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The transient profiles of temperature and normal heat flux inside a flat minichannel heated by a surface heat source are constructed from temperature measurement over its external heated face. It uses analytical expressions of the corresponding transfer functions which are calculated using Laplace and Fourier integral transforms. Firstly, this estimation technique is verified on synthetic outputs of a finite elements code (COMSOL). Then it is implemented on an experimental minifluidic bench with electrical heating and temperature measurement by thermocouples and infrared thermography, for a low Péclet number of the flow. The presented results show that the heat source can be recovered at any time, as well as the internal normal heat flux and temperature distributions, including the bulk temperature of the liquid flow.

In our previous works, we have shown the interest of transfer functions for linear time invariant systems where heat diffusion and advection occur, both on a theoretical [START_REF] Hadad | Modeling unsteady diffusive and advective heat transfer for linear dynamical systems : A transfer function approach[END_REF] and on an experimental [START_REF] Hadad | Experimental transfer functions identification : Thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source[END_REF] basis. In this paper, which deals with a flat mini heat extractor, we will show how the surface heat source as well as the internal state variables (temperature and heat flux) can be estimated from temperature measurements over one of the outer faces using the correponding transfer function. This non-destructive estimation technique, that corresponds to the construction of a virtual sensor, allows us therefore to estimate, in steady and transient regimes, the thermal state at locations difficult to access using direct measurements at another easy to access location. This requires the system to be linear with a geometry, thermophysical properties and fluid velocities that do not vary with time.

So, the topic dealt with in this paper derives from the now classical Inverse Heat Conduction Problem (IHCP) introduced by J.V. Beck et al. in the 80's [START_REF] Beck | Inverse heat conduction : Ill-posed problems[END_REF] which consists in reconstructing surface temperatures or heat fluxes at part of the boundary of a solid domain, using known boundary conditions over its complementary part, the missing information being replaced by internal temperature measurements. This type of problem is mathematically ill-posed because the presence of noise in the data tends to make reconstruction of temperature or flux at the unknown part of the boundary unstable. This requires some special class of data processing called "regularization". This IHCP approach is very useful to estimate experimentally the distributions of both heat flux and temperature over the inner surface of the heated wall of a channel, using the diffusion heat equation in its solid volume, in order to derive the profiles of the internal convection coefficients. It can be used, for example, to optimize internal fluid mechanics in such a channel, see [START_REF] Tougri | Internal heat transfer coefficient estimation in three-dimensional ducts through the reciprocity functional approach-an analytical approach and validation with experimental data[END_REF].

In Inverse Forced Convection Problems (IFCP) [START_REF] Jarny | Inverse methods applied to forced convection in heat transfer[END_REF], the problem at stake is exactly the same, but the studied domain is a flowing fluid whose velocity field is known. The first works about this type of problems appeared in the 1990's and concerned estimation of inlet space [START_REF] Raghunath | Determining entrance conditions from downstream measurements[END_REF] or time [START_REF] Bokar | An inverse analysis for estimating the timevarying inlet temperature in laminar flow inside a parallel plate duct[END_REF] temperature distributions in a flat heated channel [START_REF] Raghunath | Determining entrance conditions from downstream measurements[END_REF] or the wall heat flux estimation in a flat [START_REF] Jarny | Inverse methods applied to forced convection in heat transfer[END_REF] [START_REF] Liu | Inverse analysis of transient turbulent forced convection inside parallelplate ducts[END_REF] or annular [START_REF] Li | Inverse convection problem for determining wall heat flux in annular duct flow[END_REF] channel in transient thermal regime.

The precise subject of our work is the Inverse Conjugate Forced Convection Problem (ICFCP) : the type of heat equation to be inverted is still the forced convection heat equation but it concerns not only a fluid, but also a solid subdomain, where a zero velocity field prevails, with the specific character that no heat transfer coefficient is used at their interface anymore. Few papers can be found yet for ICFCP, see [START_REF] Lin | Inverse problem of unsteady conjugated forced convection in parallel plate channels[END_REF] for example, since articles on the corresponding direct problem only date back to the early 2000's, see [START_REF] Herwig | Critical view on "new results in microfluid mechanics" : an example[END_REF] [12] [13] [START_REF] Vera | On the role of axial wall conduction in mini/micro counterflow heat exchangers[END_REF]. However, to our knowledge, no work on ICFCP can be found with inversion not only of simulated measurements but also of real ones.

Our paper is organized as follows : in section 2, we introduce the studied system (here the heat extractor) and its modelization. In section 3, we derive the methodology for estimating the internal conditions from measurements over one of the external faces as well as the corresponding transfer function in a mini-heat extractor. In section 4, we validate the methodology of sections 2 and 3 using synthetic profiles generated by COMSOL. In section 5, we apply this proposed methodology to a real experiment and will show the corresponding results.

2. The studied system and its transient modeling

The studied system

Let us consider a laminar fluid flow in a channel of length 2 , of thickness e f , limited by two parallel plates of polycarbonate of thicknesses e 1 and e 2 , see Figure 1. The velocity profile u(y) is assumed to be parabolic (Poiseuille flow) and fully developed from the inlet to the outlet of channel. The two solid layers (walls) and the fluid layer are characterized by their thermal conductivity λ i , their volumetric heat ρc i and their thermal diffusivity a i = λ i /ρc i where i = s 1 , s 2 or f respectively.

A surface heat source, q(x, t) is imposed between x 1 and x 2 on the lateral hot face noted here h. The two lateral faces (hot h and cold c) exchange heat with its surrounding environment (here ambient air) which is at an unifrom temperature T ∞ . These exchanges are characterized by coefficients h 1 and h 2 respectively. These ones are assumed to be uniform on each face (they integrate natural convection and linearized radiation).
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Modelization

The heat equation describing 2D heat transfer in transient state in the walls (upper wall, s 1 and lower wall, s 2 ), in the fluid layer (f ) and the corresponding boundary and initial conditions, are :

• Heat equation in the solid (wall) :

∂ 2 T s i ∂x 2 + ∂ 2 T s i ∂y 2 = 1 a s i ∂T s i ∂t with i ≡ 1 or 2 (1) 
• Heat equation in the fluid :

∂ 2 T f ∂x 2 + ∂ 2 T f ∂y 2 - u (y) a f ∂T f ∂x = 1 a f ∂T f ∂t (2) 
• External in-plane boundary conditions :

ϕ h (x, t) = q(x, t) -h 1 (T -T ∞ ) at y = - e f 2 -e 1 (3) 
ϕ c (x, t) = -h 2 (T -T ∞ ) at y = + e f 2 + e 2 (4) 
where ϕ h (x, t) and ϕ c (c, t) are the heat fluxes in the y direction, on the h and c faces respectively. q is the surface density of the heat source power. We assume here that q(x, t) is separable and can be written as the product of a transient intensity

Q(t) (in W ) by a space distribution f (x) (in m -2 ) : q (x, t) = Q(t) f (x) (5) 
• The solid/fluid interface conditions : at the solid/fluid interfaces, we assume the continuity conditions of heat flux and temperature :

-λ s i ∂T s i ∂y = -λ f ∂T f ∂y and T s i = T f at y = ± e f 2 (6) 
where i ≡ 1 if y = -e f /2 and i ≡ 2 if y = +e f /2

• The axial boundary conditions are periodicity boundary conditions :

∂T i ∂x = 0 and T i = T ∞ at x = ±L for i ≡ s 1 , s 2 or f (7) 
Here length 2L, with k v = L/ > 1, corresponds to the virtual length of the channel, see [START_REF] Hadad | Modeling unsteady diffusive and advective heat transfer for linear dynamical systems : A transfer function approach[END_REF].

• Initial condition : T | x,y,t=0 = T ∞ (8) 
The developed parabolic velocity field u(y) within the flow can be made homogeneous through the parameterization of the fluid layer into K fluid layers of thicknesses e k = y k -y k-1 , with y 0 = -e f /2, see Figure 2. The exact velocity distribution u(y) and its parameterized distribution u k can be written as :

u (y) = 3 2 U m 1 -4 y e f 2 ⇒ u k = 3 2 U m 1 - 4K 3e 3 f y 3 k -y 3 k-1 (9) 
where U m is average velocity and K is the number of fluid sublayers.

x y A change of function is made in order to define the temperature increase θ, that is the response to the surface heat source q(x, t) :
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θ(x, y, t) = T (x, y, t) -T ∞ (10) 
The Laplace transform θ in time as well as the Fourier transform θ in axial direction of temperature increase θ for the [-L; +L] interval, are defined by :

θ (x, y, p) = ∞ 0 θ (x, y, t) e -pt dt (11) θn (y, t) = +L -L θ (x, y, t) e -ιαnx dx with ι 2 = -1 (12) 
The discrete eigenvalues α n = nπ/L are defined here for any relative integer n. Fourier inversion of (12) requires a truncation to an even number N h = 2n h of harmonics, where n h is the number of harmonics of strictly positive order :

θ(x, y, t) ≡ 1 2L ∞ n=-∞ θn (y, t) e ιαnx ≈ 1 2L n h n=-n h +1 θn (y, t) e ιαnx (13) 
After applying the Laplace and Fourier transformations to the solid and fluid heat equations ( 1) and ( 2) respectively, and by taking into account axial boundary conditions [START_REF] Bokar | An inverse analysis for estimating the timevarying inlet temperature in laminar flow inside a parallel plate duct[END_REF] as well as the initial condition (8), we get an ordinary differential equation in each domain :

In the walls :

d 2 θs in dy 2 -β 2 n θs in = 0 with β 2 n = (α 2 n + p a s i ) (14) 
In each fluid layer :

d 2 θfn dy 2 -γ 2 k θfn = 0 with γ 2 k = (α 2 n + ι u k a f α n + p a f ) (15) 
The transformed equations ( 14) and ( 15) apply for any point in the solid walls or in the fluid sublayer respectively. The interface conditions [START_REF] Raghunath | Determining entrance conditions from downstream measurements[END_REF] and the in-plane boundary conditions (3) and ( 4) are also transformed in the same way. We introduce φ, the Fourier and Laplace transform of the transverse heat flux ϕ (in y direction). So, integration of equations ( 14) and ( 15) leads to an analytical solution, in a quadrupolar form [START_REF] Maillet | Thermal quadrupoles : solving the heat equation through integral transforms[END_REF], of equations ( 1) to [START_REF] Liu | Inverse analysis of transient turbulent forced convection inside parallelplate ducts[END_REF] assuming the parameterization of the velocity distribution, which yields :

θn qn h = A n B n C n D n θn 0 c ( 16 
)
where

A n B n C n D n = H 1 S 1n F n S 2n H 2 and F n = K k=1 F kn
where the indices h and c denote respectively the external faces.

H i = 1 0 h i 1 , S in = A in B in C in A in and F kn = A kn B kn C kn A kn A in = cosh (β n e i ), B in = sinh (β n e i ) /(λ s β n ) et C in = (λ s β n ) sinh (β n e i ), for i ≡ s 1 , s 2 . A kn = cosh (γ n e k ), B kn = sinh (γ n e k ) /(λ f γ n ) et C kn = (λ f γ n ) sinh (γ n e k ), for k = 1 to K.
The internal conditions on the wh and wc faces (see Figure 1) as well as on the interfaces between each sublayer k can be written as a function of the external c face :

Internal hot face (wh) :

θn φn wh = F n S 2n H 2 θn 0 c = A wh n B wh n C wh n D wh n θn 0 c (17) 
Internal cold face (wc) :

θn φn wc = S 2n H 2 θn 0 c = A wc n B wc n C wc n D wc n θn 0 c (18) 
Interfaces sublayers (k) :

θn φn k =   K k =k+1 F kn   S 2n H 2 θn 0 c = A k n B k n C k n D k n θn 0 c ( 19 
)
From the temperature profiles in each sublayer, the bulk temperature profile can be calculated by :

θ b (x, t) ≡ 1 2 U m K K k=1 u k θ(x, y k , t) + θ(x, y k+1 , t) (20) 

Estimation of internal conditions from measurements on external faces

The model [START_REF] Aster | Parameter estimation and inverse problems[END_REF][START_REF] Hansen | Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank[END_REF][START_REF] Hadad | Regularization using truncated singular value decomposition for estimating the fourier spectrum of a noised space distribution over an extended support[END_REF][START_REF] Rouizi | Fluid temperature distribution inside a flat mini-channel : semi-analytical wall transfer functions and estimation from temperatures of external faces[END_REF] shows that it is sufficient to know the spectrum of the heat sources qn and the structural parameters (e 1 , e 2 , e f , U m , ...) in order to be able to retrieve the evolutions of temperatures and heat fluxes everywhere in the system. This formalism corresponds to the resolution of the direct problem.

In the problem of experimental estimation of internal conditions (temperatures and heat fluxes) from the measurements over the external faces, it is difficult to measure the heat source q(x, t). In heat transfer experiments, it is easier to measure temperature. The quadrupole model [START_REF] Aster | Parameter estimation and inverse problems[END_REF][START_REF] Hansen | Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank[END_REF][START_REF] Hadad | Regularization using truncated singular value decomposition for estimating the fourier spectrum of a noised space distribution over an extended support[END_REF][START_REF] Rouizi | Fluid temperature distribution inside a flat mini-channel : semi-analytical wall transfer functions and estimation from temperatures of external faces[END_REF] shows that the internal conditions can be derived from the measurement of the temperature field over the hot face, θ h or over the cold face, θ c . In the mathematical sense, the best choice is to measure the temperature at the place where the signal-to-noise ratio is as large as possible, which is here the temperature over the hot face, θ h . Since the quadrupole model was written in the Laplace and Fourier domain, therefore the first step of the solution requires estimating the spectrum of experimental θ h .

Estimation of the Fourier spectrum of the front face temperature θ h for each time

The inverse Fourier transformation over the [-L; +L] interval (see [START_REF] Degiovanni | An alternative to heat transfer coefficient : A relevant model of heat transfer between a developed fluid flow and a non-isothermal wall in the transient regime[END_REF]), is written for the temperature increase of the front "hot" face θ h at the x i points of the [-; + ] interval, at any time t j :

θ h (x i , t j ) ≈ 1 2L n h n=-n h +1 θh n (t j ) e ιαnx i (21a) 
This can be put under a column-vector/matrix form as θ h (t j ) = G θh (t j ), where θ h (t j ) is the vector gathering the theoretical noiseless values of the observed N x temperatures at a given time t j , θh (t j ) the spectrum vector composed of the N h harmonics used (N h ≤ N x ) at the same time, and G the N x × N h matrix formed with the e ιαnx i coefficients :

G ij = e ια -n h +j x i for i = 1 to N x and j = 1 to N h (21b)
The Fourier spectrum of the corresponding experimental profile θ exp h (t j ) can be estimated through a least squares minimization of :

θh (t j ) = arg min J θh (t j ) = (G * G) -1 G * θ exp h (t j ) where J θh (t j ) = r k ( θh (t j )) 2 with r k ( θh (t j )) = θ exp h (t j ) -G θh (t j ) ( 22 
)
where θh is the ordinary least square estimate of θh , J the ordinary least squares sum, r k the residual vector at time t j , G * the conjugate transpose of complex matrix G. This can also be written using the Singular Matrix Decomposition (SVD) of matrix G, which is square if

N h = N x : θh (t j ) = V Σ -1 U * θ exp h (t j ) where G = U ΣV * (23) 
where

Σ = diag (Σ 1 , Σ 2 , ..., Σ Nx ) Σ 1 Σ 2 ... Σ Nx-1 Σ Nx > 0 U * U = U U * = V V * = V * V = I Nx U = [U 1 , U 2 , ..., U Nx ] and V = [V 1 , V 2 , ..., V Nx ]
Here Σ is the diagonal matrix composed of the singular values Σ i of G (for i = 1 to N x ), U the matrix of its N x left singular (column) vectors U i and V the matrix of its N x right singular (column) vectors V i .

In the cas where the matrix to be inverted G or Σ is ill-conditioned (Σ 1 /Σ Nx >> 1), the experimental spectrum estimation using model [START_REF] Stehfest | Algorithm 368 : Numerical inversion of laplace transforms [d5[END_REF] or [START_REF] Stehfest | Remark on algorithm 368 : Numerical inversion of laplace transforms[END_REF] becomes unstable [START_REF] Beck | Inverse heat conduction : Ill-posed problems[END_REF]. To overcome this difficulty, that is to make this estimate stable, one has to regularize. In other words, one has to modify the matrix to be inverted to make it well conditioned [START_REF] Aster | Parameter estimation and inverse problems[END_REF]. Several regularization techniques exist. In this work only the Truncated Singular Value Decomposition (T SV D) technique [START_REF] Hansen | Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank[END_REF][START_REF] Hadad | Regularization using truncated singular value decomposition for estimating the fourier spectrum of a noised space distribution over an extended support[END_REF][START_REF] Rouizi | Fluid temperature distribution inside a flat mini-channel : semi-analytical wall transfer functions and estimation from temperatures of external faces[END_REF][START_REF] Rouizi | Experimental assessment of the fluid bulk temperature profile in a mini channel through inversion of external surface temperature measurements[END_REF] is used. The T SV D as implied by its name, consists in truncating the smallest singular values that are responsible for high values of the condition number of G or Σ. The truncated version of this estimator is :

θh,α x (t j ) = V Σ -1 αx U * θ exp h (t j ) with Σ -1 αx = diag Σ -1 1 , Σ -1 2 , ..., Σ -1 αx , 0, ..., 0 (24) 
where α x is the regularization parameter whose integer value can vary from 1 to N h . Between the two limits, there is an optimum which can be found using Morozov's discrepancy principle [START_REF] Aster | Parameter estimation and inverse problems[END_REF] or by the L-curve [START_REF] Hansen | Analysis of discrete ill-posed problems by means of the l-curve[END_REF]. Here Morozov's discrepancy principle is used. It consists to get a Root Mean Square Residual (RMSR) that cannot be lower than the measurement noise (level of residuals slightly higher than the measurement noise) :

RM SR(α x ) ≥ σ with RM SR(α x ) = r k ( θh,α x (t j )) T r k ( θh,α x (t j )) N x ( 25 
)
where σ is the noise standard deviation.

Time inversion using regularized deconvolution of the Fourier harmonics of the front face temperature

Once the Fourier spectrum vector θh,αx (t j ), of size N h × 1, of the front face temperature θ h (t j ), has been estimated for each time t j = j t (for j = 1 to N t ), all the different harmonics can be recast into N h column-vectors θh n , of size N t × 1, whose components are equals to the TSVD estimation of θh n (t j ), as :

θh n = ˆ θ h n (t 1 ), ˆ θ h n (t 2 ), ..., ˆ θ h n (t Nt ) T (26)
Since the system of equations ( 1) to ( 8) is linear with time invariant coefficients, the simple product in the Laplace domain is a convolution product in the time domain. Using equations (16 to 19), the unknown spectrum of temperature or heat flux at a given face, let's call it ỹn here, can be calculated from the Fourier transform of front face temperature θh n as :

ỹn = Hn θh n (27a) =⇒ ỹn (t) = Hn (t) * θh n (t) (27b) = t 0 Hn (t -t ) θh n (t ) dt (27c)
where the star symbol ( * ) designates the convolution product in the time domain and Hn is the Fourier transform of the impulse response, that is the original of transfer function H(p). The latter can be called a transimttance, H ≡ W if the response corresponds to a temperature y ≡ θ and it is called an admittance, H ≡ Y if the response corresponds to a heat flux y

≡ ϕ [1] [2].
The convolution integral in equation (27c), is calculated through a numerical quadrature. This can be put under a column-vector/matrix form :

ŷn = M Hn θh n ( 28 
)
where M (.) is a (square) matrix function of a column vector, here a lower triangular Toeplitz matrix based on the parameterization of a function on a basis of piecewise constant functions. It is defined as :

M (ψ) = t         ψ 1 0 0 • • • 0 ψ 2 ψ 1 0 . . . . . . ψ 3 ψ 2 ψ 1 . . . . . . . . . . . . . . . . . . . . . ψ Nt ψ Nt-1 ψ Nt-2 • • • ψ 1         with ψ =        ψ 1 ψ 2 ψ 3 . . . ψ Nt        (29) 
where

ψ j = 1 t t j t j-1 ψ(t) dt 1 2 (ψ(t j-1 ) + ψ(t j )
) and t j = j t for j = 1 to N t and ψ(t 0 = 0) = 0. The temperture or heat flux profiles over a given face et at each time t j , can be calculated from its Fourier spectrum vector, see equations (21a and 21b) :

ŷ(t j ) = G ŷ(t j ) (30) 
Let us note that the calculation of each harmonics of the internal and rear face temperature or heat flux (y ≡ θ wh , θ wc , θ k , θ c , ϕ wh or ϕ wc ) at any time, see (28), and hence its corresponding space profile, see (30), corresponds to the solution of a direct and well-posed problem (convolution problem). It is not the case for the heat source profile, q, estimation which corresponds to a deconvolution problem, see ( 16) :

qn = [K Nt ] -1 M H2 n θh n where K Nt = M H1 n (31) with H1 n (t) ≡ L -1 ( 1 C n ) and H2 n (t) ≡ L -1 ( 1 A n )
where L -1 is the inverse Laplace transform, which can be calculated numerically by Stehfest's algorithm [START_REF] Stehfest | Algorithm 368 : Numerical inversion of laplace transforms [d5[END_REF][START_REF] Stehfest | Remark on algorithm 368 : Numerical inversion of laplace transforms[END_REF]. Since the measured temperature θ h is noisy, the heat source estimation, see ( 31) is an ill-posed problem. In this case, a time regularization by T SV D is possible :

qn = K † αt M H2 n θh n (32) 
with

K † αt = V Σ -1 αt U * where K Nt = M H1 n = U Σ Nt V *
where K † αt is the pseudo-inverse of K Nt , obtained by its T SV D form above, keeping α t singular values. α t is hyper-parameter corresponding to the temporal T SV D regularization. The temperatures, heat flux and corresponding heat source, can be estimated from the information on the external face θ h as listed in (Table 1). 

W wh n (t) = L -1 (A wh n /A n ) (16 
) and ( 17)

θwh n (t) = W wh n (t) * θh n (t) convolution θwc W wc n (t) = L -1 (A wc n /A n ) (16 
) and ( 18)

θwc n (t) = W wc n (t) * θh n (t) convolution θk W k n (t) = L -1 (A k n /A n ) (16 
) and ( 19)

θk n (t) = W k n (t) * θh n (t) convolution θc W c n (t) = L -1 (1/A n ) (16) 
θc n (t) = W c n (t) * θh n (t) convolution φwh Y wh n (t) = L -1 (C wh n /A n ) (16 
) and ( 17)

φwh n (t) = Y wh n (t) * θh n (t) convolution φwc Y wc n (t) = L -1 (C wc n /A n ) (16 
) and ( 18)

φwc n (t) = Y wc n (t) * θh n (t) convolution qh Y h n (t) = L -1 (1/A n ), Z h n (t) = L -1 (1/C n ) (16) 
Y h n (t) * θh n (t) = Z h n (t) * qh n (t) deconvolution φh -- (3) 
φh (x, t) = qh (x, t) -h

Results of the validation of the estimation technique on synthetic profiles

The system presented above, see section (2.1) was simulated here by COMSOL [24]. The temperature responses on the front, rear and internes faces (θ h , θ c , θ wh and θ wc respectively) correponding to surface heat source q(x, t) were calculated at each time t j where j = 1 to N t with N t = t f / t, where N t is observation number and t is the time step .In this simulation, we take t = 1 s and N t = 500. The simulation parameters are given in Table 2 and Table 3. Grid independence tests have been performed using several grid densities. In the present study triangular elements were used with 2152 degrees of freedom. The surface heat source q(x, t) has been assumed separable and uniform in space between x 1 and x 2 here. So it can be written as :

q (x, t) = Q(t) [H (x -x 1 ) -H (x -x 2 )] 1 S ( 33 
)
where Q(t) is the time distribution of q (x, t) over a surface S, here a rectangular surface of length

x 2 -x 1 . Here Q(t) is a step function with Q(t < 0) = 0
and Q(t ≥ 0) = Q ss where ss designates the steady state. H designates the Heaviside function. The initial temperature T (x, y, t ≤ 0) of the system is assumed to be uniform and equal to the ambient temperature T ∞ = 20 • C. The lateral heat loss coefficient is taken here uniform (h 1 = h 2 = 10 W.m -2 .K -1 ).

The steady state surface heat source is set to q ss (x) = 400 W.m -2 .The corresponding average velocity U m , Reynolds number Re and the Péclet number P e are given in Table 4. Let us note that the Péclet number, P e, is equal to 1.4, which means that neither diffusion nor axial advection can be neglected in the heat equation for the fluid. 

λ s λ f ρc s ρc f ν f (W.m -1 .K -1 ) (W.m -1 .K -1 ) (kJ.m -3 .K -1 ) (kJ.m -3 .K -1 ) (m 2 .s -1 ) 0.215 0.63 1440 4186 1.10 -6
The exact front face temperature profile at each time t j obtained by COMSOL θ exact h (t j ) is considered here as an experimental profile (noisy profile) after adding an independent identically distributed noise ε characterized Table 3: Standard geometrical parameters. 

2 K v x 1 x 2 e 1 = e 2 = 2e f K N x = N h (mm) -(mm) (mm) (mm) - - 65 
θ exp h (t j ) = θ exact h (t j ) + ε (34) 
Using this noised "experimental" profile θ exp h (t j ) and the inversion technique presented in section (3), the internal, bulk and rear face temperature profiles are estimated. The experimental (from the numerical experiment) and estimated temperature profiles are presented successively. The experimental and recalculated front face temperature, T h is shown in Figure 3, the exact and estimated internal hot face temperature, T wh in Figure 4, the exact and estimated bulk temperature, T b in Figure 5, the exact and estimated internal cold face temperature, T wc in Figure 6 and finally the exact and estimated rear (cold) face temperature, T c in Figure 7. The profiles are represented at times t = 80, 240, and 400s. It is clear that there is a very good correlation between the exact temperature profiles obtained by COMSOL (direct problem) and their estimated counterparts obtained in a semi-analytical way using adhoc transfer functions (inverse problem).

The heat source as well as hot face flux are also estimated in the same way. The heat source and of its exact distribution, q is shown in Figure 8 and the estimated external hot face flux ϕ h is shown in Figure 9. Figure 8 shows that the heat source can be estimated fairly accurately (spatial door function with intensity of 400 W.m -2 ) whatever the considered time. The spatial and temporal regularization hyperparameters of each estimation (α x for recalculated T h and α t for q h ) are indicated in the legend of the corres-ponding figures. The obtained results are encouraging, allowing us to apply this method of inversion to real measurements, as can be seen in the next section. 

Results of experimental estimation

Experimental setup

A sketch of the cross section of the channel is presented in Figure 10. The bench is composed of two polycarbonate (conductivity λ s , volumetric heat ρc s ) plates that are the outer walls of a three-layer system (thicknesses e 1 Figure 8: Exact (dotted lines) and estimated (full lines) front face heat source q(x, t) at times t = 80s (red), 240s (bleu) and 400s (green) (α t = 490 for N t = 500). and e 2 for the front and rear walls). The constant cross section of the channel is equal to we f , where e f is its thickness and w its width in the dimension normal to this figure. Two plenum chambers of larger thicknesses are located upstream and downstream the constant section channel. The total length of the channel, which corresponds to the distance between these two chambers is 2 c , while its length with the above defined constant thicknesses of its two walls is 2 .
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2 water/solid heat transfer coefficient and taking axial diffusion in both fluid and solid into account [START_REF] Raghunath | Determining entrance conditions from downstream measurements[END_REF][START_REF] Bokar | An inverse analysis for estimating the timevarying inlet temperature in laminar flow inside a parallel plate duct[END_REF]. Comparison of the output of these simulations with the corresponding output of a commercial finite elements code allows a verification of the quality of our semi-analytical model. Since the quadrupolar model used here yields explicit solutions for both temperature and flux at any point of the system, the first inverse problem met consists in estimating the Fourier spectrum of the recorded temperature fields over any one of the external faces at any time after the start of heating. This inversion, using here the recorded front face temperature profile at a given time, is based on the Singular Values Decomposition (SVD) of the square matrix connecting the measured temperature vector at the different pixels to its corresponding spectrum vector at the different space frequencies. So, Truncated SVD (TSVD) [START_REF] Liu | Inverse analysis of transient turbulent forced convection inside parallelplate ducts[END_REF] is implemented as a regularization method here.

Once the Fourier spectrum of the measured front face temperature distribution has been recovered at any time, several direct or inverse problems based on convolution or deconvolution with analytical transfer functions in Laplace domain are solved. This includes construction of the temperature and fluxes distributions at the inner wall/fluid flow interfaces (a deconvolution problem for each harmonics). These transient inversions are also made through the TSVD technique and the internal bulk temperature distribution is reconstructed at any time. The corresponding experimental inversions show that estimation of the internal temperature/flux distribution is possible and that a thermal balance allows the reconstruction of the transient bulk flow distribution for a Péclet number close to unity as well as the distribution of the surface heat source.

EXPERIMENTAL SETUP

A sketch of the cross section of the channel is presented in Fig. 1. The bench is composed of two polycarbonate (conductivity s λ , volumetric heat s ρc ) plates which form the outer walls of a three-layer system (thicknesses 1 e and 2 e for the front and rear walls). The constant cross section of the channel is equal to f we , where f e is its thickness and w its width in the dimension normal to this figure. Two plenum chambers of larger thickness are located upstream and downstream the constant section channel. The total length of the channel, which corresponds to the distance between these two chambers is c  2 , while its length with the above defined constant thicknesses of its two walls is  2 .

Fig. 1 Sketch of polycarbonate channel.

The liquid (de-ionized and deaerated water, conductivity f λ , volumetric heat f ρc ) is fed through the setup by a serynge pump with a constant average velocity U and the temperature in T of the water in the upstream plenum (tranquilization chamber) is adjusted thanks to the set point temperature of the thermostat that is adjusted in order to get a water inlet temperature

∞ = T T in
, where ∞ T is the temperature of the outside environment (air and walls of the lab), see Fig. 2 (right). The liquid (de-ionized and deaerated water, conductivity λ f , volumetric heat ρc f ) is fed through the setup by a serynge pump with a constant average velocity U m and the temperature T in of the water in the upstream plenum (tranquilization chamber) is adjusted thanks to the set point temperature of the thermostat that is adjusted in order to get a water inlet temperature T in = T ∞ , where T ∞ is the temperature of the outside environment (air and walls of the lab), see Figure 11.

The heating system, whose electrical power (tension V and current I) is recorded, is detailed in Figure 12a (left) : it is composed of a rectangular foil heating resistance, of area equal to w h , which is separated from the front face of the channel by a copper bar, of length w and cross section e h h , with a thermocouple set at its center. In order to have a low contact resistance between the copper bar and the channel front face, a 25µm thick of indium foil is set in between. Prior to heating, the syringe pump is activated during a time long enough in order to get the front face temperature monitored by the infrared camera, uniform and equal to T ∞ . So the incoming liquid temperature, the ambient temperature and the temperature field in the whole system are initially equal, which means that the temperature rise wherever in the system will be caused by Joule effect only. Pictures of the channel as well as of the whole setup are shown in Figure 13. The different geometrical and thermopysical parameters of the system are given in Table 5 and Table 6 respectively. The heating system, whose electrical power (tension V and current I ) is recorded, is detailed in Fig. 2 (left): it is composed of a rectangular foil heating resistance, of area equal to h w , which is separated from the front face of the channel by a copper bar, of length w and cross section h h e  , with a thermocouple set at its center. In order to have a low contact resistance between the copper bar and the channel front face, a 25 µm thick Indium foil is set in between. Prior to heating, the syringe pump is activated during a time long enough in order to get either the front face or the rear face temperature 0 T , monitored by the infrared camera, uniform and equal to in T . So the incoming liquid temperature, the ambient temperature and the temperature field in the whole system are initially equal, which means that the temperature rise wherever in the system will be caused by Joule effect only. Pictures of the channel as well as on the whole setup are shown in Fig. 3. The different geometrical and thermopysical parameters of the system are given in Table 1. 

Heating system

λ s ρc s λ f ρc f (W.m -1 .K -1 ) (kJ.m -3 .K -1 ) (W.m -1 .K -1 ) (kJ.m -3 .K -1 )
0.215 1440 0.63 4186

Front face temperature measurement and preprocessing

For an imposed average water velocity U m = 10 -4 m.s -1 (P e = 1.4), the temperature field over the hot (front) face, θ h (x, t) is measured either by the thermocouple located inside the copper bar over the heating length h , or by an infrared camera focused on the external (front) surface of the channel right after the initial time when electrical heating starts until t f = 2400 s. A time average of 5 frames, which are acquired with a period of 0.2s, followed by a space averaging of the thermographic signal over 5 columns of pixels in the x direction is made, which result in the measurement of a x-temperature profile with a period t = 1s, which is the same as the acquisition time step of the thermocouple located inside the copper bar, see Figure 11. The infrared plane array InSb camera FLIR-Cedip Jade II works in the 3.5-5.6mm spectral interval. The temperature of the surrounding radiative environment is supposed to be equal to T ∞ . The uniform temperature of the copper bar is distributed over ficticious "pixels" of the same space step x as the pixels measured by the infrared camera. Because of the thickness of the heating assembly, see Figure 11 and Figure 13, and of the space transfer function of the camera which acts as a low pass filter (about 5 pixels are necessary to grasp a sharp temperature transition), the pixels in the vicinity of the copper bar cannot be measured and are replaced by a linear interpolation between the copper temperature and the recorded temperature beyond this 5 pixels interval.

Experimental results

We present in Figure 14 the measured and recalculated hot front face temperature only at times 80, 400, 800, 1200 and 1600 seconds past the start of the electrical step excitation. The chosen time step is t = 4 t = 4s and TSVD regularization has been implemented for the N x = 250 pixels of the front face temperature over the ] -; + ] interval and for L = 2 in order to estimate the N h = N x harmonics of the front face temperature spectrum with only α x = 130 singular values. The estimated hot interface temperature T wh , the estimated bulk temperature T b , the estimated cold interface temperature T wc as well as the estimated rear face temperature T c are plotted respectively in Figure 15 to Figure 17. We can see that the reconstruction of the front face temperature, see Figure 14, is very good. In Figure 15 to Figure 17, at short times, we can see the symmetry with respect to the heating interval, with a downstream shift for longer times because of advection. One can notice the start of a steep decrease of the temperature distributions, for the longer times, in the downstream regions : this is due to the change of thickness of the front and rear walls in this region. In the downstream region, we can also see that we have T b > T wh and T b > T wc past the heating stop : this can be explained by the fact that the thermal diffusivity of fluid a f is slightly higher than that of walls a s i and that P e > 1.

As shown in section 4, the surface heat source can be estimated by the technique proposed in this paper. In Figure 18 the estimated heat source is presented. In this experience, the surface heat source has been imposed electrically as a step function in time : the delay between the times t = 80 s and t = 1600 s can be explained by the thermal inertia of the heating system. The maximum is close to 500 W.m -2 for the last time shown (1600 s "steady state"), with an average value over the heating interval lower than 400 W.m -2 : it is coherent with the measured electrical power density of 405 W.m -2 over the same time interval. The difference stems from the heat losses towards the insulating material at the back of the heating resistance and from the heat losses of the lateral surface of the copper bar, which are not taken into account in the model. So, the source q that is estimated here and shown in Figure 18 is just an equivanent one. Hence, it is interested to estimate also the flux ϕ h entering the external face of the hot face wall, see Figure 19, and compare it to its counterpart shown in Figure 9 and estimated from simulated hot face temperature measurements. One can notice in Figure 9 larger oscillations near the boundaries of the channel than in Figure 19, where the signal over noise ratios were about the same in the simulated and real experiments. This difference stems from the abrupt variation of the source of ϕ h in the simulated experiement (a Heaviside function for the source q) for short times, while the prsence of the heating device shown in Figure 12, which is not modelled, allowed a continuous variation of flux ϕ h in the real experiment, with a lot easier regularization that prevented large Gibbs phenomena at the two boundaries of the channel.

Other interesting information that can be derived are space distributions of the internal heat fluxes ϕ wh and ϕ wc . In Figure 20, the estimated hot interface heat flux ϕ wh is presented. It is interesting to note that the heated fluid gives heat back to the wall past the heating region (negative flux). In Figure 21 the estimated cold interface heat flux ϕ wc is presented. Another non obvious effect can be found in this figure : the fluid upstream the heating region is colder than the cold wall, which means that this rear wall gives heat to the fluid (negative flux). The external cold heat flux, ϕ c is not shown here : it is proportional to the temperature variation of the cold face whose estimate is shown in Figure 17, which can be calculated as : ϕ c (x, t) = -h 2 (T c (x, t) -T ∞ ), (see equation 4). 

Conclusion

We have shown that in a mini heat extractor the heat source, as well as the internal normal heat flux and temperature distributions, including the bulk temperature of the liquid flow, can be estimated at any time from external mesurements using a non intrusive inverse technique and a semi-analytical model. This stems from the existence of analytical transfer functions in the double transformed domain, that is Laplace in time and Fourier in space, in the direction x of the flow. This has also required the implementation of a numerical Laplace inversion algorithm, to make convolution products in time appear between Fourier harmonics of instantaneous x distributions of the different quantities.

As in our previous work [START_REF] Hadad | Experimental transfer functions identification : Thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source[END_REF] where an instantaneous temperature response, at a given point of a channel, to an upstream thermal power excitation in the fluid, was explained by an impedance Z involved in a convolution product, such can also be the case here. For example, the corresponding relationship between the intensity Q(t) of the heating power and its point response at a point x of the cold face is given by :

θ c (x, t) = Z c (x, t) * Q(t) (35a) 
where

Z c (x, t) = 1 2L n h n=-n h +1 Zc n (t) e ιαnx with Zc n (t) = L -1 1 C n (p) (35b) 
These analytical functions are available here because of the simple geometry of the channel that makes the use of the Quadrupole method possible. For a complexe system (ex : heat exchanger with fins, turbulent, rough walls, ...), it can be identified by a calibration experiment [START_REF] Hadad | Experimental transfer functions identification : Thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source[END_REF]. Let us also note, that transfer functions, once known (model reduction or experiemental identification) are alternatives to the classical detailed modelling which sometimes requires large calculation times and memory, especially in transient simulation. Let us remark here that in this work, the input of the inverse problem is the measured instantaneous temperature distribution over the front face, that is the face that is heated. This implies of course the implementation of some kind of space regularization to recover its Fourier spectrum and some time regularization to estimate the history of each harmonics of any of the quantities (temperture, heat fluxes or heat sources, see left column of Table 1) that are looked for. However, we are in a favorable configuration because the front face temperature measurements is characterized by the presence of high space frequencies, which explains the low levels of the estimation errors shown in Figure 4 to Figure 8. Had the rear face temperature been measured, instead of the front one, the corresponding estimations would not have been as good, because of the necessary inversion of a temperature signal where high frequencies of the front face excitation have been damped by the solid walls and flowing fluid (low pass filter).
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Figure 1 :

 1 Figure 1: 2D model of flow and heat transfer in the flat channel.

Figure 2 :

 2 Figure 2: Parameterization of u(y) into a piecewise constant function with K = 5 parameters.

Figure 3 :

 3 Figure 3: Noised "experimental" (full lines) and recalculated (symbols and dots) front face temperature T h (x, t) at times t = 80, 240 and 400s (α x = 310 for N x = 600).

Figure 4 :

 4 Figure 4: Exact (full lines) and estimated (symbols and dots) internal hot face temperature T wh (x, t) at times t = 80, 240 and 400s.

Figure 5 :

 5 Figure 5: Exact (full lines) and estimated (symbols and dots) bulk temperature T b (x, t) at times t = 80, 240 and 400s.

Figure 6 :

 6 Figure 6: Exact (full lines) and estimated (symbols and dots) internal cold face temperature T wc (x, t) at times t = 80, 240 and 400s.

Figure 7 :

 7 Figure 7: Exact (full lines) and estimated (symbols and dots) rear (cold) face temperature T c (x, t) at times t = 80, 240 and 400s.

2 )Figure 9 :

 29 Figure 9: Estimated front face flux distributions ϕ h (x, t) at times t = 80s (red), 240s (bleu) and 400s (green).

Figure 10 :

 10 Figure 10: Sketch of polycarbonate channel.

Figure 11 :

 11 Figure 11: Mini channel with hydraulic circuit, infrared and thermocouple.

Figure 12 :

 12 Figure 12: Detail of heating system.
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Fig. 2

 2 Fig. 2 Mini channel with hydraulic circuit, and infrared and thermocouple temperature measurement and detail of heating system.

Fig. 3

 3 Fig. 3 Mini channel with hydraulic circuit, and surface heat source.

Figure 13 :

 13 Figure 13: Mini channel with hydraulic circuit, and surface heat source..
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 14151617 Figure 14: Hot front face temperature T h profiles (measured "full lines" and recalculated "circle" with α x = 130 for N x = 250).

Figure 18 :

 18 Figure18: Estimated surface heat source q (deconvolution, α t = 599 for N t = 600) profiles.

Figure 19 :Figure 20 :Figure 21 :

 192021 Figure 19: Estimated front face heat flux ϕ h profiles.

Table 1 :

 1 Temperatures, heat flux and heat source estimation using front face temperature measurement

		Transfer function H
	θ h .	unknown

n Equation Model and unknown Nature θwh

Table 2 :

 2 Standard thermophysical parameters.

Table 4 :

 4 The average velocity and corresponding dimensionless numbers.U m (m.s -1 ) Re = 2U m e f /ν f P e = 2U m e f /a f

	2	-6	6	2	5	600
	10 -4		0.2		1.4	
	by a standard deviation (σ noise = 0.03			

• C) for N x equidistant points on the interval [-; + ] of the front face :

Table 5 :

 5 Geometrical parameters.

	e 1 = e 2 (mm) e f (mm) 2 (mm) 2 c (mm) w(mm) h (mm)
	2	1	65	120	50	10

Table 6 :

 6 Thermopysical parameters.

θh (x, t) difference in (x, t) domain
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