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We consider a nonlocal family of GrossPitaevskii equations with nonzero conditions at innity in dimension one. We provide conditions on the nonlocal interaction such that there is a branch of traveling waves solutions with nonvanishing conditions at innity. Moreover, we show that the branch is orbitally stable. In this manner, this result generalizes known properties for the contact interaction given by a Dirac delta function. Our proof relies on the minimization of the energy at xed momentum.

As a by-product of our analysis, we provide a simple condition to ensure that the solution to the Cauchy problem is global in time.

1 Introduction

1.1

The problem

We consider the one-dimensional nonlocal GrossPitaevskii equation for Ψ : R × R → C introduced by Gross [START_REF] Gross | Hydrodynamics of a superuid condensate[END_REF] and Pitaevskii [START_REF] Pitaevskii | Vortex lines in an imperfect Bose gas[END_REF] to describe a Bose gas

i∂ t Ψ = ∂ xx Ψ + Ψ(W * (1 -|Ψ| 2 )) in R × R, (NGP) 
with the boundary condition at innity

lim |x|→∞ |Ψ| = 1. (1) 
Here * denotes the convolution in R, and W is a real-valued even distribution that describes the interaction between particles. The nonzero boundary condition [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superuid turbulence[END_REF] arises as a background density. This model appears naturally in several areas of quantum physics, for instance in the description of superuids [START_REF] Berlo | Quantum vortices, travelling coherent structures and superuid turbulence[END_REF][START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superuid turbulence[END_REF] and in optics when dealing with thermo-optic materials because the thermal nonlinearity is usually highly nonlocal [START_REF] Vocke | Experimental characterization of nonlocal photon uids[END_REF]. An important property of equation (NGP) with the boundary condition at innity [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superuid turbulence[END_REF], is that it allows to study dark solitons, i.e. localized density notches that propagate without spreading [START_REF] Kartashov | Gray spatial solitons in nonlocal nonlinear media[END_REF], that have been observed for example in Bose-Einstein condensates [START_REF] Denschlag | Generating solitons by phase engineering of a Bose-Einstein condensate[END_REF][START_REF] Becker | Oscillations and interactions of dark and darkbright solitons in Bose-Einstein condensates[END_REF].

There have been extensive studies concerning the dynamics of equation (NGP), and the existence and stability of traveling waves in the case of the contact interaction W = δ 0 (see [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation I[END_REF][START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF][START_REF] Bethuel | Vortex rings for the Gross-Pitaevskii equation[END_REF][START_REF] Bethuel | Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation[END_REF][START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF][START_REF] Chiron | Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one[END_REF][START_REF] Gérard | The Cauchy problem for the Gross-Pitaevskii equation[END_REF][START_REF] Mari³ | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF][START_REF] De Laire | Non-existence for travelling waves with small energy for the Gross-Pitaevskii equation in dimension N ≥ 3[END_REF][START_REF] Gustafson | Scattering theory for the Gross-Pitaevskii equation in three dimensions[END_REF][START_REF] Gustafson | Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions[END_REF][START_REF] Killip | Global well-posedness of the Gross-Pitaevskii and cubic-quintic nonlinear Schrödinger equations with non-vanishing boundary conditions[END_REF] and the references therein). However, there are very few mathematical results concerning general nonlocal interactions with nonzero conditions at innity. In [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF][START_REF] Pecher | Global solutions for 3D nonlocal Gross-Pitaevskii equations with rough data[END_REF] the authors gave conditions on W to get global well-posedness of the equation and in [START_REF] De Laire | Nonexistence of traveling waves for a nonlocal Gross-Pitaevskii equation[END_REF] conditions were established for the nonexistence of traveling waves (in higher dimensions). Nevertheless, to our knowledge, there is no result concerning the existence of localized solutions to (NGP) when W is not given by a Dirac delta. The aim of this paper is to provide conditions on W in order to have stable nite energy traveling wave solutions, more commonly refereed to as dark solitons due to the nonzero boundary condition [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superuid turbulence[END_REF]. More precisely, we look for a solution of the form

Ψ c (x, t) = u(x -ct),
representing a traveling wave propagating at speed c. Hence, the prole u satises the nonlocal

ODE icu + u + u(W * (1 -|u| 2 )) = 0 in R. (TW W,c )
By taking the conjugate of the function, we assume without loss of generality that c ≥ 0.

Let us remark that when considering vanishing boundary conditions at innity, this kind of equation has been studied extensively [START_REF] Ginibre | On a class of nonlinear Schrödinger equations with nonlocal interaction[END_REF][START_REF] Cazenave | Semilinear Schrödinger equations[END_REF][START_REF] Moroz | Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics[END_REF] and long-range dipolar interactions in condensates have received recently much attention [START_REF] Lahaye | The physics of dipolar bosonic quantum gases[END_REF][START_REF] Carles | On the Gross-Pitaevskii equation for trapped dipolar quantum gases[END_REF][START_REF] Antonelli | Existence of solitary waves in dipolar quantum gases[END_REF][START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF][START_REF] Luo | Ground states for a nonlocal cubic-quartic Gross-Pitaevskii equation[END_REF]. However, the techniques used in these works cannot be adapted to include solutions satisfying [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superuid turbulence[END_REF].

We recall that (NGP) is Hamiltonian and its energy

E(Ψ(t)) = 1 2 R |∂ x Ψ(t)| 2 dx + 1 4 R (W * (1 -|Ψ(t)| 2 ))(1 -|Ψ(t)| 2 ) dx,
is formally conserved, as well as the (renormalized) momentum p(Ψ(t)) = R i∂ x Ψ (t), Ψ(t) 1 -1 |Ψ(t)| 2 dx, at least as inf x∈R |Ψ(x, t)| > 0, where z 1 , z 2 = Re(z 1 z2 ), for z 1 , z 2 ∈ C (see [START_REF] De Laire | Non-existence for travelling waves with small energy for the Gross-Pitaevskii equation in dimension N ≥ 3[END_REF][START_REF] Bogdan | Stability criterion in imperfect Bose gas[END_REF]). In this manner, we seek nontrivial solutions of (TW W,c ) in the energy space

E(R) = {v ∈ H 1 loc (R) : 1 -|v| 2 ∈ L 2 (R), v ∈ L 2 (R)},
and more precisely in the nonvanishing energy space

N E(R) = {v ∈ E(R) : inf R |v| > 0},
where the momentum will be well dened. It is simple to check, using the Morrey inequality, that the functions in E(R) are uniformly continuous and satisfy lim |x|→∞ |v(x)| = 1.

When W is given by a Dirac delta function, equation (TW δ 0 ,c ) corresponds to the classical GrossPitaevskii equation, which can be solved explicitly. As explained in [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF], if c ≥ √ 2 the only solutions in E(R) are the trivial ones (i.e. the constant functions of modulus one) and if 0 ≤ c < √ 2, the nontrivial solutions are given, up to invariances (translations and a multiplications by constants of modulus one), by

u c (x) = 2 -c 2 2 tanh √ 2 -c 2 2 x -i c √ 2 . ( 2 
)
Thus there is a family of dark solitons belonging to N E(R) for c ∈ (0, √ 2) and there is one stationary black soliton associated with the speed c = 0. Notice also that the values of u c (∞) and u c (-∞) are dierent, and thus we cannot relax the condition [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superuid turbulence[END_REF] to lim |x|→∞ Ψ = 1, as is usually done in higher dimensions.

The study of equation (TW δ 0 ,c ) can be generalized to other types of local nonlinearities such as the cubic-quintic nonlinearity and some cubic-quintic-septic nonlinearities as shown in [START_REF] Chiron | Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one[END_REF][START_REF] Mari³ | Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF]. The techniques used by the authors rely on the analysis of a second-order ODE of Newton type, so that the CauchyLipschitz theorem can be invoked and some explicit formulas can be deduced. These arguments cannot be applied to (TW W,c ) due to the nonlocal interaction. For this reason, our approach to show existence of traveling waves relies on a priori energy estimates and a concentration-compactness argument, that allow us to prove that there are functions that minimize the energy at xed momentum. These minimizers are solutions to (TW W,c ) and we can also establish that they are orbitally stable (see Theorem 4). These kinds of arguments have been used by several authors to establish existence of solitons for the (local) GrossPitaevskii equation in higher dimensions and for some related equations with zero conditions at innity (see e.g. [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF][START_REF] Mari³ | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF][START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF][START_REF] Lopes | Symmetry of minimizers for some nonlocal variational problems[END_REF][START_REF] Mari³ | On some minimization problems in R N[END_REF][START_REF] Audiard | Small energy traveling waves for the Euler-Korteweg system[END_REF][START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF]). The main diculty in our case is to handle the nonvanishing conditions at innity, the fact that the constraint given by the momentum is not a homogeneous function along with the nonlocal interactions.

1.2

The critical speed and assumptions on W Linearizing equation (NGP) around the constant solution equal to 1 and imposing e i(ξx-wt) as a solution of the resulting equation, we obtain the dispersion relation

w(ξ) = ξ 4 + 2 W(ξ)ξ 2 , (3) 
where W denotes the Fourier transform of W. Supposing that W is positive and continuous at the origin, we get the so-called speed of sound c * (W) = lim ξ→0 w(ξ) ξ = 2 W(0).

The dispersion relation [START_REF] Albert | Positivity properties and uniqueness of solitary wave solutions of the intermediate long-wave equation[END_REF] was rst observed by Bogoliubov [START_REF] Bogoliubov | On the theory of superuidity[END_REF] in the study of a BoseEinstein gas. He then argued that the gas should move with a speed less than c * (W) to preserve its superuid properties. This leads to the conjecture that there is no nontrivial solution of (TW W,c ) with nite energy when c > c * (W). Actually, one of the authors proved this conjecture in [START_REF] De Laire | Nonexistence of traveling waves for a nonlocal Gross-Pitaevskii equation[END_REF] in dimensions greater than one, under some conditions on W.

In order to simplify our computations, we can normalize the equation so that the critical speed is xed. Indeed, it is easy to verify that the rescaling x → x/ W(0) 1/2 and t → t/ W(0) allows us to replace W(ξ) by W(ξ)/ W(0) in (NGP). Therefore, we assume from now on that W(0) = 1 and hence that the critical speed is

c * = √ 2.
Before going any further, let us state the assumptions that we need on W.

(H1) W is an even tempered distribution with W ∈ L ∞ (R), and W ≥ 0 a.e. on R. Moreover W is continuous at the origin and W(0) = 1.

(H2) W belongs to C 3 b (R), ( W) (0) > -1 and W(ξ) ≥ 1ξ 2 /2, for all |ξ| < 2.

(H3) W admits a meromorphic extension to the upper half-plane H := {z ∈ C : Im(z) > 0}, and the only possible singularities of W on H are simple isolated poles belonging to the imaginary axis, i.e. they are given by {iν j : j ∈ J}, with ν j > 0, for all j ∈ J, 0 ≤ Card J ≤ ∞, and their residues Res( W, iν j ) are purely imaginary numbers satisfying i Res( W, iν j ) ≤ 0, for all j ∈ J,

Also, there exists a sequence of rectiable curves

(Γ k ) k∈N * ⊂ H, parametrized by γ k : [a k , b k ] → C, such that Γ k ∪ [-k, k
] is a closed positively oriented simple curve that does not pass through any poles. Moreover,

lim k→∞ |γ k (t)| = ∞, for all t ∈ [a k , b k ],
and

lim k→∞ length(Γ k ) sup t∈[a k ,b k ] W(γ k (t)) |γ k (t)| 4 = 0. ( 5 
)
Here C k b (R) denotes the bounded functions of class C k whose rst k derivatives are bounded. We have also used the convention that the Fourier transform of (an integrable) function is

f (ξ) = R e -ixξ f (x)dx.
In particular, the Fourier transform of the Dirac delta is δ0 = 1 and thus assumptions (H1)(H3) are trivially fullled by W = δ 0 . Let us make some further remarks about these hypotheses. Assumption (H1) ensures that the critical speed exists and that the energy functional is nonnegative and well dened in E(R). Indeed, let us consider v ∈ E(R), set η = 1 -|v| 2 and write the energy in terms of the kinetic and potential energy as

E(v) = E k (v) + E p (v), where E k (v) := 1 2 R |v | 2 dx and E p (v) := 1 4 R (W * η)η.
By hypothesis (H1) and the Plancherel theorem, we deduce that

0 ≤ E p (v) = 1 8π R W|η| 2 ≤ 1 4 W L ∞ η 2 L 2 ,
so that the functions in E(R) have indeed nite energy and their potential energy is nonnegative.

Let us recall that for a tempered distribution V ∈ S (R), we can dene the convolution with a function in L p (R), through the Fourier transform, as the bounded extension on L p (R) of the operator

V * f := F -1 ( V f ), f ∈ S(R).
In this manner, the set

M p (R) = {V ∈ S (R) : ∃C > 0, V * f L p (R) ≤ C f L p (R) , ∀f ∈ L p (R)}
is a Banach space endowed with the operator norm denoted by

• Mp . Thus (H1) implies that W ∈ M 2 (R), with W L ∞ (R) = W M 2 .
We refer to [START_REF] Grafakos | Classical Fourier analysis[END_REF] for further details about the properties of M p (R).

Hypothesis (H2), combined with (H1), imply that W(ξ) ≥ (1ξ 2 /2) + a.e., that can be seen as a coercivity property for the energy. In particular, it will allow us to establish the key energy estimates in Lemmas 2.1 and 2.3. The condition ( W) (0) > -1 will be crucial to show that the behavior of a solution of (TW W,c ) can be formally described in terms of the solution of the Kortewegde Vries equation

(1 + ( W) (0))A -6A 2 -A = 0, at least for c close to √ 2 (see Section 3).
The more technical and restrictive assumption (H3) is used only to prove that the curve associated with the minimizing problem is concave. Indeed, we use some ideas introduced by Lopes and Mari³ [START_REF] Lopes | Symmetry of minimizers for some nonlocal variational problems[END_REF] to study the minimization of the nonlocal functional

R N m(ξ)| ŵ(ξ)| 2 dξ + R N F (w(x))dx, under the constraint R N G(w)dx = λ, λ ∈ R,
for a class of symbols m (see (2.16) in [START_REF] Lopes | Symmetry of minimizers for some nonlocal variational problems[END_REF]). Here N ≥ 2, F and G are local functions, and the minimization is over w ∈ H s (R). The results in [START_REF] Lopes | Symmetry of minimizers for some nonlocal variational problems[END_REF] cannot be applied to the symbol m(ξ) = W(ξ) nor to the minimization over functions with nonvanishing conditions at innity (nor N = 1). However, we can still apply the reexion argument in [START_REF] Lopes | Symmetry of minimizers for some nonlocal variational problems[END_REF], which will lead us to show that

R (W * f )f ≥ R (W * f ) f , (6) 
for all odd functions f ∈ C ∞ c (R), where f is given by f (x) = f (x) for x ∈ R + , and f (x) = -f (x) for x ∈ R -. Using the sine and cosine transforms

fs (ξ) = ∞ 0 sin(xξ)f (x)dx, fc (ξ) = ∞ 0 cos(xξ)f (x)dx,
we will see in Section 3 that inequality (6) is equivalent to the following assumption.

(H3') W satises ∞ 0 W(ξ)(| fs (ξ)| 2 -| fc (ξ)| 2 )dξ ≥ 0, for all odd functions f ∈ C ∞ c (R).
Therefore, we can replace (H3) by the weaker (but less explicit) condition (H3'). Finally, let us notice that if W = δ 0 , we can verify that condition (H3') is satised by using the Plancherel formula

∞ 0 | fs (ξ)| 2 dξ = ∞ 0 | fc (ξ)| 2 dξ = ∞ 0 |f (x)| 2 dx.
At the end of this section we will give some examples of potentials satisfying (H1)(H3).

Main results

In the classical minimization problems associated with Schrödinger equations with vanishing conditions at innity, the constraint in given by the mass. In our case, the momentum is the key quantity that we need to take as a constraint to show the existence of dark solitons. Let us verify that the momentum

p(v) = 1 2 R iv , v 1 - 1 |v| 2 , (7) 
is well dened in the nonvanishing energy space. Indeed, a function v ∈ N E(R) is continuous and admits a lifting v = ρe iφ , where ρ = |v| and φ are real-valued functions in H 1 loc (R) (see e.g. [START_REF] Gérard | The Gross-Pitaevskii equation in the energy space[END_REF]). Since v ∈ N E(R), we have inf R ρ > 0, and using that

|v | 2 = ρ 2 + ρ 2 φ 2 , we infer that |φ | ≤ |v |/ inf R ρ, so that φ ∈ L 2 (R). Hence, setting η = 1 -|v| 2 ∈ L 2 (
R), we get that the integrand in ( 7) is equal to ηφ , and therefore ( 7) is well-dened since ηφ ∈ L 1 (R). In conclusion, for any v ∈ N E(R), the energy and the momentum can be written as

E(v) = 1 2 R ρ 2 + 1 2 R ρ 2 φ 2 + 1 2 R (W * η)η and p(v) = 1 2 R ηφ , under the assumption W ∈ L ∞ (R).
Let us now describe our minimization approach for the existence problem, assuming that W satises (H1) and (H2). For q ≥ 0, we consider the minimization curve

E min (q) := inf{E(v) : v ∈ N E(R), p(v) = q},
that is well dened in view of Lemma 3.1. Moreover, this curve is nondecreasing (see Lemma 3.11). We also set

q * = sup{q > 0 | ∀v ∈ E(R), E(v) ≤ E min (q) ⇒ inf R |v| > 0}. (8) 
If (H3) is also fullled and q ∈ (0, q * ), we will show that minimum associated with E min (q) is attained and that the corresponding EulerLagrange equation satised by the minimizers is exactly (TW W,c ), where c appears as a Lagrange multiplier (see Section 6 for details). More precisely, our rst result establishes the existence of a family of solutions of (TW W,c ) parametrized by the momentum.

Theorem 1. Assume that (H1), (H2) and (H3) hold. Then q * > 0.027 and for all q ∈ (0, q * ) there is a nontrivial solution u ∈ N E(R) to (TW W,c ) satisfying p(u) = q, for some c ∈ (0, √ 2).

It is important to remark that the constant q * is not necessarily small. For instance, in the case W = δ 0 , the explicit solution (2) allows us to compute the momentum of u c , for c ∈ (0, √ 2), and to deduce that q * = π/2. Moreover E min can be determined and its prole is depicted in Figure 1. Notice that E min is constant on (q * , ∞) and that in this interval the minimum is not attained (see e.g. [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF]). Since (H1)(H3) are satised by W = δ 0 , and since there is uniqueness (up to invariances) of the solutions to (TW δ 0 ,c ), we deduce that the branch of solutions given by Theorem 1 corresponds to the dark solitons in (2), for c ∈ (0, √ 2). In the general case, we do not know if the solution given by Theorem 1 is unique (up to invariances). Actually, the uniqueness for nonlocal equations such as (TW W,c ) can be dicult to establish (see e.g. [START_REF] Albert | Positivity properties and uniqueness of solitary wave solutions of the intermediate long-wave equation[END_REF][START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF]) and goes beyond the scope of this work. Concerning the regularity, the solutions given by Theorem 1 are smooth and we refer to Lemma 6.2 for a precise statement.

To establish Theorem 1, we analyze two problems. First, we provide some general properties of the curve E min . Then, we study the compactness of the minimizing sequences associated with E min . The next result summarizes the properties of E min .

Theorem 2. Suppose that W satises (H1) and (H2). Then the following statements hold.

(i) The function E min is even and Lipschitz continuous on R, with

|E min (p) -E min (q)| ≤ √ 2|p -q|, for all p, q ∈ R.
Moreover, it is nondecreasing and subadditive on R + . (ii) There exist constants

q π 2 E min (q) 2 √ 2 3 √ 2q -10 -5 0 
q 1 , A 1 , A 2 , A 3 > 0 such that √ 2q -A 1 q 3/2 ≤ E min (q) ≤ √ 2q -A 2 q 5/3 + A 3 q 2 ,
for all q ∈ [0, q 1 ].

(iii) If (H3) or (H3') is satised, then E min is concave on R + .

(iv) We have q * > 0.027. If E min is concave on R + , then E min is strictly increasing on [0, q * ), and for all v ∈ E(R) satisfying E(v) < E min (q * ), we have v ∈ N E(R).

(v) Assume that E min is concave on R + . Then E min (q) < √ 2q, for all q > 0, E min is strictly subadditive on R + , and the right and left derivatives of E min , denoted by E + min and E - min respectively, satisfy

0 ≤ E + min (q) ≤ E - min (q) < √ 2. (9) 
Furthermore, E + min (q) → E + min (0) = √ 2, as q → 0 + .

To prove the existence of solutions we use a concentration-compactness argument. Applying Theorem 2, we show that the minimum is attained at least for q ∈ (0, q * ), so that the set

S q = {v ∈ N E(R) : E(v) = E min (q) and p(v) = q}
is nonempty, and thus there are nontrivial solutions to (TW W,c ) (see Theorem 6.3). Hence, we can rely on the CazenaveLions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] argument to show that the solutions are stable. Let us remark that the Cauchy problem for (NGP) was studied in [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF]. Precisely, using the distance

d E (v 1 , v 2 ) = v 1 -v 2 L 2 (R)+L ∞ (R) + v 1 -v 2 L 2 (R) + |v 1 | -|v 2 | L 2 (R) ,
the energy space E(R) is a complete metric space and for every Ψ 0 ∈ E(R) there is a unique global solution Ψ ∈ C(R, E(R)) with initial condition Ψ 0 , provided that W ∈ M 3 (R) and that W ≥ 0 or that inf R W > 0 (see Theorem 5.1). However, these conditions are not necessarily fullled by a distribution satisfying (H1)(H2). Nevertheless, using the energy estimates in Section 2, we can generalize a result in [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF] in the following way. Theorem 3. Assume that W ∈ M 3 (R) is an even distribution, with W ≥ 0 a.e. on R, and that W of class C 2 in a neighborhood of the origin with W(0) = 1. Then for every Ψ 0 ∈ E(R), there exists a unique Ψ ∈ C(R, E(R)) global solution to (NGP) with the initial condition Ψ 0 . Moreover, the energy is conserved, as well as the momentum as long as inf x∈R |Ψ(x, t)| > 0.

Remark 1.1. As explained before, the condition W(0) = 1 in Theorem 3 is due to the normalization, and it can be replaced by W(0) > 0.

We can also endow E(R) with the pseudometric distance

d(v 1 , v 2 ) = v 1 -v 2 L 2 (R) + |v 1 | -|v 2 | L 2 (R) ,
or with the distance used in [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF] 

d A (v 1 , v 2 ) = v 1 -v 2 L 2 (R) + |v 1 | -|v 2 | L 2 (R) + v 1 -v 2 L ∞ ([-A,A]) , for A > 0. Notice that d(v 1 , v 2 ) = 0 if and only if |v 1 | = |v 2 | and v 1 -v 2 is
constant. We say that the set S q is orbitally stable in (E(R), d) if for all Ψ 0 ∈ E(R) and for all ε > 0, there exists δ > 0 such that if d(Ψ 0 , S q ) ≤ δ, then the solution Ψ(t) of (NGP) associated with the initial condition Ψ 0 satises

sup t∈R d(Ψ(t), S q ) ≤ ε.
Similarly, the set S q is orbitally stable in (E(R), d A ) if for all Ψ 0 ∈ E(R) and for all ε > 0, there exists δ > 0 such that if d A (Ψ 0 , S q ) ≤ δ, then sup t∈R inf y∈R d A (Ψ(•y, t), S q ) ≤ ε. Here we need to introduce a translation of the ow, since the d A is not invariant under translations. Now we can state our main result concerning the existence and stability of traveling waves.

Theorem 4. Suppose that W satises (H1) and (H2), and that E min is concave on R + . Then the set S q is nonempty, for all q ∈ (0, q * ). Moreover, every u ∈ S q is a solution of (TW W,c ) for some speed c q ∈ (0, √ 2) satisfying

E + min (q) ≤ c q ≤ E - min (q). (10) 
Also, c q → √ 2 as q → 0 + .

In addition, if W ∈ M 3 (R), then S q is orbitally stable in (E(R), d) and in (E(R), d A ), for all q ∈ (0, q * ). Furthermore, for all Ψ 0 ∈ E(R) and for all ε > 0, there exists δ > 0 such that if d(Ψ 0 , S q ) ≤ δ, then the solution Ψ(t) of (NGP) associated with the initial condition Ψ 0 satises

sup t∈R inf y∈R d A (Ψ(• -y, t), S q ) ≤ ε.
In this manner, it is clear that Theorem 1 is an immediate corollary of Theorems 2 and 4, and that the branch of solutions given by Theorem 1 is orbitally stable provided that W ∈ M 3 (R).

In particular, we recover the orbital stability proved by several authors for the solitons given in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] (see e.g. [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF][START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation I[END_REF][START_REF] Chiron | Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one[END_REF] and the references therein).

We point out that we have not discussed what happens with the minimizing curve for q ≥ q * . As mentioned before, for all q > q * , the curve E min (q) is constant for W = δ 0 (see Figure 1) and S q is empty. Moreover, the critical case q = q * is associated with the black soliton and its analysis is more involved (see e.g. [START_REF] Béthuel | Orbital stability of the black soliton for the Gross-Pitaevskii equation[END_REF][START_REF] Gravejat | Asymptotic stability of the black soliton for the Gross-Pitaevskii equation[END_REF]). Numerical simulations lead us to conjecture that similar results hold for a potential satisfying (H1)-(H3), i.e. that E min (q) is constant and that S q is empty on (q * , ∞), and that there is a black soliton when q = q * . In addition, in the performed simulations the value q * is close to π/2 (see Section 7). Furthermore, these simulations also show that (H2) and (H3') are not necessary for the concavity of E min nor the existence of solutions of (TW W,c ). We think that (H2) could be relaxed, but that the condition ( W) (0) > -1 is necessary. As seen from Theorem 2, we have only used (H3') as a sucient condition to ensure the concavity of E min . If for some W satisfying (H1) and (H2), one is capable of showing that E min is concave, then the existence and stability of solutions of (TW W,c ) is a consequence of Theorem 4.

In addition to the smoothness of the obtained solutions (see Lemma 6.2), it is possible to study further properties of these solitons such as their decay at innity and uniqueness (up to invariances). Another related open problem is to show the nonexistence of traveling waves for c > √ 2. We will study these questions in a forthcoming paper.

We give now some examples of potentials satisfying conditions (H1), (H2) and (H3)

(i) For β > 2α > 0, we consider W α,β = β β-2α (δ 0 -αe -β|x|
), so its Fourier transform is

W α,β (ξ) = β β -2α 1 - 2αβ ξ 2 + β 2 ,
so that W α,β (0) = 1, and it is simple to check that (H1) and (H2) are satised. To verify (H3), it is enough to notice that the only singularity on H of the meromorphic function W α,β is the simple pole ν 1 = iβ and that

i Res( W α,β , iβ) = - αβ β -2α < 0.
Since W α,β is bounded on H away from the pole, we conclude that (H3) is fullled. We recall that, by the Young inequality, L 1 (R) is a subset of M 3 (R). Therefore W α,β ∈ M 3 (R) and Theorem 4 applies.

(ii) For α ∈ [0, 1), we take the potential W α = 1 1-α (δ 0 -αV), where

V(x) = - 3 π ln(1 -e -π|x| ), and V(ξ) = 3(ξ coth(ξ) -1) ξ 2 .
It can be seen that V is a smooth even positive function on R, decreasing on R + , with V(0) = 1 and decaying at innity as 3/ξ. Thus the conditions (H1) and (H2) are satised. As a function on the complex plane, V is a meromorphic function whose only singularities on H are given by the simple poles {iπ } ∈N * , and

i Res( W α , iπ ) = i Res(-V, iπ ) = - 3 π .
To check (H3), we dene for k ≥ 2, the functions

γ 1,k (t) = (k+1/2)π+it, t ∈ [0, (k+1/2)π], γ 2,k (t) = t + i(k + 1/2)π, t ∈ [(k + 1/2)π, -(k + 1/2)π], and γ 3,k (t) = -(k + 1/2)π + it, t ∈ [(k + 1/2)π, 0]
, so that the corresponding curve Γ k is given by the three sides of a square and Γ k does not pass through any poles. Using that for x, y ∈ R (see e.g. [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF])

| coth(x + iy)| = cosh(2x) + cos(2y) cosh(2x) -cos(2y) 1/2 , we can obtain a constant C > 0, independent of k, such that | V(γ j,k (t))| ≤ C, for all t ∈ [a j,k , b j,k ], for j ∈ {1, 2, 3}
, where [a j,k , b j,k ] is the domain of denition of γ j,k . As a conclusion, (H3) is fullled. Since V ∈ L 1 (R), we conclude that W α ∈ M 3 (R) and therefore we can apply Theorem 4 to this potential.

(iii) We can also construct perturbations of previous examples. For instance, using the function V dened above, we set

W σ,m (ξ) = 2m 2 π 2 m 2 π 2 + 2σ 1 - V(ξ) 2 + σ ξ 2 + m 2 π 2 ,
for σ ∈ R and m ∈ N * , so that the poles on H are still iπN * . It follows that for σ > -π 2 m 2 /2, the potential satises (H1), and that (H3) holds if σ ≤ 3. We can also check that for σ ∈ (-π 2 m 2 /2, 3], W σ,m satises (H2), and therefore Theorem 4 applies.

In Section 7 we perform some numerical simulations to illustrate the shape of the solitons and the minimization curves associated with these and other examples. The rest of the paper is organized as follows: we give some energy estimates in Section 2. In Section 3, we establish the properties of the minimizing curve and the proof of Theorem 2, and in Section 4 we show the compactness of the sequences associated with the minimization problem. The orbital stability of the solutions and Theorem 3 are proved in Section 5. We nally complete the proof of Theorem 4 in Section 6.

Some a priori estimates

We start by establishing an L ∞ -estimate for the functions in the energy space in terms of their energy.

Lemma 2.1. Assume that W ∈ M 2 (R) satises W(ξ) ≥ (1 -κξ 2 ) + , a.e. on R, (2.1) 
for some κ ≥ 0. Let v ∈ E(R) and set η := 1 -|v| 2 . Then

η 2 L ∞ ≤ 8κE(v)(1 + 8κE(v) + 2 2κE(v)) (2.2) and η 2 L 2 ≤ 8κE(v)(1 + 8κE(v) + 2 2κE(v)), (2.3) 
with κ = κ + 1.

Proof. Let W ∈ M 2 (R) and v ∈ E(R), and set ρ = |v|, η = 1ρ 2 and x ∈ R. By Plancherel's identity

η 2 (x) = 2 x -∞ ηη ≤ R (η 2 + η 2 ) = 1 2π R (1 + ξ 2 )|η| 2 dξ. (2.4)
By (2.1), we have 1 ≤ W(ξ) + κξ 2 a.e. on R, so that the term on the right-hand side of (2.4) can be bounded by

1 2π R (1 + ξ 2 )|η| 2 ≤ 1 2π R ( W(ξ) + κξ 2 )|η| 2 = 4E p (v) + κ R η 2 , (2.5 
)

with κ = κ + 1. Now we notice that η = -2ρρ , so that η 2 ≤ 4 v 2 L ∞ ρ 2 . Also, if |v| = 0 in some open set, then we can write v = ρe iθ and |v | 2 = ρ 2 + ρ 2 θ 2 .
On the other hand, the set Ω := {v = 0} coincides with the set {η = 1}, and v = 0 and η = 0 a.e. on Ω. Therefore, we conclude that

η 2 ≤ 4 v 2 L ∞ |v | 2 a.e. on R. (2.6)
Combining (2.4), (2.5) and (2.6), we have

η 2 (x) ≤ 4E p (v) + 8κ v 2 L ∞ E k (v) ≤ max(4, 8κ v 2 L ∞ )E(v). (2.7) If v 2 L ∞ ≤ 1, inequality (2.
2) follows, since max(4, 8κ) = 8κ. Thus we suppose now that

v 2 L ∞ > 1. (2.8)
Bearing in mind that η(±∞) = 0, we deduce that there is some x 0 ∈ R such that

a := min R η = η(x 0 ) = 1 -v 2 L ∞ .
Therefore, using (2.7) for x 0 and (2.8), we get

a 2 ≤ 8κ(1 -a)E(v).
Solving the associated quadratic equation and using that

√ a + b ≤ √ a + √ b, we conclude that a ≥ 1 2 (-8κE(v) -64κ 2 E(v) 2 + 32κE(v)) ≥ -8κE(v) -2 2κE(v), which implies that v 2 L ∞ ≤ 1 + 8κE(v) + 2 2κE(v).
(2.9)

By putting together (2.7), (2.8) and (2.9), we obtain (2.2).

To prove (2.3), we use the Plancherel identity and argue as before to get

R η 2 ≤ 1 2π R ( W(ξ) + κξ 2 )|η| 2 ≤ 4E p (v) + κ R η 2 ≤ 4E p (v) + 8κ v 2 L ∞ E k (v).
Therefore, using (2.9), inequality (2.3) is established.

Remark 2.2. Let us suppose that W ∈ M 2 (R) is even and that also W is of class C 2 in some interval [-r, r], with r > 0. Then ( W) (0) = 0, and by the Taylor theorem we deduce that for any ξ ∈ (-r, r), there exists ξ ∈ (-r, r) such that

W(ξ) = 1 + ( W) ( ξ) ξ 2 2 ≥ 1 -µξ 2 , where µ = max [-r,r] |( W) |/2. If 1/µ ≤ r 2 , we set κ = µ. If 1/µ > r 2 , we take κ = 1/r 2 .
Assuming also that W ≥ 0 a.e. on R, we conclude that in both cases condition (2.1) is fullled.

From now on until the end of this paper, we assume that (H1) and (H2) are satised, so in particular Lemma 2.1 holds true with κ = 1/2. In the sequel, we also use the identity

R (W * f )g = R (W * g)f, for all f, g ∈ L 2 (R), (2.10) 
that is a consequence of parity of W stated in (H1).

A key point to obtain the compactness of the sequences in Section 4 is that the momentum can be controlled by the energy. This kind of inequality is crucial in the arguments when proving the existence of solitons by variational techniques in the case W = δ 0 (see [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF][START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF]). Moreover, for an open set Ω ⊂ R and u = ρe iθ ∈ N E(R), we need to be able to control the localized momentum p Ω (u

) := 1 2 Ω ηθ ,
by some localized version of the energy. By the Cauchy inequality, setting as usual η = 1 -|u| 2 , we have

√ 2|p Ω (u)| ≤ 1 4 Ω η 2 + 1 2 Ω θ 2 ≤ 1 4 Ω η 2 + 1 2inf Ω ρ 2 Ω ρ 2 θ 2 , (2.11)
but it is not clear how to dene a localized version of energy, due the to the nonlocal interactions.

We propose to introduce the localized energy

E Ω (u) := 1 2 Ω |u | 2 + 1 4 Ω (W * η Ω )η Ω , with η Ω := η1 Ω .
Notice that if Ω = R, then E Ω (u) = E(u) and p Ω (u) = p(u). Since η Ω can be discontinuous (and thus not weakly dierentiable) when Ω is bounded, we also need to introduce a smooth cut-o function as follows: for Ω 0 an open set compactly contained in Ω, i.e. Ω 0 ⊂⊂ Ω, we set a function

χ Ω,Ω 0 ∈ C ∞ (R) taking values in [0, 1] and satisfying χ Ω,Ω 0 (x) = 1 if x ∈ Ω 0 , 0 if x ∈ R \ Ω.
(2.12)

In the case

Ω = Ω 0 = R, we simply set χ Ω,Ω 0 ≡ 1. Lemma 2.3. Let Ω, Ω 0 ⊂ R be two smooth open sets with Ω 0 ⊂⊂ Ω and let χ Ω,Ω 0 ∈ C ∞ (R) as above. Let u ∈ E(R)
and assume that there is some ε

∈ (0, 1) such that 1 -ε ≤ |u| 2 ≤ 1 + ε on Ω. Then √ 2|p Ω (u)| ≤ E Ω (u) 1 -ε + ∆ Ω (u), (2.13) 
where the remainder term ∆ Ω (u) satises the estimate

|∆ Ω (u)| ≤ C( η L 2 (Ω\Ω 0 ) + ηχ Ω,Ω 0 L 2 (Ω\Ω 0 ) + ηχ Ω,Ω 0 2 L 2 (Ω\Ω 0 ) ). (2.14) 
Here C = C(E(u), ε) is a constant depending on E(u) and ε, but not on Ω nor Ω 0 . In particular, in the case Ω = Ω 0 = R, we have

|p(u)| ≤ E(u) √ 2(1 -ε) . (2.15) 
Proof. As usual, we write u = ρe iθ on Ω. As in (2.11), using the Cauchy inequality and that

1 -ε ≤ ρ 2 ≤ 1 + ε 2 on Ω, we have √ 2|p Ω (u)| ≤ σ 4 Ω η 2 + 1 2σ(1 -ε) Ω ρ 2 θ 2 , (2.16) 
with σ > 0 to be xed later. Now, we write

σ 4 Ω η 2 + 1 2σ(1 -ε) Ω ρ 2 θ 2 = σ 4 Ω η 2 Ω -(W * η Ω )η Ω + R Ω (u), where R Ω (u) := σ 4 Ω (W * η Ω )η Ω + 1 2σ(1 -ε) Ω ρ 2 θ 2 .
Let ηΩ = ηχ Ω,Ω 0 and

∆ 1,Ω (u) := σ 4 R η 2 Ω -η2 Ω -(W * η Ω )η Ω + (W * ηΩ )η Ω .
(2.17)

Using the Plancherel theorem and (H2), we have

σ 4 Ω η 2 Ω -(W * η Ω )η Ω = σ 4 R η2 Ω -(W * ηΩ )η Ω + ∆ 1,Ω (u) = σ 8π R | ηΩ | 2 1 -W(ξ) + ∆ 1,Ω (u) ≤ σ 16π R ξ 2 | ηΩ | 2 + ∆ 1,Ω (u) = σ 8 R (η Ω ) 2 + ∆ 1,Ω (u).
Noticing that

η 2 Ω = (η χ Ω,Ω 0 ) 2 + 2ηη χ Ω,Ω 0 χ Ω,Ω 0 + (ηχ Ω,Ω 0 ) 2
, and that 0 ≤ χ Ω,Ω 0 ≤ 1, by putting together the estimates above, we conclude that

√ 2|p Ω (u)| ≤ σ 8 Ω η 2 + R Ω (u) + ∆ Ω (u),
where the remainder term is given by

∆ Ω (u) = ∆ 1,Ω (u) + ∆ 2,Ω (u), ∆ 2,Ω (u) := σ 8 Ω 2ηη χ Ω,Ω 0 χ Ω,Ω 0 + (ηχ Ω,Ω 0 ) 2 . Therefore, since η 2 ≤ 4(1 + ε)ρ 2 , taking σ = 1/ √ 1 -ε 2 , we obtain √ 2|p Ω (u)| ≤ √ 1 -ε 2 1 -ε Ω ρ 2 2 + ρ 2 θ 2 2 + 1 4 √ 1 -ε 2 Ω (W * η Ω )η Ω + ∆ Ω (u),
which gives us (2.13). It remains to show the estimate in (2.14). For the rst term in ∆ 1,Ω , we see that

Ω η 2 Ω -η2 Ω = Ω\Ω 0 η 2 1 2 Ω -χ 2 Ω,Ω 0 ≤ η 2 L 2 (Ω\Ω 0 ) . (2.18)
For the other term in ∆ 1,Ω , using (2.10), we have

R (W * η Ω )η Ω -(W * ηΩ )η Ω = R (W * (η Ω + ηΩ ))(η Ω -ηΩ ) ≤ 4 W M 2 η L 2 (R) η L 2 (Ω\Ω 0 ) . (2.19)
Concerning in ∆ 2,Ω , we have From now on, we set for q > 0,

|∆ 2,Ω | ≤ σ 8 4 u L ∞ (R) u L 2 (R) ηχ Ω,Ω 0 L 2 (Ω\Ω 0 ) + ηχ Ω,Ω 0 2 L 2 (Ω\Ω 0 ) . ( 2 
Σ q := 1 - E min (q) √ 2q . (2.21)
In this manner, the condition E min (q) < √ 2q is equivalent to Σ q > 0. We also dene for q > 0 and δ > 0, the set

X q,δ := {v ∈ N E(R) : |p(v) -q| ≤ δ and |E(v) -E min (q)| ≤ δ}.
(2.22) Lemma 2.4. Let q > 0, L > 1 and suppose that Σ q > 0. Then there is δ 0 > 0 such that for all δ ∈ [0, δ 0 ] and for all v ∈ X q,δ , there exists x ∈ R such that

1 -|v(x)| 2 ≥ Σ q L .
Proof. We argue by contradiction and suppose that the statement is false. Hence, for all δ 0 > 0, there exists δ ∈ [0, δ 0 ] and v ∈ X q,δ such that

1 -|v| 2 L ∞ (R) < Σ q /L.
Then, taking δ 0 = 1/n, there is δ n ∈ [0, 1 n ] and v n ∈ X q,δn such that

1 -|v n | 2 L ∞ (R) < Σ q /L.
Since Σ q ∈ (0, 1], considering ε = Σ q /L, we have ε ∈ (0, 1). Therefore we can apply Lemma 2.3 to conclude that

√ 2|p(v n )| ≤ 1 (1 -Σ q /L) E(v n ),
and letting n → ∞, we get

√ 2q 1 - Σ q L ≤ E min (q),
which is equivalent to Σ q ≤ Σ q /L, contradicting the fact that L > 1.

Lemma 2.5. Let E > 0 and 0 < m 0 < 1 be two constants. There is l 0 ∈ N, depending on E and m 0 , such that for any function v ∈ E(R) satisfying E(v) ≤ E, one of the following holds:

(i) For all x ∈ R, |1 -|v(x)| 2 | < m 0 .
(ii) There exist l points x 1 , x 2 , . . . , x l , with l ≤ l 0 , such that

|1 -|v(x j )| 2 | ≥ m 0 , ∀1 ≤ j ≤ l, and |1 -|v(x)| 2 | ≤ m 0 , ∀x ∈ R \ l j=1 [x j -1, x j + 1].
Proof. The proof is a rather standard consequence of the energy estimates. For the sake of completeness, we give a proof similar to the one given in [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF].

Let us suppose that (i) does not hold. Then the set

C = {z ∈ R : |η(z)| ≥ m 0 }, is nonempty, where η = 1 -|v| 2 as usual. Setting I j = [j -1/2, j + 1/2],
for j ∈ Z, the assertion in (ii) will follow if we show that l := Card{j ∈ Z, I j ∩ C = ∅} can be bounded by some l 0 , depending only on E and m 0 .

Using that ||v| | = |v | (see Lemma 7.6 in [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF]), the CauchySchwarz inequality and (2.2), we deduce that there exists a constant C, depending on E, such that for all x, y ∈ R,

||v(x)| 2 -|v(y)| 2 | = 2 y x |v| |v| ≤ 2 v L ∞ (R) v L 2 (R) |x -y| 1 2 ≤ C|x -y| 1/2 .
Thus, setting r = m 2 0 /(4C 2 ), we deduce that for any z ∈ C and for any y ∈ [zr, z + r],

|η(y)| ≥ m 0 -||v(y)| 2 -|v(z)| 2 | ≥ m 0 2 .
Taking r 0 = min(r, 1/2) and integrating this inequality, we get, for any z ∈ C,

z+r 0 z-r 0 η 2 (y)dy ≥ m 2 0 r 0 4 . Noticing that [z -r 0 , z + r 0 ] ⊂ Ĩj := [j -1, j + 1], if z ∈ I j ∩ C, we conclude that lm 2 0 r 0 4 ≤ j∈Z, Ĩj ∩C =∅ Ĩj η 2 ≤ 2 η 2 L 2 (R) ,
where l := Card{j ∈ Z : Ĩj ∩ C = ∅}. The conclusion follows from (2.3), taking l 0 = 2 l, since l ≤ 2 l.

Properties of the minimizing curve

For the study of the minimizing curve, it will be useful to use nite energy smooth functions that are constant far away from the origin. For this purpose we introduce the set

E ∞ 0 (R) = {v ∈ N E(R) ∩ C ∞ (R) : ∃R > 0 s.t. v is constant on B(0, R) c }.
Notice that in the functions in the space E ∞ 0 (R) can have dierent values near +∞ and near -∞. Bearing in mind that the solitons u c in (2) satisfy u c (+∞) = u c (-∞), we will see that these kinds of functions are well-adapted to approximate the solutions of (TW W,c ).

The next result shows that E min is well dened and that its graph lies under the line y = √ 2x on R + . Lemma 3.1. For all q ∈ R, there exists a sequence v n ∈ E ∞ 0 (R) satisfying

p(v n ) = q and E(v n ) → √ 2|q|, as n → ∞. (3.1)
In particular the function E min : R → R is well dened, and for all q ≥ 0

E min (q) ≤ √ 2q. (3.2) 
Proof. The case q = 0 is trivial since it is enough to take v ≡ 1. Let us assume that q > 0 and consider

χ ∈ C ∞ 0 (R) such that R χ 2 = q/ √ 2. Let us dene a = √ 2 2 R χ (y) 3 dy, α n = 1 n and β n = 1 n 2 - a qn 3 .
Then it is enough to consider

v n = ρ n e iθn , where ρ n (x) = 1 -α n χ (β n x) and θ n (x) = √ 2 α n β n χ(β n x).
We can assume that v n does not vanish since

|v n | = |ρ n | ≥ 1-|α n | χ L ∞ (R)
. Thus the momentum of v n is well dened and we have

p(v n ) = 1 2 R (1 -ρ 2 n )θ n = √ 2 2β n R (2α n χ (y) -α 2 n χ (y) 2 )α n χ (y)dy = α 2 n β n q - α 3 n β n a = q.
It remains to show that E(v n ) → √ 2q. For the kinetic part, we have

E k (v n ) = R (1 -α n χ (β n x))α n χ (β n x) 2 dx + 1 2 R (α n β n χ (β n x)) 2 dx = α 2 n β n R (1 -α n χ (y))χ (y) 2 dy + α 2 n β n 2 R χ (y) 2 dy → R χ (y) 2 dy = q √ 2 , since α n , β n → 0 and α 2 n /β n → 1.
For the potential energy, using Plancherel's theorem, the dominated convergence theorem and the continuity of W at 0, we get

E p (v n ) = 1 8π R W(ξ)|F(1 -ρ 2 n )| 2 (ξ)dξ = α 2 n 8β n π R W(β n ξ)|F(2χ -α n χ 2 )| 2 (ξ) dξ → R χ 2 (y)dy = q √ 2 .
Therefore we conclude that (3.1) holds true for q ≥ 0. In the situation q < 0, it is enough to proceed as above taking

R χ 2 = |q| √ 2 = - q √ 2 and v n = ρ n e -iθn .
This concludes the proof of (3.1). By the denition of E min , we also have

E min (q) ≤ E(v n ).
Letting n → ∞, we obtain (3.2).

Lemma 3.2. The curve E min is even on R.

Proof. Let q ∈ R and u n = ρ n e iφn ∈ N E(R) be such that E(u n ) → E min (q) and p(u n ) = q.

Setting v n = ρ n e -iφn , it is immediate to verify that

E(v n ) = E(u n ) and that p(v n ) = -p(u n ) = -q. Therefore E(v n ) ≥ E min (-q),
and letting n → ∞ we conclude that E min (q) ≥ E min (-q). Replacing q by -q, we deduce that E min (-q) = E min (q), i.e. that E min is even.

Corollary 3.3. The constant dened in [START_REF] Berlo | Quantum vortices, travelling coherent structures and superuid turbulence[END_REF] satises q * > 0.027.

Proof. Let v ∈ E(R), with E(v) ≤ E min (q). Then, by combining (2.2) and (3.2), with κ = 3/2, we have

1 -|v| 2 2 L ∞ ≤ 12 √ 2q(1 + 12 √ 2q + 2(3 √ 2q) 1 2 
).

Since the right-hand is an increasing function of q, and since the solution of the equation

12 √ 2z(1 + 12 √ 2z + 2(3 √ 2z) 1 2 ) = 1 is z = √ 2 288 (12 √ 3 + 4 √ 31) 2/3 -4 2 (12 √ 3 + 4 √ 31) 2/3 ≈ 0.0274,
the conclusion follows from the denition of q * .

In view of Lemma 3.2, it is enough to study E min on R + . Concerning the density of the space E ∞ 0 (R) in N E(R), we have the following result.

Lemma 3.4. Let v = ρe iθ ∈ N E(R). Then there exists a sequence functions

v n = ρ n e iθ in E ∞ 0 (R), with ρ n -1, θ n ∈ C ∞ c (R), such that ρ n -ρ H 1 (R) + θ n -θ L 2 (R) → 0, as n → ∞. (3.3)
In particular

E(v n ) → E(v) and p(v n ) → p(v), as n → ∞. (3.4) Proof. Since v = ρe iθ ∈ N E(R), we deduce that v ∈ L ∞ (R) and that |v(x)| → 1, as |x| → ∞. Let g(x) := ρ(x) -1 = |v(x)| -1 = |v(x)| 2 -1 |v(x)| + 1 .
Then g ∈ L 2 (R) and since g = v , v /|v|, we conclude that g ∈ H 1 (R). Therefore, there exists

g n ∈ C ∞ c (R) such that g n → g in H 1 (R). Setting ρ n = g n + 1, we deduce that ρ n -ρ H 1 → 0, as n → ∞. Concerning θ, using the density of C ∞ c (R) in L 2 (R), we get the existence of a sequence φ n ∈ C ∞ c (R) converging to θ in L 2 (R). Hence, taking θ n (x) = x -∞ φ n , (3.5) 
we conclude that θ n -θ → 0 in L 2 (R) and that v n := ρ n e iθn belongs to E ∞ 0 (R). The convergences in (3.4) are a direct consequence of the convergences in (3.3) and the Sobolev injection

H 1 (R) → L ∞ (R). Remark 3.5. If v ∈ E ∞ 0 (R), then we can write v = ρe iθ , with ρ, θ ∈ C ∞ (R) and such that ρ -1, θ ∈ C ∞ c (R).
Hence the function θ is constant outside supp(θ ) and without loss of generality we can assume that there is R > 0 such that θ(x) ≡ 0 for all x ≤ -R, or that θ(x) ≡ 0 for all x ≥ R (but we cannot assume that θ(x) ≡ 0 for all |x| ≥ R). Therefore, w.l.o.g. we can suppose that v(x) ≡ 1 for all x ≤ -R or that v(x) ≡ 1 for all x ≥ R, for some R > 0 large enough.

To handle the nonlocal interaction term in the energy in the construction of comparison sequences, we use introduce the functional

B(f ) := R (W * f )f, for f ∈ L 2 (R; R). It is clear that if u ∈ E(R), then B(1-|u| 2 ) = 4E p (u).
The following elementary lemma will be useful. Lemma 3.6. For all f, g ∈ L 2 (R) we have

B(f + g) = B(f ) + B(g) + 2 R (W * f )g. (3.6)
Assume further that g ∈ C ∞ c (R) and that there is a sequence of numbers (y n ) such that y n → ∞, as n → ∞. Then, setting set g n (x) = g(xy n ), we have

B(f + g n ) -B(f ) -B(g n ) = 2 R (W * f )g n → 0, as n → ∞. (3.7) 
Proof. The identity (3.6) is a direct consequence of (2.10). The convergence in (3.7) follows from the fact that g n 0 in L 2 (R).

We nally conclude that we can modify a function with energy close to E min (q) such that it is constant far away, but the momentum remains unchanged. Corollary 3.7. Let u = ρe iθ ∈ N E(R). There exists a sequence

u n ∈ E ∞ 0 (R) such that p(u n ) = p(u) and E(u n ) → E(u), as n → ∞. (3.8) 
Proof. Let v n = ρ n e iθ ∈ E ∞ 0 (R) be the sequence given by Lemma 3.4 such that

E(v n ) → E(u) and p(v n ) → p(u), as n → ∞. (3.9) 
If p(u) = 0, we set α n = p(u)/p(v n ). Therefore α n → 1 and it is straightforward to verify that the sequence u n = ρ n e iαnθn satises (3.8).

The case p(u) = 0 is more involved. In this instance, we may assume that δ n := p(v n ) = 0 for n suciently large. Otherwise, up to a subsequence, the conclusion holds with u n = v n . By Lemma 3.1, we get the existence of a sequence

w n ∈ E ∞ 0 (R) such that p(w n ) = -δ n and E(w n ) → 0, as n → ∞. (3.10) 
Let R n , r n > 0 be such that the functions

f n := 1 -|v n | 2 and g n := 1 -|w n | 2
are supported in the balls B(0, R n ) and B(0, r n ), respectively. Taking into account Remark 3.5, without loss of generality, we can assume that the following function is continuous and belongs to E ∞ 0 (R)

u n =      v n , on (-∞, R n ), 1, on [R n , -r n + y n ], w n (• -y n ), on (-r n + y n , ∞), (3.11)
where y n is a sequence of points such that R n < -r n + y n . For simplicity, we set wn = w n (•y n ) and gn := 1 -| wn | 2 . It follows that

p(u n ) = p(v n ) + p( wn ) = 0 and E k (u n ) = E k (v n ) + E k (w n ).
(3.12)

In particular, combining with (3.9) and (3.10), we infer that

E k (u n ) → E k (u). In addition, 1 -|u n | 2 = f n + gn , so that (3.6) leads to E p (u n ) = 1 4 B(f n ) + 1 4 B(g n ) + 1 2 R (W * f n )g n = E p (v n ) + E p (w n ) + 1 2 R (W * f n )g n . Therefore |E p (u n ) -E p (v n )| ≤ E p (w n ) + W M 2 f n L 2 g n L 2 . (3.13)
Using the estimate (2.3), (3.9) and (3.10), we conclude that f n L 2 is bounded and that g n L 2 → 0, so that E p (u n ) → E p (u), which completes the proof of the corollary.

Corollary 3.8. For all q ≥ 0 and ε > 0, there is v ∈ E ∞ 0 (R) such that p(v) = q and E(v) < E min (q) + ε.

In particular

E min (q) = inf{E(v) : v ∈ E ∞ 0 (R), p(v) = q}.
Proof. Let q ≥ 0 and ε > 0. By denition of E min , there is a sequence v m ∈ N E(R) such that p(v m ) = q and E(v m ) → E min (q), as m → ∞. Hence there is m 0 such that (3.14), the conclusion follows.

E(v m 0 ) < E min (q) + ε/2. (3.14) By Corollary 3.7, we deduce the existence of v ∈ E ∞ 0 (R) such that p(v) = p(v m 0 ) = q and |E(v m 0 ) -E(v)| ≤ ε/2. Combining with
Proposition 3.9. E min is continuous and

|E min (p) -E min (q)| ≤ √ 2|p -q|, for all p, q ∈ R. (3.15) 
Proof. We assume without loss of generality that q ≥ p ≥ 0. It is enough to show that

E min (q) ≤ E min (p) + √ 2(q -p). (3.16) 
Let δ > 0. By Corollary 3.8 and Remark 3.5, there is

v δ ∈ E ∞ 0 (R) such that for some R δ > 0, the function 1 -|v δ | 2 is supported on B(0, R δ ), v δ = 1 on [R δ , ∞), p(v δ ) = p and E(v δ ) ≤ E min (p) + δ/3.
(3.17) Now, setting s = qp and invoking Lemma 3.1, we deduce that there is

w δ ∈ E ∞ 0 (R) such that for some r δ > 0, 1 -|w δ | 2 is supported on B(0, r δ ), w δ = 1 on (-∞, r δ ], p(w δ ) = s and E(w δ ) ≤ √ 2s + δ/3. (3.18) 
Let

f δ = 1 -|v δ | 2 and g δ = 1 -|w δ | 2 .
Then f δ and g δ have compact supports and applying Lemma 3.6 we can choose y δ ∈ R, large enough, such that their supports do not intersect. Finally, we infer that the function

u δ =      v δ , on (-∞, R δ ), 1, on [R δ , -r δ + y δ ], w δ (• -y δ ), on (-r δ + y δ , ∞), (3.19) satises p(u δ ) = p(v δ ) + p(w δ (• -y δ )) = q and E k (u δ ) = E k (v δ ) + E k (w δ ). (3.20) Moreover, since 1 -|u δ | 2 = f δ + g δ (• -y δ ),
applying Lemma 3.6 and increasing y δ if necessary, we conclude that

E p (u δ ) ≤ E p (v δ ) + E p (w δ ) + δ/3. (3.21)
Therefore, combining (3.17), (3.18), (3.20) and (3.21), we get

E min (q) ≤ E(u δ ) ≤ E min (p) + √ 2(q -p) + δ.
Letting δ → 0, we obtain (3.16).

As noticed by Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF], the properties established above are usually sucient to check that the minimizing curve is subadditive, as stated in the following result.

Lemma 3.10. E min is subadditive on R + , i.e. E min (p + q) ≤ E min (p) + E min (q), for all p, q ≥ 0.

Proof. Let p, q ≥ 0 and δ > 0. By using Corollary 3.8 and arguing as in the proof of Proposition 3.9, we get the existence of v, w ∈ E ∞ 0 (R) such that p(v) = p, p(w) = q, E(v) ≤ E min (p) + δ/3 and E(w) ≤ E min (q) + δ/3, with v and w constant on B(0, R) c and B(0, r) c , respectively, for some R, r > 0. As in previous proofs, we dene

u =      v, on (-∞, R), 1,
on [R, -r + y], w(•y), on (-r + y, ∞), with y large enough such that

E p (u) ≤ E p (v) + E p (w) + δ/3. Since E k (u) = E k (v) + E k (w) and p(u) = p(v) + p(w) = p + q, we conclude that E min (p + q) ≤ E(u) ≤ E(v) + E(w) + δ 3 ≤ E min (p) + E min (q) + δ.
Letting δ → 0, inequality (3.22) is established.

In some minimization problems, there is some kind of homogeneity in the functionals that allows to obtain the strict subadditive property. In our case, the homogeneity give us only the monotonicity of the curve. Lemma 3.11. E min is nondecreasing on R + .

Proof. Let 0 < p < q and λ = p/q ∈ (0, 1). As in previous proofs, for δ > 0 we take v = ρe iθ in N E(R) such that E(v) < E min (q) + δ and p(v) = q. Then we verify that the function v λ = ρe iλθ satises p(v λ ) = λq and E(v λ ) ≤ E(v). Therefore E min (λq) ≤ E(v λ ) ≤ E(v) < E min (q) + δ, so that the conclusion follows letting δ → 0.

Hypothesis (H3') provides a sucient condition to ensure the concavity of the function E min . As mentioned in the introduction, the proof relies some identities developed by Lopes and Mari³ in [START_REF] Lopes | Symmetry of minimizers for some nonlocal variational problems[END_REF]. Proposition 3.12. Assume that (H3') holds. Then for all p, q ≥ 0,

E min (p) + E min (q) 2 ≤ E min p + q 2 . (3.23)
In particular E min is concave on R + .

Proof. Let p, q > 0 and δ > 0. By Corollary 3.8, there is

u = ρe iθ ∈ E ∞ 0 (R) such that p(u) = p + q 2 and E(u) ≤ E min p + q 2 + δ 2 . (3.24)
By the dominated convergence theorem, it follows that the map G : R → R given by

G(a) := 1 2 ∞ a (1 -ρ 2 )θ
is continuous, with lim a→∞ G(a) = 0 and lim a→-∞ G(a) = p(u) = (p+q)/2. Hence, by the mean value theorem, there is a 0 such that G(a 0 ) = p/2. Thus the translation ũ(x) := ρ(x)e i θ(x) = ρ(xa 0 )e iθ(x-a 0 ) satises

1 2 ∞ 0 (1 -ρ2 ) θ = p 2 and 1 2 0 -∞ (1 -ρ2 ) θ = q 2 . (3.25)
For notational simplicity, we continue to write u, ρ and θ for ũ, ρ and θ. Now we introduce the reexion operators

(T + ρ)(x) = ρ(x), if x ≥ 0, ρ(-x), if x < 0, (T -ρ)(x) = ρ(-x), if x ≥ 0, ρ(x), if x < 0, and 
(S + θ)(x) = θ(x) -θ(0), if x ≥ 0, θ(0) -θ(-x), if x < 0, (S -θ)(x) = θ(0) -θ(-x), if x ≥ 0, θ(x) -θ(0), if x < 0.
Since ρ and θ are continuous and belong to H 1 loc (R), we can check that the functions (T ± ρ) and (S ± ρ) are continuous on R and also belong to H 1 loc (R). Then it is simple to verify that the functions u ± = (T ± ρ)e iS ± θ belong to N E(R). Bearing in mind (3.25), we obtain p(u + ) = p and p(u -) = q, which implies that E min (p) ≤ E(u + ) and E min (q) ≤ E(u -).

(3.26)

In addition

E(u + ) + E(u -) = 2E k (u) + E p (u + ) + E p (u -). (3.27) 
We claim that

E p (u + ) + E p (u -) ≤ 2E p (u), (3.28) 
which combined with (3.27), allows us to conclude that E(u + ) + E(u -) ≤ 2E(u). By putting together this inequality, (3.24) and (3.26), we get

E min (p) + E min (q) ≤ 2E(u) ≤ 2E min p + q 2 + δ,
so that (3.23) is proved. Since E min is a continuous function by Proposition 3.9, we conclude that E is concave on R + .

It remains to prove (3.28). Let us set

η = 1 -|u| 2 , η 1 = 1 -|u + | 2 , η 2 = 1 -|u -| 2 , g(x) = 1 2 (η(x) + η(-x)) and f (x) = 1 2 (η(x) -η(-x)).
Hence g is even, f is odd,

η = f + g, η 1 = g + f and η 2 = g -f ,
where f (x) = f (x) for x ∈ R + and f (x) = -f (x) for x ∈ R -. By Plancherel's identity, we then can write

8π(2E p (u) -E p (u + ) -E p (u -)) = R W(ξ)(2|η| 2 -|η 1 | 2 -|η 2 | 2 ) = R W(ξ)(2|ĝ + f | 2 -|ĝ + f | 2 -|ĝ -f | 2 ) = 2 R W(ξ)(| f | 2 -| f | 2 + 4 R W(ξ) ĝ, f = 4π(B(f ) -B( f )),
where we have used the parity of W to check that R W(ξ) ĝ, f = 0. To conclude, we only need to show that B(f ) -B( f ) ≥ 0. Indeed, since f is odd and f is even, we have f (ξ) = -2i fs (ξ) and f (ξ) = 2 fc (ξ). Therefore, by Plancherel's theorem, (H3'), and using that

W(ξ)(| fs (ξ)| 2 -| fc (ξ)| 2 )
is an even function,

(2π)(B(f ) -B( f )) = 4 R W(ξ)(| fs (ξ)| 2 -| fc (ξ)| 2 )dξ = 8 ∞ 0 W(ξ)(| fs (ξ)| 2 -| fc (ξ)| 2 )dξ ≥ 0,
which completes the proof.

The following lemma shows that assumption (H3) is stronger than (H3'), and is a reminiscent of Lemmas 2.1 and 2.6 in [START_REF] Lopes | Symmetry of minimizers for some nonlocal variational problems[END_REF]. Lemma 3.13. Assume that (H3) holds. Then (H3') is satised.

Proof. We notice that by Fubini's theorem, we have

| fs (ξ)| 2 = ∞ 0 ∞ 0 sin(xξ) sin(yξ)f (x)f (y)dxdy, | fc (ξ)| 2 = ∞ 0 ∞ 0 cos(xξ) cos(yξ)f (x)f (y)dxdy.
Thus, introducing the complex-valued function

h(ξ) = ∞ 0 ∞ 0 e i(x+y)ξ f (x)f (y)dxdy = ∞ 0 e ixξ f (x)dx 2 , we conclude that R W(ξ)(| fs (ξ)| 2 -| fc (ξ)| 2 )dξ = - R W(ξ)h(ξ)dξ. (3.29)
Then, using that h(ξ) = h(-ξ) and that W is even, we conclude that

R W(ξ)(| fs (ξ)| 2 -| fc (ξ)| 2 )dξ = - R W(ξ) Re(h(ξ))dξ = - R W(ξ)h(ξ)dξ. (3.30)
We will compute the integral in the right-hand side of (3.30) by using Cauchy's residue theorem. First we notice that h is real-valued and nonnegative on the imaginary line since

h(it) = ∞ 0 e -tx f (x)dx 2 ≥ 0, for all t ∈ R. Also, since f ∈ C ∞ c (R), h is a holomorphic function on C.
To establish the decay of h on the upper half-plane, we use that h(z) = H(z) 2 , where

H(z) = ∞ 0 e ixz f (x)dx.
Using the fact that e ixz = 1 iz d dx e ixz and integrating by parts, we get for z = 0,

H(z) = - f (0) iz - 1 iz ∞ 0 e ixz f (x)dx.
Since f is odd, f (0) = 0, so that integrating by parts once more, we have

H(z) = - f (0) z 2 - 1 z 2 ∞ 0 e ixz f (x)dx.
Therefore,

|h(z)| ≤ C |z| 4 , for all z = 0, Im(z) ≥ 0, (3.31) 
where C = (|f (0)| + f L 1 ) 2 . Using the curves γ k , Cauchy's residue theorem yields

k -k W(ξ)h(ξ)dξ + b k a k W(γ k (t))h(γ k (t))γ k (t)dt = 2πi j∈J k h(iν j )Res( W, iν j ) ≤ 0, (3.32) 
where J k refers to the poles enclosed by Γ k . Taking into account (3.31), we see that

b k a k W(γ k (t))h(γ k (t))γ k (t)dt ≤ C length(Γ k ) sup t∈[a k ,b k ] | W(γ k (t))| |γ k (t)| 4 ,
so that the decay in [START_REF] Audiard | Small energy traveling waves for the Euler-Korteweg system[END_REF] gives that the integral goes to 0 as k → ∞. Therefore, using the dominated convergence theorem, we can pass to the limit in (3.32), and using (3.30), we conclude that condition (H3') is satised.

The following propositions provide estimates for the curve E min near the origin.

Proposition 3.14. There are constants q 0 > 0 and K 0 > 0 such that √ 2q -K 0 q 3/2 ≤ E min (q), for all q ∈ [0, q 0 ).

Proof. Invoking Corollary 3.8 and (3.2), for δ ∈ (0, 1/2), we have the existence of a function v ∈ N E(R) such that p(v) = q and E(v) < E min (q) + δ ≤ √ 2q + δ. Then, using the estimate (2.2), we conclude that there is some q 0 > 0 small and a constant K > 0, such that if q ≤ q 0 , then E(v) ≤ 1 and also

|1 -|v| 2 | ≤ K( √ 2q + δ). (3.34) 
Since we can assume that K( √ 2q 0 + δ) < 1, we can apply the inequality (2.15) in Lemma 2.3 to conclude that

√ 2(1 -(K( √ 2q + δ) 1/2 )p(v) ≤ E(v). Inequality (3.33) follows letting δ → 0.
The rest of the section is devoted to establish the following upper bound for E min . So far, we have assumed that (H1) and (H2) hold, but we have not used the C 3 regularity nor the condition ( W) (0) > -1. These hypotheses are going to be essential to prove the following proposition. Proposition 3.15. There exist constants q 1 , K 1 , K 2 > 0, depending on W C 3 , such that

E min (q) ≤ √ 2q -K 1 q 5/3 + K 2 q 2 , for all q ∈ [0, q 1 ], (3.35) 
As an immediate consequence of Propositions 3.14 and 3.15, is that E min is right dierentiable at the origin, with E + min (0) = √ 2. Moreover, if E min is concave we also deduce that E min is strictly subadditive as a consequence of the following elementary lemma (see e.g. [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF][START_REF] Chiron | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at innity[END_REF]). Lemma 3.16. Let f : [0, ∞) → R be continuous concave function, with f (0) = 0, and with right derivative at the origin a := f + (0). Then for any s > 0, the following alternative holds:

(i) f is linear on [0, s], with f (p) = ap, for all p ∈ [0, s], or (ii) f is strictly subadditive on [0, s].
Corollary 3.17. The right derivative of E min at the origin exists and

E + min (0) = √ 2. In partic- ular, if E min is concave on R + , then E min is strictly subadditive on R + .
The proof of Proposition 3.15 is inspired on the fact that the Kortewegde Vries (KdV) equation provides a good approximation of solutions of the GrossPitaveskii equation when W = δ 0 in the long-wave regime [START_REF] Zakharov | Multi-scales expansion in the theory of systems integrable by the inverse scattering transform[END_REF][START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation[END_REF][START_REF] Chiron | The KdV/KP-I limit of the nonlinear Schrödinger equation[END_REF]. Our aim is to extend this idea to the nonlocal equation (NGP). Let us explain how this works in the case of solitons, performing rst some formal computations. We are looking to describe a solution of (TW W,c ) with c ∼ √ 2, so we consider c = 2ε 2 , and use the ansatz

u ε (x) = (1 + ε 2 A ε (εx))e iεϕε(εx) .
Therefore, setting

W ε (ξ) := W(εξ), (3.36) 
i.e. W ε (x) = W(x/ε)/ε in the sense of distributions, we deduce that u ε is a solution to (TW W,c ) if (A ε , ϕ ε ) satises

ε 2 A ε -ε 2 (1 + ε 2 A ε )ϕ 2 ε -cϕ ε (1 + ε 2 A ε ) -(1 + ε 2 A ε ) W ε * (2A ε + ε 2 A 2 ε ) = 0, (3.37) 2ε 2 A ε ϕ ε + (1 + ε 2 A ε )ϕ ε + cA ε = 0. (3.38)
To handle the nonlocal term, we use the following lemma.

Lemma 3.18. For all f ∈ H 3 (R), we have

W ε * f = f - ε 2 2 ( W) (0)f + ε 3 R ε (f ), (3.39) 
where

R ε (f ) L 2 (R) ≤ 1 6 W L ∞ (R) f L 2 (R) . Proof. Let us set R ε (f ) := 1 ε 3 W ε * f -f + ε 2 2 ( W) (0)f . By Plancherel's theorem, we have 2π R ε (f ) 2 L 2 (R) = F(R ε (f )) 2 L 2 (R) = 1 ε 6 R W(εξ) -1 - ε 2 ξ 2 2 ( W) (0) 2 | f (ξ)| 2 dξ. (3.40)
Now, by Taylor's theorem and the fact that ( W) (0) = 0, we deduce that for all ξ ∈ R and ε > 0, there exists z ε,ξ ∈ R such that

W(εξ) = 1 + ε 2 ξ 2 2 ( W) (0) + ε 3 ξ 3 6 ( W )(z ε,ξ ).
Replacing this equality into (3.40), we conclude that

√ 2π R ε (f ) L 2 (R) ≤ 1 6 W L ∞ (R) F(f ) L 2 (R) = √ 2π 6 W L ∞ (R) f L 2 (R) ,
which completes the proof of the lemma.

In this manner, applying Lemma 3.18, we formally deduce from (3.37)(3.38) that

-cϕ ε -2A ε + ε 2 (-cϕ ε A ε -3A 2 ε + (1 + W (0))A ε -ϕ 2 ε ) = O(ε 3 ), (3.41) 
ϕ ε + cA ε + ε 2 (2ϕ ε A ε + A ε ϕ ε ) = 0. (3.42)
Therefore for the speed c = √ 2ε 2 , (3.41) implies that

ϕ ε = -2A ε + O(ε 2 ). (3.43)
Dierentiating (3.41), adding (3.42) multiplied by c, using (3.43), and supposing that A ε and ϕ ε converge to some functions A and ϕ, respectively, as ε → 0, we obtain the limit equation

-A -12AA + (1 + W (0))A = 0.
Thus, imposing that A, A , A → 0 as |x| → ∞, by integration, we get

(1 + W (0))A -6A 2 -A = 0. (3.44)
By hypothesis (H2), we have ( W) (0) > -1, so that setting In this manner, we should expect that u ε (x) ∼ (1 + ε 2 A(εx))e iεϕ(εx) . This is the motivation of the following result. εx) , where A and ϕ are given by (3.45) and (3.46). Then

ω := (1 + ( W) (0)) 1/2 ,
Lemma 3.19. Let v ε (x) = (1 + ε 2 A(εx))e iεϕ(
E(v ε ) = ω 3 ε 3 - ε 5 4 + O(ε 6 ) and p(v ε ) = √ 2ω 6 ε 3 - ε 5 10 , (3.47) 
where O(ε 7 )/ε 7 is a function that is bounded in terms of W W 3,∞ , uniformly for all ε ∈ (0, 1].

Proof. Let us rst compute the momentum. Bearing in mind that ϕ = -√ 2A, we have 6 dx, so using that R sech 4 (x)dx = 4/3 and that R sech 6 (x)dx = 16/15, we obtain the expression for p(v ε ) in (3.47). For the kinetic energy we can proceed in the same manner. Indeed, using that

p(v ε ) = - 1 2 R 2ε 2 A(εx) + ε 4 A(εx) 2 ε 2 ϕ (εx)dx = √ 2ε 3 2 R 2A(x) 2 + ε 2 A(x) 3 dx = √ 2ωε 3 R 1 8 sech(x) 4 - ε 2 64 sech(x)
A (x) = 1 4ω tanh x 2ω sech 2 x 2ω , and R sech(x) 4 tanh(x) 2 = 4 15 ,
we get

E k (v ε ) = 1 2 R ε 6 A (εx) 2 + ε 4 (1 + ε 2 A(εx)) 2 ϕ (εx) 2 dx = ε 3 R A(x) 2 dx + ε 5 2 R A (x) 2 + 4A(x) 3 dx = ε 3 ω 8 R sech(x) 4 dx + ε 5 16ω R sech 4 (x) tanh 2 (x)dx - ε 5 ω 16 R sech 6 (x)dx = ε 3 ω 6 + ε 5 1 60ω - ω 15 
.

Now, for the potential energy, invoking Lemma 3.18 and (3.44), we have

E p (v ε ) = 1 4ε R W ε * (2ε 2 A + ε 4 A 2 ) (x)(2ε 2 A(x) + ε 4 A(x) 2 )dx = ε 3 R A(x) 2 dx + ε 5 R A(x) 3 - W (0) 2 A(x)A (x) dx + O(ε 6 ) = ε 3 R A(x) 2 dx + ε 5 R A(x) 3 - W (0) 2ω 2 A(x) 2 + 6A(x) 3 dx + O(ε 6 ) = ε 3 ω 6 - ε 5 60 ω + 1 ω + O(ε 6 ),
where we have also used that W (0) = ω 2 -1. Adding the expressions for E k and E p , we obtain the estimate for the energy in (3.47).

Proof of Proposition 3.15. For q small, we can parametrize q as a function of ε as

q ε = √ 2ω 6 ε 3 - ε 5 10 , so q ε is a strictly increasing function of ε ∈ [0, 1].
The idea is to express ε in terms of q ε in order to obtain E(v ε ) in (3.47) as a function of q ε . Then (3.35) will follow from the facts that p(v ε ) = q ε and that E min (q ε ) ≤ E(v ε ). For notational simplicity, we set

s ε := 3 √ 2 ω q ε = ε 3 - ε 5 10 , (3.48) so that ε 3 /2 ≤ s ε ≤ ε 3 ≤ 1, for all ε ∈ [0, 1]. (3.49)
Applying Taylor's theorem and noticing that ε 5 /10 ≤ s ε , we infer that there is some p ε ∈ (s ε , 2s ε ) such that

ε 5 = s ε + ε 5 10 5/3 = s 5/3 ε + 5ε 5 30 p 2/3 ε .
Using again (3.49), we conclude that

ε 5 = s 5/3 ε + O(s 7/3 ε ) = 3 √ 2 ω 5/3 q 5/3 ε + O(q 7/3 ε ).
Combining this asymptotics with (3.47), (3.48) and (3.49), we get

E(v ε ) = ω 3 3 √ 2 ω q ε - 3ε 5 20 + O(ε 6 ) = √ 2q ε -K 1 q 5/3 ε + O(q 2 ε ),
where

K 1 = (3 √ 2/ω) 5/3 ω/20. Since E min (q ε ) ≤ E(v ε )
, we conclude that (3.35) holds true.

We are now in position to prove Theorem 2.

Proof of Theorem 2. Statement (i) follows from Lemma 3.2, Proposition 3.9 and Lemmas 3.10 and 3.11. From Propositions 3.14 and 3.15, we obtain (ii). Proposition 3.12 and Lemma 3.13 establish (iii).

By Corollary 3.3, q * > 0.027. Let us proof now the rest of the statement in (iv). Since E min is nondecreasing on [0, q * ), if we suppose that E min is not strictly increasing, then E min is constant in some interval [a, b], with 0 ≤ a < b < q * . Since E min is concave, this implies that E min is constant on [a, ∞) and therefore E min (a) = E min (q * ), which contradicts the denition of q * in (8). Finally, we remark that if E(v) < E min (q * ), for some v ∈ E(R), using the fact that E min (0) = 0, the intermediate value theorem gives us the existence of some q ∈ [0, q * ) such that E(v) = E min (q). Since q < q * , the denition of q * implies that |v| does not vanish.

We now establish (v). Arguing by contradiction, we show that E min (q) < √ 2q, for all q > 0. Indeed, in view of (3.2), let us suppose that for some p > 0 we have E min (p) = √ 2p. Since E min is concave, the function q → E min (q)/q nonincreasing, thus

√ 2 = E min (p) p ≤ E min (q) q ≤ √
2, for all q ∈ (0, p).

Therefore E min (q) = √ 2q, for all q ∈ (0, p), which contradicts (ii).

At this point, we recall that the concavity of E min implies that E + min is right-continuous, so that, by Corollary 3.17, we have E + min (q) → E + min (0) = √ 2, as q → 0 + . Using also that E min is nondecreasing, (3.2) and Corollary 3.17, we deduce the other statements in (v).

Compactness of the minimizing sequences

We start now the study of the minimizing sequences associated with the curve E min . The following result shows that the set S q in Theorem 4 is nonempty, and also allows us to establish the orbital stability in the next section. Theorem 4.1. Assume that W satises (H1) and (H2), and that E min is concave on R + . Let q ∈ (0, q * ) and (u n ) in N E(R) be a sequence satisfying

p(u n ) → q and E(u n ) → E min (q), (4.1) 
as n → ∞. Then there exists v ∈ N E(R), a sequence of points (x n ) such that, up to a subsequence that we still denote by u n , the following convergences hold

u n (• + x n ) → v(•), in L ∞ loc (R), (4.2) 
1 -|u n (• + x n )| 2 → 1 -|v(•)| 2 , in L 2 (R), (4.3) 
u n (• + x n ) → v (•), in L 2 (R), (4.4) 
as n → ∞. In addition, there is a constant

ν > 0 such that inf R |u n (• + x n )| ≥ ν, for all n. (4.5) 
In particular p(v) = q, E(v) = E min (q), and v ∈ S q .

In the rest of the section we will assume that the hypotheses in Theorem 4.1 are satised and therefore the conclusion in Theorem 2-(v) holds. Thus, in the sequel, E min is strictly subadditive and E min (q) < √ 2q, for all q > 0.

For the sake of clarity, we state rst the following elementary lemma.

Lemma 4.2. Let (u n ) be a sequence as in Theorem 4.1. Then there is function u ∈ N E(R) such that, up to a subsequence,

u n → u, in L ∞ loc (R), (4.6) 
u n u , in L 2 (R), (4.7) 
η n := 1 -|u n | 2 η := 1 -|u| 2 , in L 2 (R). (4.8) 
In addition, E(u) ≤ E min (q), and writing u = ρe iφ and u n = ρ n e iφn , the following relations hold, up to a subsequence, for all A > 0,

A -A |u | 2 ≤ lim inf n→∞ A -A |u n | 2 , (4.9) 
A -A (W * η)η = lim n→∞ A -A (W * η n )η n , (4.10) 
A -A ηφ = lim n→∞ A -A η n φ n . (4.11) 
Proof. In view of (4.1), E(u n ) is bounded, so that, using also Lemma 2.1, we deduce that u n and that η n := 1 -|u n | 2 are bounded in L 2 (R) and that u n is bounded in L ∞ (R). Therefore, by weak compactness in Hilbert spaces and the RellichKondrachov theorem, there is a function u ∈ H 1 loc (R) such that, up to a subsequence, the convergences in (4.6)(4.8) hold, as well as (4.9), and also

u L 2 (R) ≤ lim inf n→∞ u n L 2 (R) . (4.12) 
At this point we remark that the function B(f ) = R (W * f )f is continuous and convex in L 2 (R), since W ≥ 0 a.e. Thus it is weakly lower semi-continuous, so that

B(u) ≤ lim inf n→∞ B(u n ). (4.13) 
Combing with (4.12), we deduce that E(u) ≤ E min (q). Using (4.8) and the fact that

W ∈ M 2 (R), we get W * η n W * η in L 2 (R), (4.14) 
which together with (4.6) lead to (4.10).

Since q ∈ (0, q * ), Theorem 2 and the fact that E(u) ≤ E min (q) < E min (q * ) imply that u ∈ N E(R), so that we can write u = ρe iφ . Then, setting u n = ρ n e iφn and by using that E k (u n ) is bounded and (4.6), we get for A > 0,

A -A φ 2 n ≤ 1 inf [-A,A] |u n | 2 R ρ 2 n φ 2 n ≤ 4 inf [-A,A] |u| 2 E k (u n ),
so that, up to a subsequence, φ n φ in L 2 ([-A, A]). Using again (4.6), we then establish (4.11).

Proof of Theorem 4.1. By hypothesis, we can assume that

E(u n ) ≤ 2E min (q). (4.15) 
Since E min (q) < √ 2q, we have Σ q ∈ (0, 1), so that applying Lemma 2.4 with L = 1 + Σ q , and Lemma 2.5 with E = 2E min (q) and m 0 = Σq := Σ q /L, we deduce that there exist an integer l q , depending on E and q, but not on n, and points x n 1 , x n 2 , . . . , x n ln , with l n ≤ l q such that

|1 -|u n (x n j )| 2 | ≥ Σq , ∀1 ≤ j ≤ l n (4.16) 
and

|1 -|u n (x)| 2 | ≤ Σq , ∀x ∈ R \ ln j=1 [x n j -1, x n j + 1]. (4.17) 
Since the sequence (l n ) is bounded, we can assume that, up to a subsequence, l n does not depend on n and set l * = l n . Passing again to a further subsequence and relabeling the points (x n j ) j if necessary, there exist some integer , with 1 ≤ ≤ l * , and some number R > 0 such that

|x n k -x n j | -→ n→∞ ∞, ∀1 ≤ k = j ≤ (4.18) and x n j ∈ ∪ k=1 B(x n k , R), ∀ < j ≤ l * .
Hence, by (4.17), we deduce that

1 -Σq ≤ |u n | 2 ≤ 1 + Σq , on R \ j=1 B(x n j , R + 1). (4.19) 
Applying Lemma 4.2 to the translated sequence u n,j (•) = u n (• + x n j ), we infer that there exist functions v j = ρ j e iφ j ∈ N E(R), j ∈ {1, . . . , }, satisfying the following convergences

u n,j → v j , in L ∞ loc (R), (4.20) 
u n,j v j , in L 2 (R), (4.21) 
η n,j := 1 -|u n,j | 2 η j := 1 -|v j | 2 , in L 2 (R), (4.22) 
as n → ∞, and also

E min (q j ) ≤ E(v j ) ≤ E min (q), (4.23) 
A -A |v j | 2 ≤ lim inf n→∞ A -A |u n,j | 2 , (4.24) 
lim n→∞ A -A (W * η n,j )η n,j = A -A (W * η j )η j , (4.25) 
lim n→∞ A -A η n,j φ n,j = A -A η j φ j , (4.26) 
where u n,j = ρ n,j e iφ n,j and q j = p(v j ). Moreover, using (4.16) and (4.20), we infer that

|1 -|v j (0)| 2 | ≥ Σq . (4.27) 
In particular, v j cannot be a constant function of modulus one. Now we focus on proving the following claim.

Claim 1. There exist q ∈ R and Ẽ ≥ 0 such that E min (q) ≥ j=1 E min (q j ) + Ẽ and (4.28)

q = j=1 q j + q. (4.29) 
For this purpose, we x µ > 0. By the dominated convergence theorem, there exists

R µ ≥ max R + 1, 1 µ , (4.30) 
such that, for

1 ≤ j ≤ , 1 2 Rµ -Rµ |v j | 2 ≥ E kin (v j ) - µ 2 . (4.31) 
By (4.18), we can assume that B(x n k , R µ ) ∩ B(x n j , R µ ) = ∅, for all 1 ≤ k = j ≤ . Hence, using (4.24) and (4.31), we deduce that there exists N µ ≥ 1, such that for all n ≥ N µ and for all

1 ≤ k = j ≤ , 1 2 Rµ -Rµ |u n,j | 2 ≥ E kin (v j ) - µ . (4.32) 
By adding the inequality (4.32) from j = 1 to j = , we conclude that

1 2 j=1 Rµ -Rµ |u n,j | 2 ≥ j=1 E k (v j ) -µ, for all n ≥ N µ . (4.33) 
Similarly, using again the dominated convergence theorem and possibly increasing R µ , we obtain for all 1 ≤ j ≤ , 1 4

Rµ -Rµ 

(W * η j )η j -E p (v j ) ≤ µ 2 . ( 4 
(W * η n,j )η n,j - j=1 E p (v j ) ≤ µ, for all n ≥ N ν . (4.36)
Applying the same argument to η n,j φ n,j and η j φ j instead of (W * η n,j )η n,j and (W * η j )η j , we get

1 2 j=1 Rµ -Rµ η n,j φ n,j - j=1 q j ≤ µ. (4.37)
Now we handle the integrals on

A µ := R \ j=1 B(x n j , R µ ).
Let us start with the momentum. We split p(u n ) as 

p(u n ) = 1 2 j=1 Rµ -Rµ η n,
√ 2|p Aµ (u n )| ≤ 1 4 Aµ η 2 n + 1 2(1 -Σq ) Aµ ρ 2 n φ 2 n ≤ C(q).
Hence, p Aµ (u n ) is is uniformly bounded with respect to n and µ, so that, passing possibly to a subsequence (in n and µ), we infer that there exists q ∈ R such that

lim µ→0 lim n→∞ p Aµ (u n ) = q. (4.39)
Hence, passing to the limit n → ∞ and then letting µ → 0 in (4.37), and using (4.38), we obtain (4.29). To prove (4.28), we rst remark that since E k (u n ) and E p (u n ) are bounded, passing possibly to a subsequence, there are constants

E k , Ẽk , E p ≥ 0 such that E min (q) = E k + E p , E k (u n ) → E k , E p (u n ) → E p ,
and lim

µ→0 lim n→∞ 1 2 Aµ |u n | 2 = Ẽk .
Thus, decomposing the kinetic part as

E k (u n ) = 1 2 Aµ |u n | 2 + 1 2 j=1 Rµ -Rµ |u n,j | 2 ,
and using (4.33), we deduce as before that

E k ≥ j=1 E k (v j ) + Ẽk . (4.40) 
To prove (4.28), it remains to study the potential energy. However, E p (u) is more involved because of the nonlocal interactions. To make the decomposition, we introduce the functions

g n,µ (x) := η n (x)1 ∪ j=1 B(x n j ,Rµ) (x) and f n,µ (x) := η n (x)1 Aµ (x),
so that

E p (u n ) = 1 4 R (W * η n )(f n,µ + g n,µ ) = 1 4 R (W * η n )f n,µ + 1 4 ∪ j=1 B(x n j ,Rµ) (W * η n )η n = 1 4 R (W * g n,µ )f n,µ + 1 4 R (W * f n,µ )f n,µ + 1 4 j=1 Rµ -Rµ (W * η n,j )η n,j . (4.41) 
Using Plancherel's identity, the CauchySchwarz inequality and (2.3), we deduce that

R (W * g n,µ )f n,µ ≤ W L ∞ (R) g n,µ L 2 (R) f n,µ L 2 (R) ≤ C(E min (q)),
and the same argument shows that R (W * f n,µ )f n,µ can also be bounded in terms of E min (q). Passing possibly to a subsequence, we conclude that there exists Ẽp ≥ 0 such that

lim µ→0 lim n→∞ R (W * f n,µ )f n,µ = 4 Ẽp . (4.42)
We will show that lim Combining with (4.36), we have

E p = j=1 E p (v j ) + Ẽp . (4.44)
Therefore, setting

Ẽ := Ẽk + Ẽp = lim µ→0 lim n→∞ E Aµ (u n ), (4.45) 
and bearing in mind that E min (q) = E k +E p and that E(v j ) ≥ E min (q j ), inequality (4.28) follows by adding (4.40) and (4.44).

It remains to show (4.43). By denition of g n,µ , we obtain

R (W * f n,µ )(x)g n,µ (x)dx = j=1 B(x n j ,Rµ) (W * f n,µ ) (x)η n (x)dx = j=1 B(0,Rµ) (W * f n,µ ) (x + x n j )η n,j (x)dx.
Using also (2.10) and the fact that convolution commutes with translations, we get

R (W * g n,µ )(x)f n,µ (x)dx = j=1 R\ ∪ k=1 B(x n k -x n j ,Rµ)
W * (η n,j 1 B(0,Rµ) ) (x)η n,j (x)dx.

Noticing that B(0, R µ ) is a subset of ∪ k=1 B(x n k -x n j , R µ ), we conclude that R (W * g n,µ )f n,µ ≤ j=1 R\B(0,Rµ) W * (η n,j 1 B(0,Rµ) ) |η n,j |. (4.46)
To study the limit of the right-hand side of (4.46), we rst remark that (4.20) and the fact that 

W ∈ M 2 (R) imply that W * (η n,j 1 B(0,Rµ) ) → W * (η j 1 B(0,Rµ) ) in L 2 (R), (4.47 
W * η j 1 B(0,Rµ) |η j | ≤ W 2 η j L 2 (R) η j L 2 (R\B(0,Rµ) , (4.48) 
so that the denition of R µ in (4.30) and the dominated convergence theorem allow us to conclude that the right-hand side of (4.48) goes to 0 as µ → 0. In view of (4.46) and (4.48), this proves (4.43), completing the proof of Claim 1.

Now we establish an inequality between q and Ẽ that will be key to conclude that both quantities are equal to zero. This inequality is a consequence of Lemma 2.3. To choose our cut-o function, we take the sequence µ m = 1/m, and we notice that since lim |v j (x)| → 1 as |x| → ∞, there exists R j > 0 such that, for every |x| ≥ R j , we have

|η j (x)| ≤ e -2/µm . (4.50)
Moreover, without loss of generality we can assume that R m := R µm ≥ R j , for all 1 ≤ j ≤ . Now we use the function χ given by Lemma A.1 to dene

χ j,n (x) := χ(x -x n j ) = 1 if |x -x n j | ≤ R m , 0 if |x -x n j | ≥ R m + µ m ,
and χn,m := 1 -j=1 χ j,n .

To establish (4.49), we apply Lemma 2.3 with u = u n , Ω = A µm , ε = Σq and χ Ω,Ω 0 = χn,m , where Ω 0 is given by

Ω \ Ω 0 = j=1 [x n j -R m -µ m , x n j -R m ] ∪ [x n j + R m , x n j + R m + µ m ].
Using (4.19), the denitions of q and Ẽ in (4.39) and (4.45), and letting n → ∞ and m → ∞ in (2.13), we obtain

√ 2|q| ≤ Ẽ 1 -Σq + lim m→∞ lim sup n→∞ ∆ n,m , with |∆ n,m | ≤ C(q) η n L 2 (Ω\Ω 0 ) + η n χ n,µm L 2 (Ω\Ω 0 ) + η n χ n,µm 2 
L 2 (Ω\Ω 0 ) . (4.51) 
Notice that we omit the dependence on m and n in Ω \ Ω 0 for notational simplicity. Therefore, to prove (4.49) we only need to show that the right-hand side of (4.51) goes to zero. For the rst term, we have To bound the term η n χ n,µm L 2 (Ω\Ω 0 ) in (4.51), we notice that

η n 2 L 2 (Ω\Ω 0 ) = j=1 -Rm -Rm-µm
χ n,µm 2 = j=1 χ j,n 2 = j=1 (χ j,n ) 2 ,
since χ j,n χ k,n = 0 for all j = k. Hence,

η n χ n,µm 2 
L 2 (Ω\Ω 0 ) ≤ j=1 R η 2 n |χ j,n | 2 ≤ j=1 -Rm -Rm-µm η 2 n,j |χ | 2 + Rm+µm Rm η 2 n,j |χ | 2 .
Invoking again (4.6), we obtain Claim 3. We have Ẽ = q = 0 and = 1.

lim sup n→∞ η n χ n,µm 2 
L 2 (Ω\Ω 0 ) ≤ j=1 -Rm -Rm-µm η 2 j |χ | 2 + Rm+µm Rm η 2 j |χ | 2
We suppose rst that q > 0. By denition of Σ q in (2.21), and using that Σq = Σ q /L < Σ q , we have

E min (q) q = √ 2(1 -Σ q ) < √ 2 1 -Σq . (4.54) 
In addition, since E min is concave, we obtain for all 0 < p < q,

E min (p) ≥ p E min (q) q = p √ 2(1 -Σ q ). (4.55) 
Then, setting s := q -q = j=1 q j , the assumption q > 0 implies that s < q, and combining with (4.49), (4.54) and (4.55), we also obtain

E min (s) ≥ s E min (q) q = E min (q) - q E min (q) q > E min (q) - √ 2q 1 -Σq ≥ E min (q) -Ẽ.
Hence, using (4.28), we get

E min (s) > j=1 E min (q j ). (4.56) 
Since E min is even, nondecreasing and subadditive, the inequality s ≤ j=1 |q j | yields

E min (s) ≤ E min j=1 |q j | ≤ j=1 E min (q j ).
which contradicts (4.56). Thus q ≤ 0 and (4.29) gives q ≤ j=1 |q j |. As before, this implies that

E min (q) ≤ E min j=1 |q j | ≤ j=1 E min (q j ).
On the other hand, since Ẽ ≥ 0, we see from (4.28) that

E min (q) ≥ j=1 E min (q j ). Therefore E min (q) = j=1 E min (q j ). (4.57) 
In view of (4.28) and (4.49), (4.57) yields Ẽ = 0 and q = 0. Finally, if there are at least two nonzero values q k and q m , with 1 ≤ k = m ≤ , then the strictly subadditivity of E min implies that

E min (q) = E min j=1 |q j | < j=1 E min (q j ),
contradicting (4.57). Therefore we can suppose without loss of generality that = 1, which nishes the proof of Claim 3.

Setting v = v 1 , the convergence in (4.2) and the estimate in (4.5) follow from (4.20) and (4.19) (with = 1). We now show the convergences in (4.3) and (4.4) (with v = v 1 ) to complete the proof of the theorem. Indeed, since = 1 and q = 0, by Claim 3, (4.29) shows that q = q 1 , and using also (4.1) and (4.23), we get p(u n,1 ) → q = p(v) and E(u n,1 ) → E min (q) = E(v).

(4.58)

We now establish (4.4). Since

u n,1 v in L 2 (R), it is enough to prove that lim sup n→∞ u n,1 L 2 (R) ≤ v L 2 (R) . (4.59) 
Arguing by contradiction, taking a subsequence that we still denote by u n,1 , we suppose that

M := lim n→∞ u n,1 2 
L 2 (R) = 2E k (u n,1 ), with M > v 2 L 2 (R) = 2E k (v).
Hence, using (4.58),

lim n→∞ E p (u n,1 ) = lim n→∞ E(u n,1 ) -E k (u n,1 ) = E(v) - M 2 < E(v) -E k (v) = E p (v), which contradicts (4.13). Therefore u n,1 → v in L 2 (R). In particular E k (u n,1 ) → E k (v), so that (4.58) implies that lim n→∞ R (W * η n,1 ) η n,1 = R (W * η) η, (4.60) 
where η = 1 -|v| 2 as usual. Using Plancherel's identity and (H2), we have 

η n,1 -η 2 L 2 (R) ≤ 1 2π R W(ξ)| η n,1 -η| 2 + 1 4π R ξ 2 | η n,1 -η| 2 = R W * (η n,1 -η)(η n,1 -η) + 1 4 η n -η 2 L 2 (R) . ( 4 
W * (η n,1 -η)(η n,1 -η) → 0. (4.62) It remains to prove that η n,1 -η L 2 (R) → 0. (4.63) Noticing that η -η n,1 = 2( v, v -u n,1 , u n,1 ), we have η n,1 -η L 2 (R) ≤ 2 (v -u n,1 )v 1 L 2 (R) + 2 (v -u n,1 )u n,1 L 2 (R) . (4.64) 
From inequality (2.2), we obtain u n,1 L ∞ (R) ≤ C(q). (4.65) Thus, using (4.4), we deduce that

(v -u n,1 )u n,1 L 2 (R) ≤ C(q) v -u n,1 L 2 (R) → 0,
Moreover, (4.65) allows us to use the dominated convergence theorem to infer that the other term in the right-side of (4.64) also converges to zero. Therefore, combining with (4.61) and (4.62), we obtain (4.3), which nishes the proof of the theorem.

Stability

We start recalling the following result concerning the Cauchy problem.

Theorem 5.1 ([28]). Let φ 0 ∈ E(R), with ∇φ ∈ H 2 (R) ∩ C(R). Let W ∈ M 3 (R) be an even distribution. Assume that one of the following is satised.

(i) W ∈ M 1 (R) and W ≥ 0 in a distributional sense.

(ii) There exists σ > 0 such that W ≥ σ a.e. on R.

Then, for every w 0 ∈ H 1 (R) there exists a unique solution Ψ ∈ C(R, φ 0 + H 1 (R)) to (NGP) with the initial condition Ψ 0 = φ 0 + w 0 . Moreover, the energy is conserved, as well as the momentum as long as inf x∈R |Ψ(x, t)| > 0.

In the case (ii), we also have the growth estimate

Ψ(t) -φ 0 L 2 (R) ≤ C|t| + Ψ 0 -φ 0 L 2 (R) , (5.1) 
for any t ∈ R, where C is a positive constant that depends only on E(Ψ 0 ), W L ∞ , φ 0 and σ.

Let us remark that the author in [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF] uses a sightly dierent denition of the momentum to allow a possible vanishing of Ψ(t). However, the proof of the conservation of momentum in [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF] also applies to our renormalized momentum as long as Ψ(t) ∈ N E(R). We also notice that Theorem 5.4. Assume that W ∈ M 3 (R) satises (H1) and (H2). Suppose also that E min is concave on R + . Then, S q is orbitally stable for (E(R), d) and for (E(R), d A ), for all q ∈ (0, q * ). Moreover, for all Ψ 0 ∈ E(R) and for all ε > 0, there exists δ > 0 such that if

d(Ψ 0 , S q ) ≤ δ, then sup t∈R inf y∈R d A (Ψ(• -y, t), S q ) ≤ ε, (5.3) 
where Ψ(t) is the solution of (NGP) associated with the initial condition Ψ 0 .

Notice that for u, v ∈ E(R), we have d(u, v) ≤ d A (u, v), and thus

d(u, S q ) = inf y∈R d(u(• -y), S q ) ≤ inf y∈R d A (u(• -y), S q ).
Therefore, the implication in (5.3) shows the orbital stability for the distance d and d A .

In order to prove Theorem 5.4, we will use the following lemma.

Lemma 5.5. Let v n , v ∈ E(R) such that d(v n , v) → 0. Then, |v n | -|v| L ∞ (R) → 0 and |v n | 2 -|v| 2 L 2 (R) → 0. (5.4) 
In particular, we have the continuity of the energy E(v n ) → E(v) (with respect to d). In addition, if v n , v ∈ N E(R), then we also have the continuity of the momentum p(v n ) → p(v).

Proof. First, we remark that since d(v n , v) → 0, there is some M > 0 such that

v n L 2 (R) + v L 2 (R) + v n L 2 (R) + v L 2 (R) ≤ M,
for all n ∈ N. By the sharp GagliardoNirenberg interpolation inequality and using that ||w| | = |w |, for w ∈ H 1 loc (R), we have

|v n | -|v| L ∞ (R) ≤ |v n | -|v| L 2 (R) |v n | -|v| L 2 (R) ≤ 2M |v n | -|v| L 2 (R) ,
so the rst convergence in (5.4) follows. Similarly, we deduce the second one noticing that

|v| 2 -|v n | 2 L 2 (R) ≤ v L ∞ (R) + v n L ∞ (R) |v| -|v n | L 2 (R) ≤ 2M |v n | -|v| L 2 .
Therefore (5.4) is proved. In particular, we have

v n → v in L 2 (R) and η n = 1-|v n | 2 → η = 1-|v| 2 in L 2 (R), so that E(v n ) → E(v).
For the momentum, writing v n = |v n |e iθn as usual, we have p(v n ) = 1 2 R η n θ n , so it suces to prove that θ n θ in L 2 (R) to conclude that p(v n ) → p(v), where v = |v|e iθ . To establish the weak convergence of θ n , we notice that since

|v n | → |v| in L ∞ (R), there exists C > 0 such that inf R |v n | ≥ C, for all n ∈ N. Hence, R θ 2 n ≤ 1 C 2 R ρ 2 n θ 2 n ≤ 2 C 2 E(v n ).
Since E(v n ) is bounded, we conclude as in Lemma 4.2 that for a subsequence, θ n k θ in L 2 (R), as k → ∞. Therefore, we conclude that p(v n k ) → p(v). Since the limit does not depend on the subsequence, we deduce that p(v n ) → p(v).

Proof. Let u ∈ S q , so that p(u) = q and E(u) = E min (q). Notice that since q > 0, u is not a constant function. Let h ∈ C ∞ c (R). From the denition of E min we have, for all t > 0,

E(u + th) -E(u) t ≥ E min (p(u + th)) -E min (q) t .
If dp(u)[h] > 0, then p(u + th) ≥ p(u) = q for t > 0 small enough, so that letting t → 0 + , we obtain Indeed, by Lemma 3.2 in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], this implies that there exists some c q ∈ R such that dE(u) = c q dp(u), (

dE(u)[h] ≥ E + min (q)dp(u)[h]. Likewise, if dp(u)[h] < 0, we get dE(u)[h] ≥ E - min ( 
and therefore, by Lemma 6.1, u is a solution of (TW W,c ) with c = c q To prove (6. It remains to show (6.3). Let h 0 ∈ C ∞ c (R) such that dp(u)[h 0 ] = 1. Then (6.7) implies that dE(u)[h 0 ] = c q . It follows from (6.4) that E + min (q) ≤ c q ≤ E - min (q), (

which nishes the proof.

Remark 6.4. It is possible to establish the EulerLagrange equations using an argument based on the implicit function theorem, without invoking the concavity of E min . Even thought the former argument is more general, we gave the proof using the concavity because it is simpler.

Proof of Theorem 4. Combining Theorems 4.1, 5.4 and 6.3, we obtain that the set S q is nonempty, orbitally stable and that any u ∈ S q is a solution of (TW W,c ). Using (6.3) and Theorem 2-(v), we get the properties for c q , except that c q > 0. Arguing by contradiction, we suppose that there exists p ∈ (0, q * ) such that c p = 0. Thus, by ( 9) and (10), we get E + min (p) = 0. Since E min is concave, we have for all r < s, E - min (r) ≥ E + min (r) ≥ E - min (s) ≥ E + min (s) ≥ 0, which implies that E - min = E + min = 0 on [p, ∞), so that E min is constant on [p, ∞), which contradicts that E min is strictly increasing on [p, q * ). This completes the proof of the theorem.

7 Some numerical simulations In this section, we numerically illustrate the properties of the minimizing curve through some simulations. The numerical method is based on the projected gradient descent and the convolution is computed by the fast Fourier transform algorithm. Given W (or W) and some q > 0 close to 0, we compute the corresponding soliton u q (i.e. p(u q ) = q) and its energy E(u q ). We then increase the value of q > 0 until we obtain enough points to plot E min .

First, we show our results for the examples (i) and (ii) in Section 1. In Figures 2 and3, we can see E min and the modulus of the solitons associated with q = 0.05, q = 0.55, q = 1.1 and q = 1.5, for the potentials

W α,β = β β -2α (δ 0 -αe -β|x| ), (7.1) 
with α = 0.05, β = 0.15, and

W α = 1 1 -α δ 0 + 3α π ln(1 -e -π|x| ) , (7.2) 
with α = 0.8. In both cases, we observe that E min is concave and that the line √ 2q is a tangent |u q (x)| q = 0.05 q = 0.55 q = 1.1 q = 1.5 to the curve. We notice that the shapes of the solitons in Figure 3 and the solitons in Figure 1 are quite similar. On the other hand, the solitons in Figure 2 are very dierent, they have values greater than 1 and exhibit a bump on R + . Notice also that the curves E min for both potentials seem to be constant for q > 1.55.

We end this section showing some numerical simulations for two interesting potentials. The rst one has been proposed in [START_REF] Veksler | Simple model for interactions and corrections to the Gross-Pitaevskii equation[END_REF] as simple model for interactions in a BoseEinstein condensate. It is given by a contact interaction δ 0 and two Dirac delta functions centered at ±σ,

W σ = 2δ 0 - 1 2 (δ σ + δ -σ ) . (7.3) 
Noticing that W σ (ξ) = 2cos(σξ), we see that for σ > 0, W σ fullls (H1), (H2), and that W σ is analytic in C, but is exponentially growing on H. Thus, W σ does not satisfy the assumption ( 5) in (H3). We can also check that (H3') is not fullled. Nevertheless, the results of the simulation depicted in Figure 4 show that E min is concave, and in that case Theorem 4 gives the orbital stability of the solitons illustrated in Figure 4. |u q (x)| q = 0.05 q = 0.55 q = 1.1 q = 1.5 |u q (x)| q = 0.05 q = 0.35 q = 0.8 q = 1.5

Figure 4: Curve E min and solitons for the potential in (7.3), with σ = 10.

Finally, we consider the potential W a,b,c (ξ) = (1 + aξ 2 + bξ 4 )e -cξ 2 , (

that it has been proposed in [START_REF] Berlo | Motions in a Bose condensate VI. Vortices in a nonlocal model[END_REF][START_REF] Reneuve | Structure, dynamics, and reconnection of vortices in a nonlocal model of superuids[END_REF] to describe a quantum uid exhibiting a roton-maxon spectrum such as Helium 4. Indeed, as predicted by the Landau theory, in such a uid, the dispersion curve (3) cannot be monotone and it should have a local maximum and a local minimum, that are the so-called maxon and roton, respectively. In Figure 5, we see the dispersion curve associated with potential (7.4), with a = -36, b = 2687, c = 30. In this case, there is a maxon at ξ m ∼ 0.33 and a roton at ξ r ∼ 0.53. For these values, (H1) is satised, but not (H2) nor (H3'). However, we observe in Figure 6 that the energy curve is still concave, and that the straight line √ 2q is still a tangent to the curve. Moreover, we found the same critical value as before for the momentum, i.e. q * ∼ 1.55. x |u q (x)| q = 0.05 q = 0.55 q = 1.1 q = 1.5 the denominator of χ is always positive, and thus χ is well dened. Moreover, χ ∈ C ∞ (R), since f is smooth. Finally, for |x| ≤ R, we have f (|x| -R) = 0, which implies that χ(x) = 1. For |x| ≥ R + µ, we have f (R + µ -|x|) = 0, so that χ(x) = 0.

It remains to prove the bound in (A.1). Using that

χ (x) = f (R + µ -|x|)f (|x| -R) + f (|x| -R)f (R + µ -|x|) (f (|x| -R) + f (R + µ -|x|)) 2 ,
and that |f (x)| ≤ exp(-1/x)

x 2 ≤ 4e -2 , we get

|χ (x)| ≤ 8e -2 f (|x| -R) + f (R + µ -|x|)
.

Combining with (A.2), we conclude that |χ (x)| ≤ 4e -2 e 2 µ .

Figure 1 :

 1 Figure 1: Curve E min and solitons in the case W = δ 0 .

  so that the solution to (3.44) (up to translations) corresponds to a soliton for the KdV equation given explicitly by A(x) := -43) reads in the limit ϕ = -√ 2A, so that we choose ϕ as ϕ(x)

  g n,µ )f n,µ = 0. (4.43) Assuming (4.43), we can now establish inequality (4.28). Indeed, letting n → ∞ and then µ → 0 in (4.41), and using (4.42) and (4.43), we obtain lim η n,j ) η n,j   = E p -Ẽp .

Claim 2 . 1 -

 21 We have √ 2 Σq |q| ≤ Ẽ. (4.49)

Using ( 4 . 6 )lim sup n→∞ η n 2 L 2 (

 4622 and the dominated convergence theorem, we getlim m→∞ Ω\Ω 0 ) = lim

≤ 32 e 2 µm

 322 -4 µ m , where we have used (4.50) and that |χ (x)| ≤ 4e -2 e for the last inequality. Then, we conclude that lim m→∞ lim sup n→∞ η n χ n,µm L 2 (Ω\Ω 0 ) = 0. (4.53) Combining (4.52) and (4.53), we obtain lim m→∞ lim sup n→∞ ∆ n,µm = 0, which completes the proof of Claim 2.

  6), let us consider φ ∈ Ker dp(u). Since u is nonconstant, there exists some function ψ ∈ C ∞ c (R) such that dp(u)[ψ] = 0. Thus, for all n ∈ N, we have dp(u)[ψ + nφ] = dp(u)[ψ] = 0. From (6.4) and (6.5), we conclude that dE(u)[ψ + nφ] = dE(u)[ψ] + ndE(u)[φ] is bounded. Hence dE(u)[φ] = 0 i.e. φ ∈ Ker dE(u), which establishes (6.6).

Figure 2 :

 2 Figure 2: Curve E min and solitons for the potential in (7.1), with α = 0.05 and β = 0.15.

Figure 3 :

 3 Figure 3: Curve E min and solitons for the potential in (7.2), with α = 0.8.

Figure 5 :

 5 Figure 5: Dispersion curve associated with potential (7.4), with a = -36, b = 2687, c = 30. Here ξ m ∼ 0.33 and ξ r ∼ 0.53.

Figure 6 :

 6 Figure 6: Curves E min and solitons for the potential in (7.4), with a = -36, b = 2687, c = 30.A Appendix

  j φ n,j + p Aµ (u n ), with p Aµ (u n

	) :=	1 2 Aµ	η n φ n .	(4.38)
	By (2.3), (2.11), (4.15) and (4.19), we obtain			

  )as n → ∞. At this point we also notice that (4.20) and the same argument leading to(4.22), also give us that |η n,j | |η j | in L 2 (R). Combining with (4.47), we thus get

	as n → ∞. Finally, by the CauchySchwarz inequality,	
	R\B(0,Rµ)		
	R\B(0,Rµ)	W * (η n,j 1 B(0,Rµ)) |η n,j | →	R\B(0,Rµ)	W * (η j 1 B(0,Rµ) ) |η j |,

  q)dp(u)[h]. Replacing h by -h, we obtain the following inequalitiesE + min (q)dp(u)[h] ≤ dE(u)[h] ≤ E - min (q)dp(u)[h], if dp(u)[h] > 0,(6.4)andE - min (q)dp(u)[h] ≤ dE(u)[h] ≤ E + min (q)dp(u)[h], if dp(u)[h] < 0. (6.5)Since the functionals dp(u), dE(u) : C ∞ c (R) → R are linear, to establish the EulerLagrange equations, it is enough to show that Ker dp(u) ⊂ Ker dE(u).(6.6) 
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other statements for Cauchy problem for the GrossPitaevskii equation have been established in dierent topologies when W = δ 0 (see e.g. [START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory[END_REF][START_REF] Gérard | The Cauchy problem for the Gross-Pitaevskii equation[END_REF][START_REF] Gallo | The Cauchy problem for defocusing nonlinear Schrödinger equations with nonvanishing initial data at innity[END_REF][START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF][START_REF] De Laire | The Sine-Gordon regime of the Landau-Lifshitz equation with a strong easy-plane anisotropy[END_REF][START_REF] De Laire | Stability in the energy space for chains of solitons of the Landau-Lifshitz equation[END_REF] and the reference there in), and these results can probably be adapted to our nonlocal framework.

For the proof of Theorem 5.1, the author proves rst a local well-posedness result for W ∈ M 3 (R). Then conditions (i) and (ii) are used to show that the solution is global. In [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF], it is also established that the solution is global in dimensions greater than 1, provided that W ≥ σ > 0 a.e. However, the proof given by the author does not apply in the one-dimensional case. Using Lemma 2.1, we can partially ll this gap. Theorem 5.2. Let φ 0 and W as in Theorem 5.1, but instead of (i) or (ii), we assume that there exists κ ≥ 0 such that W(ξ) ≥ (1κξ 2 ) + , a.e. on R.

(5.2)

Then we have the same conclusion as in Theorem 5.2, including the growth estimate (5.1), with a constant C depending only on E(Ψ 0 ), W L ∞ , φ 0 and κ.

Proof. In view of the local well-posedness established in Theorem 1.10 in [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF], to prove that the solution is global, we only need to show that the solution Ψ(t) = φ 0 + w(t) dened (T min , T max ), satises T max = ∞ and T min = -∞. In view of the blow-up alternative in the mentioned theorem, it is sucient to prove that w(t) L 2 (R) remains bounded in any bounded interval of (T min , T max ). Indeed, from (NGP), we have (see equation ( 63) in [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF])

where η(t) = 1 -|u(t)| 2 . From Lemma 2.1, we deduce from the conservation of energy on (T min , T max ), that there exists a constant K > 0, depending on κ and E(Ψ 0 ), such that η(t) L 2 (R) ≤ K, for all t ∈ (T min , T max ).

Therefore, we have for any δ > 0,

Dividing by

, integrating and letting δ → 0, we obtain (5.1), for any t ∈ (T min , T max ). As mentioned above, this estimate implies that the solution is global.

As explained in Section 6 in [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at innity[END_REF], Theorem 5.2 allows us to show that the solutions in the energy space are global. Theorem 5.3. Assume that W ∈ M 3 (R) is an even distribution satisfying (5.2). Then for every Ψ 0 ∈ E(R), there exists a unique Ψ ∈ C(R, E(R)) global solution to (NGP) with the initial condition Ψ 0 . Moreover, the energy is conserved, as well as the momentum as long as

Proof of Theorem 3. In view of Remark 2.2, we deduce if W ∈ M 3 (R) is an even distribution, with W ≥ 0 a.e. on R, and W of class C 2 in a neighborhood of the origin, then W satises (5.2), for some κ ≥ 0. Therefore, we can apply Theorem 5.3 and the conclusion follows.

The rest of the section is devoted to prove that the set S q is orbitally stable in the energy space. Using the CazenaveLions approach [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] and Theorem 4.1, we obtain the following result.

Proof of Theorem 5.4. Arguing by contradiction, we suppose that there exist ε 0 > 0, (δ n ), (t n ) and (u n 0 ) ⊂ E(R) such that δ n → 0, d(u n 0 , S q ) < δ n (5.5) and inf

where u n denotes the solution to (NGP) with initial data u n 0 . In particular, from (5.5) we deduce that there is v n ∈ S q such that d(u n 0 , v n ) < 2δ n .

(5.7)

Since E(v n ) = E min (q) and p(v n ) = q, applying Theorem 4.1 to (v n ), we infer that there exists v ∈ S q and points (a n ) such that, up to a subsequence, the function ṽn

Using also the estimate (4.5) in Theorem 4.1, we conclude that

and also d A (ṽ n , v) → 0. On the other hand, by the triangle inequality and (5.7),

Combining with (5.9), we conclude that d(u n 0 (• + a n ), v) → 0. Applying the conservation of energy in Theorem 5.3 and Lemma 5.5, we thus get, for all t ∈ R, conclude that E(u n (s n )) → E min (q) and thus, using that E min is strictly increasing on (0, q * ), we can nd n 0 such that E(u n (s n )) < E min (q * ), for all n ≥ n 0 . This is a contradiction because, by Theorem 2, this implies that u n (s n ) ∈ N E(R).

In view of (5.11), we can proceed as before invoking the conservation of momentum in Theorem 5.3 and Lemma 5.5, to obtain

(5.12) By (5.10) and (5.12), we can apply Theorem 4.1 to (u n (t n )). Then, reasoning as before, we deduce that there exist w ∈ S q and (b n ) such that, up to a subsequence,

which contradicts (5.6).

6 EulerLagrange equations and proof of Theorem 4

In this section we establish the EulerLagrange equations associated with the minimization problem, which will allow us to complete the proof of Theorem 4. Since the energy and momentum functional are not dened on a vector space, the notion of dierential is not trivial. For our purposes, it suces consider the directional derivatives using only smooth functions with compact support. More precisely, for u ∈ E(R) we dene for all h ∈ C ∞ c (R), where we also suppose that u ∈ N E(R) for the denition of dp(u) so that p(u + th) is actually well dened for t small enough. Lemma 6.1. Assume that W satises (H1). Then for all h ∈ C ∞ c (R), we have

In particular, for all c ∈ R, dE(u) = c dp(u) if and only if u satises (TW W,c ).

Notice that the elliptic regularity theory shows that if u is a solution of (TW W,c ), then u is smooth. More precisely, the following result stated in higher dimensions in [START_REF] De Laire | Nonexistence of traveling waves for a nonlocal Gross-Pitaevskii equation[END_REF] applies without changes in dimension 1. Lemma 6.2 ([29]). Let u ∈ E(R) be a solution of (TW W,c ), with W ∈ M 2 (R). Then u is bounded and of class C ∞ (R). Moreover, η := 1 -|u| 2 and ∇u belong to W k,p (R), for all k ∈ N and for all p ∈ [2, ∞).

Proof of Lemma 6.1 . Using (2.10), the dierential in (6.1) is a straightforward consequence of the denition of dE. To show (6.2), let us

Therefore we obtain (6.2) noticing that ih, u u, u + iu , u u, h = iu , h |u| 2 .

The last assertion in the statement follows from the fact that if for some v ∈ E(R) we have R v, h = 0, for all h ∈ C ∞ c (R), then v ≡ 0.

Theorem 6.3. Suppose that E min is concave on R + and that u ∈ S q , with q > 0. Then there exists c q satisfying E + min (q) ≤ c q ≤ E - min (q), (

such that u is a solution of (TW W,c ) with of speed c = c q .