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Abstract
It is common to see voice recordings being presented as a foren-
sic trace in court. Generally, a forensic expert is asked to ana-
lyze both suspect and criminals voice samples in order to in-
dicate whether the evidence supports the prosecution (same-
speaker) or defence (different-speakers) hypotheses. This pro-
cess is known as Forensic Voice Comparison (FVC). Since the
emergence of the DNA typing model, the likelihood-ratio (LR)
framework has become the new golden standard in forensic sci-
ences. The LR not only supports one of the hypotheses but
also quantifies the strength of its support. However, the LR ac-
cepts some practical limitations due to its estimation process
itself. It is particularly true when Automatic Speaker Recog-
nition (ASpR) systems are considered as they are outputting a
score in all situations regardless of the case specific conditions.
Indeed, several factors are not taken into account by the esti-
mation process like the quality and quantity of information in
both voice recordings, their phonological content or also the
speakers intrinsic characteristics, etc. All these factors put into
question the validity and reliability of FVC. In our recent study,
we showed that intra-speaker variability explains 2/3 of the sys-
tem losses. In this article, we investigate the relations between
intra-speaker variability and rhythmic parameters.

Index terms— Forensic voice comparison, rhythm, relia-
bility, speaker factor, speaker recognition.

1. Introduction
Forensic voice comparison (FVC) is based on the comparison of
a recording of an unknown voice (the evidence or trace) and a
recording of a known suspect’s voice (the comparison piece). It
aims to indicate whether the evidence supports the prosecution
(the two speech excerpts are pronounced by the same speaker)
or defender (the two speech excerpts are pronounced by two dif-
ferent speakers) hypotheses. In FVC, as well as in several other
forensic disciplines, the Bayesian paradigm is denoted as the
logical and theoretically sound framework to model and repre-
sent forensic evidence reports [1, 2, 3]. In this framework, the
likelihood ratio (LR) is used to present the results of the foren-
sic expertise. The LR not only supports one of the hypothesis
but also quantifies the strength of its support. The LR is calcu-
lated using the following Equation,

LR =
p(E | Hp)

p(E | Hd)
(1)

where E is the trace, Hp is the prosecutor hypothesis (same ori-
gin), and Hd is the defender hypothesis (different origins). The
LR’s numerator corresponds to a numerical statement about the
degree of similarity of the evidence with respect to the suspect
and the denominator to a numerical statement about the degree
of typicality with respect to the relevant population.

Automatic Speaker Recognition (ASpR) is considered as
one of the most appropriate solution when LR framework is
involved [4]. Even though ASpR systems have achieved sig-
nificant progresses in the past two decades and have reached
impressive low error rates (EER ≈ 1% [5, 6, 7]), the forensic
scenario is still a very challenging one for ASpR for several rea-
sons detailed in [8, 9, 10]. Indeed, ASpR are working as black
boxes: they are outputting a score in all situations regardless of
the case specific conditions, ignoring a large set of observable
factors.

First, trial conditions like the quality and quantity of infor-
mation in both voice recordings. The speech samples are con-
taining noises, may be very short, their content can’t be con-
trolled (at least for the trace) and may not contain enough rele-
vant information for comparative purposes. In [11, 12, 13], the
authors showed that homogeneity of the speaker-specific infor-
mation between the two recordings of a voice comparison trial
is playing an important role and should not be ignored by the
LR estimation process.

Second, the phonological content is not used explicitly, as
well as the presence or absence of different speaker-specific
cues. In state-of-the-art ASpR systems, for example IVec-
tor (IV) based ones, a recording is encoded by an unique
low dimensional vector. However several research works like
[14, 15, 16, 17] agree that speaker specific information is not
equally distributed on the speech signal and strongly depends
on the phoneme distribution.

And finally, the speaker himself is an important factor
[18, 8, 19, 20]. A speaker could be ill, or under the influence
of stress, alcohol or other factors. The social and linguistic en-
vironment of the unknown speaker is unknown by construction
(so, for example, an unknown native or second language should
be taken into account by the forensic experts). The speakers
intrinsic characteristics may have a huge impact on the intra-
speaker variability and therefore put into question the validity
and reliability of FVC [8, 19, 20]. Indeed, in [19], we showed
that speakers do not behave the same way in response of simi-
lar condition changes: some speakers will be quite robust with
limited LR variation when some other are showing a huge vari-
ation. In a recent study [8], we showed that intra-speaker vari-
ability has a great impact on the system accuracy and it is re-
sponsible of about 2/3 of the system loss (this proportion is
higher for some speakers with an intra-speaker variability that
can explain more than 95% of the system losses). And it is
important to never forget that the speakers are not necessarily
cooperative and may disguise their voices, with consequences
on performance [21].

In this article, we take our previous analysis [8] a step far-
ther and investigate deeper the relations between intra-speaker
variability and rhythmic parameters (changes in speaker speech
rhythm may be a factor of intra-speaker variability). First, we
propose to analyze whether some rhythmic parameters are de-



pendent on the speaker. Second, we investigate if variation in
rhythm may explain the high intra-speaker variability observed
for some speakers and therefore explain the difference in per-
formance observed between speakers. Our study is performed
based on Fabiole [22], a database where within-speaker vari-
ability is strong.

This paper is structured as follows. Section 2 presents a
review of research on speech rhythm. Section 3 is dedicated to
the experimental protocol. Then, section 4 shows experiments
and results. Section 5 concludes the paper and discusses future
plans.

2. The scope of research on speech rhythm
There have been a large number of studies on speech rhythm
variability, focusing on different aspects of speech: between-
language rhythmic similarities and differences [23, 24, 25, 26],
rhythmic characteristics of dialects or vernaculars of a language
[27, 28, 29], metrically regular speech [30, 31], pathological
speech [32, 33], and more particularly speaker idiosyncratic
rhythmic characteristics [34, 35, 36, 37, 38] which is on the
scope of this study.

Speech rhythm in terms of durational variability of dif-
ferent levels of phonetic intervals can vary between speakers.
A possible rationale motivating rhythmic variability between
speakers was derived from the observation that the kinematic
properties of the articulators over time are, on the one hand,
driven by their individual anatomic characteristics, their spa-
tial dimensions, mass and accelerations [39], and, on the other
hand, by the individual ways speakers acquired to operate their
articulators [36, 40]. The individual steering of the articula-
tors should then result in individual temporal characteristics of
speech. [36, 37, 41] showed that durational measures of speech
rhythm could vary strongly and significantly between speakers.
[36] further revealed that the most likely sources of this vari-
ability are articulatory factors varying between speakers.

3. Experimental protocol
This section presents firstly the database used, FABIOLE and
the evaluation metrics applied in this study. The rest of the sec-
tion is dedicated to the methodology retained to evaluate the
impact of rhythmic parameters on FVC.

3.1. Corpus

FABIOLE is a speech database created inside the ANR-12-
BS03-0011 FABIOLE project. The main goal of this database is
to investigate the reliability of ASpR-based FVC. FABIOLE is
primarily designed to allow studies on intra-speaker variability
and the other factors are controlled as much as possible: chan-
nel variability is reduced as all the excerpts come from French
radio or television shows; the recordings are clean in order to
decrease noise effects; the duration is controlled with a mini-
mum duration of 30 seconds of speech; gender is ”controlled”
by using only recordings from male speakers; and, finally, the
number of targets and non targets trials per speaker is fixed.
FABIOLE database contains 130 male French native speakers
divided into two sets:

• Set T : 30 targets speakers each associated with at least
100 recordings.

• Set I: 100 impostor speakers. Each impostor pro-
nounced one recording. These files are used mainly for
non-targets trials.

FABIOLE allows to organize more than 150, 000 matched
pairs (target trials) and more than 4.5M non-matched pairs
(non-target trials). In this paper, we use only the T set. The
trials are divided into 30 subsets, one for each T speaker.
For one subset, the voice comparison pairs are composed with
at least one recording pronounced by the corresponding T
speaker. It gives for a given subset 294950 pairs of record-
ings distributed as follows: 4950 same-speaker pairs and 290k
different-speakers pairs. The target pairs are obtained using all
the combinations of the 100 recordings available for the corre-
sponding T speaker (C2

100 targets pairs). Whereas, non-targets
pairs are obtained by pairing each of the target speaker’s record-
ing (100 are available) with each of the recordings of the 29 re-
maining speakers, forming consequently (100 × 100 × 29 =
290k) non-targets pairs.

FABIOLE contains recordings gathered from different
kinds of speakers, including journalists, announcers, politicians,
chroniclers, interviewers, etc. FABIOLE material is close to the
one of REPERE [42], ESTER 1, ESTER 2 [43] and ETAPE
[44]. This characteristic allows to use these databases as a
source of training data. More details could be found in [22].

3.2. Evaluation metric

We use the Cllr and the minimum value of the Cllr, denoted
Cmin

llr , largely used in forensic voice comparison as they wish
to evaluate the LR and are not based on hard decisions like,
for example, equal error rate (EER) [45, 46, 47, 48]. Cllr has
the meaning of a cost or a loss: lower the Cllr is, better is the
performance. Cllr could be calculated as follows:

Cllr =
1

2Ntar

∑
LR∈χtar

log2

(
1 +

1

LR

)
︸ ︷︷ ︸

CTAR
llr

+
1

2Nnon

∑
LR∈χnon

log2 (1 + LR)

︸ ︷︷ ︸
CNON

llr

(2)

As shown in Equation 2, Cllr can be decomposed into the
sum of two parts:
• CTAR

llr , which is the average information loss related to
target trials.

• CNON
llr , which is the average information loss related to

non-target trials.
In this paper, we use an affine calibration transformation

[49] estimated using all the trial subsets (pooled condition) us-
ing FoCal Toolkit [50].

3.3. LIA speaker recognition system

In all experiments, we use as baseline the LIA SpkDet system
presented in [51]. This system is developed using the AL-
IZE/SpkDet open-source toolkit [52, 53, 54]. It uses I-vector
approach [5]. Acoustic features are composed of 19 LFCC pa-
rameters, their derivatives, and 11 second order derivatives. The
bandwidth is restricted to 300-3400 Hz in order to suit better
with FVC applications.

The Universal Background Model (UBM ) has 512 compo-
nents. The UBM and the total variability matrix, T , are trained
on Ester 1&2, REPERE and ETAPE databases on male speak-
ers that do not appear in FABIOLE database. They are esti-
mated using “7, 690” sessions from “2, 906” speakers whereas



Figure 1: Visualization of voiced (in blue) and unvoiced intervals (in gray) as well as, the pairs (black framed). Pairs for which the
voiced portion is shorter than the unvoiced one are represented by black framed with blue.

the inter-session matrix W is estimated on a subset (selected
by keeping only the speakers who have pronounced at least two
sessions) using “3, 410” sessions from “617” speakers. The di-
mension of the I-Vectors in the total factor space is 400. For
scoring, PLDA scoring model [55] is applied.

3.4. Temporal measures applied

In this paper, We use a wide variety of temporal measures that
are commonly used in the field of speech rhythm research [56,
35, 36, 37]: we measured durational variability of voiced and
unvoiced intervals (including pauses). Seven measures are used
in this study:

• The percentage over which speech is voiced %V O [57];

• The mean voiced interval duration V O;

• The rate-normalized standard deviation of unvoiced in-
terval durations (VarcoUV [58]):
VarcoUV= ∆UV

UV
%

where ∆UV is the standard deviation of unvoiced inter-
val durations and UV is the mean of unvoiced interval
durations.

• The rate-normalized standard deviation of voiced inter-
val durations (VarcoVO [57])
VarcoVO= ∆V O

V O
%

where ∆VO is the standard deviation of voiced interval
durations and V O is the mean of voiced interval dura-
tions.

For example, a speech recording that contains significant pauses
would have a slightly lower %VO and a larger VarcoUV vari-
ance coefficient than another speech recording with fewer long
pauses. To these classical measures, we also add the mean and
the standard deviation of the time interval between the begin-
ning of two successive voiced intervals or a pair 1. For exam-

1The last voiced interval is not taken into account.

ple, the ith pair is the interval of duration of the ith voiced in-
terval (dVOi) and the (i + 1)th unvoiced one (dUVi+1), dVOi

+ dUVi+1. Among these pairs, we estimate the percentage of
pairs for which the voiced interval VOi is shorter than the un-
voiced interval UVi+1. Therefore, to the above list three mea-
sure are added:

• The percentage of pairs for which the duration of an
unvoiced interval is greater than the voiced interval,
%(UVi+1 > VOi);

• The average duration of pairs, Average(pair);

• The standard deviation of the duration of the pairs, Var-
coPair.

These temporal measures were calculated for each file us-
ing “ProsodyPro” a script developed by [59] available under 2.
Figure 1 illustrates how rhythmic parameters mentioned above
are extracted.

3.5. Statistical significance evaluation

In this subsection, we present the statistical methods used to
study the significance of our results. We selected “analysis of
variance” (ANOVA) one of the most widely used statistical hy-
pothesis tests. A difference in term of Cllr, is considered sig-
nificant if the obtained p-value is below an arbitrary threshold,
classically set to 0.05. In order to study the size of an effect,
several standardized measures have been proposed. An effect
size is a quantitative measure designed to quantify the degree
of association between an effect (e.g., a main effect, an inter-
action, a linear contrast) and the dependent variable [60, 61].
The value of the measure of association is squared and it can
be interpreted as the proportion of variance in the dependent
variable that is attributable to each effect. Eta squared η2 [62],
one among these measures, is the proportion of the total vari-
ance that is attributed to an effect. It is calculated as the ratio

2http://www.homepages.ucl.ac.uk/˜uclyyix/ProsodyPro/

http://www.homepages.ucl.ac.uk/~uclyyix/ProsodyPro/


Figure 2: Cllr, Cmin
llr , CTAR

llr , CNON
llr per speaker and for “all” (data from all the speakers are pooled together) [8].

of the effect variance (SSeffect) to the total variance (SStotal).
As shown in Equation 3, η2 can be interpreted as the ratio of
variance explained by the factor of interest.

η2 =
SSeffect

SStotal
(3)

A larger value of Eta-squared η2, always indicates a
stronger effect. A commonly used interpretation, mentioned in
[63, 64] (pp. 283−287), is to refer to effect sizes as:

• Small when η2 ≈1%.

• Medium when η2 ≈6%.

• Large when η2 ≈14%.

4. Results and discussion
The global Cllr (computed using all the trial subsets put to-
gether) is equal to 0.12631 bits and the corresponding global
EER is 2.88%. The performance level is close to the level
showed during the large evaluation campaigns (like the NIST’s
ones).

4.1. Performance variability due to speaker factor

Figure 2 presents Cllr estimated individually for each T speaker
(the results are presented following the same ranking as [19],
which was based on general Cllr performance). In this figure,
Cllr is divided into two components, CTAR

llr and CNON
llr , in order

to quantify separately the information loss relative to target and
non-target trials. The results show that information loss related
to non-target trials (measured by CNON

llr ) presents a quite small
variation regarding speakers while there is a huge variation of
the information loss related to target trials (measured by CTAR

llr ).
The information loss coming from target trials (computed by
CTAR

llr ) is mainly responsible of the reported high costs obtained
for some speakers (such as speaker 28, 29 and 30).

4.2. Speaker factor effect on rhythm

In order to quantify the effect of speaker on rhythm, we first
extract our seven rhythmic parameters on each file (100 speech
recordings per speaker). One-way ANOVA is then performed
with speaker as fixed factor and the rhythmic parameter as the
dependent variable. This process is done separately for each of
the seven rhythmic parameters. Results are reported in Table 1

and illustrated in Figure 4 for better visualization. Figure 4 is a
radar chart which shows the size of variability between speakers
explained for each rhythmic parameters. Each radius represents
one temporal measure. The length of the radius is proportional
to the magnitude of the speaker factor.

Figure 4: Radar-chart presenting the speaker effect size ex-
plained in terms of η2 for each rhythmic parameters.

Table 1: Speaker factor effect on the 7 rhythmic parameters ex-
plained in terms of Eta-square η2. (*) represents the signifi-
cance level. “bold” indicates a high effect.

Variable η2 p-value
%VO 42.05 ***

VO 37.72 ***
VarcoVO 25.49 ***
VarcoUV 45.48 ***

%(UVi+1>VOi) 37.68 ***
Average(pair) 41.14 ***

VarcoPair 19.39 ***

In this experiment, all observed differences between speak-
ers on rhythmic parameters are significant with p-value<0.001.



Figure 3: %VO distribution for each speaker.

The speaker factor has a significant effect on all the measured
rhythmic parameters. If speaker factor always shows a large
effect on the rhythmic parameters, this effect is varying from
19.39% for VarcoPair to 45.48% for VarcoUV. This result sug-
gests that rhythmic parameters are highly influenced by the
speaker factor.

To illustrate this finding, we present a focus on one of the
parameters, %VO. Figure 3 is a box-plot showing the distribu-
tions of %VO for each speaker of Fabiole set T. When %VO
computed on all the speakers is 60.2% (All), this proportion
varies from 53.7% (speaker 1) to 65.5% (speaker 13).

4.3. Can rhythmic parameters explain the difference of
performance between speakers?

In order to investigate the effect of rhythmic parameters on the
performance, we select the three “Best” and the three “Worst”
speakers of set T based on Cllr issued from the experiment pre-
sented in Figure 2. We wish to investigate the differences be-
tween the two speaker subsets according to each of the seven
rhythmic parameters. The “worst” contains speakers 28, 29 and
30 (Average Cllr = 0.573bits) while the “Best” groups speakers
1, 2 and 3 (Average Cllr =0.036 bits).

To quantify the effect of speaker class (“Worst” or “Best”)
on each rhythmic parameter, one-way ANOVA is performed
with speaker class as fixed factor and the rhythmic parameter
as the dependent variable. Results are reported in Table 2.

Table 2: Speaker class effect size on the 7 rhythmic parame-
ters explained in terms of η2. (*) represents the significance
level. “bold”, “italic” and “normal” indicate respectively a high,
medium and small effect.

Variable η2 Significance
%VO 13.10 ***

VO 36.20 ***
VarcoVO 23.11 ***
VarcoUV 1.40 **

%(UVi+1>VOi) 35.94 ***
Average(pair) 34.55 ***

VarcoPair 8.50 ***

In this experiment, all observed differences between the two
classes (“Best” and “Worst”) on rhythmic parameters are signif-
icant. The p-value is <0.001 for all parameters, except for the
VarcoUV case. The speaker class (“Best” and “Worst”) fac-
tor has a large effect on VO, %(UVi+1>VOi), Average(pair)
and VarcoVO. %VO and VarcoPair are less variable across the
speakers with a medium effect. A small effect is obtainable for
VarcoUV measure.

For a deeper investigation, we present in Figure 5 the VO
and Average(Pair) distributions and in Figure 6, the VarcoVO
and %(UVi+1>VOi) distributions for both “Best” and “Worst”
speaker classes. “All” conditions is also presented for compar-
ative purposes.

Figure 5: VO and Average(Pair) distributions for “Best”
(green), “All” (blue) and “Worst” (red) speaker classes.

The VarcoVO and %(UVi+1>VOi) mean values for “Best”
speakers (99.01, 47.40) are significantly higher than mean val-
ues of the “Worst” speakers (86.27, 36.39). VO and Aver-
age(Pair) mean values of “Best” class (0.18, 0.33) are signifi-
cantly lower than those for “Worst” class (0.23, 0.39). It means
that the “Worst” speakers have longer voiced segments than the
“Best” ones. This result suggests that longer voiced intervals al-



Figure 6: VarcoVO and %(UVi+1>VOi) distributions for
“Best” (green), “All” (blue) and “Worst” (red) speaker classes.

low a larger articulatory flexibility in their production. This may
explain a larger intra-speaker variability for “Worst” speakers
and higher information losses.

5. Conclusion
This article is a complementary study to our previous research
works published in [19, 8]. In the first work, we showed that
speakers do not behave similarly even if the experimental con-
ditions are well controlled (thanks to Fabiole database). In the
second one, we showed a large influence of the phonetic con-
tent on ASpR performance. Furthermore, we observed a large
variability depending on the speakers.

In this article, we explored the influence of rhythmic
parameters on ASpR performance using Fabiole database
and an ANOVA framework. We studied seven rhythmic
parameters VO, Average(pair), VarcoVO, %VO, VarcoPair,
%(UVi+1>VOi) and VarcoUV.

In a first step, we examined the influence of the speaker on
rhythmic parameters. We found that our seven rhythmic param-
eters (All based on temporal characteristics of speech intervals)
revealed highly significant differences between speakers: The
part of the speaker variance explained by a rhythmic parameters
varies from 19.391% for VarcoPair to 45.485% for VarcoUV.

In a second step, we focused on the relations between these
rhythmic parameters and the difference of performance between
speakers. We first selected two subsets of speakers that max-
imized the differences in term of Cllr, denoted “Best” and
“Worst”. Then, we investigated the differences between the two
speaker subsets according to each of our seven rhythmic pa-
rameters. We found that the speaker subset -i.e. the difference
in performance between the speakers- has a significant effect
on each rhythmic parameter. This effect is large for four pa-
rameters (VO, %(UVi+1>VOi), Average(pair) and VarcoVO),
medium for two (%VO and VarcoPair) and small for one (Var-
coUV). We found that the worse speakers (in terms of Cllr) have
longer voiced segments than the best performers ones. This
result suggests that longer voiced intervals allow a larger ar-
ticulatory flexibility, which may explain a larger intra-speaker
variability for low performer speakers (and, therefore, higher
information losses).

Concerning the latter results, some caution should be ex-
pressed. Firstly, the presented experiments were done on Fabi-

ole, which present small variations in terms of speaking style as
well as on sociocultural characteristics. Moreover, Fabiole con-
tains only 30 speakers, a relatively small number which could
highlight a speaker specificity (known or unknown). Neverthe-
less, the obtained results could be a consequence of speakers
anatomical configurations, which in turn are governed by neu-
rological motor patterns in the brain of the speaker.

In order to answer to the latter questions, we wish to en-
large the dataset, including more speakers and more speaking
styles. It will also allow to increase significantly the size of the
best/worse subsets (only 3 speakers each in this work), which
will decrease the risk to take into account too much the speak-
ers themselves.
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Ondřej Glembek, František Grezl, Martin Karafiat, David A
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