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Abstract. Medical imaging is currently employed in the diagnosis, planning, delivery

and response monitoring of cancer treatments. Due to physiological motion and/or

treatment response, the shape and location of the pathology and organs-at-risk may

change over time. Establishing their location within the acquired images is therefore

paramount for an accurate treatment delivery and monitoring.

A feasible solution for tracking anatomical changes during an image-guided cancer

treatment is provided by image registration algorithms. Such methods are, however,

often built upon elements originating from the computer vision/graphics domain.

Since the original design of such elements did not take into consideration the material

properties of particular biological tissues, the anatomical plausibility of the estimated

deformations may not be guaranteed. In the current work we adapt two existing

variational registration algorithms, namely Horn-Schunck and EVolution, to online

soft tissue tracking. This is achieved by enforcing an incompressibility constraint

on the estimated deformations during the registration process. The existing and

the modified registration methods were comparatively tested against several quality

assurance criteria on abdominal in-vivo MR and CT data. These criteria included:

the Dice Similarity Coefficient (DSC), the Jaccard index, the target registration error

(TRE) and three additional criteria evaluating the anatomical plausibility of the

estimated deformations.

Results demonstrated that both the original and the modified registration methods

have similar registration capabilities in high-contrast areas, with DSC and Jaccard

index values predominantly in the 0.8 - 0.9 range and an average TRE of 1.6 -

2.0 mm. In contrast-devoid regions of the liver and kidneys, however, the three

additional quality assurance criteria have indicated a considerable improvement of

the anatomical plausibility of the deformations estimated by the incompressibility-

constrained methods. Moreover, the proposed registration models maintain the

potential of the original methods for online image-based guidance of cancer treatments.
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1. Introduction

Advances in medical imaging technology have led to an improvement of cancer

treatment, by offering the possibility to non-invasively localize the tumor and analyze its

physical and functional characteristics (Fass 2008). With the introduction of imaging

devices within the operating room, medical images also began to play an important

role for therapy guidance (Fass 2008, Roach 3rd et al. 2011). For treatments of long

duration or repetitive interventions, the pathology and the organs-at-risk (OARs) may

change their position and shape over time, due to physiological motion and/or the

effects of the treatment (Keall et al. 2006, Eisenhauer et al. 2009, Zachiu et al. 2015).

Therefore, in order to ensure an accurate treatment delivery and monitoring, tracking

anatomical changes within the images is paramount (Keall et al. 2006, Timmerman

& Xing 2009, Fanchon et al. 2017). In clinical practice, such tracking is frequently

performed manually by experienced clinicians (Eisenhauer et al. 2009, Mundt &

Roeske 2011). With the widespread availability of imaging systems, resulting in a

growing volume of image data acquired using several modalities, manual tracking

becomes increasingly cumbersome, time consuming and error-prone. Moreover, for

online therapy guidance manual tracking is hardly feasible, since it requires tracking

within time intervals of several minutes down to sub-second processing latencies (Zachiu

et al. 2015, Denis de Senneville et al. 2015, Ries et al. 2010). Thus, an automatic solution

which is capable of tracking displacements/deformations across the images acquired over

the course of an image-guided cancer treatment would be highly beneficial.

A feasible solution for automatic tracking of the pathology and OARs is provided by

image registration (Mani & Arivazhagan 2013), initially proposed for tracking objects

within optical video sequences (see (Zitová & Flusser 2003) for an overview). A

broad range of these methods were also adopted in the medical image registration

domain (Maintz & Viergever 1998, Hill et al. 2001, Zitová & Flusser 2003, Brock et

al. 2010, Mani & Arivazhagan 2013, Sotiras et al. 2013). A category of registration

methods particularly suitable for medical image registration are variational methods

(Weickert et al. 2003). This is due to their fast numerical schemes, low number of

input parameters and their capability of estimating dense and elastic deformations. As

a functioning principle, variational registration methods aim to find the deformation

which optimizes a cost function dependent on the similarity between two images (Vese

& Le Guyader 2016). The most elementary term of cost function is typically known as

a similarity metric and compares the difference of common image features during the

registration process. Optimizing the similarity metric alone, however, is usually an ill-

posed problem with an infinity of solutions. In order to address this, constraints on the

estimated deformations of the tracked structures have been included in the registration

model, referred to as regularization (Vese & Le Guyader 2016, Osman et al. 2016).

An example of such a cost function is the conservation of image intensity under

deformation as the similarity metric combined with the constraint of local smoothness of

the deformation as the regularization, proposed in the seminal work of Horn & Schunck
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(Horn & Schunck 1981). The smoothness regularization basically hypothesizes that

neighboring points within an image usually move together (or at least in a similar

fashion) and penalizes motion patterns such as shearing. The Horn-Schunck algorithm

has been adopted successfully for medical image registration in several independent

studies (Ostergaard et al. 2008, Roujol et al. 2010, Glitzner et al. 2015, Yang et al. 2016).

Although the algorithm suggested by Horn & Schunck was originally not developed for

medical image registration and thus does not specifically take into account the material

properties of biological tissues, it has been shown to be a reliable performer for the mono-

modal image registration of soft-tissue structures. However, the Horn-Schunck algorithm

suffers from several limitations: The similarity metric of image intensity conservation

employed by the algorithm is only directly suitable for images acquired with the same

image modality and the same image contrast. Furthermore, even for mono-modal image

registration, intensity fluctuations not related to deformation/displacement, such as

image artifacts or noise, in-flow artifacts due to arterial pulsations, contrast changes due

to the presence/arrival of contrast agents, [etc.], are frequently incorrectly interpreted by

the algorithm as genuine displacement (Ostergaard et al. 2008, Martel et al. 2007, Zachiu

et al. 2015b). This is due to the hypothesis that any spatial location of an image point

does not change its gray-level intensity except if it is displaced or deformed.

From an application point of view, the inability to perform a medical image registration

across different imaging modalities and/or contrasts is particularly penalizing for the

planning and guidance of image-guided cancer treatments, which frequently require

the registration of several different imaging modalities (such as CT, cone-beam CT,

MRI, PET) and/or image contrasts to a common frame of reference (Roach 3rd

et al. 2011, Dupuy et al. 2013). This shortcoming motivated recently the development

of several new algorithms that have this capability, such as MIND (Heinrich et al. 2012),

SeSaMI (Rivaz et al. 2014) and EVolution (Denis de Senneville et al. 2016).

The recently proposed EVolution algorithm is hereby derived directly from previously

suggested variational image registration algorithms based on optical-flow, but uses in

the cost function a similarity metric that hypothesizes the conservation of contrast

patterns between the images rather than image intensity. The rationale is that while

image intensities are generally not conserved across different image modalities/contrasts,

the principal contrast patterns of soft-tissue structures, tissue-bone and tissue-air

interfaces are generally preserved. It is important to understand that for both the

Horn-Schunck and the EVolution algorithm, high contrast areas (e.g. organ boundaries)

provide sufficient structural information for the respective similarity metric, while the

deformation constraint present in the regularization is playing only a secondary role. In

homogenous iso-intensity areas however, the registration process is entirely driven by the

regularization as the assumed constraint of the underlying true anatomical deformation.

While the seminal work on both the Horn-Schunck and the Evolution algorithm

evidenced that the constraint of a smooth deformation as the regularization is generally

a sensible choice, it should be noted that it is neither the only sensible choice, nor does

it necessarily represent a generally valid assumption. For example, while smoothness as
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a constraint of the estimated motion correctly penalizes shearing motion within organs

and muscles, it also does so at organ boundaries, where this type of motion patterns

frequently occurs, in particular in-between soft-tissue interfaces subject to cardiac or

respiratory motion. In the context of the original Horn-Schunck algorithm, the problem

to address motion discontinuities at object boundaries motivated several proposed

amendments to the constraints (see for example (Terzopoulos 1986, Nessi 1993, Weickert

& Schnör 2001a, Lei et al. 2007, Monzón et al. 2016)) or to employ a spatio-temporal

regularization (see (Nagel 1990, Black & Anandan 1991, Weickert & Schnör 2001b)).

A rather interesting approach was thereby pursued by Yang et al (Yang et al. 2000), in

the context of analyzing satellite image observations of ocean currents, with a variational

based on the optical-flow principle. In this work, the regularization of the original optical

flow implementation of Horn & Schunck, also included a term enforcing incompressibility

of the matter under observation. The idea to use incompressibility as a sensible

constraint has also been subsequently integrated within several existing medical image

registration frameworks relying on concepts such as B-splines (Rohlfing et al. 2003, Yin

et al. 2009, Wilczewska et al. 2017), demons (Mansi et al. 2011, Xing et al. 2017) or

variationals (Haber & Modersitzki 2004, Haber & Modersitzki 2006). However, while

this generally led to an improved anatomical plausibility of the estimated deformations,

in some cases it also implied an increase in the number of algorithm control parameters

and/or computational time, hampering their application for online/real-time image-

guided cancer therapies.

In this paper, (I) we propose to evaluate incompressibility as the sole constraint to

regularize the Horn-Schunck variational for medical image processing. Compared to

previous studies (Yang et al. 2000, Haber & Modersitzki 2004, Haber & Modersitzki

2006), this results in a reduction in the number of control parameters and in turn

to an improved suitability for online/real-time therapy guidance. However, while the

original Horn-Schunck algorithm with its preservation of image intensity inherently

leads to motion vector fields which conserve the material/structure under observation,

the derived EVolution algorithm, which relies on the assumption of image contrast

conservation, does not necessarily do so. As shown in the seminal paper (Denis de

Senneville et al. 2016), this can be an advantage, since this allows the EVolution

algorithm also to address registration problems of structures, which clearly change

in volume, for example the bladder. On the other hand, this might potentially be

disadvantageous for the registration of soft-tissue structures like the liver or the kidneys,

which generally preserve their volume in-between observations. As a consequence,

(II) we propose a new modified variational algorithm based on EVolution, which uses

tissue incompressibility as the constraint for the regularization. All four algorithms,

the modified Horn-Schunck variational, the modified EVolution variational and their

original counterparts are compared in terms of performance for mono and multi-

modal medical image registration on several varied datasets. Particular attention

was paid to the differences in performance between the smoothness-regularized and

the incompressibility-regularized formulations. The implementation of the proposed
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algorithms was also optimized such that they are compatible with the short latencies

required by online/real-time image-guided cancer therapies.

Furthermore, it has to be emphasized that for a thorough evaluation of these registration

algorithms previously established matching criteria, such as the dice similarity coefficient

(DSC), Jaccard index or the target registration error (TRE), are certainly mandatory

but not necessarily sufficient. The DSC, Jaccard index or the TRE, are very sensitive

to evidence image differences in high contrast regions such as organ boundaries

or embedded vessel structures. Therefore, in case the clinical application requires

the propagation of organ contours and/or labels in between the acquired images,

such criteria would indeed be representative and sufficient for evaluating algorithm

performance. Their sensitivity in areas which are essentially devoid of contrast is,

however, limited. This can become problematic in case the application requires, for

example, mapping quantitative data such as radiation dose, for the purpose of inter and

intra-fraction dose accumulation in a spatially consistent manner (Brock et al. 2017).

Since the three criteria are unable to indicate potential errors within deformations

estimated in contrast-devoid regions, faulty mappings of the dose distribution with

respect to the estimated deformations may go undetected. This in turn may introduce

errors in the delivery plan re-optimization process of adaptive radiotherapy treatments.

Similarly, quality assurance of deformations estimated in contrast-devoid regions, for the

purpose of mapping other quantitative information such as contrast agent absorption

(Hill et al. 2009) or diffusion/perfusion coefficients (Rose et al. 2001), may not be

guaranteed by the three aforementioned criteria. As a consequence, we hypothesize

that the impact of the modified regularization terms, which are particularly dominant

in contrast-devoid regions, not only have the potential to improve the accuracy of

the deformations estimated in such areas, but also require additional criteria for

benchmarking. Therefore, we (III) propose the mapping of the Jacobian determinant

and the curl magnitude of the resulting motion fields and an independent evaluation

with spin-tagged MRI images (Fischer et al. 1993, Ibrahim 2011) as additional evaluation

criteria, to assess the anatomical plausibility of the resulting image registrations.

2. Method description

2.1. Description of the investigated registration algorithms

2.1.1. The original Horn-Schunck and EVolution algorithms The original Horn-

Schunck algorithm (referred to as HSO in the scope of this work) estimates the

deformation between two images I1 and I2 as the minimizer of the following functional

(Horn & Schunck 1981):

EHSO(u) =
∑

~r∈Ω

(I1(~r)− I2(~r + u(~r)))2 + α‖~∇u(~r)‖22 (1)

where u is the 2D/3D displacement, Ω is the image domain, ~r is the image location,
~∇ is the spatial gradient operator, ‖ · ‖2 is the Euclidean norm and α is an algorithm
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input parameter. As previously mentioned, the Horn-Schunck functional is composed

of 2 terms: a data fidelity term and a regularization term. The data fidelity term

is a measure of similarity between the images, which for this particular algorithm is

defined as the sum of squared differences between the image gray-level intensities. From

a physical point-of-view, such a data fidelity term is built on the assumption that a

voxel, as it moves, it preserves its gray-level intensity. The regularization term on the

other hand, consists of the square of the Euclidean norm applied on the gradient of the

displacements, constraining the estimated deformations to be spatially smooth. The

input/regularization parameter α controls the degree of smoothness: the higher the

value of α, the smoother the estimated deformations will be.

The original EVolution algorithm (referred to as EVO in the scope of this work)

replaces the intensity-based data fidelity term of the Horn-Schunck functional, with

a term dependent on the spatial gradients of the registered images (Denis de Senneville

et al. 2016). Therefore, the deformation between two images I1 and I2 is obtained as

the minimizer of the following functional:

EEV O(u) =
∑

~r∈Ω

e−C(u(~r)) + α‖~∇u(~r)‖22 (2)

where:

C(u(~r)) =

∑

~s∈Γ |
~∇I1(~s) · ~∇I2(~s+ u(~s))|

∑

~s∈Γ ‖
~∇I1(~s)‖2‖~∇I2(~s+ u(~s))‖2

(3)

with Γ being a symmetric neighborhood around ~r. All the other terms preserve their

meaning from Eq. 1. For a better understanding of its principle, the term in Eq. 3 can

be re-written under the following shape:

C(u(~r)) =

∑

~s∈Γ wu(~s)|cos(∆φu(~s))|
∑

~s∈Γ wu(~s)
(4)

where wu(~s) and ∆φ(~s) are computed based on the magnitude M and orientation φ of

the image spatial gradients:

wu(~s) = MI1(~s)MI2(~s+ u(~s))

∆φu(~(s)) = φI1(~s)− φI2(~s+ u(~s))
(5)

Basically speaking, the weight wu(~s) favors strong gradients that occur in both of the

images. As a consequence, the registration process is driven only by structures which

are common in the two images. The term |cos(∆φu(~s))|, on the other hand, favors defor-

mations which align both parallel and anti-parallel gradients. In effect, this renders the

EVolution algorithm robust to any possible contrast reversals between the aligned im-

ages. Note that the regularization term of the EVolution functional remains unchanged

compared to the Horn-Schunck algorithm. Therefore, the spatial smoothness constraint

is maintained on the estimated deformations.
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2.1.2. The Horn-Schunck and EVolution algorithms, with modified regularization It

is a known fact from continuum mechanics that, when an incompressible material is

subjected to an external force, the Jacobian determinant of its deformation is equal

to one (Rohlfing et al. 2003, Bistoquet et al. 2008, Stout et al. 2016). Thus, in

order to constrain the deformations estimated by the Horn-Schunck and the EVolution

algorithms to be incompressible, deviations from unity of the Jacobian determinant

of the deformations are penalized within the regularization term of their respective

functionals. Registration is hereby performed via the following optimization problems:

EHSI(u) =
∑

~r∈Ω

(I1(~r)− I2(~r + u(~r)))2 + α‖J(~r + u(~r))− 1‖22 (6)

for the incompressibility-regularized Horn-Schunck algorithm (abbreviated as HSI in the

scope of this work) and:

EEV I(u) =
∑

~r∈Ω

e−C(u(~r)) + α‖J(~r + u(~r))− 1‖22 (7)

for the incompressibility-regularized EVolution algorithm (abbreviated as EVI in the

scope of this work). In both Eq. 6 and 7, J is defined as:

J(~r + u(~r)) =

∣

∣

∣

∣

∣

∣

∣

1 + ∂u1(~r)
∂x

∂u1(~r)
∂y

∂u1(~r)
∂z

∂u2(~r)
∂x

1 + ∂u2(~r)
∂y

∂u2(~r)
∂z

∂u3(~r)
∂x

∂u3(~r)
∂y

1 + ∂u3(~r)
∂z

∣

∣

∣

∣

∣

∣

∣

(8)

where u = (u1, u2, u3) are the 3D displacements.

2.1.3. Optimization of the motion estimation functionals Since the functionals

illustrated in Eq. 1, 2, 6 and 7 are differentiable, their optimization was carried-out

by solving the associated Euler-Lagrange equations. This resulted in all cases in a non-

linear system of equations which was resolved using a fixed-point scheme similar to the

one described in (Denis de Senneville et al. 2016).

2.1.4. Coarse-to-fine strategy In order to reduce the risk of the optimization scheme

converging towards a local minima, the input images were processed using a coarse-to-

fine strategy. This basically iterated the optimization scheme from a 16-fold downsam-

pled version of the images up to the original resolution, with a resolution upsampling

factor of 2. The displacements estimated at one resolution level were used as initial

values for the next resolution level.

2.1.5. Employed convergence criterion The fixed-point scheme used to solve the

Euler-Lagrange equations, is an iterative procedure. Similar to (Denis de Senneville

et al. 2016), the iterations were stopped when the average absolute difference between

two successive iterates of the motion vector field was smaller than 10−3 voxels/pixels.
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2.2. Experimental setup

The original and the re-formulated Horn-Schunck and EVolution registration methods

were evaluated in two complementary studies: one conducted on a dataset comprised

of 3D MR and CT images, and one on spin-tagged MR images. The upcoming sections

provide details on these two studies, including the quality assessment criteria used to

evaluate the investigated registration methods.

2.2.1. Evaluation of the registration methods on 3D CT and MR data

Description of the selected datasets The Horn-Schunck and the EVolution algorithms,

in both their original and modified versions, were initially employed for aligning five

batches of 3D medical images. The five batches consisted of the following: (1) Five pairs

of phase-cycled gradient-recalled turbo field echo T1-weighted (T1w) MR images, (2)

Five pairs of CT images, (3) A dataset comprised of five pairs of T1w and T2-enhanced

(T2e) steady-state gradient echo MR images, (4) Five pairs of CT and cone-beam CT

(CBCT) images and (5) A dataset which included five pairs of CT and turbo spin echo

T2-weighted (T2w) MR images. Datasets (1) and (3) were acquired on the abdomen of a

healthy volunteer, while datasets (2), (4) and (5) were obtained from patients suffering

from kidney cancer †. Except for dataset (5), whose field-of-view only includes the

kidney, all the other images include both the liver and the kidneys. The acquisition

parameters for the MR images are reported in Table 1. Note that the T1w MR images

from datasets (1) and (3) were acquired using the same MR sequence. The CT and the

CBCT images had a matrix and a voxel size of 512× 512× 123 and 1.1× 1.1× 3mm3,

respectively. In order to ensure spatial consistency, all images were mapped prior to

registration onto common lattice of size 256× 256× 128 with an isotropic voxel volume

of 1.5× 1.5× 1.5mm3.

In a complementary experiment, the four algorithms were also used to register datasets

#1 − #5 from the DIR-Lab database (Castillo et al. 2010). Each dataset is a pair of

CT images acquired on an esophagus cancer patient, at the two extreme phases of the

respiratory cycle. For details regarding the image acquisition parameters please consult

(Castillo et al. 2010).

Quality assessment criteria for the estimated deformations The five batches of 3D CT

and MR images described in the previous paragraph were registered using the four

investigated registration methods. Since the data fidelity term of the Horn-Schunck

algorithm in both its original and modified version is unsuitable for cross-contrast and

cross-modality registration, the two methods were only employed for the first two data

batches (i.e. for T1w MR to T1w MR and CT to CT registration).

The performance of the registration methods was evaluated against several criteria. In

† Ethical approval for the acquisition, usage and publication of the data was provided by the Ethics

Board of the UMC Utrecht, Utrecht, The Netherlands.
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Sequence
T1w-MR T2e-MR T2w-MR

[Dataset (1)] [Dataset (3)] [Dataset (5)]

TR [ms] 4.3 3 523

TE [ms] 2 1.5 80

FA◦ 10 40 90

Volume size 192× 192× 75 192× 192× 75 288× 288× 53

Voxel size [mm3] 2× 2× 2 2× 2× 4 1.4× 1.4× 3

BWreadout [Hz] 373 723 478

Table 1: Acquisition parameters for the 3D MR images used in the evaluation of the

four investigated registration methods. Distinct MR acquisition sequences were used for

the T1w image from dataset (1) (second column), the T2e image from dataset (3) (third

column) and the T2w image from dataset (5) (fourth column). The abbreviations for

the acquisition parameters are as follows: TR - repetition time, TE - echo time, FA -

flip angle and BW - bandwidth.

an initial step, two typically-employed quality assessment metrics were analyzed: the

Dice Similarity Coefficient (DSC) (Dice 1945) and the Jaccard index (Jaccard 1912).

The two criteria were used to determine the contour overlap for the liver and kidneys in

the images, before and after registration. Such an analysis showcases the capability

of the investigated registration algorithms for organ contour alignment, which is

representative for their performance in high-contrast areas. Mathematically, the DSC

and the Jaccard index are defined as follows:

DSC(A,B) =
2 ∗ |A ∩ B|

|A|+ |B|
; Jaccard(A,B) =

|A ∩ B|

|A|+ |B| − |A ∩ B|
(9)

where A and B are the two contours whose overlap is determined and | · | corresponds to

the number of voxels within a contour. Note that for all images in the five initial data

batches, delineations for the liver and kidneys were made available by an experienced

radiologist.

The performance of the algorithms in high contrast areas was further evaluated by

comparing the estimated and the manually-annotated locations of 1500 landmark

features identified by the DIR-Lab database provider in the five datasets analyzed in the

scope of this study. The evaluation was performed in terms of the target registration

error (TRE) (Maurer et al. 1997):

TRE[mm] =
√

(xI + u1(~rI)− xJ)2 + (yI + u2(~rI)− yJ)2 + (zI + u3(~rI)− zJ)2 (10)

where (xI , yI , zI) and (xJ , yJ , zJ) are the gold standard landmark coordinates in

the reference and the moving image, and (u1(~rI), u2(~rI), u3(~rI)) is the estimated 3D

displacement for that particular landmark.

In order to evaluate the validity of the deformations in contrast-devoid regions, the

local Jacobian determinant (see Eq. 8) and the local curl magnitude of the estimated
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deformations were analyzed with respect to the underlying anatomy. The Jacobian

determinant is used as an indicator whether the estimated deformations are in good

correspondence with the incompressibility property of biological soft tissues. For

the incompressibility-regularized algorithms however, the analysis of the Jacobian

determinant is simply an indicator for algorithm convergence. Therefore, an independent

quality assurance criterion is necessary for their evaluation. Since the incompressibility

constraint enforces the estimation of a solenoidal deformation vector field, the formation

of vortices is not penalized. In effect, as also suggested by previous studies (Screibmann

et al. 2012), we propose the analysis of the local vorticity of the estimated deformations,

provided by the curl magnitude, as an additional quality assurance criterion which

is not explicitly enforced by any of the investigated motion estimation methods.

Mathematically, the curl of a 3D vector field is computed as:

curl(~u) =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

u1 u2 u3

∣

∣

∣

∣

∣

∣

∣

(11)

where ~u = (u1, u2, u3) is the 3D vector field and (~i,~j,~k) are the versors of the 3D Eu-

clidean space.

2.2.2. Evaluation of the investigated registration methods on spin-tagged MR images

MR-tagging is a technique, which has been historically introduced to investigate the

dynamics of the myocardium for diagnostic purposes (Fischer et al. 1993, Ibrahim 2011).

RF-saturation pulses are used to place low-signal stripes or grids on the images, which

move together with the underlying tissue. In the current work, this technique was

used for validation purposes, since it provides a non-invasive way to acquire an in-vivo

gold standard for organ/tissue displacement, in particular in image regions devoid of

anatomical contrast.

Two pairs of MR images were acquired during this experiment: one without and one

with spin-tagging. The tagging consisted in a horizontal stripe pattern with a 5 mm

distance between the stripes. Each pair contained two sagittal 2D MR slices acquired

on the abdomen of a healthy volunteer at the two extreme phases of the respiratory

cycle, via respiratory gating.

The four investigated algorithms were initially used to register the pair of un-tagged

MR images. Similar to the analysis described in section 2.2.1, the pre- and post-

registration DSC and Jaccard index were analyzed for the liver, kidney and, for this

particular experiment, also the thoraco-abdominal wall. The Jacobian determinant and

the curl magnitude of the deformations were also comparatively analyzed between the

original and the modified versions of the Horn-Schunck and the EVolution algorithms.

The deformations resulting from the registration of the un-tagged pair of images were

then used to align the spin-tagged images. In the ideal case, the post-alignment

tagging patterns in the two images should match. For a quantitative evaluation of
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the registration errors, the distance between the tag lines pre- and post-alignment was

also calculated.

The MR-acquisition sequence, for both the un-tagged and tagged images, employed the

following parameters: TR = 90 ms, TE = 8.8 ms, FA = 35◦, image size = 224 × 224,

voxel size = 1.8× 1.8× 5mm3 and BWreadout = 996 Hz.

2.3. Algorithm parameter calibration and implementation

The original and the modified Horn-Shunck algorithm require the calibration of the

regularization parameter α (see Eq. 1 and 6). Besides this, the EVolution algorithm

in both its formulations also requires configuring the size of the additional parameter

Γ (see Eq. 2, 3 and 7). For the experiment described in 2.2.1 an exhaustive search

was conducted for these parameters and the values which provided the highest average

post-registration DSC for all delineated structures were then chosen for use. The

rationale behind such an approach is that, in a clinical setting, the output of registration

algorithms is often evaluated based on a visual inspection of the post-registration organ

boundary alignment between the images. Thus, maximizing the DSC is representative

for such an evaluation criterion. Note that only the first image pair in each of the five

initial data batches were used for the calibration procedure. This allowed investigating

the re-usability of the parameters α and Γ for the remainder of the 3D images.

On the other hand, for the spin-tagged datasets, the values of the parameters which

provided the best match between the tag patterns after registration, were selected for

use.

The numerical schemes of all four registration algorithms were implemented and

executed on an nVidia Tesla K20 graphics card, using the compute unified device

architecture (CUDA).

3. Results

3.1. Performance of the investigated registration methods in high-contrast areas

Table 2 reports the DSC and the Jaccard coefficients for the liver and the kidneys

before and after registration of each of the five initial data batches described in section

2.2.1. The reported DSC and Jaccard index values were obtained following an averaging

over the five image pairs contained by each batch. As a reminder, in the scope of this

study the four algorithms were abbreviated as follows: HSO - the original Horn-Schunck

algorithm with a constraint on smoothness, HSI - the modified Horn-Schunck algorithm

with a constraint on the Jacobian determinant, EVO - the original EVolution algorithm

with a constraint on smoothness and EVI - the modified EVolution algorithm with a

constraint on the Jacobian determinant. All the algorithms provide high values of the

post-registration DSC and the Jaccard index, predominantly in the 0.8 - 0.9 range. It

can also be observed that HSI and the EVI provide similar results compared to their

smoothness-regularized counterparts.
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Table 3 showcases the average TRE obtained on the five DIR-Lab datasets (see section

Criterion Data batch Organ
Algorithm

None HSO HSI EVO EVI

DSC

T1w MR - T1w MR
Liver 0.91 0.96 0.96 0.96 0.96

Kidneys 0.85 0.94 0.94 0.94 0.94

CT - CT
Liver 0.84 0.90 0.90 0.91 0.91

Kidneys 0.83 0.90 0.90 0.92 0.92

T1w MR - T2e MR
Liver 0.89 - - 0.94 0.94

Kidneys 0.75 - - 0.86 0.86

CT - CBCT
Liver 0.84 - - 0.90 0.90

Kidneys 0.83 - - 0.90 0.90

CT - MR
Liver - - - - -

Kidneys 0.66 - - 0.87 0.86

Jaccard Index

T1w MR - T1w MR
Liver 0.84 0.92 0.92 0.93 0.93

Kidneys 0.76 0.88 0.88 0.89 0.89

CT - CT
Liver 0.74 0.83 0.82 0.83 0.84

Kidneys 0.72 0.82 0.81 0.85 0.85

T1w MR - T2e MR
Liver 0.83 - - 0.88 0.89

Kidneys 0.62 - - 0.76 0.76

CT - CBCT
Liver 0.74 - - 0.81 0.81

Kidneys 0.72 - - 0.81 0.82

CT - MR
Liver - - - - -

Kidneys 0.52 - - 0.77 0.77

Table 2: Evaluation of the performance of the four investigated algorithms in high

contrast areas. The table reports the pre- and post-registration DSC and the Jaccard

index for the liver and the kidneys following the registration of the five data batches

containing 3D MR and CT images. The values for the DSC and Jaccard indices were

averaged over the five pairs of images included by each data batch. The missing entries

either indicate the absence of a delineation for a particular anatomical structure or the

fact that a method was unsuitable for a particular data set. The abbreviations for the

algorithms are provided in the manuscript text.

2.2.1 for details). It can be observed that improvements were achieved in all cases,

with a registration accuracy and precision smaller than 2 mm. Also, only marginal

differences can be noticed between the TREs calculated for the original Horn-Schunck

and EVolution methods compared to their versions with modified regularization.
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Method TRE [mm]

None 6.39± 4.24

Horn-Schunck Original 1.85± 1.68

Horn-Schunck Incompressible 1.94± 1.58

EVolution Original 1.66± 1.53

EVolution Incompressible 1.75± 1.74

Table 3: Accuracy and precision of the four investigated algorithms with respect to

manually tracked landmarks. The table reports the target registration errors associated

to the methods, averaged over the five DIR-Lab datasets. The errors are reported under

the format mean ± standard deviation.

3.2. Compression/Expansion and vorticity of the deformations provided by the

investigated registration methods

Table 4 reports several statistical parameters of the Jacobian determinant and the

curl magnitude of the deformation vector fields estimated by the four investigated

registration methods on the five data batches. Analysis of the two criteria was performed

jointly for the liver and kidneys, with the resulting statistical parameters being averaged

over all five image pairs contained by each data batch. It can be observed that, while

all methods have a mean Jacobian determinant close to one, the incompressibility-

regularized algorithms showcase a considerably lower standard deviation compared to

their smoothness-constrained counterparts. In addition, the range of the Jacobian

determinant for HSI and EVI is overall notably smaller compared to HSO and EVO. On

the other hand, no obvious tendencies can be observed when comparing HSO and HSI in

terms of the curl magnitude. In this regard however, the original EVolution algorithm

leads to marginally larger values relative to the proposed incompressibility-regularized

version.

The statistical distribution of the Jacobian determinant of the joint liver and kidney

deformations is also displayed in Figure 1. The illustrated boxplots contain the Jacobian

determinants of the liver and kidney deformations, pooled from all pairs of images

included in each data batch. This particular analysis re-confirms the results reported in

Table 4, with HSI and EVI showcasing overall smaller fluctuations of the Jacobian

determinant from unity compared to HSO and EVO. A one-tailed Mann-Whitney-

Wilcoxon test applied for each data batch, in between the original and the modified

versions of the algorithms, revealed a statistically significant difference in all cases at

0.05 significance level.

For a more refined analysis of the Jacobian determinant relative to the observed

anatomy, figure 2 displays the spatial distribution of the Jacobian determinant of the

deformations provided by the four registration methods. The illustration is performed

for a a sagittal slice selected from the first image pair of each of the five 3D data batches.
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Data batch Stat.
Jacobian Curl Magnitude

HSO HSI EVO EVI HSO HSI EVO EVI

T1w MR - T1w MR

Mean 1.06 1.03 1.00 1.00 0.13 0.11 0.17 0.12

Std 0.30 0.07 0.17 0.05 0.09 0.08 0.11 0.06

Min -0.27 0.51 0.36 0.78 0 0 0 0

Max 8.72 1.85 2.44 1.43 1.73 1.22 1.16 0.54

CT - CT

Mean 1.00 1.00 1.00 1.00 0.04 0.07 0.20 0.14

Std 0.05 0.01 0.27 0.08 0.02 0.05 0.13 0.08

Min 0.51 0.52 -0.10 0.60 0 0 0 0

Max 2.04 1.62 3.04 1.63 0.94 1.01 1.40 0.71

T1w MR - T2e MR

Mean - - 1.02 1.01 - - 0.22 0.14

Std - - 0.20 0.06 - - 0.12 0.06

Min - - 0.36 0.78 - - 0 0

Max - - 2.35 1.28 - - 0.88 0.43

CT - CBCT

Mean - - 1.03 1.02 - - 0.15 0.11

Std - - 0.18 0.05 - - 0.09 0.06

Min - - 0.41 0.82 - - 0 0

Max - - 2.00 1.30 - - 0.77 0.40

CT - MR

Mean - - 0.90 0.93 - - 0.30 0.18

Std - - 0.31 0.07 - - 0.14 0.07

Min - - 0.06 0.72 - - 0 0

Max - - 2.62 1.26 - - 1.06 0.48

Table 4: The Jacobian determinant and curl magnitude of the deformations estimated by

the four investigated registration methods on the five data batches. The table reports

the mean, standard deviation, the minimum and the maximum of the two criteria,

averaged over all five pairs of images in each data batch. The Jacobian and the curl

values were analyzed jointly for the liver and kidneys.

Following a visual inspection, strong fluctuations from unity of the Jacobian determinant

can be observed for the HSO and for EVO, in particular within homogeneous regions

of the liver and kidneys. These fluctuations are considerably reduced by HSI and EVI,

for which the Jacobian determinant is notably closer to one, with only slight deviations.

Figure 3 showcases the vorticity of the deformations estimated by the four registration

algorithms. The magnitude of the curl of the motion vector fields is displayed for the

same sagittal slices selected from the five 3D image pairs, as in figure 2. Within the

boundaries of the liver and kidney, except for a few problematic areas, the vorticity of

the estimated deformations remains predominantly close to zero. A tendency to increase

of the deformation vorticity can be observed, however, in the proximity of the thoracic,

peritoneal and back wall, where sliding motion is typically expected.

Figure 4 depicts the Jacobian determinant, the motion vectors and the curl magnitude
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Figure 1: Statistical distribution of the Jacobian determinant of the liver and kidney

deformations estimated by the four registration methods. Evaluation was performed for

each of the five registered 3D data batches. The illustrated boxplots are constructed as

follows: the box limits are the 25th and the 75th percentiles, the whiskers correspond to

the 5th and the 95th percentiles and the red line is the set median. The differences

between the original and modified versions of the Horn-Schunck and EVolution

algorithms, respectively, are statistically significant at 0.05 significance level.

of the deformations estimated by HSO and HSI inside in ROI 1 from figures 2 and 3.

Again, it can be observed that there is a link between the values in the Jacobian and the

curl maps and the motion vector field estimated by HSO, which showcases a regional

tendency to diverge, with a strong vortex in the ventral part of the kidney. This indicates

that the HSO estimated both stretches and swirls of the liver and kidney tissues within

the selected ROI. Both of these effects are dampened by the HSI algorithm, with the

estimated motion fields displaying a higher degree of uniformity.

Figure 5 illustrates the Jacobian determinant, the motion vectors and the curl

magnitude of the deformations estimated by EVO and EVI inside ROI 2 from figures

2 and 3. Unnatural divergences and convergences can be observed within the motion

vector field, in areas corresponding to deviations of the Jacobian determinant from

unity. These, in turn, also introduce a particular degree of vorticity within the

deformations, which are the cause of the peak values observed in the illustrated curl

map. The deformations estimated by EVI, on the other hand, showcase a higher degree

of uniformity, with no notable peaks in either the Jacobian determinant nor the curl

magnitude map.

3.3. Absolute registration errors of the investigated algorithms

The images in figure 6 illustrate the two pairs of images described in section 2.2.2, used

to determine the accuracy of the four registration algorithms. Figures 6(a) and 6(b)
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Figure 2: Spatial distribution of the Jacobian determinant. First column: A sagittal

slice selected from the first pair of images included by each of the registered 3D data

batches. Second to fifth column: Spatial distribution of the Jacobian determinant of

the deformations provided by each of the four investigated methods overlapped with the

slice from the first column. ROI 1 and 2 are two selected problematic areas, for which

a more detailed analysis will be conducted.
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Figure 3: Vorticity of the deformations estimated by the four registration algorithms.

The first column depicts a sagittal slice selected from the first pair of images included

by each of the registered 3D data batches. Columns two to four showcase the curl

magnitude of the motion vector fields estimated by the four methods overlaid on the

sagittal slice displayed in the first column. ROI 1 and 2 are the same selected problematic

areas indicated in Figure 2.
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Figure 4: The Jacobian determinant (first column), motion vector field (second column)

and curl magnitude map (third column) of the deformations estimated by HSO (first

row) and HSI (second row) in ROI 1 from figures 2 and 3. The selection of this region

for a more refined analysis was motivated by the large Jacobian determinants of the

deformations estimated by the HSO in ROI 1, coupled with the formation of a strong

vortex in the ventral part of the kidney.

showcase the first pair of images acquired on the healthy volunteer, without applying

spin-tagging. Figure 6(c) and 6(d) illustrate the other pair of 2D scans acquired at

the same respiratory phases as the images in 6(a) and 6(b), in the presence of tagging.

The tag pattern allows to visually determine the trajectory followed by the spin-tagged

tissue, as the volunteer went from inhalation to exhalation.

As described in section 2.2.2, all of the four registration algorithms were used to

estimate the displacements between the images in figures 6(a) and 6(b). Table 5 reports

the pre- and post-registration DSC and Jaccard index for three ROIs: liver, kidney

and the thoraco-abdominal wall. Overall high values (≥ 0.9) were obtained for all

three structures by all of the registration methods. Only marginal differences can

be observed between the original Horn-Schunck and EVolution algorithms and their

respective incompressibility-constrained counterparts.

The resulting deformations were used to align/map the tagged image in figure 6(d)

to the image in figure 6(c). In the ideal case, the tag pattern of this mapped image

should match the one in figure 6(c). Figure 7 illustrates the following: the mapped

tagged images (first row), the Jacobian determinant and the curl magnitude maps of the

estimated deformations (second and third row) and spatial distribution of the absolute

registration errors (fourth row). Details related to the manner in which these errors were
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Figure 5: The Jacobian determinant (first column), motion vector field (second column)

and curl magnitude map (third column) of the deformations estimated by EVO (first

row) and EVI (second row) in ROI 2 from figures 2 and 3. The selection of this region

for a more refined analysis was motivated by the large fluctuations in the Jacobian

determinant and the curl magnitude maps of the deformations estimated by EVO.

(a) (b) (c) (d)

Figure 6: The two pairs of MR images acquired on the abdomen of a healthy volunteer

during the study described in section 2.2.2. (a), (b): In the absence of spin-tagging.

(c), (d): With spin-tagging applied. The images in each pair were acquired at the two

extreme phases of the respiratory cycle.

calculated can be found in section 2.2.2. Each column corresponds to one of the four

algorithms. It can be observed that for all of the evaluation criteria showcased in figure

7, the HSO and HSI provide similar results, with moderate deviations of the Jacobian
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Criterion ROI
Registration method

None HSO HSI EVO EVI

DSC

Liver 0.90 0.98 0.98 0.97 0.97

Kidney 0.91 0.98 0.99 0.97 0.98

Wall 0.82 0.95 0.94 0.94 0.94

Jaccard index

Liver 0.82 0.96 0.96 0.95 0.95

Kidney 0.83 0.96 0.97 0.95 0.96

Wall 0.70 0.90 0.89 0.89 0.89

Table 5: Pre- and post-registration contour overlap for three regions-of-interest (ROIs)

in the images from figure 6. The DSC and the Jaccard index is reported for the liver,

kidney and thoraco-abdominal wall, for all of the four investigated registration methods

(HSO, HSI, EVO and EVI). The pre-registration DSC and Jaccard index is also included.

determinant from unity and moderate values of the curl magnitude. On the other hand,

more prominent differences can be distinguished between EVO and EVI, in particular in

terms of the Jacobian determinant of the estimated deformations, with EVI showcasing

Jacobian determinants considerably closer to one than EVO. Both EVO and EVI

have curl magnitude maps containing overall larger values compared to HSO and HSI,

manifesting a tendency to increase in the proximity of organ-thoracic/abdominal/back

wall interfaces. A peak in the curl magnitude maps can also be observed in the cranio-

ventral part of the liver, peak which is coupled with increased registration errors.

In terms of the absolute registration errors, except for EVO, all of the algorithms

showcase a good accuracy of 1 - 2 mm within the liver and kidney boundaries. The EVO

algorithm, while showcasing predominately low errors within the organ boundaries, it

has difficulties in estimating displacements at the interface between the liver and the

thoracic/peritoneal wall, with the errors exceeding 5 mm. It can also be noted that all of

the methods showcase, to different extents, difficulties in estimating the displacements

of the thoracic and peritoneal wall, indicated both by the high registration errors and

the mapped/registered images in the first row (the tag lines should be horizontal). Out

of the four algorithms, it is EVO which has the best accuracy in this area, with EVI

coming-in second best.

3.4. Calibration and computational performance of the investigated algorithms

The parameters α and Γ of the four investigated registration algorithms were configured

according to the procedure described in section 2.3. Figure 8 showcases the calibration

curves which were used to optimize the algorithm input parameters for the 3D data

registered in the scope of this work. More precisely, figures 8(a) - (d) illustrate the

dependency of the average post-registration DSC on the values of α and Γ. It can be

observed that all curves showcase a global maximum, which was used as an indicator to

determine the optimal values for α and Γ. Also, note that the DSC remains close to its
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Figure 7: Outcome of the study conducted on the spin-tagged MR images. The four

rows of images illustrate: the mapped/registered spin-tagged images, the Jacobian

determinant maps, the curl magnitude maps and the spatial distribution estimation

errors for each of the four registration methods.
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Figure 8: Calibration of the four algorithms for registering the 3D images analyzed in

the scope of this work. The four figures showcase the dependency of the average post-

registration DSC on the input parameters α and Γ for each of the algorithms. The DSC

was averaged over all volumes of interest and over the first image pairs of each of the

3D data batches described in section 2.2.1.

maximum value for a rather wide range of values for α and Γ. On the other hand, for

small values of the parameters the algorithms showcase a rapid decrease in performance.

A similar analysis was also conducted in order to calibrate the algorithms for the image

registration performed in the scope of the spin-tagging experiment. However, instead of

the DSC, the average absolute error illustrated in the fourth row of figure 7 was used as

an optimization criterion. For brevity, the resulting calibration curves are not included

in the manuscript, since the curves showcase similar tendencies as the ones illustrated

in figure 8. The optimal values for α and Γ, together with the resulting average DSC or

average registration error (depending on the dataset), are reported in Table 6. Table

7 reports the average computational performance of the four registration methods for

both 2D and 3D images. Reporting is performed for images of size 224 × 224 and
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Method (α, Γ, Absolute Error [mm]) (α, Γ, DSC)

Horn-Schunck Original (0.3,−, 1.74) (0.1,−, 92)

Horn-Schunck Incompressible (0.25,−, 1.67) (0.05,−, 91)

EVolution Original (0.25, 15× 15, 1.71) (0.3, 11× 11× 11, 91)

EVolution Incompressible (0.15, 13× 13, 1.67) (0.2, 11× 11× 11, 91)

Table 6: Configuration of the input parameters for the four algorithms. The table

reports the optimal α and Γ values, together with the resulting average absolute error

for the 2D spin-tagged data and together with the average DSC for the 3D data.

256× 256× 128, which largely correspond to the dimensions of the 2D and 3D images

registered in the scope of this work.

Method
2D 3D

[224× 224] [256× 256× 128]

Horn-Schunck Original 27 ms 2.7 s

Horn-Schunck Incompressible 105 ms 10 s

EVolution Original 150 ms 67 s

EVolution Incompressible 250 ms 65 s

Table 7: Computational time required by the four investigated registration methods.

4. Discussion

Evaluation criteria for the image registration algorithms

One fundamental problem that complicates the development as well as the evaluation

and validation of different medical image registration algorithms is the ground truth

dilemma: The true anatomical deformation of soft tissues can frequently only be as-

sessed in contrast rich regions such as organ boundaries or in the vicinity of organ fea-

tures, while the true physiological deformation in contrast devoid regions is not known.

This poses a problem, since in a historical context, medical image registration developed

as a side-branch of the more general field of computer vision. As a consequence, many

established algorithms and evaluation criteria in the medical image registration domain

as well as the associated benchmarking criteria are rooted/derived from methods devel-

oped for optical object tracking.

Three criteria that are often used for evaluating the performance of medical image reg-

istration algorithms are the Dice Similarity Coefficient (DSC), the Jaccard index and

the target registration error (TRE). Note that the DSC and the TRE in particular have

also been recommended as image registration validation criteria in the recently pub-

lished AAPM report of Task Group 132 on the usage and quality assurance of image
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registration methods in radiotherapy (Brock et al. 2017). Given the high 0.8 - 0.9 values

obtained for the DSC and the Jaccard index on the five 3D data batches (see Table 2)

and the 1.6 - 2.0 mm average TRE obtained on the DIR-Lab CT images (see Table 3), if a

contour-based validation criterion would be used (either quantitative or qualitative such

as visual inspection (Brock et al. 2017)), one would conclude that all four registration

methods provide satisfactory deformations. Note that the obtained DSC, Jaccard index

and TRE values are also in good correspondence with previous reportings (Kumarasiri

et al. 2014, Rigaud et al. 2015, Li et al. 2017, Zachiu et al. 2015, Denis de Senneville

et al. 2016, Zachiu et al. 2017c) and to a large extent within the tolerance limits recom-

mended by the guidelines of AAPM report of Task Group 132 (Brock et al. 2017).

The most obvious way to evaluate whether the estimation of the tissue deformation in

contrast-devoid regions corresponds to the true physiological deformation, is to repeat

the observation of the deformation process and to introduce non-invasively contrast

patterns across the entire image. MR-tagging is essentially an old and well established

method, which has been used for many years in the field of cardiac MRI for this purpose.

MR-tagging methods, such as C-SPAMM allow to saturate the MR magnetization of a

tissue under observation prior to the motion event with a contrast pattern, such as lines

or a grid, and to track the subsequent elastic deformation of this pattern. The principal

limitations of this MR-tagging approach are two-fold: The tagging-pattern disappears

with the longitudinal relaxation time of tissue under observation. This means the tag

must be applied immediately before the motion event and - considering muscle tissue -

can only be observed over a duration of approx 700 - 1000 ms. The second limitation

arises from the fact that tagged liquids, such as for example arterial blood, exits the

“tagged stripes” during the observation period and mixes with untagged tissue. This ad-

ditionally reduces the contrast of the tag-pattern, in particular in high perfused organs

such as liver and kidney. In the presented experiments, this effect is main the reason

why the presented data was only MR-tagged in one dimension (i.e. a line pattern in the

direction of the principal deformation).

Here, respiratory gated MR tagging has been used to evaluate the precision and accu-

racy of the four investigated registration methods in the abdomen under the assumption

that the respiratory cycle is periodic. After registering the un-tagged pair of images,

high post-registration values of the DSC and the Jaccard index were obtained for the

liver, kidney and the thoraco-abdominal wall for all four of the algorithms. However,

the error maps illustrated in the fourth row of figure 7 showcases precisely the areas in

which registration was successful and areas which are problematic. While the tag lines

deep inside the liver and the kidney do not evidence any obvious signs of misregistration,

the thoracic wall and its interface with the liver appears to be particularly problematic

for all four algorithms. This finding validates the hypothesis, that while the DSC and

the Jaccard index are certainly part of a comprehensive assessment of the image regis-

tration, neither is sufficient to evaluate if the estimated deformation really corresponds

to the physiological tissue deformation. However, while the tagged MR-images as the

“gold-standard” permit a differential analysis of complex respiratory kinetics as shown
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in figure 6, the untagged images neither display sufficient anatomical contrast between

the different tissue types, nor sufficient contrast within the tissue layers to provide the

required information to analyze the complex situation correctly. Similar to the employed

motion estimation algorithms, even a careful visual inspection of the entire respiratory

cycle as a movie does not allow human observers to analyze the underlying tissue de-

formations correctly, while C-SPAMM depicts the motion pattern clearly.

Unfortunately, not all physiological forms of motion and not all medical imaging tech-

nologies lend themselves to tagging techniques like (or similar to) C-SPAMM and there-

fore, for many applications, the ground truth dilemma essentially remains. As stated

in the introduction, we propose as the next best measure to evaluate the quality of the

registration results beyond the established indices such as DSC and/or Jaccard, to in-

vestigate the properties of the estimated motion vector fields for anatomical plausibility.

Figure 2, 4, 5 and 7 display examples of the spatial distribution of the Jacobian deter-

minant. While several parts of the human anatomy such as lung volume, heart volume,

bladder volume, large parts of the digestive tract display volume changes during physi-

ological motion processes/events, most of the inner organs, such as liver, spleen, kidney,

muscle and fat layers are liquid filled tissue structures and as a consequence incompress-

ible. Both HSO and EVO preserve to a large extent the overall volume of the liver

and kidneys. However, within the organ interiors, the high deviations from unity of

the Jacobian determinant are physically implausible, since the composing tissues are

incompressible. Also, as shown in figures 4 and 5 such fluctuations correspond to sinks

and/or sources in the estimated deformations, which basically indicates the creation and

disappearance of tissue. This is aberrant given the material properties of the observed

organs and the short time interval between the acquired images.

The counter-part of the Jacobian determinant is an analysis of the vorticity of the es-

timated deformations under consideration of the underlying local anatomy. Although

not quite as intuitive to interpret as the former, variations in vorticity are generally an

indicator for shearing motion, local rotations and - similar to the Jacobian determinants

- divergence of the motion fields. As a quantitative measure for vorticity, the examples

in figure 3 showcase the spatial distribution of the curl magnitude of the deformations

estimated on the abdominal data sets by the four investigated registration methods.

Moderate to high values of the curl magnitude can be predominately observed in the

proximity of shearing interfaces (e.g. abdominal and back wall), as expected, but also

within regions in which a high vorticity is unlikely from an anatomical point-of-view.

Such a problematic area is highlighted in Fig. 5. Local peaks in the curl map of the

EVO algorithm can be observed inside both the cranial half of the kidney and in the

dorsal part of the liver. While rotations of the liver and kidney as a whole are expected,

they are highly improbable at such fine scales. A more refined interpretation of the curl

maps is provided in the associated motion fields, which showcase strong local swirls in

areas of high curl magnitude. At the same time note that the peaks in the curl map are

coupled to a large extent to deviations of the Jacobian determinant from unity, confirm-

ing the fact that local vorticity can also serve as a measure of motion field divergence.
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While clearly inferior to local error maps derived from a “true gold standard” as shown

in figure 7, both the local Jacobian determinant as well as the vorticity are useful in-

dicators with respect to areas where the registration process has potentially failed. For

example in the registration with EVO, the low Jacobian determinant as well as the in-

creased vorticity in the ventral part of the liver corresponds well with the independently

assessed area of misregistration depicted in the bottom row. For the incompressibility-

constrained methods, however, the map of the local Jacobian determinant is only useful

as an indicator if convergence of the functional has been achieved. Thus, the local vor-

ticity maps become an increasingly important indicator of local misregistrations. For

example, as shown in figure 7, the elevated local curl magnitude of 0.5 - 0.6 for EVI

clearly indicates a small area in the cranio-ventral part of the liver, which as depicted

by the independent error estimation, is not correctly registered, with registration errors

of 3.5 - 5 mm.

An interesting alternative solution suggested by previous studies and also the report of

AAPM Task Group 132, for offline validation of the deformations estimated by regis-

tration algorithms, is the usage of so-called “software phantoms” (Brock et al. 2017).

This consists in inducing a set of known deformations to an image, followed by its regis-

tration to its non-deformed version via the algorithm under evaluation. The achievable

accuracy and precision of the algorithm is then determined by comparing the estimated

deformations to the ground truth deformations induced to the phantom. A challenge

for using such an approach, however, is to simulate a set of physically accurate deforma-

tions, specific to the anatomy under observation. In order to mimic such deformations,

one would have to have knowledge of the ensemble of forces which typically act on the

anatomy, together with an extended set of material parameters specific to the com-

posing tissue(s). This results in a complex simulation, which was circumvented in the

current study by the proposed experiment on spin-tagged MR images, allowing direct

observation of the liver and kidney anatomical deformations. As previously discussed,

however, this approach has its own shortcomings and therefore future studies should also

consider as a validation tool, the usage of anatomically accurate simulations conducted

on software phantoms.

Performance of the original Horn-Schunck algorithm

While the HSO has been shown to be a reliable performer by several independent studies

(Ostergaard et al. 2008, Roujol et al. 2010, Ries et al. 2010, Zachiu et al. 2015b, Glitzner

et al. 2015, Yang et al. 2016), the assumption that a material point conserves its

intensity as it moves, however, can also be a source of misregistrations (Ostergaard

et al. 2008, Martel et al. 2007, Zachiu et al. 2015b). In the current work, this is best

illustrated for the MR - MR mono-modal registration in figure 2 and 4. Several super-

imposed effects and artifacts including arterial pulsations, noise and transient fold-over

artifacts of the bowels, have led to violations of the voxel intensity conservation hypoth-

esis in the dorsal part of the liver and the kidney cortex. In its attempt to redistribute

image intensities such that the data fidelity term of the HSO is minimized, the algo-
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rithm ended-up estimating non-anatomical deformations which translate to local tissue

expansion/creation. Similarly, for the CT-CT registration, the superior part of the

lung is expanded by the algorithm due to a CT reconstruction artifact at the lung-liver

interface, which varies due to a changing curvature during respiration. On the other

hand, the smoothness constraint imposed by the regularization term has the tendency to

dampen vortices, reason for which the curl magnitudes remain overall low to moderate.

With respect to practical considerations, the HSO algorithm allows a very efficient

implementation. This is due both to the point-wise nature of the numerical scheme em-

ployed for the minimization of the cost function and the overall mathematical simplicity

of the optimization process. This resulted in the HSO having the best convergence time

among all four investigated registration methods.

Performance of the Horn-Schunck algorithm with modified regularization

In terms of the DSC and the Jaccard index, HSI provides comparable values to the HSO.

However, the HSI significantly dampens the effect of intensity variations not attributed

to motion on the quality of the estimated deformations. As illustrated in figure 4, the

Jacobian determinant in an area which was problematic for the HSO, remains close

to unity in the entire region-of-interest, with the associated motion fields uniformly

pointing in the general direction of motion of the observed organs. From a physical

point-of-view, the incompressibility constraint imposes a lower penalty on shearing mo-

tion, which leads to an improved performance in the vicinity of organ/tissue boundaries.

This effect can be best observed in figure 3, for CT - CT registration using HSI, where

the curl magnitude showcases a tendency to increase in the proximity of the thoracic and

abdominal wall. Note that this effect is less pronounced for HSO. On the other hand,

during the experiment conducted on the tagged MR images, the differences between

the HSO and the HSI methods are less noticeable. A reason for this may be that the

registered images did not include violations of the intensity conservation hypothesis to

an extent that would induce a differentiated behavior between the two algorithms (like,

for example, in figure 2).

In terms of computational time, the more complex numerical scheme of the HSI implied

a threefold penalty compared to the HSO. Nevertheless, the resulting computational

latency is still acceptable in the context of online therapy guidance.

Performance of the original EVolution algorithm

The principal advantage of the original Evolution (EVO) algorithm compared to HSO

and HSI lies in its capability of performing both mono and multi-modal registration.

The algorithm demonstrated good contour matching capabilities, with DSC and Jac-

card indices predominantly in the 0.8 - 0.9 range. This indicates that the original

EVolution algorithm is well suitable for estimating deformations of volume-changing

anatomical areas, such as the lung or the bladder (as demonstrated in (Denis de Sen-

neville et al. 2016)). For incompressible organs, on the other hand, the EVO algorithm

may be less favorable. In both CT and MR images, image intensity is the density
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weighted signal average over a given voxel. Thus, from a physical point-of-view, image

intensity in such images can be seen equivalent to mass. The HSO and HSI algorithms

imposed the conservation of gray-level intensity and therefore the conservation of mass

in between the registered images. The EVO data fidelity term loses this property, which

leads to the algorithm resolving “boundary matching” by creating sinks or sources (and

therefore to the disappearance and creation of mass) in contrast devoid regions, which

is anatomically implausible in incompressible organs. This effect can be observed to

different extents in all of the registered data sets, where strong deviations from unity of

the Jacobian determinant are present in the homogeneous image regions (see for exam-

ple the cranial part of the liver in figure 2). A more refined illustration of this tendency

of aligning structure boundaries at the expense of creating sinks and sources in the es-

timated deformations is provided in figure 5.

In terms of the absolute registration error illustrated in figure 7, the EVO algorithm pro-

vided the best result among all four methods in registering the abdominal and the tho-

racic wall. This can be mostly attributed to the algorithm prioritizing the alignment of

high contrast areas. However, the transition towards the contrast-devoid area is resolved

with high divergences in the estimated deformations, leading to strong misregistrations

in the ventral part of the liver. Nevertheless, if sufficient contrast is available within

the images, the EVolution algorithm was demonstrated to be capable of high accuracy

and precision in several independent studies (Denis de Senneville et al. 2016, Zachiu

et al. 2017a, Zachiu et al. 2017b).

Concerning the required computational time, the EVO algorithm introduces a rather

large relative penalty, compared to the HSO and HSI. This is mainly due to the time-

consuming calculation of the EVO data fidelity term.

Performance of the EVolution algorithm with modified regularization

The EVI algorithm preserves the capability for performing cross-modality and cross-

contrast co-registration, while restoring the volume conservation property lost by EVO.

Since the data fidelity term is still aimed at aligning similar contrast patterns, the ex-

cellent edge alignment capabilities of EVO are maintained by EVI, providing mostly

identical DSC and Jaccard indices. On the other hand, maximizing edge-alignment no

longer leads to strong compressions and expansions of the tissues in homogeneous areas

(see for example figure 5). At the same time, as showcased in both figure 3 and 5,

the strong peaks in the curl magnitude maps are also attenuated, with a predominant

tendency to increase in the proximity of sliding interfaces. There are, however, a few

instances in which the EVI estimates deformations with a moderate magnitude of the

curl within the organ boundaries. An example can be seen in the ventral part of the

liver in the MR - MR mono-modal dataset (figure 3) and in the cranio-ventral part

of the liver in figure 7. Noteworthy for the latter is the fact that there is also good

spatial correspondence between an increase in the curl magnitude and of the absolute

registration error in the cranio-ventral part of the liver in figure 7.

Overall, for cross-contrast or cross-image modality registration of soft-tissue structures,
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EVI provided superior results compared to EVO, with no penalty in terms of computa-

tional latency.

Dependency of algorithm performance on the input parameters

All four of the investigated registration algorithms required the optimization of the pa-

rameter α, weighting the contributions of the data fidelity and the regularization terms

within the cost functions. Additionally, EVO and EVI also required establishing the

neighborhood size Γ. For real-time and online applications, it is of particular interest

that the values of the algorithm parameters are selected in advance, in order to avoid

latencies associated to a potential parameter re-optimization. In this sense, two aspects

are important: the sensitivity of the algorithm performance to deviations of the input

parameters from their optimal values and the re-usability of the algorithm parameters

across different image pairs. Concerning the first aspect, it can be observed from figure

8 that all algorithms showcase a tendency to perform rather poorly at low values of α

and Γ, followed by a global optimum at intermediate values and a steady tendency to

deteriorate towards high values of the parameters. Note that the performance of the

algorithms remains close to the optimum for a rather wide range of α and Γ values.

However, given the rapid drop in performance of the algorithms for low α and Γ values,

it is preferable to slightly over-estimate them in practice.

In terms of re-usability of the values of α and Γ across different datasets, the parame-

ter optimization process for the 3D data only made use of the first image pair of each

of the five data batches. For all the remaining 3D image pairs, the same values were

maintained for α and Γ, with consistent algorithm performance. A difference in the op-

timal value can be observed, however, between the 3D and the spin-tagged 2D datasets

(see table 6). Therefore the results indicate that, in practice, as long as the acquisi-

tion sequence parameters do not change considerably, the algorithm parameters do not

require re-calibration. This observation is also in good correspondence with previous

studies (Zachiu et al. 2015, Zachiu et al. 2015b, Denis de Senneville et al. 2016, Zachiu

et al. 2017a, Zachiu et al. 2017b).

Selection of a motion estimation model for image-based therapy guidance in

moving organs

The selection of a motion estimation model or registration algorithm should primarily

depend on the particularities of the application and the intended usage. For example,

if mapping of organ labels/segmentations between images is of interest, all four of the

algorithms discussed in the current work would be suited for such a task (since all

four demonstrated good contour matching capabilities). On the other hand, if the

aim is to map quantitative data such as radiation dose, contrast agent absorption,

diffusion/perfusion coefficients, etc., the precise displacement of the tissues within the

organ boundaries becomes particularly important. In such applications, the occurrence

of non-anatomical sinks and sources within the estimated deformations, would lead to

a set of inaccurate post-registration quantitative measurements.
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The current study showcases how adapting a branch of registration methods, such as

variational algorithms, for a particular image modality/contrast and/or a particular

anatomical location, may work towards the detriment of a different registration scenario.

For example, in order to address the inability of the Horn-Schunck optical flow

formulation for cross-contrast and cross-modality registration, the gray-level intensity

conservation constraint was replaced with a more relaxed constraint on the conservation

of contrast, imposed by the original EVolution algorithm. This, however, leads to the

loss of the mass conservation property, imposed by the data fidelity term of the Horn-

Schunck algorithm, thus decreasing the penalty on the formation of sinks and sources

in the estimated motion field. This property is restored by the EVI by replacing

the smoothness constraint imposed by the regularization term, with a penalty on

deviations of the deformation Jacobian determinant from unity. At a first glance, after

addressing these shortcomings, it may seem that the EVI method is best among all of

the four investigated algorithms. One has to take into consideration, however, that the

incompressibility constraint is optimal only for anatomical structures which posses this

particular physical property. In case the tracked anatomy changes volume in between

the images to be registered, EVO would be the better option. Therefore, it would be

overall preferable that such variational registration methods are selected depending on

the specific application, acquisition modalities, acquisition parameters, image contrasts

and the physical properties of the tracked anatomy.

5. Conclusion

Current validation procedures for medical image registration algorithms in a clinical

setting, often rely on visual inspection and/or contour-based criteria. The current work

demonstrates that this is likely insufficient to guarantee the anatomical plausibility

of the estimated deformations. Here, three additional criteria were proposed, which

can assist such evaluations on a voxel-by-voxel basis: the local Jacobian determinant

of the deformations, the local vorticity of the deformations and a criterion relying on

MR-tagging. Four image registration algorithms were evaluated against these criteria:

two pre-existing and two proposed in the scope of this study. The latter two replaced

the smoothness constraint on the estimated deformations imposed by the former two

with a constraint on compressibility. It was demonstrated that while both the original

and incompressible methods provide high values of the DSC and the Jaccard index

(0.8 - 0.9) and low average TRE (1.6 - 2.0 mm), the pre-existing methods may

estimate physiologically inaccurate compressions and expansions inside the liver and

kidney. The proposed methods significantly reduced such effects, without a negative

impact on deformation vorticity, estimation accuracy determined from MR-tagged

images or increase in computational latencies. While improvements were obtained for

incompressible tissues, the current study also demonstrates that each optimization of

variational registration algorithms represents a compromise, which should be chosen

consciously while considering the particular anatomical and physiological properties of
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the tissue under observation.
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Zitová, B. & Flusser, J. (2003). Image Registration Methods: A Survey, Image and Vision Computing

21(11): 977 – 1000.


	Introduction
	Method description
	Description of the investigated registration algorithms
	The original Horn-Schunck and EVolution algorithms
	The Horn-Schunck and EVolution algorithms, with modified regularization
	Optimization of the motion estimation functionals
	Coarse-to-fine strategy
	Employed convergence criterion

	Experimental setup
	Evaluation of the registration methods on 3D CT and MR data
	Evaluation of the investigated registration methods on spin-tagged MR images

	Algorithm parameter calibration and implementation

	Results
	Performance of the investigated registration methods in high-contrast areas
	Compression/Expansion and vorticity of the deformations provided by the investigated registration methods
	Absolute registration errors of the investigated algorithms
	Calibration and computational performance of the investigated algorithms

	Discussion
	Conclusion

