this function has a local maximum point which depends on € and C, but, in



88 Barles & Chasseigne

order to simplify the notations, we denote it b g
the maximum point property and we have (Y, 7
(Yz,0) is a maximum point of the function

Y, 7). We have u(Y, Z) > u(X) by
) — (Y-,0) when C' — +o00, where

Y —v'P
. :
Using that u(X) > limsup{u(Y’, Z') ; (Y', Z') — X, Z' > Z}, we clearly have the
same property at (Yz,0) and therefore, for C' large enough, at (Y, Z) which is also a
maximum point of the above function for all (Y’, Z’) such that |Y' =Y |+|Z2'—Z| < 6

if 0 is chosen small enough. And we reach a contradiction as in the first part of the
proof using (NC,).

Y = u(Y’',0) —

Hence u is regular with respect to the the {Z’ > Z} side but an analogous proof
shows the same property for the other side.

Finally the proofs of (b) and (c) rely on analogous arguments, therefore we skip
them. We just point out that, for (c), the fact that B,.(X,r) N {Z < 0} is not part
of the domain allows to do the proof as in the first case of (a).

Q.E.D.

Remark 2.4.3

(1) We have stated and proved Proposition 2.4.2 under Assumption (NC,) but, in
the sequel, we will mainly use Assumption (NC) which will be introduced in the
next section. Clearly (NC) implies (NC,,).

On an other hand, we point out that, in control problems, provided that the
Hamiltonian G is defined in a suitable way, (NC,,) is equivalent to the existence
of a non-tangential dynamic in the case N — k > 1 while, in the case when
N — k =1, it is equivalent to the existence of two dynamics pointing strictly
wmward each of the two half-spaces defined by the hyperplan T'y.

(17) Notice that a similar result still holds for l.s.c. subsolutions a la Barron-Jensen,
where we consider minimum points of u—¢. Of course in this case, the reqularity
property has to be expressed with a liminf instead of a limsup but the modifi-
cations are straightforward. We refer to Section 22.J where the Barron-Jensen
approach is detailed and we use this liminf reqularity property.

2.4.3 Regularization of subsolutions

The aim of this section is to construct, for a given subsolution, a suitable approxi-
mation by Lipschitz continuous subsolutions which are even C! in Y in the convex
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case.

To do so, we use for G the following assumptions: for any R > 0, there exist some
constants C > 0 for i = 1...4, a modulus of continuity m? : [0, +oo[— [0, +-00[ and
either a constant A% > 0 or pf* > 0 such that

(TC) — Tangential Continuity.
For any X, = (Y1,2), Xo = (Y2, Z) € Boo(X,7), |u| < R and p € RY, then

G(X1,u.p) — G(Xa,u,p)| < CFJY: — Yallp| + m"(¥i - Yal) .

(NC) — Normal Controllability.
For any X = (Y, Z) € BolX,7), u] < R, p= (py.pz) € RY, then

G(X,u,p) > Cylpz| — Capy| — CFF .

Notice that (NC) and (TC) have counterparts in terms of control elements i.e.
dynamic and cost, see (NC-BCL), (TC-BCL), p. 149. For the last assumption, if

py € R¥ we set py = (Pyys -+ s Dv,)

(Mon) — Monotonicity.

For any R > 0, there exists Ar, ur € R, such that one of the two following properties
holds

(Mon-u): Ag > 0 and for any X € Boo(X,7), p = (py,pz) € RY, any —R <
up <ug < R,

G(X,uz,p) — G(X,uy, p) > MN(ug —uy) ; (2.23)
(Mon-p): (2.23) holds with A\gp = 0, we have ug > 0 and

G(X,u1,q) = G(X,u1,p) > p(gv; — pyi) » (2.24)
for any q = (qv,pz) with py, < gy, and py, = gy, fori=2,...,p.

Before providing results using these assumptions, we give an example showing the
type of properties hidden behind these general assumptions.
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Example 2.4 — We consider an equation in R¥*! written as
py + H((w1,29),t,u, (Dg,u, Dyyu)) =0 in RF x RY % % (0, +-00) ,

Here the constant p satisfies 0 < p < 1 and in order to simplify we can assume that
H is a continuous function. To be in the above framework, we write X = (¢, 21, z5) €
(0, +00) x R* x R¥=* and we set Y = (¢t,2,) € R¥"!, Z = 2, € RV and

G(X>ua P) = pUpt + H(($1’x2)7t7u7 (pxppm)) 3

where P = (pt, (pxmpfm))‘

In order to formulate (TC), (NC) and (Mon) in a simple way, we assume that
(x1,t,u) = H((x1,22),t,u, (Pgy, Pay)) is locally Lipschitz continuous for any 3, py, , Pu, -
Then these assumptions can be formulated in the following way

e For (TC), recalling that we always argue locally, one has to assume that, for any
R > 0, there exists a constant Cf* > 0 such that, for any (¢, 21, z2) € [0, +00) x R¥ x
RN=F with ¢ + |z1| + |22] < R, |u| < R and (pay, psy) € RF x RV we have

|Dx1H((ZE1,$2),t,U, (px1apx2))|> |DtH((ZL‘1,232),t,U,, (px1apx2))| < Cf('(pl‘mpﬂcz” + 1) .

Here we are in the simple case when mf (T) = CPE7 for any 7 > 0. One can easily
check that these assumptions imply the right property for G with Y = (¢, x1).

e Next since py, = p;, (Mon) reduces to either > 0 or D, H((x1, 22),t, U, (Dey s Day)) =
Ar > 0 for the same set of (t,21,22),u, (P, Pz,) as for (TC). Hence, either we are
in a real time evolution context (u > 0), or 4 = 0 and the standard assumption “H
strictly increasing in »” has to hold.

e Finally (NC) holds if H satisfies the following coercivity assumption in p,,

H((l’l,$2),t,u, (pmvpm)) Z C§|px2| - C§|p1‘1| - Cf )

again for the same set of (¢,21,23),u, (Ps,, Pz,) as for (TC). Notice that in order to
check (NC) for G, the constant C may have to be changed in order to incorporate
the up-term if p # 0.

Our result concerning the approximation by Lipschitz subsolutions is the

Proposition 2.4.4 — Regularization of subsolutions.

Let u be a bounded subsolution of (2.19) and assume that (TC), (NC) and (Mon)
hold. Then there exists a sequence of Lipschitz continuous functions (uf). defined in

Boo(X,r —a(e)) where a(e) — 0 as € — 0 such that
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(1) each uf is a subsolution of (2.19) in By (X,r — a(e)),
(17) each u® are semi-convex in the Y -variable

(73) limsup* u® =u as e — 0.

Remark 2.4.5 FEquations of the form
max(u; + G1(x, Dyu); Go(x,u, Dyu)) =0,

do not satisfy (Mon) even if Gy satisfies (Mon-u) and the Hamiltonian p;+G1(x, p,)
satisfies (Mon-p). To overcome this difficulty, we have to use a change of variable of
the form v = exp(Kt) - u in order that both Hamiltonians satisfy (Mon-u), which is
a natural change (cf. Section 4.4). Of course, suitable assumptions on G1 and Gy are
needed in order to have (TC) and (NC).

Proof — First we can drop the R in all the constants appearing in the assumptions
by remarking that, u being bounded, we can use the constants with R = ||u/|x-

In the case, when (Mon) holds with A > 0 we set for X = (Y, Z)

(Y — Y2+ 54)“/2}
e ’

u®(X) := max {U(Y/,Z) -

Y/€RF
for some (small) a > 0 to be chosen later on, while, in the other case we set

Y — Y’P}

e2

u®(X) := max {u(Y’,Z) — exp(KY))

Y’eRk

for some constant K to be chosen later on.

In both cases, the maximum is achieved for some Y’ such that |Y — Y'| < O(e),
hence with a point (Y, Z) € B.(X,r) for a(s) > O(g), and therefore u® is well-
defined in By, (X,r — a(e)). By standard properties of the sup-convolution, the u’s
are continuous in Y but, for the time being, not necessarily in Z, despite of Proposi-

tion 2.4.2.

To prove that u® is a subsolution in Bog()_( ,7 — a(e)), we consider a smooth test-

function ¢ and we assume that X € B (X,r — a(e)) is a maximum point of u® — ¢.
We first consider the “\ > 0" case : if

(|Y N Y/|2 + 84)@/2
60{

WE(X) = u(Y', Z) —

Y
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then (Y’,Z) is a maximum point of (Y,Z2) = w(Y,Z) —e (Y = Y|* + &?4)a/2 —

o(Y, Z ) , and therefore, by the subsolution property for u
G((Y/? Z)v U(Y/7 Z)? (pY’ DZ¢(Y7 Z))) <0;

where
(JY —Y']2 el

py =aY' =Y)
6@

On the other hand the maximum point property in Y, implies that py = Dy ¢ (Y, Z).

To obtain the right inequality, we have to replace (Y',Z) by X = (Y, Z) in this
inequality and u(Y’, Z) by u*(X). To do so, we have to use (TC); in order to do it,
we need to have a precise estimate on the term |Y —Y’||(py, Dz¢(Y, Z))|. The explicit
form of py gives it for |Y — Y'||py| but this is not the case for |Y — Y'|.|Dzo(Y, Z)|
since we have not such a precise information on Dz¢(Y, Z). Instead we have to use
(NC) which implies

Co|Dzo(Y, Z)| — Cslpy| = C4 < 0.

(remember that we have dropped the dependence in R for all the constants). On the
other hand, we have combining (TC) and (Mon)

G<X7 ua(X)v (DY¢(Y7 Z)a DZ¢(Y> Z))) < G((Y/a Z)? U'(Y/7 Z)a (py, DZ¢(Y7 Z)))+
<|Y v 54) i

It remains to estimate the right-hand side of this inequality: we have seen above that
Y —Y'| = O(e) and (NC) implies that

CilY =Y'[[Do(X)[+m(]Y =Y']) = A

[DH(X)| < K(lpy[+1) ,

for some large constant K depending only on Cy, Cy, Cy. Finally

2 | _aya/2-1 Y —Y|? + &t o
N T

Y =Y'llpy| = ofy =Y

ex ex

By taking o < K, we finally conclude that
G(X, v (X), (Dyo(Y, 2), Dzo(Y, Z)) < O(e) + m(O(e)) ,

and changing u® in u® — A7 (O(g) + m(O(g))), we have the desired property.



HJ-Equations with Discontinuities: PDE Tools 93

In the p-case, the equality py = Dy¢(Y, Z) is replaced by

Y -y
82

Y’ -Y)

e2

Dy¢(Y,Z) = —K exp(KY) e + exp(Kt)

Y

where e; is the vector (1,0,---,0) in R*. The viscosity subsolution inequality for u
at (Y, Z) reads
G((Ylv Z)> U(Ylv Z)> (ﬁYv DZ¢(Y7 Z)) <0 )
=)
g2
We first use (NC), which implies

where py = exp(Kt)

Y' - Y]

[DO(X)| < K(|py| +1) = K(exp(Kt)—

+1).
Then we combine (TC) and (Mon) to obtain
G(X,u*(X), (Dyo(Y, Z), Dzo(Y, Z)) < G((Y', Z),u(Y'", Z), (by, Dz (Y, Z))+

Y —Y'P
g2 ’

CLY = Y| DOC0)| +m(|Y — Y']) — uK exp(KY)

We conclude easily as in the first case choosing K such that uK > C\ K.

Properties (i7) and (iiz) are classical properties which are easy to obtain and we
drop the proof.

We conclude this proof by sketching the proof of the Lipschitz continuity of u® in
Z. To do so, we write X = (Y, Z) and for any fixed Y such that |[Y —Y| <r—af(e),
we consider the function Z — u®(Y, Z). By using (NC) and the Lipschitz continuity
of u® in the Y-variable, it is easy to prove that this function is a subsolution of

CQ‘DZw‘ S C3K€ + 04 s

where K. = ||Dyuf||s and the estimates of Dzu® follows.
Q.E.D.

The convex case — The above regularization result can be improved when some
convexity property of the Hamiltonian holds. More precisely, let us introduce the
following assumption

(Hcony) — Convexity assumption.
For any X € Boo(X, 1), the function (u,p) — G(X,u,p) is conver.
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We begin with a result concerning convex combinations of subsolutions. While the
result is interesting in itself even in the case of continuous Hamiltonians, we actually
need it to make a suitable regularization of subsolutions. By a convex combination of
subsolutions u; for i = 1,..,n, we mean of course a finite sum

W::Z,uiui, where for all 7, p; > 0 and Z,uizl.

=1 i=1

Lemma 2.4.6 Assume that (X,r,p) — G(X,r,p) is l.s.c. and satisfies (Hcony)-
Then any convexr combination of Lipschitz continuous subsolutions of G = 0 is a
subsolution of G = 0.

Proof — We just sketch the proof since most of the arguments are rather standard. We
have only to prove the result for a convex combination of two subsolutions W := Aw;+
(1 — A)wy, the general case involving n subsolutions for n > 2 deriving immediately
by iteration of the result. Of course, we can assume w.l.o.g. that 0 < A < 1.

Let ¢ be a smooth test-function and X € B, (X,r) a local strict maximum point

of W — ¢ in B(X,7) C Bso(X,r). We use a tripling of variables by considering in
——3
B(X,7) the function

X, — X2 Xo — X
NN XE —(1—>\)—| 2 = XI°

W(X1, X, X) i= A (X7) + (1= Nwa(Xz) — (X) - -

Denoting by (X7, X5, X¢) a maximum point of this function and applying Lemma 5.4.1
in Section 5.4, we have (X, X3, X?) — (X, X, X) when € — 0, therefore X7, X3, X* €
B(X,7) for € small enough. Hence we get the viscosity inequalities

G(Xf,wl(Xf),Pf) <0 , G(XQE’w?(XZE)aPQE) SO)
and the property Dp(X) = AP + (1 — A\) P, where, for i = 1,2,

P = M _
! €
Using the Lipschitz continuity of w;, ws, the P; are uniformly bounded with respect
to £ and extracting if necessary subsequences, we can assume that they converge

respectively to P; when € — 0.

Letting € tend to 0, using in a crucial way the lower semi-continuity of G, we are
lead to the same situation as above:

GX,w(X),P) <0 , GX,wy(X),P)<0.
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Because of the continuity of D¢, D(X) = AP, + (1 — A\)P,. So, making the convex
combinaison of the above inequalities, after using (Hgony) we finally get

G(X,W(X),Dé(X)) <0,

which proves that W is a viscosity subsolution of G = 0.
Q.E.D.

We can now state the regularization result

Proposition 2.4.7 — Regularization of subsolutions, convex case.

Under the assumptions of Proposition 2.4.4, if G is l.s.c. and (Hgony) holds, the
sequence (u®). of Lipschitz continuous subsolutions of (2.19) can be built in such a
way that they are C* (and even C*) in the Y wvariable.

Proof — By Proposition 2.4.4, we can assume without loss of generality that u is
Lipschitz continuous. In order to obtain further regularity, we are going to use a
standard convolution with a sequence of mollifying kernels but only in the Y -variable.

Let us introduce a sequence (p.). of positive, C®-functions on R¥, p. having a
compact support in Bu(0,¢) and with [, p-(e)de = 1. Then we set, for X = (Y, Z) €
Boo(X,7r —¢)

u?(X) = /|| ) uw(Y —e, Z)p.(e)de .

By standard arguments, it is clear that u® is smooth in Y.
We first want to prove that the u® are approximate subsolutions of (2.19), i.e. there
exists some 7(e) — 0 as € — 0 such that

G(X,u®, Duf) < n(e) in Boo(X,r —¢). (2.25)

To do so we follow the strategy of [39][Lemma A.3], approximating the integral by a
Riemann sum. We are lead to consider a function u;, defined by

u (X) = ZMiU(Y —e, ),
i=1

for some |e;| < ¢ and for coefficients p; > 0 such that Y u; = [ p. = 1.

Using (TC) and the Lipschitz continuity of u, it is clear that there exists 7(e), sat-
isfying the above mentioned properties and independent of 4, such that the functions
X =,Z) = uY —e;, Z) are all subsolutions of G —n(e) = 0.
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Applying Lemma 2.4.6, u is also a subsolution of G — n(e) = 0 and since uZ, con-
verges uniformly to u® when n — +o00, a standard stability result (cf. Theorem 2.1.4)
implies that u® a subsolution of G — 7(¢) = 0 as well.

Finally, in order to drop the n(e)-term in (2.25), we can either replace u. by u® —
A7!n(e) in the (Mon-u)-case, or u® — u~'n(e)Y; in the (Mon-p) case, and we get
indeed a subsolution of G = 0.

Q.E.D.

Remark 2.4.8 Let us make three complementary comments.

(1) It is clear from the proof of Proposition 2.4.7 that the convezity of G(X,r, P) in
r 18 not necessary to obtain such a result, the continuity in r being enough, as we
explain now. Notice first that, by the Lipschitz continuity of u,

Y = i, 2) = u(Y, 2)], [u(Y, Z) — (Y, 2)|, [ulY, Z) — 5, (Y, Z)| < K,

K being the Lipschitz constant. Then, we are reduced to a version of Lemma 2.4.6
with no r-dependence by using an approximate Hamiltonian of the form é(X, P) =
G(X,u*(X), P) —n(e), depending only on X and P. Indeed, taking into account the
Ke error term into 1(¢), the functions u(Y —e;, Z), uS, and u® become all subsolutions
of G =0, which satisfies (Hconv). The rest of the proof is then the same as above.

(13) The next remark concerns “tangential reqularizations” in the case of a “tangential
viscosity inequalities”. In several situations, and in particular in stratified problems,
the subsolution u of (2.19) satisfies also a subsolution inequality of the form

G" (Y, u(Y,0), Dyu(Y,0)) <0 onT,

where the precise meaning of this subsolution inequality is obtained by looking at mazx-
imum points of u(Y,0) —o(Y) on T, not in all RYN. As the proofs of Proposition 2.4./
and 2.4.7 show, if GU satisfies (TC), then the uf given by the regqularization pro-
cesses of these results are also semi-convex or Ct subsolutions of GV < 0; indeed the
main difficulty in the proofs of these results comes from the Z-variable which does not
appear here. A remark which plays a crucial in the case of stratified problems.

(1ii) The result still applies to quasi-convex Hamiltonians. Indeed, for instance us-
ing (i) above for simplicity, the convexity of G is used to prove essentially that if
G(X,u,P;) <0 fori=1,2, then G(X,u,sP, + (1 — s)P,) < 0. But of course this is
also true in the case of quasi-convexity since

G(X,u,sP, + (1 —9)P) < max{G(X,u, P),G(X,u, P)} <0.
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However, in the context of evolution equations this means that we need a “full” quasi-
convezity assumption: under the form H(x,t,u,(Dyu,u;)) = 0, the quasi-convezity
is required to hold with respect to both (D,u,u;). Suprisingly, this assumption leaves
out “natural” evolution equations under the form u, + F(x,t,u, Dyu) = 0 where F is
quasi-conver in Dyu. Indeed, the full Hamiltonian H = u; + F is not quasi-convex
with respect to both variables in general.

2.4.4 What about regularization for supersolutions?

The previous section shows how to regularize subsolutions and we address here the
question: is it possible to do it for supersolutions, changing (of course) the sup-
convolution into an inf-convolution?

Looking at the proof of Theorem 2.4.4, the answer is not completely obvious: on
one hand, the arguments for an inf-convolution may appear as being analogous but,
on the other hand, we use in a key way Assumption (NC) which allows to control
the derivatives in Z of the sup-convolution (or the test-function), an argument which
18, of course, valid only for subsolutions.

Actually, regularizing a supersolution v of (2.19)—a notion which is defined exactly
in the same way as for subsolutions—requires additional assumptions on either v or
G. For G, we introduce the following stronger version of (TC)

(TC-s) — Strong Tangential Continuity.

For any R > 0, there exists CF¥ > 0 and a modulus of continuity m® [0, +oo[—
[07 +OO[ such that for any X, = (}qu)aXQ = (}/272) € Boo<X>T): |u| < R, p=
(py,pz) S RN, then

We point out that, compared to (TC), the “|p|” is replaced by “|py|”. This as-
sumption is typically satisfied by equations of the form

G(X,U,p) - GI(X7 u7pY> + G2(27 U,p) )
since, for G, (TC-s) reduces to (TC) and G readily satisfies (TC-s).

Another possibility is to assume that v(X) = v(Y, Z) is Lipschitz continuous in Z
in B (X,r), uniformly in Y, i.e. there exists a constant K > 0 such that, for any
X1=Y,21),Xo=(Y,Z3) € Bo(X,1)

[0(X1) — v(Xo)| < K2y — Za] (2.26)
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The result for the supersolutions is the

Proposition 2.4.9 — Regularizations of supersolutions.
Let v be a bounded supersolution of (2.19) and assume that
(a) either (TC-s) and (Mon) hold

(b) or (TC), (Mon) and (2.26) hold.

Then there exists a sequence (v¥). defined in Boo(X,r — a(e)) where a(e) — 0 as
e — 0 such that

(i) each v¢ is a supersolution of (2.19) in Boo(X,r — a(e)),
(17) each v is semi-concave in the Y -variable,

(¢4i) liminf, v* =v ase — 0.

Two remarks on this proposition: first, the proof is readily the same as for subso-
lutions, the only difference is that we do not need to control the Z-derivative in case
(a) because of the form of (T'C-s) while it is clearly bounded in case (b) because of
(2.26). The second remark is that, a priori, the v* are not continuous in Z in case (a).
But of course, they are Lipschitz continuous in Y and Z in case (b).

2.5 Sub and superdifferentials, inequalities at the
boundary

We conclude this chapter with several results concerning the properties of viscosity
sub and supersolutions of an HJ Equation at the boundary of the domain where the
equation is set. Those results will be mainly applied in Part IIT but we formulate both
in a quite general way here, considering a general HJ Equation of the form

u + H(z,t,u,Du) =0 in @, (2.27)

where @ := Q x (0,T}), H is a continuous function and 2 is a C''-domain of RY. We
also set 0,Q) := 9 x (0,T}) and @e =Q x (0,7T}).

The first result is used below in the proof of Proposition 16.2.1: in terms of control,
it means that viscosity subsolution inequalities hold up the boundary for all dynamics
which are pointing inward the domain. Here, d(z) = dist(z,0f2) denotes the distance
to the boundary which is C* in a neighborhood of 9.
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Proposition 2.5.1 — Viscosity inequalities at the boundary.

Assume that u is an w.s.c., locally bounded function on @g which is a subsolution of
(2.27). If there exists (x,t) € 0,Q) and r > 0 such that

(1) The u.s.c. function u is Q-reqular on 0,Q N [B(z,1) X (t —r,t +1r)].
(ii) The distance function d to OS) is smooth in QN B(z,7),
(i1i) There exists a function L : @K N[B(z,r) x (t —rt+71)] x RxRY — R such
that L<H on Q N[B(z,r) x (t —r,t+7)] x Rx RV and
A= Ly, s,u,p+ ADd(y)) ,

is a decreasing function for any (y, s,u,p) € QZQ[B(Z‘, r)X (t—r,t+r)] x Rx RN,

Then u is a subsolution of
u + L(x,t,u, Du) =0 on 0,Q N[B(x,r) X (t —r,t+7)].

Moreover, if we can take L = H the same result is valid for supersolutions.

We point out that this result holds for “regular subsolutions”, i.e. which satisfy (4),
a regularity which is a consequence of Proposition 2.4.2 if we have suitable normal
controllability and tangential continuity type assumptions.

Proof — We consider a test-function 1 which is C'* on @é and we assume that (y, s) €
QN [B(xz,r) x (t—r,t+7r)] is a strict local maximum point of u — 1) (again we refer
to Lemma 2.1.3 to see why we can always assume the maximum point to be strict).
To prove the L-inequality, we consider the function

«

(z,7) > u(z,7) —P(z,7) — % ,

where a > 0 is a parameter devoted to tend to 0.

We apply Lemma 5.4.1 with
w(z, ) :=u(z,7) — (2, 7), Xalz,T) = M ,
K:F:@ZH(B(x,r) X [t—rt+7]).

Assumption (7) of Lemma 5.4.1 is clearly satisfied and since lim inf, y, = 0 in K (even
on 0f2), Assumption (i7) also holds. We now turn to condition (i7i) which requires
some explanations.
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By the Q-regularity of w on 9,Q N [B(x,r) x (t — r,t + r)], there exists a sequence
(Y, tr) converging to (y,t) such that u(yx,tx) — u(y,t) and y, € Q. We may assume
without loss of generality that d(yy) > k2.

Then, considering the sequence (y*,t*) := (yja-1], t}a-1)) Where [a!] is the integer
part of a~!, we have (y*,t*) — (y,t). Moreover, since d(y®) > [a!]"/2, we deduce
also that x,(y*,t*) — 0 and w(y*,t*) — w(y,t). In other words, this sequence
corresponds to the sequence (z§). required in Assumption (iii) of Lemma 5.4.1.

Now, for a small enough, this function has a local maximum at (z,7) € K, depend-
ing on « but we drop this dependence for the sake of simplicity of notations. The
strict maximum property at (y, s) implies its uniqueness, hence Lemma 5.4.1 ensures
that up to extraction, as a — 0 we get

(z2,7) = (y,8), u(z,7) = u(y,s) .

Writing the viscosity subsolution inequality for u, we have
Q@
[d(2)]?

which implies that the same inequality holds for L since L < H. Finally we use the
monotonicity property of L in the Dd(y)-direction which yields

(2, 7)+ H(Z, 7,u(z,7), Dy(Z,7T) — Dd(z)) <0,

W (Z,7)+ L(Z,7,u(z,7), DY(z,7)) <O0.

The conclusion follows by letting a tends to 0, using the continuity of L.

For the supersolution property, we argue in an analogous way, looking at a minimum
point and introducing a “+——" term instead of the “———"-one.
d(z) d(z)
Q.E.D.

Then we turn to the classical notions of sub and superdifferentials: we describe their
properties on the boundary 9,() since those on ) are well-known and, as we already
mentioned it above, some of these properties play a crucial role in Part III. Here we

. —t, . . . .
add the term “relatively to @) 7 since, in the sequel, we are going to consider at least
two domains with a common boundary. Therefore, on 9,() we can consider both sub

. . : : —t :
and super-differentials relatively either to () or to its complementary.

We first give the general definition for any point in @Z.

Definition 2.5.2 — Sub/superdifferentials relatively to @E.
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(1) The superdifferential relatively to @Z of an u.s.c. function u : @E — R at a point
(z,1) € @é 15 the, possibly empty, closed convex set D%Zu(i,f) C RN+ defined

by: (pe,pi) € D%[u(f,t—) if and only if, for any (z,t) € @E,

u(z,t) Sw(@,t) +po - (=) +pe(t = 1) +o(|t — i + [z — 7[) ,

(13) The subdifferential relatively to @e of an l.s.c. function v : @g — R at a point
(Z,t) € @e is the, possibly empty, closed convex set Dégv(i",f) C RN+ defined

by: (pe, i) € Dézv(j,f) if and only if, for any (x,t) € @e}

v(z,t) > v(T, 1) +py - (@ —Z) +p(t —t) +o(|t —t| + |z —Z]) .

Of course, the terminology “relatively to @e” only makes sense for points (Z,t) €

0@ and if u (or v) is defined not only on @Z % (0,T) but on a larger domain, typically
RN x (0,Ty). Moreover, for points in @, Definition 2.5.2 is the classical definition.

The first lemma is classical and we leave its proof to the reader.
Lemma 2.5.3 — Sub/superdifferentials on @Z and test-functions.

(1) Let u : @Z — R be an u.s.c. function and (T,t) € @e' An element (pg,pt) s in
D%,zu(i, t) if and only if there exists a C*-function ¢ such that (z,t) is a strict

local maximum point of u — @ on @Z and Dyp(Z,t) = ps, @i(T, 1) = p;.

(ii) Let v : @K — R be an ls.c. function and (Z,t) € @e' An element (pg,pt) s in
D%w(i",f) if and only if there exists a C'-function o such that (Z,t) is a strict
local minimum point of u — @ on @e and D,yp(Z,t) = p., @i(T, 1) = p;.

We have formulated Lemma 2.5.3 with “strict” local maximum or minimum point

but, obviously, this is a fortiori true with just local maximum or minimum.

Now we turn to the structure of the sub and superdifferentials on the boundary
and the connections with Equation (2.27). With the notations of Proposition 2.5.1,
we have

Proposition 2.5.4 — Structure of the sub and superdifferentials on 9,() and in-
equalities up to the boundary.
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(1) Assume that u : @e — R is an w.s.c., locally bounded subsolution of (2.27)
which is Q-regular at the point (x,t) € 9,Q. If (ps,p:) € D%Zu(x,t), then the

set  ={A € R: (p, +\Dd(z),p:) € D%gu(x, t)} is an interval, either I =R or
I = |\, +o0) for some A <0 and in this latter case,

P+ Ha,t,ule, ), p, + ADd(x)) < 0.

(1) Assume that v : @g — R is a ls.c., locally bounded supersolution of (2.27)
which is Q-reqular at the point (z,t) € 0,Q. If (pr,pt) € Dé,gv(x,t), then the

set J ={X € R: (p, + ADd(z),p:) € Délv(x,t)} is an interval, either J = R

or J = (—o0, \] for some X > 0 and in this latter case,

po+ H(z, t,0(x,1), p, + ADd(x)) > 0.

We recall that, for x € 99, Dd(x) is the unit normal vector to 92 at x pointing
inward €2. Therefore Proposition 2.5.4 gives informations on the structure of the sub
and superdifferentials on the boundary in the normal direction.

Proof — We provide a complete proof only in the subsolutions case, the case of su-
persolutions follows from similar arguments.

(a) Since D%,zu(x,t) is a non-empty closed convex subset of R¥*1 it is clear that

I is also a non-empty closed convex subset of R, hence an interval. Moreover, we
claim that since (p,, p;) € D%lu(x, t), then also (p, +ADd(z),p;) € D%@u(x, t) for any

A > 0. Indeed, if y € Q, by the regularity of d(-),
0 <d(y) =d(z) + Dd(x) - (y — x) + o(ly — z[) = Dd(x) - (y — x) + o(|ly — ) .

So, for any A > 0, ADd(x)-(y—x) > o(|]y —|) and the claim follows. Hence I is either
R or of the form [\, +00) for some A € R, and necessarily A < 0 because A =0 € [I.

It remains to prove the viscosity inequality when A\ > —oo.
(b) Since (p, +ADd(z),p) € D%gu(x, t), by Lemma 2.5.3, there exists a C''-function

¢ such that (x,t) is a strict local maximum point of u — ¢ on @Z and D,p(z,t) =
Pz + ADd(x), pi(x,t) = p;. Then, for 0 < e < 1, we consider the function

Ve(y,s) = u(y,s) — o(y,s) +ed(y) .

Since (z,t) is a strict local maximum point of u — ¢ on @Z, for & small enough,
there exists a maximum point (y., s.) of 1. near (z,t) and we have (y., s.) — (z,1),
w(Ye, ) — u(x,t) as e — 0.
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We claim that (y.,s.) € @, at least for € small enough. Indeed, if (y.,s.) € 0,Q,
then necessarily (y.,s.) = (z,t); otherwise, by the strict maximum point property,
we would have

Ve(Yes 2) = (U — ) (Ye, 5c) < (u—p)(2,1) = Y-(2,1)

which would contradict the maximality of (y., s.) for ¥.. But (y.,s.) = (z,t) is not
possible since it would imply that (p, +(A—¢)Dd(z),p;) € Dgeu(x, t), a contradiction

to the minimality of \.

(c) Therefore (y., s.) € @ and the viscosity subsolution inequality holds, namely

©1(Ye, 5c) + H(Ye, e, u(Ye, 5 ) Do + (A — €)Dd(y.)) < 0.

The result follows by letting ¢ — 0, using the continuity of H and the fact that ¢
is C1.
Q.E.D.

Remark 2.5.5 — Sub and superdifferentials on 9,() and regularity.

In Proposition 2.5.4, we assume the sub and supersolutions to be Q-reqular at the
point (x,t) € 0,Q: this is, of course, to obtain the viscosily inequalities for A and .
We point out anyway that

— even if these regqularity properties hold, A and X can be infinite. Take Q = (0, 4+00) x
(0,Ty) and consider the functions u(x,t) = —xt/? or v(x,t) = z'/2.

— Ifu is NOT Q-regular at the point (x,t) € 0,Q) and if D%eu(x, t) is non-empty then
I =R and, in the same way, if v is NOT Q-reqular at the point (x,t) € 0,Q and if
D%gv(x, t) is non-empty then J = R.

We conclude this section by a “two-domain” result. More precisely we consider a
domain Q C RY which can be written as

Q=0 UQUH,

where 1, Qy are two disjoints domains of RY and H = 99, N9, is a smooth (N —1)-
manifold. We use the notations @Q; = Q; x (0,7%), ﬁf = ; x (0,Ty) and we notice
that H x (0,T}) C 0,8; for ¢ = 1,2. Finally we denote by d(-) the distance function

to H and by n(x) the unit normal vector to H pointing inward to ;.

Civen A = (A, ;) € R, we define the continuous function x* : Q — R by

Md(z) ifxeQ
) = g ) e
Xod(z) if z € Qy,
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Lemma 2.5.6 — Sub and superdifferentials on H x (0,7%) and test-functions.

(i) Let u:Q x (0,T7) — R be an w.s.c. function and (&,t) a point of H x (0,Ty).
We assume that there exists (py,p;) € RN and A = (A, o) € R? such that

(pe + Ain(x), p) € DL u(Z,1) |
1

(pe = Aan(2),pe) € D2y u(T,7) .
2

Then there exists a C’l-function @ such that (Z,t) is a strict local maximum
point of u — x* — ¢ on Q x (0,Ty) and D,o(Z,t) = pa, pi(ZT, 1) = p;.

(i1) Letv:Qx(0,Tf) — R be a Ls.c. function and (Z,t) a point of H x (0,Tf). We
assume that there exists (py,p;) € RN and A = (A, \o) € R? such that

(px + )\m(I),pt) € Dgllv(f,a
(pe — Xon(z),p;) € D v(7,1) .

Then there exists a C’l—function ¢ such that (Z,t) is a strict local mazimum
point of u — x* — ¢ on Q x (0,Ty) and D, o(Z,t) = ps, ©i(T, 1) = p;.

We refer the reader to Part I1I where we introduce test-functions which are piecewise
C! like x* 4 ¢ above. Lemma 2.5.6 will be useful in this context.

Proof — The proof is short and we provide it only in the subdifferential case, the
proof for the superdifferential being analogous. We just notice that (p,,p;) is in the
super-differential of the u.s.c. function u — x* at (z,%). The existence of ¢ is therefore

a consequence of the classical results on subdifferentials.
Q.E.D.



Chapter 3

Control Tools

Abstract. Classical results for control problems with discontinuities are presented.
This is the occasion to describe the classical framework that is used in particular in the
stratified setting. The main results concern the connections between viscosity sub and
supersolutions, and the associated sub and super-dynamic programming principles.

Of course, the key ingredients used in this chapter are not new, we just try to revisit
them in a more modern way: we refer the reader to the founding article of Filippov
[88] and to Aubin and Cellina [11], Aubin and Frankowska [12], Clarke [61], Clarke,
Ledyaev, Stern and Wolenski [(2] for the classical approach of deterministic control
problems by non-smooth analysis methods.

3.1 Introduction: how to define deterministic con-
trol problems with discontinuities? The two
half-spaces problem

As in the basic example of a two half-space discontinuity introduced in Section 2.1,
we consider a partition of RY into

H:{.’L’N:O}, le{QZN>0},QQI{$N<O},

and, following Chapter 1, we assume that we are given three different control problems
in each of these subsets associated to dynamics, discount factors and costs respectively
denoted by (bo, co, ly), (b1, c1,11), (b2, 2, l2); hence, the Hamiltonians take the form

Hi(z,t,r,p;) := sup {=bj(x,t,a) - p, + ci(z,t,a)r — l;(z,t, )},
a; €EA;
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for i = 0,1, 2, where the A; are the spaces of controls. For the sake of simplicity, we
can assume that the (b;,¢;,[;) are all defined on RY x [0,7y] x A; for i = 0,1,2 and
even that they all satisfy (Hga_cp). As a consequence, the H; are well-defined and
continuous in RY x [0, 7] x R x RY.

For such problems, the first question consists in defining properly the global dynamic
b since, when the trajectory reaches H, a discontinuity in the dynamic occurs: the
controller may have access to dynamics b; and by, but also to the specific dynamics
by. Of course, the similar question of defining globally the discount factor and cost
holds.

The natural tool consists in using the theory of differential inclusions that we first
introduce on the simple example of Chapter 1. The idea consists in looking at the set
valued map

BCL(z,t) :== {(b(z,t, ), c(z, t,a),l(x,t,)) : € A},

and to solve the differential inclusion

(X(s), D(s), L(s)) € BCL(X(s),t — 5) , (X, D, L)(0) = (x,0,0) ,
which only required that the set valued map BCL is upper-semicontinuous, with
values in compact, convex sets (which is almost satisfied here, at least, adding the
assumptions that the BCL(x,t) are convex or solving with their convex hull). Then

U(z,t) = inf : (/0 L(s) exp(D(s)))ds+uo(X(t))eXp(D(t))) ,

(X,D,L

The advantage of this approach is to allow to define the dynamic, discount and cost
without any regularity in b, ¢, [.

The next step is the half-space discontinuity for which we are going to define BCL
in the same way for x € ; and x € , by just setting, for t € [0, T}]

(b(z,t, ), c(x, t, ), l(z,t,a)) = (bi(x,t, ), c1(z, b, 00), [ (2, t, 1)) if x €
(b(z,t, o), c(x, t, ), l(z,t, ) = (ba(x, t, ), ca(m, b, ), la(x, t, a0)) if x €

where a € A = Ay x A; X As, the “extended control space”.

For x € H and t € [0,7y|, we just follow the theory of differential inclusions:
by the upper semi-continuity of BCL, we necessarily have in BCL(z,t) all the
(bi(x, t, a;), ci(x,t, 04), i (z,t,04)) for i@ = 0,1,2 but we have also to take the convex
hull of all these elements, namely all the convex combinations of them. In partic-
ular, for the dynamic, we have (a priori) all the b = pobg + p1by + p2be such that
po+ 1+ e =1, p; > 0 but we will show that such b play a role only if the trajectory
stays on ‘H and therefore if we have b-ey = 0. A more precise statement will be given
in Section 7.
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3.2 A general framework for deterministic control
problems

Based on the ideas that we sketched in last section, we consider a general approach
of finite horizon control problems with differential inclusions. We use an extended
tragectory (X, T, D, L) in which we also embed the running time variable 7', pointing
out that, in the basic example we introduced in the previous section, we just have
T(s)=t—s.

This framework may seem complicated but we made this choice because it allows
us to consider all the applications we have in mind: on one hand, time and space
will play analogous roles when we face time-dependent discontinuities, or for treating
some unbounded control type features; on the other hand, discount factors will be
necessarily involved when dealing with boundary conditions— see Part V.

In this section, we present general and classical results which do not require any
particular assumption concerning neither the structure of the discontinuities, nor on
the control sets.

In the following, we denote by P(E) the set of all subsets of E.

3.2.1 Dynamics, discounts and costs

The first hypothesis we make is

(Hgcw) funda — Fundamental assumptions on BCL.
The set-valued map BCL : RN x [0, Ty] — P(RY™?) satisfies

(1) the map (x,t) — BCL(z,t) has compact, convex images and is upper semi-
continuous,

(ii) there exists M > 0, such that, for any x € RY and t € [0,T}],

BCL(z,t) C {(b,c,l) e RN x Rx R : [b] < M;|e| < M;[l| < M} .

Here, | - | stands for the usual euclidian norm in any euclidean space R? (which
reduces to the absolute value in R, for the ¢ and [ variables). If (b, c,l) € BCL(x,t), b
corresponds to the dynamic (both in space and time), ¢ to the discount factor and [ to
the running cost. Assumption (Hger,) fund-(7¢) means that dynamics, discount factors
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and running costs are uniformly bounded. In the following, we sometimes have to
consider separately dynamics, discount factors and running costs. To do so, we set

B(z,t) = {b € RY™!; there exists ¢,[ € R such that (b, c,1) € BCL(m,t)} ,

and analogously for C(x,t),L(z,t) C R. Finally, we decompose any b € B(z,t) as
(b%,b"), where b” and b' are respectively the space and time dynamics.

We recall the definition of upper semi-continuity we use here: a set-valued map
x — F(z) is upper-semi continuous at zq if for any open set O DO F(zg), there
exists an open set w containing xy such that F'(w) C O. Expressed in other terms,
F(z) D limsup F(y).

Yy—x

3.2.2 The control problem

We look for trajectories (X, T, D, L)(-) of the differential inclusion

%(X, T,D,L)(s) € BCL(X(s),T(s)) fora.e. s€[0,+00),

(X,T, D, L)(0) = (z,t,0,0) .

(3.1)

The key existence result is the

Theorem 3.2.1 Assume that (HgcL) funa holds. Then

(4) for any (z,t) € RN x[0,T}) there exists a Lipschitz function (X, T, D, L) : [0,T}] —
RY x R?® which is a solution of the differential inclusion (3.1).

(13) for each solution (X, T, D, L) of (3.1) there exist measurable functions (b, c,1)(-)
such that for a.e. s € (t,T}),

(X,T,D,L)(s) = (bc,1)(s) € BCL(X(s),T(s)) .

Throughout this chapter, we mostly write

in order to remember that b, ¢ and [ correspond to a specific choice in BCL(X (s), T'(s)).
Later on, we will also introduce a control «(-) to represent the (b, ¢, 1) as

(b, e, 1)(X(s),T(s),a(s)) .
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In order to simplify the notations, we just use the notation X, 7T, D, L when there
is no ambiguity but we may also use the notations X*!, T%! D*' L*' when the
dependence in x,t plays an important role.

Let us introduce a point of vocabulary here: by a state-constrained control problem
in a set YV, we mean that the controller can only use trajectories which remain in W:
(X,T,D,L)(s) € W for any s € [0,+00). In general, such constraint only concerns
the state variable X, which is required to satisfy X(s) € Q for some domain Q: we
study these state-constrained problems in Part V.

However, throughout this book we have chosen a framework with a dynamic on T’
in order to describe finite horizon control problems in RY x [0,T}] (or Q x [0,T}]).
Hence, the T-variable is also constrained to satisfy T'(s) € [0, T|. This property is at
the origin of some of the hypotheses below. In this setting, the usual terminal cost is
changed into a running cost, which also requires some assumptions in order to have
a bounded value function.

Before describing the value function, we are going to make the following structure
assumptions on the BCL-set valued map

(HpcL) struet — Structure assumptions on the BCL.
There exists ¢, K > 0 such that

(i) For allz € RN, t € [0,7}] and b = (b°,V") € B(z,t), —1 < b' < 0. Moreover,
there exists b = (b*,b") € B(x,t) such that b* = —1.

(i) For allz € RN, t € [0,TY], if (b",b"),c,1) € BCL(x,t), then —Kb' + ¢ > 0.

(ii1) For any x € RY there exists an element in BCL(x,0) of the form ((0,0),¢,1)
with ¢ > c.

(iv) For allz € RN, t € [0,T}], if (b,c,l) € BCL(x,t) then max(—b',¢,1) > c.

By introducing this general framework, our aim is to gather different type of control
problems and treat them within the same setting. In classical finite horizon problems
bt = —1, which indicates a time direction associated to the u,-term, and in this case
T(s) =t — s. Here we choose the more general assumption —1 < b* < 0 in order to
respect this monotonicity in time, but allowing also b* = 0 which can corresponds

1. either to a control problem with a stopping time; in particular, we point out
that a classical final cost is treated as associated to a stopping time control
problem.
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2. Or an unbounded control problem. The reader may be surprised by this claim
since the b’s are bounded but this framework typically contains cases where
the cost is proportional to the dynamic, allowing jumps (See, for example, Sec-
tion 4.1.2 and the beginning of Chapter 30).

Of course, a combination of the two is possible. We point out anyway that unbounded
control problems with a cost having a superlinear growth w.r.t. the dynamic (typically,
a quadratic cost) does not enter a priori in our framework.

Assumption (ii7) and a part of (iv) concern the final cost (ug in the example of
the previous section) which is in general the initial data for the Hamilton-Jacobi-
Bellman Equation. As we pointed out above, the value function we define below is
associated to a state-constrained problem in RY x [0, T}], and therefore it is necessary
that strategies with b® = 0 for any point (x,0) € RN x {0} exist.

Assumption (i7i) means that we can stop the trajectory at any point (x,0), as for
the case of a classical initial data, the assumption on ¢ being necessary, in general,
to keep the integral of the running cost bounded. However, strategies with b* = 0,
b* # 0 are also allowed provided that they satisfy (iv) at time ¢ = 0 in order, again,
that the associated cost remains bounded: indeed, either the trajectory is associated
to a positive discount factor ¢ > ¢ which ensures the boundedness of the integral of
the running cost or it has a positive cost [ > ¢ in order to avoid the long use of this
strategy.

Such situations may also happen for ¢t > 0, either to model a possible stopping time
(obstacle type problem) or an exit cost (see in Part V, Dirichlet boundary condition),
which is why (iv) is written for all ¢ € [0, TY].

On the other hand, the consequence of (i7) is that the change of unknown function
u — exp(—Kt)u allows to reduce to the easier case of a positive discount factor.
Such assumption is necessary in this framework since the formulation below leads to
a stationary type equation, because we treat time as a space variable.

Finally, notice that the fact that b can be 0 (or close to it) includes the unbounded
control case. In particular if o' = 0, the trajectory can stay at a constant time ¢ for,
say, s € [s1, so] while if b” # 0, the trajectory can be seen as an instantaneous jump
from the point X (s1) to the point X (s5) since time does not vary on this interval.

In all the rest of the book, (Hpcr,) means that both (Hpcr) fund and (Hper) struct
are fulfilled.

In order to introduce the value function, we state below a result showing that
the cost we use is well-defined and bounded from below. We also provide various

properties, among which the fact that we can always reduce ourselves to the case
¢ >0 for any (b,¢,l) € BCL(x,t) and for any (x,t) € RY x [0, T}].
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Lemma 3.2.2 Assume that (Hpcw) holds and let (X, T, D, L) be a solution of (3.1)
associated to (b, c,1)(+) such that (X (s),T(s)) € RN x [0,Ty] for all s > 0. Then

(1) The following integral is well-defined and uniformly bounded from below
J(X,T,D,L) = /+<>° [(X(s),T(s)) exp(—D(s))dt .
0
(13) For any trajectory (X, T, D, L) of the differential inclusion such that
J(X,T,D,L) := /O+OOZ(X(S),T(S)) exp(—D(s))ds < o0 ,

then D(s) — 400 as s — +00.

(131) If K s the constant given by (HpoL)struct,; we have
exp(—Kt)J(X,T,D,L) = J(X,T,D,L) ,

where (X, T, DN, L) is the solution of (3.1) associated to (b, c—Kby, lexp(—KT(s)))(-).
In particular X = X, T =T, D = D+ K(T —t) and of course we still have
(X,T,D,L)(0) = (,t,0,0).

The use of this lemma will be clear in the next sections but it is obvious from
(HpcL) struet-(77) that the replacement of ¢ by ¢ — Kb, > 0 allows as we wish to reduce
¢ € R to the case when ¢ > 0.

Proof — We divide it into several steps.

(a) In order to prove the two properties of (i), we use (Hpcr ) struct-(#v) and introduce
the sets

Ey={s:=bV>c}, Bh:={s¢ Ey:c>c}, E3=1[0,400)\ (E1UE,) .

By (HpcL)struct-(iv), we have [0, +00) = E1 U Ey U E3 and 4, By, E3 are disjoint by
construction. We now evaluate the integral on each of these three sets.

Concerning the Ej-contribution, we notice that, using that 7'(s) = b,
Byle < / Cp(X(s), T(s)) ds < T(0) = ¢ .
£y

Since [ is bounded, 0 < exp(—D(s)) <1 and |E;| < t/c, the function

s I, (s)1(X(s),T(s)) exp(—D(s)) ,
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is in L'(0, +00) and its contribution—its L'-norm—is uniformly bounded by Mt/c.

On E,, since D(s) = ¢(s) > ¢, it follows that

/E |l(X(s), T(s))| exp(—D(s))ds <M exp(—D(s))ds

E>

D
<M () exp(—D(s)) ds
B, C
D M
<M (5) exp(—D(s))ds < — |
[0,400) & ¢

Hence we have also that the function
s = T, (s)1(X(5), T(s)) exp(=D(s))
is in L'(0, +00) and its contribution—its L'-norm—is uniformly bounded by M/c.

Finally, on Ej3, we integrate a positive function; therefore the corresponding integral
is well-defined and bounded from below. This completes the proof of (7).

(b) In order to prove (i7), we examine carefully the sets Ey, Ey, E5 defined above. We
recall first that |Ey| < t/c < 400, so that necessarily, either E, or Ej3 has infinite

Lebesgue measure. Now, on Es, D(s) = ¢(s) > ¢ so that
¢ |Eyn0,S]| §/ D(s)ds < D(S) .
E2N|[0,S]

We deduce that if the increasing function s — D(s) does not tend to +oo when
s — 400, then |Fy| < sup, D(s)/c < oo, so that |E3| = +oc.

By the monotonicity of D, if D(s) does not tend to +o0o when s — 400, there exists
v > 0 such that exp(—D(s)) > v on [0, 4+00) but on Ej, since [(s) > ¢ we see that

/E 1(X(s),T(s)) exp(—D(s))ds > / c-yds=c-v-|Es] =+o0,

E3

and we reach a contradiction because integral J(X, T, D, L) is bounded.

(c) The proof of (iii) relies on an easy manipulation on the integral and we skip it.
Q.E.D.

3.2.3 The value function

Now we introduce the value function which is defined on RY x [0, T}] by

+o00o
Uz, t) = inf){ /0 l(X(s),T(s))exp(—D(s))ds}, (3.2)

T (z,t
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where T (z,t) stands for all the Lipschitz trajectories (X, T, D, L) of the differential
inclusion which start at (x,t) € RY x [0, Tf| and such that (X(s),T'(s)) € RY x [0, T}]
for all s > 0.

As we explained above, Assumption (ii7) — (iv) imply formally the existence of
trajectories (X, T, D, L) satisfying the constraint (X,7) € RY x [0,Ty] and, by
Lemma 3.2.2, these trajectories are associated to a well-defined cost J(X,T, D, L)
which is uniformly bounded from below. Hence we expect both that 7 (z,t) # 0 for
all (z,t) € RN x [0,7y] and that U is bounded. A rigorous proof of this claim is
contained in the

Lemma 3.2.3 Assume that (Hpcr) holds. Then the value function U is bounded
on RN x [0,T}] and is lower semi-continuous in RN x [0,Ty]. Moreover an optimal
trajectory exists, i.e. for any (x,t), there exists a trajectory (X,T,D,T) € T (x,t)
such that

+oo
Ulz,t) = /0 [(X(s),T(s))exp(—D(s))ds .

Proof — We first use Lemma 3.2.2 to reduce the proof in the case when c is positive.

(a) In order to prove that U is bounded, we first show that 7 (z,t) # (). Let us solve
differential inclusion (3.1), replacing BCL by

BCL,(z,t) := BCL(z,t) N {(b,c,1) € RN " bt = —1} .

The reader can easily check that this new set-valued map satisfies all the required
assumptions (Hpcw) fund and (Hpcw)struet- Moreover, for any trajectory associated
with BCL, starting at (z,t,0,0), it is clear that T'(t) = 0 since T'(s) =t — s. Notice
that for s € [0, ], this trajectory may be seen as a trajectory associated to the original
BCL since BCL, ¢ BCL.

Then, for any s > t we redefine the trajectory by solving
(X,T,D,L)(s) = ((0,0),¢1)

where ((0,0),¢,1) is given by Assumption (Hpcw)struct-(191)—i.e. with ¢(s) > ¢ for
any s—for the original BCL, at (x,0) = (X(¢),7'(t)). This defines a new trajectory
for all s € [t,+00) associated to BCL and obviously, (X(s),T(s)) € RY x [0,7}] so
that the constructed trajectory (X, T, D, L) belongs to T (x,t). Moreover
+o00 +o0 M
/ 1(X (), T(s)) exp(—D(s) ds < [ Mexp(—e(s — ) ds < L.

0 &
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Hence, since the contribution on [0, t] is bounded by M, U is bounded from above
and since we know by Lemma 3.2.2 that it is also bounded from below, U is bounded.

(b) In order to show that U is l.s.c., we are going to use by anticipation Theo-
rem 3.3.3, i.e. the Dynamic Programming Principle. Let (z,t) € RN x [0,T}] and
((ze,to))e a sequence of points of RY x [0, Ty] which converges to (x,t) and such that
lim, U(w.,t.) = liminf, o @4 U(y, s). Our aim is to show that

limU(x.,t.) > Ulx,t) .
By definition of U, there exists a trajectory (X., 7%, D., L.) such that

Uz, t.) > /O+OOZ(XE(3),TE(S)) exp(—D.(s))ds — e .

Using that the BCL-sets are uniformly bounded, we can apply Ascoli-Arzela The-
orem together with a diagonal extraction procedure to the family of trajectories
(Xe, T, D., L.) to show that

(X, T:, D, L.) — (X, T,D, L) locally uniformly on [0, 4+00) ,

where (X, T) remains in the domain RN x [0,7}]. We may also assume that L. =
Z(XE, Ta) weakly converges in the L*-weak * topology to l(X, T).

In order to pass to the limit we pick some large S > 0 and by standard manipulations
on the integral (see the proof of Theorem 3.3.3 below), we have

/S " U(X.(5), To(5)) exp(=Da(s)) ds = exp(~Do(8))J(X, T, D, L)

where (X,NT,NDJJ)NiS a trajectory starting from (X.(S), 7:(S),0,0) in T (X.(S), T.(95)).
Hence J(X,T, D, L) is bounded from below by a constant K and we can rewrite the
above property on U(z.,t.) as

s
U(Isate) > / Z(XE(S)v T€<S)) exp(—DE(s)) ds + R’exp(—DE(S)) —&.
0
We pass to the limit in this inequality and obtain

lignU(:r;E,tE)z/O 1(X(s),T(s)) exp(—D(s)) ds + K exp(—D(S)) .
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Since this inequality is valid for any S > 0, the arguments of the proof of Lemma 3.2.2
implies that s — (X (s),T(s)) exp(—D(s)) is in L'(0, +00) ) and letting S — +oo,
we end up with

limU(z.,t.) > /0+OO [(X(s),T(s)) exp(—D(s))ds > U(x,t) , (3.3)

€

and the proof is complete.

(c) Finally the existence of an optimal trajectory relies on exactly the same arguments
as above, i.e. on the compactness of the trajectories.
Q.E.D.

3.3 Ishii solutions for the Bellman Equation

In this section we prove that the value function is a (discontinuous) viscosity solution
of the Bellman Equation associated with the control problem, namely

F(x,t,u,Du) =0 in RY x[0,Ty], (3.4)

where, for any x € RN, ¢t € [0,Ty], r € R and p = (p,, p;) € RV !

F(x,t,r,p):= sup { —b-pter—1}. (3.5)
(b,e,l)eBCL(x,t)

Writing the Bellman Equation under the form (3.4) is a little bit formal: if a more or
less classical definition of viscosity sub and supersolutions can be used in RY x]0, T}]
following Definition 2.1.1, the case of t = 0 requires a particular treatment.

Indeed, it is well-known that the supersolution inequality for such Bellman Equation
is related to the optimality of one or several trajectories while the subsolution one
reflects the fact that any trajectory for any possible control is sub-optimal. At a
point (z,0), the standard F > 0 supersolution inequality does not seem to cause any
problem, even if the optimal trajectory has to stay on RY x {0}. On the contrary, there
is a problem with the standard subsolution inequality since we cannot use any solution
(X, T, D, L) of the BCL-differential inclusion, but only those for which ' = 0. This
is why the constraint to remain in RY x [0, 7] obliges us to change the definition of
subsolution for ¢t = 0.

(Wsince the integrals on E; and F5 are bounded and so only the integral on E5 where the integrand
is positive plays a real role in the L'-property.
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This leads to introduce the “initial Hamiltonian”

Finit(z,7,pp) := sup { —b" - py +or — l} ) (3.6)
((b*,0),c,l)eEBCL(z,0)

Before going further, we describe the properties of F and F;,,;; in the following result.

Lemma 3.3.1 The Hamiltonians (z,t,r,p) — F(x,t,r,p) and (x,t,r,p) — Fip(x, r,p)
are u.s.c. with respect to all the variables, and convex and Lipschitz as a function of
r and p.

Proof — We only provide the proof for F, the one for F;,;; being analogous.

For the upper semi-continuity, let us take a sequence (z,,t,, 7, pn) — (z,t,7,p) €
RN x [0,Ty] x R x R¥*1. Since, for any n, BCL(z,,t,) is compact, there exists
(b, Cn, 1) € BCL(xy,t,) such that

F(I'natm Tnapn) = _bn *Pn + CpTn — ln .

Since BCL(+, ) is u.s.c. as a set-valued map, it follows that, for any 6 > 0, if n is
large enough,

(b, Cn, ln) € BCL(zy,t,) C BCL(x,t) + dBanas

where Byy,s is the unit ball in R*V*3. For such n, (by, ¢4, [n) can be decomposed as
the sum (b, ¢y, l,) + de, for some (b, é,,1,) € BCL(z,t) and some e, € Byyy3. Now,
since (., ty, T, Pn) is bounded,

>
> —bp - Pn + iy — Uy — 05(1)
> F(xn, tn, Tn, n) — 05(1) .
Passing to the limsup on n and sending 6 — 0 yields the upper semi-continuity
property.

The Lipschitz continuity is just a consequence of the boundedness of the b and ¢

components in BCL(z,t) for any x and t: if F(z,t,r,p) = —b-p+ cr — [, then since
F(xz,t,r',q) > —b-q+ cr’ — I, we have

F(l‘,t,’f’,p) - ]F(:L’,t,r',q) < ’CHT - T/‘ + ‘pr - Q‘ < M(|7” - T/| + ’p - Q‘) ’
and of course the converse inequality is also true.

Finally, the convexity of IF with respect to (r,p) just comes from the fact that F is
the supremum of affine functions in (r, p).
Q.E.D.
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3.3.1 Discontinuous viscosity solutions

Let us first give the definition based on the notion of discontinuous (or Ishii) viscosity
solution exposed in Chapter 2, but modified in a suitable way to take into account
the particularity of ¢ = 0.

Definition 3.3.2 A locally bounded function u is a subsolution of (3.4) if its u.s.c.
enveloppe satisfies

F.(z,t,u*, Du*) <0 on RYx]0,Ty], (3.7)
and, fort =20
min(F, (z,0,u*, Du*), (Fiir)« (2, u*(x,0), Dou(2,0))) <0 in RY . (3.8)
A locally bounded function v is a supersolution (3.4) if its l.s.c. enveloppe satisfies
F(z,t,v,, Dv,) >0 on RY x[0,7] . (3.9)

A locally bounded function is a viscosity solution of (3.4) if it is both a subsolution
and a supersolution of (3.4).

For the supersolution property, the simple formulation comes from the fact that F
is ws.c. in RY x [0, 7] x R x RY. For the subsolution, the inequality is the expected
one on RV x]0,7T}] but is modified for ¢ = 0. In fact, we show below that the value
function satisfies

(Finit)« (2, U*(,0), DU (2,0))) <0 in RY |

and Section 4.1 (see Proposition 4.1.1) will confirm that the [F,-contribution in (3.8)
is not necessary, the initial data condition being totally equivalent to (F;.;). < 0.

3.3.2 The dynamic programming principle

The first step towards establishing the sub/supersolution properties of U is to prove
the classical

Theorem 3.3.3 — Dynamic Programming Principle.

Under hypothesis (Hpcr), the value function U satisfies

0
U(x,t):Tiaft){/o z(X(s),T(s))exp(—D(s))ds+U(X(@),T(e))exp(—p(e))},

or any (x,t) € RY x (0,T%], 0 > 0.
f
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Proof — Let us denote by Jy(X, T, D, L) the integral over (0,6) inside the inf and by
U(z,t) the complete right-hand side, while U(x,t) = infr ) J(X,T, D, L) and J(-)
stands for the integral over (0, +00).

(a) Let us prove that U < U. We first take any trajectory (X,T,D,L) € T(x,t).
Then, noting (xg,ty) := (X (0),T(0)), we select an e-optimal trajectory (X<, T¢, D°, L) €
T (xg,tg), in the sense that

U(l’g, tg) < J(XE, TE, DE, LE) +e.
We then construct a new trajectory in 7 (x,t) by setting

A i <s<
(.7 D, 1)(s) = (X,T,D,L)(s) %fO_s_H,
(X, T, D*+ D(0),Lc+ L(0))(s —0) ifs>40.

Using the definition of U(z,t) we get
U(.’L’,t) < J<X7T7D7f/)

< Jo(X,T,D,L)+ /+00 (X*(s—0),T°(s — 0)) exp(—D°(s — ) — D(0)) ds

< Jo(X.T, D, L) + exp(—D(6)) /0 T%(s)) exp(—D=(s)) ds
D(0))(U(X(0),T(0)) +¢)

(
€ T (x,t) is arbitrary and does not depend on
x,t) and sending ¢ to zero, we conclude that

< Jo(X,T,D, L) + exp(—

Notice that the trajectory (X, T, D, L)
e. Hence, taking the infimum over T (
indeed U < U.

(b) The converse inequality follows from similar manipulations: let us take an e-
optimal trajectory (X¢, 7%, D, L) € T (x,t) for estimating U(z,t). After separating
the integral in two parts and changing variable s — s — # in the second part we get
Ulx,t) +e> Jo(X°,T°, D, L7)
+oo (3.10)
+/ I(X(s+0),T(s+0))exp(—D(s+0))ds .
0

The trajectory (X, T, D, L)(s) := (X¢,T7¢, D%, L?)(s+0) — (0,0, D*(8), L(#)) belongs
to T(X(6),T%(0)), and (3.10) can be written as

Ulx,t) +¢ > Jo(X5,T¢, D, L)
400
ep(=D'0) [ X (). T(5) expl(=D(s)ds:

> Jo(X°,T¢, D%, L¥) + exp(—D*(0))J(X,T, D, L) .
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Now, using (X, 7, D, L) as an admissible trajectory starting at (X<(0),7°(#)) we use
the estimate
U(X(6),T*(9)) < J(X,T, D, L)

to get the inequality
Ula, 1) + & = Jo(X*, T%, D, L¥) + exp(—DF (6)) U (X*(8), T*(9)) .

A~

Finally, U(z,t) being the infimum of all trajectories in 7 (x, 1), the right-hand side is
greater than or equal to U(z,t) and the conclusion follows.
Q.E.D.

3.3.3 The value function is an Ishii solution

Following the definition recalled in Section 3.3, we first prove the Following Defini-
tion 3.3.2, we first prove the

Theorem 3.3.4 — Supersolution Property.

Under assumption (Hgcr), the value function U is a viscosity supersolution of the
Bellman equation (3.4).

Proof — We keep here the notation Jy(X, T, D, L) introduced in the proof of Propo-
sition 3.3.3 for the integral over (0,6) in the dynamic programming principle.

In this proof, we are going to ignore on purpose that we know that U is l.s.c. on
RN x [0, T}]. Therefore, we are going to actually prove that U, is a supersolution.
The reason to do so is to show that the proof of this property is robust and does not
require a priori the information that U is l.s.c.

Let (z,t) € RY x [0,T}] be a local minimum point of U, — ¢ where ¢ € C'(RY x
0, T%]). We can assume without loss of generality that U, (z,t) = ¢(z,t). In particular,
U > U, > ¢ in a neighborhood of (x,t). Moreover, by definition of the lower semi-
continuous envelope, there exists a sequence (z,,t,) — (z,t) such that U(z,,t,) —

Ui(z,t).
We apply the dynamic programming principle for U at (z,, t,):

Ul ta) = _in(Jo(Xn, T, Do, Ln) + U(Xa(6), T (6)) exp(~Da(6))) -

T (zn,tn)

On one hand, for the left-hand side, using the definition of the sequence (x,,t,), the
fact that U.(z,t) = ¢(z,t) and the continuity of ¢, there exists a sequence (&), of
non-negative real numbers converging to 0 such that U(x,,t,) < ¢(x,,t,) + €n-
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On the other hand, since |b| < M is bounded, if # is small enough the trajectory
(X,(s),T(s)) remains close enough to (z,t) and we can use the inequalities U >
U, > ¢, the last one coming from the local minimum point property. This yields

O, ta) Fen > il (Jo(Xo, T Doy L)+ 6(Xa(6), T (6)) exp(~Da(6)) ) - (3.11)

T (zn,tn)

For simplicity of notations, we set Z, := (X,,(s), T,,(s)). Since ¢ is C*, the following
expansion holds

o128) xp(-D(0) ~ 6(70) = [ (6(2)exp(-Dnfs)

- (42 Do(2) — «(2)6(20)) expl-Da(s)) ds.

(3.12)
Combining with (3.11) yields

0= inf, /0 {b(Zs)-ch(Zs) —c(Zs)Cb(Zs)—l—l(Zs)}eXp(—Dn(s))ds—gn,

Z/O —F(Xn(s), Tu(s), d(Xn(s), Tu(s)), DH(Xn(s), Tu(s))) exp(—Dn(s)) ds — en .

Since 6 is arbitrary, we can choose a sequence 6, in order that ¢,0,1 — 0. We re-
mark that (X, (s), T,.(s), (X, (), T0(5)), DO( X (5), Tn(s)) = (x,t, ¢(x,t), Dé(z,t)).

Therefore, if § > 0 is fixed and small, provided n is large enough we have
F(Xn(s), Tu(s), (Xn(s), Tu(s)), DE(Xn(s), Tu(s)) < F(x,t, ¢(x,t), Do(x, 1)) + 0 .

In addition, exp(—D,(s)) = 14 O(#,); so, using all these informations in the above
inequality, we deduce that

0>0,(—F(x,t,¢(x,t), Do(x,t)) — (1 + O(6,))) — en -

Dividing by 6,, and letting n tend to infinity, we obtain F(z, ¢, ¢(z,t), Do(x,t))+d > 0
and this inequality being true for any 6 > 0, the result is proved.
Q.E.D.

Now we turn to the subsolution properties and to do so, we first need a result for
the u.s.c. enveloppe of U at t = 0:

Lemma 3.3.5 Under assumption (Hgcy), we have, for any x € RY

U*(z,0) = limsup U(y, 0) .

Yy—x
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In other word, the u.s.c. enveloppe of U at points (x,0) can be computed by using only
U on RN x {0}.

Proof — By definition of U*, there exists a sequence (z.,t.) — (x,0) such that
U(ze,t.) = U*(x,0). Then we apply the dynamic programming principle

Ulrerte) = inf (Jp(Xe, T2, Do, Lo) + U(X(6), T2(0)) exp(~Do(6))) -

T(l’s 7ts)

We consider a trajectory (X, 7%, D, L.) which is solution of the differential inclusion
associated with BCL, defined in the proof of Lemma 3.2.3, i.e. with ' = —1, and we
use it in the dynamic programming principle with 6 = ¢.. Since T.(0) = T.(t.) = 0,
we obtain

Ulre,te) < Ji (Xe, T, De, L) + U(Xc(t:),0) exp(—De(L.)) -
But Ji (X, T., D, L) = O(t.) and exp(—D.(t.)) = 1 + O(t.), therefore:
Uz, t.) <U(X(t:),0) + O(t.) ,

and U*(z,0) < limsup U(z.,t.) < limsupU(X.(t.),0) < U*(x,0), proving the claim.
Q.E.D.

Now we can prove the

Theorem 3.3.6 — Subsolution Properties.

Under assumption (Hpcr), the value function U is a viscosity subsolution of
F.(z,t,U,DU) <0 onRYx]0,Ty], (3.13)
and fort =0, it satisfies
(Finit)« (2, U(2,0), D,U(x,0)) <0 inRY, (3.14)

hence it is a subsolution of (3.4).

Proof — The proof is more involved than for the supersolution condition, first because
we need to consider F, which a priori differs from F, but also because we face here
the potential discontinuities of b, ¢, with respect to x,t.

(a) We first prove (3.13). We consider a maximum point (x,t) € RV x]0,T}] of U* —
where ¢ is a C! test-function and, as above, we assume that U*(z,t) = ¢(x,t). B
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definition of U*, there exists a sequence (z,,t,) — (z,t) such that U(zp,t,) —
U*(z,t) and, by the continuity of ¢, we also have ¢(x,,t,) < U(zy,,t,) + &, for some
sequence (&,), of non-negative real numbers converging to 0.

Applying the dynamic programming principle, we have

Uz, tn) = _inf (JQ(X,T,D,L))+U(X(0),T(9))exp(—D(0))).

T (Zn,tn)
If 6 > 0 is small enough, the maximum point property implies
U(X(0),T(0)) < U(X(0),T(0)) < o(X(0),T(6))
and therefore we obtain

S(n, ) —n < _inf <J9(X, T,D,L)) + ¢(X(9),T(9))exp(—D(e))) .

T(mnatn)

Using expansion (3.12)—here also with the notation Z, = (X(s),T(s))—leads to

/0 (~b(Z)DO(Z,) +e(Z)o(Z) ~ (Z)) exp(~D(s) ds <&, (315)

for any trajectory (X, T, D, L) € T (zn,t,).

In order to conclude, we have to show that, for any n, we can choose a trajectory
(X,T,D,L), € T(xp,t,) such that the integral is close to F.(z,t, ¢(x,t), Do(x,t)).

(b) To do so, we are going to solve a suitable differential inclusion for a set-valued map
that we build in the following way. We consider the auxiliary function he(b,c,l) ==
—b- Do(x,t) + co(z,t) — [ and for § > 0, we define a restricted set-valued map for
(y,s) in a neighborhood of (x,t) as follows

BCL), (3, ) := BCL(y, ) N {hy(b,,1) > Fu(,t,6(x,1), Do(,8)) = }
We claim that BCLS . is not empty and satisfies (Hacr) fund, at least for (y, s) close

enough to (z,t).

Indeed, if on the contrary, BCL (i, s,) is empty for some sequence (yn,s,) —
(x,t), this means that, for any (b, c,l) € BCL(y,, s,), we have

h¢(ba C, l) < }F*(:Ev t? ¢(‘T7 t)a D¢($, t)) -9 s
which implies that

F(Yns sn, ¢(,1), D (, 1)) = sup  hy(b, ;1) STl t, 6(2,t), Dp(a,t)) =0 .

(b,c,l)EBCL(yn,,5n)
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But using the lower semi-continuity of F, we are led to a contradiction since

F.(x,t,¢(z,1), Dg(x,t)) < himinf F(yn, sn, ¢(x, 1), D(z,1))
< F.(z,t,¢(x,t), Dp(x,t)) — 0 .

Concerning the images BCLfOC(y, s), they are clearly convex and compact from the

properties of BCL and the fact that the set {h, > a} is closed and convex. Moreover,
the u.s.c. property derives from the fact that BCL is u.s.c. while {h, > 0} is a fixed
set.

(c) Hence we can solve the differential inclusion associated to BCL, . ¢ BCL with
initial data (x,,t,) on a small time interval (0,#). For this specific trajectory, up to

taking 6 smaller and n larger, using that ¢ is C*, we get for s € [0, 0]

_b<Zs) ’ D(b(Zs) + C<ZS>¢(ZS) - Z<Zs)

he(b(Zs),c(Zs),1(Zs)) + O(0)
> Fo(x,t,¢(x,t), Dp(x,t)) — 0 + O(0) .

Plugging this into (3.15), using also that exp(—D(s)) = 1+ O(#), we get
0(F.(z,t, ¢(z,t), Dp(x,t)) — 6+ O(0)) (1 + O(0)) < &, .

To conclude, we send n — oo and then we divide by 6 and we send it to 0. We
end up with the inequality F.(z,t, ¢(x,t), Do(z,t)) < 6 for any § > 0 and therefore
F.(x,t, ¢(z,t), Do(z,t)) < 0.

(c) Now we turn to (3.14), which is treated by the same technique as above, using
Lemma 3.3.5: the same proof as above readily applied since we can choose t,, = 0 and
therefore, in the definition of BCLY , we can consider only the b such that b* = 0 and
replace F, by (F,it)«. Indeed, any relevant trajectory starting from (z,, 0) necessarily
satisfies b'(Zs) = 0.

Q.E.D.

As we shall see later on in this book, Ishii solutions are not unique in general in the
presence of discontinuities. Nevertheless, we prove below that U is the minimal one,
see Corollary 3.4.3, and we will explain later on several ways in which we can recover
some uniqueness.
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3.4 Supersolutions of the Bellman Equation

3.4.1 The super-dynamic programming principle

We prove here that supersolutions always satisfy a super-dynamic programming prin-
ciple. Again, we remark that this result is independent of the possible discontinuities
for the dynamic, discount factor and cost. But to prove it, we need an additional
ingredient in which we assume that we have already used Lemma 3.2.2 to reduce to
the case when ¢ > 0.

Lemma 3.4.1 Assume (HpcL)struet holds and let x(t) = —K(t+ 1) for K > 0 large
enough. Then, for any (z,t) € RN x [0,Ty] and any (b,c,1) € BCL(z,1),

—b-Dx(t)+ex(t) -1 < —c<0.

Proof — This is just obtained by direct computation: —b - Dx(t) = Kb* < 0 while
cx(t) =1 < —Kc—1. By taking K > (¢+1)/c, we get the result.
Q.E.D.

Lemma 3.4.1, which is valid both for ¢ > 0 and ¢t = 0, provides a very classical
property: the underlying HJB Equation has a strict subsolution, which is a key point
in comparison results. Of course, in this time-dependent case, one could say that such
property is obvious. But we are not completely in a standard time-dependent case
since we recall that b* = 0 is allowed potentially for any ¢ > 0.

Our next result is the

Lemma 3.4.2 Under assumption (Hgcw), if v is a bounded l.s.c. supersolution of
(3.9) in RN x (0,Ty], then, for any (z,t) € RY x (0,T%] and any o > 0,

v(Z,t) > Tl(r:lzfi) { /00' [(X(s),T(s)) exp(—=D(s))ds +v(X (o), T(c)) exp(—D(U))}
(3.16)

Proof — To begin with, because of Lemma 3.2.2 we can assume that ¢ > 0 for any
(b,c,l) € BCL(x,t) and for any (z,t). Fixing (Z,¢) and ¢ > 0, we argue through
a three-step proof involving a regularization procedure and comparison result in the
compact domain

K@p == B(z,Mo) x [0,1],
where M is given by (Hpcw) fund-
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STEP 1: REGULARIZATION — We consider a sequence of regularized Hamiltonians
using the penalization function

petaty= it (dist (b, ), BCL(y,s)) + |y —al + [t = 5])

(y,5)€ERN x[0,TY]

where dist(-, BCL(y, s)) denotes the distance to the set BCL(y, s). We notice that
t is Lipschitz continuous and that ¢ (b, ¢,l,x,t) = 0 if (b, ¢,l) € BCL(z,t). Then we
set

E;(I,t,?“,p) = sup {_bé'p+05r—l6}>
(bg,c,;,la)EBCLg(x,t)

where BCL;(z,t) is the set of all (bs,cs,1s) € RV x R x R such that [b%] < M,
—1<b5<0,0<¢; <M and

ls =1+ 5_1¢<b5,05, l,x,t) for some |I| < M .
This sequence of Hamiltonians enjoys the following straightforward properties:

(7) for any 0 > 0, Fs > F and therefore v is a L.s.c. supersolution of Fs > 0
on B(z,Mo) x (0,t];

(77) the Hamiltonians Fs are (globally) Lipschitz continuous w.r.t. all variables;

(13i) Fs ] F as 6 — 0, all the other variables being fixed.

On the other hand, v being Ls.c. on KC(z 7, there exists an increasing sequence (vs)s
of Lipschitz continuous functions such that vs; < v and supsvs = v on Kz 7).

For (z,t) € Kz, we now introduce the function

oAl
ugs(z,t) ;= inf { / Is(X5(s), Ts(s)) exp(—Ds(s)) ds
0
+vs(Xs(0 A ), Ts(o A ) exp(—Ds(o A 9))} :
where (X5, T, Ds, Ls) is a solution of the differential inclusion

(X5, Ts, D, Ls)(s) € BCLs(X;5(s), Ts(s)) ,
(Xg,T(;,D(;,L(;)(O) = ($,t,0,0) s

the infimum being taken over all trajectories X which stay in B(z, Mo) till time
o A 0 and any stopping time 6 such that either Xs(0) on 0B(z, Mo) or T5(0) = 0.
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By classical arguments, us is continuous since all the data involved are continuous,
us < vs on (0B(Z, Mo) x [0,t]) U (B(z, Mo) x {0}) (for the same reason) and us
satisfies

Fs(z,t,u, Du) =0 in B(z, Mo) x (0,1] .
Notice that this equation and the one for vs hold up to time ¢, as a consequence of
the fact that b* <0 for all b € B(x,t) and all (z,).
STEP 2: COMPARISON FOR THE APPROXIMATED PROBLEM — In order to show that
us < v in Kz p we argue by contradiction assuming that maxy, , (us —v) > 0.

We consider the function y given by Lemma 3.4.1: using the definition of [, it is
easy to show that

Fs(z,t,x,Dx) < —c <0 in B(z,Mo) x (0,1],
and, by convexity, for any 0 < p < 1, us, = pus + (1 — p)x is a subsolution of

Fs(x,t, usy, Dus,) < —(1—p)e <0 in B(z, Mo) x (0,1] .

Moreover, if u < 1 is close enough to 1, we still have maxy,, , (us, —v) > 0 and
we can choose K large enough in order to have us, < vs on (0B(z, Mo) x [0,t]) U
(B(z, Mo) x {0}.

If (Z,1) € Kz is a maximum point of us, — v, we remark that (Z,) cannot be on
(0B(z,Mo)x[0,t])U(B(z, Mo) x {0}) since on these parts of the boundary us,, < v.

Now we perform the standard proof using the doubling of variables with the test-
function

2 t — 2 5
_|£L’ y| _‘ S’ —(J}—Zi)2—(t—t)2.

u5,,u(l‘7 t) - U(yv S) 2 62

By standard arguments, see~Lemma 5.4;1, this function has a maximum point (z., t., ye, Sc)
which converges to (z,t,Z,t) since (Z,t) is a strict global maximum point of (y, s) —
usu(y, s) = v(y,s) = (y — ) — (s = 1)* in Kizp).

We use now the Fs-supersolution inequality for v, the strict subsolution inequality

for us, and the regularity of F; together with the fact that ¢ > 0 for all (b,¢,l) €
BCL(y, s) [or BCLs(y, s)] and any (y,s) € K. We are led to the inequality

o(1) < —(1—p)exp(—Kt)n <0,
which yields a contradiction. Sending u — 1, we get that us < v in K 3.

STEP 3: PASSING TO THE LIMIT — To conclude the proof, we use the inequality
us(Z,t) < v(Z,t) and we first remark that, in the definition of us(Z,t), necessarily
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o N6 = o since the trajectory X; cannot exit B(z, M o) before time . Then, in order
to let § tend to 0 in this inequality, we pick a d-optimal trajectory (Xs, Ts, Ds, Ls).

By the uniform bounds on (Xg, Ts, Ds, Lg), Ascoli-Arzela’s Theorem implies that
up to the extraction of a subsequence, we may assume that (Xs, Ty, Ds, Ls) converges
locally uniformly on [0, +00) to some (X, 7T, D,L). We may also assume that their
derivatives converge in L™ weak-* topology (in particular Ls = I).

Using the d-optimal trajectory for approching us leads to

0(@,7) > / 15 (Xs(5), T5(s) exp(—Dy(s)) ds
+v5(Xs5(0), T5(0)) exp(—Ds(0)) — 0,

an inequality that we use in two ways.

(3.17)

First, by multiplying by 6 and using that v and vs are bounded. Writing Z, =
(Xs(s),Ts(s)) for simplicity, we obtain

/O Jw(b(;(Zs), c5(Z),15(25), X5(5), T(;(s)) exp(—Ds(s))ds = O(9) .

By classical results on weak convergence, since the functions (bs,cs,ls) converge
weakly to (b, ¢, 1), there exists p, € L (0, P(B(0, M) x[—M, M]*)) where P(B(0, M) x
[— M, M]?) is the set of probability measures on B(0, M) x [— M M]? such that, taking
into account the uniform convergence of X4, Ts and Dy, we have

/U/ w(z), e, X(s),T(s)) exp(—D(s)) dus (b, ¢, 1) ds =
0 JBO,M)x[-M,M)2

i [ (bs(s). (). 5(). X5(5). T5(5)) exp(~Ds()ds = 0.

6—0 0

We remark that ¢» > 0 and (b, c,l,z,t) = 0 if and only if (b,¢,l) € BCL(z,1),
therefore (X, T, D, L) is a solution of the BCL-differential inclusion.

Second, we come back to (3.17) after recalling that ¢ is nonnegative, which implies

that ls(Xs(s), Ts(s)) > 1(Xs(s), T5(s)) and therefore

/00 [(Xs5(s), Ts(s)) exp(—Ds(s)) ds + vs(Xs(0), T5(0)) exp(—Ds(0)) — & < v(w,t) .

We pass to the limit in this inequality using the lower-semicontinuity of v, together
with the uniform convergence of X, Ty, Ds and the dominated convergence theorem
for the [-term. In particular,

lign_}iélf (v(;(X(s(U),T5(U))) > U(X(U)7T(U)) ,
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which yields
/00 [(X(s),T(s)) exp(=D(s))ds + v(X(0),T(0)) exp(—D(0)) < v(z,1) .

Finally, recalling that (X,7, D, L) is a solution of the BCL-differential inclusion,
taking the infimum in the left-hand side over all solutions of this differential inclusion

gives the desired inequality.
Q.E.D.

3.4.2 The value function is the minimal supersolution

An easy consequence of Lemma 3.4.2 is the

Corollary 3.4.3 — Minimality of the value function.

Under assumption (Hpcr), the value function U is the minimal Ishii supersolution

of (3.9).

Proof — Let v be any bounded l.s.c. supersolution in the Ishii sense of F = (. Using
(3.16) we see that for any (x,t) € RY x (0,T] and o > 0,

v(x,t) > Ti(nf) {/ 1(X(s),T(s)) exp(—D(s))ds +v(X(0),T(0)) exp(—D(o))} :
iI?,t 0

Sending o — +o00, we see that in particular for any trajectory (X, T, D, L) the integral

J(X,T,D, L) in Lemma 3.2.3-(i7) is bounded by 2||v||.

Therefore, D(0) — 0 as ¢ — 400 and passing to the limit in the dynamic pro-
gramming principle yields

+o00
v(x,t) > 7_i(nf)/ [(X(s),T(s)) exp(—D(s))ds = U(z,t) .
z,t) Jo
The conclusion is that v > U, which proves the minimality of the value function.
Q.E.D.

We end this chapter by some comment: as we saw, the situation is not totally
symmetric between general Ishii supersolutions and subsolutions. For supersolutions,
properties derive directly from the Bellman Equation while the treatment of general
subsolutions requires more advanced tools and some structure assumption on the
discontinuities. This is done in Chapter 4.



Chapter 4

Mixed Tools

Abstract. This chapter contains all the results either connecting the optimal con-
trol problem and the associated HJB FEquation, or using both of them simultaneously.
Included here are four very important building blocks, in particular for the study of
stratified problems: (i) a general formulation for the initial condition which gives the
way to compute the initial data; (i1) the dynamic programming principle for subso-
lutions, a key ingredient in the proof of the comparison result for stratified problems;
(1ii) the “Magical Lemma”, which gives the local comparison argument for stratified
problems; (iv) the description of the “good assumptions” needed for stratified prob-
lems.

4.1 Initial conditions for sub and supersolutions of
the Bellman Equation

In this section, we consider a little bit more precisely the conditions satisfied by
sub and supersolutions of the Bellman Equation at time ¢ = 0 according to Defini-
tion 3.3.2.

In the classical cases where one has a standard initial data ug, these conditions read
min(F., u —ug) < 0 for the subsolution and max(F, v —ug) > 0 for the supersolution,
and it is known that they just reduce to either u < ug in RY if u is a subsolution or
v > ug in RY if v is a supersolution.

Here we have an analogous result but which is more complicated, involving the
initial Hamiltonian [F;,;; defined in Section 3.3.
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4.1.1 The general result

The result is the following.

Proposition 4.1.1 Under assumption (Hpcw), if u: RY x [0,T] = R is an w.s.c.
viscosity subsolution of the Bellman Equation F = 0, then u(x,0) is a subsolution in
RY of

(]Fimt)*(:v,u(x70),Dxu(x,0)) <0 inRN.

Similarly, if v : RN x [0,Ty] = R is a l.s.c. supersolution of the Bellman Equation,
then v(x,0) is a supersolution of

Finit(x,v(2,0), Dyv(2,0)) >0 in RY .

Proof — We provide the full proof in the supersolution case and we will add additional
comments in the subsolution one. Let ¢ : RV — R be a smooth function and let z
be a local strict minimum point of the function y — v(y,0) — ¢(y). In order to use
the supersolution property of v, we consider for 0 < ¢ < 1 the function (y,t) —
u(y,t) — dly) +e7't.

By an easy application of Lemma 5.4.1 in a compact neighborhood of (z,0)—
with a straightforward adaptation to the case of minimas—,this function has a lo-
cal minimum point at (z.,t.) and we have at the same time (z.,t.) — (z,0) and
v(ze,t.) — v(x,0) as € — 0. The viscosity supersolution inequality reads

sup {e7" = b" - Dyo(ae) + cv(ae,t.) — 1} > 0.
(b,e,))EBCL (ze t.)

We denote by (b, c.,l.) the (b, ¢, 1) for which the supremum is achieved and which
exists since BO'L(x.,t.) is compact. By Assumptions (Hgcy), we may assume that
up to extraction, (b.,c.,l.) — (b,¢,1) € BCL(z,0). Moreover, since b® < 0 and the
other terms are bounded, the above inequality implies that e7'b¢ is also bounded
independently of . In other words, b = O(e) and b = (b%,0).

Dropping the negative e 'b-term in the supersolution inequality, we obtain

_b: : Dm¢(x6) + Cev(xa,ts) - le Z 0 )

and letting ¢ — 0, we end up with —b® - D,é(x) + cv(z,0) — [ > 0 . since (b,¢,1) €
BCL(z,0), we deduce that

sup {—=b" D,¢(z) + cv(z,0) =1} >0,
((b*,0),c,l)eBCL(z,0)
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in other words: F;,;; (:U, v(x,0), Dyv(z, O)) > 0 holds in the viscosity sense.

In the subsolution case, the proof is analogous but we consider local strict maximum
point of the function y — u(y,0) — ¢(y). Introducing the function (y,t) — wu(y,t) —
d(y) — et for 0 < e < 1, we have a sequence of local maximas (.,t.) such that
(e, te) = (2,0) and u(z.,t.) — u(x,0) as € — 0.

If t. > 0, the subsolution inequality reads
F. (2, te, u(x., t.), (Dogp(x.),e7)) < 0.

This time, we cannot bound £~ 1b" as we did for the supersolution case, but because of
(HpcL)struet-(7), in all BCL(xz, t) for t > 0, there exists an element with " = —1. Since
the other terms are bounded, this implies that the F,-term in the above inequality
is larger than e~! + O(1) and therefore, for ¢ small enough, the F,-inequality above
cannot hold.

Hence, necessarily ¢, = 0 and the strict maximum point property for u — ¢ implies
that x. = z. But for the same reason as above, for ¢ > 0 small enough the viscosity
inequality

F,(x,0,u(z,0), (Dyp(z),e 7)) <0
cannot hold unless it corresponds to a (b, ¢,l) € BCL(x,0)
leads finally to

such that o' = 0. Which

(]Finit)*<x7 U(I', 0)7 Dx(b(x)) S 0 )
the inequality we wanted to prove.
Q.E.D.

The above result means that, in order to compute the initial data, one has to solve
an equation. A fact which is already known in the case of unbounded control.

In the case of classical problems, a typical situation is when for ¢ > 0, the elements
of BCL(z,t) are of the form ((b*,—1),¢,l) while for ¢ = 0 we consider a lLs.c. cost
up in RY. In order to satisfy the upper semi-continuity of BCL at ¢t = 0, we need a
priori to consider both elements of the form ((b*, —1),¢,1) and ((0,0), 1, ug(x)). But
in that situation, the result above leads back to the standard initial data conditions

u(z,0) < (up)*(z) and wv(z,0) > ug(x) in RY

due to the fact that Fi(x, u, p) = © — uo(z) and (Fiui)« (2, u, pe) = u — (ug)*(z).

4.1.2 A relevant example involving unbounded control

As we have seen it above, the general framework we introduce in Section 3.2 allows
to treat some unbounded control problems: this is related to the possibility of having
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b* = 0 in the BCL which is a striking difference with Chapter 1 (we again refer the
reader to the beginning of Chapter 30 for some details).

We want to consider here such a problem that we address from the pde point of
view by considering the equation

max(u; + H(z,t,u, Dyu), |Dyu| — 1) =0 in RY x (0,7T}), (4.1)

with an “initial data” g, a bounded, continuous function in RY (we are going to make
more precise what we mean by initial data). Here the Hamiltonian H is still given by

H(z,t,,p) = sup {~b(z,t,a) - p+ c(z,t,a)r — l(z,1,0)} |
aEA

but the functions b, ¢, may be discontinuous. Our first aim is to connect this problem
with the above framework and deduce the key assumptions which have to be imposed
on b, ¢, in order to have our assumptions being satisfied.

First we have to give the sets BCL and to do so, we set, for x € RY, ¢ € (0, T}]
BCL;(z,t) :== {((b(z,t, ), —1), c(z, t, ), l(x, t, ) : € A},

and

BCLy(z,t) := {((8,0),0,1) : € B(0,1)}.

Then we introduce
BCL(z,t) = co(BCL;(z,t) UBCLy(z,1)) ,

where, if £ C R* for some k, ¢o(E) denotes the closed convex of F; computing
F(x,t,r,p) = sup(b7c7l)€BCL(x,t){ —b-p+cr — 1}, we actually find that, for any
.T,t,?", Pz, Pt

F(x,t,r, (ps, pr)) = max(p + H(z,t,u,ps), |pe] — 1) -

For t = 0, we have to add the following set

BCLy(z,0) :== {((0,0), 1, 9())} ,

so that BCL(z,0) = ¢ (BCLy(z,0) UBCL;(x,0) U BCLy(z,0)).

We first consider Assumption (Hper) fund which is satisfied if the three functions
b(x,t,a), c(z,t, @), l(z,t,a) are bounded on RY x [0,7f] x A and if BCLy(x,t)
has compact, convex images and is upper semi-continuous. Next we remark that
(HgcL) struet Obviously holds and we are going to assume in addition that ¢(z, ¢, ) > 0
for all x,t, a (this is not really an additional assumption since we can reduce to this
case by the exp(—K't)- change).
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Since all these assumptions hold, this means that all the results of Section 3.2 also
hold. Moreover we have for the initial data F(z, u, p,) := max {|p,| — 1,u — g(z)}
and therefore the computation of the “real” initial data comes from the resolution of
the stationary equation

max(|Dyu|l — 1,u — g(x)) =0 in RY. (4.2)

Remark 4.1.2 Of course, this example remains completely standard as long as we
are in the continuous case—typically under the assumptions (Hga_cp). It will be
more interesting when treating examples in which we have discontinuities in the dy-
namics, discount factors and costs; or when the term “D,u| — 17 is replaced by, for
instance, “\Dyu| — a(x)” where a(-) is a discontinuous functions satisfying suitable
assumptions, in particular a(x) >n >0 in RY.

As we mentioned it above, unbounded control problems where the cost has a super-
linear growth w.r.t. the dynamic do not enter into the present framework: we refer the
reader to [59, | for results on such discontinuous problems with quadratic growth.

4.2 The sub-dynamic programming principle for
subsolutions

In this section, we provide a sub-dynamic programming principle for subsolutions of
Bellman Equations, but in a more general form than usual, due to the very general
framework we use in Section 3.1 allowing dynamics to have some b = 0. Roughly
speaking, we show that if a (LCR) holds in a suitable subdomain O of RY x [0, T}]
and for a suitable equation, then subsolutions satisfy a sub-dynamic programming
principle inside O.

This formulation is needed in order to get sub-dynamic principles away from the
various manifolds on which the singularities are located, and to deal with situations
where the definition of “subsolution” may be different from the standard one: even
if, to simplify matter, we write below the equation in a usual form (cf. (4.3)), the
notion of “subsolution” can be either an Ishii subsolution or a stratified subsolution,
depending on the context. These specific sub-dynamic programming principles will
play a key role in the proofs of most of our global comparison results, via Lemma 4.3.1.

In order to be more specific, we consider (zg,%) € RY x (0,7y] and the same
equation as in the previous section set in fo};to for some r > 0 and 0 < h < to,

namely
F(x,t,u, Du) =0 on Qf}};to , (4.3)
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where F is defined by (3.5), and we recall that Du = (D,u, u;). We point out that we
assume that BCL and F are defined in the whole domain RY x [0, T}].

In the sequel, M is a closed subset of Qf’(};to such that (xg,tg) ¢ M and O =
Q15" \ M # 0. We denote by T/ (w0, t0) the set of trajectories starting from (zo, ty),
such that (X (s),T(s)) € O for all s € [0,h]. For simplicity here, we assume that
the size of the cylinder satisfies Mh < r. This is not restrictive at all since when
we use the following sub-dynamic programming principle, we can always apply it in
situations where r is fixed and we can choose a smaller h.

Our result is the

Theorem 4.2.1 — Extended sub-dynamic programming principle I.
Let h,r > 0 be such that Mh < r. Let u be a subsolution of (4.3) and let us assume

that, for any continuous function v such that ¢ > u on Qf}}l’to, a (LCR) holds in O
for the equation

max(F(z,t,w, Dw),w —19) =0 inO. (4.4)
If Th(zo,to) # 0, then for any n < h

wzonto) < _int [T, T(5) exp(=D(s)) (X (0). () esp(-Dlw) }
(4.5)

Proof — In order to prove (4.5), the strategy is the following: we build suitable value
functions v®°, depending on two small parameters ¢,§ which are supersolutions of
some problems of the type max(F(x,t,v, Dv),v — ¢°) > 0, for some function 1° > u

on Qf(}l’to. Then, comparing the supersolutions v*? with the subsolution % and choosing
properly the parameters ¢, we obtain (4.5) after using the dynamic programming
principle satisfied by v9.

The main difficulty is that we have a comparison result which is not valid up to
M, only in O. Therefore we need to make sure that the supersolution enjoys suitable
properties not only on anﬁl’to but also on M.

To do so, we introduce a control problem in RY x [ty —h, to] with a large penalization

both in a neighborhood of GQf,(}f“ and outside f’(}l’to, but also in a neighborhood of
M. Unfortunately, the set valued map BCL does not necessarily satisfy assumption
(HpcL) struet-(744) at time ¢ = to — h, which plays the role of the initial time ¢ = 0
here. We need also to take care of the possibility that b' vanishes inside Qf%to For
these reasons, we need to enlarge not only the “restriction” of BCL to RY x {t, — h}
in order to satisfy (HpcL)struet; but also on the whole domain RY x [to — h, to).



HJ-Equations with Discontinuities: Mixed Tools 135

For doing so, since u is u.s.c., it can be approximated a decreasing sequence (u°)s of
bounded continuous functions and we enlarge BCL(z, ) for t € [ty — h, to] by adding
elements of the form

((b°,b1),¢,1) = ((0,0),1,4°(z,t) +6) for 0<d < 1.
On the other hand, we introduce, for 0 < € < 1, the penalization function

Xe(2,1) = 5—14 [(25 —d((2, 1), M)+ (26 = (r — | —o]))5 + (26 — (t —to + h))+],

so that x.(z,t) > e~ if either d((z,t), M) < &, d(x,0B(z9,7)) < cort—(tg—h) <e.

We use this penalization in order to modify the original elements in BCL(z, 1),
where [(z,t) is replaced by I(x,t) + x.(z,t). We denote by BCL’¢ this new set-
valued map where, at the same time, BCL is enlarged and modified; the elements
of BCL’* are referenced as (b7, ¢>,1%¢). We recall that we can assume that for the

original BCL, we have ¢ > 0 and therefore we also have ¢>¢ > 0 for all (z,t) and
(b2, %<, 1°¢) € BCL*(x,1).

In RY x [tg — h, o], we introduce the value function v*° given by

+o0
€,0 o d,e d,e 4, _ )oe
v t)= it { / 15 (XP4(s), T (s)) exp(—D"(s))ds |

where (X%¢, T%¢ D% L%) are solutions of the differential inclusion associated with
BCL’*, constrained to stay in RN x [t, — h, to], T%°(x,t) standing for the set of such
trajectories.

Borrowing arguments from Section 3.1 and computing carefully the new Hamilto-
nian, we see that v*? is a l.s.c. supersolution of the HJB-equation

max(F(z, t,w, Dw),w — (u’ +6)) =0 in RY x (tx — h,to] ,

because (z,t)+ x:(z,t) > l(x,t) for any z and ¢, and we notice that u is a subsolution
of this equation since u < u® + § in RY x (to — h,to]. We also remark that, due to
the enlargement of BCL, v®°(z,t) < u’(x,t) + §, which is the value obtained by
solving the differential inclusion with (b,c,l) = ((0,0),1,u’(x,t) + &). We want to
show that v>° > v in O. In order to do so, we have to examine the behavior of v=?°
in a neighborhood of 0O first, which is provided by the

Lemma 4.2.2 For e > 0 small enough, v=°(z,t) > u®(z,t) on 00.
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We postpone the proof of this result and finish the argument. Since v*° > u® > u
on the boundary of O, we have just to look at maximum points of u — v*° in O but,
in this set, (LCR) holds for (4.4) with ¢ := u’ + 4. Therefore the comparison is valid
and we end up with v>° > u everywhere in O.

Ending the proof and getting the sub-dynamic principle is done in three steps as
follows.

Step 1 — at the specific point (zg,%y) we have u(zg,ty) < v*°(w0, ), and using the
Dynamic programming Principle for v at (z,to) gives that for any 1 > 0,

wanste) < inf {10005, 7) expl(-Dls))ds 407 (X (1), 7)) expl~Dn)) }

T8 (z0,t0

(4.6)

we want to get the same inequality, but for trajectories in 7% (zg, ). This relies on
the following step.

Step 2 — Claim: if (X, T, D, L) is a given trajectory in Th(xo, to) and if n < h, then,
for e > 0 small enough, (X,T,D,L) coincides with a trajectory in T (xg,ty) on
[0,7].

The main argument in order to prove this claim is to notice that for € small enough,
such trajectories satisfy 1.(X(s),T(s)) =0 on [0, 7).

Indeed, let us fix n < h and take ¢ small enough such that to — h 4+ 2e < to — 1.
Then, for any trajectory (X, T, D, L) in T4(zo,to), T(s) € [to — n,to] for s € [0,7)],
so that T'(s) > ty — h + 2¢. Similarly, since Mh < r and |b| < M, we get that
d(X(s); 0B(zo,7)) > 2¢ for s € [0,n]. Of course, by definition of 75 (zg,to), the
trajectory does not reach M hence, if € is small enough, d((X(s),T(s)); M) > 2¢
for any s € [0,7]. In other words, for each fixed trajectory in Th(xo, 1), if we take e
small enough (depending on the trajectory) we have ¥.(X(s),T(s)) = 0 on [0, 7).

Therefore, for any trajectory (X, T, D, L) € Tk (zo,t0), 1°¢(X (s), T(s)) = [(X(s),T(s))
if € > 0 is small enough and 0 < s < n < h. This means that (X, T, D, L) can be

seen as a trajectory associated to the extended BCL®®| with initial data (g, to, 0, 0).
Hence it belongs to T°¢(z,t), which proves the claim.

Step 3 — Passing to the limit in € and 9.
We take a specific trajectory (X, T, D, L) € T&(zo,1t) and take € small enough so

that we can use it in (4.6). As we already noticed, v° < (u’ 4 ) everywhere in Qfﬁ;to

due to the enlargement of BCL. Passing to the limit as ¢ — 0 yields
U
oo, ) < [ UX(9).T(5)) exp(=D(s))ds + (u +8) (X(2), T(w) exp(~D(w) }.
0

Then, we can let § — 0 in this inequality, using that (u°+0)s is a decreasing sequence
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which converges to u and that the trajectory (X, 7, D, L) and n are fixed.
Therefore (u® + 6)(X (1), T(n)) — w(X(n), T(n)) and we get

u(zo, to) < /Onl(X(S)aT(S)) exp(—D(s))ds + u(X (1), T(n)) exp(=D(n)) .

Taking the infimum over all trajectories in 7% (zo,%) yields the conclusion when
1n < h. The result for n = h is obtained by letting n tend to h, arguing once more
trajectory by trajectory.

Q.E.D.

Proof of Lemma 4.2.2 — We need to consider three portions of 00: t = ty — h,
x € 0B(zg,r) and (x,t) € M. We detail the first estimate which is technically
involved, then the last two ones are done with similar arguments. In the following,
we use an optimal trajectory for v%¢, denoted by (X%¢, T%¢ D% L%¢).

Part A. Initial estimates — if ¢ =ty — h, we have to consider

— the running costs 1(X%¢(s), T%(s)) + x-(X**(s),T%%(s)), with (perhaps) a non-
zero dynamic b”.

— the running costs u’(X%¢(s), T%¢(s)) +J coming from the enlargement with a zero
dynamic;

— and the convex combinations of the two above possibilities, obtained by using a
weight 1%¢(s) € [0, 1].

We first notice that since t = t; — h, we have T%¢(s) = t; — h for any s > 0
since ' < 0 and the trajectories have the constraint to stay in RY x [ty — h, t]. In
the following, we make various estimates (for £ small enough) involving constants
Ko, K1, Ko, k3 depending on the datas of the problem and § > 0 but neither on ¢ nor
on x € B(zg,T).

Next we set
E :={s €[0,400) : I (X*(s5), T*(s)) = 1>°(X*(s),to — h) > e™**} |
where (¢ is given by the convex combination
192 (X¢(s), o — h) = u(s’e(s){l(X‘s’E(s), to — h) + xe(XO%(s), to — h)}
+ (1= p%(s)) (u® + 6) (XO%(s), tg — h) .

By definition of [>¢ and in particular because of the y.-term, we have, for any s > 0,
if £ is small enough

L(X%(s),to — h) + x=(X™(s),to — h) = ko™,
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while (1 — p%)(u® +6)(X°<(s), to — h) is bounded uniformly with respect to £, s and
x. Therefore, on E°, we necessarily have p%¢(s) < k,e%? for some x; > 0.

Estimates on E — As we noticed in the proof of Theorem 4.2.1, v®° < w® + §. In
particular,

(@ + 8)(,0) > v (,0)
> [0, 790 el D5
> /E 19 (X%¢(s), T0(s)) exp(— D (s))ds
+ / E(XO(s), T (s)) exp(—D(s)) ds

By definition of F, the first integral is estimated by
/ 19 (X‘S’E(s),T‘s’E(s)) exp(—D%¢(s))ds > / g3/2 exp(—D%¢(s))ds ,
E E

while, using the boundedness of [ and (u® + §) there exists C' > 0 such that

[ (00, 754(0)) expl- D) = ~C [ expl(-D ().

(&

To get an estimate on the Lebesgue measure of F, we need an upper estimate of
[ie exp(—D%(s))ds. Notice that on E*, because of the estimate on p°<(s) we have

DP<(s) = 4 (X3(5), T9(s)) = = ()e(X3(s), TH5(5)) + (1= (s)) = 1+O()
where the |O(e¥/?)| < Mr,e¥? is independent of z. Hence, since D%*(s) > 0 for any

s >0,

6, s
/c exp(—D%(s))ds = /Ec % exp(—D%(s))ds (4.7)
400

SAHOE) ™ [ DE(s)exp(~D*(s)ds  (48)

< (14021, (4.9)
Gathering all the above informations, we finally conclude that

/ e exp(—D%(s))ds < ks ,
E
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for some constant ko which is independent of ¢ and =x.

We introduce now a parameter S > 0 and denote by Eg := E N [0,S]. Since
0< D‘57€(s) < M for any s > 0, we have

exp(—MS)|Es| < /

Es

exp(—D%(s))ds < / exp(—D%(s))ds < rope/?
E

where |Eg| denotes the Lebesgue measure of Eg. We choose S = S. such that
exp(MS.) = ¢~1/6 which yields
|Es.| < koe®? exp(MS.) = koe?/? .

We remark that S. behaves like In(¢~'/6), uniformly in 2. The reason why we choose
Se in order to get a power 4/3 > 1 in |Eg_| will become clear in the lateral estimates.
For Part A, any power in (0, 3/2) is convenient.

Consequences on v™° — We first apply the Dynamic Programming Principle for v=°
which gives

V2 (2.t — h) = /0 195(X0%(s), to — h) exp(— DO (s))ds (4.10)

+ 070 (X%4(S.), to — h) exp(—=D*(S.)) . (4.11)
Now we have to examine each term carefully. We first come back to the equation of

D%¢: we have seen above that |D%¢(s) — 1| < Mrye%/? on E°, while |Eg.| < kge®?.
We deduce that, for s € [0, S¢]

D% (s) — 5| < M(k1%2S. + rpe™?) < ke’ (4.12)

for some k3 > 0. In particular, since S. — +o0 as ¢ — 0, exp(—D%(S.)) — 0 as
e — 0 and
lim inf (v5°(X*9(S), o — h) exp(—D**(S.))) > 0,

e—0

uniformly w.r.t. 2 since v*° is bounded from below.

On an other hand, for the X%¢-equation, we also have, on E° (in fact only the b*
part is useful here)

DPE(X24(s),to — h) = p™*(s)b(X*4(5),to — h) + (1 — 11%(5))(0,0) = O(*?) |

more precisely the bound takes the form Mr,e%/2. Using the decomposition with Eg_

and its complementary £ = E°N [0, S.] as in (4.12), it follows that

Se Se Se
/0 %€ () |dT = /0 6% (7) | Lpg 1 (5)dT + /0 |07 (1) Wgg, 3 (s) d

< M(/@2€4/3 + /€1€3/2S5) < kae??
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We deduce that if s € [0, S.], X%°(s) — 2 = O(¢*/?) and since v’ is continuous,
(u? + 0)(X%%(s),tg — h) = (u® + 0)(z,to — h) + 0-(1) > (v’ +6/2)(z,to — h) .
For a similar reason, on £/ we can absorb the o (1)-term by a §/2 for € small enough

1%(X%%(s),to — h) > (u’ +6/2) (2, tg — h) .

Gathering all these informations, using (4.12) and that (I 4+ 1.) > 0 on Eg. we get

Se
L= [ (000t ) expl D ()
0

=),

Then, since S. behaves like In(e7/%) and |Eg.| < ke, we get

((u6 +0/2)(z,to — h)) exp (— s+ 0(54/3))ds .

Cc
Se

L > (' +6/2)(z,to — h) /Ec exp(—s)ds + o:(1)

> (u? +6/2)(z, to — h) + o-(1) .

Hence v*°(z,tg — h) > (u’ 4+ §/2)(x, to — h) + 0-(1) where the “o.(1)” is independent
of z and for € small enough, we have v*°(xz,ty — h) > u’(2,to — h) on B(zo, 7).

Part B. Lateral estimates — Essentially, the proof is the same as for the initial
estimates: the only difference is that the trajectory may exit the region where Y. is
large. But, if d((z,t), M) < e orif d(z,0B(z¢,7)) < €, the running cost satisfies again
the estimate [(X%(s), T%(s)) + x(X*%(s), T%¢(s)) > koe > > 0.

We consider the case when (x,t) € M, the proof being the same if (z,t) € dB(xg,1).
Since the dynamic b is bounded by M, a trajectory (X, T) starting at (z,t) satisfies
d((X(s),T(s)), M) < Ms and therefore, it stays in an e-neighborhood of M for
s <e/M.

For an optimal trajectory, we repeat the same proof as in Part A, but on EN[0, 7. A
S.], where 7. is the first time for which d((X%¢(s),T%¢(s)), M) = ¢ and a A b =
min(a, b).

If we set as above

E o= {S c [O, OO) : 167E(X6’€(8),T6’€(8)) > 873/2} 7
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then the Lebesgue measure of EN[0, 7. A S.] is less than r3e?/3 for some k3 > 0, while
on £°N[0,7. A S.] we have u%¢(s) < k4e®? for some k4 > 0. As in Part A, using the
decomposition on £ N[0, 7. A S:] and its complementary we deduce that

TE/\SE
/ |bg’€(8)| ds < M{/€3€4/3 + 5453/2(7'5 A Sff)} g
0

while by definition the distance between (z,t) and (X%¢(7.), T%¢(7.)) is larger than ¢
(if 7. is finite, of course).
We claim that for € small enough, 7. A S = S.. Indeed, assume on the contrary

that for some subsequence ¢,, — 0, 7, < S.,. From the previous estimate it follows
that

en < |(XO9(7), T9(7)) = (2, 8)] < M{kaey® + k%1, } .

The fact that the power in the first term is greater than 1 implies that 7., goes to
infinity, at least like &, Y
reach a contradiction.

?. But since by construction S., behaves like In(e, Y %, we

We deduce that necessarily 7. > S. as ¢ — 0, and that on [0, S.], the trajectory
remains “trapped” in an e-neighborhood of M. We end the proof exactly as in Part
A sending £ — 0.

The proof if x € 9B(xg,r) being the same, in conclusion we have shown that
v > u® on 0O for e small enough.

Q.E.D.

In the case when b’ is not allowed to vanish, obtaining the sub-dynamic principle is
a bit easier since we do not need to consider an obstacle-type problem like (4.4).

Theorem 4.2.3 — Extended sub-dynamic programming principle II.

Let h,r > 0 be such that Mh < r and assume that, for any (z,t) € ff}l’to and any
(b,c,1) € BCL(x,t), b = —1. If u is a subsolution of (4.3), if T&(zo,t0) # 0 and if

a (LCR) holds in O for the equation F = 0, then for any n < h

o) < _int {[T10X(8). 7)) exp(=D(s) (X (0). 7o) expl =D}
(4.13)

Proof — The difference between the two cases comes from the fact that, under the
assumption of Theorem 4.2.3, we could have T'(h) > to — h in (4.6) (Step 1) for a
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trajectory starting from (xg, %) since b* was allowed to be different from —1: this
is why the strategy of the proof of this theorem uses 1 < h and, for handling this
situation, we need to have v=°(x,t) < u°(x,t) + & in the whole domain to conclude
after using the Dynamic Programming Principle for v*° (cf. Step 3).

Here on the contrary we are sure that T'(h) = to — h for any such trajectory and
we are going the Dynamic Programming Principle for v*° up to time t, — h, i.e. with

s =h.

For this reason, we are going to prove (4.13) for n = h, the inequality for n < h
being obtained by applying the result with h replaced by 7.

For all these reasons the proof is similar to that of Theorem 4.2.1 but there are
substantial simplifications.

(a) We enlarge BCL in the same way BUT ONLY at time ¢ = ¢, —h. The consequence
is that v is a supersolution for the HJB-equation F = 0 and not of (4.4), since we
have no enlargement for t € (ty—h, ty). Hence we just have to deal with the comparison
results for the F-equation, we do not need to assume some obstacle-type comparison

property.
(b) The penalization function we use here does not require a specific penalization for
the initial time and we just write it as

Xelost) o= = (22 = dl(w,0), M), + (26 = ( — o = ao])).]

The initial inequality v (x,ty — h) > (u® + 6)(x,ty — h) for any z € B(z,r) follows
from the following argument: since b = —1 in BCL, the only possibility for a con-
strained trajectory (X%, T%¢ D% L[%¢) € T%(x,ty— h) to remain in RN x [to — h, to)
is to solve the differential inclusion by using the elements ((0,0), 1, (u® +6)(x, to — h))
of BCL’¢. This implies directly that v=%(z,ty — h) > (u® + 8)(z, to — h).

(c) With these simplifications, the proof remains the same as in the general case
bt € [~1,0]: we first get that v°° > w on t = tq — h, for x € dB(xg,7) and for
(z,t) € M. Using that we have a (LCR) in O implies that v*° > u on O. Then
we proceed as above using the dynamic programming principle for v=°. For n < A1),
taking € > 0 small enough allows to restrict this dynamic principle to the trajectories
in T4 (wo,tp), which avoid M. Sending ¢ — 0 and § — 0 is done “trajectory by
trajectory”.

Q.E.D.

(UHere we do not have to treat separately the cases when 1 < h and 7 = h since we have
dropped the penalization term in a neighborhood of t = tq — h and we know that v=°(z,ty — h) >
(u® + 6)(x, to — h).
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4.3 Local comparison for discontinuous HJB Equa-
tions

The aim of this section is to provide an argument which is a keystone in several
comparison results we give for HJB Equations with discontinuities, and in particular
for stratified problems.

To do so, we consider a C'-manifold M C RY x (0, T}) (which will be in the sequel
a set of discontinuity for the HJB Equation) and for any (z,t) € M, we denote by
T(znM, the tangent space of M at (z,t). Then we define the tangential Hamiltonian
associated with M by setting

FM(z,t,u,p) = sup {-b-p+cu—1}, (4.14)
(b,e,l)eEBCL (z,t)

where BCLy(z,t) := {(b,c,l) € BCL(x,t) : b € T(,yM}. This tangential Hamil-
tonian is defined for any (z,t) € M x [0,T%], u € R and p € T(,,M. But by a
slight abuse of notation, we also write FM(z, ¢, u, p) when p € RY*1 meaning that

only the projection of p onto T, M is used for the computation. We also recall that
Du = (Dyu,uy).

Our main argument comes from the

Lemma 4.3.1 — The “Magical Lemma”.

Assume that (Hpcw) holds and fiz (x,t) € M, 0 <t —h <t < Ty. Assume that
v Qf,tl — R is a Ls.c. supersolution of F(z,t,v, Dv) = 0 in Qf,ﬁ and u : Qf,tl — R
has the following properties:

(i) ue C%Qp) NCHM),
(ii) FM(y, s, u, Du) <0 on M,

(i19) w satisfies a “strict” subdynamic principle in Qf,ﬁ [M€] = (B(x,r)x(t—h,t]))\M,
i.e. there exists m > 0, such that, for any (z,t) € Qf,tl[/\/lc], for any solution
(X,T,D, L) of the differential inclusion such that X(0) = z, T(0) = t and
(X(s),T(s)) € Qf,tl[/\/lc} for 0 < s <7, we have, for any 0 <7 <7

u(z,1) < /OT(Z(X(S), T(s)) —n) exp(=D(s)) ds + u(X(7),T(7)) exp(=D(7)).
(4.15)
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If max(u —v) > 0, then, for any (y,5) € Q4 \ 0,Q07,

x,t
Qr,h

(u—2)(y,s) <m:= max (u—wv).
QY

Proof — Using (Hpcr ) struct, We can assume without loss of generality that ¢ > 0 for

all (b, c,1) € BCL(y, s) and for all (y, s) € Q7.

We assume by contradiction that (u — v) reaches its maximum on Qf}i at a point
(z,1) € Qf,tl If (z,t) € Qf,ﬁ \ M, we easily reach a contradiction: by Lemma 3.4.2,
v satisfies (3.16) and for sufficiently small 7, all the trajectories (X, T, D, L) are
such that (X (s),T'(s)) € Qf; [M°]. We consider an optimal trajectory for v at (Z, 1),
(X,T,D, L) and we gather the information given by (3.16) and (4.15) for some time
7 small enough: substracting these inequalities, we get

u(@,B) — 0(@,1) < =7 + (u(X (1), T(7)) — v(X(7), (7)) exp(~D(r)) . (4.16)

But (7,t) is a maximum point of u — v in Q_f,i and therefore we have at the same
time u(z,t) —v(Z,t) > 0 and u(z,t) —v(Z,t) > w(X (1), T (7)) —v(X (), T(7)); hence,
since exp(—D(7)) >0

u(@,8) — v(#,7) <~y + (u(@, £) — vz, B)) exp(=D(7)
which is a contradiction since exp(—D(7)) < 1.

If (u — v) reaches its maximum on Q% at a point (7,7) € Q™) N M, we face two
cases

A. —In (3.16) for (Z,t), there exists a trajectory (X,T,D,L) and 7 > 0 such that
X(0) =2z, T(0) =t and

v(z,t) > /OT [(X(s),T(s)) exp(—=D(s))ds +v(X(7),T(7)) exp(—D(7)) ,  (4.17)
AND (X (s),T(s)) € in \ M for s € (0, 7]. In this case we argue essentially as above:

we use as a starting point (z.,t.) := (X (¢),T(¢)) € Qf,tl[/\/lc] for 0 < e < 1 and we
use (4.15) for the specific trajectory (X, 7, D, L) but on the time interval [e, 7]

w(@e, te) < /T(l(X(S)aT(S)) —n)exp(=D(s)) ds + u(X(7), T(7)) exp(=D(7)) -

But in this inequality, we can send e to 0, using the continuity of v and finally get,
combining it with the above inequality for v to obtain (4.16) and a contradiction.
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B. — If Case A cannot hold, this means that, for any 7 and for any trajectory
(X, T, D, L) such that (4.17) holds, then there exists a sequence t,, ~\, 0 such that
X(t,) € M for any n € N. We first use the dynamic programming inequality for v
between s = 0 and s = t,,, which yields

v(z,t) = /On [(X(s),T(s)) exp(=D(s)) ds + v(X(tn), T (tn)) exp(=D(tn)) -

Since u — v reaches a maximum at (z,¢) and since this maximum is positive, we can
replace v by u in this inequality which leads to

u(@,t) —u(X(tn), T'(ts)) exp(—=D(tn)) > 1 /0 ' [(X(s),T(s)) exp(—=D(s))ds .

tn Rz

Now, since u is C'-smooth on M x (t — h,t), we have (recall that Du = (D,u, u;)
and that here we use only derivatives which are in the tangent space of M)

3

(X (), T(tn)) =u(@, 1) + Du(z, (X (ta) — 2. T(t) — D) + (| X (ta) — | + |T<<t
(

) =)
18)
19)

Ll

=u(Z,t) + Du(z,t)(X (t,) — z,T(t,) — t) + o(t,) ,
and writing
(X(t,) —z,T(t,) —t) = /0 ' b(s)ds , exp(—D(t,)) = /0 ' —c(s) exp(—D(s))ds
we obtain
%/0 ' {=b(s) - Du(z,t) + c(s)u(z,t) — (X (s),T(s))} exp(—D(s))ds > 0.
And since exp(—D(s)) = 1+ O(t,,), we can write this inequality as
—by, - Du(Z,t) + cyu(Z, t) — 1, > 0,(1)

where

by = (% /Otn b(s)ds)  en = (% /Ot" c(s)ds) e (% /Otnl(X(s),T(s))ds) .

But the by, ¢y, 1, are uniformly bounded and therefore we can assume that b, —
b,c¢, — ¢, 1, — [. Using the convexity and upper semi-continuity of BCL, we have
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b,¢,1) € BCL(z,t) and by the definition of b,, we also have b € T|; .M. Finally,
(@)
passing to the limit in the above inequality yields

—b- Du(z,t) + cu(z,t) — 1 >0 .
But, thanks to the definition of F™ and the properties of u, we have the inequalities
0 < —b- Du(z,t) + eu(z,t) — I < FM(z, %, u(z, 1), Du(z,1)) <0,

which is the desired contradiction.
Q.E.D.

Remark 4.3.2 There are possible variants for this lemma. In particular, in Part 11,
we use one of them where the sub and supersolution properties for u and v are defined
i a slightly different way, namely with taking a more restrictive set of control on M.
Of course, in that case, F™M is replaced by an Hamiltonian which defined in a different
way. The proof is still valid if the Dynamic Programming argument of B. leads to the
right inequality.

4.4 The “good framework for HJ Equations with
discontinuities”

The study of Hamilton-Jacobi with discontinuities or the associated control prob-
lems in the convex case leads to various situations, many of which we consider in
Parts II, III, TV or V. These situations may appear to be quite different, but still
we can identify some common structure on the equations and the discontinuities of
the Hamiltonians which seems quite “natural” to get most of the results. Of course,
what we are going to describe as the “good framework for HJ-Equations with discon-
tinuities” does not perfectly fit all situations and some adaptations have to be made
in each case. But the definition below provides a good idea of the key assumptions
which are required to treat those problems.

4.4.1 General definition at the pde level

Definition 4.4.1 — The good framework for HJ-Equations.

We say that we are in the “good framework for HJ-Equations with discontinuities”

for the equation
G(X,u,Du) =0 in O CRY (4.20)
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if (LOC1), (LOC2) hold and if there exists an (TFS) M = (MF),—o n of RN such
that, for any k=0,..,N

(1) if X € M"N O, there is a ball B(X,r) C O for some r > 0 and a C"'-
diffeomorphism ¥ : B(X,r) — RY such that ¥(X) = X,

U(B(X,r)NM*) = (X +RF x {Ognv-}) N U(B(X, 1)),
and, for any | = (k+1)..N and Y € ¥(M' N B(z,r))
(Y + R x {Og~v—+}) N U(B(X,r)) C ¥(M'N B(z,r))
(ii) Denoting ¥(X) =X + (Y, Z) withY € R¥, Z € RN=* and

@((K Z)> r, (pYapZ)) = G<\Ilil (X + (Yv Z)) T [(\Pil)/]T (X + (Y7 Z)) (pYapZ)) )

where [(W~1)']" denotes the transpose matriz of (¥, then (TC), (NC),(Mon)
hold for G on W(B(X,r) N MF).

In this case, we will say that M is associated to Equation (4.20).

As we already mentioned it in Section 2.4, the difficulty when stating such definition
is that it is supposed to cover very different situations for which the sense of G = 0
may vary and may also involve several Hamiltonians. In these various situations, we
use the following convention

(TC), (Mon) have to be satisfied - up to some change of variables - by ANY Hamil-
tonians which are involved in the sub and supersolutions inequalities while (NC) has
to be satisfied by the Hamiltonians which are involved in the subsolutions inequalities
related to local mazimum points in O—or W(B(X,r))—but not by the Hamiltonians
related to local mazimum points on the M* for k < N.

But before coming back to this point, let us explain the key ideas beyond this “good
framework for HJ-Equations with discontinuities”.

The very first idea is that the discontinuities of G form an (TFS). Since we always
argue locally (using (LOC1), (LOC2), for comparison results), we can use Defini-
tion 2.3.11—with perhaps a smaller r—to reduce to the case when the k-dimensional
discontinuity on G, MF¥, can be flatten, here replaced by X + R¥ x {Og~-+}). This is
the first important reduction. We immediately point out that, in Definition 4.4.1, the
diffeomorphism ¥ is assumed to be C'! which is needed in general to get (TC) but,
in coercive cases, i.e. when G is coercive in p, C*-diffeomorphisms may be enough.
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Once this change is done, we are in the framework of Section 2.4 and using a com-
bination (TC), (NC),(Mon) allows us to regularize subsolutions in order to be able
to apply Lemma 4.3.1. The triptych “Tangential continuity + normal controllability
+ some suitable monotonicity” seems to us the basis of most of our results, and not
only the comparison ones.

The two extreme cases have also to be commented: if & = N, then there is no
normal directions, (TC) has to be satisfied by all coordinates, G is continuous in
a neighborhood of X, no change V¥ is really needed and, through (TC), we just
recover the classical assumption for the uniqueness of viscosity solutions for a standard
HJ-Equations without discontinuity. If £ = 0, X is an isolated point, we have no
“tangent coordinates” and (TC) is void but (NC) implies that G is coercive in p in
a neighborhood of X.

4.4.2 The stratified case, “good assumptions” on the control
problem

Now let us come back on the sense of the equation G = 0 and the way the above
convention has to be applied. Anticipating Part IV on the full stratified case, we have
an HJ Equation of the type

F(x,t,U,DU) =0 in RN x[0,T}],
where DU = (D, U, D,U) and

F(z,t,r,p) = sup {—b-p+cr—l}.
(b,c,l)eBCL(,t)

Assuming that (Hgcr) holds, what does it mean to be in the “good framework for
HJ-Equations with discontinuities” here?

In the case of stratified problems, roughly speaking, the sense of the equation is
F* > 0in RY x (0, T}] for supersolutions and, for subsolutions, F, < 0 in RY x (0, T}]
with the additional conditions F* < 0 on MF where the “tangential Hamiltonians”
F* for k = 0..N are defined for (x,t) € M¥, r € R and p € T(, ,M"*, by

F*(x,t,u, p) = sup {—b-p—l—cu—l}.
(b,c,l)eBCL(,t)
beT(,, o) MF

For t = 0, we have analogous properties but for IF;,;;. We refer to Chapter 19 for more
precise definitions.
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Now we examine the needed assumptions on the BCL in RY x (0,7}] in order to
have (T'C) and (NC): we are going to do it precisely for (T'C) and (NC) since, for
(Mon), this is a more standard consequence of (Hgcr,) and we come back on that
point in Chapter 19, more specifically in Section 19.4. On the other hand, for ¢t = 0,
such checking is analogous using F;,;; and the associated Hamiltonians on M’g.

Since these assumptions are local and invariant by the W-changes, we can state
them in a ball B((z,t),r) centered at (z,t) € MP" with a small radius r > 0
and we can assume that, in B((x,t),r), M is an (TFS) with M* = (z,t) + V4,
where V; is a k-dimensional vector space in R¥*' and B((x,t),r) intersects only
MF MFEHL Lo ML We denote by Vi the orthogonal space to Vj, and by Pt the
orthogonal projector on V;-. We trust the reader to be able to translate them for the
original stratification and BCL.

In this framework, (TC) & (NC) are satisfied if, with the above notations

(TC-BCL) — Tangential Continuity — BCL version.

For any 0 < k < N + 1 and for any (x,t) € MF¥, there exists a constant C; > 0
and a modulus m : [0,+00) — RT such that, for any j > k, if (y1,t1), (y2,t2) €
M’ N B((z,t),r) with (y1,t1) — (y2,ta) € Vi, then for any (b1, c1,l1) € BCL(y1,t1),
there exists (by, ca,l3) € BCL(ya,ts) such that

b1 —bo| < Cillyr — ol + 1 —ta]) ,  ler —cof + |l — L] <m(lyr — ol + [t — ta]) -

(NC-BCL) — Normal Controllability — BCL version.

For any 0 < k < N + 1 and for any (z,t) € MF, there exists 6 = 6(x,t) > 0, such
that, for any (y,s) € B((z,t),r), one has

B(0,0) NVt ¢ PH(B(y,s)) .

Of course, the case k = 0 is particular since V;, = {0}: here we impose a complete
controllability of the system in a neighborhood of x € M since the condition reduces
to B(0,9) C B(y,t) because V- = RV,

As we will see it throughout this book, the normal controllability assumption plays a
key role in all our analysis: first, at the control level, to obtain the viscosity subsolution
inequalities for the value function on each M, then in the comparison proof to allow
the regularization (in a suitable sense) of the subsolutions and, last but not least, for
the stability result.
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It is rather easy to prove that (NC-BCL) implies (NC) in this (TFS) frame-
work. We therefore concentrate on (TC-BCL) and the following result first gives
an important consequence of these assumptions: the continuity of all the Hamiltoni-
ans {F*},_o._n, whose proof uses a combination of (TC-BCL) and (NC-BCL). We
point out that, on the contrary, it is easy to prove that FN*! satisfies (TC) in MV 1,

With the same notations as above we set, for (y,s) € B((z,t),r) N M*

BCL"(y,s) :== {(b,¢,]) € BCL(y, s); b € T, yM" = V;},

and BF(y, s) is the set of all b such that there exists ¢, [ for which (b, ¢,1) € BCL*(y, s).
We have the

Lemma 4.4.2 If (TC-BCL) and (NC-BCL) hold, then

(7)
(i)

(iid)

BCL*(y,s) # 0 for any (y,s) € B((z,t),r) N MF.

There exists Cy > 0 and a modulus m such that, if (y1,t1), (y2, t2) € B((z,t),7)N
MP* and if (by, c1, 1) € BCL*(yy,ty), there exists (by, c2,ly) € BCL*(ya, t3) such
that

b1 = ba| < Ci(lyr —ya| + [tr —ta]) , ler — ol + [l = la| < m(lyr — ol + [t —1a]) -

In particular, the Hamiltonian F* satisfies (TC) on M*, i.e. for any R > 0, for
any (y1,t1), (y2,t2) € B((z,t), )N M*, |r| < R, p € Vi, (orp € RN*)

|]Fk(y17t1’7’,p) - Fk<y27t27rap>| SCf’l(|y1 - y2’ + ’tl - t2|>’p|
+(R+1)m(lyr — va| + [t —ta]) -

For any j > k, there exists C; > 0 and a modulus m such that, if (y1,t1), (ya,t2) €
MINB(z,r) with (yy,t1) — (Yo, t2) € Vi, if (b1, c1,l1) € BCL (y1,t1), there exists

(ba, €2, l2) € BCLY (yo,t2) such that
by —by| < él(lyl—y2|+|t1—t2|) e =+ 1] < m(|y1—y2|+lt1—t2|) .

In particular, the Hamiltonian ¥ satisfies (TC) on MY, i.e. for any R > 0, for
any (y1,t1), (y2,t2) € B((z,t),7r) "MF, |r| < R, p € Vi (orp e RVNTL)

|]Fj(y17t177‘7p> - ]Fj(y27t277‘7p>| SCN'l(|y1 - 92’ + |t1 - t2|)|p|

+ (R+ D)m(|yr — yo| + [t1 — t2])
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Proof — The first part of the result is a direct consequence of (NC-BCL): indeed
0 € P (B(y,s)), hence there exists (b,c,l) € BCL(y,s) such that P+(b) = 0, i.e.
beV,= T(yvs)Mk.

For the second part of the result, we use (TC-BCL): if (by, ¢y, 1) € BCL*(yy,t,) C
BCL(yy, t1), there exists (by, ¢a,l3) € BCL(ys, t2) such that

b1 = bo| < Ci(Jyr — 1| +[t1 —t2]) , e —co| + ]l —1o] < m(‘yl — o] + |t —tzf) .

We have to modify (bs, co,(5) in order to obtain (52,62,22) € BCLF(y,,t,) with the
right property. To do so, we notice that, since P1(b;) = 0 then |Pt(by)| < n =
Cillyr — gl + [t — 2.

If P+ (by) = 0 the result holds, hence we may assume that P*(by) # 0 and set

P (by)
|PL(ba)|

e =

Using (NC-BCL), there exists (by, ¢, lz) € BCL(ya, t2) such that P(by) = —(§/2)e

and we consider the convex combination
(62, 62, ZQ) = (1 — Oé)(bg, Co, lg) + 04(62, 52, ZQ) .

Since

PL(by) = (1 — a)PH(by) + aP*(by) = (1 — a)ne — gae ,

choosing o = 1/(n+0/2) we get P+(by) = 0. Therefore (b, &, 1) € BCL*(y,,t,) and
the estimates on |by — by, |c; — &, |l1 — l2| are an easy consequence of the value of
«, because of the definition of n and the properties of by, ¢, l5. Indeed, the difference
between (132,62,[2) and (bs, c2,1l5) behaves like 3Ma < 3M§'n and therefore the
result holds with

Cp:=1+3MsHC, and m(r) =m(r) +3M5 'Ci7.

Finally the (TC) inequality for F* is a direct consequence of the previous result.

The third result follows from analogous arguments as in (ii).
Q.E.D.
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4.4.3 Ishii solutions for a codimension one discontinuous Hamilton-
Jacobi Equation

We conclude this section by some remarks on the model problem which is studied in
Part 1T and I1I where O = RY x (0,7}), X = (z,t) and

pe+ Hy(z,t,r,p,) if zy >0,
pt+H2(CC,t,7”,pm) 1fo<O

G(m,t,r, (px,pt)) = {

For Part II, we are in the control case and we use the standard Ishii inequalities,
namely G* > 0 in O and G, < 0 in O. We can use (TC-BCL) and (NC-BCL)
which are satisfied if (Hga_pny) holds and if Hy, Hs satisfies the assumption (NCy)
(see p. 173) on MY = H := {z: a2y =0} x(0,T}) . In fact, (Mon) but also (LOC1),
(LOC2) are also satisfied under these assumptions.

Concerning Part I1I, we point out that essentially the same type of assumptions are

needed but since the Hamiltonians H;, Hy will only be assumed to be quasi-convex,
we have to come back to the (TC), (NC) formulations.



Chapter 5

Other Tools

Abstract. In this catch-all chapter are gathered several results which are of either
of general interest like those on semi-convex/semi-concave functions and on penaliza-
tions; or related to networks like those for quasi-convex functions or the Kirchhoff-
related lemma.

5.1 Semi-convex and semi-concave functions: the
main properties

The aim of this section is to describe the properties of semi-convex and semi-concave
functions which will be used throughout this book, in particular those connected
to their differentiability. Considering Section 2.4.3, it is clear that we are not going
to manipulate functions which are semi-convex or semi-concave w.r.t. all variables
but only in the “tangential variables”; anyway, since this latter case consists only in
applying the results of the first one by fixing the normal coordinates, we will only
be interested in this section in the case of the functions which are semi-convex/semi-
concave w.r.t. all variables.

We first recall that, if O Cc RY is a convex domain and f : O — R, the function
f is semi-convex [resp. semi-concave] if there exists a constant C' > 0 such that
z — f(x)+ C|z|? is convex [resp. z — f(z) — C|x|* is concave].

In the sequel, we consider only the semi-convex case, the semi-concave one being
deduced by changing f in — f in the results below. In addition, we point out that all
the properties we are going to describe are nothing but properties of convex functions
which are translated in a suitable (and easy) way, the term C|z|? being smooth and
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therefore causing no problem for the differentiability.

We list all the properties in the following result

Proposition 5.1.1 — Properties of semi-convex/semi-concave functions.

If

O — R is a locally bounded functioni, semi-convez for a constant C' > 0, then

(2) f s locally Lipschitz continuous in O and if B(x,2r) C O, the Lipschitz constant

(v)

of f in B(z,r) depends only on || f|| o B@m)-
f s differentiable a.e. in O.

For any x € O, Dyf(z) # 0 and if p € Dy f(x), we have, for ally € O,
fly) = f(z) +p-(y—2) = 2Cly —af*. (5.1)

Let (f.)e be a sequence of functions which are semi-convex with the same con-
stant C' and which are converging to f locally uniformly in O and let (x). a
sequence of points of O which converges to v € O. If p. € Dy f(x:) and if
(per)er is subsequence of (pe). which converges to p then p € Do, f(z). In partic-
ular, if f. is differentiable at x. for any € and if f is differentiable at z, then

Df.(z.) = Df(z).

If ¢ is either a C' or a semi-concave function defined on O and if x is a
maximum point of f — ¢, then f s differentiable at x, ¢ is also differentiable
at x in the semi-concave case and Df(x) = Dp(x).

Of course we are not going to give a complete proof of Proposition 5.1.1: as we
mentioned it above, most of the results are very classical for convex functions and
extend without any difficulty to the case of semi-convex ones. But we provide some
comments for each of them.

1.

(7) and (i7) are famous classical results for convex functions, (i7) being a conse-
quence of (7) through Rademacher’s Theorem (even if historically Rademacher’s
Theorem is more a consequence of (ii)).

(7i7) also reflects a classical property of convex function, in particular Inequal-
ity (5.1) with the correcting term —2C|y — x|2.

(1v) is an easy consequence of Inequality (5.1). We point out that the existence
of converging subsequences (p.). is a consequence of (i) since it is easy to
show that |p.| is controlled by the Lipschitz constant of f. and these Lipschitz
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constants are uniformly bounded by (i) and the local uniform convergence of
the sequence (f.).. An interesting particular case is the choice when f. = f
where we have some kind of “continuity of the gradient” since, if we have a
sequence (z.). of points where f is differentiable which converges to z € O
where f is differentiable, then D f(z.) — D f(x). This is proved by a standard
compactness argument since D f(z) is the only possible limit of subsequences

of (Df(x:))e.

4. Property (v) will play a key role for us since we are going to be any time in
this context (we recall here that this will be only a property to be used in the
“tangential variables”). This property is a consequence of the following result:
if Dyf(x) # 0 AND DJ f(x) # 0 then f is differentiable at 2 and D, f(z) =
D5 f(z) = {Df(z)}. In our context, we know by (i77) that D, f(z) # 0 and
then we have two cases

—if ¢ is C', the maximum point property implies Dp(x) € DS f(x) which is
therefore non-empty and the conclusion follows readily.

— If ¢ is semi-concave, then Dj5p(z) # () by an analogous property of (iii) for
semi-concave function and the maximum point property both implies D¢ (z) C

DS f(z) and D, f(x) C Dyp(z). Hence both f and ¢ are differentiable at x
and Df(z) = Dy(x).

Remark 5.1.2 Property (iv) will mainly be used in the case when f is differentiable
at x. Then, for any sequence (x.). of points of O which converges to x € O and for
any choice of p. € Dy f-(x:), the sequence of (p.)e converges to Df(x). Indeed, the
sequence (p.). is bounded, hence it lies in a compact subset of RN and Df(x) is the
only possible limit for converging subsequences of (pe)e.

5.2 Quasi-convexity: definition and main proper-
ties

Let C C RY be a convex set. A quasi-conver function f : C — R is a function such
that, for any a € R, the lower level set {z : f(x) < a} is convex.

An equivalent definition is: for any z,y € C and A € (0, 1),
fz+ (1= Ay) <max{f(z), f(y)} .

Of course, convex functions are quasi-convex but the converse is false since quasi-
convex functions can be discontinuous, even if they are bounded: for example, take,
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in RY, the indicator function of the complementary of a convex set. Hence, one of the
differences between convex and quasi-convex functions is that quasi-convex functions
may have various “flat” zones, not only where they achieve their minimum.

5.2.1 Quasi-convex functions on the real line

We introduce the assumption

(Hqc-r) — Basic quasi-convexity assumption.

The function f : R — R is continuous, coercive and quasi-convez.

The first (classical) result we have for such functions is the
Lemma 5.2.1 If f : R — R satisfies (Hqc-r) then

(1) there exists m~(f) < my(f) such that the set where f achieves its minimum is
exactly the interval [m~=(f), m4(f)].

(i7) f is nonincreasing on | — oo, m™(f)[ and nondecreasing on |m.(f), +ool.

(iii) f = max{f*, f,} where f* is nondecreasing and f, is nonincreasing.

Proof — The proof of (i) is easy: since f is continuous and coercive, it is bounded from
below and achieves its minimum. Moreover by quasi-convexity, the set {z : f(z) <
ming(f)} is convex, hence this is an interval [m=(f), my(f)].

For (ii), we consider =,y €] — oco,m™(f)[ with z < y. If f(x) < f(y), then, by
the quasi-convexity of f, the convex set {t : f(t) < f(x)} contains z and m~(f),
hence all the interval [x,m™(f)]. A contradiction since y € [x,m™(f)]. Hence f is
nonincreasing on | — oo, m~ (f)[ and an analogous proof shows that f nondecreasing
on Jm.(f), +ool.

For (iii), we consider
fi(x) = min{f(t);¢t >z}, fy(x) = min{f(t);¢ < z}.
Clearly we have
fHa) = min(f) if o Smi (), fle) =min(f) itz =m(f),
while, by using (i1),
fia) = f@)ifz>mi(f) . fle)=min(f)ifz <m(f).
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The conclusion follows by analyzing the different cases © < m=(f), m=(f) < x <

m(f) and @ > m.(f).
Q.E.D.

5.2.2 On the maximum of two quasi-convex functions
In this section, we describe a result which is crucial in order to give sufficient conditions

for the uniqueness of Ishii solutions in problems with codimension 1 discontinuities
(see Section 9.2).

Let f,g: R — R satisfy (Hqc-r) and define

M (s) = max{f(s),9(s)} , ~ M'"5(s) := max{f*(s), gs(s)} .

We point out that we use the strange notation M™# to be consistent with Section 9.2.
Notice that the definition of M™# is not symmetric on f and g.

Lemma 5.2.2 We assume that f,g satisfy (Hqc-r). There ezists vy < vy such that

a(s) > fi(s) ifs<up,
M8(s) =< fi(s) =gy(s) ifrn <s<un,
fi(s) > go(s) if s>

Of course, miﬂg Mre8(s) is attained on [vy, vs].
se

Proof — We introduce the function o(s) := f*(s) — g,(s). Due to the properties of f*
and by, the function ¢ is nondecreasing. Moreover, due to the coercivity assumption,
o(s) = —oo as © — —oo and ¢(s) — 400 as © — +00. Therefore, there exists
v < vy such that p(s) < 0if s < vy, p(s) > 0if s > vy and p(s) =0 on vy, v,2]. The
lemma directly follows.

Q.E.D.

Proposition 5.2.3 Let f,g : R — R satisfy (Hqc-r). If my(f) < m~(g) then the
following property holds

min M (s) = min M™(s) .

seR seR
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Proof — Notice first that of course the inequality max{f, g} > max{f* g,} holds
simply because of the definition of f* and g,; therefore the same inequality holds
when taking the minimum over s.

In order to get the opposite inequality, we first remark that, by Lemma 5.2.2, the
minimum of M"™8 is attained at some point sy which satisfies sq € [v1, v5]. Moreover,
f*(s0) = g5(s0). There are three cases, some of which may be void.

First case: sy € [my(f),m (g)]. In this case the conclusion easily follows from the
fact that f*(so) = f(s0) = g»(s0) = g(s0): we deduce immediately that ming(M™8) =
M8 (sg) = M(sp) > ming(M).

Second case: sy < my(f) < m~(g). This implies that f*(sy) = ming(f) = g,(s0) and
ming (M"8) = M™8(s¢) = ming(f).

Considering the situation at s = m4 (f) we see that

J(m.(f) because m () < m™(g)
) because g, is nonincreasing
(so) by the definition of s
“(my(f)) because f*is flat for s < m, (f)

(m.()) = min(f)

We deduce that, at s = m,(f), M(my(f)) = ming(f) = ming(M*#). Hence, we
conclude that ming (M) > ming(M).

Third case: if so > m~(g) > m4(f), the proof is the same after reversing the roles of
f* and g,.

The conclusion is that, in any case, ming(M*®) > ming(M) which implies that
those minima are equal.

Q.E.D.

5.2.3 Application to quasi-convex Hamiltonians

As we have seen in the previous sections, throughout this book we deal with Hamil-
tonians of the form H(x,t,r, p). Those may be either convex, Lipschitz, or have a
quasi-convexity property that we describe now.

The quasi-convex case (mainly exposed in Part I1I) is defined in the following way:
if we set p = (p/,pn) with p’ € R¥"! and py € R, we will say that we are in the
quasi-conver case if
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(Hgc) — Quasi-convex Hamiltonians.
For any (x,t,r,p'), the function h: s — H(x,t,r,p' + sey) satisfies (Hqc—r)-

Using the previous sections, we can introduce the new Hamiltonians
#
H_(flf,t, Tap) = h'ﬁ(pN) = [H(x,t,r,p’ +pN6N)] )

H*(z,t,r,p) = hy(s) = [H(z,t,r,p + seN)]b

Thanks to the above results, we have H = max(H", H~). We use extensively this
decomposition in Part IIT and we point out that, if H satisfies (Hga_pnj), then the
Hamiltonians H*, H~ also satisfy (Hga_nj)-

5.3 A strange, Kirchhoff-related lemma

In Part III, the following lemma will be useful in order to connect general Kirchhoff
type conditions with flux-limited type conditions on the interface.

Lemma 5.3.1 Assume that f.g : R — R and h : R> — R are continuous functions
such that

(i) f is an increasing function with f(t) — +oo as t — 400,
(i1) g is a decreasing function with g(t) — +o00 as t — —o0,
(131) there exists a > 0 such that, for any ts > t; and sy < sy, we have
h(te, s2) — h(t1,s1) < —a(ty —t1) + a(sy — s1) -
If ¢ : R? = R is the function defined by
(L, s) == max(f(t), g(s), h(t, s)) ,
then v is a coercive continuous function in R? and there exists (t,5) such that

¢(£ 5) = Htlfsﬂ (¢(t’ 8)) (52)

and

f(t) =g(5) = h(t,s) . (5.3)
Moreover, if a point (t,5) € R? satisfies (5.3) then (,3) is a minimum point of 1.
Finally,

min {max(£(2), 9(s), h(t,5))} = max {min(f(2), 9(s), h(t, 5))}.

t,s
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In the statement of the above lemma, we point out that the assumption on A implies
that h(t,s) is a strictly decreasing function of ¢ and a strictly increasing function of
s with h(t,s) — +oo if t = —o0, s remaining bounded or if s — 400, ¢ remaining
bounded.

Proof — Using the three properties we impose on f, g, h, and in particular, the con-
sequences of the assumption on h we describe above, it is easy to prove that v is
actually continuous and coercive; therefore such a minimum point (%, 5) exists.

We have to show that (5.3) holds and to do so, we may assume without loss of
generality that f is strictly increasing and g is strictly decreasing. Otherwise, we may
prove the result for f(t) 4+ et and g(s) — es for € > 0 and pass to the limit ¢ — 0
remarking that the associated minimum points remain in a fixed compact subset of
R2.

If m = min, 4 (¥(t, s)), we first notice that h(t,s) = m. Otherwise h(¢,5) < m and
it is clear enough by using the monotonicity of f and g that, for § > 0 small enough,
then

Wt —96,540) <(t,3),
a contradiction.

In the same way, if f(#) < m, using the properties of h, there exists 4, > 0 small
enough such that h(t + 0,5+ ') < m, g(58+ ') < m and ¥(t + 0,5+ ') < ¥(t,3),
again a contradiction.

A similar proof allowing to conclude that ¢g(s5) = m, (5.3) holds.

Notice that if we have replaced f(t) by f(t) + et and g(t) by g(s) — s, we can let
¢ tend to 0 and keep this property for at least one minimum point.

Now we consider a point (£,5) € R? which satisfies (5.3) and we pick any point
(t,s) € R% We examine the different possible cases, taking into account the particular
form of 1) and the monotonicity properties of f, g, h, using that, of course, 1(t,§) =

f(#) =g(3) = h(t,3)

L Ift >t 0t s) > f(t) > f(t) = ¥(L,3).

2. If s < &, the same conclusion holds by using that g is decreasing.

3. If t <t and s > 3, then v(t,s) > h(t,s) > h(t,3) = ¥(L, 3).

And the conclusion follows since we have obtained that ¢ reaches its minimum at

(t, 3).
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For the last property, we set

X(t;s) = min(f(t), g(s), h(t, s)) -
If, as above, (t,5) € R? is a point which satisfies (5.3), we have x(t,3) = f(f) = g(3) =
h(t,3) and by similar arguments as above

LIft <t x(t,s) < f(t) < f(t) = x(1, ).

2. If s > s, the same conclusion holds by using that ¢ is decreasing.

3. Ift >t and s < 3, then x(t,s) < h(t,s) < h(t,3) = x(¢, 3).

And the proof is complete.
Q.E.D.

Remark 5.3.2 A similar result to the last part of Lemma 5.5.1, but with a simpler
proof, is

min{max(f(t),g(t))} = max{min(f(t),g(t))} . (5.4)

This equality is also useful in Part I1I.

5.4 A few results for penalized problems

In viscosity solutions’ theory, several proofs require penalization arguments, i.e. ap-
proximations of maxima or minima by penalizing the function. The most emblematic
example is certainly the doubling of variables in comparison proofs but there are
several other examples, such as the treatment of some boundary conditions (evolu-
tion equations set in (0,7%) which hold up to time Ty or more generally boundary
conditions in the case when all dynamics are pointing inward the domain) or the
convergence of regularization by inf or sup-convolution...etc.

Instead of referring to these (rather easy) results as “standard results” all along this
book, we have decided to provide two general lemmas gathering the key informations,
one for penalization in compact sets, the other one (more restrictive) concerns the
penalization at infinity.
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5.4.1 The compact case

Lemma 5.4.1 — Penalization procedure, the compact case.

Letw : K — R be an u.s.c. function defined on some compact set K C RP and F C K
be closed. We denote by M := max,cpw(z). For any e >0 let x. : K — RU {400}
satisfying

(1) the functions {x.} are uniformly bounded from below and l.s.c.V;

{0 ifz€F,

(i) lminf, xe(z) = ifz€ K\ F;

(i13) for any zo € F, there exists (2§). such that w(z§) — x:(25) — w(zp) as e — 0.
Then

1. M, := max (w(z) — xe(2)) = M as e — 0.
zE

2. For any € > 0 let z. be a mazimum point of z — w(z) — x:(2). If (z2) 15 a
subsequence of (z.) converging to some Z, then

zelF,wiz) =M, w(izs) = w(z), xe(ze) > 0.

3. If w = wy; — wy where wy is u.s.c. and wy is l.s.c., then wi(zo) — wq(2) and
wa(zer) = wa(Z2).

4. If there is a unique mazimum point Z of w on F then z. — z, w(z.) — w(Z2)
and xe(z:) = 0.

Proof — Since K is compact and F' is a closed subset of K, there exists zy such that
w(zo) = M. By the definition of z. and (iii), we have
M +0.(1) = w(zp) — x=(25) < w(2e) — xe(ze) = M-

and this inequality immediately gives lim sup M. > M.

On the other hand, if we extract a converging subsequence z.» — z € K, by letting
¢’ — 0 and using the upper semicontinuity of w we obtain

M <liminf (w(zo) — xer(22)) < limsup (w(zr) — xer(22)) < w(Z) — liminf, x.(2) .

(Min the expected generalized sense in order to take into account the +oco value at some points if
necessary.
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Using (i), we see that necessarily z € F since liminf, x.(Z) cannot be +o0o, therefore
liminf, x.(Z) = 0. We deduce from this property and the above inequality that w(z) >
M but since z € F, we conclude that w(z) = M.

Gathering all these informations, the above inequality can be rewritten as
M <liminf (w(zo) — xer(22)) < limsup (w(zer) — xer(2er)) < M,
and therefore Mo = w(zo) — xer(2e) — M.

Extracting first a subsequence such that lim M., = liminf M, and then a converg-
ing subsequence out of (z. )., the above argument shows that liminf M. = M and
therefore M, — M. This proves 1.

Point 2 is a direct consequence of the above argument: for any converging subse-
quence zo — zZ € K, we have Z € F, w(Z) = M and since limsup w(zo) < w(z) < M
by the upper semi-continuity of w and liminf y.(z) > liminf, x.(2) = 0, the
only possibility to have such a convergence to M is w(zs) — M = w(z) and
lim xo (zr) = 0.

For Point 3, the argument is analogous: since lim sup w; (zo) < wy(2) and lim inf wy(z.) >
wy(Z), the only possibility to have w(z.) — w(Z) is to have at the same time
wy(zer) = wi(Z) and wy(ze) — wo(Z2).

Finally 4. comes from a standard compactness argument.

Q.E.D.

Typical application: the doubling of variables — After the localization procedure
described in Section 2.2, we get two functions u, v : B(x,r) — R for some z € RY and
r >0, u being u.s.c. while v is L.s.c. and we are considering M := max, g (u(z) —

v(x)), that we approximate by the maximum of the function

Ye(x,y) = u(z) —v(y) — ]x;—zy]Q .

We apply Lemma 5.4.1 with K = B(z,r) x B(z,r), F = KN {(z,y): © =y},

_ _ _ eyl

= (-T,y) ) w(a:,y) - U(.CE) - U(y) ) Xs(ajvy) - T
and w; = u, wy = v. We notice that Assumptions (i) — (i) — (i27) for . are obviously
satisfied with 2§ = 2o for any e.

So, if (z,y.) € K is a maximum point of ¢, in K and if (z.,y.) is a converging
subsequence of maximum points of 1./, we first have that (z.,y-) = (Z,Z) € F and

_ |xa’ - ya’|2

u($6’> — u('i;) ) U(?Ja’) - U(ZE) ) (6’)2 —0 )
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which is the classical result we use.

Remarks on the assumptions

(a) As a first comment, we point out that, one way or the other, the “compactness”
assumption on K in Lemma 5.4.1 is necessary, although it may be replaced by a
stronger assumption on w like coercivity which prevents infinity to play a role, see
Subsection 5.4.2 below.

Moreover, this type of lemma does not hold in non-compact situations, in general,
even if we replace max by sup. Indeed if we look at the following penalization

=yl

2 _5’:[‘ )

wa(xa y) = sin(:vQ) - Sin(y2)
but with K = R x R and F = {(z,y) : = = y}, the reader will easily check, using
the non-uniform continuity of sin(z?), that M, exists and M. — 2 as ¢ — 0 while

M = sup(, e p(sin(z?) —sin(y?)) = 0.

(b) Notice that y. can take the value +o0, a case which gives important applications
too. For instance if K = [0,7%], we can handle terms like ¢/(Tf — t) in x., which
prevent the maximum to be attained at ¢ = T%. The lower semicontinuity property
for x. holds since

tligplf Xe(t) = 400

t<T}

Similarly if © is a bounded smooth domain, we can use a penalization like e[d(z)] ™!

in x. : @ = RU{+o0o} where d(-) stands for the distance to the boundary of (2.
Such penalizations avoid maximum points at the boundary —See for instance Propo-
sition 2.5.1 where this approached is used.

(c) Finally, let us explain the (admittedly strange) Assumption (iii) for x.. In state-
constrained problems where the subsolution inequalities hold only in a domain 2
while the supersolution ones hold on €, one needs to “push inside 7 the point
x corresponding to the subsolution. In order to prove comparison result for such
problems, Soner [157, 158] introduces penalization terms of the form

2
r—y

€

+n(y)

where, if 0€) is smooth, n denotes an extension to a neighborhood of 02 of the
unit outward normal to 0f). But such penalization terms do not tend to 0 if we
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choose as above x = y. Moreover, it is known that a cone condition should hold
for the subsolution. So, here we require by (iii) that for any z € 0f, there exist
(e, y:) — (Z,7) such that

— u(Z) —v(z) .

Te — Ye

U(:L‘g) - U(ya) - + n(y£>

This assumption is satisfied by z. = & —en(z), y. = ¥ if u is continuous or if the cone
condition holds for u.

5.4.2 Penalization at infinity

The following result is connected to our localization procedure.

Proposition 5.4.2 — Penalization at infinity.

Let w : RY — R a bounded u.s.c. function and (wq)a>o0 a sequence of u.s.c. functions
such that

(i) wa(x) = —00 as |z| = +oo,

(i1) we(z) = w(z) when a — 0 for any x € RY.

Then, if M, := maxgn(w,) and M = supgn~(w), we have
liminf M, > M .

Moreover, if wa(x) = w(x) — ax(z) where x : RN — R is a coercive, locally bounded,
l.s.c. function and if x, is such that wy(xy) = M, then w(z,) — M and ax(z,) — 0.

Proof — By definition of the supremum, there exists a sequence (x3,); of points in RY
such that w(z,) — M and, for any k,

Wo(xg) < M, .

Taking the liminf as a tend to 0 and letting & tend to infinity, we obtain the first part
of the result.

For the second part, we use the fact that y is bounded from below and therefore
M, < M — am, where m = ming~ (x). Hence limsup M, < M and therefore M, —
M. In other words

Wo (o) = w(xy) — ax(xy) = M .
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But —ax(z,) < —am and therefore
w(Ty) = My + ax(zy) > My +am .
Hence liminf w(x,) > M but obviously lim sup w(z,) < M. This yields limw(z,) =

M and, as a consequence, —ax(z,) = My — w(xy) — 0.
Q.E.D.



Part 11

Deterministic Control Problems
and Hamilton-Jacobi Equations for
Codimension One Discontinuities
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Chapter 6

Introduction : Ishii Solutions for
the Hyperplane Case

Abstract. This introduction describes the difficulties to address the simplest prob-
lems involving discontinuities, i.e. the case of a codimension 1 discontinuity on an
hyperplane, both from the pde and control points-of-view. The uniqueness/comparison
questions are especially emphasized.

In this part, we consider one of the simplest and emblematic case of discontinuity for
an equation or a control problem: the case when this discontinuity is an hyperplane,
say H = {zy = 0}. In terms of stratification, as introduced in Section 2.3, this is
one of the simplest examples of stratification of RY x (0,7}) for which M+ =
(Q UQy) x (0,T4), MY =H x (0,T;) and M* = () for any k = 0..(N — 1), where

le{xN>O}, QQI{Z‘N<0}

For simplicity of notations, we also write {2y = H and we take the convention to
denote by ey = (0,...,0,1) the unit vector pointing inside €2y, so that ey is also the
outward unit normal to €2, see figure 6.1 below.

Two types of questions can be addressed whether we choose the pde or control
point of view and, in this part, both will be very connected since we mainly consider
Hamilton-Jacobi-Bellman type equations.

169
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QQ Q1
/> —> EN
H={$N=0}
—————————————— o ---—--------—>TN

Figure 6.1: Setting of the codimension one case

6.1 The pde viewpoint

From the pde viewpoint, the main question concerns the existence and uniqueness of
solutions to the problem

w+ Hy(x,t,u,Du) =0 for z € Oy x (0,T%),
u + Hay(x,t,u, Du) =0 for z € Qy x (0,T%) , (6.1)
u(z,0) = up(x) for z € RY |

under some standard assumptions on Hy, Hs and ug. It is also very natural to consider
a specific control problem or pde on H, which amounts to adding an equation

w + Ho(z,t,u, Dru) = 0 for x € H | (6.2)

where Dru stands for the tangential derivative of u, i.e. the (N — 1) first components
of the gradient, leaving out the normal derivative. However, for reasons that will be
exposed later in Section 10, adding such a condition is not completely tractable in the
context of Ishii solutions and is more relevant in the context of flux-limited solutions
or junction conditions (see Part III). Therefore, except for Section 10, we restrict
ourselves to problem (6.1).

As we explained in Section 2.1, the conditions on H for those equations have to be
understood in the relaxed (Ishii) sense, namely
max <ut + Hy(x,t,u, Du),u; + Ha(x, t, u, Du))

>0,
(6.3)
min (ut + Hy(z,t,u, Du), uy + Ha(x, t, u, Du)) <0,
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meaning that for the supersolution [resp. subsolution] condition, at least one of the
inequation for H; or Hy has to hold.

6.2 The control viewpoint

From the control viewpoint, we are in the situation where different dynamics, discount
factors and costs are defined on €1 and 5. A double question arises: (i) how to define
a global control problem in RY ? (i7) once this is done, if each Hamiltonian in (6.1) is
associated to the control problem in the corresponding domain, is the “usual” value
function still the unique solution of (6.1)7

In this chapter, we combine several tools introduced in Part I in order to address
these problems. Notice that the present stratification of RY is obviously a typical
(AFS). So, assuming moreover that each Hamiltonian satisfies (NC), (TC) and
(Mon), we are in what we called a “good” framework for treating discontinuities
in the sense of Definition 4.4.1 (here, no diffeomorphism is needed since the stratifi-
cation is flat).

6.3 The uniqueness question

As we will see, Ishii’s notion of solution is not strong enough to ensure comparison
(and uniqueness) in this setting in general: this is already true for Equation (6.1) but
the situation is even worse when adding (6.2) on H. Let us give a brief overview of
this story here.

The general formulation of control problems described in Chapter 3 provides a
“natural” control solution of (6.1), obtained by minimizing a cost over all the possible
trajectories. We denoted this solutin by U~. By Corollary 3.4.3, U™ is in fact the
minimal supersolution (and solution) of (6.1).

But we introduce another value function denoted by U™ where we minimize over a
subset of those trajectories, that are called regular. We will show that U™ is also an
Ishii solution of (6.1), and it is even the maximal Ishii (sub)solution of (6.1). In general
U~ # UT and we provide an explicit example of such a configuration. Finally both
U~ and U™ can be characterized by means of an additional “tangential” Hamiltonian
on H. Later in this part, we will also see that U™ is the limit of the vanishing viscosity
method.

At this point, the reader may think that there is no difference when adding (6.2) to
problem (6.1), after modifying in a suitable way the specific control problem on H.
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It is, of course, the case for U™ where again the general results of Chapter 3 apply.

But the determination of the maximal Ishii (sub)solution is more tricky: to under-
stand why, we refer the reader to the Dirichlet/exit time problem for deterministic
control problem in a domain; it is shown in [25] that, if the minimal solution of the
Dirichlet problem is actually given by an analogue of the value function U~ for such
problems, the maximal one is obtained by considering the “worse stopping time” on
the boundary (see also [32]). This differential game feature arises here in a more
complicated way and we give some elements to understand it in Section 10.

In the next four chapters, we give a complete study of (6.1): we first introduce
the control problem, define and characterize U~. Then we construct and study U™.
Some uniqueness and non-uniqueness results are proved and we discuss the problem
of adding (6.2) in the last Chapter 10.



Chapter 7

The Control Problem and the
“Natural” Value Function

Abstract. This chapter is devoted to study the properties of the “natural” value
function U™ under the “good assumptions”, namely the normal controllability and
the tangential continuity. The main results are that U~ can be characterized as the
minimal Ishii supersolution (and solution) of the standard HJB FEquation and the
unique solution of an HJB problem provided that an additional subsolution condition
18 1mposed on the discontinuity.

Assuming that (6.1) is associated to a control problem means that there exists
some triplets dynamics-discount factors-costs (biyciy i)+ Qi x [0, Ty] x A; — RNT3 for
i = 1,2, such that, for any (z,¢,u,p) € Q; x (0,Tf] x R x RV,

Hi(x>ta U,p) = Ssup {_bz(xatv ai) “p + Ci<x>t7 ai)u - li(ajatv al)} .
aiGAi

All these (b;, ¢;,l;) can be assumed as well to be defined on RY x [0, T}] x A;. More-
over, in the following we assume that they satisfy the basic assumptions (Hga_cp)
and the normal controllability assumption

(NCjy) — Normal Controllability.
For any (z,t) € H x [0,T%], there exists § = 0(x,t) and a neighborhood V = V(x,t)
such that, for any (y,s) € V

[—8,8] C {bi(y,s,01) -en, a1 € A1} if (y,8) € Q1 ,

[—6,0] C {ba(y,s,0) - en, a2 € Ao} if (y,s) € Qa,
where ey = (0,0---,0,1) € RV,
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It is easy to check that Assumption (NCy) implies (NC) for H; and H; and
we refer below to assumptions (Hga_cp) for (b;,¢;,1;), i = 1,2 and (NCy) as the
“standard assumptions in the codimension-1 case”.

7.1 Finding trajectories by differential inclusions

In order to introduce the set-valued map BCL, we first notice that all the equations
in (6.1) have the form “u; + H(x,t,u, Du)”, which means that bi(x,s,«;) = —1 for
all i = 1,2 and all (z,s,q;) € Q; x (0,Ty] x A;. Therefore, for i = 1,2, z € ; and
t € [0,Ty] we set

BCL;(z,t) := ((bi, —1),¢;, ;) (x, t, A;)

and, for z € RN ¢t € (O,Tf]a

BCL(x,t) ifre,
BCL(z,t) := ¢ BCLy(z,t) if x € Qy,
@(BCL1, BCL,)(z,t) ifzeH ,

where ¢6(E, Es) denotes the closure of the convex hull of the sets Fy, F5. Notice that
here, since BCL; and BCL, have compact images, the convex closure reduces to the
union of all possible convex combinations of elements.

For t = 0 we need to add more information: since we consider a finite horizon
problem, we have to be able to stop the trajectory at time s = 0, and we want the
initial condition u(0) = ug to be encoded through the Hamiltonian H;,;(x, u, Du) =
u — ug. So, setting Init(x) := {(0,0), 1, up(z)}, we are led to define

co(BCL(z,0) U Init(z)) ifxe,
BCL(z,0) := ¢ @(BCLy(z,0) U Init(z)) if v € Qy, (7.1)
¢o(BCL;(z,0) UBCLy(z,0) U Init(x)) ifx e H .

At this stage, we have defined rigorously BCL following the general framework
described in Part I—Chapter 3 but, since we are mainly in a case where 0! = —1,
we are going to drop from now on the b'-part in BCL and, in order to simplify
the notations, we just write b = b®. In fact, the only place where b' plays a role is
t = 0. Indeed, because of the convex hull, BCL(x,0) contains all the time dynamics
b' € [—1,0] However, in our case the initial conditions reduce to

u(z,0) < (ug)*(z) and wv(z,0) > up(xz) in RY,
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for a subsolution v and a supersolution v, hence they produce no additional difficulty.

The very first checking in order to solve the control problem is the

Lemma 7.1.1 The set-valued map BCL satisfies (Hpcr)-

Proof — Concerning (Hpcr) fund, the proof is quite straightforward by construction:
first notice that since all the b;, [;, ¢; are bounded by some constant M > 0, then it
is the same for all the elements in BCL. Then, by construction BCL(z, t) is closed,
hence compact, and it is convex. It remains to see that (z,¢) — BCL(z,t) is upper
semi-continuous which is clear since each BCL;(x,t) is upper semi-continuous and
we just make a convex hull of them.

We turn now to (Hpcr)struet, which follows almost immediately from (7.1): () is
obviously satisfied by our choice for b which always belongs to [—1,0]. Point (i4)
clearly holds if s > 0. Indeed, if we choose K = M (the constant appearing in
(HpcL) funa), since b* = —1 for s > 0 we get the inequality. Now, if s = 0 the
inequality comes from the fact that —Kb" + ¢ > ¢ = 1. Point (i4) is included in (7.1)
and point (iv) follows from the fact that this condition can only happen for s = 0
here (otherwise b* = —1), in which case we have c=c=1 > 0.

Q.E.D.

Thanks to Theorem 3.2.1 (and recalling that we have dropped the b* = —1 term),
we solve the differential inclusion

(X,D,L)(s) € BCL(X(s),t —s) forae. s € [0,+00),

(7.2)
(X, D, L)(0) = (,0,0) .

Notice that we have used the fact that T'(s) = t — s when the starting point of the
(X, T)-trajectory is (x,t). As we saw in Chapter 3, we we mostly write

):((s =b(X(s),t — s)
D(s) =c(X(s),t —s) (7.3)
L(s) =1(X(s),t—s)

in order to remember that b, ¢ and [ correspond to a specific choice in the set

BCL(X(s),t—s), but when needed we will also introduce a control a(-) to represent
(b,¢,1) as (b, ¢, )(X(5),t — 5), a(s)) .

Now the aim is to give a more precise description of each trajectory. For the sake
of clarity, we denote by (by, ¢z, 1) the (b,¢,1) when X (s) € H which are of course
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obtained through a convex combination of all the (b;, ¢;,1;), ¢ = 1,2. So, in order to
take this into account, we introduce the “extended control space”

A=A x Ay x A where A= {(u1, p2) € [0,11*: piy + pg = 1},

and A := L>(0,T}; A). The extended control takes the form a = (a1, a9, 11, p12) and
ifr e H,
(bH7 CH, l?'[) = Ml(bla 1, ll) + ,U/2<627 C, ZQ) )

with gy + pe = 1, where by, ¢1,[; are computed at the point (z,¢, 1) and by, o, l5 at
the point (z,t, ay).

Lemma 7.1.2 For any trajectory (X, D, L) of (7.2) there exists a control a(-) =
(a1, g, pu1, p12)(+) € A such that

(X, D, L)(s) = (br,c1,11)(X (), t — 5, 01(3)) U x (5) e}
+ (ba, €2, 12)(X (), t — 5, aa(s)) Lyx(s)e0,)
+ (ba, ca, 1) (X (), t — 8, a(8)) Ly x(s)emy

and by (X (s),t —s,a(s)) -exn =0 for almost any s € (t,T}) such that X(s) € H.

Proof — Given a trajectory, we apply Filippov’s Lemma (cf. [12, Theorem 8.2.10]).
To do so, we define the map g : R x A — R as follows

bi(X(s),t—s,cq) if X(s)>0
g(s,a) =< by(X(s),t —s,az) if X(s) <0
bu(X(s),t—s,a) if X(s)=0,

where a = (aq, ag, i1, p2) € A.

We claim that ¢ is a Caratheodory map. Indeed, it is first clear that, for fixed s,
the function a — ¢(s,a) is continuous. Then, in order to check that g is measurable
with respect to its first argument we fix a € A, an open set O C RY and evaluate

9o (0)={s>0:9(s,a)NO #0}
that we split into three components, the first one being
9o (O)N{s>0:X(s) <0} ={s>0:b(X(s),t—s,01) € O}N{s > 0: X(s) <0} .

Since the function s — by (X (s),t — s, aq) is continuous, this set is the intersection of
open sets, hence it is open and therefore measurable. The same argument works for
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the other components, namely {s > 0 : X(s) < 0} and {s > 0 : X(s) = 0} which
finishes the claim.

The function s — X(s) is measurable and, for any s, the differential inclusion

implies that
X(s) € g(s,4)
therefore, by Filippov’s Lemma, there exists a measurable map a(-) = (o, ag, py, p2)(+) €
A such that (7.4) is fulfilled. In particular, by the definition of g, we have for a.e.
s € [0,T%]
bi(X(s),t —s,04(s)) if X(s) >0
X(s) =< by (X(s),t—s,aa(s)) if X(s) <0 (7.4)
by (X(s),t —s,a(s)) if X(s)=0.

The last property is a consequence of Stampacchia’s theorem (see for instance [101]):
setting y(s) := Xn(s), then ¢(s) = 0 almost everywhere on the set {y(s) = 0}. But
y(s) = by (X (s),t — s,a(s)) - ey on this set, so the conclusion follows.

Q.E.D.

7.2 The U~ value function

Solving (7.2) with BCL yields a set T (x,t) of all admissible trajectories, without
specific condition on H for (6.1) (see Section 3.2.3). Changing slightly the notations
of this section to emphasize the role of the control a(-), we first define the value
function

U™ (z,t) := inf) {/o (X (s),t—s,a(s))exp(—D(s))ds + ug(X()) exp(—D(t))} :

T(x,t

and the aim is now to prove that U~ is a viscosity solution of (6.1). To do so, we use
the control approach described in Section 3.2: recalling that we use the notation b for
b®, the “global” Hamiltonian is given by

]F(:c,t,u, (pzapt)) = sSup (_ (ba_l) : (pxapt> +Cu—l) .
(b,c,l)EBCL(,t)

Writing p for p, in order to simplify the notations, we decompose
F(I’, t7 u, (pa:vpt)) = Dt + H(‘Tv t? uvp) ’

where H(z,t,u,p) = H;(x,t,u,p) if € Q; for i = 1,2. By the upper-semicontinuity
of BCL, H and F are upper-semi-continuous and we have the
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Lemma 7.2.1 Ifx € H then, for allt € [0,Ty], 7 €R, p, =p € RY
H(z,t,r,p) = max (Hl(x,t, r,p), Ho(z,t, u,p)> )
As a direct consequence, for any x € H,t € [0,Tf], ue R, p, =p€eRY p,eR

]F(I7ta u, (pa:apt)) = max (pt + Hl(l‘ata u:p)apt + HQ(xa t7uap)) )
IF*(l’7ta u, (p:vvpt)) = min (pt + Hl(flf, t7u7p)7pt + HQ(I7ta u7p)) :

Proof —1f (b,¢,l) € BCL(z,t), it can be written as a convex combination of some
(bi, ciyl;) € BCLy(x,t), i = 1,2, and thefore the same is true for —b-p+ cu—1[, namely

—b'P+C7“—l:Zﬂi(—bi'pﬂLCﬁ—li),

for some 0 < p; < 1 with ) . p; = 1. Since (=b; - p+ ;v — ;) < Hi(z,t,u,p), we
deduce that —b-p+ cr — [ < max (Hl(x, t,r,p), Ho(z,t, u,p)) and therefore

H(w, t,7,p) < max (H(z,t,7,p), Ha(w, t,u,7))

But H(z,t,r,p) > (=b;-p+cir—1;) for any (b, ¢;, ;) € BCL;(z,t) so that H(z,t,r,p) >
H;(x,t,r,p) for i = 1,2. The representation of H as the max follows immediately.

Concerning F, the first equality (as a maximum) is trivial and the representation
formula for F, derives directly from its definition as the lim inf, knowing that of course
H, and Hs are both continuous up to H.

Q.E.D.

Then, by using all the results of Section 3.2, we have the

Proposition 7.2.2 — Minimality of the value function.

Assume that the “standard assumptions in the codimension-1 case” are satisfied. Then
the value function U~ is an Ishii viscosity solutions of (6.1). Moreover U~ is the
minimal supersolution of (6.1).

We leave the proof of the reader since it immediately follows from Theorem 3.3.4
and Corollary 3.4.3. This result gives a good amount of information on U~ but not
all of them.

To go further, we have to examine more carefully the viscosity inequality on H which
is done in the next section. However, in order to do so we need first to make sure that
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(U7)* is regular in the sense of Definition 2.4.1. We provide below a direct “control
proof” of this fact but for a pde proof, the reader can also check that Proposition 2.4.2
applies here since we assume (INCy). Notice also that the proof below only uses
“outward normal controllability” both from 2; and €2,.

Lemma 7.2.3 Assume that the “standard assumptions in the codimension-1 case”
are satisfied, then

(U )mxorp)" = (U7)" onH x (0,Ty),

where (U™)jyx 0,1y denotes the restriction to H x (0,Ty) of U™,

Proof — Let (x,t) € H x (0,7f). By definition of (U~)*, there exists a sequence
(Zn,tn) = (x,t) such that U™ (x,,t,) — (U7)*(x,t). The statement of Lemma 7.2.3
means that we can assume that z,, € H. Indeed, if z,, € 2, we use the normal
controllability assumption (NCy) at (x,t): there exists § > 0 and a control «; such
that by(x,t, 1) - ey = —d < 0. Considering the trajectory with constant control ay

Y(s)=b(Y(s),tn —s,00) , Y(0)=u,, (7.5)

it is easy to show that 7! the first exit time of the trajectory Y from Q; tends

to 0 as n — +o0o. By the Dynamic Programming Principle, denoting (Z,,t,) =
(X(7}),t —7}), we have

n n

U (zp, tn) < /0

where 0,(1) — 0. Therefore (Z,,t,) — (z,t), U (2, t,) — (U7 )*(x,t) and z,, € H,
which is exactly what we wanted to prove. The same results holds if x,, € 2, using a
control such that be(z,t,a0) - ey =6 > 0.

e

WY (), tp—s,01) € PO st U™ (&, £,) € P = U™ (Z, 1) +0n(1)

Q.E.D.

7.3 The complementary equation

This section is motivated in particular by Lemma 7.1.2 where the term (by, ¢y, ly)
plays a key role as a coupling between the control problems in €2; and €.

Following Section 4.3, we introduce the tangential elements in BCL which maintain
the trajectories on #H: for any x € H, t € [0,T}], we set

BCLy(z,t) := {(b,¢,1) € BCL(z,t) : b- ey = 0} .
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Similarly we define Bp(z,t) for the set-valued map of tangential dynamics: any b €
Br(z,t) can be expressed as a convex combination

b= Mlbl + ,ugbg (76)

for which (p1by + p2bs) - ey = 0 with py + po = 1, pg, o € [0, 1]. We also introduce
tangential Hamiltonian which was already considered

Hr(z,t,u,p):= sup {—b-p+cu—l} ) (7.7)
BCLy(zt)

Notice that p, + Hrp(x,t,u,p) = F¥(z,t,u, (p,p;)) on MY = H x (0,T}) and, by
Lemma 4.4.2 with k = N, the Hamiltonian Hr satisfies (T'C); in particular,

HT is continuous in z, ¢, uniformly with respect to (u, p) in compact sets. Such prop-
erty can also be obtained by using the representation formula given by Lemma 9.2.1.

Before deriving an Hp-subsolution property, we need first the following preliminary
result which allows us to build trajectories which remains on H, at least for some
time.

Lemma 7.3.1 Let (z,t) € H x (0,7f) and (b,c,l) € BCLy(z,t), obtained as a
convex combination (b, c,l) = py(by, c1,l1) + pa(ba, co,lo). If

(b1(z,t,a1) - en) - (ba(x,t,a1) - en) <0,

there exists a neighborhood V of (z,t) in H x (0,T}) and a Lipschitz continuous map

PV — RYXRXR, such that (x,t) = (b, ¢, 1) and ¥ (y, s) = (b(y,s),c(y, s),l(y, s)) €
BCLy(y, s) for any (y,s) € V.

Proof — Our assumption means that
(1by (2, t, 00) + poba(x,t, ) ey = 0.
Now, if (y, s) is close enough to (z,t) we set

bQ(y,S,OCQ) TEN
Y, s, Oll) - bl(y, S, 041)) *EN

# . f. #
Y,S8) = , =1—p.
iy s) = g Ha 1
By this choice we have 0 < 14, i < 1 and (/ﬂi(y, )b (y, s, 00) + 1 (y, $)ba(y, s, a2)> .

en = 0, which yields a tangential dynamic which is well-defined as long as (by(y, s, a1)—
bi1(y,s, 1)) - exy # 0. In particular this is true in a neighborhood of (z, ).



HJ-Equations with Discontinuities: Codimension-1 Discontinuities 181

Then the function 1 given by

w(ya S) = /,Lji(y,S)(bl,Cl, ll) + Mg(y7 8)<b27627l2) )

satisfies all the desired properties: it is Lipschitz continuous since by, by are Lipschitz
continuous in z, ¢t and since i (x,t) = pr, ph(z,t) = po, ¥(2,t) = (b, ¢,1).
Q.E.D.

We now prove that a complementary subsolution inequality holds on H:

Proposition 7.3.2 Assume that the “standard assumptions in the codimension-1
case” are satisfied. Then the value function U™ satisfies the viscosity inequality

(U + HT(:c,t, (U, DT(U*)*> <0 onHx(0,Ty).

We point out that in Proposition 7.3.2, the H x (0, T)-viscosity inequality means
that we look at maximum points of (U™)* — ¢ on H x (0,7) where ¢ is a smooth
test-function on H x (0, TY).

Remark 7.3.3 In other words, U™ is an Ishii solution satisfying a complemented
Hr-inequality on H. As we will see in Part 1V, this can be interpreted as U~ being a
stratified solution of the problem. We will actually prove that it is the unique stratified
solution.

Proof —1If ¢ is a smooth test-function on H x (0,7y), we have to prove that, if
(x,t) € H x (0,T%) is a maximum point on H x (0,7%) of (U™)* — ¢, then (assuming
without loss of generality that (U™)*(z,t) = ¢(z,1)),

de(x,t) + Hr(z,t, ¢(x,t), Dro(x,t)) <0 on H x (0,T%) .
(a) Using the dynamic programming principle — By Lemma 7.2.3, we can pick a
sequence (z,,t,) — (z,t) such that U~ (z,,t,) — (U")*(z,t) with z, € H for all

n € N. By the dynamic programming principle, for any 7 > 0 and any trajectory
(Xn,a,) in T(x,,t,) we have

U™ (zp,tn) §/ L(Xn(8), tn— s, an(s)) e P ds+ U™ (X (1), tn—7) e P2 (7.8)
0

Our aim is to show that this inequality implies

Oi(x,t) — b Do(x,t) + cp(x,t) —1 <0,
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for any (b,¢,l) € BCLy(z,t), which will give the conclusion Hy < 0. However,
replacing U™ by ¢ above can be done only for trajectories which stay on H, at least
for some interval [0, 7].

(b) Constructing a trajectory which stays on H — We start from the fact that by
definition of BCLy(z,t), (b,¢,l) can be expressed as a convex combination of the
(bi, ¢, ;) for © = 1,2, namely

(b,c,1) = pi(by, c1,lh) + pa(ba, c2,l2)

with gy + pe = 1, g, pe € [0,1] and (b1 + pobe) - ey = 0. We denote by «; the
control which is associated to (b;, ¢;, ;)

Slightly modifying b; and by by using the normal controllability on H, we may
assume without loss of generality that b; - ey # 0 and by - ey # 0 while keeping
(b1 + p2bs) - ey = 0. Therefore, either by -eny < 0 < by-ey or by -ey >0 > by- ey
but in both cases Lemma 7.3.1 provides us with a function ¢ that we use to solve the
ode

(Xn(5), Du(5), Ln(s)) = (Xn(s),tn — 5) ,
with (X,(0), Du(0), Ly (0)) = (4, 0,0).

Because of the properties of ¢, the Cauchy-Lipschitz Theorem implies that there
exists a unique solution which, for (z,,t,) close enough to (x,t), is defined on a small
but fixed (i.e. independent of n) interval of time [0, 7] and (X,,, Dy, Ly,) € T (2, ty)
for any n. Moreover, X,, € H on [0, 7].

(c) Deriving the tangential inequality — Since U™ (x,,,t,) = (U7)*(x,t) + 0,(1) =
o(x,t) + 0,(1) while U™ < ¢ on H x (0,T%), using X,, in (7.8) we get

G(2n, tn) + 0n(1) < /OT Ly(s)e™P" ds + ¢(Xon(7), t — 1) P (7.9)

We first let n tend to infinity. Due to the Lipschitz property of v, up to extraction
we see that (X, Dy, L,) = (X, D, L) in W where at least on [0, 7],

(X(s), D(s), L(s)) = ¥ (X(s),t — 5) ,

X(s) € H for any s € [0, 7] and (X (0), D(0), L(0)) = (z,0,0). So, passing to the limit
in (7.9) yields

¢(x,t> S /OT L(S) e*D(S) ds + (b(X(T),t - 7_) e*D(T) )
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On the other hand, since ¢ is smooth on H x (0,7%), the following expansion holds:

(X (1)t —7))e PO = p(a,t) + /OT (qub(gs)X(s) (e — D(s)gb(fs))e_D(s) ds

where & stands for (X (s),t — s). Combining both integrals, we arrive at

0< [ (= a9(e) + X() Do(E) = D(5)o(é) + Lls) e ) exp(=D(s)) s

Finally, after divinding by 7 and sending 7 — 0 the conclusion follows from the fact
that ¢ is continuous and ¢ (x,t) = (X (0), D(0), L(0)) = (b, c,1): we get

brla.t) b D(a, 1) + cola,t) — 1 < 0

for any (b, c,l) € BCLy(x,t), which implies that Hr(x,t, ¢, D¢) < 0.
Q.E.D.

7.4 A characterization of U~

The previous section showed that U~ satisfies an additional subsolution inequality
on ‘H x (0,7f). The aim of this section is to prove that this additional inequality is
enough to characterize it.

The precise result is the

Theorem 7.4.1 — Characterization of the minimal vale function.

Assume that the “standard assumptions in the codimension-1 case” are satisfied. Then
U~ is the unique Ishii solution of (6.1) such that

s + Hr(z,t,u, Dru) <0 on H x (0,T%) . (7.10)

Proof — The proof is obtained by a combination of arguments which will also be used
in Part IV for stratified problems.

We recall that we already know (cf. Proposition 7.2.2) that U~ is the minimal Ishii
supersolution of (6.1). Therefore we only need to compare U~ with subsolutions u
such that u,+ Hr(z, t,u, Dru) < 0 on H x(0,T}), showing that U~ > w in RY x [0, T}].

Though the proof can be reduced to a mere list of several arguments already exposed
in Part [, we provide below more explanations and redo most of them in the simpler
hyperplane context for the readers’s convenience.
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Step 1: Reduction to a local comparison result (LCR) — As already noticed in Part I
(see Remarks on page 30), setting @(xz,t) := exp(Kt)u(x,t) for K > 0 large enough
allows to reduce the proof to the case where ¢; > 0 for any (b;,¢;, ;) € BCL;(xz, 1),
i =1,2. As a consequence, we can assume that the H; (i = 1,2) are nondecreasing in
the u-variable, and that Hr enjoys the same property.

Then, rewriting here some arguments already given in Section 2.2 and using that
the ¢; are positive, we notice that, for 6 > 0 small enough, ¥ (z,t) = —d(1 + |2|*)"/2 —
6711 +t) is not only a §/2-strict subsolution (6.1), but also for the Hr-equation on
H x (0,T) and we can also assume that ¢ < u in RY x [0, T}]. For u € (0, 1), setting

wu(z,t) = pu(x,t) + (1 — p)(z, t)
yields an n-strict subsolution u, for some n(u,d) > 0. By this, we mean that each
inequality in (6.1) is n-strict for w, but also that (u,); + Hr(z,t,u,, Du,) <n <0
on H x (0,7%). This claim is obvious for the initial data, let us prove it for instance
for H;.

Using the convexity property of Hy in 7, p, we get successively

(up)e + Hi(z,t,uy, Duy,)

= pue + (1 — )y + Hi(z, t, pu+ (1 — p)b, pDu+ (1 — p) Dip)

< pug + (1= p)e + pHi (z, ¢, u, Du) + (1 — p) Hi(z, ¢, 9, Dip)

< pfue + Hi(z, t,u, Du) } + (1 — p){y + Hi(z,t,¢, D)}

< pfue + Hi(z, t,u, Du)} — (1 — p)(6/2) < —(1— p)(6/2) < 0.
The same is valid for Hy and Hyp for similar reasons. Moreover, by construction
u, — U™ — —o0 as || = +oo since ¢(z,t) — —o0 as |z| = +o0, so that (LOC1) is
satisfied for any of those Hamiltonians.

Checking (LOC2) is easier: if we are looking for a comparison result around the
point (xg, tg), it is enough to use

us (2, t) == u(z,t) — &' (|v — z0|® + [t — to|*)

for &' > 0 small enough. Thus we are in the situation where a (LCR) is enough to

ensure a (GCR).

In order to prove that (LCR) holds, we introduce Qf,’fb, a (small) cylinder around
(x,t) where we want to perform the (LCR). Notice that of course, if x € € or
(25, then taking r small enough reduces the proof to the standard comparison result
since in this case, Qf,tl does not intersect with H. Thus, we assume in the following

that z € H. Our aim is to use Lemma 4.3.1 with M := (H x [0,T}]) N Q;, and
FM(':Cvtu r, (p.’mpt)) =Dt HT(Z', t7 Tupx>~
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Step 2: Approximation of the subsolution — We wish to use an approximation by
convolutions (inf-convolution and usual convolution with a smoothing kernel) for the
subsolution as in Proposition 2.4.7; to do so, we introduce a slightly larger cylinder
Qf,’fh, where ' > r and h' > h are fixed in order to have some “room” for those
convolutions. From Step 1, we know that w, is an n-strict subsolution of (6.1) in

Qx'y for some n = n(u, ).
Since (Heony), (NC), (TC) and (Mon-u) are satisfied for all the Hamiltonians, we

deduce from Proposition 2.4.7 that there exists a sequence (u,,.). of C°(Q™1)NC (M)
functions which are all (7/2)-strict subsolutions of (6.1) in some smaller cylinder
Qe) C infh/, and Q(g) — Qf}fh, as ¢ — 0 in the sense of the euclidian distance
in RY*!. Hence, for € small enough, we can assume with no restriction that Qf,ﬁ -
Q(e) C Qf}fh, so that w,. is an (1/2)-strict subsolution in fol

This has two consequences:

(a) for any ¢ > 0 small enough, (u,.): + Hr(z,t,u,., Dru,.) < —n/2 < 0in M
and in a classical sense since u,, . is C* on M;

(b) since uy, . is an (1/2)-strict subsolution in O := Qf,tl \ M (for the Hamiltonians
Hy, Hy) and a (LCR) holds there, we use the subdynamic programming prin-
ciple for subsolutions (cf. Theorem 4.2.3) which implies that each u, . satisfies
an (n/2)-strict dynamic programming principle in Qf; [M€].

T

These two properties allow us to make a (LCR) in Qn’,tl in the final step.

Step 3: Performing the local comparison — From the previous step we know that for
each € > 0, u = u,, . satisfies the hypotheses of the “Magical Lemma” (Lemma 4.3.1).
Using v := U~ as supersolution in this lemma, we deduce that

V() € QI \ 0pQrL . (e — U™ )(y.s) < max(u,. — U™).

x,t
Qr,’h

Using that u,, = limsup* u,, ., this yields a local comparison result (with inequality in
the large sense) between u, and U~ as ¢ — 0. By step 1, we deduce that the (GCR)
holds: u, < U~ in RY x [0,7}], and sending finally p — 1 gives that u < U~.

The conclusion is that if w is an Ishii solution such that w, + Hp(z,t,u, Dyu) < 0
on H, necessarily © = U™, which ends the proof.

Q.E.D.
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Chapter 8

A Less Natural Value Function,
Regular Dynamics

Abstract. A new value function U" is introduced by defining “reqular trajectories”.
Under the “good assumptions”, the main results are that UT can be characterized
as the mazximal Ishii subsolution (and solution) of the standard HJB Equation; it is
also the unique solution of an HJB problem provided an additional subsolution con-
dition is imposed on the discontinuity. A stability result is also obtained for “regqular
trajectories”.

While studying U~ we introduced the set BCLy, containing the dynamics tangent
to H in order to examining the trajectories which remain on H. The new point in
this section is to remark that there are two different kinds of dynamics that allow to
stay on H, leading to the construction of a second value function.

8.1 Introducing U™"

Let us first begin with regular trajectories:

Definition 8.1.1 — Regular controls, dynamics, trajectories.

We say that b € Br(x,t) is regular if b = p1by + pgbe while the condition by - ey <
0 < by-en holds. We denote by

BCL;*(z,t) := {(b, ¢,l) € BCLy(z,t) : b is reqular }
the set containing the reqular tangential dynamics, and T*8(x,t) the set of controlled

187
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trajectories with reqular dynamics on H, 1.e.
T8 (x,t) = {(X,D, L) solution of (7.2) such that

X(s) € BY¥8(X(s),t — 5) a.e. when X(s) € H} :

In other terms, a regular dynamic corresponds to a “push-push” strategy: the trajec-
tory is maintained on H because it is pushed on H from both sides, using only dynam-
ics coming from 2; and €25; we may also have tangent dynamics, i.e. by-ey = by-eny = 0.
On the contrary, the dynamic is said singular if by - ey > 0 and by - ey < 0, which is
a “pull-pull” strategy, a quite instable situation where the trajectory remains on H
because each side pulls in the opposite direction. We also recall the notations (7.3)
that we use throughout this chapter.

We remark that, by (NCy), the sets BCLy(x,t) and BCL;®(x,t) are non-empty
for any (z,t) € H (see Lemma 7.3.1). Next, for (z,t) € H x (0,7%), r € R and
p=(p/,0) € RY, we define a second tangential Hamiltonian

H;“eg(a:at?rap) = sup { —b'p—l-CU—l} , (81)
BCL ()

and a second value function can be defined by minimizing only on regular trajectories:

Ut (z,t) := Tin(f ) {/ [(X(s),t — s,a(s)) exp(—=D(s)) ds} :
res(z,t) |y

Of course it is clear that U~ < U™ in RY x [0,7}] but we are going to prove more

interesting properties on U™,

The Hamiltonian H;® satisfies (TC) on H x [0, Ty]; in particular, H-® is continuous
with respect to (z,t). Contrarily to
HT, this does not follow directly from Lemma 4.4.2, but a carefull look at the proof
will convince the reader that the arguments also apply to Hy®. As it is the case
for Hr, an alternative proof consists in using the representation formulas given by
Lemma 9.2.1.

Proving the dynamic programming principle for UT is done as for U~ (see Theo-
rem 3.3.3), but using regular trajectories. So, we skip the proof of the

Lemma 8.1.2 Under hypothesis (Hgcw), the value function U™ satisfies

U+(x,t):Trgl(£’t){ /0 1(X(s),t—s,a(s)) exp(—D(s)) ds+U* (X (6), t—0) exp(—D<e))},

or any (x,t) € RY x (0,T%], 0 > 0.
f
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The dynamic programming principle naturally leads to a system of pde’s satisfied by
U™. But before proving this result, we want to make the following important remark:
most of the results we provided in the previous chapter for U~ were more or less
direct consequences of results given in Chapter 3, in particular all the supersolution
inequalities using Lemma 7.2.1. However, this is not the case for UT which requires
specific adaptations.

Proposition 8.1.3 Assume that the “standard assumptions in the codimension-1
case” are satisfied. Then the value function UY is an Ishii solution of (6.1). Moreover
U™ satisfies on H x (0,Tf) the inequality

(UH)r + Hi(x, ¢, (UY)*, Dp(UD*) <0 onH x (0,T}) .

Proof — Of course, the only difficulties comes from the discontinuity on H x (0,7%),
therefore we concentrate on this case.

(a) Ishii supersolution condition in RN — Since a priori UT is not continuous, we
have to use semi-continuous envelopes as we did for U™. In order to prove that (U™),
is a supersolution we assume that (z,t) € H x (0,T%) is a strict local minimum point
of (U'), — ¢ where ¢ is a smooth test-function in RY x (0,7}), and we can suppose
w.lo.g that (U™),(z,t) = ¢(x,1).

The first part consists in using the dynamic programming principle and follows
the same lines as several proofs we already established so we condense a little bit
some of the arguments below. By definition of (UY),, there exists a sequence (z,,t,)
which converges to (z,t) such that Ut (x,,t,) — (U").(x,t) and by the dynamic
programming principle,

Tres(zn,tn

Ut(ata) = inf | / En(s)e™ P ds + U (X, () 1y = 7) e 20}
0

where 7 < 1 and the n-index is to recall that this trajectory is associated with
X, (0) = x,. We use that (i) Ut (x,,t,) = (UT).(2,t) + 0,(1) where 0,(1) — 0, (i)
Ut (Xo(7), 0 — 7) > (U"), (X, (7),t, — 7) and (ééi) the minimum point property, to
obtain

&(Tp,tn) +0n(1) > inf ){/0 fn(s) e P ds + (Xn(7), 1y — 7) e—D(T)} _

- Tree ($n tn

Next we use the expansion of ¢ along the trajectory of the differential inclusion,
writing £ = (X, (s),t, — s) for simplicity:

O( X (1), tn—7) e~ D) — o(zp, tn)+/0T (_at(b(fs)_i_)'(n(s)_D(b(fs)_[)n(s)(b(fs))efD(s) ds .
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Plugging this expansion into the dynamic programming principle and using that the
global Hamiltonian H is the sup over all the (b, c,[), we are led to

on(1) < /OT ((M(é}) + H(Xu(8), tn — 5, 0(Es), D¢(§5)>€—D(S) ds |

Using the smoothness of ¢ and the upper semicontinuity of H together with the facts
that | X, (s) — |, |(t, —s) —t| = 0,(1) +O(s), e P) = 14+0(s), we can replace X,,(s)
by x and t,, — s by t in the integral. Hence, for 7 small enough

on(1) < T(@tqﬁ(a:, t)+ H(x,t,¢(x,t), Do(x, t))) + 710,(1) + o(T) .

It remains to let first n — oo, then divide by 7 > 0 and send 7 — 0, which yields that
Oyp(x,t)+ H(x,t, ¢, Dp) > 0. Hence U™ satisfies the Ishii supersolution condition on
H X (O, Tf)

(b) The Ishii subsolution condition in RY — We have to consider (x,t) € H x (0,T}),
a local maximum points of (UT)*— ¢, ¢ being a smooth function and we assume again
that (UT)*(z,t) = ¢(x,t).

By definition of the upper semicontinuous envelope, there exists a sequence (z,,, t,) —
(x,t) such that Ut(z,,t,) — (U")*(z,t) and we first claim that we can assume
r, € H. To prove this claim, we use exactly the same argument as in the proof of
Lemma 7.2.3 for U~ since it relies only on the normal controllability assumption
(NCy) at (z,1).

Therefore, assuming that z,, € H, using the maximum point property we insert the
test-function ¢ in the dynamic programming principle and get that for any regular
control a(-),

O(Tp, tn)+on(l) < /OTZ(Xn(s),tn—s,a(s)) e P ds+¢( X (1), ty —7) e P (8.2)

Then we argue by contradiction: if
min {¢t(x,t) + H, (x,t, o(z,t), D(b(:c,t)),qbt(x,t) + Hy (a:, t,o(x,t), ng(:v,t))} >0,
there exists some (aq,az) € Ay X Ag, such that, for all i = 1,2
Oz, t) — bz, t, ;) - Dop(x,t) + ¢i(x, t, ;) p(x, t) — li(x, t, o) >0, (8.3)

and the same is true, for n large enough, if we replace (x,t) by (x,,t,). Notice that,
though the control a(-) in (8.2) is regular, this may not be the case a priori for ay, as.
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Now we separate the proof in three cases according to the different configurations. For
the sake of simplicity of notations, we just note below by b; the quantity b;(z,t, ;).

Case 1 — Either b - ey > 0 or by - ey < 0. In the first case, we use the trajectory
(Xn, Dy, Ly,) defined by with the constant control «;. In particular
Xn(s) =01 (Xn(s),tn —s,1) , X,(0) =x,. (8.4)

Then there exists a time 7 > 0 such that X, (s) € Q; for s € (0,7]. Choosing such
constant control a; in (8.2) and arguing as above, we are led to

¢t($, t) - bl(x7 ta al) ' qu(xu t) + Cl([)’}, t7 Oél)QZS((L’, t) - ll(‘ra t’ 061) S 0 )
which yields a contradiction with (8.3). And the proof is the same in the second case,

considering the trajectory associated with the constant control as in bs.

We point out that this case could have been also covered by arguments of Proposi-
tion 2.5.1, by extending the equation to the boundary.

Case 2 —ifby-ey < 0 < by-epn, then borrowing arguments of the proof of Lemma 7.3.1,

for (y, s) close enough to (x,t), we can set

bg(y,S,Oég) *EN
52(% S, @2) - bl(y, S, 041)) “EN

1i(y, s) = oph=1—

By this choice we have 0 < 14, i < 1 and (,uﬁ(y, b (y, s, 00) + b (y, $)ba(y, s, a2)> .
en = 0, hence we have a regular dynamic that we use in (8.2).

We solve the ode
XE(s) = 1B (XH(s), tn — )by (XP(8), ty — 5, 00) + 15 (XF (), t — $)ba(XP(5), bt — 5, 002) .

By our hypotheses on b; and by, the right-hand side is Lipschitz continuous so that
the Cauchy-Lipschitz theorem applies and gives a solution X*(-) which remains on
‘H, at least until some time 7 > 0.

Using X*(-) in (8.2) together with the associated discount and cost and arguing as
above, we are led to

,u% (gbt(ac, t) —bi(z,t,0q) - Dp(x,t) + c1(x, t, cq)d(x, t) — la(x, ¢, ozl))

4 (@@,t) — by(,t, a0) - D(z,t) + co(, t, o)z, t) — () 1, a2)> <0,

a contradiction.
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Case 3 — The last case is when we have either by-eyy = 0 < by-ey or by-eny < 0 = by-ey.
But using (NCy ), we can slightly modify b; or bs by a suitable convex combination
in order to be in the framework of Case 1 or Case 2. This completes the proof that
the Ishii subsolution condition holds on H x (0, T%).

(c) The Hp*-inequality — We do not give a specific proof here since this property
holds for any Ishii subsolution (hence for UT too), see Lemma 8.4.1. Alternatively,
this property can also be proved by similar arguments as for the Hp-inequality for
U™, but using of course regular trajectories.

Q.E.D.

8.2 More on regular trajectories

Let us begin by stating the stability of regular trajectories:

Lemma 8.2.1 Assume that all the (b;,c;, ;) satisfy (Hga_cp). For any € > 0, let
(X,D,L)* € T™8(x,t) be a sequence of reqular trajectories converging uniformly to
(X,D,L) on [0,t]. Then (X, D, L) € T™8(x,t).

Though it may seem quite natural, this result is quite difficult to obtain. It is a
direct corollary of Proposition 8.5.1 (with constant BCL and initial data) which we
prove in Subsection 8.5 below. We recall here that since T'(s) = t — s, we just use
trajectories in the form (X, D, L) instead of (X, T, D, L).

Let us focus now on the immediate consequences:
Corollary 8.2.2 Assume that all the (b;,c;,l;) satisfy (Hga_cp). Then, for any

(z,t) € RN x (0,7T}), there exists a regular trajectory (X,D,L) € T"&(x,t) such
that

Ut (z,t) = /Ot [(X(s),t—s, a(s))e_D(s) ds + uo(X (t))e PO | (8.5)

therefore there is an optimal trajectory. Moreover, the value function U™ satisfies the
sub-optimality principle, i.e., for any (x,t) € RN x [0,T}] and 0 < 7 < t, we have

e i {1066 s a()e 0 ds s (@0 (X -0 ]

and the super-optimality principle, i.e.
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Corollary 8.2.2 provides slightly different (and maybe more direct) arguments to
prove that U™ is an Ishii solution of (6.1) but it relies on the extraction of regular
trajectories, which is again a rather delicate result to prove.

Proof — We just sketch things here since everything is a straightforward application
of Lemma 8.2.1. For the existence of an optimal trajectory, we consider e-optimal
trajectories (X<, D, L?), i.e. trajectories which satisfy

t
U (z,t) < / H(XE(5),t — 5,a°(5)) e 2" ds + up(XE(t))e PO 4 ¢ .
0

By applying Ascoli’s Theorem on the differential inclusion, we can assume without
loss of generality that (X¢, D¢, L¢) — (X, D, L) in C([0,t]) and L* — L in L*-weakx,
so that for some control a(-), we have

/Ot Z(Xg(s),t — s, as(s))e*DE(s) ds — /Ot l(X(s),t — s, a(s))e*D(S) ds.

Then, applying Lemma 8.2.1 shows that (X, D, L) is actually a regular trajectory and
(8.5) holds.

The proofs of the sub and super-optimality principle follow from similar argu-
ments considering, for example, a sequence (z,t;) — (x,t) such that Ut (zy, tx) —
(UT).(x,t) and passing to the limit in an analogous way.

Q.E.D.

8.3 A Magical Lemma for U™

Now we turn a key result in the proof that U* is the maximal Ishii solution of (6.1).

Theorem 8.3.1 — A Magical Lemma for UT.

Assume that the “standard assumptions in the codimension-1 case” are satisfied. Let
¢ € CY(H x[0,Ty]) and suppose that (z,t) € H x (0,T}) is a local minimum point of
(z,8) = (U")(2,8) — ¢(z,8) in H x [0,T¢]. Then the following alternative holds

A) cither there exist n > 0, i € {1,2} and a control a;(-) such that the associated
trajectory (X, D, L) satisfies X(s) € Q; with X(s) = b;(X(s),t — s,;(s)) for all
s €]0,n] and

(O a0) 2 [ HOKE). = ssauts))e P ds + (U)Xt —m)e P (8)
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B) or the following viscosity inequality holds

Op(x,t) + Hy®(x,t, (UT)u(z,t), Dyo(x,t)) > 0. (8.7)

Proof — Using the result and the proof of Corollary 8.2.2, for any 0 < n < t, there
exists a regular trajectory X and a control a such that

(UH)s(z,t) > /077 1(X(s),t —s,a(s))e P ds + (U (X (1), t —n)e PO

Indeed, for any n the infimum in the sub-optimality principle is achieved. Now there
are two cases:

(i) Bither there exists 7 > 0 and i € {1,2} such that X(s) € Q; with X(s) =
bi(X(s),t — s,a;(s)) for all s €]0,7n], from which A) follows.

(77) Or this is not the case, which means that there exists a sequence (1), converging
to 0 such that 7, > 0 and X () € H.

In this second case,
Mk
(UJ'_)*(ZL'; t) 2 / l(X(S)7 t— S, a(s))e—D(S) ds + (U+)*<X(T}k), t — nk)e—D(nk) ’
0

and, assuming w.l.o.g that ¢(z,t) = (U"),(z,t), the minimum point property on H
yields

P(x,t) > /Onk L(X(s),t—s,a(s))e P ds + (X (), t — np)e P

Using the notation & = (X (s),t — s), we rewrite this inequality as

/0% Al¢](s)ds >0, where
Alg)(s) =(n(6) = X(5) - Daol€) + (&, a(s))0(&) = (& a(s)) )P .
In order to prove B), we argue by contradiction, assuming that
Op(z,t) + Hp®(z,t, (U").(, 1), Dyo(z,t)) <0, (8.8)

and to get a contradiction we examine the sets & = {s € (0,n,) : X(s) € ;} and
En ={s€(0,m): X(s) € H}.
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(a) The case & is easy: since X(s) = by(X(s),t — s,a(s)) a.e. if X(s) € H, by
definition of H* as the supremum we get directly

Mk Mk
/0 A[9](5) Tjsesyy ds < /0 {06(6) + HI® (60, (UF).(6), Do) [ gseery s |

and this integral is stricly negative provided 7 is small enough, thanks to (8.8) and
the continuity of H;®.

(b) On the other hand, the sets & are open and therefore & = Ug(ak, bix) with
i, bk € H. On each interval (a;x, biy), X (s) = b;(X(s),t—s, a;(s)) and introducing
the function d(y) = |yn|, we have

bi k
0=d(X (b)) —d(X(a;x)) = / en - bi(X(s),t —s,05(s)) ds . (8.9)

(29

By the regularity of (b;, ¢;, l;) with respect to X (s) we have

bi bi k
/ (bi, ciy 1) (55, ai(s)) ds = / (bi, ci, li)(x, t, ai(s)) ds + O(ng)(biy — aig) -

Then, using the convexity of the images of BCL;, there exists a control ag’ , such that

b;
/ (bz‘, Ci, li)(fS7 G(S)) ds = (bi,k - az’,k) (bi, Ci, lz‘) (% i Oéz,k) ds + O(le)(bi,k - ai,k) )
A k

and (8.9) implies that b; (x, t, ag’k) -ey = O(ng). In terms of BCL, this means we have
a (b,,1°) € BCLy(x,t) such that b} - ey = O(ny).

Using the normal controllabilty and regularity properties of BCL;, for 7 small
enough, there exists a (b, ¢, 1) € BCL;(x,t) which is O(n)-close to (02, ¢, 1?) such

that bg - ey = 0. This means that there exists a control ozi-i x € A such that still

i,k
/ (b, 0 1) (€0r a(8)) ds = (b — azg) (b e, i) (2 £ 0 ) ds + O() (i — asg)

holds, and b; (:p, t, ag k) -eny = 0. In other words, this specific control provides a regular
dynamic.

Hence, using the regularity of ¢, since ag . 15 regular we get

/ iYkAW](S) ds = (bik — @z',k){@(%f) — bi(x,t,a},) - Dogi(x, 1)

i,k

+ el tyal)o(@, 1) — L.t aly) + Olme) |

S (bz,k’ - ai,k){atgb(‘ra t) + H;eg(xv tv (U+)*(l‘, t)7 D’Hgb(l‘7 t) + O(nk)} <0.
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Therefore, for n; small enough, on each connected component of £, & and on &,

the integral is strictly negative and we get the desired contradiction.
Q.E.D.

Remark 8.3.2 Notice that the alternative above with Hp*® only holds for UT, and
not for any arbitrary supersolution—see Theorem 7.4.1 where Hr is used and not
Hp®.

8.4 Maximality of U™

In order to prove that U™ is the maximal subsolution, we need the following result
on subsolutions

Lemma 8.4.1 Assume that the “standard assumptions in the codimension-1 case”
are satisfied. If u : RN x (0,T;) — R is an u.s.c. subsolution of (6.1), then it satisfies

we + Hp®(x, t,u, Dru) <0 on H x (0,77) . (8.10)

Proof — Let ¢ be a C'-test-function on H x (0,7}). Using the decomposition of
r € RY in (2/,2y) with 2/ € RV™! we can assume that ¢ is just a function of 2’ and
t, and we can see ¢ as a function defined in RY x (0,7}) as well.

If (z,¢) € H x (0,Ty) is a strict local maximum point of u(x,t) — ¢(2’,t) on H X
(0,T), we have to show that

qbt(‘fl’ E) + H;“eg<j7 t_v u(ja 5)7 DT¢(‘%7 E)) S 0 )
where Dr¢(Z,t) is nothing but D, ¢(Z’,t) and we also identify it below with the
vector (D¢ (Z',t),0). So, setting a = ¢(7',t) and pr = Dr¢(Z,t), we have to prove
that for any (b, ¢,l) € BCL;5(7, 1),

IT:=a—-b-pr+cu(z,t)—1<0.
By definition of BCL;*(Z, ), we can write

(b7 C, l) = ,ul(bla Cy, ll) + /,Lg(bg, Ca, l2) ;

with by - ey <0 < by - ey and py + p2 = 1. Using the normal controllability and an
easy approximation argument, we can assume without loss of generality that b, -ey <
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0 < by - e. Of course, even if we do not write it to have simpler notations, (by,c1, ()
is associated to a control ay and (bg, ¢2,l2) to a control as.

For i = 1,2, we consider the affine functions
gbl(&) =a— bl : (pT + 561\[) + Cﬂb(i‘,ﬂ — lz .

By the above properties we have: (i) v is strictly increasing; (i) 1o is strictly de-
creasing; (1i1) pui91(9) + p2tbe(d) = Z, which is independent of 4.

We argue by contradiction, assuming that Z > 0 and choose § such that ¢,(0) =
19(d). Notice that this is possible due to the strict monotonicity properties and the
fact that ¢ (R) = 1»(R) = R. We have therefore ¢, (d) = 12(0) =Z > 0.

Next, for 0 < ¢ < 1, we consider the function

2
- x
(x,t) = ul(x,t) — p(a',t) — dxy — g_J2V ,
defined in RY x (0,7}). Since (7,%) is a strict local maximum point of u — ¢ on
H x (0,Ty), there exists a sequence (z.,t.) of local maximum point of this function
which converges to (z,t), with u(z.,t.) converging to u(z, ).
Our aim is to show that none of the Hy or Hj viscosity inequality holds for u on H,

which will contradict the fact that u is a viscosity subsolution. Assume for instance
that the the Hi-inequality holds. Then (z.)y > 0 and by the regularity of ¢,

Q(IE)N

a—by(x.,te,on) - (pr+den + =

en) + i (e, te, a)u(Z, 1) — i (2e, e, ar) < o(1)

But since (z.,t.) = (T,1), by(ze, te, 1) — b1(Z, t, 1) and therefore by (z., te, ) -en <
0 for e small enough. Using that (z.)x > 0, this inequality implies

a — bl(xsateuoél) : (pT + geN) + Cl(x67t€7a1>u(‘f7£> - ll(x€7t€7a1) S O€(1> .

By the definition and properties of ¢ and the fact that Z > 0, this inequality cannot
hold for € small enough, showing that the H; inequality cannot hold neither. A similar
argument being valid for the Hy inequality, we have a contradiction and therefore
7 <0, and the proof is finished.

Q.E.D.

Theorem 8.4.2 — Maximality of U™T.

Assume that the “standard assumptions in the codimension-1 case” are satisfied. Then
U™ is continuous and it is the mazimal Ishii solution of (6.1).
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Proof — Let u be any subsolution of (6.1). We want to show that v < (UT), in RY x
[0,Tf) and to do so we first notice that, as we did in the proof of the characterization
of U™ (Theorem 7.4.1), we can reduce the proof to a local comparison argument since
(LOC1) and (LOC2) are satisfied. So, let in be a cylinder in which we want to
perform the (LCR) between u and (U™),.

Using again the arguments of the proof of Theorem 7.4.1, we may assume without
loss of generality that u is a strict subsolution of (6.1) and in particular a strict
subsolution of (7.10). Finally we can regularize u in order that it is C* on H x (0, T}).

Using Theorem 4.2.3 to show that u satisfies a sub-dynamic programming prin-
ciple with trajectories in 7T (x,t), we see that we are (almost) in the framework of
Lemma 4.3.1, the usual FM-inequality for u being replaced by (8.10).

Using in an essential way Theorem 8.3.1(1), it is easy to see that the result of
Lemma 4.3.1 still holds in this slightly different framework and yields

max(u — (UT).) < max(u — (U"),) ,
z,t an’vi

O

r:h
and the (GCR) follows: u < (UT), in RY x [0, T}].

Concerning the continuity statement, consider u = (U*)*. By definition, (UT)* >
(U7), but the comparison result above applied to (U)* which is a subsolution shows
that in the end U" = (U"), = (U")*. Hence U™ is continuous and is maximal

amongst Ishii subsolutions.
Q.E.D.

8.5 Appendix: stability of regular trajectories

This appendix is about proving the convergence property of regular trajectories,
Lemma 8.2.1. We actually prove a more general result here:

Proposition 8.5.1 Let t > 0 be fixed and for each € > 0 let BCL® be a set-valued
map satisfying (HpcL) funa and let (X, D, L)® be solution of the differential inclusion

Vs e (0,t), (X,D,L)*(s) e BCL*(X®(s),t—s).

(i) If BCL® converges to BCL locally uniformly in RN x (0,t) (for the Hausdorff
distance on sets) and (X, D, L)?(0) — (x,d, ), then, up to extraction, (X, D, L)°

(Wwhich replaces the arguments for the supersolution v in the proof of Lemma 4.3.1 (cf. Re-
mark 4.3.2).
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converges to some trajectory (X, D, L) which satisfies
Vs e (0,t), (X,D,L)(s) € BCL(X(s),t—s)
with initial value (X, D, L)(0) = (z,d,1).

(73) If moreover each trajectory X¢ is reqular, then the limit trajectory X is also
reqular.

This result is obtained through several lemmas. The first one proves part (i) of the
proposition, which is not very difficult.

Lemma 8.5.2 If BCL® converges to BCL locally uniformly in RY x (0,t) (for the
Hausdorff distance on sets) and (X,D,L)*(0) — (x,d,l), then up to extraction,
(X, D, L)* converges to some trajectory (X, D, L) which is a solution of the differ-
ential inclusion associated with BCL, with the corresponding initialization.

Proof — Notice first that since the BCLF all satisty (Hpcr) funa With constants in-
dependent of €, and the initial value converges, the trajectories (X, D, L)® are equi-
Lipschitz and equi-bounded on [0, t]. Hence we can extract a subsequence (X, D, L)
converging to (X, D, L) uniformly on [0,¢]. Moreover, for any x > 0 small enough, if
n is big enough we have

Vs € (0,t), BCL (X (s),t —s) C BCL(X(s),t — s) + kBn+3

where By 3 is the unit ball of RV¥*3. Passing to the limit as ¢, — 0, we deduce that
(X, D, L) satisfies the differential inclusion associated with BCL, and of course its
initial data is (X, D, L)(0) = (z,d, ).

Q.E.D.

Now we need several results in order to prove part (i7) which is much more involved.
Before proceeding, let us comment a little bit: using the control representation of the
differential inclusion (Lemma 7.1.2), there exist some controls a5, a® such that

Xe(s) = Z b5 (X°(s),t — s,05(s)) Lyxeean (s) + by (X°(s),t — s,a°(s)) Lyxeeny(s) -

i=1,2

Recall that the control a® is actually complex since it involves af, a5 but also af. In
other words, by is a mix of by, by, by with weights pg, 3, 5. However, notice that fo-
cusing on regular dynamics, the by-term is not a problem since it is already tangential
(hence, regular).
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In order to send € — 0 we face two difficulties: the first one is that we have to deal
with weak convergences in the b5, b3,-terms. But the problem is increased by the fact
that some pieces of the limit trajectory X (-) on H can be obtained as limits of trajec-
tories X(-) which lie either on #, §; or Q. In other words, the indicator functions
L{x=c23 () do not necessarily converge to Lixezy(+), and similarly the 1yx-cq,(-) do

not converge to Lixea,}(-).

From Lemma 8.5.2 we already know that X¢ converges weakly on (0,t) to some
X which can be represented as for X above, by means of some controls (ay, g, a).
The question is to prove that this control a yields regular dynamics on H. In order
to to do, we introduce several tools. The first one is a representation of X by means
of some regular controls (af, o4, a?). Those controls may differ from (ay, as,a), but

they are an intermediate step which will help us to prove the final result.

Lemma 8.5.3 For any s € (0,t) there exists three measures v1(s, ), va(s,-), vx(s, )
on Ay, Ay, A respectively and three controls (o (s), ol(s),a?(s)) € Ay x Ay x A such
that

(a) V1, V2, Uy > O; yl(SaAl) + y2(87A2) + VH<S7A) =1 ’

(b) up to extraction, b5 (X=(s),t —s,05) — by (X (s),t — s, (s)) - v(s, Ay) |
and the same holds for b, by with measures vo, vy and controls oy, o, ;

() fori=1,2, b;(X(s),t —s,a}(s))-exn =0 v-a.e. on {X(s) € H} .

i

In particular, the dynamic obtained by using (o, oc’i, ozg) s reqular.

Proof — We use a slight modification of the procedure leading to relaxed control as
follows. We write

bi(X=(s),t — s,ai(s)) Lixeea(s) = /A bl (X5(s),t — s,a) vi(s, da) ,

where v{(s, -) stands for the measure defined on A; by v{(s, E) = das (E)1{x-c0,}(5),
for any Borelian set &/ C A;. Similarly we define v5 and v3, for the other terms.
Notice that v§, is a bit more complex measure since it concerns controls of the form
a = (aq, s, p) on A, but it works as for vf so we omit the details.

Note that, for any s, v5(s, A1) +v5(s, As) +15,(s, A) = 1 and therefore the measures
vi(s,-),v5(s,-),v5(s, ) are uniformly bounded in . Up to successive extractions of
subsequences, they all converge in L*(0,T}; E) weak-* (where £ = Ay, Ay, A) to
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some measures vy, o, V4. Since moreover the total mass is 1, we obtain in the limit
v1(s, A1) + (s, Ag) + (s, A) = 1.

Using that up to extraction X converges uniformly on [0, ¢], using the local uniform
convergence of the b7, we get that

/A b1 (X5(s),t — s,a) vi(s, da) — b1 (X(s),t —s,a) vi(s, da),

e—0 A,
weakly in L>°(0,Ty). Introducing m(s) := fA1 v1(s, dar) and using the convexity of A;
together with a measurable selection argument (see [12, Theorem 8.1.3]), the last inte-
gral can be written as by (X (s), o(s), a’i(s))m(s) for some control a} € L®(0,Ty; Ay).
The same procedure for the other two terms provides the controls a4(-), af(-) and
functions ms(+), m(+), which yields (a) and (b).

We now turn to property (c¢) that we prove for by, the proof being identical for
by. Since (X5 )+ = max(X5,0) is a sequence of Lipschitz continuous functions which
converges uniformly to (Xy)4 on [0,¢], up to an additional extraction of subsequence,
we may assume that the derivatives converge weakly in L (weak—* convergence). As
a consequence, d% [(X}i,)@ Lyxeny converges weakly to % [(XN)+] Tixen-

By Stampacchia’s Theorem we have

d .
o [(X3)+] = X3 (s) Lixeeq,j(s) for almost all s € (0,¢).

Therefore, the above convergence reads, in L>(0, Ty)weak—x
X%(S)ﬂ{xeegl}@)ﬂ{){ey}(S) — XN(S)]I{Xte}(S)]l{XeH}(S) =0.

Using the expression of X¢(s), (b5(X=(s),t—5,05(s)) -en) Lixzen,} () Lxeny(s) = O
in L>°(0,Ty) weak—+ which implies that

<b1 (X(s),t— s,aﬁ(s)) ~6N> mi(s) =0 ae. on {X(s) € H}, (8.11)

which yields property (c¢). This means that b;(X(s),t — s, ag(s)) is tangential on H
so that combining them with some by (which is tangential by definition), we get a
regular dynamic on H.

Q.E.D.

We now want to prove that the controls (o, ag, a) yield regular strategies, not only
the (ozﬁ, ag, a*). In order to proceed we introduce the set of regular dynamics:

V(z,s) € Hx[0,t], K(z5):={bu(z s a.),a. € Ag*(z,s)} C RV .
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We notice that, for any z € ‘H and s € [0,7%], K(z,s) is closed and convex, and the
mapping (z,s) — K(z,s) is continuous on H for the Hausdorff distance. Then, for
any n > 0, we consider the subset of [0,¢] consisting of times s for which one has
singular (n-enough) dynamics for the control a(-), namely

sing 7

. {3 €10,¢] : X(s) € H and dist (bH(X(s),t— s,a(s)); K(X(s),t — 3)) > n} :

If s € B}, # 0, since K(X(s),t— s) is closed and convex, there exists an hyperplane

separating by (X (s),t — s,a(s)) from K(X(s),t — s) and we can construct an affine
function ¥, : RV — R of the form ¥ (z) = (;(s)z + (»(s) such that

\Ifs(bH(X(s),t—s,a(s))) >1lifseElL,, ¥,<0onK(X(s),t—s).

In other words, W, “counts” the singular dynamics.

Since the mapping s — by (X (s),t — s, a(s)) is measurable and s — K (X (s),t—s)
is continuous, we can assume that s — (i(s),(2(s) are measurable and bounded
(because the distance n > 0 is fixed), which allows to define the quantity

sing

I(n) := /O(q’s(X(s))]lEn (s)ds if B #0

0 it B =
By definition, it is clear that I(n) > |EJ,,| (the Lebesgue measure of Ej ). The

following result gives a converse estimate

Lemma 8.5.4 For anyn >0, I(n) <0.

Proof —Let n > 0. If Esning = () there is nothing to do so let us assume that this is
not the case, and take some s € E! . Since ¥, is affine, using the weak convergence

) sing*
of X¢ we know that

¢
I(n) =limI*(n) := / (\PS(Xg(S))]lEn_ (s)ds.
e—0 0 sing
The strategy is to use Lemma 8.5.3 to pass to the limit and estimate I°(n), knowing
that at each level € > 0, the dynamics are regular. In order to keep this information
in the limit, dealing with the b-terms is handled by property (c) of Lemma 8.5.3. But
the 03,-term is more delicate: we need first to fix a regular control independent of ¢.
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To do so, we start by noticing that for fixed ¢ > 0 and s € [0,t], for each a*(s) €
Ap®(X=(s),t — s) there exists a a°(s) € Ay®(X(s),t — s) such that

Bl (X%(5), £ — 5,05(5)) = bu(X (5), t — 5,3(5)) + 0(1) .
Indeed, this comes from a measurable selection argument and the fact that X con-

verges uniformly to X, while b3, also converges locally uniformly (with respect to its
first variable). So, rewriting the expansion of X¢ and using that U, is affine we get

/ Z b; Xg a; (s ))H{Xfeﬂi}(8)>]lEgng(s) ds

i=1,2

—l—/o Gi(s) bH(X<S),t—S,(Nl€<S)) ]l{Xaeq{}(s)>]lEg (s)ds+o0:(1) .

ing

Moreover, by construction and using again a measurable selection argument (see
Filippov’s Lemma [12, Theorem 8.2.10]), there exists a control a,(s) € K(X(s),t—s)
such that

G(8)bu(X(s),t — s, a.(s)) = perlax S)C 1(8)bu (X (s),t — 5, a).
Therefore,
(n / A w (s af () (x-ea ()

1=1,2

sing

+by (X (5),t — 5,a.(s)) ]l{XeeH}(s)}]lEn (s)ds +o0:(1) .

Now we pass to the weak limit, using Lemma 8.5.3 but with a constant by instead
of b3, and, more importantly, a constant control a,. In other words, the measure 15,
is actually independent of ¢ in this situation. We get some measures vy, vy, vy and
some controls aﬁ, @g and a* = a, here, for which

lim (n / { 30X ()t = s,04())wils, A)

i=1,2

+by (X (5),t — 5,a.(s))vu(s, A) }]lEn (s)ds .

sing

Recall that by construction by (X (s),t — s,a.(s)) € K(X(s),t — s) and that o}, a
are regular controls. Therefore, since vy (s, A1) + va(s, Az) + vy (s, A) = 1 and the set
K(X(s),t — s) is convex, we deduce that the convex combination satisfies

\Ifs{ Z bi(X(s),t — s, ag(s))l/i(s, Ap) + by (X(s),t = s,a.(s))vu(s, A) } <0.

i=1,2
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The conclusion is that 1(n) = lim._,0 I"(n) < 0 and the result is proved.
Q.E.D.

Proof of Proposition 8.5.1 — The first part (i) is done in Lemma 8.5.2. As for (ii),
we proved above that for any n > 0, [EJ | < I(n) = 0, so that set Ej, is of zero

Lebesgue measure. Hence, using a countable union of negligeable sets we deduce that
{s €[0,1] : X(s) € H and by (X (s),t — s,a(s)) ¢ K(X(s),t — s))}

is also of zero Lebesgue measure. This means that for almost any s € (0,t), the
strategy obtained by choosing a as control is regular, which concludes the proof.
Q.E.D.



Chapter 9

Uniqueness and Non-Uniqueness
Features

Abstract. This chapter is devoted to a discussion of the uniqueness and the non-
uniqueness properties for the Ishii solutions of the standard HJB FEquation, i.e. we
investigate the cases when the value functions U~ and U are equal and when they
are different. Counter-examples to uniqueness are given but also conditions on the
Hamiltonians Hy and Hp®—the Hamiltonians of the additional subsolution inequali-
ties for U™ and U™ on the hyperplane—ensuring that they coincide, leading to a pure
pde characterization of the uniqueness cases.

In this chapter, we investigate the question of the uniqueness for Ishii solutions of
Problem (6.1), which can be summarized as: when are the value functions Ut, U~
equal? It is rather clear that, in general, they are different since the restriction to use
only regular controls can really penalize the controller, leading to the fact that U™ is
strictly larger than U~. We give an example of this non-uniqueness situation in the
first section of this chapter.

Then we provide some conditions under which uniqueness holds, using a pde point-
of-view: as a consequence of Theorem 7.4.1 and Proposition 8.1.3, we know that
Ut = U™ if Hp = Hp*®, and we give a simple condition under which this last
equality is true.
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9.1 A typical example where Ut £ U~

We consider a one-dimensional finite horizon problem where
le{$>0}, QQZ{ZL’<O}, %:{LUZO}

The reader will find in [18] a detailed study of this situation for infinite horizon
control problems, a general description of the structure of solutions, the link between
the minimal and maximal Ishii solutions with state-constraints solutions as well as
several explicit examples. Here we restrict ourselves to exposing an explicit example
of non-uniqueness for illustration purposes.

We consider the dynamics
X(t) = Oél(t) in Ql s X(t) = Oéz(t) in QQ s

where (), az(-) € L (0, 400; [—1,1]) are the controls. In other words, A; = A, =
[—1,1] and by(z,t, 1) = aq, ba(x,t, a2) = an. As for the costs, we choose

Lhiz,t,a;) =1—a; +min(|z|,1) in Qy, b(x,t,as) =1+ as+min(|z],1) in Qs .

Finally, we set ¢i(x, 1) = co(x, ag) = 1 for the discount factor and also g = min(|z|, 1)
for the final cost. Therefore,

t

U (x,t) = Ti(nf) {/ (X (s),t—s,a(s))e*ds+ g(X(t))e_t} :
CL’,t 0

where [ is either [y, I3 or a convex combination of both for x = 0, and a(-) = (aq, az, p)

is the extended control. The definition for UT is similar, the infimum being taken over

Treg(x,t).

Computing U~ (0,t). It is clear that [;(z, aq), l2(z, a5) > 0 and these running costs
are even strictly positive for x # 0. Therefore, U™ (x,t) > 0 for any x € R and ¢ > 0.
On the other hand, for x = 0, we have access to a 0-cost strategy by choosing the
singular “pull-pull” strategy a = (a1, ae, 1) = (1,—1,1/2) which gives

b(07t_57a)::U’Oél_'_(l_/jj)OQ:Oa

1(0,t—s,a) =p(l—a)+(1—=p)(1+ay) =0.
As a consequence, it is clear that this is the best strategy for x = 0 and U~ (0,¢) =0
for any ¢ > 0.

Computing U*(0,t). For simplicity, we compute it only for ¢ < 1 here. In this
case any trajectory satisfies | X (s)| < 1 for any 0 < s <t and min(|X(s)|,1) can be
replaced by | X (s)| everywhere (in the running cost and terminal cost).
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If X is any trajectory starting from X (0) = 0 and associated to a regular control
and if X (s) > 0, then

(X (s),t—s,a(s))e® =(1 — X(s) + X(s))e*
=e* — (X(s)e™®) .

With analogous computations for X (s) < 0, we end up with [(X(s),t — s,a(s))e™* =
e —[|X]e~*)(s) if X(s)# 0.

It remains to examine the case when X (s) = 0. It is easy to see that, if b(0,t—s,a) =
0 is a regular dynamic, then [(0,t—s,a) > 1 since a; < 0,5 > 0 and [(0,t—s,a) = 1
if and only if a5 = ay = 0. Therefore, for X (s) = 0, the above formula is changed into
(X (s),t—s,a(s))e™® > e*—[| X|e *]'(s) since | X'(s)| = 0 a.e. on the set { X (s) = 0}.
And actually, equality is attained for the above mentioned choice of a. Therefore

/0 (X (s),t—s,a(s))e *ds + g(X(t))e™ :/0 (e™ = [|X]e™*)(s)) ds + g(X(t))e™"
=l1—-e'>0,

proving that UT(0,¢) =1—e~* > U (0,¢) = 0 at least for 0 < ¢ < 1. The conclusion
is that U™ # U~ and uniqueness does not hold in the class of Ishii solutions.

9.2 Equivalent definitions for Hy and H;*®

We recall that we defined Hr and H;® in Section 7.3, using the subsets BCLy(z, t)
and BCL}®(z,t): for z € H, t € (0,T}), 7 € R, p e RY

Hy(z,t,r,p) = sup {—b-p+cu—l} , (9.1)
(b,e,l)eEBCL (z,t)
while the second Hamiltonian is defined similarly but by considering only reqular
tangential dynamics b

Hy®(x,t,r,p):= sup {—b-p+ecu—1I}. (9.2)
BCLIE (z,t)

On the other hand, for any x,¢,r, p’, the functions f(s) := Hy(x,t,r,p' + sey) and
g(s) := Hy(z,t,r,p' + sen) are convex and, thanks to Section 5.2, we can introduce
the nonincreasing and nondecreasing parts f%, f,, ¢*, g, of f and g¢. It is easy to see
that

fi(s) = sup {—bi-(p+sen)+cu—1U}=Hy (z,t,r,p +sey) ,
(b1,017£1?e€55341(w,t)
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and similarly we define “H, = ¢*", “H;” = f,” and “H, = g,” , the choice of “+” or
“~7 in HF* being related to the sign of b; - ey in its definition.

In order to provide equivalent definitions of Hr,H3™®, we follow Section 5.2 where
we introduced M (s) := max(f(s), g(s)) and M*8(s) := max(f*(s), g,(s)), which leads
to consider the Hamiltonians defined for z € H, t € (0,7}), r € R, p € RY by

f[(x,t,r,p) ‘= max (Hl(q;,t,r,p), Hg(x,t,r,p)) , (9.3)

ﬁreg(x,t,r,p) = max (Hf(x,t,r,p), H;(x,t,r,p)) ) (9.4)
The following representation holds

Lemma 9.2.1 For any (z,t,7,p') € H x (0,Ty) x R x RY,

Hp(x, t,r,p') = miﬂg H(z,t,r,p + sen) , (9.5)
se

HYE(z,t,r,p) = min H™8(x,t,r,p + sen) . (9.6)
se

Moreover, there exist vy < vy such that for any A € |1y, 1s),

HY#(z,t,r,p) = Hy (x,t,r,p + Xey) = Hy (z,t,r,p' + Nen) . (9.7)

Proof — Notice first that (9.7) is a direct consequence of Lemma 5.2.2. Now, con-
cerning (9.5) and (9.6), We only provide the full proof in the case of Hr, the one for
HZ3® follows from the same arguments, just changing the sets of (b1, ¢y, 1), (b2, 2, 12)
we consider.

We introduce the function ¢ : R — R defined by
o(s) == max(H;(x,t,r,p" + sex), Ha(x,t,r,p’ + sen)) .

This function is convex, continuous and coercive since both Hy, H, have these proper-
ties and therefore there exists § € R such that ¢(5) = mingegr ©(s). As a consequence,
0 € dp(5), the convex subdifferential of ¢.

We apply a classical result on the subdifferentials of convex functions defined as
supremas of convex (or C') functions (cf [152]): here

o(s) =sup{—by - (p' + sen) + c1r — li; —by - (p + sen) + cor — I},

where the supremum is taken over all (by,cy,l1) € BCLy(z,t) and (b, co,ly) €
BCLo(x,1).
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The functions s — —b; - (p + sen) + ¢;r — 1; for i = 1,2 and (b;, ¢;, ;) € BCL;(z,t)
are all C' and 9¢(5) is the convex hull of their gradients for all the (b;,c;,[;) such
that ¢(5) = —=b; - (p/ + sen) + ¢ir — 1;. Since BCLy (z,t), BCLy(x,t) are convex, this
means that one of the following cases holds

(a) either the above supremum is only achieved at a unique (b;, ¢;, ;) but then ¢ is
differentiable at § and 0 = ¢/(5) = —b; - en;

(b) or there exists (b1, c1,l1) € BCLy(x,t), (be,c2,la) € BCLy(x,t) and p € [0, 1]
such that
©(5) = —b1 - (p' +5en) +c1r — I = —by - (P + Sen) + cor — I
0=pu(=by-ey)+ (1 —pu)(=by-eny) ie (uby+ (1 —p)bg)-en=0.

In case (b), we deduce that

@(8) = (b1 - (p' +5en) +err — ) + (1 — p)(=bz - (p' + 5en) +cor — 1) (9.8)
= —(pb1 + (1 = p)b2) - p' + (per + (1 = phea)r — (pdy + (1 — p)l) (9.9)
< Hyp(z,t,rp). (9.10)

But on the other hand, for any (51, 1, l~1) € BCLy(z,1), (52, Co, l~2) € BCLy(z,t) such
that (f1by + (1 — @)b2) - ey = 0 for some fi € [0, 1], the definition of ¢ implies that
0(3) > fi(=by - (P + Fen) + & — 1) + (1 — @) (=by - (P + Ben) + & — 1) (9.11)
= —(fiby + (L = f)ba) - p' + (ués + (1 — pw)é)r — (ph + (1 — p)l2), (9.12)
which, taking the supremum on all such (51,61,21), (52,62,22) and [i, gives ¢(5) >
Hr(z,t,r,p"). Therefore, the equality holds, which gives the result.

Dealing with case (a) follows from the same arguments as in case (b), with g =0
or 1. Hence the Lemma is proved.
Q.E.D.

9.3 A sufficient condition to get uniqueness

Applying directly Proposition 5.2.3 yields a condition under which Hy = H;®.

Lemma 9.3.1 We denote by m{ (z,t,r,p') the largest minimum point of the function
s — Hy(x,t,r,p' + sey) and my (x,t,r,p") the least minimum of the function s —
Hy(z,t,r,p' + sey). If mi (x,t,7,p)) < my (x,t,r,p) for any (x,t,r,p) then Hp =
HY® on H x[0,Tf] x R x RV,
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The importance of this lemma is to give the

Corollary 9.3.2 — A uniqueness criterion for Ishii solutions.
If mf(z,t,r,p') <my (x,t,r,p') for any (z,t,r,p') € H x[0,Tf] x R x RN=1 there is
a unique solution of (6.1) in the sense of Ishii.

Therefore we have an easy-to-check sufficient condition in order to have U™ =
U™, i.e. the uniqueness of the Ishii solution. Moreover this condition can be checked
directly on the Hamiltonians Hy, Hy without coming back to the control problem.

Remark 9.3.3 In Part III, we consider the more general case when Hy, Hy are only
quasi-conver. We point out that the above results, namely Lemma 9.2.1 and 9.3.1 are
of course still valid in the quasi-convex setting (in the codimension 1 case), provided
that we use the definition of the HF through f* f,, g%, g,. Indeed, in that way, the
definitions do not require a control formulation. We come back later on this.

9.4 More examples of uniqueness and non-uniqueness

In this section, we give two simple 1-d examples to illustrate Corollary 9.3.2. The first
one is

u + |uz — 1 =0 in (—o00,0) x (0, 400) ,

u + |uz + 1) =0 in (0, +00) x (0, +00) ,

w(z,0)=|z] inR.
In this case, m{ (z,t,r,p') = —1 < my (z,t,r,p') = 1, uniqueness occurs and it is easy
to compute the value functions
2]z —t)4 — [z if |2| >,

U (2,t) = U (x,t) = 2(|x| — )4 — |z — (t — |2])4 = .
—t otherwise.

Next, consider the problem
ur + u, +1/ =0 in (—00,0) x (0,400) ,
u + |uz — 1 =0 (0,400) x (0,400) ,
u(z,0) =]z inR.

Here, on the contrary, m{ (x,t,r,p') = 1 > m; (z,t,r,p') = —1, Corollary 9.3.2 does
not apply and actually the value functions are different

U (2. 1) || if |x| >t
x,t) =
2z| —t if |z <t
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while Ut (z,t) = |z] .
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Chapter 10

Adding a Specific Problem on the
Interface

Abstract. In this chapter, HJIB Equations with an additional conditions on the hy-
perplane are considered; these additional conditions correspond to a specific control
problem on the interface. We investigate the control formulas for the minimal and
mazimal solutions in this context.

This chapter is devoted to explain the main adaptations and differences when we
consider the more general problem

w + Hy(z,t,u,Du) =0  for z €y,
uy + Ho(x, t,u, Du) =0 for z € €y ,
u + Ho(x,t,u, Dru) =0  forx € H |

u(x,0) = up(x) for z € RN .

(10.1)

Here, since Hj is only defined on H, the gradient Dru consists only on the tangential
derivative of u if x = (2/,zy) € RV x R, Dpu = Dyu (or (Dyu,0) depending
on the convention we choose). In order to simplify some formula, we may write Du
instead of Dru and therefore Hy(x,t,u, Du) instead of Hy(x,t, u, Dyu), keeping in
mind that Hy depends only on p = Du through pr = Dru.

As we explained in Section 2.1, the conditions on H for those equations have to be
understood in the relaxed (Ishii) sense, namely for (10.1)

max (ut + Hy(z,t,u, Dru),u; + Hy(z,t,u, Du),uy + Ha(x, t, u, Du)) >0,

min <ut + H()(Zlf,t,u, DTU>7ut + Hl(xvtauv Du)aut + HQ(x7tau7 DU)) <0,
(10.2)

213
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meaning that, for the supersolution [resp. subsolution | condition, at least one of the
inequations has to hold.

In this section, we use the notation with Hy as a sub/superscript in the mathemat-
ical objects to differentiate from the “non”-H, case since these are not exactly the
same, in particular of course, the value functions differ whether we have a specific
control problem on H or not.

We say here that the “standard assumptions in the codimension-1 case” are satisfied
for (10.1) if (Hga_cp) holds for (b;,¢;,1;), ¢ = 0,1,2 and (NCy) holds for H; and
H,.

10.1 The control problem

The control problem is solved exactly as in the case of (6.1) that was considered above.
We just need to add a specific control set Ay and triples (bo, co, lp), defining BCLg(z, t)
when x € H as for BCL; and BCL,. Since the case i = 0 is specific because H can
be identified with RV~ x {0}, we set for all (x,t, ap), bo(x,t,an) = (by(z,t, ), 0) so
that by - p reduces to the scalar product of the first (N — 1) components.

Using this convention, we define now the new BCL as
BCLl(l',t) if v e Ql s
BCL(z,t) := { BCLy(x,1) if v €Qy,
E(BCL(), BCLl, BCLQ)(ZC, t) ifx e H y

where the convex hull takes into account here the three sets BCL; for ¢ = 0,1,2 so
1

2
that of course, on H we make a convex combination of all the (b;, ¢;, [;), 1 = 0,1, 2.

Lemma 10.1.1 The set-valued map BCL™® satisfies (Hpcr).

The proof is an obvious adaptation of Lemma 7.1.1, therefore we skip it.

In order to describe the trajectories of the differential inclusion with BCL™, we
have to enlarge the control space with Ay (and introduce a new parameter iy for the
convex combination)

Ao = Agx Ay x Ay x A} and A .= L=(0,Ty; AH) .

Here, A = {(110, p11, jt2) € [0,1]> = o + pu1 + pg = 1}, so that the extended control
takes the form a = (ap, aq, g, o, pi1, o) and if = € H,

(bH; Cx, l%) = MO(bO, Co, lo) + Ml(bh C1, ll) + ,UQ(bz, Ca, 52) )
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with g0 + p 4 p2 = 1.

With this modification, solving the differential inclusion with BCL® and the de-
scription of trajectories is similar to that in the BCL-case (see Lemma 7.1.2), except
that the control has the form a(-) = (g, a1, s, o, fi1, p2)(+) € A,

Then we define Uy by

Uy (2,t) = THiﬂﬁJ) {/0 (X (s),t —s,a(s))exp(—D(s))ds + ug(X(t)) exp(—D(t))} ,

where Ty, (,t) is the space of trajectories associated with BCL®,

10.2 The minimal solution

As far as the value function U}, is concerned, only easy adaptations are needed to
handle Hy and the related control problem. Of course we assume that Hy also satisfies
(Hcony), (NC), (TC) and (Mon-u), as it is the case for H; and Hs.

Lemma 7.2.1 holds here with

HY (2, t,u,p) := sup (—b-p+cu—l),
(b,c,))eBCLH0 (z,1)

FHO (Z’, t7 u, (p:mpt)) = Pt + HHO(J:7 t7 uvp) )

and of course we have to add Hy in the max of the right-hand sides
HHO (l’, tv r, p) = max (H()({L', ta r, p)a Hl(x7 ta r, p)v HQ(xa ta uap)> ’

FHO(xata u, (vapt)) = max (pt + HO(xvta T:p)vpt + H1($7t7u7p)7pt + HQ(:B)tvu?p)) .

Then, minimality of Uy, follows exactly as in Proposition 7.2.2

Proposition 10.2.1 Assume that the “standard assumptions in the codimension-1
case” are satisfied for (10.1). Then the value function Uy is an Ishii viscosity solution
of (10.1). Moreover Uy, is the minimal supersolution of (10.1).

Notice that a tangential dynamic b € Bgo (x,t) is expressed as a convex combination

b= /L(]bo + /,lel -+ ,ugbg (103)

for which g + py + po = 1, pio, pa, p2 € [0, 1] and (p1b1 + pobs) - ex = 0 since, here,
by definition, by - ey = 0.
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Then, all the results of Section 7.3 apply, except that we need a little adaptation
for Lemma 7.3.1 in order to take into account the by-contribution.

Proof of Lemma 7.3.1 in the BCL-case — The only modification consists in rewrit-
ing the convex combination as

MObO(xata Ozo) + (]‘ - ”0) ( a bl(wata al) + e bQ(LUa t, a?)) )
1 — po L — o

and we apply the arguments of Lemma 7.3.1 to the convex combination

2
1 — pio 1 — po

b2 (I‘, t7 052> .
Then, setting

Mo (y, s) == pobo(x,t, ) + (1 — puo) (Ng(y, 8)(bi, e, 1) + ph(y, 8) (b, ca, l2)> ;

it is easy to check that the lemma holds for the BCL™°-case.
Q.E.D.

Finally, the minimal solution Uy can also be characterized through H{f‘). The proof
follows exactly the “non-H,” case with obvious adaptations so that we omit it.

Theorem 10.2.2 Assume that the “standard assumptions in the codimension-1 case”
are satisfied for (10.1). Then Uy, is the unique Ishii solution of (10.1) such that

ut+HTI§IO(x,t,u, Dru) <0 on H x(0,Ty),
where, for x € H,t € [0,T], r e R, p e RV,

Hfo(x,t,r,p) = sup (—b-p+cu—l),
(b,c,))EBCLLO (x,t)

BCLY (2, 1) being the subset of all (b, c,1) € BCL™(2,t) for which b € BYo(x,1).

10.3 The maximal solution

Surprisingly, for the maximal solution, the case of (10.1) is very different. And we
can see it on the result for subsolutions, analogue to Lemma 8.4.1
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Lemma 10.3.1 If u : RN x (0,7) — R is an u.s.c. subsolution of (6.1), then it
satisfies

u; + min (Ho(z, t, u, Dyu), Hf®(x, t,u, Dyu)) <0 on H x (0,T}) . (10.4)

We omit the proof since it is the same as that of Lemma 8.4.1 (taking into account
the bo-terms), but of course the conclusion is that the Hy-inequality necessarily holds
if the H3® does not, hence the min.

The important fact in Lemma 10.3.1 is that, while, without Hy, (8.10) keeps the
form of an HJB-inequality for a control problem, it is not the case anymore for
(10.4) where the min looks more like an Isaacs equation associated to a differential
game. As we already mention it in the introduction of this part, this is the analogue
for discontinuities of the phenomena which arises in exit time problems/Dirichlet
problem where the maximal Ishii subsolution involves a “worse stopping time” on the
boundary: we refer to [25] and [32] for details.

As an illustration, let us provide the form of the maximal solution of (10.1) in the
particular case when for any x € H, t € (0,T}), r € R and pr € RV !

Ho(z,t,r,pr) < Hp®(x, t,u,pr) . (10.5)

Proposition 10.3.2 Assume that the “standard assumptions in the codimension-1
case” are satisfied and assume that (10.5) holds. Let V : H x (0,1f) — R be the
unique solution of

u + Ho(z,t,u, Dru) =0 onH x (0,T%) ,
with the initial data (uo)p. For i = 1,2, let Vi : Q; x [0,Tf] — R be the unique
solutions of the problems

u + Hi(z, t,u, Du) =0 on ; x (0,T%) ,

u(z,t) = V(x,t) on H x (0,Ty) ,

u(x,0) = (uo) g, on Q; .
Then the mazximal (sub)solution of (10.1) is given by

Vi(z,t) ifx €

+ _
UHO(x’t)_{V(x,t) ife €H.

Before giving the short proof of Proposition 10.3.2, we examine a simple example
in dimension 1 showing the main features of this result. We take

BCL, (2, 1) := {(a,0,0); |a| <1},
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BCLy(x,t) := {(«,0,1); o] <1},
and BCL(0,t) = {(0,0,2)}. In which case
Hi(p) = Ipl, Ha(p) :=pl =1, Hp® =0, Hy= 2.
Hence (10.5) holds. It is easy to check that, if ug(z) = 0 for all z € R
V(t)=2t, Vi(z,t) =0, Va(z,t) =t forxeR, t>0.

This example shows several things: first, the value function U}}O is discontinuous al-
though we have controllability /coercivity for the Hamiltonians H; and Hy; it is worth
pointing out anyway that the global coercivity is lost since we use the Hamiltonian
min(Hy, Hy, Hy) on H for the subsolutions instead of min(H,, Hy).

Then, the values of V' (t) may seem strange since we use the maximal cost 2 but as
we mention it above, this phenomena looks like the “worse stopping time” appearing
in exit time problems. Finally, and this is even more surprising, the form of U;}O
shows that no information is transfered from €2; to €25: indeed, from the control point
of view, starting from x < 0 where the cost is 1, it would seem natural to cross the
border 0 to take advantage of the 0-cost in €2; but this is not the case, even if x < 0
is close to 0. We have here two state-constrained problems, both in ©y x [0,7%] and
Q9 x [0, Ty]. This also means that the differential games features not only implies that
one is obliged to take the maximal cost at x = 0 but also may prevent the trajectory
to go from a less favourable region to a more favourable region.

Unfortunately we are unable to provide a general formula for U}}O, 1.e. which would
be valid for all cases without (10.5). Of course, trying to define U}}O as in Proposi-
tion 10.3.2 but V being the solution of

u; + min {Ho(x,t, u, Dyu), Hy®(z,t, u, DTU)} =0 onH x(0,Ty), (10.6)

does not work as the following example shows. In dimension 1, we take Hy(p) =
Hs(p) = |p|, Ho > 0 and uo(z) = —|z| in R. Since Hy® = 0, we have Hy > H*® and
solving the above pde gives V' = 0. Computing V; and V; as above gives —|z| — ¢ in
both cases. Hence V; and V3 are just the restriction to €y x [0, 7] and Qs x [0, T}]
respectively of the solution of

s+ |uyl =0 in R x (0,T%),

with the initial data ug. Now defining U}}O as in Proposition 10.3.2, we see that we
do not have a subsolution: indeed the discontinuity of U}}O at any point (0,¢) implies
that (0,¢) is a maximum point of U;}O — px for any p € R and therefore we should
have the inequality

min(Ho, [p|, [p|) <0,

which is not the case if |p| > 0.
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Remark 10.3.3 FEven if we were are able to provide a general formula for UEO, we
have some (again strange) information on this mazimal subsolution: first UEO > Ut
in RY x (0, Ty) since UT is a subsolution of (10.1). A surprising result since it shows
that adding Hy on H x (0,Tf) does not decrease the mazimal subsolution as it could
be thought from the control interpretation. On the other hand, Lemma 10.3.1 provides
an upper estimate of U}}O on H x (0,Ty), namely the solution of (10.6).

Proof of Proposition 10.3.2 — First, by our assumptions, V' exists and is continuous,
since it is obtained by solving a standard Cauchy problem in RV~ x [0, 7}]. Next
by combining the argument of [25] (See also [32]) with the localization arguments
of Section 2.2, V; and V; exist and are continuous in €y x [0,7%] and Qs x [0, T}]
respectively, with continuous extensions to Q; x [0, T}] and Qq x [0, T].

Considering the Cauchy-Dirichlet problems in €2; and 25, we refer the reader to
Proposition 26.1.2-(z) where it is proved that the normal controllability implies

Vi(z,t), Va(z,t) < V(z,t) onH x (0,T%).
Hence, defined in that way, UEO is upper semicontinuous (it may be discontinuous as

we already saw above).

It is easy to check that U™ is a solution of (10.1). Indeed the subsolution properties
on 4 x(0,7%), Q% (0, T¢) are obvious. On H x (0, T¥) they come from the properties of
V since U;}O =V on H x(0,T}); hence the Hy-inequality for V implies the subsolution
inequality for UT.

For the supersolution ones, they comes from the properties of Vi, V5 and V' and the
formulation of the Dirichlet problem since (Uj; ), = min(Vi, V5, V) = min(V4, V3) on
H x (0,T}). Indeed if ¢ is a smooth function in RY x (0,7}) and if (z,t) € H x (0,T})
is a minimum point of (Uf; ). — ¢, there are several cases:

(a) if (U}, )«(Z,t) = Vi(Z,1) < V(Z,t), then (Z,t) is a minimum point of Vi — ¢ on
Q, x (0,Ty) and, since V; is a solution of the Dirichlet problem in €; x (0,7}) with
the Dirichlet data V', we have

max (¢(z, &) + H1(z, ¢, V1(2,1), Do(,1)), Vi(Z,1) = V(2,1)) > 0.
Hence ¢,(Z,t) + H1(Z,t,Vi(Z,t), Do(Z,t)) > 0, which gives the answer we wish.
(b) The case when (U}, ).(Z,t) = Va(Z,1) < V(Z,t) is treated in a similar way.

(¢) Finally if (U}, ).(Z,t) = Vi(Z,1) = Va(z,1) = V(Z,t), we use that (z,t) is a
minimum point of V' — ¢ on H x (0,T) and therefore

o¢(7,t) + Ho(Z,t,V(Z,1), DH(T, 1)) > 0,
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implying the viscosity supersolution inequality we wanted.

It remains to prove that any subsolution u of (10.1) is below UEO. This comes from
Lemma 10.3.1 which implies, using a standard comparison result on H x [0, 7y] that
u(x,t) < V(x,t) =Uj (x,t) on H x [0, Ty].

Q.E.D.



Chapter 11

Remarks on the Uniqueness

Proofs, Problems Without
Controllability

Abstract. The aim of this short chapter is twofold: first, it analyzes the uniqueness
proof and then considers cases where the “good assumptions” are mot satisfied; in
particular when the normal controllability does not hold.

11.1 The main steps of the uniqueness proofs and
the role of the normal controllability

In this part, we have proved several comparison results showing, on one hand, that U~
is the minimal supersolution and the unique solution which satisfies the Hp-inequality
and, on the other hand, that UT is the maximal subsolution and the unique solution
which satisfies the H3®-inequality.

All the proofs of these results are based on a common strategy which will also be
used for stratified problems in Part [V and which can be described in the following
“backwards” way

Step 3 : The “Magical Lemma”. According to Section 2.2 the comparison result
is reduced to proving that (LCR) holds. For the points located on #, this
is a direct consequence of Lemma 4.3.1 if the subsolution is continuous and
C'! in the tangential variables. This tangential regularity allows to use the
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subsolution as a test-function for the “tangential inequalities” (typically the
Hp or HR*® one), avoiding in particular the usual “doubling of variables”
which causes the major problem in the discontinuous setting.

Step 2: Regularization of the subsolution. In order to use the “Magical Lemma”
to obtain the result for any subsolution, we have to be able to regularize any
subsolution in order that it becomes continuous w.r.t. all the variables, C!
in the tangent variables, and preserving the subsolution inequalities. This is
the role of Propositions 2.4.4 and 2.4.7.

Step 1: Regularity of the subsolution. In order to perform the second step in
a suitable way, we need at least the subsolution to be regular on H. In
particular this is necessary in order that the second step actually provides
a subsolution which is continuous on H (but also on the hyperplanes which
are parallel to H).

Going further in the analysis of these three steps, it is clear that the normal con-
trollability assumption (NC) plays a crucial role in Step 1 but even more in Step 2.
Looking at Proposition 2.4.2, recalling that (NC) implies (NC,), Case (a) imme-
diately gives us the complete information we need, even if we can obtain it through
Cases (b) and (c) in some situations, see the examples below.

But this is in Step 2 that (NC) plays the most important (an maybe unavoidable)
role: in order to perform the tangential regularization we have to control, one way or
the other, the normal component of the gradient. This is exactly the role of (NC).

This is why we consider (NC) as a key “natural” assumption in this type of prob-
lems and the fact that the same remarks can be made for stratified problems rein-
forces this certainty. Being unable to perform the regularization process, the “Magical
Lemma” cannot be used and all the proofs collapse.

We also point out that the approach via “Flux-Limited Solutions” described in
Part III provides an alternative strategy which seems to avoid some of the above
constraints, and in particular (NC). The comparison proof is based on an “almost
classical” doubling of variables but the reader can check that this proof actually uses
(NC) in several ways.

However, some problems without normal controllability can also be treated and we
give some examples in the next section.
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11.2 Some problems without controllability

In this section, we are not going to examine sophisticated situations: if (NC) is not
satisfied on H and if we have a mixture of the different “simple” situations we describe
below on H, we are led to problems whose difficulties have to be examined separately.
A combination of the arguments which are presented in this book may allow to treat
such problems but, in a general framework, this will not be the case.

In the simple situations we are going to emphasize, we examine the situation sep-
arately on both sides of the discontinuity and we respectively denote by u; and us
the solutions in Q; x (0,T}) and Qy x (0,T}). Therefore the value function U of the
control problem in RY x (0,7}) will be given by

U( t) Ul(flf,t> ifa:EQl s
r,t) =
ug(z,t) if x € Qy

while on H x (0, T%), either U will be the common value of u; and u, or the Ls.c./u.s.c.
envelopes, computed by using values in € x (0,7}) and Q5 x (0, T%).

The simple situations we have in mind are the following

I. For any z € H, t € [0,T}], an € Ay, bo(x,t,a2) - ey > 0. All the dynamics
used in €, are strictly pointing outside Q5 on H. Here, it is easy to show that
H, plays the role of a nonlinear Neumann boundary condition on H for the
equation H; = 0 in Q; X (O,Tf)(l). Therefore, in order to obtain u;, we solve
this nonlinear Neumann problem in €4 x (0, 7). We obtain a unique continuous
solution u; (which is continuous up to the boundary). Then, in order to compute
g, we solve the Dirichlet problem in Q5 x (0, Ty) with u; as Dirichlet boundary
condition on H x (0, T¢). This also provides a continuous solution in €y x (0, T})
and that way, we have defined a continuous function in R" which is the solution
of Problem 6.1 and the value function of the associated control problem.

II. By symmetry the situation is the same if, for any = € H, t € [0,7%], a1 € A,
bi(x,t,a1) - eny < 0.

III. Forany xz € H,t € [0,T%], aa € Ay, ba(x,t,a2)-en < 0. Then all the trajectories
of the dynamic starting in s x (0,7}) stay in Qs x (0,7%). In terms of PDE,
the consequence is that all the viscosity inequalities for sub and supersolutions
hold up to the boundary of Q5 x (0, TY), as soon as these sub and supersolutions
are extended up the boundary by upper or lower-semicontinuity. Hence the

(DWe give a proof at the end of this section for the reader’s convenience
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associated HJB problem is Hy = 0 on Qy x (0,7}). As in the whole space
R¥ this problem enjoys a comparison result and therefore it provides a unique
solution uy € C(Qy x (0,7%)). This solution is the value function in Qy x T,
extended to Qg x (0,7 ) by continuity® . Therefore the problem in Qy completely
ignores the problem in €2y, and we face 3 different cases for the problem in €2,

II1.1

I11.2

I11.3

For any x € H, t € [0,Ty], o € Ay, bi(z,t, 1) - en < 0, a case which is
already treated in IT above. But here we are in the case of a simple Dirichlet
problem in € x T%, the Dirichlet boundary condition on H x T being the
value function of the problem in {25. Hence there is a unique continuous
solution for Problem 6.1 which is the value function of the control problem
in RV,

For any o € H, t € [0,TY], there exist o}, € Ay such that by (z,t, o) -
ey > 0 and by(z,t,a2) - exy < 0, i.e. the normal controllability condition
holds. In this case, we also have a Dirichlet problem in ; x T with the
Dirichlet boundary condition on H being the value function of the problem
in 2y x Ty. However, while in ITI.1 the boundary data is assumed in a
classical sense and leads to a continuous solution in RY, here it is only
assumed in the viscosity sense. The value function in €, x T} being not
equal, in general, to the one in Q3 x T in all H x T%, the value function
of the problem in R may have discontinuities on H x 7.

Forany x € H,t € [0,T}], o € Ay, bi(x,t,a1)-eny > 0: here the problem in
0 x Ty and 2y x Ty are completely independent. There exists both a unique
value function in Q x Ty and Qs % T but their continuous extensions to
H x Ty are different in general, and the value function in RY may have
discontinuities on H x Ty. Anyway the Ishii conditions are satisfied on
‘H x T since both equations hold up to the boundary.

We conclude this section by proving that, as announced in Case I above, dynamics
pointing outward generate a nonlinear Neumann boundary condition.

Proposition 11.2.1 Assume that the “standard assumptions in the codimension-
1 case” are satisfied and that, for any x € H, t € [0,Ty], aa € Ay, ba(x,t,00) -
ex > 0. Then any locally bounded u.s.c. subsolution [resp. l.s.c. supersolution v] of
Problem 6.1 is a subsolution [resp. supersolution] of the nonlinear Neumann problem

{ w+ Hi(z,t,u,Du) = 0 in$y x (0,7y) (11.1)

u + Ho(x,t,u,Dyu) = 0 onH x (0,7%) .

() Therefore us is equal to the RV-value function in Q2 x T but maybe not on H x (0, T}).
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We recall that Neumann boundary conditions for first-order HJ Equations were
first studied by Lions [138] and then different comparison results for first and second-
order equations were obtained by Ishii [123] and Barles[33]. We refer the reader to the
“User’s guide to viscosity solutions” of Crandall, Ishii and Lions [68] for a complete
introduction of boundary conditions in the viscosity sense and to all these references
for checking that the nonlinearity p; + Ha(z,t, 7, p,) = 0 satisfies all the requirement
for a nonlinear Neumann boundary condition.

Proof — Of course, we just have to check the boundary condition and we provide
the proof only in the subsolution case, the supersolution one being analogous. Let
¢ € CHRYN x (0,T})) and let (z,) € H x (0,T}) be a strict local maximum point of
u — ¢. For 0 < ¢ < 1, we consider the penalized function

(z, 1) = u(z,t) — ox,t) — %

An easy application of Lemma 5.4.1 in a compact neighborhood of (Z,¢) shows the
existence of a sequence (z.,t.) of maximum points for these functions such that
(zc,te) — (Z,t) and u(z, t.) — w(z, t). If (z.,t.) € Q1 x Ty, we have

either ¢t($s; ts) + Hl(a:a le, u<xsy t5)7 Da:(b(xsy ts)) <0
or ¢t(-775; ta) + HQ(xaytEa u(xaata)a Dx¢(x57t8)) <0 )

[(zn)-]?

the derivative of the term being 0. Hence the only difficulty is when (z.,t.) €

2 x Ty and

2 _
o} (l'aa te) + Hz(l‘g, le, u(xa, t6)7 qub(l‘g, ta) - (xN) €N> <0.
9

But examining H, and using the fact that, for any x € H, t € [0,T}], an € A,
bo(z,t,a0) - ey > 0, we see that A — Ha(x,t, 7, p, + Aew) is decreasing for all z € H,
t €10,Ty], r € R and p, € RY. Therefore

Q(LUN)_

HQ(xeatsyu(meats)aDm¢(m€7ts) - c

en) > Hy(we, te, u(ae, te), Dog(e, 1))
and we also get in this case
Gu(we, o) + Ha(e, e, ule, te), Dad(2e, ) < 0.
In any case
min (gzﬁt(xe, te) + Hi(xe, te,u(ze, te), Dot (e, t2)),

Oulo,te) + Holae, ey u(we, 1), Dad(xc,12))) <0,
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and letting ¢ — 0, we obtain the desired inequality

min <¢t(faf> + Hl(f,f,U(f,a,DxQS(f,{)) ) ¢t(ja£) + HQ(£>{au(j7ﬂan¢(jaﬂ> S 0.

Q.E.D.



Chapter 12

Further Discussions and Open
Problems

Abstract. The discussion focuses on the Ishii subsolution inequality and extensions
to stationary problems; then, more general discontinuities are presented, leading to
puzzling open problems.

12.1 The Ishii subsolution inequality: natural or
unnatural from the control point of view?

As it is well-known, the Ishii supersolution inequality is very natural from the control
point of view, and even in a very general framework. The reader can be convinced
by this claim by looking at Chapter 3, and in particular at Theorem 3.3.4 and Corol-
lary 3.4.3: involving the natural F-Hamiltonian, the proof that the value function is
a supersolution—and even the minimal supersolution—is rather easy and reflects as
expected the property of the control problem, since it is related to the existence of
an optimal trajectory.

On the contrary, the proof of the subsolution inequality—which has to handle F,—
is far more involved, c¢f. Theorem 3.3.6, and no analogue of Corollary 3.4.3 exists.
This rises the question: is this Ishii subsolution inequality so natural from the control
point of view?

WHY THE [SHII INEQUALITY SHOULD NOT HOLD — We can provide the beginning
of an answer in a rather simple way in the two-domains case. We recall that the role
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of the subsolution inequality is to reflect the fact that each control (or trajectory) is
suboptimal.

IfU =U"or Ut if (z,t) € H x (0,Tf) and if a; is a control such that b (x, ¢, o) -
en > 0, we solve the ode

X(s) =by(X(s),t —s,01), X(0) =z,

and we remark that, for s > 0 small enough, X(s) € ;. Therefore the trajectory
X(+) is admissible and an easy application of the Dynamic Programming Principle
(where we assume that we already know that U is continuous for simplicity) implies,
for A > 0 small enough

h
Uz, t) S/ [(X(s),t —s,01) e PO ds + U(X (), t — h) e P®)
0

We easily deduce that, for such ay
—by(z,t, 1) - DU(x,t) + c1(z,t,00)U(z,t) — (2, t,00) <0 (12.1)

and this inequality can easily be extended to all a; such that by(x,t, aq) - ey > 0.

On the contrary, if by (z,t, 1) -exy < 0, X(s) € 5 for s > 0 small enough and X(+)
is not an admissible trajectory anymore since the dynamic is by in Qs x (0,7%); so
there is no reason why (12.1) should hold.

This implies a fortiori that there is no reason why U, + Hy(z,t,U(x,t), DU(x,1))
should be nonpositive and, since we can argue exactly in the same way with control
as associated to the control problem in s x (0, 7%), there is also no reason why Uy +
Hy(x,t,U(x,t), DU(x,t)) should be nonpositive either. Hence, the Ishii subsolution
inequality, namely

min(U, + Hy(x,t,U, DU), U, + Hy(x,t,U, DU)) < 0 on H x (0, T}) (12.2)

is not natural at all from the control point of view.

WHY THE [SHII INEQUALITY ACTUALLY HOLDS — The proof of Proposition 8.1.3
gives a first way to answer this puzzle in the case of UT (the argument would be
exactly the same in the case of U™).

On one hand, the Hp-inequality is natural since it shows that all the admissible
trajectories which stay on H are suboptimal. On the other hand, if U} + H; < 0, the
Ishii inequality holds while if U} + H; > 0, the inequality U, + Hy < 0 implies that
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necessarily U;” + H, < 0, since the dynamics such that the X-trajectories stay on H
are convex combinations of the b; and be-ones. In any case we obtain (12.2) for UT.

Hence, the Ishii subsolution inequality holds on #H x (0,7F) as a consequence of the
natural Hp-inequality. And one may wonder whether it is not more natural to define
subsolution by just imposing the Hp-inequality on H x (0,7y), dropping (12.2).

This is exactly what the notion of Flux-Limited Solutions is doing, cf. Chapter 14.
Indeed, as a by-product of the argument which leads to (12.1), we have natural H;"
and H, inequalities, at least for the value functions U™, U,

Moreover it is clear that this last remark remains valid in far more general cases: we
have natural subsolution inequalities for the controls for which the dynamics “move
away from the discontinuities”.

GENERAL SUBSOLUTIONS, GENERAL DISCONTINUITIES: THE STRATIFIED CASE —
Maybe looking only at value functions is misleading since we know that Theorem 3.3.6
holds and maybe also that the two-domains case is a very particular situation regard-
ing the Ishii subsolution inequality on the discontinuity.

This suggests a more general question: for unnatural reasons, the F, < 0 inequality
holds on discontinuities for value functions; does this “little miracle” hold both for
general subsolutions and for more complicated discontinuities?

Surprisingly the answer is yes in the stratified framework under suitable assump-
tions: in Section 19.5, it is a consequence of a (LCR) in the case of regular subsolu-
tions and this points out that such inequality always holds for any reqular subsolution
provided a comparison result holds. Hence the F, < 0-inequality on discontinuities
appears more as a consequence than as a required inequality in the definition.

This is confirmed by the fundamental Lemma 4.3.1 which is the keystone to prove
comparison results: this lemma is based on (i) a “tangential inequality” on the dis-
continuity (for example the Hp-inequality on H x (0,7%)) and (i7) a subdynamic
programming principle for the subsolution outside the discontinuity (in €y x (0,7)
and in Q5 x (0, T'f) here). None of these ingredients uses the Ishii subsolution inequality
on H x (0,T%).

As a conclusion of this section, we can remark that, thanks to the above arguments,
imposing or not the Ishii subsolution inequality on the discontinuities is not a real
issue: one way or the other, it will hold at least in frameworks where a suitable
comparison result holds.

But as the reader can notice everywhere in this book, even if it is not the only way
to obtain it, the Ishii subsolution inequality on H x (0,7) provides the regularity of
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subsolutions, a fundamental ingredient. This is why we make the choice to maintain
it most of the time.

12.2 Infinite horizon control problems and station-
ary equations

The aim of this section is to briefly describe the analogous results in the infinite
horizon case where the HJ Equation is stationary: we will only skim over this problem
since all the results are not only straightforward translations and adaptations of
the finite horizon/evolution equations case but the proofs are even simpler from a
technical point-of-view. We recall that this case was studied in details in the works
of Briani and the authors of this book (cf. [18, 19]) and actually almost all the ideas
and results of this part appear for the first time in these two articles.

From the control point-of-view, we are given for z € €2; and for i = 1,2
BCL;(z) := {(bi(z,a),ci(z, ), l;(x,0)) : aw€ A},

where, as above, the control set A is a compact metric space and the (b;,¢;,[;) are
defined on RY x A; and satisfy (Hga_cp). We assume, in addition, that there exists
A > 0 such that, for 1 =1, 2,

ci(z,a) > X inRY x A,
As in the finite horizon case, we define BCL(x) as BCL;(z) if x € €; and as the

closed convex envelope of BCL;(z) UBCLy(z) if z € H.
Using this BCL, we can solve the differential inclusion equation for (X, D, L)

(X(s), D(s), L(s)) € BCL(X(s)) ,
with (X(0), D(0),L(0)) = (2,0,0). We can also define “regular” and “singular” dy-
namics on H, 7 (x), T"(x) and the tangential Hamiltonians Hr, H . The associated
value functions are

U )= aut { 100 a9 expl-D(s) s

T ()

Ut(z) = inf {/0+Ool(X(s),a(s))eXp(—D(s))ds},

Tres(x)
where [(X (s), a(s)) is defined as in Theorem 3.2.1.
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From the pde point-of-view, the related problem is

12.3
Hy(z,u,Du) =0 in Qs , (123)

{Hl(a:,u, Du)=0 1in Q,
with the standard Ishii inequalities on H where, for i = 1, 2,

Hi(xvrup> ‘= sup {_bz(x705) "D+ CZ'(I', Oé)?” - ZZ(JJ,Oé)} :
acA

The result is the following
Theorem 12.2.1 Under the above assumptions,

(i) the value functions U™, UT are well-defined and bounded. They are viscosity
solutions of (12.3).

(13) The value function U~ satisfies
Hr(z,u,Du) <0 onH, (12.4)
while the value function U satisfies

H%(x,u,Du) <0 onH . (12.5)

(17i) The value function U~ is the minimal viscosity supersolution (and solution) of
(12.3), while UT is the maximal viscosity subsolution (and solution) of (12.3).

(tv) The value function U~ is the unique viscosity solution of (12.3) which satisfies
(12.4).

We leave the proof of this theorem to the reader since, as we already wrote it above,
it is a routine adaptation of the ideas described in this part.

12.3 Towards more general discontinuities: a bunch
of open problems.

A very basic and minimal summary of Part II—including the previous section—can
be expressed as follows: for Problem (6.1), we are able to provide an explicit control
formula for the minimal supersolution (and solution) U™, and also an explicit control
formula for the maximal (and solution) UT.
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The next natural questions are: is it possible to extend such results to more general
type of discontinuities? It can also be thought that some of them are very particular
cases which only appear because of the codimension 1 discontinuity and that simpler
results may exist for higher codimensions because of some kind of “eliminability
property” (7). This idea can only be reinforced by the fact that, as we will see it
in Part III, U™" is the limit of the vanishing viscosity method.

Before coming back to this question of U™ or more precisely to the identification of
the maximal subsolution, we consider the case of U™, which may be perhaps consid-
ered as being the more natural solution from the control point of view. Here the answer
to the above question is yes and this is not so surprising since, by Corollary 3.4.3, we
know in a very general framework that U~ is the minimal viscosity supersolution of
the Bellman Equations, therefore we already have a lot of informations on U~.

In the Part IV, we provide a rather complete study of stratified solutions in RY
and then, in Part V in general domains, which are the natural generalization of U™
in the case when the codimension-1 discontinuity is replaced by discontinuities on
Whitney stratifications. As in Section 7, we characterize the stratified solution U~
as the unique solution of a suitable problem with suitable viscosity inequalities. The
methods which are used to study Ishii solutions, relying partly on control arguments
and partly on pde ones, can be extended to this more general setting and we will
emphasize the (even more important) roles of the subsolution inequalities, normal
controllability, tangential continuity...etc.

But the case of the maximal subsolution (and solution) U™ is more tricky and
several questions can be asked, in particular

(i) Can one provide an explicit control formula for U*?

(71) TIs it still true that the vanishing viscosity method converges to Ut?

Before describing the difficulties which appear even for rather simple configurations,
we give a simple example which shows that we can definitively forget any hope on
“eliminability property”

12.3.1 Non-uniqueness in the case of codimension N discon-
tinuities
We consider the stationary equation

\Du—é—||+u: lz| in RY, (12.6)
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for which we have only a discontinuity at x = 0. The Ishii inequalities at 0 read

‘rrllin|Du —e|+u(0) <0,
el=1

r‘nlax|Du —e|+u(0)>0.
el=1

A first clear solution is uj(x) = |z| which is a smooth solution outside 0 and, at

0, the superdifferential of u; is empty while the subdifferential is B(0,1) and the
supersolution inequality obviously holds.

Now we look for an other solution of the form wus(x) = ¢(|z|) for a smooth function
¢ :[0,400) — R. Outside 0, uy is smooth and leads to the equation

0'(s) = 1|+ ¢(s) = 5.

And Y(s) = p(s) — s satisfies [¢'(s)| +1(s) = 0. If we assume that (0) = X is given,
we have by uniqueness for this 1 — d HJ-Equation (assuming that ¢ is bounded),
¥(s) = Ae™* and this implies that A < 0. This means that we have a family (u3)x<o
of candidates for being solutions of (12.6), where the usy are given by

uy(z) = |z| + Ae7lol

First it is clear that us is a smooth solution outside 0. At 0, since A < 0, the superdif-
ferential of u is empty while its subdifferential is B(0,1 — \). In particular p = 0 is
in the subdifferential of u3 and

I|n|ax|0—e|—|—/\20.
el=1

This means that A > —1 and all A € [—1,0] gives a solution.

Hence we do not have uniqueness despite of this very high codimension of the
singularity. Examining a little bit more carefully the above argument, it is easy to
show that wu; is the maximal subsolution (and solution) while u;' is the minimal
supersolution (and solution) of (12.6) in the space of functions with sublinear growth:
indeed, it suffices as above to consider that a solution of (12.6) is a solution of the
Dirichlet problem

|Du—ﬁ|+u: | in RV \ {0}, u(0) =\,
x
for which we have a comparison result. Then we notice that, by the equation, A <0

and the solution of this Dirirchlet problem is necessarily given by us for some \ €
[—1,0].
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Last but not least, we look at the associated control problem. Outside 0, we have

_ x
b(x,a) =€ B(0,1), ¢(z,a) =1, l(z,a) = |z| — - R

x

and BCL(0) is obtained by computing the convex enveloppe. It is worth pointing out
that the cost |x| in {(z, @) suggests that the best strategy consists in going to 0 but a

x
direct path from x to 0 would use the control o = —m with a cost || + 1 in [(z, «)
x

x
because of —« - ﬁ—term.

x

This large cost of controls pointing toward 0 is translated in terms of “regular” and

“singular” strategies to stay at 0: a “regular” strategy can be thought as a convex
combination of controls pointing toward 0, i.e. with —a--= > 0. Therefore the minimal
cost for a “regular” strategy is 0. But if we accept all convex combination, we may use
controls with —ar- % < 0 and even —a - % = —1 coming from two opposite directions
x and —z at 0.

This explains the extremal value A = 0 and A = —1 and u; is nothing but a U™
while u; ! is nothing but U~.

Last remark: in this case, the convergence of the vanishing viscosity method is easy
to establish since u; is convex and therefore a subsolution for the vanishing viscosity
equation. Hence the two half-relaxed limits for the vanishing viscosity approximation
are larger that u, but they are also between the maximal subsolution and the minimal
supersolution of (12.6), i.e. u; and u;"'. Therefore they are both equal to ;.

12.3.2 Puzzling examples

In general, we are unable to give a control formula for the maximal subsolution of
an HJB-Equation with discontinuities of codimensions > 1, and even in very simple
examples. The problem is both to determine what is a “regular” strategy but also to
concretely prove that the associated value function is indeed the maximal subsolution.

In order to be more specific and to fix ideas, we consider two interesting examples:
the first one is the case when we still have two domains but the interface is not
smooth, typically Figure 12.1 below.

A second very puzzling example is the “cross-case” where R? is decomposed into
its four main quadrants, see Figure 12.2 below. And of course, one may also have in
mind “triple-junction configurations” in between these two cases.

The importance of the above questions is due to the numerous applications and we
can mention for example front propagations phenomenas or Large Deviations type
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. Ql

Figure 12.1: Two domains with a non-smooth interface

L2

Qs o

Figure 12.2: The cross-case

results: in both case, one has to identify the limit of the vanishing viscosity method
and an “action functional” which exactly means to answer the above questions if the
diffusions and/or drift involved in these problems are discontinuous.

We refer for example to Souganidis [161] and references therein for the viscosity
solutions’ approach of front propagations in reactions diffusion equations (like KPP
(Kolmogorov-Petrovskii-Piskunov) type equations) and to Bouin [50] and references
therein for front propagation in kinetic equations. For the viscosity solutions’ approach
of Large Deviations problems, we refer to [20] (see also [32]).

Now we turn to the questions (i) and (ii) of the beginning of Section 12.3 which
are largely open even in the two simple cases described above. We first remark that
most of the results of this part, in particular those obtained by pde methods, use in a
crucial way the codimension-1 feature of the problem, via the normal direction which
determines which are the inward and outward dynamics to the €;’s but also the H:*,
and therefore the key Hy1® Hamiltonian.

Concerning Question (7), in terms of control, the additional difficulty is to identify
the “regular strategies” which allow to stay at the new discontinuity point (0 in the
cross-case) and then to show that using only these “regular strategies”, U* is an Ishii
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solution of the problem. For Question (i), the proofs which are given above use either
U™ (and therefore require an answer to Question (4)) or the codimension-1 feature of
the problem via the Kirchhoff condition.

For all these reasons, even in the very simple configurations we propose above, we
DO NOT know the right answer... but we hope that some readers will be able to find
it!

In order to show the difficulty, we provide a “simple” result in the cross-case in R?,
which DOES NOT give the result we wish but which uses the natural ingredients
which should be useful to get it.

We are going to consider the problem
u+ H;(Du) =0 in €; x (0,T%), fori=1,2,3,4,
where the Hamiltonian H; are given by

Hi(p) = sup {—bi() - p — li(a;)} -
OéiGAi
where A; are compact metric spaces. We are in a very simplified framework since we
do not intend to provide general results, so we also assume that the Hamiltonians H;
are coercive, and even that there exists 0 > 0 such that

B(0,6) C {bi(v;); a; € A;} foranyi=1,2,3,4.

This is natural as a normal controllability assumption.

Of course, these equations in each (2; have to be complemented by the Ishii condi-
tions on the two axes: except for x = 0, we are in the framework described in this
part since we face a codimension 1 discontinuity. Therefore we concentrate on the
case * = 0 where, in order to identify U, we have to identify the “H;®”, i.e. the
“regular strategies” which allow to remain at x = 0.

In order to do so, we introduce the set A of controls (aq, as, as, ay) such that, on
one hand, b;(a;) € D; for i = 1,2,3,4 where

D; = {bi(a;); bi(ag) - o <0 for all z € Q;},

and, on the other hand, there exists a convex combination of the b;(a;) such that
Z?:o wibi(a;) = 0. Such a convex combination may not be unique and we denote by
A the set of all such convex combinations.

Finally we set
4

H7BE™ .= sup { iIAlf ( — Z mli(%))} )

A 1=0
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Notice that here, since we consider a zero-dimensional set, the Hamiltonian Hy®
reduces to a real number. We have the

Lemma 12.3.1 Ifu:R? x (0,7) — R is an Ishii subsolution of the above problem
then
g+ Hp® " <0 on {0} x (0,T%) .

Proof — Let ¢ be a C' function on (0,7}) and ¢ be a strict local maximum point of
u(0,t) — ¢(t). We have to show that ¢,(t) + Hp9 "% < 0.

To do so, we consider («;); € A and, for § > 0 small, we consider the affine functions

Vi(p) = ¢ue(t) — bi(ey) - p — li(a;) — 6 .

Applying Farkas’ Lemma, there are two possibilities; the first one is: there exists
p such that t;(p) > 0 for all 4. In that case, we consider the function (z,t)

u(x,t)—@b(t)—ﬁ-m—@for0<€<<1.

Since ¢ is a strict local maximum point of u(0,t) — ¢(t), this function has a local
maximum point at (z.,t.) and (x.,t.) — (0,¢) as ¢ — 0. Wherever the point z. is,
we have an inequality of the type

2z

ou(te) + Hi(p + 8 ) <0.

But if such H; inequality holds, this means that we are on 2, and in particular

2z

€

Recalling that b;(c;) € Dy, this implies
d(te) — bilew) - b — L) <0

For £ small enough, this inequality is a contradiction with ¢;(p) > 0 and therefore
this first case cannot hold.
Therefore, we are always in the second case: there exists a convex combination of
4
the 1;, namely Z 1iY; which gives a negative number. In that case, it is clear that
i=0

we have
4 4

=0 =0
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This implies that
f)+1nf( Z““O">_5<O

and since this is true for any («;); € A and for any 6 > 0, we have the result.

Q.E.D.

The interest of this proof is to show the two kinds of arguments which seem useful
to obtain an inequality for the subsolutions at 0: (i) to find the suitable set A of
“regular strategies” which allow to stay fixed at 0; (i) to have suitable properties on
the b;’s which allow to deal with the 2z /e-term in the Hamiltonians, in other words
we have to define suitable “outgoing strategies”.

Again this result is not satisfactory and we do not think that it leads to the desired
result in the cross case.
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Chapter 13

Introduction

Abstract. Despite looking at the same problem from a pde point-of-view, the approach
of this part is completely different and does not use any optimal control tool, just pure
pde arguments. The first consequence of this different point-of-view is a change of
test-functions. Two notions of solutions (fluz-limited solutions a la Imbert-Monneau
and junction viscosity solutions a la Lions-Souganidis) are described in this part with
all their stability and comparison properties. They are associated to two different types
of conditions at the interface. This introduction describes them with the assumptions
they should satisfy.

Contrarily to Part IT where the question of a codimension 1 discontinuity in Hamilton-
Jacobi Equations is mainly addressed in the case of convex Hamiltonians by using
control arguments, the aim of this part is to describe several complementary pde
points-of-view which allow to obtain more general results, and most of them for non-
convex equations. However we often choose to present them in the framework of
Part II for justifying the assumptions we use and showing the interest of the results.

13.1 The “network approach”: a different point-
of-view

In order to present these other pde approaches, let us focus first on a simple 1 dimen-
sional configuration, the terminology “network point-of view” originating from this
situation. Considering an Hamilton-Jacobi Equation with a discontinuity at = = 0,
we have in mind the picture in Fig. 13.1 below

Here, Ishii’s definition of viscosity solutions in R is quite natural and involves

241
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Hy =0 Hi =0

Figure 13.1: The Ishii point of view

min(Hy, Hy) and max(Hy, Hy) at z = 0.

But, since the equations are different in the sets {x > 0} and {z < 0}, we can see
as well the picture as two segments joining at z = 0:

Figure 13.2: The network point of view

Now, J; = {z > 0} and J, = {2 < 0} become two different branches of a (simple)
network and it becomes natural to introduce adapted coordinates on Ji, Jy, which are
nothing but x; = z on J; and x5 = —x on Js.

13.1.1 A larger space of test-functions

The first main consequence of this different point of view is that the “natural” test-
functions are not the same as in the Ishii approach since they can be chosen differently
in J; and Jo, with just a continuity assumption at z = 0.

In our original framework in RY with €, Qs, H introduced in Section 2.1 where an
analogous remark holds, just replacing J; by €y, Jo by 5 and 0 by H, this suggests
the space of “natural” test-functions as

Definition 13.1.1 We denote by PC' (R x [0, Ty]) the space of piecewise C' -functions
Y € C(RN x [0,Ty]) such that there exist 1 € C'(Qy x [0, Ty]), 1y € C'(Qa x [0, T}])
such that 1 = ¢y in Qy x [0,T}] and ¢ = 19 in Qo x [0, TY].

An important point in this definition is that ¢ = ¢; = 1 on H x [0,T}] and
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Dyt = Dyipy = Dyipy on H % [0, T, by = (1) = (¥2)r on H x [0, T]. We recall
here that Dy is the tangential derivative.

This change of test-functions is a first step but it remains of course to examine the
kind of “junction condition” we can impose on H x [0, 7], since, contrarily to what
happens for the Ishii definition, no obvious choice seems to stand out.

The first attempt could be to try the standard Ishii inequalities with this larger
set of test-functions with the convention (since the test-functions are not necessarily
smooth on H x [0,7%]) to use the derivatives of 1y in the H;-inequalities and those
of 95 in the Hs-inequalities. On the simplest example where the equations are

{Ut + Hy(z,t,u, Du) =0 in @y < (0,Ty) , (HJ-gen)

us + Hay(x,t,u, Du) =0 in Qy x (0,T%),
and without additional Hamiltonian on H, these conditions are

min(w, + Hy(x,t, u, Du), uy + Ha(z,t,u, Du)) <0 on H x (0,7%) ,
max(u; + Hy(x,t,u, Du),uy + Hay(x,t,u, Du)) >0 on H x (0,77) .

But it is easy to check that, with test-functions in PC'(RY x [0,T}]), there is no
subsolutions if Hy, H are both coercive. The argument is the following: if u — ¢
has a maximum at some point (0,¢) € H x (0,7%), then u — (¢ + Clzy]|) also has
a maximum at the same point and since gc(x,t) = @(z,t) + C|zy| belongs to
PCY(RY x [0, Ty]) we can use it to test the inequalities. But, since the Hamiltonians are
coercive, taking C' > 0 large enough yields an impossibility since both |D(¢¢)1(z, )]
and |D(pc)a(z,t)| can be taken as large as we wish.

13.1.2 Different types of junction conditions

As a consequence of the simple remark above, it is clear that the question of the right
junction condition to be imposed on H becomes crucial. And it obviously depends on
the type of applications we have in mind.

(a) Fluz-limited condition — From Chapter 6, it seems obvious that in the framework
of control problems, a natural contidition on x = 0 is the following

u + Gz, t,u, Dyu) =0 on H x (0,7%) . (FL)

Indeed, for applications to optimal control, one may have in mind a specific control on
H, i.e. a specific dynamic, discount and cost as in Chapter 10. In the network literature
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(cf. Imbert and Monneau [ 15, , 118]), the associated terminology is “flux-limited
condition” (See Section 17.2 for a partial justification of this terminology). Concrete
modellings and applications lead to a variety of different flux-limited conditions at
the boundary, including more general ones

G(z,t,u,us, Dyu) =0 on H x (0,7%), (GFL)

where G satisfies: there exists v > 0 such that, for any x € H, t € [0,T], r € R,
p' € H and as > aq, one has

G(x,t,r a0,0) — G(x,t,r9,a1,p") > v(ag — ay) . (13.1)

In fact, if (13.1) holds, it is a simple exercise to show that there exists G such that
G(x,t,r,a,p') and a + G(x,t,r,p') have the same signs. In other words, a general
flux-limited condition (GFL) is equivalent to a simple flux-limited condition (FL)
(both for the sub and supersolution condition), and pushing the exercise a little bit
further, the reader will notice that the assumptions on G can be transfered without
any difficulty to G.

For this reason, in the sequel we focus on the study of Conditions (FL) but either
by doing the above exercise or repeating readily the arguments, it will be clear that
all the definitions and results extend without any difficulty to (GFL).

(b) Kirchhoff type conditions — This second type of condition involves the normal
derivatives of the solution on H. The simplest one, used in various applications and
in particular for networks, is the Kirchhoff condition

ou ou

8_7"L1+a_712:0 on H x (0,T%), (KC)

where, for i = 1,2, n;(z) denotes the unit normal to 0f2; pointing outward §2; at

(c) General junction conditions — More generally, a junction type condition may
have the form

ou Ou

G(az,t,u,u , Dyu, —, —
! " 8n1 ang

) =0 onH x(0,Ty), (GJC)

where G(z,t,7,a,p’, b, c) has at least to satisfy the following monotonicty assumption:
there exists a, f > 0 such that, for any x € H, t € (0,1}), 11 > 19, p' € H, a1 > ao,
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by > bo, 1 2> ¢,
G(z,t,r1,a1,p',b1,01) — G(x, 8,79, a9, P, by, C2)

(13.2)
> a(a1 — CZQ) + B(bl — bz) + B(Cl — CQ) .

In the sequel, we will often drop the dependence in 7 in junction condition (GJC),
just to simplify a little bit the technicalities. But taking into account such dependence
with a suitable monotonicity assumption does not cause major problems. Precise
assumptions are given in next section.

Roughly speaking, each of these conditions is treated in the literature by using a
different notion of solution. In the case of (FL)-conditions, and in particular if one has
in mind applications to control problems, the natural notion of solutions is the “Flux-
Limited solutions”, which is introduced and extensively studied in [115, , ].
However, this kind of solution is not well-adapted for dealing with Kirchhoff type
conditions, where a notion of “Junction viscosity solution” is needed.

This second notion of solution, rather similar to classical viscosity solutions is called
“relaxed solutions” in [115] and extensively used in the works of Lions and Souganidis

[140, 141].

13.2 The “good assumptions” used in Part III

In this part, most of the results we present are obtained using PDE methods. For
this reason, the control interpretation, and therefore the convexity of the Hamiltoni-
ans, is not playing a key role. Depending on the chapter or the section, we are going
to consider either convex, quasi-convex or merely continuous Hamiltonians. This is
why depending on the context we have to translate in this section the “good frame-
work for HJ-Equations with discontinuities” in the particular case of a codimension
1 discontinuity already discussed in Section 4.4.3.

We refer first the reader to Section 1.3 where Basic Assumptions (Hga_cp) and
(Hga_nj) are defined. Then, in order to satisfy (Mon), we denote by

(Hga_n3y)" : assumption (Hga _gy) in which we assume +(R) > 0 for any R.
(Hga_cp)" : assumption (Hga_cp) in which we assume ¢(z, ¢, «) > 0 for any x, ¢, a.

These reductions are only done in order to simplify matters, in any case a change
u — uexp(Kt) for a suitable constant K allows to reduce to the above assumptions.
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We also point out that, thanks to Chapter 2.2, (Hga_pn3y)" and (Hga_cp)t imply
(LOC1), (LOC2) because of the Lipschitz continuity in p of the Hamiltonians.

13.2.1 Good assumptions on H;, H,

We need here to translate the normal controllability and tangential continuity as-
sumptions to the case of general Hamiltonians:

(NC-HJ) — Normal controllability for general Hamiltonians.

For any R > 0, there exists constants CI CE CE > 0 such that, for any (z,t) €
H x (0,Ty) with |z| < R, |u| < R and p= (p/,pn) with p’ € RN, py € R,

H(z,t,u,p) > Cpn| — CE|p'| — CF.

(TC-HJ) — Tangential Continuity for general Hamiltonians.

For any R > 0, there exists CT > 0 and a modulus of continuity m™ : [0, +o00[—
0, +00[ such that for any x = (2, zn),y = (¥, xn) with |z|,|y| < R, |zn] < R7,
t,s € [O’TfL ‘u’ <R, p= (p,apN) € RN;

|H (z,t,u,p) — H(y,s,u,p)| < CI(|2" — /| + [t = s |p'| + m" (|2 — /| + [t = s]) .

With these assumptions we can formulate several “good assumptions” depending
on the context:

(GA-Gen) General case — Hy, Hy satisfy (Hga_pu3)t and (NC-HJ).
(GA-Conv) Convex case — Hy, Hy satisfy (GA-Gen) and are convex in p.
(GA-QC) Quasi-convex case — Hy, Hy satisfy (GA-Gen) and (Hqe).
(GA-CCQC) Control case — (Hpa_cp)" and (NCy) are satisfied.

Remark 13.2.1 A priori, the variable t being a “tangential variable”, (TC-HJ)
should be formulated with a right hand side like CT(|x" —y'| + |t —s|)(|p'| + |p¢|) instead
of CE(|z' — /| + |t — s|)|p|; but since H does not depend on p;, the above formulation
seems more natural. However, using the equation which gives p, = —H , it is probably
possible to change this assumption into the more general one, including a term like
CE(l2" — /| + |t — s|)(|p/| + max(|H (z,t,u,p)|,|H(y, s,u,p)|)) in the right-hand side
of (TC-HJ). We leave this open question to the reader.
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13.2.2 Good assumptions on the junction condition

We now turn to the assumptions on the function G which appears in (FL) or (GJC),
recalling that we are assuming it is independent of r for simplicity. To do so, we first
formulate a continuity requirement, where the role of 5 will be clear later on.

(GA-ContG) — Continuity on the interface.

For any R > 0, there exist constants CE, Cl such that, for any x,y € H, t,s € [0,Ty],
7| <R, p),ph € RN a,bc,d b/,d €R

|G, t,a,p),0,0) =Gy, 5,0,p),b,0)] < O (lr—y|+[t—s]) (1+|p| +eo(lal + [b] +]e])) -

|G(£L',t, alap/27 bl7 Cl) - G(%,t, aap/la ba C)‘ < Cé%<|p,2 _p11’ + (la/ - CL’ + |bl - b‘ + ’Cl - C’)) .

The “Good Assumptions” on G in the various cases are then the following

(GA-G-FL) — Flux limiter.
G is independent of a,b,c and (GA-ContG) holds with 9 = 0.

(GA-G-GKT) — Kirchhoff type.
(GA-ContG) holds with eg = 0 and (13.2) holds with a > 0, > 0.

(GA-G-FLT) — Flux-limited type.
G(z,t,a,p',b,c) = Gi(a,p,b,c) + Ga(z,t,a,p') where Gy is a Lipschitz continuous
function which satisfies (13.2) with a > 0, § = 0 while Gy satisfies (GA-G-FL).

The first two assumptions seem relatively natural, only the third one requires some
comments: in order to provide comparison results for the general junction condition
(GJC), we are going to present the Lions-Souganidis approach which is based on a
“tangential regularization” of both the sub and supersolution in the spirit of Sec-
tions 2.4.3 and 2.4.4. While we are able to perform these regularizations in a rather
general setting if G is of “Kirchhoff type” since (13.2) holds with 5 > 0, this is not the
case anymore if (13.2) holds only with g = 0. For this reason, we need (GA-G-FLT)
which is (roughly speaking) the analogue of (TC-s).
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13.3 What do we do in this part?

In the next two chapters of this part, we successively describe the notions of “Flux-
Limited Solutions” and “Junction Viscosity Solutions”, and their properties. For each
of them, we provide

(1) a general comparison result;
(77) a stability result;

(731) a convergence result of the vanishing viscosity method by specific arguments
related to the corresponding notion of solution.

Moreover, for “Flux-Limited solutions”, we also describe the connections with con-
trol problems.

It is worth pointing out that the notion of “Junction Viscosity Solutions” and the
arguments of Lions and Souganidis [110), | allow to obtain results which are valid
without any convexity assumption on the Hamiltonians, and in particular a very
general comparison result, despite some limitations due to (TC). The theory for this
notion of solutions is quite complete, with very natural stability properties because
of a definition which is very similar to the standard viscosity solutions one.

Despite being very different, we prove in Chapter 16 that these notions of solutions
are “almost equivalent” in the case of flux-limited conditions (FL), at least in the
framework of quasi-convex Hamiltonians. We wrote “almost” because flux-limited
subsolutions are automatically regular as an easy consequence of their definition, while
this is not the case for junction viscosity subsolutions in general. Hence, complete
equivalence holds if we assume that the junction viscosity subsolutions are regular—
which is true for instance in the case of Kirchhoff conditions—.

In Chapter 16, we provide the characterizations of the maximal and minimal Ishii
solutions in terms of other solutions. Last but not least, we show that junction viscos-
ity sub and supersolutions of various general junction conditions (GJC) of Kirchhoff
type are flux-limited sub and supersolutions. The associated “flux limiter” can be
identified explicitly in terms of the Hamiltonians Hy, Hy of the equations in 24, {2y
and of the nonlinearity of the general junction conditions. These connections between
general junction conditions (GJC) of Kirchhoff type and flux-limited conditions were
extensively studied in [115, 116, 118] and they are quite important because they allow
to take advantage of the good stability properties of “Junction Viscosity Solutions”
and the good connections of “Flux-Limited Solutions” with control problems at the
same time. The applications to the vanishing viscosity method and to the KPP prob-
lem shows the efficiency of this machinery.
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We conclude this part by a chapter describing all the results in a simple 1-d frame-
work very similar to the scalar conservation law and then by various remarks on
possible extensions or open problems.
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Chapter 14

Flux-Limited Solutions for Control
Problems and Quasi-Convex
Hamiltonians

Abstract. This chapter is devoted to study flux-limited solutions a la Imbert-Monneau
for quasi-conver Hamiltonians: definition, stability and comparison properties are de-
scribed in details

In the control case, as it is clear from Chapter 6, one may have in mind a specific
control problem on H, i.e. a specific dynamic, discount and cost as in Section 7. In
this setting, the most natural condition on H x (0,7) takes the form

u + G(x,t,u, Dyu) =0 on H x (0,T%), (FL)

which is called a “flux-limited condition” in the network literature (cf. Imbert and
Monneau [115, , ]). Concrete modellings and applications lead to a variety of
different flux-limited conditions at the boundary, expressed as specific functions G.

14.1 Definition and first properties

Let us first turn to the definition of “flux-limited sub and supersolutions” which
requires the introduction of some notations.

In the case of control problems, for 1 = 1,2 the Hamiltonians are given by

Hi(x,t,r,p) == sup {=bi(x,t,0;) - p+ci(z, t,0)r — li(z,t, 04)} . (14.1)
a; EA;

251
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We then set A; := {a; € 4; : bi(x,t, ;) - ey < 0} and similarly A := {a; € A; :
bi(z,t,a;) - ey > 0}, then

H (z,t,r,p) = sup {=bi(z,t,0;) - p+ci(x,t,a)r — Li(x, t,a;)} (14.2)
OéieAi_

H (z,t,7,p) == sup {=b;(z,t, ;) p+ci(w, t,a;)r — i, t,0)} (14.3)
CviEAj—

Notice that the +/— notation refers to the sign of b; - ex in the supremum, which
implies that H; (i = 1..2) is nondecreasing with respect to py (the normal gradient
variable) while the H," is nonincreasing with respect to py-.

Finally, for the specific control problem on H, we define for any z € H, t € [0, T}],
r € R, and py € RV-!

G(z,t,r,py) := sup {—bo(z,t,a0) - py + colx, t, ap)r — lo(z,t,a0)} . (14.4)

aoGAo

Fori = 1...2, b;, c;, [; are at least bounded continuous functions defined on ; x [0, T] x
A; and by, co, lo are also bounded continuous functions defined on H x [0, 7] x Ap.
Therefore H,, H, and G are continuous.

In the case where the Hamiltonians are quasi-convex in p, Section 5.2.3 provides us
with a definition of H;" (z,t,r,p), H; (z,t,7,p) and we assume that these functions
and G are continuous.

With these notations, we can give the definition of flux-limited viscosity sub and
supersolutions —(FLSub) and (FLSuper) in short:

Definition 14.1.1 — Flux-limited solutions for quasi-convex Hamiltonians.

(¢) A locally bounded function u : RN x (0,T) — R is a (FLSub) of (HJ-Gen)-(FL)
if it is a classical viscosity subsolution of (HJ-Gen) and if, for any test-function
Y € PCHRY x [0,Ty]) and any local mazimum point (z,t) € H x (0,Ty) of
u* — 1 in RY x (0,T}), at (x,t) the following inequality holds

max <wt+G($7t7U*aD'Hw)awt—i_Hf—(xat?U*ale)awt—{—HQ_(xataU*>Dw2)) S 0 )
where u* = u*(x,t).
(ii) A locally bounded function v : RY x (0,T;) — R is a (FLSuper) of (HJ-Gen)-

(FL) if it is a classical viscosity supersolution of (HJ-Gen) and if, for any test-
unction ¢ € PCY(RN x [0, Ty]) and any local minimum point (z,t) € H x (0,T
f !
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of ve — ¥ in RN x (0,T}), at (z,t) the following inequality holds
max <1/1t + G2, t, v, Dy), W + Hif (2,8, v, Dby, 0 + Hy (,t, v, Dl/JQ)) >0,

where v, = vy (x,t).

(17i) A locally bounded function is a fluz-limited solution if it is both a (FLSub) and
a (FLSuper).

Several remarks have to be made on this definition which is very different from the
classical ones: first we have a “max” both in the definition of supersolutions AND
subsolutions; then we do not use the full Hamiltonians H; in the junction condition
on H but H; and H, . These changes are justified when looking at the interpretation
of the viscosity solutions inequalities in the optimal control framework. Indeed

(7) the subsolution inequality means that any control is sub-optimal, i.e. if one tries
to use a specific control, the result may not be optimal. But, of course, such a
control has to be associated with an “admissible” trajectory: for example, if we
are on H, a “b;” pointing towards {25 cannot be associated to a real trajectory,
therefore it is not “admissible” and this is why we use H;". And an analogous
remark justifies H, . Finally the “max” comes just from the fact that we test
all sub-optimal controls.

(77) Analogous remarks hold for the supersolution inequality, except that this in-
equality is related to the optimal trajectory, which has to be admissible anyway.

With these remarks, the reader may be led to the conclusion that an “universal”
definition of solutions of (HJ-Gen) with the condition (FL) can hardly exist: if we
look at control problems where the controller tries to maximize some profit, then
the analogue of the H,", H, above seem still relevant because of their interpretation
in terms of incoming dynamics but the max should be replaced by min in both
the definitions of sub and supersolutions. Therefore it seems that such particular
definitions have to be used in each case since, again, the Kirchhoff condition does not
seem natural in the control framework.

As in the case of classical Ishii sub and supersolutions, we can define (FLSub) and
(FLSuper) using the notions of sub and superdifferentials. We refer the reader to
Section 2.5 for the introduction of these notions and various properties. Following
this section, for ¢ = 1,2, we denote by Q; = Qy x (0,7f) and @é = Q; x (0,7T%).
As in Section 2.5, we restrict ourselves to the case of u.s.c. subsolution and l.s.c.
supersolutions to simplify the notations but, in the general case, these results have to
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be reformulated with either the u.s.c. envelope of the subsolution or the l.s.c. envelope
of the supersolution.

Proposition 14.1.2 — Flux-limited viscosity solutions via sub superdifferentials.
An w.s.c., locally bounded function u : RN x (0,7) — R is a (FLSub) of (HJ-Gen)-

(FL) if and only if

(7) for any (z,t) € Q; (i =1,2) and for any (p.,p:) € D%,_,u(x,t)

Dt + Hz(iﬂa t? u(l’, t)ap:r:) S Oa

(it) for any (x,t) € H x (0,Tf) and for any py € H, p1,p2,pr € R such that
(o pi), p1) € D ulw,t) fori = 1,2, noting u = u(w.t),

max <pt+G(:L‘7 ta u, p'H)a pt+H1+(x7 ta u, pH+p16N)7 pt+H2_ (l‘, ty u, pHJFerN)) S 0.

A l.s.c., locally bounded function v : RN x (0,T) — R is a (FLSuper) of (HJ-Gen)-
(FL) if and only if

(3) Jor any (2,t) € Qi (i = 1,2) and for any (pe,pr) € D v(a, 1)

Pt + Hi(x7t7v(x7t)7pz) 2 0 )

(i7) for any (x,t) € H x (0,Tf) and for any py € H, p1,p2,pr € R such that
((p3,pi), 1) € D%gv(x,t) fori=1,2, noting v =v(x,t),

max <pt+G<x7 tu U7p7{)7pt+H1+<x7 t7 UupH+p1€N)7pt+H5<x7 t7 UupH+p2€N)> Z 0.

We omit the proof of Proposition 14.1.2 since it is an easy consequence of Lemma 2.5.3
and Lemma 2.5.6. As we already remark after the statement of Lemma 2.5.6, we point
out that this equivalent definition via sub and superdifferentials allows to show that,
instead of using general PC' test-functions, we may consider only test-functions of
the form x(zx) + ¢(7,t) where y € PC'(R) and ¢ € CY(RY x (0,T})). The reader
will notice that we mainly use test-function of this form in comparison proof, but this
property is also useful to simplify the proofs of several results.
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Remark 14.1.3 Definition 14.1.1 provides the notion of “flux-limited viscosity solu-
tions” for a problem with a codimension 1 discontinuity but it can be used in different
frameworks, in particular in problems with boundary conditions: we refer to Guerand
[107] for results on state constraints problems and [100] in the case of Neumann con-
ditions where “effective boundary conditions and new comparison results are given,
both works being in the case of quasi-conver Hamiltonians.

We give a first important property of (FLSub)

Proposition 14.1.4 — Regularity of subsolutions.

Assume that (GA-QC) holds and that the Hamiltonian G satisfies (GA-G-FL).
Any u.s.c. (FLSub) is reqular on H.

Proof — It is an immediate application of Proposition 2.4.2 since the Hamiltonian G
defined for x € RN, t € (0,T}), r € R, (p,p;) € RV by

G(Iv ta T, (papt)) =Dt + H’L(‘T7 ta T,p) if = € in
G(.CC, t? Ty (papt>) = maX(pt—i_Hf(xv ta r7p)7pt+H;(x7 ta T p),Pt‘FG(fC, ta T7pl>) ifz e Ha
satisfies the assumptions of this proposition with y = (2/,t), 2 = xy, and in particular

the normal controllability in the zy-direction.
Q.E.D.

14.2 Stability of flux-limited solutions

In this section, we provide a result on the stability of flux-limited solutions. As the
proof will show it, such result is not an immediate extension of Theorem 2.1.4; indeed,
if the change of test-functions does not really cause any problem, the formulation of
flux-limited sub and supersolutions with global Hamiltonians which are not l.s.c. or
u.s.c. is the source of difficulties.

The result is the

Theorem 14.2.1 — Stability result for flux-limited solutions.

Assume that, for € > 0, u. is a (FLSub) [resp. (FLSuper) | for the problem with
Hamiltonians Hy, H5, G*. We assume that Hy, H5, G* are continuous and Hy, HS sat-
isfy (Hqe). If H5, H3, G® converge locally uniformly to respectively Hy, Hy, G and if
the functions u. are uniformly locally bounded on RY, then U = limsup* u. [resp.
u = liminf, w. | is a (FLSub) [resp. (FLSuper) | for the problem with Hamiltonians
Hy, H,,G.
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Proof — Due to the dissymmetry in the definitions of (FLSub) and (FLSuper), we
have to give the proof in both cases.

(a) We start by the (FLSub) one. Of course, we have just to prove the result on H
since, in 4, {2y, the result is an easy application of Theorem 2.1.4. Let ¢ = (¢1,15) €
PC'(RY x [0,7]) and let (z,t) € H x (0,7f) be a strict local maximum point of
u — ). We have to show that

max <¢t + G(Z)’J,tﬂ, DH¢)a¢t + Hf_([)’},t,ﬂ, D¢1>a¢t + H;(xat7ﬂa D77Z)2>> S 0.

By Lemma 2.1.6, there exists a subsequence (z./,t.) of maximum point of u. —
which converges to (z,t) and such that u. (x.,t.) converges to u(x,t). To get the
G-inequality, we replace ¥ by ¥ 4+ K|zy|. Using the quasi-convexity property of H;
and H,, for K large enough we get

¢t + Hl(l',t,ﬂ7 D¢1) >0 and @/Jt —+ HQ(JZ,t,ﬂ, D’QZ)Q) >0.

Applying the result of Lemma 2.1.6 to this new ¢, we see that necessarily x., € H.
Then, passing to the limit in the (FLSub) inequality for (H{ )", (H5)~, G, we end
up with ¢, + G(x,t,w, Dytb) < 0 since the term K|z y| does not affect D).

It remains to prove the H; and Hj; inequalities and to do so, we come back to the
original 1. We assume that 1, + H, (z,t,u, D) > 0 and change v into ¢ + K (zy)_,
for K large enough.

For ¢’ small enough, .- cannot be in §: since H; > H," implies ¢+ H; (x, t, u, D)) >
0, hence the H$ inequality cannot hold for ¢’ small enough. Similarly, 2., cannot be

on H because of the H;" inequality. Finally z., cannot be in €, for K large enough,
therefore we reach a contradiction which implies that ¢, + H; (2, t,u, D) < 0.

Arguing the same way for the case i, + Hy (z,t,u, D) > 0, the subsolution
inequality is proved.

(b) For the (FLSuper) case, again we just have to treat the inequalities on H and
we assume that (z,t) € H x (0,7y) is a strict local minimum point of u — 1) where
Y = (Y1,1) € PCHRYN x [0, Ty]). We have to show that

max <wt + G(m,t,g, DH¢)7wt + Hfr(mat>g7 le)awt + H{($7t7g7 D%)) Z 0 .

We argue by contradiction assuming that the three quantities in the max are strictly
negative. Similarly to the (FLSub) case, we claim that we can choose K, Ky > 0
such that

wt—i_Hl(xvtuQ’le_KleN) <0 and ¢t+H2<x7t727D’l/}2+K2eN> <OJ
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which follows here also from the quasi-convexity of H; and Hs. To use it, we change
¢ in ¢ — Ky(xn)4+ — Kao(xn)— and notice that (z,t) is still is a strict local minimum
point of u — ¢ for this new .

Applying again Lemma 2.1.6, there exists a subsequence (z./, t./) of minimum points
of uer — 1» which converges to (x,t) and such that u.(x.,t.) converges to u(x,t). And
we examine the possible inequalities for (x.,t.). Clearly z. can be neither in €
nor in €, for & small enough because of the above property. Hence z., € H and the
(FLSuper) inequality holds for (H{)™, (H5 )™, G*'. But passing to the limit as & — 0
in these inequalities yields a contradiction, so the supersolution inequality holds.

Q.E.D.

Remark 14.2.2 The main weakness of Theorem 14.2.1 is to be strictly restricted to
the framework of flux-limited solutions for problems with quasi-convex Hamiltonians.
Therefore it is not very flexible, in particular if we compare it with Theorem 15.2.1
in the case of junction viscosity solutions.

14.3 Comparison results for flux-limited solutions
and applications

This section is devoted to prove comparison results for flux-limited solutions; the
original proofs given in [115, 116] were based on the rather technical construction of
a “vertex function”. We present here the simplified proof(s) of [20].

14.3.1 The convex case

The main result here is the following.

Theorem 14.3.1 — Comparison principle, the convex case.

Assume that either (GA-Conv) or (GA-CC) holds, that the Hamiltonian G(z,t,r,p’)
is convex in (r,p') and satisfies (GA-G-FL). If u,v : RN x (0,77) — R are respec-
tively an u.s.c. bounded fluz-limited subsolution and a l.s.c. bounded flux-limited super-
solution of (HJ-Gen)-(FL) and if u(z,0) < v(z,0) in RY, then u < v in RN x (0,T}).

Proof — In order to simplify the proof, we provide it only in the case when the
Hamiltonians Hi, Hy, G are independent of u; the general case only contains minor
additional technical difficulties.
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(a) Reduction of the proof — First we follow Section 2.2 and check (LOC1)-evol: the
function x : RY x (0,7y) — R defined by

() = Kt — iz L
ant) = —Kt = (14 o) = g
is, for K > 0 large enough, a strict subsolution of (HJ-Gen)-(FL) with y(z,t) — —o0
when |z| — 400 ort — T . We replace u by either w, := u+ (1 —p)x (a choice which
does not use the convexity of the Hamiltonians) or w, := pu+(1—p)x (a choice which
uses the convexity of the Hamiltonians). Borrowing also the arguments of Section 2.2,
(LOC2)-evol also holds and therefore we are led to show that (LCR)-evol is valid in

the case when w is an n-strict subsolution of (HJ-Gen)-(FL).

For a point (Z,t) where T € €, or T € Qy, the proof of (LCR)-evol in fol is
standard, hence we have just to treat the case when ¥ € H. At this point, we make
an other reduction in the proof: using Section 2.4, with y = (¢, 2’) and z = xy, since
(GA-Conv) or (GA-CC) are nothing but Assumptions (TC),(NC) and (Mon),
Theorem 2.4.4 applies. As a consequence, we can assume w.[.0.g. that u is Lipschitz
continuous with respect to all variables and semi-convex in the (¢, z’)-variables. But
we may also use the ideas of Proposition 2.4.7 to obtain a subsolution which is C*
in (t,2') with w; and D,u continuous w.r.t. all variables: indeed, we can apply the
ideas of the proof of Proposition 2.4.7 separately in 21, €25 and H to obtain the H,
H, and G inequalities for the regularized function, while the H," and H, ones are
deduced from Proposition 2.5.1.

Then we assume that
M :=max(u —v) >0.
Qr

If this maximum is achieved on (9pr’,’;, the result is obvious so we may assume that
it is achieved at (Z,f) ¢ 0,,@%. Again, if 7 € Qy or & € )y, we easily obtain a
contradiction and therefore we can assume that = € H.

(b) Building the test function — Setting a = w,(Z,t), p’ = Dyu(z,t), we claim that
we can solve the equations
a+ H{ (2,67 + Men) = —n/2 , a+Hf (2,1, + den) = —1/2,
where we recall that —n» is the constant which measures the strict subsolution property
of function wu.
In order to prove the existence of A\;, we look at maximum points of
lz— x> |t —1]? €

u(z,t) = = .
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in (in) N (Q2yx :[0,T%]), and for 0 < € < 1. This function achieves its maximum at

(xe,te) which converges to (Z,t) as ¢ — 0 and by the semi-convexity of u in t and 2/,
one has
ut(xsa ts) + H1<$5, tsa DyU(IE, ts) + )\seN) S -n,

for some A\, € R. Moreover, A, is bounded w.r.t. € since u is Lipschitz continuous.
Letting ¢ tend to 0 and using that w(z.,t.) — a, Dyu(ze,t.) — p' by the semi-
convexity property of u, together with the extraction of a subsequence for (\.)., we
get a A € R such that

a+ Hy(2,t, 0 + dey) < —1.

Since H; < Hj, it follows that a + H; (Z,f,7' + dey) < —n. Then we use the
fact that A — a + H; (Z,f, ' + Aey) is continuous, nondecreasing on R and tends
to 400 when A — 400 to get the existence of A\; > \ solving the equation with
—n/2. In this framework, A; is necessarily unique since the convex function A
a+ Hy (%,t,7' + Xey) only has flat parts at its minimum, while clearly ); is not a
minimum point for this function. The proof for A\, is analogous and we skip it.

In order to build the test-function, we set, for z € R, h(z) := A\jz; — A\yz_ where
zy = max(z,0), z- = max(—z,0), and

My —yn) ifay >0, yv >0,
AMTN — A ifeny >0, <0,
X(@n,yn) = h(zn) — h(yn) = /\;Z _ A?Zi T Iz <0 ‘zg >0 (14.5)

AQ(xN_yN) ifZL'N<O,yN<0.

Then, for 0 < ¢ < 1 we define a test function as follows

| 2

eyl =

¢E(x7t7y7$): +X(xN7yN>+|x_j|2+|t_£l2

g2 g2
In view of the definition of h, we see that for any (x,t) € RN x [0,T}] the func-
tion 9. (v, t,-) € PC' (RN x [0,7}]) and for any (y,s) € RN x [0,T}] the function
Ye(,ys -, 5) € PCHRY x [0, T%]).

We now look at the maximum points of

(x,t,y,s) = u(z,t) —v(y,t) — Ye(z,t,y,s) in [Q_fflr

By standard arguments, this function has maximum points (z.,t.,y., s.) such that

Te,te, Ve, o) — (%,1,%,1). Moreover, using the semi-convexity of u, we have
g

2z — 9/ 2t —
plaz (xs ys) _>pl and (5 28€>
£

—a
g2 ’
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which the Lipschitz continuity of u implies that (p.)y = 2((z.)x — (y.)n)/e® remains
bounded.

(c) Getting contradictions — We have to consider different cases depending on the
position of . and 3. in RY. Of course, we have no difficulty for the cases z.,y. € O
or x.,y. € )y, and even less because of the above very precise properties on the
derivatives of the test-function; only the cases where z., y. are in different domains
or on H cause problem. So, we are left with considering three cases

1.z, €, y- € Qyor 2. € Do,y € Q4.
2. ‘TE e H, yg E (Ql UQQ).

3. v. €H, y. € H.

Case 1: If x. € (), y. € Q5 UH, we use that u is an n-strict H;-subsolution and
taking into account the specific form of the test-function above we get

a+o.(1) + Hy(z.,te,p + o(1) + Men + (p-)nven) < —n . (14.6)

Then, using that H; > H; and the fact that every term in H; remains in a compact
subset, we also have

a+ Hy (7,19 + Mex + (p-)ven) < =0+ o-(1) .
Now, since (p:)ny > 0, thanks to the monotonicity of H; in the ey-direction we obtain
a+ Hy (2,59 + Men) < —n+o.(1),

which is a contradiction with the definition of \;. The case z. € s, y. € Oy UH is
of course analogue and we skip it.

Case 2: Since z. € H, the subsolution inequality holds

max (a+ G(@,1,0/) s a+ H (7,80 + Aew + (p)vew)

a+ Hy (3,89 + hex + (p)vex) ) < —n+ox(1) .

On the other hand, if y. € €, since v is a Hj-supersolution in €2; and of course
(Ye, te) — (2, 1), ~
a+ Hi(Z,t,p" + Mex + (pe)ven) > 0:(1) . (14.7)
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Now the aim is to show that the same inequality holds for H;" and to do so, we
evaluate this quantity for H; : taking into account the fact that here (p.)y < 0, the
monotonicity of H; in the ey-direction yields

a+ Hy (z,1,0 + Men + (po)nven) < —n/2 + O.(1) < 0 if € is small enough.
But since H; = max(H; , H;"), from (14.7) we actually deduce that
a+ Hf—(jagvpl + )\leN + (pE)NeN) 2 O&‘(l) ;

which gives a contradiction when compared with the subsolution property on H. The

same contradiction is obtained in the case y. € {2, using Ay and ]-12Jr instead of \;
and H; .

Case 3: If z. € H, y. € H, we have viscosity sub and supersolution inequalities for
the same Hamiltonian and the contradiction follows easily. So, the proof is complete.
Q.E.D.

14.3.2 The quasi-convex case

In fact, Theorem 14.3.1 extends without difficulties in the “quasi-convex” case and
we have the

Theorem 14.3.2 — Comparison principle, the quasi-convex case.

The result of Theorem 14.3.1 remains valid if (GA-QQC) holds and G satisfies (GA-
G-FL).

Proof — We just sketch it since it follows very closely the proof of Theorem 14.3.1.
The only difference here is that Section 2.4 only allows to reduce to the case when the
strict subsolution u is Lipschitz continuous and semi-convex in the (¢, z’)-variables,
not C'. This obliges us to first look at a maximum of

2~y |t —sf?

g2 g2

)

(x,t,y,s) = u(z,t) —v(y,s) —

where x = (2/, zn), y = (¢, xy), which is, of course, an approximation of max (u —v).

x,t
Qr,’h

If (Z,,7,5) is a maximum point of this function, the semi-convexity of u implies
that u is differentiable w.r.t. ' and t at (Z,¢) and we have

2(t— 3 . n
a:= -9 =w(Z,t) and p' = —-—— = Dyu(a,t).
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Then we solve the (A1, A2)-equations with such a and p'; it is worth pointing out that
A1 and Ay are not uniquely defined but this is not important in the proof.

Finally we consider the maxima of the function
2 —y? Jt—s?
e g2
2y — yn |
— -

(x,t,y,s) — u(z,t) —v(y,s) —

—x(zN,yn) — |z —Z* — |t —*,
where 0 < v < 1 is a parameter devoted to tend to 0 first. Using the normal control-
lability assumption with variables X = (2/,t), Z = xy, it is easy to show that

|(p€) | 2|(x8)N — (yE)N|

N = " = O(IpL| + la| + 1),

which is bounded since u is Lipschitz continuous in the tangent variables (z’,t).
This allows to perform all the arguments of the proof as in the convex case. Notice
that, even if it is not C'-smooth, the semi-convexity of u ensures that u;(z.,t.) —
a, Dyu(ze,t.) — p.

Q.E.D.

14.4 Flux-limited solutions and control problems

In this section, we come back on the control problem of Section 7 which we address
here from a different point of view.

In order to do that, we first have to define the admissible trajectories among all
the solutions of the differential inclusion: we say that a solution (X, D, L)(-) of the
differential inclusion starting from (z,t,0,0) is an admissible trajectory if

1. there exists a global control a = (a, as, ag) with a; € A; := L*>(0, 00; A;) for
1=0,1,2;

2. there exists a partition I = (I4, Iy, Ip) of (0, 4+00), where Iy, I,, [, are measurable
sets, such that X (s) € Q; for any s € I; if i = 1,2 and X(s) € H if s € Iy;
3. for almost every 0 < s <'t

2

(XD, L)(s) = (bi,ci, 1)) (X (5),t — 5, 05(s)) My (5) - (14.8)

1=0
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In Equation (14.8), we have dropped T'(s) since we are in the b = —1 case and
therefore T'(s) =t — s for s < t. The set of all admissible trajectories (X, 1, a) issued
from a point X(0) = z € RY (at T(s) = t) is denoted by 7,. Notice that, under
the controllability assumption (NCy), for any point x € Qy, there exist trajectories
starting from z, which stay in Q;, and the same remark holds for points in Q5. These
trajectories are clearly admissible (with either I} = I or I, = ) and therefore 7, is
never void.

Remark 14.4.1 [t is worth pointing out that, in this approach, the partition Iy, I, Iy
which we impose for admissible trajectories, implies that there is mo mizing on H
between the dynamics and costs in (2 and )y, contrarily to the approach of Section 7.
A priori, on H, either we have an independent control problem or we can use either
(b1, c1,l1) or (be, ca,la), but no combination of (by,cy,l1) and (by, ca,1ls).

The value function is then defined as

ULl(x,t) := inf {/Ot <ili(X(s),t - S,OZi(S))]I]Ii((S))eD(S) ds —l—uo(X(t))} :

(X, La)eTs

where ug € C(RY).

As always, the first key ingredient to go further is the

Lemma 14.4.2 — Dynamic Programming Principle.

Under assumption (GA-CC), the value function UL satisfies: for all (x,t) € RY x
(0,T%] and 7 < t

(X7]I=a)e7;

o2

Ui (x,t) = inf {/ (Z L;(X(s),t—s, ai(s))][m(s)) e PO ds + UEH(X (1)t — 7')} .
0 i=0

We leave the easy proof of this lemma to the reader, which is standard. Now, using

standard arguments based on the Dynamic Programming Principle and the compar-
ison result, we have the

Theorem 14.4.3 Under assumption (GA-CC) and if ug € C(RY), the value func-
tion ULF is the unique flux-limited solution of (HJ-Gen)-(FL) with G = Hy given
by

HO<£U7 tv T,p) = sup {—bo(l', ta ai) "p+ Co(l’, t? O!i)?“ - lo(l’, ta al)} :

[o7s} EAO
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Proof — We describe some non-obvious parts of the proof, in particular those to show
that the value function UgF is a flux-limited solution of (HJ-Gen)-(FL). As we will
explain at the end of the proof, continuity of UL and its uniqueness are an immediate
consequence of Theorem 14.3.1.

(a) Subsolution property.

Of course, the only difficulty is to prove this property on H x (0,7%], the cases of
0 x (0,7y] and Q5 x (0,T}] being classical. To do so, we have to show that

(UEL);‘ — bi(z,t,04) - D(UZL)* + ¢i(x, ¢, ai)(UgL)* —li(z,t,04) <0, (14.9)

for any i = 0,1,2 any «; € A; with by(x,t, ;) -exy > 0if i = 1 and by(x,t, ) -eny <0
if © = 2. The proof of these inequalities is standard once we use the following two
remarks:

1. By the arguments of Theorem 20.1.1 which give such result in a more general
setting, if USH(x., t.) — (UEF)*(x,t), we can assume without loss of generality
that (xc,t.) € H x (0,T]. This first remark allows to prove (14.9) in the case
1 = 0 using classical arguments.

2. The convexity of BCL(z,t) = {(b1(x,t, 1), c1(x, t, oq), i (z, t,0q)) © aq € Ay}
together with the normal controllability assumption implies that the set

{(bl(m,t, ar),cr(x,t, o), lh(z, t,aq)) 0 bi(x,t,aq) ey >0, ag € Al}
is the closure of the set
{(b1(z,t,0), i, b, an), bz, b, 00)) ¢ biz,t,on) -en >0, aq € Ar},

and an analogous property holds for ¢ = 2. This remark reduces the proof of
(14.9) for a; and ay such that by(z,t, 1) - ey > 0 and bo(z,t, ) - ey < 0. And
this allows to use classical arguments since, for s € (0, 7] and 7 small enough,
trajectories X (s) which are associated to such dynamics with constant controls
remains in €2y in the first case and in €2, in the second one.

We point out that Property (a) plays a key role to obtain the three types of inequalities
for:=0,1,2.

(b) Supersolution property.

Again the only non-classical case concerns points of H x (0,7%|. Let (x,t) € H x
(0, T4] be a minimum point of (USF), — ¢ where ¢ = (¢1,¢2) € PC' (RN x [0, Ty]).
We assume w.l.0.g. that (UEF). (2, t) = ¢(z,t).
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We first fix 0 < 7 < 1 and, for 0 < ¢ < 1, we consider (x.,t.) such that
Utk (z.,t.) < (UEH).(x,t) + er with |(z.,t.) — (z,t)] < er. Then we choose a global
e-optimal control a° = (af, a3, af) and denote by Z§ = Z:(s) = (X°(s),t. — 5,05(s))
for simplicity of notations. In other words,

ro, 2
UG (2=, te) > /0 (Z li(Zf)]Iui(S)> e 7 ds + UGH(XO(7), te — 7) —eT
i=0

where X¢ D are the trajectory and the discount term computed with the global
control a®. Using the minimum point property, we have

., 2
Bl te) > / (Z zi<Zf>ﬂm<s>)eD5<S> ds + G(X*(7), b — 7) — 27,
0 i=0

and by classical computations we obtain
2

/OT Z (((bi)t(XE(s),ta — 5) = bi(Z5) - Do (X%(s), t. — 5)

+ ai(Z7)i(X7(s), te — s) — li(Zf)) I, (s)e 7" ds > —2er

where, by convention, ¢y denotes ¢; = ¢ on H x (0,T%].
Then, by using the regularity of ¢; (i = 1, 2),

/0 2 ((gbi)t(%te) — bi(Z5) - Doy(a. 1)
+ei(Z)dilae, te) — li(Zf)> Iy, (s)e " ds > —2e7 + o(7) .

In order to conclude, we have to consider several cases

(¢) If Iy = (0,7), the proof just follows classical arguments.

(i) If I, = (0, 7), i.e. the trajectory X¢ remains in Q;, we notice that

1 /7 1
—/ bi(Z)ds ey = —(X°(1) —2.) ey > —¢,
T Jo T
because of the choice of (z.,t.). Using the convexity and the compactness of
BCL; (z,t), we conclude that as 7, — 0, up to the extraction of a subsequence,
we may assume that

1 /0 (01(25), e1(Z5), 1 (25)) ds — (by (1,0, 1 (2, b, 6n), (2, @)

T
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for some a; € A; such that by (z,t,a1)-ey > 0. From there, one concludes easily
that the H; -term is non-negative.

If Iy = (0, 7), the same arguments allow to conclude that the H, -term is non-
negative.

The remaining case is when two of these three sets are non-empty, and the main
difficulty is when one of the open sets (or both) {s: X¢(s) € €;} is non-empty.
We assume, for example, that it is the case for ¢ = 1 and write

{s: X°(s) € n} = JIswr s
k
If s, > 0 and sg,1 > 7, we necessarily X (s;) € H and X (sgy1) € H, therefore

1 Sk+1 1
—/ b (Z5) ds e = (X (s1) — X*(s)) -en = 0.

Sk+1 = Sk Jg,

Using again the convexity and the compactness of BCL;(z,t), together with
the regularity properties of by, ¢1, 11, we deduce that

1 / ! (((bl)t(xe, t.) — by(Z5) - Dy, t.)

Sk+1 = Sk Jsy
(20 t) (20 )0 ds
< (¢1)e(z, t) + Hif (z,t, ¢ (2, t), Ddy(,t)) + 26T + o(T) .
To obtain this last inequality, we have used that if

Hf,_n('r7t7rap) ‘= sup {_bz(x7t7a2) P + CZ'(.T,t7()éi)T - li(x7t7ai)} ;

O‘ieAin

where Ain ={a; € Ay : bi(x,t,4)-en > 1} and 1 can be positive or negative,
then Hy, (z,t,r,p) — H, (x,t,7,p) locally uniformly when n — 0, a property
which can be easily proved using the normal controllability.

Using similar ideas, one can easily treat the cases s, = 0 or sy;; = 7 and,
of course, the case when {s : X¢(s) € Qy} is not empty. Gathering all these
informations, we end up showing that a convex combination of ¢; + H;", ¢; +
H, , ¢ + Hy is non-negative, hence the result.

(c) Continuity and uniqueness.
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The function UE" being a discontinuous flux-limited solution of (HJ-Gen)-(FL),
Theorem 14.3.1 shows that (Ug~)* < (Ug"). in RY x [0, T}]; indeed it is easy to show
that (UE¥)*(z,0) = (UEM).(2,0) = up(x) in RY. Therefore U is continuous and
the uniqueness comes from the same comparison result.

Q.E.D.

Before considering the connections with the results of Section 7, we want to point
out that among all these “flux-limited value functions”, there is a particular one which
corresponds to either no specific control on H (i.e. we just consider the trajectories
such that Iy = (}) or, and this is of course equivalent, to a cost ly = +oco. This value
function is denoted by UYL,

The aim is to show that the value functions of regional control are flux-limited
solutions.

Theorem 14.4.4 — Identification of extremal Ishii solutions.

Under the assumptions of Theorem 14.53.1 (comparison result), for any Hamiltonian
Hy we have

(1) U~ <UT < U™ in RN x [0,Ty].
(1) U™ = Ug" in RN x [0, Ty| where G = Hy and U, = Ug" in RN x [0, Ty] where
G = max(Hr, Hy).
(¢4i) Ut = UGk in RY x [0, Ty] where G = Hp®.

This result shows that, by varying the flux limiter GG, we have access to the different
value functions described in Section 7.

Proof — For (i), the inequalities can just be seen as a consequence of the definition of
U—,U*, U remarking that we have a larger set of dynamics-costs for U~ and U™
than for U"*. From a more pde point of view, applying Proposition 2.5.1, it is easy
to see that U™, U™ are flux-limited subsolutions of (HJ-gen)-(FL) since they are of
course subsolutions of

ug + Hif (2, t,u, Du) <0 in Qy x [0,T}],
u + Hy (z,t,u, Du) <0 in Q9 x [0,T%] .
Then Theorem 14.3.1 allows us to conclude.

For (ii) and (i7i), we have to prove respectively that U~ is a solution of (HJ-gen)-
(FL) with G = Hy, Uy, is a solution of (HJ-gen)-(FL) with G = max(Hr, Hy) and
U* with G = H3®. Then the equality is just a consequence of Theorem 14.3.1.
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For U™, the subsolution property just comes from the above argument for the
H{", H, -inequalities and from Proposition 7.3.2 for the Hp-one. The supersolution
inequality is a consequence of the proof of Lemma 4.3.1: alternative A) implies that
one of the H;, Hy -inequalities hold while alternative B) implies that the Hp-one
holds. The same is true for Uy .

For U™, the subsolution property follows from the same arguments as for U™,
both for the H;", Hy -inequalities and from Proposition 8.1.3 for the H;®-one. The
supersolution inequality is a consequence of Theorem 8.3.1: alternative A) implies
that one of the H;", Hy -inequalities hold while alternative B) implies that the Hy®-
one holds.

And the proof is complete.
Q.E.D.

Notice that inequalities in Theorem 14.4.4-(7) can be strict: various examples are
given in [18]. The following one shows that we can have U™ < U'" in R.

Example 14.1 — Let ©; = (0, +00), Q5 = (—00,0). We choose ¢ = 0, up(z) =0 in
R and

bi(on) = a1 € [-1,1], l1(a1) = aq

bQ(Ozg) = (9 € [—1, 1] s ll(O./Q) = —Q9 .

It is clear that the best strategy—i.e. with the minimal cost—is to use a; = —1 in
1, ap = 1 in 5. We can also use these strategies at 0 since

1 1
551(041) + §b2(042) =0,

a combination which yields a cost of —1. Therfore, an easy computation gives

t
U+(x,t):/ —1.dt =—t,
0

other words, the “push-push” strategy at 0 allows to maintain the —1 cost.

But, for UYL, this “push-push” strategy at 0 is not allowed and, since the optimal
trajectories are necessarily monotone, the best strategy when starting at 0 is to stay
at 0. Here, the best possible cost is 0.

Hence U¥(0,¢) =0 > U™ (0,¢) = —1, and in fact it can be shown that

U™ (z,t) = —|z| > U (2,t) = —t if |z| <t.



HJ-Equations with Discontinuities: The Network Approach 269

On the contrary, for |z| > ¢, Ut (x,t) = Ut (x,t) = —t since the above strategy with
a; = —11in Q, as = 1 in {25 can be applied for all time.

Theorem 14.4.4 can be interpreted in several ways but the key point is to chose the
kind of controlled trajectories we wish to allow on H. Then, depending on this choice,
different formulations have to be used for the associated HJB problem. It could be
thought that the flux-limited approach is more appropriate, in particular because of
Theorem 14.3.1 which is used intensively in the above proof.

14.5 Vanishing viscosity approximation (I): con-
vergence via flux-limited solutions

In the framework of classical viscosity solutions, getting the convergence of the van-
ishing viscosity method is just a simple exercice done either with a stability result, or
the combination of the half-relaxed limits method with a strong comparison result.

However, in the present discontinuous framework, although classical viscosity solutions—
(CVS) in short—still have good stability properties as described in Section 2.1, the
lack of uniqueness makes this stability far less effective: the two half-relaxed limits are
lying between the minimal one U~ and the maximal one U™ and one cannot really
obtain the convergence in that way, except if Ut = U~

An interesting idea is to turn to flux-limited solutions for which a general compari-
son result holds. But, in order to identify the limit of the vanishing viscosity method,
a limit flux limiter is required and to the best of our knowledge, there is no obvious
way to determine it. Actually we refer the interested reader to Section 12.3 for a
discussion on more general discontinuities where the problem is still open.

We also refer anyway to [115, | for general stability results for (FLS) and to
Camilli, Marchi and Schieborn [50] for the first results on the convergence of the
vanishing viscosity method.

In this book, we give several different proofs of the vanishing viscosity result. Tthe
first one below is inspired from [20] and uses only the properties of Ut as flux-limited
solution.

Contrary to the proof relying on (JVS) via the Lions-Souganidis approach, the
arguments we use in this section strongly rely on the structure of the Hamiltonians
and on the arguments of the comparison proof. It has the advantage anyway to identify
the limit in terms of control problems. An other way to do the proof goes through
the connections between the Kirchhoff condition and Flux-Limited Conditions (See
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Section 16.3).

Theorem 14.5.1 — Vanishing viscosity limit via flux-limited solutions.
Assume that (GA-CC) holds. For any e > 0, let u® be a viscosity solution of

ué — eAu + H(z,t,u®, Du®) =0 in RN x (0,Ty), (14.10)

uf(z,0) = up(x) in RV, (14.11)

where H = Hy in Oy and Hy in Qs, and g is bounded continuous function in RY . If
the u® are uniformly bounded in RN x (0,T}) and C* in xx in a neighborhood of H,
then, as € — 0, the sequence (u®). converges locally uniformly in RN x (0,Ty) to Ut,
the mazximal Ishii subsolution of (6.1).

Remark 14.5.2 A priori (14.10)-(14.11) is a uniformly parabolic problem and the
reqularity we assume on (u®) is reasonable. Indeed the function u® is expected to be
C' since it is also expected to be in W2 (for any r > 1). On the other hand, it is
worth pointing out that, as long as € > 0, it is not necessary to impose a condition
on H because of the strong diffusion term: a codimension 1 set is not “seen” by the
diffusive equation.

Proof — We first recall that, by Theorem 8.4.2, U™ is the maximal subsolution—
and Ishii solution—of (6.1) and we proved in Theorem 14.4.4 that it is the unique
flux-limited solution of (HJ-Gen)-(FL) with G = Hp®. We recall that the flux-limited
condition consists in complementing (HJ-Gen) with the condition

max <ut—|—H}eg(m,t, D), ug+Hi (z,t, Dyu), ug+ Hy (2, t, Dxu)> =0 on Hx(0,T%),

in the sense of Definition 14.1.1. We refer to Section 2.1 for a definition of the usual
half-relaxed limits

u(x,t) := liminf, u(z,t), u(x,t) = limsup* u(z,1).

(a) Reduction of the proof — We observe that we only need to prove the following
inequality
Ut (z,t) <u(z,t)  inRY x [0,T}). (14.12)

Indeed, the maximality of U" implies u(z,t) < Ut(x,t) in RY x [0,T}). Moreover,
by definition we have u(z,t) > u(z,t) in RY x (0,T}), therefore if we prove (14.12)
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we can conclude that U™ (z,t) < u(z,t) <u(x,t) < Ut (z,t) which implies that (u®).
converges locally uniformly to U in RY x [0, T}).

In order to prove the inequality, Ut < u in RY x [0,T ¥), we are going to make
several reductions along the lines of Chapter 2 by changing U' but we keep the
notation U™ for the changed function for the sake of simplicity of notations. In the
same way, we should argue on the interval [0,7"] for 0 < 7" < Ty but we keep the
notation T’ for 7",

First, thanks to the localization arguments of Chapter 2, we can assume that U™
is a strict subsolution such that Ut (z,t) — —oo as || — o0, uniformly w.r.t.
t € [0, Ty]. Therefore there exists (z,¢) € RY x [0,T}] such that

M :=U"(z,t) —u(z, 1) = sup (Ut (z,t) — u(z,t)) .

(z,t)ERN x[0,T}]

We assume by contradiction that M > 0 and of course this means that ¢ > 0. The
cases when z € {2y or & € {)y can be treated by classical methods, hence we may
assume that ¥ € H.

Next, by the regularization arguments of Chapter 2 we can assume in addition that
U™ is C''-smooth at least in the ¢, zy, ...,z y_; variables. Finally we can suppose that
(Z,t) is a strict maximum point of U — w.

(b) Construction of the test-function — Since UT is C! in the (¢, 2’)-variables, the
strict flux-limited subsolution condition can be written as

(U")u(2,8) + Hp®(2,1, Dy U™ (2,1)) < =1,
where 7 > 0 measures the strict subsolution property. Therefore
H;?g(a_j7 t_v DI’U+(j7 E)) < _(U+)t<'f7 E) =N,

and, as in the proof of Theorem 14.3.1, there exist two solutions Ay, Ay, with Ay < Ay,
of the equation

H (J:t DU (z,1) + /\6N> = —(UN)u(#,8) —n/2.

Notice that, since Z,t, a = —(U"),(z,¢) and p' = D,U™(Z) are fixed, A, Ay are
independent of the parameter € > 0 that is to come below.

We proceed now with the construction of the test-function: let x(zx, yn) be defined
as in (14.5) and

t—s* | 2=y [N — yn
¢8($7 y>t7 8) = 81/2 + 81/2 + X(.CE, y) + T
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Note that ¥.(-, y, -, s),%.(x, -, t,-) € PCHRN x [0, Ty]).

Since (7, t) is a strict global maximum point of UT—w while u(Z, ) = liminf, u®(Z,?),
the function Ut (z,t) — u®(y, s) — ¢ (x, y, t, s) has local maximum points (z., y., t., s.)
which converge to (7, ,t,t). For the sake of simplicity of notations, we drop the ¢
and just denote by (z,y,t,s) such a maximum point.

(c) Getting a contradiction — We now consider 3 different cases, depending on the
position of (z,y,t, s).

Case 1: xy >0 and yy <0 (or zxy < 0 and yy > 0).

We use the subsolution condition for UT in €;: recalling that U™ is C''-regular in the
(t,z')-variables, we write the condition as

2y —
<U+)t(x7t> + Hl (xatan’U—i_(x?t) + )\leN + %) S -n,

where we have used the regularity of UT to deduce that

2(t —s)
o172

2(2" — ')
c1/2

(UN)(z,t) = and D,U%(z,t) = (14.13)
Moreover, using further the regularity of Ut and recalling that (U"), and D,/ U" are
continuous not only in ¢, 2’ but also xy, we have (U™),(z,t) = (U (Z,t) + 0-(1),

D, U*(x,t) = DUt (Z,t) + 0.(1). Therefore,

_ _ 20xy —
(U, 8) + H, ( t, Dy UH(E,7) + Men + M) < ntoul).

Next, using that H is non decreasing in py, H; < H; and (zny — yny) > 0 we get
from the above property

2 _
Hy (2., Dy UH(3,8) + Mex) < Hy <x,t, DU (2,8) + ey + M)

c1/2
< —(UM(z,1) —n+o(1).

From this inequality, since D, U (Z, ) + Ajex remains bounded with respect to e,
using the continuity of H; yields

Hy (2,6, DU (Z,t) + Meny) < —(UM)y(Z,1) —n+o0-(1) .

The contradiction is obtained for € small enough from the fact that, by construction
of )\1,
Hy (%,¢, DU (z,t) + Mey) = —(UT)(z,8) —n/2.
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The case xny < 0 and yy > 0 is completely similar, using H, instead of H;.

Case 2: oy =0 and yy > 0 (or < 0).

We use the supersolution viscosity inequality for u® at (y,t), using (14.13):

2 —
0(81/2> + (UJr)t(:C’ t) + Hl (y7 S, DI/UJF(CE’ t> + )\16N + w

+ 05(1)) >0,
(14.14)
Notice that, using the arguments of Case 1 and the fact that here zy —yy = —yn < 0,

we are led by the definition of A\; to

2 —
(/%) + (U*)y(w,8) + Hy (1,5, Do U* (2,8) + Ay + w o.(1)) <0,

from which we deduce that (14.14) holds true with H; .
Moreover, by the subsolution condition of U™ on H we have

2 _
(U)o 1) 4 B (1,0, DU (1) dre + 28I, (1)) <,

therefore the conclusion follows by standard arguments putting together the two
inequalities for H;" and letting ¢ tend to zero. If yy < 0, we can repeat the same
argument using this time H, instead of H; .

Case 3: oy = yn = 0.

Let us remark that this case is not possible. Indeed the maximum point property
on Ut — u® — 9. implies that 0 is a minimum point of zy — u*((¢/, 2n),s) +
Ve(x, (Y, 2n), t, 8)). But, by definition of . and in particular of y, this also means
that we have a minimum point for the function

|z |?
ST

C:an = u (Y, 2n),8) — h(zn) +

Both zy + |2xy|? and u® are C'-smooth, but the function & is only Lipschitz con-
tinuous at zy = 0. So, using that the left derivative of ( is negative while the right
one is positive leads to —h'(07) < —h'(0T), i.e. Ay > A;. But this contradicts the
construction of function y which requires Ay < A;.

Q.E.D.
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14.6 Classical viscosity solutions as flux-limited so-
lutions

The aim of this section is to show that, under suitable assumptions, a classical vis-
cosity sub or supersolution of

uy + H(x,t,u, Dyu) =0 in RY x (0,T}) (14.15)

where H is a continuous quasi-convex Hamiltonian, is a (FLSub) or (FLSuper) of the
problem with H; = Hy = H and G = Hyp where, for © € H, t € [0,Ty], r € R and
peH

Hy(z,t,r,p) = rsréiﬂg H(z,t,r,p' + sey) .

We refer the reader to Section 9.2 and in particular to Lemma 9.2.1 for a motivation
of the definition of Hr in the convex case but we are going to consider below the more
general quasi-convex case.

The precise result is the

Proposition 14.6.1 — Classical Ishii solutions and flux-limited solutions.

Assume that (GA-QC) holds with Hy = Hy = H and that G = Hyp satisfies (GA-
G-FL). Then u is a classical Ishii subsolution [resp. supersolution| of (14.15) if and
only if it is a (FLSub) [resp. (FLSuper) | of (HJ-Gen)-(FL) with H, = Hy = H and
G - HT.

The interest of this result is to be able to introduce an artificial discontinuity when
it is useful. We refer the reader to Section 16.7 for an example of such situation.

Proof — To prove that a (FLSub) (or (FLSuper)) is a classical Ishii subsolution (or
supersolution) is easy using that (i) C! test-functions are PC! test-functions and (ii)
max(H*, H ,Hr) = H.

We only prove the converse for the subsolution case, the supersolution one being
essentially analogous; we just provide below a tiny additional argument to treat this
supersolution case. Of course, only the properties on H x (0,7}) are different and
therefore we concentrate on this case.

Let u be a classical Ishii subsolution of (14.15) and let (z,t) € H x (0,7}) be a
strict local maximum point of u — ¢ where ¢ = (1, p2) € PC'(RY x [0, 7}]). We have
to look at two different cases

. 8901 8902
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(i) A > p.
Case (i) is easy: if p' = Dpp(x,t) and p; = @iz, t) then, for any A\ < 7 < p,
((p's7),pe) € D%iX(O,Tf)u(a’:,ﬂ fori = 1and i = 2; hence ((p/,7),p;) € D]Ing(QTf)u(i” t)

and therefore
pe+ H(x, t,u(z,t),p +1en) < 0.

Using that max(H ™, H-, Hr) = H, we easily obtain the desired inequalities by choos-
ing 7 = X\ and then 7 = p.

Case (ii) is more tricky: by Lemma 2.5.6, we can assume without loss of generality
that ¢ = y + ¢ where ¢ is C' in RY x (0,7}) and

( ) )\LUN Ifl‘NZO,
TN) =
X\PN pry ifxy <0 .

We mollify the function x by using a mollifying kernel with compact support and
we obtain a sequence of C'-functions (x.). and then a sequence (p.). given by . =
Xe + ©. Moreover, by standard convolution arguments, we have

OXe
8xN

p<

(xy) <A for any xy .

Let (xe,t:) be a sequence of maximum points of u — ¢. which converges to (z,t)
and such that u(z.,t.) — wu(z,t) (such sequence exists since (z,t) is a strict local
maximum point of u — ¢ and ¢, — ¢ locally uniformly). We have

0 OXe
—w (e, te) + H(xe, toyu(we, te), Dyth(ze, te) + 9Xe (e, te)en) < 0.
ot 813]\[

Introducing

H(T) = aa—lf(a:,t) + H(x,t,u(x,t), Dytp(z,t) + Tey) ,

and denoting respectively by H*, H~, Hp, functions which are defined in the same
way, replacing H by H", H~ or Hy, we deduce from the continuity of H, the above
properties and the C*! character of ¢, that

[ aXs

This inequality can be rewritten as

(we,te)) < o0.(1) .

Oy,
max(A*, A~ HT)(a;‘N

(2:,1:)) < 0c(1)
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and using the monotonicity of H, H ~, we have, because Hr is independent of the
x y-derivative

max(H*(\), H (), Hr) <o.(1),
and we conclude by letting ¢ — 0.

For supersolutions, the analogue of Case (i7) is treated exactly in the same way.
Case (i)-which is now A > p-required the following additional arguments: with the
above notations, we have

max(ﬁJr(T), ﬁ_(T), Hr) >0,
for any p < 7 < X\ and we have three cases

1. If ﬁT > 0, we are done.

2. If Hp < 0, by choosing 7 = A, we have max(H*(\), H(\)) > 0. If ]:It()\) >0,
we are done. In the same way, by choosing 7 = 1, we have max(H ™ (u), H™(u)) >
0. If H () > 0, we are done.

0, H*(A\) < 0 and H~(u) < 0, then necessarily H—(\) > 0 and

3. If f{T <
*(p) > 0. Hence

q
(HY—=H)\) <0 , (H"=H)(u)>0,
and there exists 7 € (u, \) such that H*(7) = H~ (7). But, for such 7, we have

H t(r) = H ~(7) = Hyp. Therefore using such 7 in the above inequality yields
Hp >0, a contradiction which means that we are in one of the two first cases.

And the proof is complete.
Q.E.D.

14.7 Extension to second-order equations (I)

In this section, we consider second-order equations of the form
uy + Hy(z,t, Du) — Tr(a;(x)D*u) =0 in Q; x (0,7T) ,

where a; (¢ = 1,2) are continuous functions which are assumed to be on the standard
form, i.e. a; = 0; - 0! where ol is the transpose matrix of o;. We suppose that the
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0;’s are bounded, Lipschitz continuous functions and in order that the definition of
flux-limited solutions make sense, the following property has to be imposed

o;((«,0)) =0 fori=1,2 and for all 2’ € RN"1.

The main question we address here concerns the comparison result in this frame-
work. There are several difficulties that we list below:

(7) in general, we cannot regularize the subsolution as we did above;

(77) because of the second-order term, the normal controllability cannot be used
efficiently outside H;

(17i) a two-parameter proof as in the non-convex case is difficult to handle with the
second-order term.

We take this opportunity to remark that the above comparison proofs has several
common points with the comparison proof for nonlinear Neumann boundary condi-
tions: in fact, it can be described as a “double Neumann” proof since H; (almost)
plays the role of a Neumann boundary condition for the equation in 25 while con-
versely H, (almost) plays the role of a Neumann boundary condition for the equation
in €)1, see Proposition 11.2.1 for more explanations.

There is anyway a crucial additional difficulty: H; , H," are NOT strictly monotone
functions w.r.t. the normal gradient direction. Therefore, if a general “one-parameter
proof”, avoiding the use of ¥ < ¢ may be possible, it is probably rather technical
and may require additional assumptions on Hamiltonians H;.

Instead, the following result gives some conditions under which the proof of Theo-
rem 14.3.2 still works.

Theorem 14.7.1 — Comparison principle in the second-order case.

Under the assumptions of Theorem 14.3.2, the result of Theorem 14.3.1 is valid
provided that the two following assumptions hold, for i = 1,2, in a neighborhood of
H:

(1) Hi(z,t,p) = Hia ('

4p') + Hig(on, pN),
(17) 0; = oi(xN) wzth 0:(0) =

0, o; being locally Lipschitz continuous and bounded.

It is worth pointing out that this result holds for non-convex Hamiltonians, but
requires rather restrictive assumptions on H; and ;. We refer to Imbert and Nguyen
[118] for general results for second-order equations in the case of networks where not
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only comparison results are obtained but the notions of (FLS) and (JVS) are discussed
and applications are given.

Proof — The proof follows readily the proof of Theorem 14.3.2, we just add here some
comments:

— The structure conditions we impose on (H;, 0;);—1 2 ensures that we can perform
a regularization of the subsolution by sup-convolution in the spirit of Proposi-
tion 2.4.9: in particular, the Hamiltonians both satisfy (TC-s). This is the first
reason to assume (i) and (i7).

— Once this regularization is done, we still have to control the dependence in the
derivatives in zy (or all the terms involving the parameter ): this is where the
special dependence in xy of H; and o; plays a role.

— In all the steps where the properties of Ai, Ay are crucial, the second-order term
is small since |o;(zx)| = O(|zn|) and therefore |a;(zy)| = O(x%). This can be
combined with the facts that

[(ze)n — (Y)n]?
72

—+0 asy—0,

and the second-order derivatives are a O(y2).

Q.E.D.

Remark 14.7.2 Anticipating the main result of Section 16.3 showing that the Kirch-
hoff boundary conditions is equivalent to a flux-limited boundary condition with G =
HZ® under the assumptions of Theorems 14.3.1 or 14.5.2, these two results also pro-
vide the comparison for the (KC)-condition. The proof(s) would apply readily if we
were able to show that we can choose Ay > Ay in the test-function (the function x)
but this is not obvious at this point and this property will be clarified in Section 16.35.



Chapter 15

Junction Viscosity Solutions

Abstract. This chapter is devoted to study junction viscosity solutions a la Lions-
Souganidis for continuous Hamiltonians: definition, stability and comparison proper-
ties are described in details.

Even if flux-limited viscosity solutions have their advantages, it may seem more
natural to consider a definition of viscosity solution with a min / max condition on
the junction involving H; and H instead of their nondecreasing/nonincreasing parts.

In the next sections, we present the general notion of junction viscosity solutions,
which is called “relaxed solution” in [I15]. However, because of the similarity to the
classical notion of viscosity solutions, it seems to us that “junction viscosity solutions”
is more appropriate.

15.1 Definition and first properties

We introduce the notion of junction viscosity sub/supersolution for (HJ-Gen) associ-
ated with a (GJC) given by a nonlinearity G as follows (!

Definition 15.1.1 — Junction Viscosity Solutions.

A locally bounded function u : RN x (0,T) = R is a (JVSub) of (HJ-Gen)-(GJC)
if it is a classical viscosity subsolution of (HJ-Gen) and if, for any test-function ¢ =
(Y1,2) € PCHRY x [0,T}]) and any local mazimum point (x,t) € H x (0,T}) of

(WWe recall that we assume that G(z,t,r,a,p’,b,c) is independent of 7.

279
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u* — 1 in RY x (0,7T),

min (G(xvt)¢taDH¢7a_ﬁ)a_;i)uqvbt—i_Hl(x?tau aD¢1>7¢t+H2(J;7t7u 7D77Z)2)>(S07)
15.1

where u* and the derivatives of 1,1,y are taken at (x,t).

A locally bounded function v : RY x (0,77) — R is a (JVSuper) of (HJ-Gen)-(GJC)
if it is a classical viscosity supersolution of (HJ-Gen) and if, for any test-function
Y = (11,92) € PCHRYN x [0,T}]) and any local minimum point (z,t) € H x (0,Ty)
of v — ¥ in RN x (0,Ty),

oY1 Oty

max (G(xat7¢tvDH¢v 8_nl7 a_m)ad}t + Hl(xvtav*v D¢1)a¢t + Hz(l',t,v*, D¢2)>(Z 0 7)
15.2

where v, and the derivatives of 1,11,y are taken at (x,t).
A (JVS) (i.e. a junction viscosity solution) is a locally bounded function which is both
(JVSub) and (JVSuper).

As in the case of (FLSub) and (FLSuper), we can define (JVSub) and (JVSuper) us-
ing the notions of sub and superdifferentials. With the notations of Proposition 14.1.2,

we have the @

Proposition 15.1.2 — Junction viscosity solutions via sub superdifferentials.

An w.s.c., locally bounded function u : RN x (0,T) = R is a (JVSub) of (HJ-Gen)-
(GJC) if and only if

(i) for any (x,1) € Qs (1= 1,2) and any (pa.pc) € D e, 1)
Dt + HZ(xatau(x>t)7px> S 0 )

(it) for any (x,t) € H x (0,Tf) and for any py € H, p1,p2,pr € R such that
((pHapz)7pt) € D%ZU(IJ;) fOT 1= 172;

miin <G(x7t>ptap7'lvp17p2>7pt + Hi(x,t,u(x,t),pH +pz€N)) S 0.

A ls.c., locally bounded function v : RN x (0,T;) — R is a (JVSuper) of (HJ-Gen)-
(GIC) if and only if, for (z,t) € RN x (0,T}),

(2) Again we formulate the result for u.s.c. subsolution and l.s.c. supersolution but the reader can
easily transpose it to general sub and supersolutions
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(i) for any (2,) € Qi (i = 1,2) and for any (pe. p) € Dol 1
P + Hl(xa tav<x>t)apx) Z 0 )

(i) for any (x,t) € H x (0>Tf) and for any py € H, p1,p2,pr € R such that
((Pr> 1), pe) € D%gv(x,t) fori=1,2,

Hl;aX <G($a t7ptap7'l7p17p2>7pt + Hi(xata 'U(.CE, t)7p7'l +pz€N)> 2 0.

As for Proposition 14.1.2, we leave the proof of this result to the reader since it is
an easy consequence of Lemma 2.5.3 and Lemma 2.5.6. We again point out that this
equivalent definition via sub and superdifferentials allows to show that instead of using
general PC! test-functions, we may only use test-functions of the form x(zy)+@(x,t)
where y € PC'(R) and ¢ € CY(RY x (0,7})). The reader will notice that we mainly
use test-function of this form in the comparison result but this property is also useful
to simplify the proofs of several results.

Before considering the regularity properties of (JVSub) and (JVSuper), we point
out that one of the advantages of the notion of junction viscosity solution is that it
can be applied to a wider class of junction conditions without any convexity/quasi-
convexity type assumption. On the other hand, its similarity with the classical notion
of viscosity solutions should easily convince the reader that the notion enjoys the
stability properties of classical viscosity solutions.

15.1.1 Lack of regularity of subsolutions

This notion has a slight defect since u.s.c. junction viscosity subsolutions are not
necessarily regular, contrarily to flux-limited solutions, because of the “min” in the
definition. To show it, we consider the following 1-d example

ur + ul =0 in R\ {0} x (0, +00),
u (0,) =0 in (0, +00) ,
u(z,0) = —Jz] inR.

It is worth pointing out that this problem is far from being pathological since Hy(p) =
Hs(p) = |p| satisty all the “good assumptions”, in particular (NC). One checks easily
that the expected solution is U(x,t) = —|z| — ¢t but we also have the non-regular
subsolution given by

(2.1) U(z,t) ifz#0,
w(x,t) =
0 forx=0.
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It is clear that w is u.s.c. and a subsolution for x # 0, and it is a subsolution for x = 0
because u;(0,t) = 0 and the “min” in the definition allows such inexpected fe