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visible mist that has been captured by security cameras. Evolution of the cloud is well known and highly 

influenced by the presence of obstacles: bund, tree lane, tanks (Gant and Atkinson, 2011). Finally, ignition of 

the cloud led to a massive vapor cloud explosion, and, by domino effect (Heymes et al., 2014), to oil fire that 

last over 2 days. This accident reveals the importance of the perturbation of the flow by storages with different 

shapes. This work is focused on forecasting flows around cylinder. 

1.2 Flow around cylinder 

Flows around common shapes have been evaluated through field and small scale experiments. Taneda 

(1977) compared several laminar and turbulent regimes around sphere and vertical cylinder to identify 

different behaviors including a recirculation zone in the wake of the obstacle for sufficient Reynolds. For higher 

Reynolds number, Hosker Jr (1985) identifies several zones for uniform inlet flow around cylinder (Figure 1). A 

displacement zone is located upwind of the obstacle (a), where a high pressure is applied on the cylinder. 

Boundary layers are created on the edges of the obstacle (b). Separating point location depends on the flow 

turbulence. The turbulent recirculation zone or cavity is observed directly behind the obstacle (c). The 

minimum pressure is observed on body at wake centerline. Due to the increase of turbulence and velocity 

orientation, presence of dispersed gas last. At the cavity closure point begin a far field zone characterized by 

vortex generation and turbulent wake (d). 

Figure 1: Typical 2D mean flow field around a cylinder, based on Hosker (2005) with - a: flow separation 

– b: boundary layers creation – c: recirculation zone – d: turbulent wake 

Unsteady aspect of the turbulence is noticed, especially in the far field of the obstacle. Flow in the wake is 

perturbed up to 50 to 100 body diameters. Moreover, the flow structures around a cylinder are considered 2-D 

(Ozgoren et al., 2011). In the following study, mean velocity field are considered at 2 meters of altitude 

(corresponding to values of Reynolds number superior to 106). A fully turbulent separation for a flow around 

two-dimensional cylinder is achieved for Reynolds number around 3.105 (Schlichting, 1979).  

Several experimental investigations of atmospheric dispersion around obstacles have been made in full-scale. 

Those are necessary to feed models (both reduced scale and numerical) and evaluate them. In this goal, 

Mavroidis et al. (2003) investigated the behavior of plumes originating from sources locations differing from 

the axis between center of obstacle and mean wind direction. Recirculation zone is of primary importance, as 

the measured concentrations increase when the source is displaced slightly from the axis. Moreover, 

comparisons between full-scale and wind tunnel experiments show the same trend: highest mean 

concentrations were overestimated by the wind tunnel, credited to the more complex scales of turbulence 

observed in the field. 

1.3 Flow modeling 

Computational Fluid Dynamics (CFD) models are eulerian models solving continuity and momentum 

equations on a mesh to obtain wind fields. When dealing with atmospheric flows, it is necessary to take 

turbulence into account. Several models can be detailed. In the scope of this study, RANS (Reynolds 

Averaged Navier Stokes equations) standard  model is considered.  represents the turbulent kinetic 

energy and  the linked dissipation rate. Transport equations of these variables are used to close the system 

of equations through the modeling of turbulent viscosity  : 

(1)

With  the density of the fluid and , a model constant equal to 0.09. 

Air compressibility is generally neglected when Mach number is less than 0.3. In case of atmospheric flow at 

ground level, Mach number is less than 0.06 for a maximum wind speed of 20 m.s-1 so that density is 

considered as constant. These CFD models give accurate results for turbulence. Accuracy is usually better as 



the mesh is finer, but implies an increase of computation time. In this study, a database was generated using 

a classical 2D RANS standard  model with turbulence set chosen as recommended by Richards and 

Hoxey, (1993). Some limitations exist when dealing with wind engineering simulations using these models, 

especially concerning the degradation of wind and turbulence profile. However, the aim of this work was to 

check if neural networks are able to simulate a modeling turbulent flow around an obstacle, and not to 

question the ability of CFD modeling to predict atmospheric flow. To investigate this question, own limitations 

of CFD models were not considered. 

1.4 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are powerful non-linear fitting tools based on statistical modeling. They are 

generally used when the process to model is not fully known. Two properties are essential: the universal 

approximation (Hornik et al., 1989), and the parsimony (Barron, 1993). Thanks to these properties ANNs are 

able to predict efficiently future behaviors on never encountered situations. Information about the non-linear 

phenomenon to simulate or forecast must be provided using a database. As a non-linear fitting tool, ANN 

generally acts as a black-box: the physics cannot be extracted from the results. Nevertheless, ANN can be 

used to forecast physical phenomenon, presenting powerful models (Kong A Siou et al., 2011). A neuron is a 

nonlinear, parameterized, bounded function. Variables are assigned to the inputs of the neuron. Output of a 

neuron is the result of nonlinear combination of the inputs, weighted by the parameters and using an activation 

function. Sigmoid s-shaped functions are generally used. A neural network is the composition of several 

neurons. Parameters calibration is done through application of an algorithm using the training database and 

designed to decrease the model error, in this work the Levenberg-Marquardt method is adopted (Hagan and 

Menhaj, 1994). The function realized by the ANN is continuously tested on a disjoined set of examples, 

namely the stop set. This last set is employed to avoid overtraining using early stopping (Sjöberg et al., 1995). 

Lastly, performances of the model must be measured on another set, never used during training or stopping: 

test or validation set. 

2. 2D horizontal Flow around cylinder forecasting using Artificial Neural Networks 

In the present work, the aim was to check relevance of ANN to predict main characteristics of a turbulent flow 

around a cylinder. It noticed that, this study follows a previous work which consisted to compare machine 

learning tools to model the atmospheric dispersion (Lauret et al., 2014). This model was designed especially 

for emergency management or anticipating situation. It has to be effective and time computation efficient.  

2.1 Database creation 

In case of a flow around a cylinder and so as to apply atmospheric dispersion equations, the required 

parameters are velocities in the direction of the incident flow, on orthogonal direction, and information of 

turbulence. These data are given by the turbulent viscosity, which is not constant on the entire plane. It is 

directly linked to the turbulent diffusion coefficient by the Schmidt number :

(2)

This number is taken equal to 0.7 in the following. Thus, 72 different CFD simulations of 2D flow around 

cylinder in neutral stability conditions at altitude  are generated combining different inlet velocities and 

diameter. Values used are respectively included in the interval [2 ; 10] m.s-1 with a step of 1 m.s-1 and in the 

interval [10 ; 52] m with a step of 6 m. This database represents more than 8 million values of velocities and 

turbulent diffusion coefficient. In order to build a database for neural networks, it is necessary to sample it. 

Stratified random sampling is proposed in this work using concentrations as class parameter. The database is 

thus created by selecting EC examples in Ic classes in order to limit the total number of examples at 30 000. 

This database is divided in three sets: training set, validation set (or stop set) and test set. Validation set is 

used to avoid overfitting and test set is used to evaluate the performance of the model (Kong A Siou et al., 

2012). 

2.2 Variables selection and neural network architecture 

Inputs of the neural networks have to be representative of the flow and easily determinable in real life (Lauret 

et al., 2013). Three types of input can be determined: the inlet velocity, cylinder diameter and coordinates 

where output is evaluated. These inputs are reported in the following table: 



Table 1: Neural networks inputs 

Inputs 
Targets 

Angle formed by the axis ray and cylinder center to location ray (rad) x x x

Distance from center of the cylinder (m) x x x

Inlet Velocity (m.s-1) x x

Obstacle radius (m) x x

Characteristic number of the flow ( ) x

ANNs used in this work are two-layer perceptron with hyperbolic tangent as activation function for the first 

layer and linear function for output layer. Several trainings are done to ensure that the best neural network is 

used in simulations. Optimization is done through three different ways: initialization of neurons parameters, 

number of neurons in hidden layer and database sampling. Training results are discussed in these terms. 

2.3 Results on training database 

ANN evaluation is usually done through the coefficient of determination or Nash criterion calculation ( ) on 

the test sets. This criterion evaluates the data fitting of the ANN model for a  range, with 1 the perfect 

match and 0 the forecasting result equals to the mean value of test set. Results of best training for each flow 

parameter are reported in the following table: 

Table 2: ANN training results for , , and 

Flow parameter 

Ic best number 20 40 20 

Ec best number 30 20 20 

Number of neurons in hidden layer 20 20 20 

R2 value 0.985 0.997 0.999

Training duration (s) 906 3,731 2,775

Values of R2 are below 0.98 and thus correspond to correct accuracy. It is noticed that training duration can 

last more than one hour on a classical workstation. Nevertheless, training duration is a long process while 

simulations are very fast as observed in the following paragraph. 

3. Results on situations independent from training and model selection 

To assess the performance of such a model, it is necessary to evaluate the neural networks against unlearned 

data. Nine different test cases are then evaluated containing three different inlet velocity values (2.5, 5.5 and 

9.5 m.s-1) and three different cylinder diameters (12, 26 and 50 m). These values are taken to be 

representative of low, medium and high values of each parameter. Four performance criteria are used. 

Coefficient of determination shows a general accuracy of the model. Factor of two (FAC2) corresponds to the 

fraction of the values between an half and twice the observed values. Best value is 1. Fractional bias (FB) 

represents the systematic error. Best value is 0. FB positive values represent underestimation and negative 

values represent overestimation. Normalized mean square error (NMSE) represents the global error. Best 

value is 0. 

Results of the nine test cases are reported in the Table 3. Considering velocity on the x-direction, the 

coefficient of determination and the factor of two show a good agreement with CFD results with values 

superior to 0.94. Systematic error is at a low level with only one case overestimating CFD values. Global error 

is low. Considering velocity on the y-direction, coefficient of determination gives values equal to 0.98 but the 

factor of two is low, less than 0.48. This can be explained by the high number of values near zero that can be 

lightly over or under estimated and this produced high level of error when ratio is used. The same problem 

occurs when the fractional bias is evaluated (and consequently normalized mean square error), giving 

unrepresentative values. Nevertheless, estimation of absolute error is thereafter detailed. 

Considering turbulent diffusion coefficient, values of coefficient of determination and factor of two are both 

higher than 0.9. Nevertheless, test cases with a large diameter are less well predicted. The same observation 

can be done on the systematic and total error with a magnitude of ten between 50 diameters test cases and 

remaining test cases. Moreover, fractional bias indicates overestimation of turbulent diffusion coefficient 

values for the major part of test cases except the ninth. 



Table 3:  Performance criteria for the forecasting of x and y velocities and the coefficient of determination by 

the neural network on nine test cases. 

Test 

cases 

Diameter 

(m)

Velocity 

(m.s-1)

Ux Uy Dt

R2 FAC2 FB NMSE R2 FAC2 R2 FAC2 FB NMSE

1 12 2.5 0.98 0.99 10-3

10-3

0.98 0.46 0.98 0.99 -1.2x10-2 1.3x10-3

2 12 5.5 0.98 0.99 10-4 0.98 0.47 0.98 0.99 -1.1x10-2 1.2x10-3

3 12 9.5 0.97 0.99 -10-4 0.98 0.48 0.98 0.99 -7.5x10-3 1.1x10-3

4 26 2.5 0.96 0.99 10-3 0.98 0.45 0.98 0.99 -2.3x10-3 4.0x10-3

5 26 5.5 0.96 0.99 10-3 0.98 0.45 0.98 0.99 -7.1x10-3 3.7x10-3

6 26 9.5 0.96 0.99 10-3 0.98 0.46 0.98 0.99 -3.4x10-3 3.4x10-3

7 50 2.5 0.94 0.99 10-3 0.98 0.44 0.93 0.95 -3.2x10-2 3.7x10-2

8 50 5.5 0.95 0.99 10-3 0.99 0.45 0.92 0.94 -1.8x10-2 3.8x10-2

9 50 9.5 0.96 0.99 10-3 0.98 0.44 0.91 0.93 2.1x10-2 4.1x10-2

Based on the mean values of performance criteria listed above, ANN modeling tends to correctly forecast 

characteristics of the flow. The following pictures represent the relative error between CFD reality and ANN 

modeling of  for test case 9, which seems to be the more difficult to forecast by the ANN. 

Figure 2: Absolute values of relative error between ANN and CFD of x and y velocities and turbulent diffusion 

coefficient for test case 9 – global view (left) and zoom near the 50 m cylinder (right) 

For determination of , relative error is not significant except in the near wake of the cylinder, in the 

recirculation zone. Errors are more important when considering forecasting of . Deficient values find here 

are mainly due to the mean value of zero that can induce high level of relative error even with low level of 

absolute error.  is the most difficult parameter to forecast. Indeed, errors can be found through the whole 

domain. Nevertheless, wake of the cylinder is correctly modeled. The worst values modeled are in the front of 

the cylinder and on the side of the far wake. ANN underestimates these values: values obtained are less than 

values deduced from atmospheric conditions and thus represent non-logical values. Possible explanations are 

that sampling method enhanced high values compared to low ones and that the focused zone corresponds to 

high gradient changes. These results have to be compared in terms of computation time for each model. 

Duration depends on the domain to model and the resolution required. In this work, space step is 1 m 

representing more than 350 000 node values on a structured mesh. This is comparable to CFD case with 

unstructured mesh. Time computation is extremely different with about 20 minutes for RANS  CFD model 

and less than two seconds for the ANN model.  



4. Conclusions 

The work presented here shows the forecasting feasibility of flow characteristics by artificial neural networks. 

Several steps are needed to design the network e.g. forming a database, sampling it and selecting the 

optimized ANN. To be real time effective, the ANN model has to use data directly available. Here, data used 

are only wind velocity at the inlet and obstacle diameter. Hence, ANN models the entire 2D velocity and 

turbulent diffusion coefficient field. Performance criteria show satisfying values with coefficient of 

determination superior to 0.9 for all training-independent test cases. Despite these results, several limited area 

are less well forecasted, specifically nearby the obstacle. Investigations have to be done to improve 

forecasting in these areas. Otherwise, using the ANN model instead of CFD model improves significantly time 

computation by a factor of 600. Knowledge of the wind field and the turbulent diffusion coefficient allows 

calculation of the dispersion of a passive pollutant around a cylinder. Several methods can thus be used, 

using particle tracking or solving the advection diffusion equation. Further work will be focused on the 

performance improvement, implementation of gas dispersion and addition of multiple obstacles with different 

shapes. In this perspective, using concatenation of separate cases is considered in first approach.  
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