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Abstract

This paper presents an extension to a very low-resource

parallel corpus collected in an endangered language, Griko,

making it useful for computational research. The corpus con-

sists of 330 utterances (about 20 minutes of speech) which

have been transcribed and translated in Italian, with annotations

for word-level speech-to-transcription and speech-to-translation

alignments. The corpus also includes morphosyntactic tags

and word-level glosses. Applying an automatic unit discovery

method, pseudo-phones were also generated. We detail how

the corpus was collected, cleaned and processed, and we illus-

trate its use on zero-resource tasks by presenting some baseline

results for the task of speech-to-translation alignment and unsu-

pervised word discovery. The dataset is available online, aiming

to encourage replicability and diversity in computational lan-

guage documentation experiments.

1. Introduction

For many low-resource and endangered languages, speech data

is easier to obtain than textual data. Oral tradition has histor-

ically been the main medium for passing cultural knowledge

from one generation to the next, and at least 43% of the world’s

languages are still unwritten [1]. Traditionally, documentary

records of endangered languages are created by highly trained

linguists in the field. However, modern technology has the

potential to enable creation of much larger-scale (but lower-

quality) resources. Recently proposed frameworks [2, 3] pro-

pose collection of bilingual audio, rendering the resource inter-

pretable through translations.

New technologies have been developed to facilitate col-

lection of spoken translations [4] along with speech in an en-

dangered language, and there already exist recent examples of

parallel speech collection efforts focused on endangered lan-

guages [5, 6, 7]. The translation is usually in a high-resource

language that functions as a lingua franca of the area, as it is

common for members of an endangered-language community

to be bilingual.

Tackling the issue of the possible vanishing of more than

50% of the current spoken languages by the year 2100 [8],

the Computational Language Documentation (CLD) field as-

sembles two different communities: linguistics and informatics,

proposing challenges [9, 10, 11] and frameworks from speech

signal [12, 13, 14]. However, as the interest on CLD approaches

grows, it becomes clear the urgent need of more publicly avail-

able low-resource corpora to provide replicable evaluation of

the proposed methods. We are aware of only a few endangered

languages whose corpora are publicly available [15, 16].

Our work is part of this effort to share resources, and with

this paper we present a corpus on a truly endangered dialect

from south Italy, Griko. The corpus has several levels of infor-

mation (speech, machine extracted pseudo-phones, transcrip-

tions, translations and sentence alignment), and we believe it

can be an interesting resource for evaluating documentation

techniques on (very) low-resource settings.

In addition, we provide baseline results for two tasks:

speech-to-translation alignment and unsupervised word discov-

ery. We encourage the community to challenge these results by

using their own techniques. For word discovery, we also pro-

vide the gold standard for evaluation following the Track 2 of

the Zero Resource Challenge (ZRC) 2017 [11]. These metrics

were extensively described in [17, 11], and are another impor-

tant community effort for increasing reproducibility.

This paper is organized as follows: after a quick related

work (section 2), the Griko language is presented (section 3).

Data processing methodology (section 4) and dataset are then

presented. Our baseline systems and results for two tasks (sec-

tions 5 and 6) are finally described.

2. Related Work

Unsupervised Word Discovery (UWD) systems operate on un-

segmented speech utterances and their goal is to output time-

stamps delimiting stretches of speech, associated with class la-

bels, corresponding to real words in the language. This task is

already considered in the Zero Resource Speech Challenge1 in a

fully unsupervised setting: systems must learn to segment from

a collection of raw speech signals only. Here, we investigate a

slightly more favorable case where speech utterances are mul-

tilingually grounded (using cross-lingual supervision, where a

written translation is available for each utterance). In CLD sce-

narios, this task helps to attenuate the heavy charge on field

linguists: the output vocabulary can be used as a first clue of the

lexicon present in the language of interest. As a monolingual

setup, UWD was previously investigated from text input [18]

and from speech [19, 20, 13, 21].

The speech translation problem has been traditionally ap-

proached by feeding the output of a speech recognition system

into a Machine Translation (MT) system. Speech recognition

uncertainty was integrated with MT by using speech output lat-

tices as input to translation models [22, 23]. A sequence-to-

sequence model for speech translation without transcriptions

has been introduced [24], but was only evaluated on align-

1http://zerospeech.com/2017

http://arxiv.org/abs/1807.10740v1


ment. Synthesized speech data were translated in [25] using a

model similar to the Listen Attend and Spell model [26], while

a larger-scale study [27] used an end-to-end system for trans-

lating audio books between French and English. Sequence-to-

sequence models to both transcribe Spanish speech and trans-

late it in English have also been proposed [28], by jointly train-

ing the two tasks in a multitask scenario with two decoders shar-

ing the speech encoder. This model was further extended [29]

with the translation decoder receiving information both from the

speech encoder and the transcription decoder.

For endangered languages (extremely low-resource set-

tings) the lack of training data leads to the problem being

framed as a sparse translation problem. This semi-supervised

task lies between speech translation and keyword spotting, with

cross-lingual supervision being used for word segmentation

[30, 31, 32, 33]. Bilingual setups for word segmentation were

discussed by [34, 35, 36, 37], but applied to speech transcripts

(true phones). Among the most relevant to our approach are the

works of [24] on speech-to-translation alignment using atten-

tional Neural Machine Translation (NMT) and of [31, 32] for

language documentation. However, the former does not address

word segmentation and is not applied to a language documen-

tation scenario, while the latter methods do not provide a full

coverage of the speech corpus analyzed. A neural approach for

word segmentation in documentation scenarios using the soft

attention matrices (which we also use for our baseline experi-

ments) was investigated in [37].

3. The Griko Language

Griko is a Greek dialect spoken in southern Italy, in the Greca

Salentina area southeast of Lecce.2 There is another endangered

Italo-Greek variety in southern Italy spoken in the region of Cal-

abria, known as Grecanico or Greco. Both languages, jointly re-

ferred to as Italiot Greek, were included as seriously endangered

in the UNESCO Red Book of Endangered Languages in 1999.

Griko is only partially intelligible with modern Greek, and un-

like other Greek dialects, it uses the Latin alphabet. In addition,

it is rare among the Greek dialects, due to its retention of the

infinitive in particular syntactic contexts. Less than 20,000 peo-

ple (mostly people over 60 years old) are believed to be native

speakers [39, 40]; unfortunately, this number is quite likely an

overestimation [41].

Resources in Griko are very scarce, with almost no corpora

available for linguistic research. The first grammar of the lan-

guage was composed by the German scholar Gerhard Rohlfs

[42] to be followed by others [43].

Recently, a corpus of Griko narratives was released [44]: it

contains 114 narratives originally collected by Vito Domenico

Palumbo (1854–1928) the most noted Griko scholar [45, 46].

The narratives were further annotated with translations in Ital-

ian, and partly annotated with gold Part-of-Speech information.

Here, we present and extend the only Griko speech corpus

available online3 [47], consisting of about 20 minutes of speech

in Griko, along with text translations into Italian. The origi-

nal corpus (henceforth UoI corpus, as it is hosted at the Uni-

versity of Ioannina, Greece) consists of 330 mostly elicited ut-

terances by nine native speakers, annotated with transcriptions,

morphosyntactic tags, and glossed in Italian.

2A discussion on the possible origins of Griko can be found in [38].
3http://griko.project.uoi.gr

4. Data Processing

The original UoI corpus was collected during a field trip in

Puglia, Italy by two linguists, with a particular focus on the use

of infinitive and verbal morphosyntax. The corpus contains ut-

terances from 9 different speakers (5 male, 4 female) from the

4 villages (Calimera, Sternatia, Martano, Corigliano) where na-

tive speakers could still be found. The digitally collected audio

files (16-bit PCM, 44.1kHz, stereo) were manually segmented

into utterances, transcribed, glossed in Italian, and annotated

with extensive morphosyntactic tags by a trained linguist.

4.1. Annotation Extensions

In order to render the UoI corpus useful for speech-related

computational research on Griko, we extend the corpus with

the following annotations:

1. Free-form Italian translations for every utterance, cre-

ated by a bilingual speaker,

2. gold-standard word-level alignment information for ev-

ery utterance, including annotated silences,

3. gold-standard speech-to-translation alignments,

4. pseudo-phones representation, obtained by using the

acoustic unit discovery (AUD) method presented in [48],

5. ZRC gold standard for standard evaluation, described in

the next section.

Figure 1 shows an example of sentence pairs from our col-

lection, and Table 1 presents some statistics on these aligned

transcriptions and translations. We observe that both sides

of the parallel corpus are considerably similar with respect to

the metrics presented here (sentence structure and vocabulary).

This is reasonable: the two languages belong to the same family

and have been in contact for centuries.

4.2. A reference compatible with the ZRC metrics

In addition to the word-level annotations, we built and make

available a reference (in the format of the ZRC challenge) in or-

der to allow evaluation of different word discovery approaches

using this corpus. We had a manual alignment between speech

and words, but no possibility to obtain an accurate automatic

alignment between speech and phones (or graphemes) due to

the very small amount of data available (not possible to train

an acoustic model using a Kaldi pipeline on 330 signals, for

instance).

Thus, we used the word-level alignment information be-

tween speech and transcription, and the silence annotation avail-

able in our corpus, to approximate a speech-to-grapheme align-

ment. For each word present in the corpus, we retrieve its time

window and segment this time window into smaller ones, giv-

ing to each existing grapheme an equal portion of its word time

window. We manually corrected some of the silence and word

annotations to ensure that we had no overlap between silence

and words time windows. This approximation was necessary to

make the ZRC metrics work.

The final reference can be considered correct for evaluation

of word discovery tasks (which do not take into account sub-

word annotation), but should be consider with caution for evalu-

ation of subword discovery tasks. Finally, we created two ZRC

versions, one removing the silence tokens, used for grapheme

evaluation, and a second one with all the information, used for

pseudo-phones evaluation.

http://griko.project.uoi.gr


Griko jatı̀ ı̀che polemı̀sonta òli tin addomàda

Italian perché aveva lavorato tutta la settimana

Figure 1: A tokenized and lower-cased sentence pair example in our Griko-Italian corpus.

# tokens Vocabulary size
Average tokens

length

Average # tokens

per sentence

Shortest

token

Largest

token

Griko 2,374 691 5.68 7.19 1 16

Italian 2,384 456 5.76 7.22 1 13

Table 1: Statistics of the 330 sentences in our parallel Griko-Italian corpus.

Method P R F

proportional 42.2 52.2 46.7

neural 24.6 30.0 27.0

DTW-EM 56.6 51.2 53.8

Table 2: On speech-to-translation alignment, the unsupervised

model outperforms the neural attentional model and the naive

baseline in terms of Precision and F-score.

5. Speech-to-Translation Alignment

The task of speech-to-translation alignment is the problem of

identifying portions in an audio segment that should be aligned

to words in (text) translation, without access to transcriptions

[24]. Our speech-to-translation alignment annotations allow us

to evaluate such methods on our corpus. Evaluation is per-

formed by computing standard precision, recall, and F-score on

the links between speech frames and translation words.

Providing a baseline for future work, Table 2 reiterates pre-

vious results on speech-to-translation alignment. We present

results with three methods: a naive proportional baseline

(proportional), a neural alignment model [24] (neural), and an

unsupervised model (DTW-EM) [49]. The naive baseline as-

sumes no reordering and simply segments the audio to as many

segments as the translation words, each with a length propor-

tional to the word’s length in characters. The neural alignment

model trains a speech-to-translation end-to-end sequence-to-

sequence system with attention on all the data, and then the soft

attention matrices are converted to hard alignments between au-

dio segments and translation words. DTW-EM is an unsuper-

vised model that extends the IBM Model 2 alignment model

[50] to work on speech segments, combining it with a Dynamic

Time-Warping-based clustering approach [51].

Since the two languages have several similar characteris-

tics, the naive proportional baseline is already very competi-

tive; its recall is better than both other evaluated methods. The

unsupervised model, however, achieves much higher Precision

and F-score than the rest. Unsurprisingly, the neural approach

performs significantly worse in this setting: 330 sentences are

clearly not enough to train a robust word-level model.

6. Unsupervised Word Discovery
Experiments

In this section we illustrate the use of our corpus for the task

of unsupervised word discovery. We use three different base-

lines, one monolingual and two bilingual, and two different

representation levels, graphemes (from text) and pseudo-phones

(automatically extracted from speech). Evaluation is performed

using the Boundary metric from the Zero Resource Challenge

2017 (Track 2) [11]. We compute recall, precision and F-score.

Below, we describe the three baselines evaluated in this work.

• Dpseg (monolingual): dpseg4 is the non-parametric

bayesian model introduced in [52]. On this setup, words

are generated by a bigram model over a non-finity inven-

tory, through the use of a Dirichlet-Process. Estimation

is performed through Gibbs sampling. This approach is

known as being very robust on low-resource scenarios.

The hyper-parameters used here are the same from [53].

• Proportional Segmentation (bilingual): this baseline

uses the word boundaries in the translation to segment

the input proportionally. We can expect considerable

good results for proportional segmentation when applied

on language pairs similar on sentence structure and aver-

age token length, and therefore, we expect good results

for this baseline when applied to the Griko-Italian corpus

(see Table 1).

• Neural Segmentation (bilingual): the method applied

in this paper was presented in [37]. It post-processes

a NMT system’s soft-alignment probability matrices to

generate hard segmentation. Due to the length dis-

crepancy between the symbols (graphemes and pseudo-

phones) and the translations, our post-processing in-

cluded alignment smoothing. This procedure, proposed

by [24], consists of adding temperature T to the softmax

function used by the attention mechanism. Resulting

soft-alignments matrices are further smoothed by aver-

aging each probability by its right and left neighborhood.

However, in this work we use T = 1 for all setups, and

only the alignment matrices smoothing (averaging with

the right and left neighbors) is used here. Also, for sta-

bility reasons, we report the averaged scores over 5 dif-

ferent trained models.

• Merged Neural Segmentation (bilingual): the same

methodology from the previous baseline, with the dif-

ference of averaging the soft-alignment probability ma-

trices before post-processing, instead of averaging only

the scores. We use the same 5 runs from the previous

setup to generate an averaged (merged) segmentation.

Table 3 presents the achieved results. Even on this very

low-resource scenario, dpseg has a remarkable performance for

4Available at http://homepages.inf.ed.ac.uk/sgwater/resources.html.

http://homepages.inf.ed.ac.uk/sgwater/resources.html


dpseg proportional neural merged neural

P R F P R F P R F P R F

grapheme 68.50 75.10 71.60 44.70 44.80 44.70 42.66 51.84 46.72 50.20 54.00 52.10

pseudo-phones 23.30 36.90 28.50 28.50 29.90 29.20 32.00 27.68 29.56 34.30 26.70 30.00

Table 3: Boundary scores for the task of unsupervised word segmentation. Results for neural segmentation are the average over 5 runs.

Best results for each metric are presented in bold.

grapheme pseudo-phones

# tokens Vocabulary Size
Average # tokens

per sentence
# tokens Vocabulary Size

Average # tokens

per sentence

proportional 2,370 1,715 7.18 2,366 1,431 7.17

dpseg 2,629 567 7.97 3,912 520 11.85

neural (average) 2,972 1,462 9.01 1,929 1,066 5.84

merged neural 2,573 1,476 7.80 1,676 967 5.08

Table 4: A comparison between the generated segmentation by the four baselines. For the neural baseline, results are the arithmetic

mean between the statistics for the 5 runs.

the task of word segmentation working with graphemes. It re-

trieved 75.10% of the correct boundaries (recall). The second

best method from the baselines for grapheme segmentation was

the merged version of the neural segmentation. The remaining

two baselines (proportional and neural) had close performance,

achieving retrieval between 44 and 52%.

For the pseudo-phones segmentation, all methods had a

considerable drop in performance, specially dpseg. They all

achieved similar F-scores, with the merged neural baseline be-

ing slightly more effective. Table 4 presents some numbers for

the generated segmentation of all methods presented in this sec-

tion. We observe that, for pseudo-phones, dpseg seems to over-

segment the input (average tokens per sentence), while the neu-

ral baselines segmented the input considerably less.

Lastly, pseudo-phones were obtained through an unsuper-

vised unit discovery system, which inevitably adds noise to

the representation. This noise is then propagated to the word

discovery system. We believe the achieved results for pseudo-

phones illustrate the difficulty of the task of word discovery on

extreme low-resource setups.

7. Conclusion

In this paper we presented an extension of a very small paral-

lel corpus on an endangered language called Griko. We make

this corpus, with all its different levels of representation, freely

available to the community as an effort in the direction of re-

search replicability for low-resource approaches.5

We illustrated the potential of this parallel corpus by per-

forming the tasks of speech-to-text alignment and unsupervised

word discovery. We encourage the community to challenge the

baselines presented here.

Future work includes comparing the tasks results from

this extreme case of language documentation with other low-

resource corpora, such as the one presented in [15].
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Salentina [I wanted to tell you - Folk songs of Grecı́a Salentina].
Calimera (LE): Ghetonı́a, 1999, a cura di S. Sicuro.

[47] M. Lekakou, V. Baldiserra, and A. Anastasopoulos, “Documenta-
tion and analysis of an endangered language: aspects of the gram-
mar of Griko,” 2013, http://griko.project.uoi.gr.

http://arxiv.org/abs/1710.03501
https://arxiv.org/abs/1612.01744
https://arxiv.org/abs/1703.08581
http://aclweb.org/anthology/E17-2076
http://griko.project.uoi.gr


[48] L. Ondel, L. Burget, and J. Černockỳ, “Variational inference for
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method for dynamic time warping, with applications to cluster-
ing,” Pattern Recognition, vol. 44, no. 3, pp. 678–693, 2011.

[52] S. Goldwater, T. L. Griffiths, and M. Johnson, “A bayesian frame-
work for word segmentation: Exploring the effects of context,”
Cognition, vol. 112, no. 1, pp. 21–54, 2009.

[53] P. Godard, G. Adda, M. Adda-Decker, A. Allauzen, L. Besacier,
H. Bonneau-Maynard, G.-N. Kouarata, K. Löser, A. Rialland, and
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