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Abstract
It is common to see voice recordings being presented as a foren-
sic trace in court. Generally, a forensic expert is asked to ana-
lyze both suspect and criminal’s voice samples in order to in-
dicate whether the evidence supports the prosecution (same-
speaker) or defence (different-speakers) hypotheses. This pro-
cess is known as Forensic Voice Comparison (FVC). Since the
emergence of the DNA typing model, the likelihood-ratio (LR)
framework has become the golden standard in forensic sciences.
The LR not only supports one of the hypotheses but also quan-
tifies the strength of its support. However, the LR accepts some
practical limitations due to its estimation process itself. It is
particularly true when Automatic Speaker Recognition (ASpR)
systems are considered as they are outputting a score in all situ-
ations regardless of the case specific conditions. Indeed, several
factors are not taken into account by the estimation process like
the quality and quantity of information in both voice record-
ings, their phonological content or also the speakers intrinsic
characteristics. In our recent study, we showed the importance
of the phonemic content and we highlighted interesting differ-
ences between inter-speakers effects and intra-speaker’s ones.
In this article, we wish to take our previous analysis a step far-
ther and investigate the impact of rhythm variation separately
on target and non-target trials.
Index Terms: Forensic voice comparison, rhythm, reliability,
speaker factor, speaker recognition.

1. Introduction
Forensic voice comparison (FVC) is based on the comparison of
a recording of an unknown voice (the evidence or trace) and a
recording of a known suspect’s voice (the comparison piece). It
aims to indicate whether the evidence supports the prosecution
(the two speech excerpts are pronounced by the same speaker)
or defence (the two speech excerpts are pronounced by two dif-
ferent speakers) hypotheses. In FVC, as well as in several other
forensic disciplines, the Bayesian paradigm is denoted as the
logical and theoretically sounded framework to model and rep-
resent forensic evidence reports [1, 2]. In this framework, the
likelihood ratio (LR) is used to present the results of the foren-
sic expertise. The LR supports one of the hypothesis but also
quantifies the strength of its support.

Automatic Speaker Recognition (ASpR) is considered as
one of the most appropriate solution [3]. Even if impressive
low error rates (≈ 1% [4, 5]) were reported in the last years, the
forensic scenario is still very challenging for ASpR for several
reasons [6].

The first factor is the trial conditions like the quality and
quantity of information in both voice recordings. The speech
samples contain noises, may be very short. Their content cannot
be controlled (at least for the trace) and may not contain enough

relevant information. In [7, 8, 9], we showed that homogeneity
of the speaker-specific information between the two recordings
of a voice comparison trial is playing an important role.

Second, the speaker himself is an important factor [10, 6,
11]. A speaker could be ill, or under the influence of stress,
alcohol or other drugs. The social and linguistic environment
of the unknown speaker is unknown by construction.Speaker’s
intrinsic characteristics may have a huge impact on the intra-
speaker variability [6, 11]. Indeed, [11] showed that speakers
do not behave the same way in response of similar conditions:
some speakers will be quite robust with limited LR variation
when some other are showing a huge variation. In [6], we
showed that intra-speaker variability has a great impact on the
system accuracy and is responsible of about 2/3 of the system
loss (This proportion is higher for some speakers with an intra-
speaker variability able to explain more than 95% of the system
losses). And it is important to never forget that the speakers are
not necessarily cooperative and may disguise their voices, with
consequences on performance [12].

Finally, the phonological content is not exploited explicitly,
as well as the presence or absence of different speaker-specific
cues. However several research works like [13, 14, 15, 16] agree
that speaker specific information is not equally distributed on
the speech signal and strongly depends on the phoneme distri-
bution. [6] showed that the phonological content has a different
impact on target than on non-target comparisons.

In this article, we take our previous analysis [6] a step far-
ther and investigate deeper the impact of rhythm variation sep-
arately on target and non-target comparisons. First, we pro-
pose to analyze whether some rhythmic parameters are de-
pendent to the speaker. Second, we investigate if variation in
rhythm may explain the high intra-speaker variability observed
for some speakers and therefore explain the difference in per-
formance observed between speakers. Our study is performed
based on Fabiole [17], a database where within-speaker vari-
ability is strong.

2. The scope of research on speech rhythm
There have been a large number of studies on speech rhythm
variability, focusing on different aspects of speech: between-
language rhythmic similarities and differences [18, 19], rhyth-
mic characteristics of dialects or vernaculars of a language
[20, 21], metrically regular speech [22, 23], pathological speech
[24, 25], and more particularly speaker idiosyncratic rhythmic
characteristics [26, 27, 28, 29] which is on the scope of this
study.

Speech rhythm in terms of durational variability of differ-
ent levels of phonological intervals can vary between speakers.
A possible rationale motivating rhythmic variability between
speakers was derived from the observation that the kinematic
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properties of the articulators over time are, on the one hand,
driven by their individual anatomic characteristics, their spa-
tial dimensions, mass and accelerations [30], and, on the other
hand, by the individual ways speakers acquired to operate their
articulators [27, 31]. The individual steering of the articula-
tors should then result in individual temporal characteristics of
speech. [27, 28, 32] showed that durational measures of speech
rhythm could vary strongly and significantly between speakers.
[27] further revealed that the most likely sources of this vari-
ability are articulatory factors varying between speakers.

3. Experimental protocol
This section presents firstly the database used, FABIOLE and
the evaluation metrics applied in this study. The rest of the sec-
tion is dedicated to the methodology retained to evaluate the
impact of rhythmic parameters on FVC.

3.1. Corpus

FABIOLE is a speech database created inside the ANR-12-
BS03-0011 FABIOLE project. The main goal of this database is
to investigate the reliability of ASpR-based FVC. FABIOLE is
primarily designed to allow studies on intra-speaker variability
and the other factors are controlled as much as possible: chan-
nel variability is reduced as all the excerpts come from French
radio or television shows; the recordings are clean in order to
decrease noise effects; the duration is controlled with a mini-
mum duration of 30 seconds of speech; gender is ”controlled”
by using only recordings from male speakers; and, finally, the
number of targets and non targets trials per speaker is fixed.
FABIOLE database contains 130 male French native speakers
divided into two sets: Set T contains 30 targets speakers each
associated with at least 100 recordings, Set I: 100 impostor
speakers. Each impostor pronounced one recording. These files
are used mainly for non-targets trials.

FABIOLE allows to organize more than 150, 000 matched
pairs (target trials) and more than 4.5M non-matched pairs
(non-target trials). In this paper, we use only the T set. The
trials are divided into 30 subsets, one for each T speaker.
For one subset, the voice comparison pairs are composed with
at least one recording pronounced by the corresponding T
speaker. It gives for a given subset 294950 pairs of record-
ings distributed as follows: 4950 same-speaker pairs and 290k
different-speakers pairs. The target pairs are obtained using all
the combinations of the 100 recordings available for the corre-
sponding T speaker (C2

100 targets pairs). Whereas, non-targets
pairs are obtained by pairing each of the target speaker’s record-
ing (100 are available) with each of the recordings of the 29 re-
maining speakers, forming consequently (100 × 100 × 29 =
290k) non-targets pairs.

FABIOLE contains recordings gathered from different
kinds of speakers, including journalists, announcers, politicians,
chroniclers, interviewers, etc. More details could be found in
[17].

3.2. Evaluation metric

We use the Cllr and the minimum value of the Cllr, denoted
Cmin

llr , largely used in forensic voice comparison as they wish
to evaluate the LR and are not based on hard decisions like, for
example, equal error rate (EER) [33]. Cllr has the meaning of
a cost or a loss: the lower the Cllr is, the better the performance

is. Cllr could be calculated as follows:

Cllr =
1

2Ntar

∑

LR∈χtar

log2

(
1 +

1

LR

)

︸ ︷︷ ︸
CTAR
llr

+
1

2Nnon

∑

LR∈χnon

log2 (1 + LR)

︸ ︷︷ ︸
CNON
llr

(1)

As shown in Equation 1, Cllr can be decomposed into the
sum of two parts: CTAR

llr , which is the average information loss
related to target trials; CNON

llr , which is the average information
loss related to non-target trials. In this paper, we use an affine
calibration transformation using FoCal Toolkit [34].

3.3. LIA speaker recognition system

In all experiments, we use as baseline the LIA SpkDet system
[35].This system is developed using the ALIZE/SpkDet open-
source toolkit [36, 37]. It uses I-vector approach [4]. Acoustic
features are composed of 19 LFCC parameters, its derivatives,
and 11 second order derivatives. The bandwidth is restricted to
300-3400 Hz in order to suit better with FVC applications.

The Universal Background Model (UBM ) has 512 compo-
nents. The UBM and the total variability matrix, T, are trained
on Ester 1&2, REPERE and ETAPE databases on male speakers
that do not appear in FABIOLE database. They are estimated
using 7, 690 sessions from 2, 906 speakers whereas the inter-
session matrix W is estimated on a subset (selected by keeping
only the speakers who have pronounced at least two sessions)
using 3, 410 sessions from 617 speakers. The dimension of the
I-Vectors in the total factor space is 400. For scoring, PLDA
scoring model [38] is applied.

3.4. Temporal measures applied

In this paper, we use a variety of temporal measures that
are commonly used in the field of speech rhythm research
[39, 26, 27, 28]: we measured durational variability of voiced
and unvoiced intervals (including pauses). Seven measures are
used in this study:

• The percentage over which speech is voiced %VO [40];

• The mean voiced interval duration VO;

• The rate-normalized standard deviation of unvoiced in-
terval durations (VarcoUV [41]); VarcoUV= 100× ∆UV

UV

where ∆UV and UV are the standard deviation and the
mean of unvoiced interval durations.

• The rate-normalized standard deviation of voiced inter-
val durations (VarcoVO [40]); VarcoVO= 100 × ∆VO

VO

where VO and ∆VO are respectively the mean and stan-
dard deviation of voiced interval durations.

To these classical measures, we also add the mean and the stan-
dard deviation of the time interval between the beginning of
two successive voiced intervals or a pair. For example, the ith

pair is the interval of duration of the ith voiced interval (dVOi)
and the (i + 1)th unvoiced one (dUVi+1), dVOi + dUVi+1.
Among these pairs, we estimate the percentage of pairs for
which the voiced interval VOi is shorter than the unvoiced in-
terval UVi+1. Therefore, to the above list three measure are
added:

• The percentage of pairs for which the duration of an
unvoiced interval is greater than the voiced interval,
%(UVi+1 > VOi);

• The average duration of pairs, Average(pair);

1062



Figure 1: Cllr, Cmin
llr , CTAR

llr , CNON
llr per speaker and for “all” (data from all the speakers are pooled together) [6].

• The standard deviation of the duration of the pairs, Var-
coPair.

These temporal measures were calculated for each file
using “ProsodyPro” a script developed by [42] available under
http://www.homepages.ucl.ac.uk/˜uclyyix/ProsodyPro/.

3.5. Statistical significance evaluation

In this subsection, we present the statistical methods used to
study the significance of our results. We selected “analysis of
variance” (ANOVA) one of the most widely used statistical hy-
pothesis tests. A difference in term of Cllr, is considered sig-
nificant if the obtained p-value is below an arbitrary threshold,
classically set to 0.05. In order to study the size of an effect,
several standardized measures have been proposed. An effect
size is a quantitative measure designed to quantify the degree
of association between an effect (e.g., a main effect, an inter-
action, a linear contrast) and the dependent variable [43, 44].
The value of the measure of association is squared and it can
be interpreted as the proportion of variance in the dependent
variable that is attributable to each effect. Eta squared η2 [45],
one among these measures, is the proportion of the total vari-
ance that is attributed to an effect. It is calculated as the ratio
of the effect variance (SSeffect) to the total variance (SStotal).
As shown in Equation 2, η2 can be interpreted as the ratio of
variance explained by the factor of interest.

η2 =
SSeffect

SStotal
(2)

A larger value of Eta-squared η2, always indicates a
stronger effect. A commonly used interpretation, mentioned in
[46] (pp. 283−287), is to refer to effect sizes as Small when
η2 ≈ 1%, Medium when η2 ≈ 6% and Large when η2 ≈ 14%.

4. Results and discussion
The global Cllr (computed using all the trial subsets put to-
gether) is equal to 0.12631bits and the corresponding global
EER is 2.88%. The performance level is close to the level
showed during the large evaluation campaigns (like the NIST’s
ones).

4.1. Performance variability due to speaker factor

Figure 1 presents Cllr estimated individually for each T speaker
(the results are presented following the same ranking as [11],
which was based on general Cllr performance). In this figure,
Cllr is divided into two components, CTAR

llr and CNON
llr , in order

to quantify separately the information loss relative to target and

non-target trials. The results show that information loss related
to non-target trials (measured by CNON

llr ) presents a quite small
variation regarding speakers while there is a huge variation of
the information loss related to target trials (measured by CTAR

llr ).
The information loss coming from target trials (computed by
CTAR

llr ) is mainly responsible of the reported high costs obtained
for some speakers (such as speaker 28, 29 and 30).

Non Tar
-200

-150

-100

-50

0

50

100

Liquide

Fricative

Plosive

Nasal consonant

Nasal vowel

Oral vowel

Figure 2: Stacked bar chart of CR
llr computed on CTAR

llr (target trials)
and CNON

llr (non-target trials). Positive CTAR
llr indicates that phoneme

category in question have a negative effect in FVC and vice versa [6].

In Figure 2, we remind the different behaviors of the phono-
logical content between target versus non-target comparisons
reported in our previous study [6]: when all the phonological
classes play a positive role in speaker discrimination for non-
target comparisons. Only nasals, vowels and consonants, ap-
peared to be conveying speaker-specific information for target
comparisons.

4.2. Speaker factor effect on rhythm

Figure 3: Radar-chart presenting the speaker effect size explained in
terms of η2 for each rhythmic parameters.

In order to quantify the effect of speaker on rhythm, we first
extract our seven rhythmic parameters on each file (100 speech
recordings per speaker). One-way ANOVA is then performed
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with speaker as fixed factor and the rhythmic parameter as the
dependent variable. This process is done separately for each of
the seven rhythmic parameters. Results are reported in Table 1
and illustrated in Figure 3 for better visualization. Figure 3 is a
radar chart which shows the size of variability between speakers
explained for each rhythmic parameters. Each radius represents
one temporal measure. The length of the radius is proportional
to the magnitude of the speaker factor.

Table 1: Speaker factor effect on the 7 rhythmic parameters explained
in terms of Eta-square η2. (*) represents the significance level. “bold”
indicates a high effect.

Measure η2 p-value
%VO 42.056 ***

VO 37.727 ***
VarcoVO 25.492 ***
VarcoUV 45.485 ***

%(UVi+1>VOi) 37.686 ***
Average(pair) 41.142 ***

VarcoPair 19.391 ***

In this experiment, all observed differences between speak-
ers on rhythmic parameters are significant with p-value<0.001.
The speaker factor has a significant effect on all the measured
rhythmic parameters. If speaker factor always shows a large
effect on the rhythmic parameters, this effect is varying from
19.391% for VarcoPair to 45.485% for VarcoUV. This result
suggests that rhythmic parameters are highly influenced by the
speaker.

4.3. Can rhythmic parameters explain the difference of
performance between target and non-target comparisons?

In this section, CTAR
llr and CNON

llr are calculated for each file.
Indeed, for a given file, CTAR

llr and CNON
llr are estimated using

target and non-target trials involving the file in question.
In order to investigate the effect of rhythmic parameters on

the information loss for target comparisons, we select the x%
“Best” and the x% “Worst” files based on CTAR

llr . We wish to
investigate the differences between the two file subsets accord-
ing to each of the seven rhythmic parameters. The same strategy
is applied for non-target comparisons using CNON

llr . In this ex-
periment, each subset corresponds to 500 files.

Table 2: file class effect size on the 7 rhythmic parameters explained in
terms of η2. (*) represents the significance level. “bold”, “italic” and
“normal” indicate respectively a high, medium and small effect.

TAR NON
η2 p-value η2 p-value

%VO 3.88 *** 2.5 ***
VO 3.77 *** 0.42 *

VarcoVO 14.79 *** 0.27 n.s
VarcoUV 0.21 n.s 0.04 n.s

%(UVi+1>VOi) 13.26 *** 1.51 ***
Average(pair) 2.20 *** 0.13 n.s

VarcoPair 2.30 *** 0.10 n.s

To quantify the effect of file class (“Worst” or “Best”) on
each rhythmic parameter, one-way ANOVA is performed with
file class as fixed factor and the rhythmic parameter as the de-
pendent variable. Results for target and non-target comparisons
are reported in Table 2.

For target comparisons, all observed differences between
the two subsets (“Best” and “Worst”) on rhythmic parame-
ters are significant except for VarcoUV. The file class (“Best”
and “Worst”) factor has a large effect on V arcoV O and

%(UVi+1>VOi) while it is small for the remaining rhythmic
parameters.

For non-target comparisons, only the differences on %V O
and %(UVi+1>VOi) between the two subsets (“Best” and
“Worst”) are significant. The effect of the file class on the re-
maining rhythmic parameters is non significant. A small effect
size of the file class is observed for all the rhythmic parameters.

Taken together, the results suggest that rhythm variation has
a significant impact on target comparison’s accuracy while for
non-target comparison, this variation seems to not have an im-
pact on the FVC accuracy.

5. Conclusion
This article is a complementary study to our previous research
works published in [11, 6]. In the first work, we showed that
speakers do not behave similarly even if the experimental con-
ditions are well controlled (thanks to Fabiole database). In the
second one, we showed a large influence of the phonological
content on ASpR performance. Furthermore, we observed a
large variability depending on the speakers.

In this article, we explored the influence of rhythmic
parameters on ASpR performance using Fabiole database
and ANOVA framework. We studied seven rhythmic pa-
rameters V O, Average(pair), VarcoVO, %VO, VarcoPair,
%(UVi+1>VOi) and VarcoUV.

In a first step, we examined the influence of the speaker on
rhythmic parameters. We found that our seven rhythmic param-
eters (All based on temporal characteristics of speech intervals)
revealed highly significant differences between speakers: The
part of the speaker variance explained by a rhythmic parameters
varies from 19.391% for VarcoPair to 45.485% for VarcoUV.

In a second step, we focused on the relations between these
rhythmic parameters and the difference of performance between
target versus non-target comparisons. We first selected two sub-
sets of files that maximized the differences in term of CTAR

llr ,
denoted “Best” and “Worst”. Then, we investigated the differ-
ences between the two subsets according to each of our seven
rhythmic parameters. This strategy is applied also on non-target
comparisons using CNON

llr . We found that the file subset -i.e. the
difference in performance between excerpts- has a significant
effect on each rhythmic parameter for target comparisons. This
effect is large for VarcoVO and %(UVi+1 > VOi) and small
for the remaining parameters. On the other side, the file sub-
sets (“Best” and “Worst” in terms of CNON

llr ) seem to not have a
significant difference according to the studied rhythmic param-
eters. This result suggests that rhythm variation has essentially
a significant impact on target comparisons while for non-target
ones it does not seem to impact accuracy.
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