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Traveling waves for some nonlocal 1D Gross-Pitaevskii
equations with nonzero conditions at infinity

André de Laire! and Pierre Mennuni?

Abstract

We consider a nonlocal family of Gross—Pitaevskii equations with nonzero conditions at
infinity in dimension one. We provide conditions on the nonlocal interaction such that there
is a branch of traveling waves solutions with nonvanishing conditions at infinity. Moreover,
we show that the branch is orbitally stable. In this manner, this result generalizes known
properties for the contact interaction given by a Dirac delta function. Our proof relies on
the minimization of the energy at fixed momentum.

As a by-product of our analysis, we provide a simple condition to ensure that the solution
to the Cauchy problem is global in time.

Keywords: Nonlocal Schrodinger equation, Gross—Pitaevskii equation, traveling waves, dark soli-
tons, orbital stability, nonzero conditions at infinity
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1 Introduction

1.1 The problem

We consider the one-dimensional nonlocal Gross—Pitaevskii equation for ¥ : R x R — C intro-
duced by Gross [40] and Pitaevskii [56] to describe a Bose gas

10U = 0, U+ U(W s (1—|T]?)) in RxR, (NGP)
with the boundary condition at infinity

lim |¥|=1. (1)
|z|—o00

Here * denotes the convolution in R, and W is a real-valued even distribution that describes
the interaction between particles. The nonzero boundary condition arises as a background
density. This model appears naturally in several areas of quantum physics, for instance in the
description of superfluids [8 1] and in optics when dealing with thermo-optic materials because
the thermal nonlinearity is usually highly nonlocal [59]. An important property of equation
with the boundary condition at infinity , is that it allows to study dark solitons, i.e.
localized density notches that propagate without spreading [43], that have been observed for
example in Bose-Einstein condensates [32, [6].
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There have been extensive studies concerning the dynamics of equation , and the
existence and stability of traveling waves in the case of the contact interaction W = §y (see
(16l 1T, 15, 14l 25 24, 35, (I 27, 42, 41}, [44] and the references therein). However, there are
very few mathematical results concerning general nonlocal interactions with nonzero conditions
at infinity. In [28 [55] the authors gave conditions on W to get global well-posedness of the
equation and in [29] conditions were established for the nonexistence of traveling waves (in
higher dimensions). Nevertheless, to our knowledge, there is no result concerning the existence
of localized solutions to when W is not given by a Dirac delta. The aim of this paper
is to provide conditions on W in order to have stable finite energy traveling wave solutions,
more commonly refereed to as dark solitons due to the nonzero boundary condition . More
precisely, we look for a solution of the form

Vo(z,t) = u(r — ct),

representing a traveling wave propagating at speed c. Hence, the profile u satisfies the nonlocal
ODE

icu/ +u" +uWx*(1—[uf*))=0 inR. (TWyy )
By taking the conjugate of the function, we assume without loss of generality that ¢ > 0.

Let us remark that when considering vanishing boundary conditions at infinity, this kind of
equation has been studied extensively [37, 21} 54] and long-range dipolar interactions in conden-
sates have received recently much attention [45l 20] 4, [7, [50]. However, the techniques used in
these works cannot be adapted to include solutions satisfying (I]).

We recall that (NGP)) is Hamiltonian and its energy

BV = 5 [ 0¥ @P do+ [V (1= WO - 90 do

is formally conserved, as well as the (renormalized) momentum

p((0) = [ 0.w 0, 00) <1 - "I’(175)\> dz,

at least as infyepr |U(x,t)| > 0, where (21, 22) = Re(z122), for 21, 22 € C (see |27, [17]). In this
manner, we seek nontrivial solutions of (TWyy /) in the energy space

E(R) = {v € Ho(R) : 1~ [v]* € L*(R), v' € L*(R)},
and more precisely in the nonvanishing energy space

NER) ={ve&(R): i%f lv| > 0},

where the momentum will be well defined. It is simple to check, using the Morrey inequality,
that the functions in £(R) are uniformly continuous and satisfy lim, . [v(z)] = 1.

When W is given by a Dirac delta function, equation (TWs, ) corresponds to the classical
Gross-Pitaevskii equation, which can be solved explicitly. As explained in [10], if ¢ > /2 the
only solutions in £(R) are the trivial ones (i.e. the constant functions of modulus one) and if
0 < ¢ < V/2, the nontrivial solutions are given, up to invariances (translations and a multiplica-
tions by constants of modulus one), by

2—¢? . C
ue(x) = 5 tanh <2m> - zﬁ. (2)




Thus there is a family of dark solitons belonging to NE(R) for ¢ € (0,v/2) and there is one
stationary black soliton associated with the speed ¢ = 0. Notice also that the values of u.(oc0)
and wu.(—o0) are different, and thus we cannot relax the condition to limy| 0o ¥ = 1, as is
usually done in higher dimensions.

The study of equation (TWj, .) can be generalized to other types of local nonlinearities such as
the cubic-quintic nonlinearity and some cubic-quintic-septic nonlinearities as shown in [23], 53].
The techniques used by the authors rely on the analysis of a second-order ODE of Newton
type, so that the Cauchy—Lipschitz theorem can be invoked and some explicit formulas can be
deduced. These arguments cannot be applied to due to the nonlocal interaction. For
this reason, our approach to show existence of traveling waves relies on a priori energy estimates
and a concentration-compactness argument, that allow us to prove that there are functions that
minimize the energy at fixed momentum. These minimizers are solutions to and we
can also establish that they are orbitally stable (see Theorem . These kinds of arguments have
been used by several authors to establish existence of solitons for the (local) Gross-Pitaevskii
equation in higher dimensions and for some related equations with zero conditions at infinity
(see e.g. [111 511, 25, 49 2], [5l, [46]). The main difficulty in our case is to handle the nonvanishing
conditions at infinity, the fact that the constraint given by the momentum is not a homogeneous
function along with the nonlocal interactions.

1.2 The critical speed and assumptions on W

Linearizing equation (NGP) around the constant solution equal to 1 and imposing ¢*(¢*=%%) as a
solution of the resulting equation, we obtain the dispersion relation

w(€) = \/€4+ 2W(€)€2, (3)

where W denotes the Fourier transform of W. Supposing that W is positive and continuous at
the origin, we get the so-called speed of sound

(W) :g%wf) = \/2W(0).

The dispersion relation was first observed by Bogoliubov [18] in the study of a Bose—Einstein
gas. He then argued that the gas should move with a speed less than c.(W) to preserve its
superfluid properties. This leads to the conjecture that there is no nontrivial solution of
with finite energy when ¢ > c.(W). Actually, one of the authors proved this conjecture in [29]
in dimensions greater than one, under some conditions on W.

In order to simplify our computations, we can normalize the equation so that the critical
speed is fixed. Indeed, it is easy to verify that the rescaling x +— .70/17\/\(0)1/2 and t — t/W\(O)
allows us to replace W(ﬁ) by )7\/\(5) / W(O) in (NGP). Therefore, we assume from now on that
W(O) = 1 and hence that the critical speed is

Cy = V2.
Before going any further, let us state the assumptions that we need on W.

(H1) W is an even tempered distribution with W e L*>°(R), and W > 0 a.e. on R. Moreover W
is continuous at the origin and W(0) = 1.

(H2) W belongs to C3(R), (W)"(0) > —1 and W(£) > 1 — £2/2, for all |¢] < 2.



(H3) W admits a meromorphic extension to the upper half-plane H := {z € C : Im(z) > 0},
and the only possible singularities of W on H are simple isolated poles belonging to the
imaginary axis, i.e. they are given by {iv; : j € J}, with v; > 0, for all j € J, 0 < Card J <
0o, and their residues Res(W, iv;) are purely imaginary numbers satisfying

iRes(W,iv;) <0, forall j € J, (4)
Also, there exists a sequence of rectifiable curves (I'y)gen» C H, parametrized by 7 :

[ak, bp] — C, such that T'y U [k, k| is a closed positively oriented simple curve that does
not pass through any poles. Moreover,

lim |yx(t)] = oo, for all t € [ag,bg], and  lim length(I'y) sup Wi(t)) =0. (b)
k—o0 k—oo teak,by] vk ()]

Here CF(R) denotes the bounded functions of class C* whose first k derivatives are bounded.
We have also used the convention that the Fourier transform of (an integrable) function is

f(&) :/Re_mgf(x)dx

In particular, the Fourier transform of the Dirac delta is 6y = 1 and thus assumptions |(H1)H(H3)
are trivially fulfilled by W = dg. Let us make some further remarks about these hypotheses.
Assumption ensures that the critical speed exists and that the energy functional is nonneg-
ative and well defined in £(R). Indeed, let us consider v € E(R), set = 1 — |v|? and write the
energy in terms of the kinetic and potential energy as

E(v) = Ex(v) + Ep(v), where Ex(v /|v| dr and E,(v):= i/R(W*n)n.

By hypothesis [(H1)| and the Plancherel theorem, we deduce that

0< Bylo) = g [ Wil <

so that the functions in £(R) have indeed finite energy and their potential energy is nonnegative.

Wz Inll72

NH

Let us recall that for a tempered distribution V € S’(R), we can define the convolution with
a function in LP(R), through the Fourier transform, as the bounded extension on LP(R) of the
operator

Vefi=F 'V f), feSR).

In this manner, the set
Mp(R) ={V € S'(R) : 3C > 0,[|V * fll o) < Cllfllo(w). V.f € LP(R)}

is a Banach space endowed with the operator norm denoted by |[|-|[a¢,. Thus implies that
W e My(R), with
WlLoomy = W] e

We refer to [38] for further details about the properties of M,,(R).

Hypothesis|(H2), combined with |(H1) imply that )7\/\(5) > (1—€2/2)T a.e., that can be seen
as a coercivity property for the energy. In particular, it will allow us to establish the key energy
estimates in Lemmas and E The condition (W)”(0) > —1 will be crucial to show that



the behavior of a solution of (TWyy ) can be formally described in terms of the solution of the
Korteweg—de Vries equation

(1+ (W)"(0)A” —6A%— A =0,

at least for ¢ close to v/2 (see Section .

The more technical and restrictive assumption |(H3)|is used only to prove that the curve
associated with the minimizing problem is concave. Indeed, we use some ideas introduced by
Lopes and Maris [49] to study the minimization of the nonlocal functional

NN
[ m@li©Pde+ | Flut)ds,

RN

under the constraint [py G(w)dz = A, A € R, for a class of symbols m (see (2.16) in [49]). Here
N > 2, F and G are local functions, and the minimization is over w € H*(R). The results
in [49] cannot be applied to the symbol m(§) = 17\/\(5) nor to the minimization over functions
with nonvanishing conditions at infinity (nor N = 1). However, we can still apply the reflexion
argument in [49)], which will lead us to show that

[ovens= [ ovspi (6)

for all odd functions f € C2°(R), where f is given by f(z) = f(z) for 2 € Rt and f(z) = —f(x)
for z € R™. Using the sine and cosine transforms

fi) = [ sine)@its, fi€) = [ costat) o
we will see in Section |3| that inequality @ is equivalent to the following assumption.

(H3") W satisfies )
/O WE)(IF: (&)1 = 1fe(&)*)dé > 0,
(R)

for all odd functions f € C°(R).

Therefore, we can replace by the weaker (but less explicit) condition . Finally, let us
notice that if W = §p, we can verify that condition [(H3’)| is satisfied by using the Plancherel

formula, - . .
e 2
/D (6 de = / |(6)[2de = / () P

At the end of this section we will give some examples of potentials satisfying |(H1)H(H3)!

1.3 Main results

In the classical minimization problems associated with Schrodinger equations with vanishing
conditions at infinity, the constraint in given by the mass. In our case, the momentum is the
key quantity that we need to take as a constraint to show the existence of dark solitons. Let us

verify that the momentum
1 1
po) = [ (1- ). )
2 )i o2



is well defined in the nonvanishing energy space. Indeed, a function v € NE(R) is continuous
and admits a lifting v = pe’®, where p = |v| and ¢ are real-valued functions in H._(R) (see
e.g. [34]). Since v € NE(R), we have infg p > 0, and using that

|’U/’2 :p/2+p2¢12

we infer that |¢/| < [v/|/infg p, so that ¢’ € L?(R). Hence, setting n = 1 — |v]? € L*(R), we get
that the integrand in is equal to n¢’, and therefore is well-defined since n¢’ € L*(R). In
conclusion, for any v € NE(R), the energy and the momentum can be written as

1 , 1 , 1 1 /
B =g [o45 [ AR5 [V and a0 =3 [ o

under the assumption W € L™ (R).

Let us now describe our minimization approach for the existence problem, assuming that W
satisfies and For q > 0, we consider the minimization curve

Emin(q) := inf{E(v) : v € NER), p(v) = a},

that is well defined in view of Lemmal[3.1] Moreover, this curve is nondecreasing (see Lemma/3.11]).
We also set
g« = sup{q >0 | Yv € E(R), E(v) < Enin(q) = i%f|v| > 0}. (8)

If is also fulfilled and q € (0, q*), we will show that minimum associated with Enn(q) is at-
tained and that the corresponding Euler-Lagrange equation satisfied by the minimizers is exactly
, where ¢ appears as a Lagrange multiplier (see Section @ for details). More precisely,
our first result establishes the existence of a family of solutions of parametrized by the
momentum.

Theorem 1. Assume that [(H1), [(H2)| and |(H3)| hold. Then q. > 0.027 and for all q € (0,qx)
there is a nontrivial solution u € NE(R) to (TWy_J)) satisfying p(u) = q, for some c € (0,v/2).

It is important to remark that the constant g, is not necessarily small. For instance, in the
case W = Jy, the explicit solution allows us to compute the momentum of u,, for ¢ € (0, v/2),
and to deduce that q. = 7/2. Moreover Epi, can be determined and its profile is depicted in
Figure |1l Notice that Ep, is constant on (gs,00) and that in this interval the minimum is not
attained (see e.g. [10]). Since |[(H1) are satisfied by W = o, and since there is uniqueness
(up to invariances) of the solutions to (TWj, ), we deduce that the branch of solutions given by
Theorem (1| corresponds to the dark solitons in , for ¢ € (0,4/2). In the general case, we do not
know if the solution given by Theorem [l|is unique (up to invariances). Actually, the uniqueness
for nonlocal equations such as can be difficult to establish (see e.g. [3], [46]) and goes
beyond the scope of this work. Concerning the regularity, the solutions given by Theorem [I] are
smooth and we refer to Lemma, for a precise statement.

To establish Theorem [I} we analyze two problems. First, we provide some general properties
of the curve Fpniy. Then, we study the compactness of the minimizing sequences associated with
FEnin. The next result summarizes the properties of Epin.

Theorem 2. Suppose that W satisﬁes and . Then the following statements hold.

(i) The function En is even and Lipschitz continuous on R, with

| Exnin (p) — Emin(q)] < \/§|p —q|, forallp,qeR.

Moreover, it is nondecreasing and subadditive on RT.
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Figure 1: Curve E, and solitons in the case W = .

(ii) There exist constants q1, A1, As, As > 0 such that

V29— A19%% < Emin(q) < V2q — A2¢°/3 + Asq?,  for all q € [0, q1].

(iii) If|(H3)| or |(H3)| is satisfied, then Enmin is concave on RT.

(iv) We have qx > 0.027. If Exyin is concave on RY, then En, 1s strictly increasing on [0, q.),
and for all v € E(R) satisfying E(v) < Emin(qs), we have v € NE(R).

(v) Assume that Eny, is concave on RY. Then Enin(q) < V24, for all ¢ > 0, Empiy is strictly
subadditive on RT, and the right and left derivatives of Emin, denoted by E;in and E_,
respectively, satisfy

0< Bl (a) < Byla) < V2. (9)

min

Furthermore, EX. (q) — ET. (0) =v/2, as ¢ — 0T.

m min

To prove the existence of solutions we use a concentration-compactness argument. Applying
Theorem , we show that the minimum is attained at least for q € (0, q«), so that the set

Sq={v e NER) : E(v) = Emin(q) and p(v) = q}

is nonempty, and thus there are nontrivial solutions to (TWyy ) (see Theorem [6.3). Hence, we
can rely on the Cazenave-Lions [22] argument to show that the solutions are stable. Let us
remark that the Cauchy problem for (NGP)) was studied in [28]. Precisely, using the distance

dg (v1,v2) = [[v1 — val 2Ry 4 Loo) + V1 — all L2y + 1] = |valll 2wy,

the energy space £(R) is a complete metric space and for every ¥y € £(R) there is a unique global
solution ¥ € C'(R, E(R)) with initial condition ¥y, provided that W € M3(R) and that W > 0
or that infg W >0 (see Theorem . However, these conditions are not necessarily fulfilled by
a distribution satisfying Nevertheless, using the energy estimates in Section 2, we
can generalize a result in [28] in the following way.



Theorem 3. Assume that W € M3(R) is an even distribution, with W >0 ae. on R, and
that W of class C? in a neighborhood of the origin with W(0) = 1. Then for every ¥y € £(R),
there exists a unique ¥ € C(R,E(R)) global solution to (NGP)) with the initial condition ¥y.

Moreover, the energy is conserved, as well as the momentum as long as inf e |[V(x,t)| > 0.

Remark 1.1. As explained before, the condition )7\/\(0) = 1 in Theorem [3|is due to the normal-
ization, and it can be replaced by W(0) > 0.

We can also endow £(R) with the pseudometric distance

d(v,v2) = llvy — voll 2wy + llJv1] = v2lll L2 (),
or with the distance used in [10]

da(vi,va) = [[v] = vall 2@y + llv1] = |valll L2y + lvr — vall oo (= a,4))

for A > 0. Notice that d(v1,v2) = 0 if and only if |vi| = |ve| and v — v is constant. We say
that the set Sy is orbitally stable in (£(R),d) if for all ¥y € £(R) and for all € > 0, there exists
0 > 0 such that if

d(Wo,Sq) <6,

then the solution W(t) of (NGPJ associated with the initial condition ¥, satisfies

supd(U(t),Sq) <e.

teR
Similarly, the set S, is orbitally stable in (£(R),d4) if for all ¥y € £(R) and for all € > 0, there
exists 6 > 0 such that if da(¥o,Sq) < 9, then sup;cp infyer da(¥(- —y,t),Sq) < €. Here we need
to introduce a translation of the flow, since the d4 is not invariant under translations.

Now we can state our main result concerning the existence and stability of traveling waves.

Theorem 4. Suppose that W satisfies (H1)| and [(H2), and that Ewyi is concave on RT. Then

the set Sq is nonempty, for all q € (0,q.). Moreover, every u € Sy is a solution of (TWyy J) for
some speed cq € (0, V/2) satisfying

Ein(a) < ¢q < Epi(a)- (10)

Also, ¢cqg = V2 as q — 07

In addition, if W € M3(R), then Sy is orbitally stable in (E(R),d) and in (E(R),da), for all
q € (0,q+). Furthermore, for all ¥y € E(R) and for all € > 0, there exists & > 0 such that if
d(Wo,Sq) < 6, then the solution ¥(t) of (NGP) associated with the initial condition ¥q satisfies

sup inf da(¥(- —y,t),Sq) < e.
teR YER

In this manner, it is clear that Theorem [I]is an immediate corollary of Theorems [2]and [, and
that the branch of solutions given by Theorem [l is orbitally stable provided that W € Mj3(R).
In particular, we recover the orbital stability proved by several authors for the solitons given
in (2) (see e.g. [47, 16 24] and the references therein).

We point out that we have not discussed what happens with the minimizing curve for q > q..
As mentioned before, for all ¢ > g, the curve Emin(q) is constant for W = dy (see Figure (1)
and S, is empty. Moreover, the critical case q = g, is associated with the black soliton and its
analysis is more involved (see e.g. [12, B9]). Numerical simulations lead us to conjecture that
similar results hold for a potential satisfying (H3)| i.e. that Emin(q) is constant and that S,

8



is empty on (g«, 00), and that there is a black soliton when q = q,. In addition, in the performed
simulations the value g, is close to 7/2 (see Section[7)). Furthermore, these simulations also show
that |(H2)| and [(H3’)| are not necessary for the concavity of Ep;, nor the existence of solutions
of (TWy.J). We think that I@ could be relaxed, but that the condition (W)”(0) > —1 is
necessary. As seen from Theorem [2| we have only used as a sufficient condition to ensure
the concavity of Eni,. If for some W satisfying and one is capable of showing that
FEmin is concave, then the existence and stability of solutions of is a consequence of
Theorem @l

In addition to the smoothness of the obtained solutions (see Lemma , it is possible to
study further properties of these solitons such as their decay at infinity and uniqueness (up to
invariances). Another related open problem is to show the nonexistence of traveling waves for
¢ > /2. We will study these questions in a forthcoming paper.

We give now some examples of potentials satisfying conditions |(H1)| [(H2)| and |(H3)|

(i) For g > 2a > 0, we consider W, g = 6f2a (60 — e P1#1) | s0 its Fourier transform is
or B 2ap
W - (1 - )7
a,ﬁ(€> B — 2 62 4 62

so that )7\/\0(75(0) =1, and it is simple to check that [(H1)| and [(H2)| are satisfied. To verify
(H3)|, it is enough to notice that the only singularity on H of the meromorphic function
W g is the simple pole v = i3 and that

— af

iRes(Way,8,i8) = — <0

B — 2« '

Since 17\/’\&’5 is bounded on H away from the pole, we conclude that |(H3)|is fulfilled. We
recall that, by the Young inequality, L' (R) is a subset of M3(R). Therefore W, 5 € M3(R)
and Theorem [4] applies.

(ii) For a € [0,1), we take the potential W, = ﬁ(ég — V), where

V(z) = —% In(1—e ), and 17(5) = 3( COt}ggg) _ 1)-

It can be seen that V is a smooth even positive function on R, decreasing on R, with
9(0) = 1 and decaying at infinity as 3/£. Thus the conditions and are satisfied.
As a function on the complex plane, Visa meromorphic function whose only singularities
on H are given by the simple poles {inl}sen+, and

- - 3
i Res(Wy, iml) = i Res(—=V,inl) = 7
™
To check|(H3)| we define for k > 2, the functions v 4 (t) = (k+1/2)7+it, t € [0, (k+1/2)n],
top(t) = £ ik +1/2)m, L€ [(k+1/2)m, —(k + 1/2)x], and A x(t) = —(k + 1/2)7 + it
t € [(k+1/2)7,0], so that the corresponding curve I'; is given by the three sides of a
square and I'y does not pass through any poles. Using that for z,y € R (see e.g. [2])

cosh(2z) 4 cos(2y) |1/2
cosh(2x) — cos(2y) |~

| coth(x 4 iy)| =

we can obtain a constant C' > 0, independent of k, such that ]ﬁ(’yjk(tm < C, for all
t € lajk, bjgl, for j € {1,2,3}, where [a;,b;x] is the domain of definition of ;. As a
conclusion, is fulfilled. Since V € L'(R), we conclude that W, € M3(R) and therefore
we can apply Theorem M to this potential.



(iii) We can also construct perturbations of previous examples. For instance, using the function
V defined above, we set

— 2m?n? V(€) o
Wom(&) = m2n? + 20( 2 + £2 + m27r2)’

for 0 € R and m € N* so that the poles on H are still ¢wN*. It follows that for
o > —m>m?/2, the potential satisfies |(H1)| and that |(H3)| holds if o < 3. We can also

check that for o € (—m2m?/2,3], W\U,m satisfies (H2)L and therefore Theorem (4| applies.

In Section [7] we perform some numerical simulations to illustrate the shape of the solitons and
the minimization curves associated with these and other examples. The rest of the paper is
organized as follows: we give some energy estimates in Section [2] In Section [3] we establish the
properties of the minimizing curve and the proof of Theorem [2] and in Section [ we show the
compactness of the sequences associated with the minimization problem. The orbital stability of
the solutions and Theorem [3|are proved in Section[5] We finally complete the proof of Theorem
in Section [6l

2 Some a priori estimates
We start by establishing an L*-estimate for the functions in the energy space in terms of their
energy.

Lemma 2.1. Assume that W € Ma(R) satisfies
W) > (1—r€)F, ae onR, (2.1)
for some k> 0. Let v € E(R) and set n:=1— |[v|?. Then

17]|200 < 8RE(v)(1 4 8KE(v) 4+ 2/2RE(v)) (2.2)

and
nll32 < 8FE(v)(1 + 8RE(v) + 21/2RE(v)), (2.3)
with kK = k + 1.

Proof. Let W € Ms(R) and v € £(R), and set p = |v|, = 1 — p? and x € R. By Plancherel’s
identity

T 1 A

P =2 [ < [P =g [0+t (2.4
—o0 R T JR

By (2.1), we have 1 < W({) + k€2 a.e. on R, so that the term on the right-hand side of (2.4)) can

be bounded by

1 . 1 o - . ~ ’
3 [+ < 5 [ PO +R2I° = 4By(0) + 7 [ o (2.5

with & = k 4+ 1. Now we notice that 7’ = —2pp/, so that n'? < 4[|v||2.p™. Also, if |v| # 0 in
some open set, then we can write v = pe® and |v/|? = p? + p?62. On the other hand, the set
Q := {v = 0} coincides with the set {f = 1}, and v/ = 0 and 5/ = 0 a.e. on 0. Therefore, we
conclude that

n? < A|v||2<|v'|*> ae. onR. (2.6)

10



Combining , and , we have

2(x) < 4By (v) + 87[[0] 3 Bi(0) < max(d, 87]v]2)E(v). (2.7
If [[v]|2 < 1, inequality follows, since max(4,8%) = 8%. Thus we suppose now that

o2 > 1. 2.5)
Bearing in mind that n(+o00) = 0, we deduce that there is some 2y € R such that
a = miny =n(xe) = 1 = [|[|Z.
Therefore, using for x¢ and , we get
a® < 8k(1 — a)E(v).

Solving the associated quadratic equation and using that va +b < \/a + Vb, we conclude that

a> %(—SRE(U) — /64R2E(v)2 + 32RE(v)) > —8kE(v) — 24/2RE(v),

which implies that
0] <14 8RE(v) + 2\/28E(v). (2.9)
By putting together (2.7)), (2.8)) and ({2.9), we obtain (2.2)).
To prove (2.3)), we use the Plancherel identity and argue as before to get
1 5 .
L < 5 [OV© +w€2)il? < 4Bp(o) + 5 [ 1> < 4By(0) + Srlulf Bi).

= or
Therefore, using (2.9)), inequality (2.3)) is established. O

Remark 2.2. Let us suppose that W € Ms(R) is even and that also W is of class C2 in some
interval [—r, 7], with r > 0. Then (W)'(0) = 0, and by the Taylor theorem we deduce that for
any £ € (—r,r), there exists £ € (—r,r) such that

_— _— ~§2

W(E) =1+ W)"(©)% = 1 - pe,

where 1 = max_,,| (OV)"|/2. Tf 1/p < 72, we set k = p. If 1/p > 72, we take k = 1/r2.
Assuming also that w > 0 a.e. on R, we conclude that in both cases condition ([2.1]) is fulfilled.

From now on until the end of this paper, we assume that [(H1)[ and |[(H2)| are satisfied, so in
particular Lemma holds true with k = 1/2. In the sequel, we also use the identity

/(W*f)g = /(W*g)f, for all f,g € L*(R), (2.10)
R R

that is a consequence of parity of W stated in

A key point to obtain the compactness of the sequences in Section [4is that the momentum
can be controlled by the energy. This kind of inequality is crucial in the arguments when proving
the existence of solitons by variational techniques in the case W = §g (see |11, 25]). Moreover,
for an open set © C R and u = pe? € NE(R), we need to be able to control the localized
momentum

1
pa(u) == 2/9779'7

11



by some localized version of the energy. By the Cauchy inequality, setting as usual n = 1 — |ul?,

we have
V2|pa(u)| < 1/77 4= /9’2 1/n2+ ! /p29'2 (2.11)
4 2 4 Qigfp2 0 ’ '

but it is not clear how to define a localized version of energy, due the to the nonlocal interactions.
We propose to introduce the localized energy

/| |2 /W*’UQ)’OQ, with ng = nlq.

Notice that if Q = R, then Eq(u) = E(u) and pg(u) = p(u). Since ng can be discontinuous (and
thus not weakly differentiable) when Q is bounded, we also need to introduce a smooth cut-off
function as follows: for {2y an open set compactly contained in €, i.e. g CC 2, we set a function
X0,0, € C°(R) taking values in [0, 1] and satistying

1 if x € Qy,
) = 9.12
X (2) {0 itreR\ Q. (212)

In the case 2 = 0y = R, we simply set xn .o, = 1.

Lemma 2.3. Let Q,Qy C R be two smooth open sets with Qg CC Q and let xa,0, € C°(R) as
above. Let u € E(R) and assume that there is some € € (0,1) such that 1 —e < [u|> <1+4¢ on

Q. Then >
Valpa(u)] < 22

where the remainder term Aq(u) satisfies the estimate

+ Aqg(u), (2.13)

[Aq(w)| < C(lInllz2@00) + I1X@.00lz2@000) + 11X0.00 I72(0000))- (2.14)

Here C = C(E(u),¢€) is a constant depending on E(u) and €, but not on Q nor Q. In particular,
in the case Q = Qy =R, we have

[p(u)| < \/(1(—)5) (2.15)

Proof. As usual, we write u = pe’ on Q. As in (2.11), using the Cauchy inequality and that
1—e<p?<1+¢yo0nQ, we have

o 1 ,
\/§|pQ(U)‘ < 4/9772—1—20(1_6)/Qp292, (216)

with o > 0 to be fixed later. Now, we write

g 2 # 202 _ 9 2
4/Qn +20(1_€)/Qp0 —4/9(779 (W*UQ)UQ)JrRQ(UL

where 1
L g s 2n/2
Let 70 = nxa,0, and
Aro(u) =2 2 i) — (W x10) W % iiq)i] (2.17)
Let=75 (6 = 710) = OV *na)na + (W = ija)ia ) '

12



Using the Plancherel theorem and [(H2), we have
o o
4/ (77?2 - (W 779)779) = / (779 - (W= 77(2)779) + A1 0(u)
Q
= & [P (1= W©) + Aralw
< _ 2= 2 A
= Ton /Rf liial? + Arq(u)

g

= § [0+ Aralw).

Noticing that
i = (1'xe,00)” + 201 x0,00X0,00 + (MX0.00)°s
and that 0 < xn,q, < 1, by putting together the estimates above, we conclude that

Vapa (| < § [ 1%+ Ra(w) + Aafu),

where the remainder term is given by

g

3 /Q (20 x.00X0,0, + (1X0,0,)%)-

Aq(u) = Ara(u) + Baq(u), Aga(u) =
Therefore, since 72 < 4(1 + €)p’?, taking o = 1/v/1 — €2, we obtain

Valpo(w] < =2

A )+ + vz J,0V e mim + Balw)

which gives us (2.13). It remains to show the estimate in (2.14]). For the first term in A o, we
see that

/ |77§22 - 77&22} = / UK |]1?2 - X?I,QO‘ < HUH%Q(Q\QO)' (2.18)
Q 2\Qo

For the other term in A; o, using (2.10)), we have

/R(W*UQ)UQ_(W*ﬁQ)ﬁQ =

< AWlms lInll 2y lInll L2 @va0) - (2.19)

R(W * (na + 10)) (na — 7o)

Concerning in Aj o, we have

g
Az a0l < g(4HUHL0<>(R)HUIHL2(R)HnX/Q,QOHL2(Q\QO) + H77X/Q,QOH%2(Q\QO))' (2.20)

By putting together (2.18)), (2.19) and (2.20)), and invoking Lemma [2.1] we obtain (2.14). O

From now on, we set for q > 0,

Ein(q)
vV2q

In this manner, the condition Emin(q) < v/2q is equivalent to $q > 0. We also define for q > 0
and ¢ > 0, the set

Sy i=1— (2.21)

Xg5 ={v e NEMR) : |p(v) —q| < and |E(v) — Emin(q)| < 0} (2.22)

13



Lemma 2.4. Let q > 0, L > 1 and suppose that ¥4 > 0. Then there is o9 > 0 such that for all
d € 10,60] and for all v € X, 5, there exists T € R such that

- o(@)P| = 22,

Proof. We argue by contradiction and suppose that the statement is false. Hence, for all §y > 0,
there exists ¢ € [0,dp] and v € X 5 such that

1T = [v[[| oo () < Zq/L.
Then, taking dy = 1/n, there is 6, € [0, 1] and v, € X; 4, such that
11— [val?[| oo ) < Zq/L.
Since X4 € (0,1}, considering € = ¥4/L, we have € € (0,1). Therefore we can apply Lemma

to conclude that 1

V2ol < o5

E(Un)7
and letting n — oo, we get
by
\fQQ(l - fq) < Emin(q)7
which is equivalent to 34 < 34/L, contradicting the fact that L > 1. O

Lemma 2.5. Let E > 0 and 0 < my < 1 be two constants. There is lg € N, depending on E
and mq, such that for any function v € E(R) satisfying E(v) < E, one of the following holds:

(i) For all z € R, |1 — |v(z)|?| < mo.

(ii) There exist | points x1,x2,...,x;, with | <ly, such that

l
11— |o(z)?| > mo, V1 <5 <I, and |1—|v(2)]*] <mo, Vo €R\ U[xj —1,z; +1].
j=1

Proof. The proof is a rather standard consequence of the energy estimates. For the sake of
completeness, we give a proof similar to the one given in [10].

Let us suppose that |(i)| does not hold. Then the set
C={zeR:n(z)] = mo},

is nonempty, where n = 1 — |v|? as usual. Setting I; = [j —1/2,7 + 1/2], for j € Z, the assertion
in will follow if we show that [ := Card{j € Z, I; NC # 0} can be bounded by some I,
depending only on F and myg.

Using that ||v|'| = [v/| (see Lemma 7.6 in [36]), the Cauchy-Schwarz inequality and (2.2)), we
deduce that there exists a constant C', depending on FE, such that for all z,y € R,

Y /
/ fol'Jo
X

Thus, setting r = m3/(4C?), we deduce that for any z € C and for any y € [z —r, 2z + 1],

1/2

1
[o(@)* —[o(y)[?| = 2 < 2[vll o) 10| 2wy |2 — |2 < Cla -yl

mo

)l = mo — [l)* = [o(z)*| = =~
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Taking ro = min(r, 1/2) and integrating this inequality, we get, for any z € C,

z+ro m2r0
/ (y)dy > ==
z

—-ro

Noticing that [z — rg,z 4+ ro] C fj =[j—1,j+1],if z € I; NC, we conclude that

1 = Z 1 < 2|nll72
JEZ,T;nC#D T

where [ :=Card{j € Z : I; NC # 0}. The conclusion follows from (2.3)), taking lp = 21, since
1 <2l O

3 Properties of the minimizing curve

For the study of the minimizing curve, it will be useful to use finite energy smooth functions
that are constant far away from the origin. For this purpose we introduce the set

EFCMR)={ve NER)NC™®(R) : IR > 0 s.t. v is constant on B(0, R)“}.

Notice that in the functions in the space £5°(R) can have different values near +o00 and near
—00. Bearing in mind that the solitons u,. in satisfy uc(+00) # uc(—00), we will see that
these kinds of functions are well-adapted to approximate the solutions of (TWyy /).

The next result shows that Epni, is well defined and that its graph lies under the line y = V2x
on RT.

Lemma 3.1. For all q € R, there exists a sequence v, € E5°(R) satisfying
plvn)=q and E(v,) = V2|ql, asn— oco. (3.1)
In particular the function Emin : R — R s well defined, and for all ¢ > 0

Proof. The case q = 0 is trivial since it is enough to take v = 1. Let us assume that q > 0 and
consider y € C§°(R) such that [ x> = q/v/2. Let us define

V2 [, 1 1 a
Then it is enough to consider
. o
U = ppe®, where pp(z) =1 — ap)'(Bpz) and 0, (x) = ﬁﬂ—nx(ﬁn:ﬂ).
n
We can assume that v, does not vanish since |v,| = |pn| > 1—|an|||X/l| oo (r)- Thus the momentum

of v, is well defined and we have

b =5 [(1= 0200 = 52 [ o) - a2 ) W)y
()é2 063
AR
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It remains to show that E(v,) — v/2q. For the kinetic part, we have

Bilv) = [ (1= 0 (Bua))auy'(Bu)*da + 5 [ (0B ()P

a2

a2
e / (1= o )X Py + 5 [ Py

= / =
2

since ay, B, — 0 and a2/B, — 1. For the potential energy, using Plancherel’s theorem, the
dominated convergence theorem and the continuity of W at 0, we get

Pu(vn) = 5= [ WOIF( =) ) =

_>//2 :i
V2

Therefore we conclude that (3.1) holds true for ¢ > 0. In the situation q < 0, it is enough to
proceed as above taking

o [ WO — P (O de

) |l q —i6
=—=—F— and wv, = ppe .
/RX V2 V2 &
This concludes the proof of (3.1)). By the definition of Euyin, we also have Emin(q) < E(vy,).
Letting n — 0o, we obtain (3.2]). O

Lemma 3.2. The curve Enin s even on R.

Proof. Tet q € R and u,, = p,e'® € NE(R) be such that E(u,) — Ewnin(q) and p(uy,)
Setting v, = ppe~ " it is immediate to verify that E(v,) = F(u,) and that p(v,) = —p(u,)
—q. Therefore

q.

E(vn) 2 Emin(—9),
>

and letting n — oo we conclude that Fuin(q) > Fmin(—q). Replacing q by —q, we deduce that
Enin(—q) = Enin(q), i.e. that Eni, is even. O

Corollary 3.3. The constant defined in satisfies q. > 0.027.
Proof. Let v € E(R), with E(v) < Enin(q). Then, by combining (2.2)) and (3.2), with & = 3/2,

we have

11— 022 < 12v/2q(1 + 12V2q + 2(3v/2q)2).

Since the right-hand is an 1ncreasmg function of g, and since the solution of the equation

12v22(1 + 12v/22 + 2(3v/22)2) = 1 is

V3 ((12V3 + 4v31)28 — 4)°
288 (12V/3 +44/31)%/3

the conclusion follows from the definition of q.. O

~ 0.0274,

In view of Lemma , it is enough to study Emi, on RT. Concerning the density of the space
EC(R) in NE(R), we have the following result.
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Lemma 3.4. Let v = pe'? € NE(R). Then there exists a sequence functions v, = pne?® in

EC(R), with p, — 1,0, € C°(R), such that
lon = pllerey + 100 — O'llz2@) — 0, asn— oo (3.3)

In particular
E(vy,) = E(w) and p(v,) = p(v), asn— 0. (3.4)

Proof. Since v = pe? € NE(R), we deduce that v € L>®(R) and that |v(z)| — 1, as |z| — oo.

- ()2~ 1
g(z) =p(z) —1=lv(z)| - 1= @11

Then g € L?(R) and since ¢’ = (v/,v)/|v|, we conclude that g € H!(R). Therefore, there exists
gn € C°(R) such that g, — g in H*(R). Setting p,, = g, + 1, we deduce that ||p, — p|/z1 — 0,
as n — 00.

Concerning 6, using the density of C°(R) in L?(R), we get the existence of a sequence
¢n € C°(R) converging to & in L?(R). Hence, taking

o) = | OO b, (3.5)

we conclude that 6/, —0" — 0 in L?(R) and that v, := p,e®®" belongs to E°(R). The convergences
in (3.4) are a direct consequence of the convergences in (3.3)) and the Sobolev injection H!(R) <
L>®(R). O

Remark 3.5. If v € °(R), then we can write v = pe'®, with p,§ € C*°(R) and such that
p— 1,0 € C*(R). Hence the function 6 is constant outside supp(#’) and without loss of
generality we can assume that there is R > 0 such that 6(z) = 0 for all x < —R, or that 6(x) =0
for all x > R (but we cannot assume that #(xz) = 0 for all |z| > R). Therefore, w.l.o.g. we can
suppose that v(x) = 1 for all # < —R or that v(z) = 1 for all + > R, for some R > 0 large
enough.

To handle the nonlocal interaction term in the energy in the construction of comparison
sequences, we use introduce the functional

B(f) = /R W= f)f.

for f € L%(R;R). It is clear that if u € £(R), then B(1—|u|?) = 4E,(u). The following elementary
lemma will be useful.

Lemma 3.6. For all f,g € L*>(R) we have

B(f +g) = B(f) + Blg) + 2 /R W= fg. (3.6)

Assume further that g € C°(R) and that there is a sequence of numbers (yy) such that y, — oo,
as n — oo. Then, setting set gn(z) = g(x — yn), we have

B(f 4+ gn) — B(f) — B(gn) :2/R(W*f)gn—>0, as n — oo. (3.7)

Proof. The identity (3.6]) is a direct consequence of (2.10). The convergence in ({3.7)) follows from
the fact that g, — 0 in L?(R). O
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We finally conclude that we can modify a function with energy close to Epin(q) such that it
is constant far away, but the momentum remains unchanged.

Corollary 3.7. Let u = pe® € NE(R). There ewisls a sequence u, € E(R) such that

p(un) =pu) and E(u,) = E(u), asn— oco. (3.8)
Proof. Let v, = ppe? € E5°(R) be the sequence given by Lemma such that

E(v,) —» E(u) and p(v,) = p(u), asn— oo. (3.9)

If p(u) # 0, we set a,, = p(u)/p(vy,). Therefore o, — 1 and it is straightforward to verify that
the sequence u, = p,e'*n% satisfies (3.8).

The case p(u) = 0 is more involved. In this instance, we may assume that J,, := p(v,) # 0
for n sufficiently large. Otherwise, up to a subsequence, the conclusion holds with u, = v,. By
Lemma we get the existence of a sequence wy, € ;°(R) such that

p(wy) = =0, and E(w,) —0, asn— oco. (3.10)
Let R,,r, > 0 be such that the functions
wi=1—|v,? and g,:=1—|w,|?

are supported in the balls B(0, R,,) and B(0,r,), respectively. Taking into account Remark
without loss of generality, we can assume that the following function is continuous and belongs
to &5°(R)
Un, on (—oo, Ry,),
Up = ¢ 1, on [Ry, —Tn + Yn), (3.11)
Wn (- = Yn), on (—Tn + Yn,00),

where y,, is a sequence of points such that R,, < —r, +y,. For simplicity, we set W, = w, (- —yn)
and g, := 1 — |iy,|?. Tt follows that

p(un) = p(vy) + p(w,) =0 and  Ex(up) = Ex(vn) + Ex(wy). (3.12)

In particular, combining with (3.9) and (3.10), we infer that Ex(u,) — FEx(u). In addition,
1 — |un|? = fn + Gn, so that (3.6) leads to

Buln) = 1B + 1B + 5 [ OV £)50 = En(wn) + Egluwn) + 5 [ OV )5

2
Therefore
[Ep(un) = Ep(vn)| < Ep(wn) + [W]aell full 2l gnll 2 (3.13)
Using the estimate (2.3)), (3.9) and (3.10), we conclude that || f,||z2 is bounded and that ||g,||z2 — O,
so that Ej(u,) — Ep(u), which completes the proof of the corollary. O

Corollary 3.8. For all q > 0 and € > 0, there is v € E;°(R) such that
p(v)=q and E(v) < Enin(q)+e.

In particular

Eunin(a) = nf{E(v) : v € £°(R), p(v) = q}.
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Proof. Let ¢ > 0 and € > 0. By definition of Ey,, there is a sequence v, € NE(R) such that
p(vm) = q and E(vy,) = Emin(q), as m — co. Hence there is my such that

E(vmg) < Enmin(q) + /2. (3.14)

By Corollary [3.7, we deduce the existence of v € £5°(R) such that p(v) = p(vm,) = q and
|E(Vm,) — E(v)| < e/2. Combining with (3.14)), the conclusion follows. O

Proposition 3.9. E.;, is continuous and
| Emin (p) = Ewmin(a)] < V2lp —al,  for allp,q €R. (3.15)
Proof. We assume without loss of generality that q > p > 0. It is enough to show that
Enin(0) < Euin(p) + vV2(q — p). (3.16)

Let § > 0. By Corollary and Remark there is vs € E°(R) such that for some Rs > 0,
the function 1 — |vs|? is supported on B(0, Rs), vs = 1 on [Rs, 00),

p(vs) =p and FE(vs) < Emin(p) + 6/3. (3.17)

Now, setting s = q¢ — p and invoking Lemma , we deduce that there is ws € £5°(R) such that
for some 75 > 0, 1 — |ws|? is supported on B(0,rs), ws = 1 on (—o0,r;s],

plws)=s and E(ws) < V2s+6/3. (3.18)

Let fs = 1 — |vs|? and gs = 1 — |ws|?>. Then fs and gs have compact supports and applying
Lemma|3.6|we can choose ys € R, large enough, such that their supports do not intersect. Finally,
we infer that the function
Vs, on (—oo, Rs),
us = 1, on [Rs, —rs + ys], (3.19)
ws(- —ys), on (=75 + Y5, 00),
satisfies
p(us) = p(vs) + p(ws(- —ys)) =q and  Ei(us) = Ex(vs) + Ex(ws). (3.20)
Moreover, since
1—usl® = f5 + 95(- — vs),

applying Lemma [3.6] and increasing ys if necessary, we conclude that

Ey(us) < Ep(vs) + Ep(ws) +6/3. (3.21)

Therefore, combining (3.17), (3.18)), (3.20) and (3.21), we get

Emin(0) < B(us) < Brnin(p) + V2(q — p) +3.

Letting § — 0, we obtain (3.16). O

As noticed by Lions [48], the properties established above are usually sufficient to check that
the minimizing curve is subadditive, as stated in the following result.

Lemma 3.10. E., s subadditive on Ry, i.e.

EJmin(iJ + q) < Emin(p) + Emin(q)a fOT‘ all p,q > 0. (322)
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Proof. Let p,q > 0 and § > 0. By using Corollary and arguing as in the proof of Proposi-
tion we get the existence of v, w € £§°(R) such that

p(v) =p, pw)=q, E) < Emin(p)+5/3 and E(w) < Emin(q) +6/3,

with v and w constant on B(0, R)¢ and B(0, 7)€, respectively, for some R,r > 0. As in previous
proofs, we define
v, on (—oo,R),
u=41, on [R,—r + ],
w('_y)v on (—7“+y,00),
with y large enough such that
Ey(u) < Ep(v) + Ep(w) +9/3.

Since Ex(u) = Ex(v) + Ex(w) and p(u) = p(v) + p(w) = p + q, we conclude that

)
Emin(p + CI) < E(u) < E(U) + E(w) + g < Emin(p) + Emin(q) + 4.
Letting 6 — 0, inequality (3.22]) is established. O]

In some minimization problems, there is some kind of homogeneity in the functionals that
allows to obtain the strict subadditive property. In our case, the homogeneity give us only the
monotonicity of the curve.

Lemma 3.11. E.;, is nondecreasing on RT.

Proof. Let 0 < p < qand A =p/q € (0,1). As in previous proofs, for § > 0 we take v = pe in
NE(R) such that E(v) < Emin(q) 4+ 6 and p(v) = q. Then we verify that the function vy = pe'?
satisfies p(vy) = Aq and E(vy) < E(v). Therefore

Emin()\q) < E(U)\) < E(U) < Emin(q) + 6,

so that the conclusion follows letting § — 0. O

Hypothesis|(H3)| provides a sufficient condition to ensure the concavity of the function Epjy.
As mentioned in the introduction, the proof relies some identities developed by Lopes and Marig
in [49].

Proposition 3.12. Assume that[(H3")| holds. Then for all p,q > 0,

Emin(p) + Emin(q) . p+q

In particular Emi, is concave on RT.

Proof. Let p,q >0 and § > 0. By Corollary [3.8] there is u = pe® € £5°(R) such that

_pta (Ptay 9
p(u) = —— and E(u)SEmm( 5 )+2. (3.24)

By the dominated convergence theorem, it follows that the map G : R — R given by

Gla) = ;/Oou ~ )
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is continuous, with lim, 00 G(a) = 0 and lim,—,— G(a) = p(u) = (p+q)/2. Hence, by the mean
value theorem, there is ag such that G(ag) = p/2. Thus the translation @(z) := p(x)e?® =
p(z — ag)e®®®=) gatisfies

1

/00(1—~2)é/=p and 1/0 (1-p2)f =1 (3.25)
2 Jo P 2 2 ). V7 F 2’ '

For notational simplicity, we continue to write u, p and 6 for @, p and 6. Now we introduce the
reflexion operators

) o(x), if x>0, _ ) p(=2), ifxz>0,
(o)) = {p(—w), if x <0, T7p)w) = {p(x), if x <0,

and

0(0) —0(—x), ifz>0,

0(x) — 6(0), if x>0,
—0 0(z) —6(0), itz <0.

(—x), ifx<O,

(570)(x) = { (570)(z) = {

Since p and 6 are continuous and belong to HL _(R), we can check that the functions (T%p)
and (S%p) are continuous on R and also belong to H.. (R). Then it is simple to verify that the
functions

ut = (Tip>ei5i9
belong to NE(R). Bearing in mind (3.25)), we obtain
pw")=p and plu)=q,

which implies that

Emin(p) < E(u") and  Emin(q) < E(u7). (3.26)
In addition
Ew?) + E(u”) =2Ex(u) + Ep(u™) + Ep(u™). (3.27)
We claim that
Ey(u™) + Ep(u™) < 2E,(u), (3.28)

which combined with ([3.27)), allows us to conclude that E(ut) + E(u™) < 2E(u). By putting
together this inequality, (3.24]) and (3.26)), we get

Emin(p) + Emin(q) < 2E(u) < 2Emin (%) +9,

so that (3.23) is proved. Since Enn is a continuous function by Proposition we conclude
that E is concave on RT.

It remains to prove (3.28). Let usset n =1— |[ul>, ;m =1 — [uT|?, ma =1 — [u™|%,

o) = () +n(—2)) and  f(z) = 5 () — n(—))
Hence g is even, f is odd,

n=f+g, m=g+f and m=g-F,

21



where f(z) = f(x) for x € Rt and f(z) = —f(x) for z € R—. By Plancherel’s identity, we then
can write

8m(2Ep(u) — Ep(u™) — Ep(u”)) = /]RVAV(é)(QIﬁ2 = [ |* = |721?)

- /R WEO@a+ 12— 19+ 112 —1a - 717)

=2 [ Wi - 17 +4 [ Wea.
R B R
— 4x(B() - B().

where we have used the parity of W to check that fR €){g, f ) = 0. To conclude, we only need
to show that B(f)—B(f) > 0. Indeed, since f is odd and f is even, we have f(£) = —2if,(¢) and

F(€) = 2f.(¢). Therefore, by Plancherel’s theorem, and using that W( RITAGEEIAG

is an even function,

(27)(B(f) — B(f)) = 4 /R WE) (1 Fs(©) — | fo()*)de =8 /O TWELEP — 1F©)P)de > 0,
which completes the proof. O

The following lemma shows that assumption is stronger than and is a reminiscent
of Lemmas 2.1 and 2.6 in [49].

Lemma 3.13. Assume that holds. Then 1s satisfied.

Proof. We notice that by Fubini’s theorem, we have
FAOF = [ [ sinGag) sintye) (o) () dady,
A7 = [ [ costat) costu) ) )y

Thus, introducing the complex-valued function

- /0 h /0 T f() () dady = ( /0 N e“ff(:c>da:>2 ,

WE) () — 1.(€) / Wie (3.20)
R

Then, using that h(¢) = h(—¢) and that W is even, we conclude that

/ WE (O — 1u(6) / WI(E) Re(h(€))de = — / WEOR©)de.  (3.30)
R R

We will compute the integral in the right-hand side of (3.30) by using Cauchy’s residue theorem.
First we notice that h is real-valued and nonnegative on the imaginary line since

we conclude that

o) 2
h(it) = </ et‘”f(:z:)dx> >0, forallteR.
0
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Also, since f € C°(R), h is a holomorphic function on C. To establish the decay of h on the
upper half-plane, we use that h(z) = H(z)?, where

S .
H(z) :/ e f(z)dx.
0
Using the fact that e/** = %%ei“ and integrating by parts, we get for z # 0,
0 1 [ .
H(z)= —@ - / e f!(z)dx.
iz iz Jo

Since f is odd, f(0) = 0, so that integrating by parts once more, we have

H(Z) — _fl(o) _ i /OO eixzf//(:l})dﬂj.

22 22 [,

Therefore,

C
|h(2)] < 2 for all z# 0, Im(z) >0, (3.31)

where C = (|f"(0)| + || f”||z:)?. Using the curves 7, Cauchy’s residue theorem yields

by

W (O)h(ve(t)) vk (8)dt = 20 Y hivy)Res(W,iv;) <0, (3.32)
k jeJk

k/\
/;W@M®%+

where Jj, refers to the poles enclosed by I'y. Taking into account (3.31), we see that

"W : W)
‘ /ak W(ve ()b () (t)dt| < C lemgth(rk)te?;ﬁk]m(';)‘4

so that the decay in gives that the integral goes to 0 as £k — oo. Therefore, using the
dominated convergence theorem, we can pass to the limit in (3.32)), and using (3.30)), we conclude
that condition is satisfied. O

The following propositions provide estimates for the curve Fp,n near the origin.

Proposition 3.14. There are constants qo > 0 and Ko > 0 such that

V2q — Koq*/* < Emin(a), for all q € [0, qo)- (3.33)

Proof. Invoking Corollary and (3.2)), for § € (0,1/2), we have the existence of a function
v € NE(R) such that p(v) = q and E(v) < Emin(q) +6 < v/2q + 6. Then, using the estimate
([2-2), we conclude that there is some qo > 0 small and a constant K > 0, such that if g < qo,
then E(v) <1 and also

11— |v?| < K(V2q+9). (3.34)
Since we can assume that K (v/2qo +J) < 1, we can apply the inequality in Lemma to
conclude that v/2(1 — (K(v/2q + 6)/?)p(v) < E(v). Inequality follows letting 6 — 0. O

The rest of the section is devoted to establish the following upper bound for Enin. So far, we
have assumed that [(H1)|and [(H2)| hold, but we have not used the C® regularity nor the condition
(W)"(0) > —1. These hypotheses are going to be essential to prove the following proposition.

Proposition 3.15. There exist constants q1, K1, Ko > 0, depending on ”WHC% such that

Emin(q) < \/§q - K1€I5/3 + K2q2> fOT‘ all qe [07 q1]> (335)
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As an immediate consequence of Propositions and is that Eyiy, is right differentiable
at the origin, with ET. (0) = V2. Moreover, if Enyj, is concave we also deduce that Epy, is strictly

min
subadditive as a consequence of the following elementary lemma (see e.g. [11], 25]).

Lemma 3.16. Let f : [0,00) — R be continuous concave function, with f(0) =0, and with right
derivative at the origin a := f(0). Then for any s > 0, the following alternative holds:

(i) f is linear on [0,s], with f(p) = ap, for all p € [0,s], or
(i) f is strictly subadditive on [0, s].

Corollary 3.17. The right derivative of Emin at the origin exists and mm( ) = V2. In partic-
ular, if Emiy is concave on RT, then Enin is strictly subadditive on RT.

The proof of Proposition is inspired on the fact that the Korteweg—de Vries (KdV)
equation provides a good approximation of solutions of the Gross—Pitaveskii equation when
W = §p in the long-wave regime [60, 13, 26]. Our aim is to extend this idea to the nonlocal
equation . Let us explain how this works in the case of solitons, performing first some
formal computations. We are looking to describe a solution of with ¢ ~ v/2, so we

consider
c=12—¢e2,

and use the ansatz 4
us(z) = (1 + 2 Ac(ex))e=9= ),

Therefore, setting - -

We(§) 1= W(e€), (3.36)
ie. We(x) = W(x/e)/e in the sense of distributions, we deduce that u. is a solution to (I'Wyy /)
if (Ae, @.) satisfies

2AY — (14242 — cpl(1+2A.) — (142 A) (W + (2A: +£2A2)) =0, (3.37)
262 ALl + (1 + ALl + cAL = 0. (3.38)

To handle the nonlocal term, we use the following lemma.

Lemma 3.18. For all f € H*(R), we have

2 —
Wen f == SOV'OF +Re(), (3.39)
where ]
IR(f)ll 2wy < IV Lo @) I f" | 2wy
Proof. Let us set )
R.(f) := 6%(1/\)5 xf—f+ %(W\)//(O)f//)‘

By Plancherel’s theorem, we have
2 .
27| Re (1) 22y = I F(R(F)) 122 /Ma—wf'VMU@%.@m

Now, by Taylor’s theorem and the fact that (W)’(O) = 0, we deduce that for all £ € R and ¢ > 0,
there exists z. ¢ € R such that

e3¢3
6

2€2

W(e) = 1+ 7( W) (0) + == (V") (2c)-
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Replacing this equality into (3.40]), we conclude that

1, — V2T =
V2r||Re ()l 22wy < 6HW”/”L°°(]R)H]:(fm)HL?(R) = THWWHLOO(R)HfWHL?(R)a
which completes the proof of the lemma. O

In this manner, applying Lemma we formally deduce from (3.37)—(3.38) that

—epl — 24, + 2 (—epl Ac — 3A2 4 (1 4+ W'(0) AL — ¢2) = O(?), (3.41)
@ + cAL + 2 (20l AL + Acpl) = 0. (3.42)

Therefore for the speed ¢ = v2 — €2, (3.41) implies that
@l = —2A. + O(?). (3.43)

Differentiating (3.41]), adding (3.42)) multiplied by ¢, using (3.43)), and supposing that A. and ¢,
converge to some functions A and ¢, respectively, as € — 0, we obtain the limit equation

—A' —124A + (1+ W"(0))A"” = 0.
Thus, imposing that A, A", A” — 0 as |z| — oo, by integration, we get

(1+W'(0))A" — 642 — A =0. (3.44)
By hypothesis |(H2)| we have (W)"(0) > —1, so that setting
w = (L+ WV)"(0)?,

so that the solution to (3.44]) (up to translations) corresponds to a soliton for the KdV equation
given explicitly by
1 x
A(z) = ——sech® (). 3.45
() 1 5¢¢ (Qw) (3.45)

Moreover, (3.43)) reads in the limit ¢’ = —v/2A, so that we choose ¢ as

o(z) == 7z tanh (%) (3.46)

In this manner, we should expect that u.(z) ~ (1 + e2A(ex))e®#(=®). This is the motivation of
the following result.

Lemma 3.19. Let v.(x) = (1+2A(ex))e’?=®) | where A and ¢ are given by (3.45) and (3.46).

Then
E(v.) =2 <53 . 55) O and  plv.) = Vaw <53 55) : (3.47)

3 4 6 10

where O(e7) /" is a function that is bounded in terms of ||)7V\||W3,oo, uniformly for all € € (0,1].

Proof. Let us first compute the momentum. Bearing in mind that ¢’ = —/2A4, we have

p(ve) = —% /R (26 A(ex) + £* A(ex)?) €2/ (ew)da

= \/383 /R (2A(2)? + 2 A(2)?) da
2
= \@wa?’/R <§13 sech(z)? — 2—4 sech(x)6> dz,
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so using that [ sech®(z)dz = 4/3 and that [ sech®(z)dz = 16/15, we obtain the expression for
p(ve) in (3.47). For the kinetic energy we can proceed in the same manner. Indeed, using that

1 x 4
(x) = Y tan <2w)sec <2w>’ and /Rsec (x)* tanh(x) TR
we get
1
Biv) = / (54 (ea)? + £4(1 + 2 A(en)) %/ (ea)?) do
R

:53/A()dx+/A’ )2+ 4A(z)3da

= — / sech(z 4d:c + —_— / sech4 tamh2 dr — — / s,ech6
e s L w
6 60w 15

Now, for the potential energy, invoking Lemma and (3.44), we have

1
4e

_ W(0)
_eg/IRA(x)de+55/IR <A(x)3 5 Al@)A (x)) dz + O(e%)

=& [ Awpdr+e | (A(a:)f” WO 4y s 6A(x)3)> 4o+ O(=9)
R R

By(v.) = /R (We # (2224 + £442)) (2) (2% A(x) + e* A(2))de

2w?
3 5

e’w € 1 6
-5 (e 5) o

where we have also used that W (0) = w? — 1. Adding the expressions for Fj and E,,, we obtain
the estimate for the energy in (3.47)). OJ

Proof of Proposition[3.15 For q small, we can parametrize q as a function of € as

V2w 3 gd
Ge=——|¢"—=),
6 10

50 (e is a strictly increasing function of € € [0,1]. The idea is to express € in terms of . in
order to obtain F(v.) in (3.47) as a function of q.. Then (3.35)) will follow from the facts that
p(ve) = qe and that Fnin(qe) < E(v:). For notational simplicity, we set

3[ 3 55
. - 4
5¢ - Je = 10° (3 8)
so that
/2<s. < <1, forallee|0,1]. (3.49)

Applying Taylor’s theorem and noticing that €°/10 < s., we infer that there is some p. € (s, 25.)
such that

5 5/3 55
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Using again (3.49), we conclude that
5/3
3v2
&% =523+ O(s1%) = <w> a2 +O0al).
Combining this asymptotics with (3.47), (3.48)) and (3.49), we get
w (3\/5 3ed

E(ve) =

3\ w qs—20> + 0% = V24, — K102 + O0(q?),

where K1 = (3v/2/w)?/3w/20. Since Emin(q.) < E(v.), we conclude that (3.35) holds true. [

We are now in position to prove Theorem [2]

Proof of Theorem[Z Statement (i) follows from Lemma [3.2] Proposition and Lemmas |3.10
and From Propositions and we obtain (ii). Proposition and Lemma |3.13
establish (iii).

By Corollary 3.3 g« > 0.027. Let us proof now the rest of the statement in (iv). Since
Emin is nondecreasing on [0, q.), if we suppose that Emi, is not strictly increasing, then Epi, is
constant in some interval [a,b], with 0 < a < b < 4. Since Ep;, is concave, this implies that
Emin is constant on [a,00) and therefore Fpyin(a) = Emin(q«), which contradicts the definition of
g« in (8). Finally, we remark that if E(v) < Emin(g«), for some v € £(R), using the fact that
Emin(0) = 0, the intermediate value theorem gives us the existence of some q € [0, q,) such that
E(v) = Emin(q). Since q < qx, the definition of q, implies that |v| does not vanish.

We now establish (v). Arguing by contradiction, we show that Eni(q) < v/2q, for all q > 0.
Indeed, in view of (3.2), let us suppose that for some p > 0 we have Eni,(p) = v/2p. Since Epiy
is concave, the function q — FEin(q)/q nonincreasing, thus

Emin Emin
V2 = p<p) < q(q) <2, forall qe€(0,p).
Therefore Ewin(q) = v/2q, for all g € (0,p), which contradicts (ii).

At this point, we recall that the concavity of Funin implies that E$in is right-continuous, so
that, by Corollary , we have E*. (q) — Ef. (0) = v/2, as ¢ — 0T. Using also that Ey is

nondecreasing, (3.2) and Corollary we deduce the other statements in (v). O

4 Compactness of the minimizing sequences

We start now the study of the minimizing sequences associated with the curve Fniy. The
following result shows that the set S; in Theorem {|is nonempty, and also allows us to establish
the orbital stability in the next section.

Theorem 4.1. Assume that W satisfies |(H1)| and [(H2), and that Ewm is concave on RY. Let
q € (0,q.) and (uy) in NE(R) be a sequence satisfying
p(up) = q and  E(up) = Enin(q), (4.1)

asn — co. Then there exists v € NE(R), a sequence of points (xy,) such that, up to a subsequence
that we still denote by wu,, the following convergences hold

un (- + xn) = v(4), in Lis.(R), (4.2)
1—Jun(-+ xn)\z -1 \v(~)]2, m LQ(R),
un, (- + ) — V'(4), m LQ(R),
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as n — o0o. In addition, there is a constant v > 0 such that

i]ﬁf |un (- + xn)| > v,  for all n. (4.5)
In particular p(v) = q, E(v) = Enin(q), and v € S.

In the rest of the section we will assume that the hypotheses in Theorem are satisfied and
therefore the conclusion in Theorem (V) holds. Thus, in the sequel, Fnji, is strictly subadditive
and Enin(q) < v2q, for all g > 0.

For the sake of clarity, we state first the following elementary lemma.

Lemma 4.2. Let (u,) be a sequence as in Theorem|{.1. Then there is function u € NE(R) such
that, up to a subsequence,

Uy, — U, in L. (R), (4.6)
ul, — in L*(R), (4.7)
=1 —|un)> = n:=1—[u?, inL*(R). (4.8)

In addition, E(u) < Enin(q), and writing u = pe'® and u, = ppe'®®, the following relations hold,
up to a subsequence, for all A > 0,

A A
|u/|? < lim inf |ul, |2, (4.9)
- n
_A n—oo  J_ 4
A A
/ Waxn)n= lim [ (W xn,)nn, (4.10)
—A n—oo —_A
A A
/ n¢' = lim G- (4.11)
—_A n—oo _A

Proof. In view of , E(uy,) is bounded, so that, using also Lemma , we deduce that u),
and that 7, := 1 — |u,|? are bounded in L?(R) and that u, is bounded in L>(R). Therefore,
by weak compactness in Hilbert spaces and the Rellich—Kondrachov theorem, there is a function
u € HIIOC(]R) such that, up to a subsequence, the convergences in f hold, as well as ,
and also

'l 2y < Nim inf[fu, || 2z). (4.12)
At this point we remark that the function B(f) = [p(W= f)f is continuous and convex in L*(R),

since W > 0 a.e. Thus it is weakly lower semi-continuous, so that
B(u) < liminfB(uy,). (4.13)
n—oo

Combing with (4.12)), we deduce that E(u) < Enin(q). Using (4.8) and the fact that W € Ms(R),
we get
Wsxn, = Wxn in L*(R), (4.14)

which together with (4.6) lead to (4.10).

Since q € (0,qx«), Theorem [2| and the fact that E(u) < Ewnin(q) < Emin(q.) imply that
u € NE(R), so that we can write u = pe’®. Then, setting u, = ppe’®" and by using that Ej (uy,)
is bounded and (4.6, we get for A > 0,

/A ¢/2 < 1 / 2 .12 < 4 E ( )
IR R,
S, UM w0 S Tk e

so that, up to a subsequence, ¢!, — ¢' in L?([—A, A]). Using again (4.6)), we then establish
@11). 0
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Proof of Theorem[{.1. By hypothesis, we can assume that
E(un) < 2FEmin(q). (4.15)

Since Epin(q) < v2q, we have 34 € (0, 1), so that applying Lemma with L =1+ %, and
Lemma 2.5 with £ = 2E,in(q) and mo = X4 := X4/L, we deduce that there exist an integer [g,

depending on E and g, but not on n, and points z7, 2%, ..., 27 , with l,, <lq such that
11— Jun(2])]?] > 5g, VI<j<lIy (4.16)
and l
11— Jun(2))?] < 2, VxeR\O[x;?—Lx;?H]. (4.17)
j=1

Since the sequence (I,,) is bounded, we can assume that, up to a subsequence, [,, does not depend
on n and set [, = [,,. Passing again to a further subsequence and relabeling the points (:L';L) if
necessary, there exist some integer £, with 1 < ¢ <[, and some number R > 0 such that

|lz) — 27 —2 00, Vi<k#j</{ (4.18)
n—oo

and

l
S kLilB(:UZ,R), Ve < j <l,.

Hence, by (4.17), we deduce that

¢
1- % <|ua|* <1+3%,, onR\|JB(},R+1). (4.19)
j=1

Applying Lemma to the translated sequence un j(-) = un(- + 27), we infer that there exist
functions v; = pje’® € NE(R), j € {1,...,,}, satisfying the following convergences

Up,j — Vj, in Ly, (R), (4.20)
up, ;= vj, in L*(R), (4.21)
Mg = 1= |ung|* =1 =1 |v;]?, in L*(R), (4.22)
as n — oo, and also

Emin(q5) < E(v) < Emin(q), (4.23)
/A |v§-|2 < lim inf /A \u%jIQ, (4.24)

—A n—oo J_4a 7

A A

i [* W smmg = [ v, (1.25)
lim ! nn7j¢;7]~ = /A 77j<b;, (4.26)

where u,, j = py, ;i and q; = p(v;). Moreover, using (£.16]) and ([#20]), we infer that
1= [0 (0)] = %, (127)

In particular, v; cannot be a constant function of modulus one. Now we focus on proving the
following claim.
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Claim 1. There exist § € R and E > 0 such that

4
Ewin(q) > ZEmin(qj> +FE and (4.28)
j=1
l
a=> q;+3. (4.29)
7j=1

For this purpose, we fix p > 0. By the dominated convergence theorem, there exists

1
R, > max <R +1, M) , (4.30)
such that, for 1 < j </,
L e B - & (4.31)
2 ) g, =T g '

By (4.18), we can assume that B(z, R,) N B(a}, Ry) = 0, for all 1 < k # j < (. Hence, using
(4.24) and (4.31), we deduce that there exists N, > 1, such that for all n > N, and for all
I1<k#j<{,

1

B 2 H
2/R \U%,j! > Fyin(v5) — 7 (4.32)
— i

By adding the inequality (4.32) from j =1 to j = ¢, we conclude that

l R l
1 H
B g /R \u;w«\g > g Ex(vj) —p, forallm > N,. (4.33)
j=1v "t J=1

Similarly, using again the dominated convergence theorem and possibly increasing R,,, we obtain
forall 1 <j </,

Ry
i/ (W x0j)nj — Bplvg)| < 2o (4.34)

—R,

By (4.25), and increasing N, if necessary, we have for n > N,,,

RH 1 R,u

1 1%
- n; — - i )il < —. 4.35
4/RM(W*HJ)77] 4/RH(W*77 )7, 20 ( )
ombinin, .34, (4. and adding from 7 =1 to j = ¢, we deduce that
Combining (4.34]), (4.35) and adding f 1 L ded h
1 [P
1 Z/ WV * 0 ) nj — Z Ey(vj)| <p, foraln>N,. (4.36)
j=17"Fu j=1

Applying the same argument to 1,,;¢], ; and ;¢ instead of (W * 1, j)nn,; and OV % n;)n;, we
get

1 l R, l
3>/ gt =] < (4.37)
j=17"Fu j=1

Now we handle the integrals on



Let us start with the momentum. We split p(u,) as

¢ /R
1 H . 1
=35> / Mg+ A, (), with pa,(un) = 5 / M. (438)
j=1 —R, A

By ([2.3), @11), ([#15) and (@.19), we obtain

1 1 ,
Vbl < 7 [ ke gt [ s <

©w

Hence, p4, (un) is is uniformly bounded with respect to n and p, so that, passing possibly to a
subsequence (in n and u), we infer that there exists q € R such that

lim lim pa,(un) = q. (4.39)

pu—0 n—oo

Hence, passing to the limit n — oo and then letting  — 0 in (4.37)), and using (4.38)), we obtain
(.29). To prove (4.28), we first remark that since Ey(un) and Ep(u,) are bounded, passing
possibly to a subsequence, there are constants Ej, Ej, E, > 0 such that Ewin(q) = Ey + Ep,

Ek(un) — Ek, Ep(un) — Ep,
and .
lim lim — ! |> = Ej.

p—0n—oo .

Thus, decomposing the kinetic part as

Ek<un>:§/ 2 + Z/ 2

and using (4.33), we deduce as before that

¢
j=1

To prove (4.28)), it remains to study the potential energy. However, Ep(u) is more involved
because of the nonlocal interactions. To make the decomposition, we introduce the functions

Gnu(T) 1= nn(x)]lélB(x}l,R,‘)(x) and  fpu(z) = Un(x)ﬂAu(x)a

so that

1 1 1
Ep(un) = 4/R(W*77n)(fn,u +9n,u) = 4/R(W*7ln)fn,u + 4/6 i )(W*nn)nn
j=1

1 Ry
=1 [V gt § [V o+ Z / Woming.  (441)
R
Using Plancherel’s identity, the Cauchy—Schwarz inequality and (2.3), we deduce that

< Wl oo (&) 19m,ll 22@) | el L2 ) < C(Brmin(a)),

[ V<ot <
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and the same argument shows that fR(W * fnu) fnu can also be bounded in terms of Enin(q).
Passing possibly to a subsequence, we conclude that there exists Ep > 0 such that

lim lim [ W * fu,) fup = 4E,. (4.42)

pu—0 n—oo Jp

We will show that
lim lim | (W% gnu)fau=0. (4.43)

p—0 n—oo Jp

Assuming (4.43]), we can now establish inequality (4.28). Indeed, letting n — oo and then u — 0

n (4.41), and using (4.42)) and (4.43), we obtain

lim lim Z/ W * 77nj Mg | = Ep - EP'

p—0 n—oo0

Combining with (4.36)), we have

4
= Z Ep(vj) + Ep. (4'44)
j=1
Therefore, setting
E:=Ey + E, = lim lim Eq, (un), (4.45)
p—0n—o0

and bearing in mind that Ewin(q) = E;+ Ep and that E(vj) > Enin(q;), inequality (4.28)) follows
by adding (A0) and (L33).

It remains to show (4.43)). By definition of g, ,, we obtain

[V fu) @t d:c—z / W * Fu) (@)1a(2)da

(I )

_Z/B(ORH W 5 fup) (@ + 22 5 () da.

Using also (2.10) and the fact that convolution commutes with translations, we get

/(W * gn,u)( fnu r)dr = Z/ (W * (Wn,jﬂB(O,RM))) (x)nn,j(x)dx~

\ U B(xp—a Ry)

Noticing that B(0, R,) is a subset of U;_, B(z} — zlt, Ry), we conclude that

WV * gnp) fru| < / Wk (51 .l 4.46
\/ g fon| < Z oy V2 Ot (4.46)

To study the limit of the right-hand side of (4.46)), we first remark that (4.20)) and the fact that
W € M3(R) imply that
W (nnj1lpo,r,)) = W* (milpo,r,)) in L*(R), (4.47)

as n — 0o. At this point we also notice that (4.20) and the same argument leading to (4.22)),
also give us that |, ;| — |n;| in L?*(R). Combining with ([£.47)), we thus get

/ (W s (i1 (0,R,)) | 1n.g] = (W s (n1po,r,)| i,
R\B(0,R,.) R\B(0,Ry.)
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as n — oo. Finally, by the Cauchy-Schwarz inequality,
Lo et n| inl < IVl 2w a0 (4.45)
R\B(0,R.)

so that the definition of R, in (4.30) and the dominated convergence theorem allow us to conclude

that the right-hand side of (4.48) goes to 0 as p — 0. In view of (4.46)) and (4.48]), this proves
([#.43)), completing the proof of Claim

Now we establish an inequality between g and E that will be key to conclude that both
quantities are equal to zero.

Claim 2. We have . B
V2 (1 - Eq) | < E. (4.49)

This inequality is a consequence of Lemma [2.3] To choose our cut-off function, we take the
sequence [, = 1/m, and we notice that since lim |vj(x)| — 1 as |z| — oo, there exists R; > 0
such that, for every |z| > R;, we have

Inj ()| < e/, (4.50)

Moreover, without loss of generality we can assume that R,, := R,,, > R;, forall 1 < j < /.
Now we use the function y given by Lemma to define

14
and  Xpmi=1-— ij,n.
=1

1 if |z —27 < Ry,

0 if [z — 27 > Ry + fim,

To establish (4.49)), we apply Lemma with u = un, Q@ = A, ¢ = X and Xa.0p = Xnm;
where (g is given by

4
O\ Qo = J[2] — R — s 2 — Ren] U [2]) + Ry, 7 + Ry + fim).
j=1

Using (#.19), the definitions of § and E in ([#39) and (#.45)), and letting n — oo and m — oo in
(2.13]), we obtain

~ E
ﬂ’q’ < — + lim limsup A, p,
1— Eq m—xX psco

with
Al < C(@) (Imnllz2(@00) + 10T 2000200 + 170K F2(cr010) - (4.51)

Notice that we omit the dependence on m and n in Q \ Qg for notational simplicity. Therefore,
to prove (4.49) we only need to show that the right-hand side of (4.51)) goes to zero. For the first

term, we have
¢

2 2 2
||77n”L2(Q\QO) = Z (/ Th,j +/R 77w’> :

j=1 W —Bm—pim
Using and the dominated convergence theorem, we get
lim limsup|n, |32 = lim i </_Rm n? + /RmﬂW 772»> =0. (4.52)
M= pyoo (N\Q0) ~ e N\ Ru—pim J R J
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To bound the term [[1,X7, ... [l L2(\00) in (#-51), we notice that

V4
(¥ )’ (Zx]n) = (G
: _]:1

since X}, X}, = 0 for all j # k. Hence,

MN

R
—Rm 9 9 R7n+,ufm 9 9
/ !/
([ e [ ).
*Rmfﬂm Ry,

||Uan,um ||L2(Q\Qo) S
1

.
Il

M~

1

.
I

Invoking again (4.6]), we obtain

l

B 20112 Bmtim o
im supl |9, X7, 0,0 72 @000y < D (/ UM +/R UHN >
R —Hm m

n—00 —
Jj=

320e 41y,

2
where we have used ([{.50) and that |x/(z)| < 4e~2emm for the last inequality. Then, we conclude
that

Jim_limsup 10X, |2(@\00) = 0. (4.53)

n—oo
Combining (4.52)) and (4.53), we obtain

lim limsup A, ,,, =0,
Mm—00 n—o0

which completes the proof of Claim
Claim 3. We have E =4 =0and ¢ = 1.

We suppose first that g > 0. By definition of ¥, in (2.21)), and using that f)q =34/L < X,
we have

Emin ~
: @ _ a1 -%) <2 (1 - Zq> . (4.54)
In addition, since Fyi, is concave, we obtain for all 0 < p < g,
Emin
Enmin(p) = p p @ _ pV2(1 — %). (4.55)

4
Then, setting s := q—q = > q;, the assumption q > 0 implies that s < ¢, and combining with

j=1
(4.49), (4.54) and (4.55)), we also obtain
Emin q ~Emin q -
Emin(s) qu() = Emin(q) — 4 q( )5 Emin(q) — \fq( ) > Emin(q) — E.
Hence, using (4.28)), we get
¢
Emin<5) > Z Emln(qj) (456)
j=1



Since Eniy is even, nondecreasing and subadditive, the inequality s < 22:1 ;| yields

l 4
Emin(5) § Emin(Z |qj|) S ZEmln(qj)
7j=1 7j=1

which contradicts (4.56]). Thus g < 0 and (4.29) gives q < 2521 lq;j]. As before, this implies that

14

Emin(q) < Emin<i \Clj\) <Y Emin(d)-

Jj=1 Jj=1

On the other hand, since £ > 0, we see from (#.28) that

4
Emin(q) Z Z Emin(qj)-
7j=1

Therefore ,

Emin<q) = ZEmln(qj) (457)
j=1

In view of [#.28) and ([E49), (#.57) yields E = 0 and § = 0. Finally, if there are at least two

nonzero values qx and (,,, with 1 < k # m < £, then the strictly subadditivity of E;, implies
that

¢ ¢
Emin(q) - Emin(Z |C|g|> < ZEmin(qj)a
j=1 j=1

contradicting (4.57)). Therefore we can suppose without loss of generality that ¢ = 1, which
finishes the proof of Claim

Setting v = vy, the convergence in (4.2)) and the estimate in (4.5 follow from (4.20) and
(4.19) (with £ =1). We now show the convergences in (4.3 and (4.4) (with v = v1) to complete
the proof of the theorem. Indeed, since £ = 1 and q = 0, by Claim 3] (4.29)) shows that q = q1,

and using also (4.1) and (4.23]), we get
p(un1) = q=p(v) and E(up1) — Emin(q) = E(v). (4.58)
We now establish ([&.4). Since u], ; — ' in L*(R), it is enough to prove that
tim sup e | 2y < 111 2my- (4.59)
n—oo
Arguing by contradiction, taking a subsequence that we still denote by w,, 1, we suppose that

M = lim [lunil72@) = 2Bx(una),  with M > [0/ 22) = 2Bk (v).

Hence, using (4.58)),
M

lim By (up1) = lim (E(up1) — Ex(unn)) = E(v) — 5

n—o0 n—00

< E(v) — Ex(v) = Ep(v),

which contradicts ([#.13). Therefore u], ; — v’ in L*(R). In particular Ej(un,1) — Eg(v), so that
(4.58]) implies that
fiw [ Vs ma= [ Ve, (1.60)
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where n = 1 — |v|? as usual. Using Plancherel’s identity and [(H2)| we have

1 — 1
2 — ~12 2| —— ~12
s =l < 5 [ WOl — 7P + - [ i -7
1
= [ W (s = s =)+ 7l = Ve (4.61)
Since W € M3(R), it follows from (4.22)) and (4.60) that

/RW * (Mn,1 — 1) (M1 —n) — 0. (4.62)

It remains to prove that
11 = 'l 2 @) — 0 (4.63)
Noticing that 7" —n7, 1 = 2({v,v") — (un,1, Uy 1)), we have
71— 7' l2y < 2[(v = un )il L2y + 20 (V" = gy 1 )tn 1] 2 () (4.64)

From inequality (2.2), we obtain
[t 1l oo ) < C(a)- (4.65)

Thus, using (4.4)), we deduce that
[(v" =y, | 2wy < C(a)||lv" —up, 4l 2y = O,

Moreover, (4.65) allows us to use the dominated convergence theorem to infer that the other
term in the right-side of (4.64) also converges to zero. Therefore, combining with (4.61]) and
(4.62)), we obtain (4.3]), which finishes the proof of the theorem. O

5 Stability

We start recalling the following result concerning the Cauchy problem.

Theorem 5.1 ([28]). Let ¢p € E(R), with V¢ € H*(R) N C(R). Let W € M3(R) be an even

distribution. Assume that one of the following is satisfied.

(1) We Mi(R) and W > 0 in a distributional sense.

(13) There exists o > 0 such that W >o ae. onR.

Then, for every wy € H'(R) there exists a unique solution ¥ € C(R, ¢g+ H'(R)) to (NGD)) with
the initial condition Wy = ¢g + wg. Moreover, the energy is conserved, as well as the momentum
as long as infer |V(x,t)| > 0.

In the case (ii), we also have the growth estimate
¥ (t) — dollL2r) < Clt| + [[Wo — ol L2(r), (5.1)
for any t € R, where C is a positive constant that depends only on E(¥), ||17V\\|Loo, ¢o and o.
Let us remark that the author in [28] uses a sightly different definition of the momentum

to allow a possible vanishing of (). However, the proof of the conservation of momentum in
[28] also applies to our renormalized momentum as long as ¥(t) € NE(R). We also notice that
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other statements for Cauchy problem for the Gross—Pitaevskii equation have been established in
different topologies when W = 4y (see e.g. [61], 35 B3] 10, B3I, B0] and the reference there in),
and these results can probably be adapted to our nonlocal framework.

For the proof of Theorem the author proves first a local well-posedness result for W €
M3(R). Then conditions (i) and (ii) are used to show that the solution is global. In [28], it is also
established that the solution is global in dimensions greater than 1, provided that W >o0>0
a.e. However, the proof given by the author does not apply in the one-dimensional case. Using
Lemma we can partially fill this gap.

Theorem 5.2. Let ¢y and W as in Theorem/[5.1], but instead of (i) or (ii), we assume that there
exists k > 0 such that .
W(E) > 1 -k, ae onR. (5.2)

Then we have the same conclusion as in Theorem |5.2 . including the growth estimate (5.1)), with
a constant C' depending only on E (%), HWHLoo ¢o and K.

Proof. In view of the local well-posedness established in Theorem 1.10 in [28], to prove that the
solution is global, we only need to show that the solution ¥(t) = ¢o + w(t) defined (Tiin, Tmax),
satisfies Tinax = o0 and Ty = —oo. In view of the blow-up alternative in the mentioned
theorem, it is sufficient to prove that [[w(t)||2(r) remains bounded in any bounded interval of
(Tmin, Tmax)- Indeed, from , we have (see equation (63) in [28])

< 166l zelw(®)llz2) + ldoll oo (w) /\W* (1= [u(®)]*)| Jw(t)] do

< ol 2w lw(®)] 2wy + ||¢0HL<><>(R)HWHLoo(R)HU( Mrz@)llw®) || L2 w)

where n(t) = 1 — |u(t)]?>. From Lemma we deduce from the conservation of energy on
(Thnins Tmax), that there exists a constant K > 0, depending on x and E(¥), such that

‘Hw )22

”n(t)HLQ(R) <K, forallte (Tmin7Tmax)-
Therefore, we have for any § > 0,

1|d

> | 2 (@) 32z + )| < (@3 +6)F (168l + KIWlze ldoll ey ) -

Dividing by (||w(t) H%Q(R)—i—cs)%, integrating and letting & — 0, we obtain (5.1)), for any ¢t € (Twin, Tmax)-
As mentioned above, this estimate implies that the solution is global. O

As explained in Section 6 in [28], Theorem allows us to show that the solutions in the
energy space are global.

Theorem 5.3. Assume that W € M3(R) is an even distribution satisfying (5.2). Then for
every Wy € E(R), there emists a unique ¥ € C(R,E(R)) global solution to (NGP) with the
initial condition Vy. Moreover, the energy is conserved, as well as the momentum as long as
inf,cr |\I/(.’L', t)| > 0.

Proof of T heorem [3 In view of Remark [2.2] we deduce if W € M3(R) is an even distribution,
with W > 0a.e. on R, and W of class C2 in a neighborhood of the origin, then W satisfies ,
for some x > 0. Therefore, we can apply Theorem [5.3 and the conclusion follows.

The rest of the section is devoted to prove that the set Sy is orbitally stable in the energy
space. Using the Cazenave—Lions approach [22] and Theorem we obtain the following result.
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Theorem 5.4. Assume that W € M3(R) satisfies |(H1)| and [(H2)l Suppose also that Epy is
concave on RY. Then, S, is orbitally stable for (E(R),d) and for (E(R),da), for all q € (0,qx).
Moreover, for all ¥y € E(R) and for all € > 0, there exists 6 > 0 such that if

d(Vo,Sq) <6, then supinf da(¥(-—y,t),Sq) <e, (5.3)
tcR yER

where W(t) is the solution of (NGP)) associated with the initial condition V.

Notice that for u,v € £(R), we have d(u,v) < da(u,v), and thus

Therefore, the implication in (5.3 shows the orbital stability for the distance d and d4.
In order to prove Theorem we will use the following lemma.

Lemma 5.5. Let v,,v € E(R) such that d(vy,v) — 0. Then,
fvn] = 1olllzeory = 0 and [[Jon|* = [v]*]| L2 (@) — 0. (5.4)

In particular, we have the continuity of the energy E(v,) — E(v) (with respect to d). In addition,
if v, v € NE(R), then we also have the continuity of the momentum p(v,) — p(v).

Proof. First, we remark that since d(v,,v) — 0, there is some M > 0 such that

lvnllz2) + 1V 2wy + lvnll 2@y + V]l L2@) < M,

for all n € N. By the sharp Gagliardo-Nirenberg interpolation inequality and using that ||w|'| =
[w'|, for w € HL_(R), we have

l[on] = [vlll Loy < llonl = [vlll 2@ llonl” = 10l |2 @) < 2M|[lvn] = V]Il z2(R),
so the first convergence in (5.4 follows. Similarly, we deduce the second one noticing that

ol = lon [l 2y < (10l oo@) + lvnllzoo@)) o] = lvall 2y < 2M |[va] = [0l 2.

Therefore is proved. In particular, we have v, — vin L2(R) and i, = 1—|v,|? = n = 1—|v|?
in L?(R), so that E(v,) — E(v). For the momentum, writing v, = |v,|e?" as usual, we have
p(vn) = 3 Jo b, so it suffices to prove that 6, — 6 in L*(R) to conclude that p(v,) — p(v),
where v = |v]e?”. To establish the weak convergence of 6,,, we notice that since |v,| — |v| in
L>(R), there exists C' > 0 such that

i%f lvn| > C, forallneN.

Hence,

1 2
2 2 2

Since E(vy,) is bounded, we conclude as in Lemmathat for a subsequence, 6, — 0" in L3(R),
as k — oo. Therefore, we conclude that p(v,, ) — p(v). Since the limit does not depend on the
subsequence, we deduce that p(v,) — p(v). O]
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Proof of Theorem[5.4] Arguing by contradiction, we suppose that there exist g > 0, (d,,), (tn)
and (ug) C £(R) such that §,, — 0,

d(ug,Sq) < 0n (5.5)
and

inf da(u"(- —y,tn), Sq) > <o, (5.6)
yeR

where u™ denotes the solution to (NGP)) with initial data u{. In particular, from (5.5) we deduce
that there is v, € S; such that
d(ug,vp) < 20, (5.7)

Since E(vy,) = Emin(q) and p(v,) = q, applying Theorem to (vn), we infer that there exists
v € §; and points (ay) such that, up to a subsequence, the function 0, (z) = v, (x + ay) satisfies

Oy — v, in L(R), and 1—|8,]> = 1—v]? @, = in L*(R). (5.8)
Using also the estimate (4.5)) in Theorem we conclude that

~ 1 ~ 12 2
I[0n] — ’U|||L2(]R) < m”h’ﬂ = |v] HLQ(R) —0,

so that
d(tp,v) = 0, (5.9)

and also d4(0,,v) — 0. On the other hand, by the triangle inequality and (5.7)),
d(ug (- + ap),v) < d(ug (- + an), 0n) + d(On,v) < 28, + d(0p, v).

Combining with (5.9), we conclude that d(ug(- + an),v) — 0. Applying the conservation of
energy in Theorem and Lemma [5.5] we thus get, for all ¢t € R,

E(u"(t)) = E(ug) = E(ug (- + an)) = E(v) = Emin(q)- (5.10)
At this point we claim that

iﬁf [u™(t)] >0, for all [t| < [t,]. (5.11)

Otherwise, there are values sy, with [sp| < |t,], such that infg [u"(s,)] = 0. By (5.10), we
conclude that E(u"(sp)) = Emin(q) and thus, using that Emi, is strictly increasing on (0, q4),
we can find ng such that E(u"(sp)) < Emin(qs«), for all n > ng. This is a contradiction because,
by Theorem [2| this implies that u"(s,) € NE(R).

In view of (5.11)), we can proceed as before invoking the conservation of momentum in The-
orem and Lemma, to obtain

p(u"(tn)) = p(ug) = p(ug (- + an)) = p(v) = 4. (5.12)

By (5.10) and (5.12)), we can apply Theorem to (u™(t,)). Then, reasoning as before, we
deduce that there exist w € Sy and (by,) such that, up to a subsequence,

da(u™ (- + by, tn), (")) = 0, (5.13)

which contradicts (5.6]). O

39



6 Euler-Lagrange equations and proof of Theorem

In this section we establish the Euler-Lagrange equations associated with the minimization prob-
lem, which will allow us to complete the proof of Theorem |4 Since the energy and momentum
functional are not defined on a vector space, the notion of differential is not trivial. For our pur-
poses, it suffices consider the directional derivatives using only smooth functions with compact
support. More precisely, for u € £(R) we define

dE(u)[h] := limE(u +th) = B(u) and  dp(u)[h] := hmp(u +th) — p(u)

t—0 t t—0 t ’

for all h € C2°(R), where we also suppose that u € NE(R) for the definition of dp(u) so that
p(u + th) is actually well defined for ¢ small enough.

Lemma 6.1. Assume that W satisfies|(H1)| Then for all h € C°(R), we have

dE(u)[h] = /R<u’,h/> — /RW * (1 — \u|2)<u, h), ifue€ &(R), (6.1)
dp(u)[h] = /R oW, ifue NER). (6.2)

In particular, for oll c € R, dE(u) = cdp(u) if and only if u satisfies (TWyy ).

Notice that the elliptic regularity theory shows that if u is a solution of (TWyy ), then u is
smooth. More precisely, the following result stated in higher dimensions in [29] applies without
changes in dimension 1.

Lemma 6.2 ([29]). Let v € E(R) be a solution of (TWyy ), with W € Ma(R). Then u is
bounded and of class C®(R). Moreover, 1 := 1 — |u|? and Vu belong to W*P(R), for all k € N
and for all p € [2,00).

Proof of Lemmal6.1] . Using (2.10), the differential in (6.1]) is a straightforward consequence of
the definition of dE. To show (6.2), let us fix u € NE(R) and h € C°(R). Then

dﬂ@%k=imu+m%ﬂ
o) foen (- ) fuen (52)

o) [ e [

Therefore we obtain (6.2)) noticing that

—(ih,w) (u, ) + (i, u)(u, ) = (i, ) ul®.
The last assertion in the statement follows from the fact that if for some v € £(R) we have

v,h) =0, for all h € C*(R), then v = 0. O
Jr(v,h) =0, - (R),

Theorem 6.3. Suppose that Emin is concave on RT and that u € Sy, with q > 0. Then there
erists cq satisfying
Epin(a) < ¢q < By (1), (6.3)

such that u is a solution of (TWyy ) with of speed ¢ = ¢q.
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Proof. Let u € Sy, so that p(u) = q and E(u) = Enin(q). Notice that since q > 0, u is not a
constant function. Let h € C°(R). From the definition of Eni, we have, for all ¢ > 0,
B(u+th) — () _ Enin(p(a + th) — Enin(0)
t - t '
If dp(u)[h] > 0, then p(u + th) > p(u) = q for t > 0 small enough, so that letting ¢ — 0T, we
obtain

dE(u)[h] = By, (a)dp(u)[h].
Likewise, if dp(u)[h] < 0, we get
dE(u)[h] = B, (@)dp(u)[h].

Replacing h by —h, we obtain the following inequalities

Egm(0)dp(u)[h] < dE(u)[h] < By, (a)dp(u)[h],  if dp(u)[h] >0, (6.4)
and
Epin(@)dp(u)[h] < dE(u)[h] < Ef (a)dp(u)[h],  if dp(u)[h] < 0. (6.5)

Since the functionals dp(u),dE(u) : C°(R) — R are linear, to establish the Euler-Lagrange
equations, it is enough to show that

Kerdp(u) C KerdE(u). (6.6)
Indeed, by Lemma 3.2 in [I9], this implies that there exists some ¢; € R such that
dE(u) = cqdp(u), (6.7)
and therefore, by Lemma, u is a solution of with ¢ = ¢4

To prove , let us consider ¢ € Kerdp(u). Since u is nonconstant, there exists some
function ¢ € C°(R) such that dp(u)[¢)] # 0. Thus, for all n € N, we have

dp(u)[y) + ne] = dp(u)[¢] # 0.

From (6.4) and (6.5)), we conclude that dE(u)[¢) + ng] = dE(u)[] + ndE(u)[¢] is bounded.
Hence dE(u)[¢] = 0 i.e. ¢ € KerdE(u), which establishes (6.6]).

It remains to show (6.3]). Let ho € C°(R) such that dp(u)[ho] = 1. Then (6.7) implies that
dE(u)[ho] = ¢q. It follows from ) that

E+ (9) < cq < Eiu(9), (6.8)

min

which finishes the proof. O

Remark 6.4. Tt is possible to establish the Euler-Lagrange equations using an argument based
on the implicit function theorem, without invoking the concavity of Fni,. Even thought the
former argument is more general, we gave the proof using the concavity because it is simpler.

Proof of Theorem[4] Combining Theorems[4.1} [5.4and[6.3} we obtain that the set Sy is nonempty,
orbitally stable and that any u € Sy is a solution of (TWyy J). Using and Theorem [2}(v)
we get the properties for ¢q, except that ¢y > 0. Arguing by contradiction, we suppose that there
exists p € (0,q.) such that ¢, = 0. Thus, by (9) and (L0), we get E;ln(p) = 0. Since Eyy, is
concave, we have for all v < s,

Epgin(t) = By (v) 2 By (8) = By (s) > 0,

min min min

which implies that E_. = Ef. = 0 on [p,00), so that Ep;, is constant on [p,o0), which

min min

contradicts that Fyiy, is strictly increasing on [p, q.). This completes the proof of the theorem. [
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7 Some numerical simulations

In this section, we numerically illustrate the properties of the minimizing curve through some
simulations. The numerical method is based on the projected gradient descent and the convo-
lution is computed by the fast Fourier transform algorithm. Given W (or W) and some q > 0
close to 0, we compute the corresponding soliton ug (i.e. p(uq) = q) and its energy E(uq). We

then increase the value of q > 0 until we obtain enough points to plot Epnin-

First, we show our results for the examples (i) and (ii) in Section |I} In Figures [2| and [3] we
can see Fnin and the modulus of the solitons associated with g = 0.05, q = 0.55, ¢ = 1.1 and
q = 1.5, for the potentials

B -8
0B = 8o — ] 7.1
with a = 0.05, 8 = 0.15, and
1 3a e
Wazl_a((so—i—?ln(l—e l21)), (7.2)

with o = 0.8. In both cases, we observe that Ey, is concave and that the line \/Qq is a tangent
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Figure 2: Curve Ep, and solitons for the potential in (7.1)), with o = 0.05 and g = 0.15.

to the curve. We notice that the shapes of the solitons in Figure |3] and the solitons in Figure
are quite similar. On the other hand, the solitons in Figure [2] are very different, they have values
greater than 1 and exhibit a bump on R*. Notice also that the curves Fy, for both potentials

seem to be constant for q > 1.55.

We end this section showing some numerical simulations for two interesting potentials. The
first one has been proposed in [58] as simple model for interactions in a Bose—Einstein condensate.
It is given by a contact interaction dyp and two Dirac delta functions centered at +o,

1
Wo =200 — 5 (35 +0-0). (7.3)

Noticing that 17\/\0(5) = 2 —cos(0f), we see that for o > 0, W, fulfills|(H1)| |(H2)| and that W, is
analytic in C, but is exponentially growing on H. Thus, W, does not satisfy the assumption

in [(H3)} We can also check that [(H3’)|is not fulfilled. Nevertheless, the results of the simulation
depicted in Figure [ show that Enn is concave, and in that case Theorem [] gives the orbital

stability of the solitons illustrated in Figure
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Figure 3: Curve Emin and solitons for the potential in (7.2)), with oo = 0.8.
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Figure 4: Curve Epi, and solitons for the potential in (7.3)), with o = 10.
Finally, we consider the potential
3 2
Waybvc(g) = (1 + a§2 + b£4)eic€ I (7.4)

that it has been proposed in [9] 57| to describe a quantum fluid exhibiting a roton-maxon spec-
trum such as Helium 4. Indeed, as predicted by the Landau theory, in such a fluid, the dispersion
curve cannot be monotone and it should have a local maximum and a local minimum, that
are the so-called maxon and roton, respectively. In Figure |5, we see the dispersion curve asso-
ciated with potential , with @ = —36, b = 2687, ¢ = 30. In this case, there is a maxon at
&m ~ 0.33 and a roton at & ~ 0.53. For these values, is satisfied, but not [(H2)| nor |[(H3")|
However, we observe in Figure [6] that the energy curve is still concave, and that the straight line
V/2q is still a tangent to the curve. Moreover, we found the same critical value as before for the
momentum, i.e. g4 ~ 1.55.
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Figure 5: Dispersion curve associated with potential ((7.4)), with a = —36, b = 2687, ¢ = 30. Here
&m ~ 0.33 and & ~ 0.53.
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Figure 6: Curves Enin and solitons for the potential in (7.4)), with a = —36, b = 2687, ¢ = 30.

A Appendix

Lemma A.1. Let R > 0 and u > 0. There exists a function x € C2°(R) such that for all x € R,
0<x(z) <1,

_ 1, /Lf |JJ’ < R, / _92 %
x(z) = {07 if 1] > R+ p and X' (z)| < de “en. (A.1)
Proof. Let
L exp(—%), if 2 07 L f(R+ w— ’:ED
fla) = {0, e <o, " X IR e T e - B
Since ,
Jllal = B) + f(R+p— o) 2 J(5) =2 %, (4.2)
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the denominator of y is always positive, and thus y is well defined. Moreover, y € C*°(R), since
f is smooth. Finally, for |z| < R, we have f(|x| — R) = 0, which implies that x(z) = 1. For
|z| > R+ p, we have f(R+ p — |z]) =0, so that x(z) = 0.

It remains to prove the bound in (A.1]). Using that

B+ p— =) f(|z] — R) + /(|| - R)f (R4 p— |z])
(f(lz] = R) + f(R+ p — |z[))? ’

and that |f/'(z)| < exﬂ;# < 4e 2, we get

X'(z) =

()l < e
X \T)| = .
f(lal = R) + f(R+ p — [z])
Combining with (A.2), we conclude that |x/(z)] < de~2ei. O
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