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Highlights 
 

· Atmospheric powder dispersion is modeled in a complex urban area. 

· 290 daily mean concentration measurements are recorded. 

· Artificial Neural Network (ANN) model is trained and evaluated. 

· The ANN model satisfies air quality model evaluation criteria. 

· The ANN model computing time is nearly instantaneous (less than one second). 

 

1. Abstract  
Atmospheric dispersion prediction skill is required for any industry processing hazardous 
material. This is a sensitive task since many parameters are involved: source term, atmospheric 
conditions, and local configuration. Behavior of dust dispersion is difficult because of the 
diameter scattering, agglomeration, sedimentation, range of densities… Furthermore, production 
sites may be located inside a complex environment such as urban areas, where accuracy of 
classical dispersion models is low. This paper aims to evaluate the efficiency of an Artificial 
Neural Networks (ANN) model to predict dust dispersion in an urban area without prior 
knowledge of the source term. The experimental database consists of 290 daily mean 
concentration measurements on a site located 500m away from the emission source. The inputs 
are selected from meteorological data from a MeteoSwiss station located 4.5km south. The 
training phase is done through early stopping application. ANN model selection is performed on 
the best coefficient of determination value. Model performance is evaluated using classical air 
quality criteria and shows good results. Nevertheless, ANN model tends to underestimate high 
concentrations while overestimating low concentrations. Results are included within acceptable 
range. Improvements can be achieved by adding information of the source term as an input for 
the ANN model. 
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3. Introduction 
 

Atmospheric dispersion prediction ability is required for any industry processing hazardous 
materials. One can distinguish chronic pollution resulting from continuous release with low level 
of concentration and accidental pollution resulting from an accidental event (leakage, human 
error …).  Industrial processes can generate such chronical concentrations in the atmosphere. 
The World Health Organization has recently published a warning report on air quality (WHO, 
2016) that links particulate solids under 10 µm and 2.5 µm level and the increase of several 
diseases (stroke, heart disease, lung cancer, chronic and acute respiratory diseases, asthma). Each 
country institution set limits to material emission and impose studies of the behavior of substance 
in case of release. For example, the Swiss legislation for the protection against major accidents 
(OPAM) requires that the accidental release of a highly active powder should be studied before 



giving the authorization of production. Annex 4 (332 and 333) of the order 814.012 refers to the 
study of different cases of dispersion and the consequences for both people and the 
environment. For most simple cases, classical models are perfectly indicated. In free field, 
Gaussian models are accurate. In more complex situations, Computational Fluid Dynamics 
models are required. However, there are situations where explicit modelling is ineffective. These 
are more particularly situations where the source term is unknown, as in the case of diffuse 
industrial emissions, uncontrolled discharges. There is currently no method for predicting the 
effects of such poorly known emissions. This paper focuses on the study of the behavior of an 
undefined release of a powder in a complex environment: urban, including the presence of a 
river. To model this situation, Artificial Neural Network method is implemented due to its 
efficiency in complex situations where direct modelling is difficult (Lauret et al., 2016a). To do so, 
there is a need to process a dust monitoring combined with registration of meteorological data 
near emission site to build, verify and validate a dispersion model. The developed model here is 
thus based on real life experiments as there is a monitoring database available with over 2 years of 
registration. It gives daily mean concentration of particles at a station 500 m away from the 
emission area. It is distinct from classical tools because of the intrinsic consideration of the 
emission area environment with nearly instantaneous results. 

3.1. Modeling of dust dispersion in lack of knowledge of source term 
Numerous parameters impact powder dispersion in the atmosphere and are required to 
accurately model the dispersion. Characterization of the source term gives the initialization of the 
model. Depending on the aim of the modeling, it can be fully defined, or estimated from 
qualitative or qualitative observations in terms of flow rate, velocity and physical properties. 
Meteorological parameters are directly linked to the dispersion due to the implication in the 
atmospheric flow equations. Once again, to model correctly, it is important to get information 
closer to the emission source to be as accurate as possible. Finally, direct environment from the 
emission source to the monitoring point define how the flow is influenced by the buildings in the 
vicinity, orography and surface roughness (road, grass, water…) (Hosker Jr, 1985). 

Usual modeling techniques are Computational Fluid Dynamics or CFD models, integral models 
or Gaussian models. Each model presents advantages and limits. Gaussian models correspond to 
an analytical resolution of the advection equation, using standard deviations to calibrate turbulent 
diffusion coefficients. Their limitations are due to hypothesis required to solve the equation: 
atmospheric boundary layer characterization is evaluated according to several categories, specific 
obstacles are not considered, material is considered as passive, accuracy is better in far field. 
These coefficients were tested for urban environment using Indianapolis experiments (Hanna et 
al., 1999). Despite these limitations, these models are widespread because of their easiness and 
quickness of use and the regulator acceptability. Intermediate simplified CFD models exist, but 
increase both complexity and computing time. Diagnostic wind flow models like mass-consistent 
models are able to reconstruct a steady-state wind field from initial experimental data, while 
keeping predictions of orography effects (Castellani et al., 2015). They are based on simplified 
steady-state solutions of the Navier-Stokes equations. Eulerian models from Computational Fluid 
Dynamics solved these equations based on finite elements method. At first, the wind flow is 
determined. Turbulence is solved using closure equations of the system. These equations are 
transport equations of turbulent quantities. The turbulent diffusion coefficient is introduced in 
the advection-diffusion equation to model the dispersion. Dispersion can be computed using a 
Lagrangian method: behaviors of particles are followed and are proportionally linked to 
concentration, depending on initial conditions. 

Some alternative models using statistical techniques attempt to speed up classical CFD 
techniques. Stavrakakis et al. (2011) develop an Artificial Neural Networks (ANN) model to yield 
relationships between air velocity and geometrical characteristics. Then, the near-optimal 
geometrical solution is computed using the CFD model, saving several CFD simulations, each 



one representing approximately 10h CPU time. Vendel (2011) generates an important database of 
different possible wind fields around a specific site. The time spent to build this large database is 
spared when an event occurs: the trajectory simulation is computed using the interpolate velocity 
field according to the actual meteorological conditions recorded on the site. A Lagrangian 
approach is thus used. Another approach consists in creating a large database of CFD 
calculations in order to give knowledge of fluid mechanics equations to statistical tools like ANN 
(Lauret et al., 2016b). Again, computing time is reported in a learning phase while operating 
phase is nearly instantaneous. Moreover, Cao (2007) carried out a study to determine, by ANN 
method, the dispersion coefficients used in the Gaussian model. This study helps to improve 
Gaussian models by adding continuous standard deviation values, adapted to every specific 
configuration. ANN has already been used to forecast tracer concentrations at a given site using 
spatially distributed sensors (Podnar et al., 2002). A rudimentary comparison with traditional 
statistical methods revealed that the ANN performed better and showed fewer limitations as a 
tool for tracer modeling, especially for long-term prediction. Boznar et al., (1993, 2004) present a 
model using meteorological values (air temperature, global solar radiation, wind speed, wind 
direction, maximal air temperature) and previous pollutant concentrations (NO, NO2, NOx, CO, 
O3) to perform a 12-hours forecasting of Ozone concentrations. This model shows sufficient 
capabilities to inform citizens about possibilities of high and alarm concentrations 

The study case developed here corresponds to the dispersion of highly active powder from a 
source located in a complex environment. Concentrations of the powder are registered at several 
stations away from the emission sources, scattered around the city. Daily mean concentrations 
from November the 13th 2013 to April the 1st 2015 are integrated to feed the database. 
Information about the source term is limited to the location. Meteorological data are retrieved 
from a MeteoSwiss station located at 4.5 km at the south of the emission source. The situation 
presented here is specific because of the complexity of the site (buildings, Rhin river, car 
circulation …), the difficulty to determine source term and the need for fast modeling. In this 
context, machine learning tools like Artificial Neural Networks (ANN) are of particular interest. 
The aim of this model is to forecast daily mean concentration at a specific location using ANN 
without knowledge of the emission source term. 

3.2. Artificial Neural Networks 
ANN are machine learning models based on the systemic paradigm and are able to identify a 
nonlinear behavior from a database without physical assumption acting as a black box. The 
Multilayer Perceptron ANN model used here has two essential properties. Universal 
approximation (Hornik et al., 1989) and parsimony (Barron, 1993) make it able to predict 
efficiently future behaviors on never encountered situations within the variables range of the 
examples database. A neuron is a nonlinear, parameterized, bounded function. Variables are 
assigned to the inputs of the neuron. The output of a neuron is the result of nonlinear 
combination of the inputs, weighted by the parameters and using an s-shaped function like a 
sigmoid. A neural network is the composition of several neurons. Parameters calibration is done 
through application of an algorithm using the training database and designed to decrease the 
model error. In this work, the Levenberg-Marquardt method is used (Hagan and Menhaj, 1994). 
The function realized by the ANN is continuously tested on a disjoined set of examples, namely 
the validation set. This set is employed to avoid overtraining using early stopping (Sjöberg et al., 
1995). Lastly, performances of the model must be measured on another set, never used during 
training or stopping: the test set.  

 



4. Material and method 

4.1. Example database creation 
Database consists of 290 daily mean concentrations measurements on a site located 500m away 
from the emission source recorded from November the 13th 2013 to April the 1st 2015. The daily 
monitored mean concentration dataset shows a large discrepancy in the values. Figure 2 
represents both the concentration distribution and the cumulative sum of elements in the sample. 
More than 85 % of the concentrations are under 0.05 µg.m-3. Meanwhile, most important 
concentrations to forecast are the high values of concentrations. Extreme values of the 
distribution, over 0.15 µg.m-3 represent less than 1.4 % of the dataset. It is a difficult challenge to 
forecast such an unbalanced distribution, according the importance to the inputs selection and 
training procedure.  

In order to optimize the training process of the ANN, it is first important to feed it with variables 
directly affecting the daily mean concentration at the station. As said before, data on the emission 
source term are not available. Thus, the only available data are linked to the meteorology. These 
data are collected from Basel MeteoSwiss station, located 4.5 km south from the emission.  

Hourly data are provided during the period of interest and reported in table 1: 

As the goal of this work is to provide the mean daily concentration at a specific location, data has 
to be modified on daily basis. Meteorological data was processed to fit day duration. In order to 
avoid the gap between 0° and 360° in the direction of the wind, values of both the cosinus and 
the sinus are used as inputs for the ANN. All temperature values were integrated in only two 
inputs parameters: mean and standard deviation of the whole set of daily max, min and mean 
temperature. The mean and standard deviation values were also used for the following 
parameters: relative humidity, sun radiation, wind direction, wind velocity, wind gust and 
atmospheric pressure. For the rain and the shinning sun duration, the total sum of the day was 
used. It results in 17 different inputs for the neural networks as seen in the box plot in figure 3: 

As we can see on this figure, values are not comparable one to another without additional 
mathematical correction. To ensure that the training algorithm is not going to promote one 
variable instead of another, it is important to reduce the data in the same interval. 

4.2. ANN Architecture 
Architecture of the ANN is directly linked to his ability to forecast concentrations at the 
considered location. As the number of examples is low, several different architectures have to be 
tried and evaluated in order to select the best model. In this work, Levenberg-Marquardt 
algorithm has been used. In order to avoid an overtraining of the data set, early stopping is used. 
It consists of dividing the database in three parts:  

- The training set represents 80% of the database.  
- The stop set is used to avoid overtraining: when the mean squared error stops decreasing 

on it, the training phase is interrupted.  
- The test set is used to assess the model quality. 

Previous works (Lauret et al., 2016b) present the need to study the proper number of neurons in 
hidden layer. Moreover, several initializations are required to correctly train the ANN. Indeed, 
due to the relatively small size of the example database, a focus on the best model selection is 
made. The coefficient of determination is used to evaluate the performance of the training phase 
of the neural network (Kong A Siou et al., 2012). In this work, 1 to 30 neurons in hidden layer 
have been tried. Each ANN has been trained with 20 initializations to ensure the best fitting to 
the concentrations 



4.3. Performance criteria 
A forecasting model has to be evaluated against measured data. In air quality, several criteria are 
used to do so. Chang and Hanna (2004) proposed four different quality criteria. It is important to 
use all of them to avoid misunderstanding of the model performance. In this work, the factor of 
two (FAC2), the Normalized Mean Squared Error (NMSE), the Fractional Bias (FB) and the 
coefficient of determination (R2) are used. The last one replaces the coefficient of correlation 
because of its use in neural networks application. Expressions of these criteria are detailed in the 
following table: 

 

As previously mentioned, each one has an importance. The target values for these criteria are as 
following: R2 and FAC2 is one; FB and NMSE is 0. FB measures the systematic errors which lead 
to always underestimate or overestimate the measured values. FB values range between -2 
(extreme underprediction) to 2 (extreme overprediction). Therefore, matching perfect target FB 
value does not mean perfect modeling, because of possible cancelling errors. NMSE measures 
systematic and random errors. As detailed by Hanna and Chang (2012), acceptable values are : 

· | !| " 0.67, i.e., the relative mean bias less than a factor of   2 

· !"#$ % 6, i.e., the random scatter % 2.4 times the mean 

· &'(2 ) 0.3, i.e., the fraction of y within a factor of two of yp that exceeds 0.3 

In the following section, these criteria are used to evaluate the model performance to forecast the 
concentrations at a specific site. 

5. Results and discussion 

5.1. Best model selection 
The selection of the best ANN model is based on the evaluation of the coefficient of 
determination on the test set of the examples database. Figure 4 represents the evolution of the 
coefficient of determination with the increase of the number of neurons in hidden layer. 
Considering the median value of 20 initializations for each number of hidden neurons, one can 
see an improvement of the performance of the neural network up to 6 neurons in hidden layer. 
Above this value, the coefficient of determination decreases and reaches a chaotic zone from 9 to 
26 neurons in hidden layer. Values above 26 show a stabilization of the R2 value. If only the 
maximum value is considered, then the best performance is evaluated with 3 neurons in hidden 
layer. An increase in the maximum value is observed from 27 to 30 neurons in hidden layer. 

Initialization plays an important role in the best ANN selection because of the training 
dependency. As shown in figure 5, the median R2 value from 20 initializations corresponds to 
most of the ANN training. Four training show different behavior, three are out of acceptability 
range whereas one gives an improvement in the training phase. 

The best selected model corresponds to the initialization #5 of the neural network with 3 
neurons in the hidden layer. This model is evaluated in the results and discussion section. 

5.2. ANN model evaluation 
In the training phase three data sets were created. The test set is used to evaluate the performance 
of the ANN versus the measured data. It is composed of 29 examples representing both high and 
low concentrations. Results in term of air quality criteria are reported here: 

According to the guidelines on air quality performance criteria, the ANN model gives good 
results. The value of the FAC2 is above 0.3. NMSE is under 1 while fractional bias criterion is 
close to 0. It indicates that no systematic errors are made, even if random errors may be present. 
From a global point of view, the model neither under nor over estimates the concentrations. The 
coefficient of determination indicates a value of 0.6 that is quite encouraging. To better 



understand the results, figure 6a and 6b show the scatter of data observed and forecasted. In 6a, 
only the test set has been represented while all the concentrations are plotted in 6b. 

In figure 6a, almost all data are included in the factor of two of the observed concentrations. 
There are overestimations of the low level concentrations, inferior to 0.04 µg.m-3. Inversely, 
concentrations above 0.5 µg.m-3 are underestimated, within a factor of two. These first 
conclusions are also present on figure 6b where all the concentrations of the dataset are 

considered. The concentrations of the validation set are lightly underestimated ( ! " 0.88). 
Considering most important values of forecasted concentration on the training set, the major part 
is underestimated while other examples reach the perfect match. Values around zero are both 
under or over estimated. In terms of computing time, results are obtained nearly instantaneously 
(less than one second), enhancing improvement compare to CFD models that require more than 
one hour. Knowledge of the behavior of the model is very important because of the trend to 
underestimate high values. While operating, this ANN model might be used to foresee 
precautions measure if needed or adaptive actions on the process. 

6. Conclusions  
The aim of this work is to prove that using ANN to forecast powder concentrations without 
knowledge of the emission source is possible. The presented results emphasize this possibility. 
The proposed dispersion model forecasts concentrations of a powder at a specific location. The 
emission source corresponds to a production site distant of 500 m. The configuration of the 
environment can be considered as complex because of the presence of numerous buildings, 
roads, parks and a river. An Artificial Neural Networks is used to perform this forecasting. The 
training of the model is achieved through the use of 290 daily mean concentrations recorded 
from November the 13th 2013 to April the 1st 2015. The measured concentrations were clustered 
in three set to process the training phase of the ANN. Each set has to correctly represent the 
whole set so stratified data sampling was realized. The validation of the model was based on the 
coefficient of determination, the factor of two, the fractional bias and the normalized mean 
square error. Acceptable values of these criteria are reached which confirms the possibility to use 
ANN even in case of poor knowledge of the source term even if the ANN model tends to 
underestimate high concentrations while low concentrations are overestimated. This behavior has 
to be known before using the model. Nevertheless, improvements can be done to the model by 
supplying additional information about the source term as inputs for the neural network. 
Likewise, the MeteoSwiss station is located at more than 4.5 km south and can possibly be not 
representative of the atmospheric flow at the emission source. Moreover, another argument for 
adding meteorological data acquisition system at the emission source is that urban flow of air is 
very specific and can largely vary with small shifting of the measure. Moreover, despite the 
number of examples that can be considered as low, modeling is satisfying. As the sampling is 
going on, database grows and better trainings can be realized. Authors suggested the 
implementation of a self-training algorithm, improved each day from data acquired the day 
before. The next goal of this study is to forecast concentrations for each measurement station 
and realize a mesh on the entire city. 
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Figure 1: Multilayer perceptron scheme 

  



 
Figure 2: Concentrations distribution 

  



 
Figure 3: box plots of the 17 different inputs of the ANN 

  



 
Figure 4: Coefficient of determination evolution with number of neurons in hidden layer 

  



 
Figure 5: Coefficient of determination as a function of weights initialization 

  



 
Figure 6: a) scatter plot of ANN model versus observed concentrations (test set only) – b) scatter plot of ANN model 
versus observed concentrations (all concentrations available). 

  



Table 1: Hourly data from MeteoSwiss station 

Variable 
Temperature Relative 

humidity 
Total 
rain 

Sun 
duration 

Global 
radiation 

Wind Atmospheric 
pressure Mean Min Max Direction Mean Max Gust 

Unity °C % mm min W.m-2 ° Km.h-1 hPa 

Daily 
modification 

Mean and 
standard 
deviation 

Mean and 
standard 
deviation 

Sum Sum 
Mean and 
standard 
deviation 

Mean and 
standard 
deviation of 
both the 
cosinus and 
sinus 

Mean and 
standard 
deviation 

Mean and 
standard 
deviation 

 

  



Table 2: Performance criteria used in the study -  ! represents observed value;   represents measured value. 

Criteria R2 FAC2 FB NMSE 

Expression "# = 1 $
% (&' $ &)#*

% (&' $ &'++++)#*

 

Fraction 
where : 

0,5 -
&

&'
- 2 

./ = 2
(&'++++ $ y+)

(&'++++ 3 y+)
 4678 =

(&' $ y)#++++++++++++

&'++++9y+
 

Target value 1 1 0 0 

Remarkable 
value 

0: Model is equivalent of 
mean of possible value 

- 

Positive value: global 
under estimation  

Negative value: global 
over estimation 

- 

 

  



Table 3: Evaluation of performance criteria on the test set. 

Performance 
criteria 

R2 FAC2 NMSE FB 

Value 0.6 0.55 0.7 -0.02 

 

 


