
HAL Id: hal-01962451
https://hal.science/hal-01962451

Submitted on 20 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Automated Fault Localizer while Designing
Meta-models

Adel Ferdjoukh, Jean-Marie Mottu

To cite this version:
Adel Ferdjoukh, Jean-Marie Mottu. Towards an Automated Fault Localizer while Designing Meta-
models. MDEbug 2018, Oct 2018, Copenhagen, Denmark. �hal-01962451�

https://hal.science/hal-01962451
https://hal.archives-ouvertes.fr

Towards an Automated Fault Localizer while Designing Meta-models

Adel Ferdjoukh
University of Nantes, LS2N (UMR CNRS 6004)

Nantes, France
adel.ferdjoukh@univ-nantes.fr

Jean-Marie Mottu
University of Nantes, LS2N (UMR CNRS 6004)

Nantes, France
jean-marie.mottu@univ-nantes.fr

ABSTRACT
Meta-models are the centrepiece of Model Driven Engineering,
required in many activities: modelling, creating DSLs (Domain
Specific Languages), xDSLs (executable DSLs), or writing model
transformations. Therefore, designing meta-models should be done
carefully but it could be a complicated task with large ones. Meta-
models should then be validated but it is mostly done considering
their usability: in particular if it is possible to instantiate them. Auto-
matic model generators are used and if they are unable to generate
models it means the meta-model with its instantiation parameters
(e.g. size of the models) is wrong. Several generators exist, but most
of them have binary output: success or failure, without helping the
meta-model debugging. In this paper, we introduce an approach,
in which we statically analyse a meta-model with its instantiation
parameters. In this first work, we detect inconsistencies considering
each reference or each inheritance separately. Therefore we pro-
vide feedback to the meta-model designer to help her to debug the
meta-model.

KEYWORDS
Meta-modelling, Model Generation, Fault Localization

1 INTRODUCTION
Model Driven Engineering (MDE) became very popular in academia
and industry. Its efficiency has been proven in many real cases:
medicine [7], aviation [1], automotive industry [24], etc. Model-
based techniques are used for designing, refactoring, generating the
code, testing software systems. They are very helpful in managing
the complexity or heterogeneity of software systems.

A model-based process often begins by the definition of a new
meta-model, required, for instance, to define Domain Specific Lan-
guage (DSL). The meta-model plays a key role in all the operations
that will be performed over the software system. For example, meta-
models are used to write model transformations (MT) [26] which
transform models into other models (M2M), or into source code or
text (M2T)1.

To ensure the correctness of any MDE process, only valid meta-
models must be considered. However designing meta-models is
tedious while dealing with complex systems. It could result in meta-
models that cannot be instantiated in all the requested situations.
Checking the validity of meta-models becomes, de facto, a very
important issue. To validate their meta-models, domain experts try to
instantiate them by creating real life models. However, that manual
checking cannot be applied at a large scale and is therefore not
sufficient. For this task, an existing solution is based on model
generators which are already highly used in the next steps of a

1M2M: Model to Model transformation; M2T: Model to Text transformation

MDE development (e.g., generating test models to validate model
transformations [21]).

Several model generation tools exist [14]: e.g., GRIMM [11], PRA-
MANA [25], EMFtoCSP [5], USE [13]. They instantiate a meta-model
in order to build conformed models. The inputs of a generator are:
a meta-model, a set of OCL constraints and instantiation parame-
ters. With these last, the user configures the generator in order to
choose the characteristics of instantiated model(s) (e.g., setting the
number of instances generated for each class). Then, the tool trans-
forms those inputs to send them to a solver which returns model(s)
in case of success or error messages if it fails to generate a valid
solution. However, even if it can alert on the non instantiability of
meta-models, it provides too few help to debug them.

The goal of the approach that is described in this paper, is to
help the meta-model designers to detect and fix invalid meta-models
before facing the annoying but frequent case of generation failure.
We develop an automated fault localizer to help them in debugging
a non instantiable meta-model. Our approach uses Systems of Linear
Inequalities (SLI) and focuses on the class’ relations in the meta-
model and the instantiation parameters. The structure of an Ecore
meta-model is translated into SLI and our custom solver checks
the consistency of a model generation process. In this paper, we
show the first version of the translation of a meta-model into a linear
system, and we describe how we use this in order to provide fixing
suggestions for meta-model designers. The contributions are already
implemented in a tool named TIWIZI which is independent from any
model generation tool.

The rest of the paper is organised as follows: Section 2 gives
the context and the motivation of the work. Section 3 describes
the fault localization mechanism and presents TIWIZI, a tool that
implements our contribution. Section 4 discusses existing work.
Finally, Section 5 draws conclusions and opens perspectives.

2 CONTEXT & MOTIVATION
In this section, we describe the context and the motivations of the
paper when tackling non instantiability of meta-models.

2.1 Meta-Modelling
The meta-models we consider are written using the EMF/Ecore
language.

Each class can have one or more attribute. The possible types for
attributes are all the usual primitive types (integer, char, string, etc.)
and enumerations.

In our approach, we consider the relations between classes and
their three variations in an Ecore diagram: reference, bidirectional
reference (a reference and its opposite), composition (a bidirectional
reference in which one class contains the other one). Each relation
has two cardinalities (lower and upper bound) that bound the num-
ber of objects that could be linked to a given object. Bidirectional

MDEbug@MODELS’18, October 2018, Copenhagen, Denmark Ferdjoukh and Mottu

references have cardinalities in both sides. As a good practice rule, a
unique root class is the top container and it is instantiated only once
as a root of a tree of containment relations between all the objects
in a model. We also consider classes inheriting from other classes.
This is defined by a super type relation.

A meta-model also requires constraints, typically written in OCL,
to specify invariants. However considering the constraints is out of
the scope of this first work.

2.2 Meta-model instantiation
Depending on how the models will be used during the development
of a MDE tool chain (DSLs, transformations), they are created as
instances of a meta-model. Instantiability of a meta-model should
be considered to prevent that a real life model provided by a user or
another part of the chain fails to conform the meta-model, prevent-
ing it to be transformed for instance. Moreover, to validate DSLs
or model transformations w.r.t. their specification, representative
models should be generated to test their implementation. A model
generator then requires instantiable meta-models to compute valid
instances as test models.

2.2.1 Instantiation parameters. It gathers the information that
is required to instantiate a meta-model, e.g. by a model generation
tool. For example in the model generator GRIMM, it concerns the
following information:

• Number of exact instances for each class of the meta-model.
• Bounds for unbounded references.
• Values for enumerations.
• Domains for attributes (optional but suitable for more preci-

sion).
• Probability distributions for links between classes.

Considering the instantiability of a meta-model and without an-
ticipating with which intent a model generator will be used next (e.g.
model transformation testing), we focus in this first work on two
instantiation parameters that we call candidate values (CV).

CV are provided by the user when checking instantiability of
meta-models. We currently focus on two different parameters:

• Number of exact instances for each class of the meta-model.
• Bounds for unbounded references.

2.2.2 Non instantiable Meta-models. We distinguish three major
reasons why meta-model instantiation could be not possible:

• Unreachable candidate values. The instance that the user tries
to generate is not reachable because given CV cannot satisfy
the cardinality of at least one reference in the meta-model.

• Inconsistent meta-model structure. A combination of ele-
ments is impossible to instantiate. For example, three classes
are linked by a cycle of relations and no combination of values
that satisfies all the cardinalities is possible.

• Incoherent OCL constraints. The source of error in this case
are the OCL constraints of the meta-model.

Remark Another obvious source of error is a faulty syntax (e.g.
an unnamed class). This kind of error can be easily checked using
Ecore validator in Eclipse for instance.

In this first work, we consider only unreachable CV. Our ideas for
tackling the two other sources of problems are discussed in section 5.

2.3 Meta-model validation
The domain expert is supposed to design valid meta-model. She
could additionally be a meta-modelling expert and manage to follow
good meta-modelling practices2. However, a dedicated step of vali-
dation is required, such as for any development. In that case, current
technique using model generators could be not a skill of the domain
expert.

2.3.1 Model Generators. Usually, the first automatic non valida-
tion of a meta-model is done by a model generator when it fails to
instantiate it.

Generators are based on a translation into a search-based or com-
binatorial technique to find models. The most famous techniques that
are used are: SAT [2], CSP (Constraint Satisfaction Problem) [22],
Alloy [16] and SMT (SAT Modulo Theory) [9]. Such techniques
always provide existing and easy-to-use solvers to find solutions.
Those solvers return a binary output: success if a model is found or
failure if there is no solution. However, they give too few information
about the origin of failure.

We observe that the users of model generation tools, such as
GRIMM [11], PRAMANA [25] or EMFtoCSP [5], have many difficul-
ties when they meet a failure, because most of them are familiar with
either Ecore or one the combinatorial techniques that tools use: CSP,
SAT or SMT. An Ecore expert can manually check the meta-model
and its elements, mainly references. Then, she tries to debug the
generation algorithm. Beside that, a CSP or SAT expert can look up
into the intermediary files (eg. xcsp files), that are generated by the
tool and try to find what is wrong inside them. All these verifications
have to be done manually. They are time consuming. Worse, they
have to be done each time the tool fails to generate a model. Another
solution would be the use of the Fault Localization mechanisms that
combinatorial techniques provide. For example, in Constraint Pro-
gramming, there exists a sub-field called Max-CSP [17], in which
the goal is to identify the subset of constraints responsible of the
failure. However, Max-CSP suffers from a lack of scalability and
a reverse step has to be done in order to map from constraints into
meta-models elements. An equivalent mechanism exists in SAT [12]
as well, but without providing more help to debug.

In summary, model generators use search-based techniques and
do not provide fault localization mechanisms to help the users in
debugging. Some of search-based and combinatorial techniques have
kind of debuggers and fault localizers. Unfortunately, they are hard
to use for MDE experts and reverse engineering is needed to map
bugs into meta-models elements. For all these reasons, meta-model
designers prefer to not use a tool for model generation. They validate
their meta-models only manually. To fix that, a Fault Localization
mechanism during meta-model instantiation is needed.

2.3.2 Tiwizi and Model Generators complementarity. The objec-
tive of this work is to reconcile meta-model designers with model
generation tools. We provide a user friendly tool to assist them dur-
ing design task. Concretely, we developed TIWIZI, an interactive
fault localizer. The role of TIWIZI is to help to validate Ecore meta-
models. TIWIZI does not generate models. GRIMM, PRAMANA or
EMFtoCSP keep their role for meta-model instantiation.

2https://sites.google.com/site/metamodelingantipatterns/

https://sites.google.com/site/metamodelingantipatterns/

TIWIZI Fault Localizer MDEbug@MODELS’18, October 2018, Copenhagen, Denmark

3 AUTOMATED FAULT LOCALIZATION
This section presents the main contribution of our paper. We describe
how to perform automated fault localization and provide fixing sug-
gestions. As well, we present TIWIZI, the fault localizer we created.

Our fault localization mechanism is based on Systems of Linear
Inequalities (SLI). An SLI is a set of Linear Inequalities between
the same variables. Each inequality has the following shape:

a1x1 +a2x2 + . . .+anxn <,≤,>,≥,=,, b

The variables are xi. ai are called coefficients and b is a constant
term. Every inequality must have one of the inequality symbols
<,≤,>,≥,=,,. For a more complete overview of this area, please
refer to [27].

To perform fault localization, the structure of a meta-model is
translated into a system of linear inequalities (SLI). The pair com-
posed of the generated SLI and the input candidate values is checked
in order to localize errors in the process of model generation. Fig-
ure 1 illustrates the steps of our method and tool (TIWIZI). It consists
of three important steps: (1) generate the SLI, (2) check the con-
sistency of the generated system and (3) deduce fixing suggestions.
Each one of these steps is explained in a dedicated sub-section.

Figure 1. Steps for fault localization and suggestion generation using TIWIZI

3.1 Generation of Linear Inequalities
This section describes the System of Linear Inequalities (SLI) we
build, in order to localize faults while designing meta-models. The
work described in this paper focuses on four main elements of meta-
models: unidirectional references, bidirectional references, contain-
ments and inheritance.

3.1.1 Unidirectional references. They associate two classes (pos-
sibly the same) of the meta-model in one direction onlyAn example
of unidirectional reference is shown in Figure 2. In this example we
want to say that objects of type House are connected to objects of
type Room by a reference called rooms. The cardinality 1..5 means
that a House is linked to at least 1 and to at most 5 Rooms.

Figure 2. An example of unidirectional reference

Let us assume that we have only one instance of class House.
In Figure 3, we show the minimal and maximal configurations

for the previous reference. In the minimal configuration we have
#House= #Room (one room per house) and in the maximal #Room=
5 ∗ #House (5 rooms per house). This means that all consistent
configurations are between these two bounds. So, to translate an
unidirectional reference into SLI, we create the following pair of
inequalities: {

#House ≤ #Room
#Room ≤ 5×#House

Figure 3. Minimal (left side) and maximal (right side) configuration for reference
in figure 2 if we have only one House.

3.1.2 Bidirectional references. They associate two classes (pos-
sibly the same) in two opposite directions. It is modelized in Ecore
with two references, each one being the eOpposite of the other one.
The main difference between one unidirectional reference and a pair
of bidirectional references, is that this last requests two cardinality
constraints (one for each direction) to be checked at the same time,
while instantiating them.

We cannot process this configuration by considering two unidi-
rectional references, otherwise many false-positive examples are
encountered. We then propose a way to manage the bidirectional
references as a pair. Let us explain our solution by translating the
bidirectional references of the Figure 4.

Figure 4. An example of bidirectional references

This solution is based on a particular graph, called regular bipar-
tite graph [23]. A bipartite graph G =

(
U,V,E

)
is regular bipartite

if all the nodes of U have the same degree x and all the nodes of V
have the same degree y. It is denoted x,y-regular. Regular bipartite
graphs have an interesting characteristic: x×|U | = y×|V |.

We use this kind of graphs because the instantiation of a reference
always produces a bipartite graph. The instances of the first class
(e.g., Room) are the first part U of the graph and the instances of the
second class (e.g., Wall) are the second part V .

First, we consider instances of class Room, and the number of
connected instances of class Wall. The extreme configurations are
the following:

• Minimal configuration. Rooms share as many walls as pos-
sible. It means that each wall is connected to a maximum
number of rooms (= 2). This configuration produces a 4,2-
regular graph (Figure 5.a).

MDEbug@MODELS’18, October 2018, Copenhagen, Denmark Ferdjoukh and Mottu

• Maximal configuration. Rooms do not share their walls. Each
wall is connected to only one room. This configuration then
produces a 4,1-regular graph (Figure 5.b).

These two configurations remain valid whatever the number of
rooms and walls. It is only related to the cardinalities of correspond-
ing references: 1..2 & 4..4.

(a) 4,2-regular graph (b) 4,1-regular graph

Figure 5. Minimal and maximal configurations

The previous regular graphs are characterized by the following
formulas:

4×#Room = 1×#Wall ∨4×#Room = 2×#Wall

It means that all consistent configurations must respect the fol-
lowing inequalities:

1×#Wall ≤ 4×#Room∨4×#Room ≤ 2×#Wall

So, to encode the pair of opposite references, we create 4 inequal-
ities: 

1
4 #Room ≤ #Wall
#Wall ≤ 2

4 #Room
4
2 #Wall ≤ #Room
#Room ≤ 4

1 #Wall

3.1.3 Composition references. A composition relation (A to B)
with cardinalities l..u is treated as a pair of bidirectional references
with cardinalities 1..1 in one side and l..u in the other side. This is
done this way in order to force involved objects to have a unique
container. This gives us the following inequalities:

1
u #A ≤ #B
#B ≤ 1

l #A
l ×#B ≤ #A
#A ≤ u×#B

3.1.4 Super type relations. The methodology we propose for
treating inheritance between classes is inspired by the translation of
a meta-model into CSP that is performed in GRIMM tool [11]. Let
us take the illustrative example in Figure 6. We can see a class A
linked to a class B which had two sub-classes C and D. It means that
an instance of A can be linked to 1..5 instances of B, C and D at the
same time (instances of concrete classes are only considered). This
case is translated into SLI using the following inequalities:{

#A ≤ #B+#C+#D
#B+#C+#D ≤ 5×#A

Figure 6. An example of unidirectional reference with inheritance

Remark equivalent treatments are applied for bidirectional refer-
ences with inheritance.

3.2 SLI Checker
Here, we explain how we use input candidate values in order to check
the consistency of the generated SLI. The algorithm in Listing 1
explains how a generated SLI is checked according to the candidate
values. For each one of the inequalities, we check if the candidate
values given by the user are consistent. When the checking fails, we
consider that an anomaly is detected. The next step is to generate a
fixing suggestion to help the user.

input: SystemLinearInequalities sli
CandidateValues cvs

output: List <DetectedAnomaly > anomalies

begin
foreach (i:Inequality in sli) do
if (not check(i, cvs.get(i))) then

a: new DetectedAnomaly(i,cvs.get(i))
anomalies.add(a)

endif
endfor

return(anomalies)
end

Listing 1. Algorithm for checking SLIs

Our goal is not to solve the system of linear inequalities in order to
find a valid solution because we use the CV given by the user. For this
reason, we check the SLI instead of solving it. One improvement
of our current work would be mixing solving (using an existing
solver) and checking. Indeed, sometimes the user does not want to
give all the candidate values, because the meta-model is too big for
example. In this case, we could try to solve the SLI as well, in order
to suggest a whole consistent input configuration or to complete a
partial one. The complexity of solving SLIs is much greater than
checking that a vector of CVs is a solution. However, there exist
a polynomial algorithm for checking that a homogeneous SLI has
no solution [10]. An SLI is homogeneous if all constant terms (b
values of inequalities) are zeros. The SLI that is created from the
translation of meta-models is homogeneous.

3.3 Generation of Fixing Suggestions
Once an inconsistency between an inequality and a list of candidate
values is met by the SLI checker, a fixing suggestion is calculated
and returned to the user. The goal is to help her to quickly fix the

TIWIZI Fault Localizer MDEbug@MODELS’18, October 2018, Copenhagen, Denmark

problem. The calculation of suggestions is not a challenging problem
but we think it is very useful for users.

Here we give an example of such a suggestion. Let us recon-
sider again the example of reference given in Figure 2, in which
an instance of class House can be linked to 1..5 instances of class
Room. Listing 2 shows a fixing suggestion provided by our tool. The
problem here is that the user tries to create an inconsistent model
containing 1 instance of House and 6 instances of Room. This con-
figuration violates the references between the two classes. The tool
suggests to reconsider either the cardinalities or the CV.

--references
rooms: House []->[1..5] Room

--inequalities
House <= Room
Room <= 5*House

--candidate values
[House=1, Room=6]

--fixing suggestions
Please reconsider cardinalities for reference [rooms] >>

upperBound++
Please reconsider number of instances >> more [House] or

Less [Room]

Listing 2. An example of fixing suggestion given by TIWIZI

By default, the suggestions are written in a very succinct mode
directly in the terminal. But, for a better readability, the user can ask
for a verbose mode that generates a tiwizi log file for all detected
anomalies (as shown in Listing 2). A pdf file summarising all the
suggestions is then created using our custom syntax highlighting
(calling LATEX).

Fixing suggestions are useful because big meta-models contain
dozens of classes and references. Thus, it is hard to manually localize
all possible faults. Moreover, conducted user experiments [11] show
that many problems come from the CV.

3.4 Tooling
All the contributions of this paper are implemented in a tool called
TIWIZI. The tool is designed as a plug-in for any model generation
tool: it garantee the instantiability of the meta-model before the
generator try to instantiate it. Currently, TIWIZI is plugged to GRIMM

as an initial step of its generation process. Such a connection can
easily be done with any model generator and our code is open source.

The core part of the code that concerns the generation and the
checking of a system of linear inequalities is written in Java. We
preferred to write our own SLI checker because available checkers
need big efforts to adapt them to our MDE purpose. Our checker
was carefully tested on diverse meta-models to ensure it correctness.
Both the pdf creation task for verbose suggestions and the connection
to GRIMM tool are written in bash.

TIWIZI needs two inputs: a meta-model and a configuration file
that contains the candidate values. The tool is fully automated and
giving the input is the only manual task. The output is a list of fixing
suggestions in case of failure or a call to the model generation tool in
case of success. The first release of TIWIZI is available on our github
repository (https://github.com/ferdjoukh/tiwizi/). All what you need
to start using the tool can be found on the same web page.

Remark Filling the configuration file manually is very often time-
consuming and boring, as the size of the meta-model is growing. In
order to help the users to quickly fill all this information, our tool gen-
erates a pre-filled file. Users only need to bring their modifications
if necessary.

4 RELATED WORK
In this section, we list several works that consider the quality of meta-
models with different approaches and other approaches assessing
the quality of modelling using Linear Algebra as well.

A first set of works identifies pattern and anti-pattern which in-
crease and reduce the quality of the meta-models. They do not focus
on the instantiability of the meta-model but prevent to build models
of low quality, e.g. in [8].

In [15], Hinkel et al. confirm thanks to an empirical study the im-
portance of the instantiability. It was already considered by Cadavid
et al. in [6]. Such as most of the existing works, they request test
model instances of the meta-model to validate it.

In [18] and [19], Lopez et al. present a language, called mmSpec
whose the main purpose is to define quality criteria over meta-models.
For example, one can ensure the strong connection of meta-models
or the reachability of classes by using such criteria. The objective
is both assisting in meta-modelling and analysing existing meta-
models. There is a complementarity between this work and our
approach. Therefore, users should use both tools for a more accurate
validation of meta-models.

In [20], Ma et al. define metrics over meta-models with the pur-
pose of assessing their quality. These metrics are inspired for classic
object oriented metrics (e.g. depth of inheritance tree). The authors
also found correlations between their metrics and quality properties,
such as, reusability or understandability of meta-models.

In [3] and [4], Boufares et al. consider the consistency of cardi-
nalities in UML diagrams and ER-Schemas. In both papers, they
translate the cardinality systems into Integer Linear Programming
(ILP). An ILP solver then solves it and answers if the cardinalities
are consistent or no. However, the papers do not give much details
about the fault localization mechanism which seems to be manual.

5 CONCLUSION & FUTURE WORK
In this paper, we present a method for automated fault localization
during the task of designing meta-models. The main objective of
our work is to help users to check if their meta-models could be
instantiated and to localize the origin of failure if not. This first work
focuses on errors occurring between the candidate values that are
chosen by the user and some elements of the meta-model: references,
bidirectional references, compositions and inheritance relations.

Our method is based on Linear Algebra. We model the problem of
consistency of meta-models as a System of Linear Inequalities (SLI)
and we check their consistency in order to localize bugs. The contri-
butions of the paper are implemented in a tool called TIWIZI. TIWIZI

takes a meta-model and candidate values (instantiation parameters)
as input and provides fixing suggestions. Those suggestions are
guidelines for the user. They are used to modify and correct the
meta-model and the instantiation parameters. The role of our tool is
to guarantee the success of a model generation process or to debug

https://github.com/ferdjoukh/tiwizi/

MDEbug@MODELS’18, October 2018, Copenhagen, Denmark Ferdjoukh and Mottu

it and automatically localize anomalies. Beside that, model gener-
ators keep their role for meta-model instantiation. The complexity
of TIWIZI is linear and depends only on the number of references
of the meta-model, not on the size of generated models. In addition,
the tool is fully automated.

5.1 Limitations & Future work
This sections aims to list the limitations of our work, and the future
challenges that rise from it.

The current version of our tool considers the structure of the
meta-model (references between classes and inheritance) and all
the fixing suggestions we generate are related to these elements of
the meta-model. We did not include the attributes of classes in our
translation into SLI. We think that we can add some features to our
tool in order to take into account the attributes as well. All this can
be inspired from what model generators do for attributes. We could
for example detect anomalies in types or missing values.

As described in section 2.2.2, non-instantiability of meta-models
is due to three major reasons. The first one is the topic of the current
paper. However, for a complete fault localizer, we must consider the
two other sources of errors. Hereinafter, we discuss the promising
ideas for improving this work.

Some meta-models are faulty because of their own structure with-
out regarding the CV. For example, in some cycles of linked classes,
wrong cardinalities exclude any possibility of success (the work
in [28] explains that for UML models). Therefore, we could identify,
define and detect such suspicious patterns for Ecore diagrams and
apply our approach on a larger scope of meta-model elements. This
would help us to target larger or more accurate fixing suggestions.

The usefulness of a fault localization mechanism for OCL is un-
doubted. Again, we can use the OCL translators of model generators
in order to tackle this interesting challenge and take into account
OCL constraints of meta-models. We can imagine a solution that
finds the maximum set of consistent constraints. Then, we could
suggest to the user to correct only the suspicious set. This solution
can for example iterate on the OCL constraints and translate only
one at each step. If an inconsistency is detected then the constraint
is added to the set of suspicious candidates.

The final improvement of this work is of course an experimental
study to measure the benefits of our proposal. We plan to run two
different steps: (i) statistical and quantitative study and (ii) user
experience study.

The statistical and quantitative study consists in the running of the
tool on several meta-models of different sizes and origins. The goal
here is to show that TIWIZI is able to localize faults precisely whereas
model generators are only able to notice failures. For example, if we
create mutant of the meta-models, we can count the number of bugs
that our tool discovers.

The goal of the user experience study is to show that TIWIZI

really helps people to localize bugs during meta-modelling. We can
measure the time that a user needs to find a bug using several existing
model generation tools and compare it to the time that TIWIZI needs
to automatically localize the same bugs.

REFERENCES
[1] Gérard Berry. 2008. Synchronous design and verification of critical embedded

systems using SCADE and Esterel. Lecture Notes in Computer Science 4916

(2008).
[2] Armin Biere, Marijn Heule, and Hans van Maaren. 2009. Handbook of satisfiabil-

ity. Vol. 185. IOS press.
[3] Faouzi Boufares and Hachemi Bennaceur. 2004. Consistency Problems in ER

Schemas for Database Systems. Information Sciences 163, 4 (2004), 263–274.
[4] Faouzi Boufarès, Hachemi Bennaceur, and Aomar Osmani. 2003. On the Con-

sistency of Cardinality Constraints in UML Modelling. In ISPE, International
Conference on Enhanced Interoperable Systems. 287–292.

[5] Jordi Cabot, Robert Clarisó, and Daniel Riera. 2008. Verification of UML/OCL
Class Diagrams using Constraint Programming. In ICSTW, IEEE International
Conference on Software Testing Verification and Validation Workshop. 73–80.

[6] Juan Cadavid, Benoit Baudry, and Houari Sahraoui. 2012. Searching the bound-
aries of a modeling space to test metamodels. In Fifth IEEE International Confer-
ence on Software Testing, Verification and Validation.

[7] Catalina Martínez-Costa and Marcos Menárguez-Tortosa and Jesualdo Tomás
Fernández-Breis and José Alberto Maldonado. 2009. A model-driven approach
for representing clinical archetypes for Semantic Web environments. Journal of
Biomedical Informatics 42, 1 (2009), 150–164.

[8] Hyun Cho and Jeff Gray. 2011. Design patterns for metamodels. In Proceedings
of the compilation of the co-located workshops on DSM’11, TMC’11, AGERE!
2011, AOOPES’11, NEAT’11, & VMIL’11. ACM, 25–32.

[9] Leonardo Mendonça De Moura and Nikolaj Bjørner. 2011. Satisfiability Modulo
Theories: Introduction and Applications. Communications of the ACM Journal 54,
9 (2011), 69–77.

[10] Lloyd L Dines. 1919. Systems of linear inequalities. Annals of Mathematics
(1919), 191–199.

[11] Adel Ferdjoukh, Anne-Elisabeth Baert, Eric Bourreau, Annie Chateau, and Clé-
mentine Nebut. 2015. Instantiation of Meta-models Constrained with OCL: a CSP
Approach. In MODELSWARD. 213–222.

[12] Zhaohui Fu and Sharad Malik. 2006. On solving the partial MAX-SAT problem.
In International Conference on Theory and Applications of Satisfiability Testing.
Springer, 252–265.

[13] Martin Gogolla, Fabian Büttner, and Mark Richters. 2007. USE: A UML-based
specification environment for validating UML and OCL. Science of Computer
Programming 69, 1–3 (2007), 27–34.

[14] Wu Hao. 2013. Automated Metamodel Instance Generation Satisfying Quantitative
Constraints. Ph.D. Dissertation. National University of Ireland Maynooth.

[15] Georg Hinkel, Max E Kramer, Erik Burger, Misha Strittmatter, and Lucia Happe.
2016. An Empirical Study on the Perception of Metamodel Quality.. In MODEL-
SWARD. 145–152.

[16] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT
Press.

[17] Javier Larrosa and Pedro Meseguer. 1996. Exploiting the use of DAC in Max-
CSP. In CP, International Conference on Principles and Practice of Constraint
Programming. 308–322.

[18] Jesús López-Fernández, Esther Guerra, and Juan de Lara. 2014. Assessing the
Quality of Meta-models. In MoDeVVA Workshop. 3–12.

[19] Jesús López Fernández, Esther Guerra, and Juan Lara. 2014. Meta-Model valida-
tion and verification with MetaBest. In ASE, ACM/IEEE International Conference
on Automated Software Engineering. 831–834.

[20] Zhiyi Ma, Xiao He, and Chao Liu. 2013. Assessing the quality of metamodels.
Frontiers of Computer Science 7, 4 (2013), 558–570.

[21] Jean-Marie Mottu, Sagar Sen Simula, Juan Cadavid, and Benoit Baudry. 2015.
Discovering Model Transformation Pre-conditions Using Automatically Gener-
ated Test Models. In Proceedings of the 2015 IEEE 26th International Symposium
on Software Reliability Engineering. Gaithersburg, MD, USA, 88–99.

[22] Francesca Rossi, Peter Van Beek, and Toby Walsh (Eds.). 2006. Handbook of
Constraint Programming. Elsevier Science Publishers.

[23] Edward R Scheinerman and Daniel H Ullman. 2011. Fractional graph theory: a
rational approach to the theory of graphs. Courier Corporation.

[24] Gehan MK Selim, Shige Wang, James R Cordy, and Juergen Dingel. 2012. Model
transformations for migrating legacy models: an industrial case study. In European
Conference on Modelling Foundations and Applications. Springer, 90–101.

[25] Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. 2008. On Combining Multi-
formalism Knowledge to Select Models for Model Transformation Testing. In
ICST, IEEE International Conference on Software Testing, Verification and Vali-
dation. 328–337.

[26] Shane Sendall and Wojtek Kozaczynski. 2003. Model transformation: The heart
and soul of model-driven software development. IEEE software 20, 5 (2003),
42–45.

[27] Gerard Sierksma. 2001. Linear and integer programming: theory and practice.
CRC Press.

[28] Robert Wille, Mathias Soeken, and Rolf Drechsler. 2012. Debugging of incon-
sistent UML/OCL models. In DATE, Design, Automation and Test in Europe.
1078–1083.

	Abstract
	1 Introduction
	2 Context & Motivation
	2.1 Meta-Modelling
	2.2 Meta-model instantiation
	2.3 Meta-model validation

	3 Automated Fault Localization
	3.1 Generation of Linear Inequalities
	3.2 SLI Checker
	3.3 Generation of Fixing Suggestions
	3.4 Tooling

	4 Related work
	5 Conclusion & Future work
	5.1 Limitations & Future work

	References

