A Comparison of Metaheuristic Techniques for RF Passive Components Optimization
Hamid Bouyghf, Soufiane Abi, Bachir Benhala, Abdelhadi Raihani

To cite this version:
Hamid Bouyghf, Soufiane Abi, Bachir Benhala, Abdelhadi Raihani. A Comparison of Metaheuristic Techniques for RF Passive Components Optimization. International Meeting on Advanced Technologies in Energy and Electrical Engineering, Nov 2018, FEZ, Morocco. hal-01962874

HAL Id: hal-01962874
https://hal.science/hal-01962874
Submitted on 20 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Comparison of Metaheuristic Techniques for RF Passive Components Optimization

1 hamid.bouyghf@gmail.com
1 LSSDIA ENSET Mohammedia, Morocco
2 BABA Team, LEAB, Moulay Ismail University of Sciences - Meknes, Morocco

I- Introduction

The passive components have become essential devices in many circuits used in major radio frequency (RF) domains. The geometrical parameters optimization of RF square spiral inductor is still a delicate step for designers, so practice RF design engineers still often use error for the tuning sizing process. Consequently, optimization methods are required to realize practical radiofrequency designs [1].

The aim of this present work is to compare three metaheuristic algorithms for the optimal design of RF square spiral inductor (4 nH @ 2.4 Ghz) shown in Figure 1. The used algorithms are the Artificial Bee Colony algorithm (ABC) [2, 3, 4], the Ant Colony Optimization (ACO) [5, 6] and the Differential Evolution (DE) [7, 8]. The objective function is to maximize the circuit quality factor-Q (Minimization of $Q_{req}=1/Q$). The computer–aided design tool Momentum-ADS [9] is used to check the viability of the optimization results.

Figure 1. Geometric parameters of a square spiral inductor
Where: (n): Number of turns, (w): Trace width, (sp): Turn spacing, d_{out}: Outer diameter and (d_{in}): Inner diameter

II- Optimization methodology for inductor design

The design problem of the spiral inductor can be formulated as:

Maximize of Q-quality factor (Minimize Q_{req}^{-1}/Q):

The quality factor (Q) can be expressed as [10]:

$$Q = \frac{\omega L_s}{R_s} \frac{R_p}{R_p + \left(\frac{\omega L_s}{R_s}\right)^2 + 1} \left[1 - \frac{(C_r + C_s)R_s^2}{L_s} - \omega L_s (C_r + C_s)\right]$$

(1)

[Cost Function (CF) is done by equation (1)]

Subject to:

$$Q \approx Q_{L_{max}}$$

$L_{s} = L_{req}$: Required inductance

Independent geometry parameters constraints may be added such as:

- Number of turn : $n \leq 4$
- Minimum value of the track width : $w \leq 12\mu m$
- Minimum of spacing : $sp = 2.5\mu m$
- Outer diameter : $d_{out} \leq 231\mu m$

For reducing the parasitic effect due to the proximity problem [11], we will respect this add constraint:

$$d_{in} > 5.w \ and \ 0.2 < (d_{in}/d_{out}) < 0.8$$

(2)

The object function finds the global minimum CF for its expression:

$$CF = Q_{req} + 1.0e9 \times \text{abs}(L_s - L_{sreq}) + \text{penalty} \times \text{Sum}(C_t)$$

(3)

Where $Q_{req} = 1/Q$, Penalty: Penalty of each constraint violation, Sum (Ct): Some of all constraints (Ct (1), Ct (2)…).

The minimum value of CF guarantees the maximal value for Q-factor for $L_{sreq} = 4$ nH and $Freq = f_s = 2.4$ GHz.

The technological parameters are summarized in table 1:
The following Figure and Tables show the results comparison and simulation for the three metaheuristics.

![Cost function (Q\text{req}) Vs. Number of iterations of three algorithms](image)

Table 1. Technological parameters for inductor design

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal thickness</td>
<td>t</td>
<td>2.8e-6</td>
</tr>
<tr>
<td>Thickness of the oxide insulator between</td>
<td>toxM1M2</td>
<td>0.4e-6</td>
</tr>
<tr>
<td>the spiral and underpass (M1-M2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of the oxide</td>
<td>tox</td>
<td>5.42e-6</td>
</tr>
<tr>
<td>Metal conductivity</td>
<td>σ</td>
<td>1/2.65e-8</td>
</tr>
<tr>
<td>Substrate conductance G_{sub}</td>
<td>G_{sub}</td>
<td>2.43e5</td>
</tr>
<tr>
<td>Permittivity of the oxide</td>
<td>E_{ox}</td>
<td>3.453e-11</td>
</tr>
<tr>
<td>Substrate thickness</td>
<td>t_{sub}</td>
<td>700e-6</td>
</tr>
<tr>
<td>Substrate resistivity</td>
<td>ρ</td>
<td>28 Ω.cm</td>
</tr>
<tr>
<td>Substrate permittivity</td>
<td>ε_{r}</td>
<td>11.9</td>
</tr>
<tr>
<td>Magnetic Permeability of the free space</td>
<td>$u(\mu\text{m})$</td>
<td>1.256e-6</td>
</tr>
</tbody>
</table>

Table 2. Optimization results (Matlab)

<table>
<thead>
<tr>
<th>Algo.</th>
<th>sp (μm)</th>
<th>w (μm)</th>
<th>n</th>
<th>d_{in} (μm)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>2.5</td>
<td>11.15</td>
<td>3.5</td>
<td>231</td>
<td>12.71</td>
</tr>
<tr>
<td>ACO</td>
<td>2.5</td>
<td>11.149</td>
<td>3.5</td>
<td>185.75</td>
<td>12.66</td>
</tr>
<tr>
<td>DE</td>
<td>2.5</td>
<td>11.15</td>
<td>3.5</td>
<td>180</td>
<td>12.59</td>
</tr>
</tbody>
</table>

Table 3. Performances and Simulation Results

<table>
<thead>
<tr>
<th>Algo.</th>
<th>L (nH)</th>
<th>L_{sim} (nH)</th>
<th>Error (%)</th>
<th>Q</th>
<th>Q_{sim} (nH)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>3.96</td>
<td>3.95</td>
<td>0.25</td>
<td>12.71</td>
<td>12.25</td>
<td>3.75</td>
</tr>
<tr>
<td>ACO</td>
<td>2.64</td>
<td>2.61</td>
<td>1.15</td>
<td>12.66</td>
<td>12.61</td>
<td>0.40</td>
</tr>
<tr>
<td>DE</td>
<td>2.47</td>
<td>2.45</td>
<td>0.82</td>
<td>12.59</td>
<td>12.50</td>
<td>0.72</td>
</tr>
</tbody>
</table>

* Momentum-EM simulator
From the above results, we notice that the Artificial Bee Colony algorithm gives better results than the other techniques.

III- Resume

In this work, we have presented the design optimization of integrated square spiral inductor based on equation expression of quality factor-Q by taking consideration of design requirements and constraints. The comparison of performances by the ACO, DE methods and those obtained using ABC technique and Momentum simulation is in good accuracy, with error below to 4%. Finally, the designers can use this metaheuristic algorithms to design the higher quality of factor (Q) integrated spiral inductors with reduced development time.

Références
3. H. Bouyghf, B. Benhala and A. Raihani, “Optimal design of RF CMOS circuits by means of an artificial bee colony technique”, Chapter 11, Book: Focus on swarm intelligence

