
HAL Id: hal-01962419
https://hal.science/hal-01962419

Submitted on 20 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inverse conduction and advection in a flat channel with
transient external thermal excitation and observation

Waseem Al Hadad, Denis Maillet, Yves Jannot, Vincent Schick

To cite this version:
Waseem Al Hadad, Denis Maillet, Yves Jannot, Vincent Schick. Inverse conduction and advection in a
flat channel with transient external thermal excitation and observation. International Journal of Heat
and Mass Transfer, 2018, 127, pp.362-372. �10.1016/j.ijheatmasstransfer.2018.05.142�. �hal-01962419�

https://hal.science/hal-01962419
https://hal.archives-ouvertes.fr


Inverse conduction and advection in a flat channel with
transient external thermal excitation and observation

Waseem Al Hadada,b,∗, Denis Mailleta,b, Yves Jannota,b, Vincent Schicka,b

aUniversité de Lorraine, LEMTA(UMR 7563), ENSEM, 2 Avenue de la Forêt de Haye,
BP 90161, 54505 Vandœuvre-lès-Nancy cedex, France

bCNRS, LEMTA(UMR 7563), BP 90161, 54505 Vandœuvre-lès-Nancy cedex, France

Abstract

The transient profiles of temperature and normal heat flux inside a flat mi-
nichannel heated by a surface heat source are constructed from temperature
measurement over its external heated face. It uses analytical expressions of
the corresponding transfer functions which are calculated using Laplace and
Fourier integral transforms. Firstly, this estimation technique is verified on
synthetic outputs of a finite elements code (COMSOL). Then it is imple-
mented on an experimental minifluidic bench with electrical heating and
temperature measurement by thermocouples and infrared thermography, for
a low Péclet number of the flow. The presented results show that the heat
source can be recovered at any time, as well as the internal normal heat flux
and temperature distributions, including the bulk temperature of the liquid
flow.
Keywords: conduction and advection, conjugate heat transfer, minichannel,
unsteady heat transfer, convolution and deconvolution, inverse problems,
measurement and instrumentation.
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` channel length, m

H Heaviside function
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H transfer function

P given point

h heat transfer coefficient, W.m-2.K-1

L virtual channel length, m

Pe Péclet number

Re Reynolds number

T temperature, K

T∞ ambient temperature, K

Vm mean velocity, m.s-1

x, y spatial coordinates, m

a thermal diffusivity,m2.s-1

p Laplace parameter, s-1

u input, cause, excitation

W transmittance

y output, consequence, response

Z impedance

Greek symbols

αn discrete eigenvalue of order n

λ thermal conductivity, W.m-1.K-1

ν kinematic viscosity, m2.s-1

Φ heat flow rate (surface integral of ϕ), W

ρ density, kg.m-3

ϕ heat flux density in y direction, W.m-2

superscripts

¯ Laplace transform

˜ Fourier transform
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in inlet

out outlet

ss steady state

T transposed of a matrix

subscripts

f fluid

s solid

1. Introduction

In our previous works, we have shown the interest of transfer functions for
linear time invariant systems where heat diffusion and advection occur, both
on a theoretical [1] and on an experimental [2] basis. In this paper, which
deals with a flat mini heat extractor, we will show how the surface heat source
as well as the internal state variables (temperature and heat flux) can be esti-
mated from temperature measurements over one of the outer faces using the
correponding transfer function. This non-destructive estimation technique,
that corresponds to the construction of a virtual sensor, allows us therefore
to estimate, in steady and transient regimes, the thermal state at locations
difficult to access using direct measurements at another easy to access loca-
tion. This requires the system to be linear with a geometry, thermophysical
properties and fluid velocities that do not vary with time.

So, the topic dealt with in this paper derives from the now classical In-
verse Heat Conduction Problem (IHCP) introduced by J.V. Beck et al. in the
80’s [3] which consists in reconstructing surface temperatures or heat fluxes
at part of the boundary of a solid domain, using known boundary conditions
over its complementary part, the missing information being replaced by in-
ternal temperature measurements. This type of problem is mathematically
ill-posed because the presence of noise in the data tends to make reconstruc-
tion of temperature or flux at the unknown part of the boundary unstable.
This requires some special class of data processing called "regularization".
This IHCP approach is very useful to estimate experimentally the distribu-
tions of both heat flux and temperature over the inner surface of the heated
wall of a channel, using the diffusion heat equation in its solid volume, in
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order to derive the profiles of the internal convection coefficients. It can be
used, for example, to optimize internal fluid mechanics in such a channel, see
[4].

In Inverse Forced Convection Problems (IFCP) [5], the problem at stake
is exactly the same, but the studied domain is a flowing fluid whose velocity
field is known. The first works about this type of problems appeared in the
1990’s and concerned estimation of inlet space [6] or time [7] temperature
distributions in a flat heated channel [6] or the wall heat flux estimation in
a flat [5] [8] or annular [9] channel in transient thermal regime.

The precise subject of our work is the Inverse Conjugate Forced Convec-
tion Problem (ICFCP) : the type of heat equation to be inverted is still the
forced convection heat equation but it concerns not only a fluid, but also a
solid subdomain, where a zero velocity field prevails, with the specific charac-
ter that no heat transfer coefficient is used at their interface anymore. Few
papers can be found yet for ICFCP, see [10] for example, since articles on
the corresponding direct problem only date back to the early 2000’s, see [11]
[12] [13] [14]. However, to our knowledge, no work on ICFCP can be found
with inversion not only of simulated measurements but also of real ones.

Our paper is organized as follows : in section 2, we introduce the studied
system (here the heat extractor) and its modelization. In section 3, we derive
the methodology for estimating the internal conditions from measurements
over one of the external faces as well as the corresponding transfer function in
a mini-heat extractor. In section 4, we validate the methodology of sections
2 and 3 using synthetic profiles generated by COMSOL. In section 5, we
apply this proposed methodology to a real experiment and will show the
corresponding results.

2. The studied system and its transient modeling

2.1. The studied system
Let us consider a laminar fluid flow in a channel of length 2`, of thickness

ef , limited by two parallel plates of polycarbonate of thicknesses e1 and e2,
see Figure 1. The velocity profile u(y) is assumed to be parabolic (Poiseuille
flow) and fully developed from the inlet to the outlet of channel. The two solid
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layers (walls) and the fluid layer are characterized by their thermal conduc-
tivity λi, their volumetric heat ρci and their thermal diffusivity ai = λi/ρci
where i = s1, s2 or f respectively.

A surface heat source, q(x, t) is imposed between x1 and x2 on the lateral
hot face noted here h. The two lateral faces (hot h and cold c) exchange heat
with its surrounding environment (here ambient air) which is at an unifrom
temperature T∞. These exchanges are characterized by coefficients h1 and
h2 respectively. These ones are assumed to be uniform on each face (they
integrate natural convection and linearized radiation).
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Figure 1: 2D model of flow and heat transfer in the flat channel.

2.2. Modelization
The heat equation describing 2D heat transfer in transient state in the

walls (upper wall, s1 and lower wall, s2), in the fluid layer (f) and the cor-
responding boundary and initial conditions, are :

• Heat equation in the solid (wall) :

∂2Tsi
∂x2

+
∂2Tsi
∂y2

=
1

asi

∂Tsi
∂t

with i ≡ 1 or 2 (1)
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• Heat equation in the fluid :

∂2Tf
∂x2

+
∂2Tf
∂y2

− u (y)

af

∂Tf
∂x

=
1

af

∂Tf
∂t

(2)

• External in-plane boundary conditions :

ϕh(x, t) = q(x, t)− h1 (T − T∞) at y = −ef
2
− e1 (3)

ϕc(x, t) = −h2 (T − T∞) at y = +
ef
2

+ e2 (4)

where ϕh(x, t) and ϕc(c, t) are the heat fluxes in the y direction, on the
h and c faces respectively. q is the surface density of the heat source
power. We assume here that q(x, t) is separable and can be written as
the product of a transient intensity Q(t) (inW ) by a space distribution
f(x) (in m−2) :

q (x, t) = Q(t) f(x) (5)

• The solid/fluid interface conditions : at the solid/fluid interfaces, we
assume the continuity conditions of heat flux and temperature :

−λsi
∂Tsi
∂y

= −λf
∂Tf
∂y

and Tsi = Tf at y = ±ef
2

(6)

where i ≡ 1 if y = −ef/2 and i ≡ 2 if y = +ef/2

• The axial boundary conditions are periodicity boundary conditions :

∂Ti
∂x

= 0 and Ti = T∞ at x = ±L for i ≡ s1, s2 or f (7)

Here length 2L, with kv = L/` > 1, corresponds to the virtual length
of the channel, see [1].

• Initial condition :
T |x,y,t=0= T∞ (8)
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The developed parabolic velocity field u(y) within the flow can be made
homogeneous through the parameterization of the fluid layer into K fluid
layers of thicknesses ek = yk − yk−1, with y0 = −ef/2, see Figure 2. The
exact velocity distribution u(y) and its parameterized distribution uk can be
written as :

u (y) =
3

2
Um

(
1− 4

(
y

ef

)2
)
⇒ uk =

3

2
Um

(
1− 4K

3e3f

(
y3k − y3k−1

))
(9)

where Um is average velocity and K is the number of fluid sublayers.

x
y

+−

∞T

1h
∞T

1s

2s
fe

1e

2e

)( txq ,

2h

h
wh
wc
c

( )yu

1x 2x

x

y

1u
2u

3u
4u

5u

5=K

Figure 2: Parameterization of u(y) into a piecewise constant function with
K = 5 parameters.

A change of function is made in order to define the temperature increase
θ, that is the response to the surface heat source q(x, t) :

θ(x, y, t) = T (x, y, t)− T∞ (10)

The Laplace transform θ̄ in time as well as the Fourier transform θ̃ in axial
direction of temperature increase θ for the [−L; +L] interval, are defined by :

θ (x, y, p) =

∫ ∞
0

θ (x, y, t) e−pt dt (11)

θ̃n (y, t) =

∫ +L

−L
θ (x, y, t) e−ιαnx dx with ι2 = −1 (12)
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The discrete eigenvalues αn = nπ/L are defined here for any relative integer
n. Fourier inversion of (12) requires a truncation to an even number Nh = 2nh
of harmonics, where nh is the number of harmonics of strictly positive order :

θ(x, y, t) ≡ 1

2L

∞∑
n=−∞

θ̃n (y, t) eιαnx ≈ 1

2L

nh∑
n=−nh+1

θ̃n (y, t) eιαnx (13)

After applying the Laplace and Fourier transformations to the solid and
fluid heat equations (1) and (2) respectively, and by taking into account
axial boundary conditions (7) as well as the initial condition (8), we get an
ordinary differential equation in each domain :

. In the walls :

d2 ˜̄θsin
dy2

− β2
n

˜̄θsin = 0 with β2
n = (α2

n +
p

asi
) (14)

. In each fluid layer :

d2 ˜̄θfn
dy2

− γ2k ˜̄θfn = 0 with γ2k = (α2
n + ι

uk
af
αn +

p

af
) (15)

The transformed equations (14) and (15) apply for any point in the solid
walls or in the fluid sublayer respectively. The interface conditions (6) and
the in-plane boundary conditions (3) and (4) are also transformed in the same
way. We introduce ˜̄ϕ, the Fourier and Laplace transform of the transverse
heat flux ϕ (in y direction). So, integration of equations (14) and (15) leads
to an analytical solution, in a quadrupolar form [15], of equations (1) to (8)
assuming the parameterization of the velocity distribution, which yields :[

˜̄θn
˜̄qn

]
h

=

[
An Bn
Cn Dn

] [
˜̄θn
0

]
c

(16)

where [
An Bn
Cn Dn

]
= H1S1nF nS2nH2

and

F n =
K∏
k=1

F kn
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where the indices h and c denote respectively the external faces.

H i =

[
1 0
hi 1

]
, Sin =

[
Ain Bin

Cin Ain

]
and F kn =

[
Akn Bkn

Ckn Akn

]
Ain = cosh (βnei), Bin = sinh (βnei) /(λsβn) et Cin = (λsβn) sinh (βnei),

for i ≡ s1, s2.
Akn = cosh (γnek), Bkn = sinh (γnek) /(λfγn) et Ckn = (λfγn) sinh (γnek),

for k = 1 to K.

The internal conditions on the wh and wc faces (see Figure 1) as well as
on the interfaces between each sublayer k can be written as a function of the
external c face :

Internal hot face (wh) :[
˜̄θn
˜̄ϕn

]
wh

= F n S2nH2

[
˜̄θn
0

]
c

=

[
Awhn Bwhn
Cwhn Dwhn

] [
˜̄θn
0

]
c

(17)

Internal cold face (wc) :[
˜̄θn
˜̄ϕn

]
wc

= S2nH2

[
˜̄θn
0

]
c

=

[
Awcn Bwcn
Cwcn Dwcn

] [
˜̄θn
0

]
c

(18)

Interfaces sublayers (k) :

[
˜̄θn˜̄ϕn
]
k

=

 K∏
k′=k+1

F kn

S2nH2

[
˜̄θn
0

]
c

=

[
Akn Bkn
Ckn Dkn

] [
˜̄θn
0

]
c

(19)

From the temperature profiles in each sublayer, the bulk temperature profile
can be calculated by :

θb(x, t) ≡
1

2UmK

K∑
k=1

uk

(
θ(x, yk, t) + θ(x, yk+1, t)

)
(20)
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3. Estimation of internal conditions from measurements on exter-
nal faces

The model (16-19) shows that it is sufficient to know the spectrum of the
heat sources ˜̄qn and the structural parameters (e1, e2, ef , Um, ...) in order to
be able to retrieve the evolutions of temperatures and heat fluxes everywhere
in the system. This formalism corresponds to the resolution of the direct pro-
blem.

In the problem of experimental estimation of internal conditions (tempe-
ratures and heat fluxes) from the measurements over the external faces, it is
difficult to measure the heat source q(x, t). In heat transfer experiments, it
is easier to measure temperature. The quadrupole model (16-19) shows that
the internal conditions can be derived from the measurement of the tempera-
ture field over the hot face, θh or over the cold face, θc. In the mathematical
sense, the best choice is to measure the temperature at the place where the
signal-to-noise ratio is as large as possible, which is here the temperature
over the hot face, θh.

Since the quadrupole model was written in the Laplace and Fourier do-
main, therefore the first step of the solution requires estimating the spectrum
of experimental θh.

3.1. Estimation of the Fourier spectrum of the front face temperature θh for
each time

The inverse Fourier transformation over the [−L; +L] interval (see (13)),
is written for the temperature increase of the front "hot" face θh at the xi
points of the [−`; +`] interval, at any time tj :

θh(xi, tj) ≈
1

2L

nh∑
n=−nh+1

θ̃hn (tj) e
ιαnxi (21a)

This can be put under a column-vector/matrix form as θh (tj) = G θ̃h (tj),
where θh (tj) is the vector gathering the theoretical noiseless values of the
observed Nx temperatures at a given time tj, θ̃h (tj) the spectrum vector
composed of the Nh harmonics used (Nh ≤ Nx) at the same time, and G the
Nx ×Nh matrix formed with the eιαnxi coefficients :

Gij = eια−nh+j xi for i = 1 toNx and j = 1 toNh (21b)
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The Fourier spectrum of the corresponding experimental profile θexph (tj)
can be estimated through a least squares minimization of :

ˆ̃
θh (tj) = arg

(
min

(
J
(
θ̃h (tj)

)))
= (G∗G)−1G∗ θexph (tj)

where J
(
θ̃h (tj)

)
=‖ rk(θ̃h (tj)) ‖2

with rk(θ̃h (tj)) = θexph (tj)−G θ̃h (tj)

(22)

where ˆ̃
θh is the ordinary least square estimate of θ̃h, J the ordinary least

squares sum, rk the residual vector at time tj, G∗ the conjugate transpose
of complex matrix G. This can also be written using the Singular Matrix
Decomposition (SVD) of matrix G, which is square if Nh = Nx :

ˆ̃
θh (tj) = V Σ−1U ∗ θexph (tj) where G = UΣV ∗ (23)

where
Σ = diag (Σ1, Σ2, ..., ΣNx)

Σ1 > Σ2 > ... > ΣNx−1 > ΣNx > 0

U ∗U = UU ∗ = V V ∗ = V ∗V = INx

U = [U 1, U 2, ..., UNx ] and V = [V 1, V 2, ..., V Nx ]

Here Σ is the diagonal matrix composed of the singular values Σi of G (for
i = 1 to Nx), U the matrix of its Nx left singular (column) vectors Ui and
V the matrix of its Nx right singular (column) vectors Vi.

In the cas where the matrix to be inverted G or Σ is ill-conditioned
(Σ1/ΣNx >> 1), the experimental spectrum estimation using model (22) or
(23) becomes unstable [3]. To overcome this difficulty, that is to make this
estimate stable, one has to regularize. In other words, one has to modify the
matrix to be inverted to make it well conditioned [16]. Several regularization
techniques exist. In this work only the Truncated Singular Value Decomposi-
tion (TSV D) technique [17, 18, 19, 20] is used. The TSV D as implied by its
name, consists in truncating the smallest singular values that are responsible
for high values of the condition number of G or Σ. The truncated version of
this estimator is :

ˆ̃
θh,αx

(tj) = V Σ−1αx
U ∗ θexph (tj)

with Σ−1αx
= diag

(
Σ−11 , Σ−12 , ..., Σ−1αx

, 0, ..., 0
) (24)
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where αx is the regularization parameter whose integer value can vary from 1
to Nh. Between the two limits, there is an optimum which can be found using
Morozov’s discrepancy principle [16] or by the L-curve [21]. Here Morozov’s
discrepancy principle is used. It consists to get a Root Mean Square Residual
(RMSR) that cannot be lower than the measurement noise (level of residuals
slightly higher than the measurement noise) :

RMSR(αx) ≥ σ with RMSR(αx) =

√
rk(θ̃h,αx

(tj))
T rk(θ̃h,αx

(tj))

Nx

(25)
where σ is the noise standard deviation.

3.2. Time inversion using regularized deconvolution of the Fourier harmonics
of the front face temperature

Once the Fourier spectrum vector ˆ̃θh,αx (tj), of size Nh × 1, of the front
face temperature θh (tj), has been estimated for each time tj = j 4 t (for
j = 1 to Nt), all the different harmonics can be recast into Nh column-vectors
ˆ̃
θ
h

n, of size Nt × 1, whose components are equals to the TSVD estimation of
ˆ̃θhn (tj), as :

ˆ̃
θ
h

n =

[
ˆ̃
θ
h

n(t1),
ˆ̃
θ
h

n(t2), ...,
ˆ̃
θ
h

n(tNt)

]T
(26)

Since the system of equations (1) to (8) is linear with time invariant coef-
ficients, the simple product in the Laplace domain is a convolution product
in the time domain. Using equations (16 to 19), the unknown spectrum of
temperature or heat flux at a given face, let’s call it ỹn here, can be calculated
from the Fourier transform of front face temperature θ̃hn as :

˜̄yn = ˜̄Hn
˜̄θhn (27a)

=⇒ ỹn (t) = H̃n (t) ∗ θ̃hn (t) (27b)

=

∫ t

0

H̃n (t− t′) θ̃hn(t
′
) dt

′
(27c)

where the star symbol (∗) designates the convolution product in the time
domain and H̃n is the Fourier transform of the impulse response, that is the
original of transfer function H̄(p). The latter can be called a transimttance,
H ≡ W if the response corresponds to a temperature y ≡ θ and it is called
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an admittance,H ≡ Y if the response corresponds to a heat flux y ≡ ϕ [1] [2].

The convolution integral in equation (27c), is calculated through a nu-
merical quadrature. This can be put under a column-vector/matrix form :

ˆ̃yn = M
(
H̃n

)
ˆ̃
θ
h

n (28)

where M (.) is a (square) matrix function of a column vector, here a lower
triangular Toeplitz matrix based on the parameterization of a function on a
basis of piecewise constant functions. It is defined as :

M (ψ) = 4t


ψ1 0 0 · · · 0

ψ2 ψ1 0
. . . ...

ψ3 ψ2 ψ1
. . . ...

...
...

... . . . ...
ψNt ψNt−1 ψNt−2 · · · ψ1

 with ψ =


ψ1

ψ2

ψ3
...
ψNt

 (29)

where ψj = 1
4t

∫ tj
tj−1

ψ(t) dt ' 1
2

(ψ(tj−1) + ψ(tj)) and tj = j 4 t for j = 1 to
Nt and ψ(t0 = 0) = 0. The temperture or heat flux profiles over a given face
et at each time tj, can be calculated from its Fourier spectrum vector, see
equations (21a and 21b) :

ŷ(tj) = G ˆ̃y(tj) (30)

Let us note that the calculation of each harmonics of the internal and rear
face temperature or heat flux (y ≡ θwh, θwc, θk, θc, ϕwh orϕwc) at any time,
see (28), and hence its corresponding space profile, see (30), corresponds to
the solution of a direct and well-posed problem (convolution problem). It is
not the case for the heat source profile, q, estimation which corresponds to
a deconvolution problem, see (16) :

ˆ̃qn = [KNt ]
−1 M

(
H̃2

n

)
ˆ̃
θ
h

n where KNt = M
(
H̃1

n

)
(31)

with H̃1
n(t) ≡ L−1(

1

Cn
) and H̃2

n(t) ≡ L−1(
1

An
)

where L−1 is the inverse Laplace transform, which can be calculated nume-
rically by Stehfest’s algorithm [22, 23]. Since the measured temperature θh
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is noisy, the heat source estimation, see (31) is an ill-posed problem. In this
case, a time regularization by TSV D is possible :

ˆ̃qn = K†αt
M
(
H̃2

n

)
ˆ̃θ
h

n (32)

with
K†αt

= V Σ−1αt
U ∗ where KNt = M

(
H̃1

n

)
= UΣNtV

∗

where K†αt
is the pseudo-inverse of KNt , obtained by its TSV D form above,

keeping αt singular values. αt is hyper-parameter corresponding to the tem-
poral TSV D regularization. The temperatures, heat flux and corresponding
heat source, can be estimated from the information on the external face θh
as listed in (Table 1).
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4. Results of the validation of the estimation technique on synthe-
tic profiles

The system presented above, see section (2.1) was simulated here by
COMSOL [24]. The temperature responses on the front, rear and internes
faces (θh, θc, θwh and θwc respectively) correponding to surface heat source
q(x, t) were calculated at each time tj where j = 1 to Nt with Nt = tf/4 t,
where Nt is observation number and 4t is the time step .In this simulation,
we take 4t = 1 s and Nt = 500. The simulation parameters are given in
Table 2 and Table 3. Grid independence tests have been performed using se-
veral grid densities. In the present study triangular elements were used with
2152 degrees of freedom. The surface heat source q(x, t) has been assumed
separable and uniform in space between x1 and x2 here. So it can be written
as :

q (x, t) = Q(t) [H (x− x1)−H (x− x2)]
1

S
(33)

where Q(t) is the time distribution of q (x, t) over a surface S, here a rectan-
gular surface of length x2−x1. Here Q(t) is a step function with Q(t < 0) = 0
and Q(t ≥ 0) = Qss where ss designates the steady state. H designates the
Heaviside function. The initial temperature T (x, y, t ≤ 0) of the system is as-
sumed to be uniform and equal to the ambient temperature T∞ = 20◦C. The
lateral heat loss coefficient is taken here uniform (h1 = h2 = 10 W.m−2.K−1).
The steady state surface heat source is set to qss(x) = 400W.m−2.The cor-
responding average velocity Um, Reynolds number Re and the Péclet number
Pe are given in Table 4. Let us note that the Péclet number, Pe, is equal to
1.4, which means that neither diffusion nor axial advection can be neglected
in the heat equation for the fluid.

Table 2: Standard thermophysical parameters.

λs λf ρcs ρcf νf
(W.m−1.K−1) (W.m−1.K−1) (kJ.m−3.K−1) (kJ.m−3.K−1) (m2.s−1)

0.215 0.63 1440 4186 1.10−6

The exact front face temperature profile at each time tj obtained by
COMSOL θexacth (tj) is considered here as an experimental profile (noisy pro-
file) after adding an independent identically distributed noise ε characterized
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Table 3: Standard geometrical parameters.

2` Kv x1 x2 e1 = e2 = 2ef K Nx = Nh

(mm) - (mm) (mm) (mm) - -
65 2 −6 6 2 5 600

Table 4: The average velocity and corresponding dimensionless numbers.

Um (m.s−1) Re = 2Um ef/νf Pe = 2Um ef/af
10−4 0.2 1.4

by a standard deviation (σnoise = 0.03◦C) for Nx equidistant points on the
interval [−`; +`] of the front face :

θexph (tj) = θexacth (tj) + ε (34)

Using this noised "experimental" profile θexph (tj) and the inversion tech-
nique presented in section (3), the internal, bulk and rear face temperature
profiles are estimated. The experimental (from the numerical experiment)
and estimated temperature profiles are presented successively. The experi-
mental and recalculated front face temperature, Th is shown in Figure 3,
the exact and estimated internal hot face temperature, Twh in Figure 4, the
exact and estimated bulk temperature, Tb in Figure 5, the exact and estima-
ted internal cold face temperature, Twc in Figure 6 and finally the exact and
estimated rear (cold) face temperature, Tc in Figure 7. The profiles are re-
presented at times t = 80, 240, and 400s. It is clear that there is a very good
correlation between the exact temperature profiles obtained by COMSOL (di-
rect problem) and their estimated counterparts obtained in a semi-analytical
way using adhoc transfer functions (inverse problem).

The heat source as well as hot face flux are also estimated in the same
way. The heat source and of its exact distribution, q is shown in Figure 8
and the estimated external hot face flux ϕh is shown in Figure 9. Figure 8
shows that the heat source can be estimated fairly accurately (spatial door
function with intensity of 400 W.m−2) whatever the considered time. The
spatial and temporal regularization hyperparameters of each estimation (αx
for recalculated Th and αt for qh) are indicated in the legend of the corres-
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ponding figures. The obtained results are encouraging, allowing us to apply
this method of inversion to real measurements, as can be seen in the next
section.
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Figure 3: Noised "experimental" (full lines) and recalculated (symbols and
dots) front face temperature Th(x, t) at times t = 80, 240 and 400s (αx = 310
for Nx = 600).
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Figure 4: Exact (full lines) and estimated (symbols and dots) internal hot
face temperature Twh(x, t) at times t = 80, 240 and 400s.
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Figure 5: Exact (full lines) and estimated (symbols and dots) bulk tempe-
rature Tb(x, t) at times t = 80, 240 and 400s.
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Figure 6: Exact (full lines) and estimated (symbols and dots) internal cold
face temperature Twc(x, t) at times t = 80, 240 and 400s.

5. Results of experimental estimation

5.1. Experimental setup
A sketch of the cross section of the channel is presented in Figure 10. The

bench is composed of two polycarbonate (conductivity λs, volumetric heat
ρcs) plates that are the outer walls of a three-layer system (thicknesses e1
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Figure 7: Exact (full lines) and estimated (symbols and dots) rear (cold)
face temperature Tc(x, t) at times t = 80, 240 and 400s.
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Figure 8: Exact (dotted lines) and estimated (full lines) front face heat
source q(x, t) at times t = 80s (red), 240s (bleu) and 400s (green) (αt = 490
for Nt = 500).

and e2 for the front and rear walls). The constant cross section of the channel
is equal to wef , where ef is its thickness and w its width in the dimension
normal to this figure. Two plenum chambers of larger thicknesses are located
upstream and downstream the constant section channel. The total length of
the channel, which corresponds to the distance between these two chambers
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Figure 9: Estimated front face flux distributions ϕh(x, t) at times t = 80s
(red), 240s (bleu) and 400s (green).

is 2`c, while its length with the above defined constant thicknesses of its two
walls is 2`.
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water/solid heat transfer coefficient and taking axial diffusion in both fluid and solid into account [6, 7]. 
Comparison of the output of these simulations with the corresponding output of a commercial finite elements 
code allows a verification of the quality of our semi-analytical model. Since the quadrupolar model used here 
yields explicit solutions for both temperature and flux at any point of the system, the first inverse problem 
met consists in estimating the Fourier spectrum of the recorded temperature fields over any one of the 
external faces at any time after the start of heating. This inversion, using here the recorded front face 
temperature profile at a given time, is based on the Singular Values Decomposition (SVD) of the square 
matrix connecting the measured temperature vector at the different pixels to its corresponding  spectrum 
vector at the different space frequencies. So, Truncated SVD (TSVD) [8] is implemented as a regularization 
method here. 
 

Once the Fourier spectrum of the measured front face temperature distribution has been recovered at any 
time, several direct or inverse problems based on convolution or deconvolution with analytical transfer 
functions in Laplace domain are solved. This includes construction of the temperature and fluxes 
distributions at the inner wall/fluid flow interfaces (a deconvolution problem for each harmonics). These 
transient inversions are also made through the TSVD technique and the internal bulk temperature 
distribution is reconstructed at any time. The corresponding experimental inversions show that estimation of 
the internal temperature/flux distribution is possible and that a thermal balance allows the reconstruction of 
the transient bulk flow distribution for a Péclet number close to unity as well as the distribution of the 
surface heat source.  
 

 
2. EXPERIMENTAL SETUP 

 
A sketch of the cross section of the channel is presented in Fig. 1. The bench is composed of two 
polycarbonate (conductivity sλ , volumetric heat sρc ) plates which form the outer walls of a three-layer 
system (thicknesses 1e  and 2e  for the front and rear walls). The constant cross section of the channel is equal 
to fwe , where  fe  is its thickness and w  its width in the dimension normal to this figure. Two plenum 
chambers of larger thickness are located upstream and downstream the constant section channel. The total 
length of the channel, which corresponds to the distance between these two chambers is c2 , while its 
length with the above defined constant thicknesses of its two walls is 2 .  
 

 
 

Fig. 1 Sketch of polycarbonate channel.  
 

The liquid (de-ionized and deaerated water, conductivity fλ , volumetric heat fρc ) is fed through the setup 

by a serynge pump with a constant average velocity U  and the temperature  inT  of the water in the upstream 
plenum (tranquilization chamber) is adjusted thanks to the set point temperature of the thermostat that is 
adjusted in order to get a water inlet temperature ∞= TTin , where ∞T is the temperature of the outside 
environment (air and walls of the lab), see Fig. 2 (right). 
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Figure 10: Sketch of polycarbonate channel.

The liquid (de-ionized and deaerated water, conductivity λf , volumetric
heat ρcf ) is fed through the setup by a serynge pump with a constant average
velocity Um and the temperature Tin of the water in the upstream plenum
(tranquilization chamber) is adjusted thanks to the set point temperature
of the thermostat that is adjusted in order to get a water inlet temperature
Tin = T∞, where T∞ is the temperature of the outside environment (air and
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walls of the lab), see Figure 11.

The heating system, whose electrical power (tension V and current I) is
recorded, is detailed in Figure 12a (left) : it is composed of a rectangular foil
heating resistance, of area equal to w`h, which is separated from the front
face of the channel by a copper bar, of length w and cross section eh`h, with
a thermocouple set at its center. In order to have a low contact resistance
between the copper bar and the channel front face, a 25µm thick of indium
foil is set in between. Prior to heating, the syringe pump is activated during
a time long enough in order to get the front face temperature monitored
by the infrared camera, uniform and equal to T∞. So the incoming liquid
temperature, the ambient temperature and the temperature field in the whole
system are initially equal, which means that the temperature rise wherever
in the system will be caused by Joule effect only. Pictures of the channel as
well as of the whole setup are shown in Figure 13. The different geometrical
and thermopysical parameters of the system are given in Table 5 and Table 6
respectively.
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Figure 11: Mini channel with hydraulic circuit, infrared and thermocouple.
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Figure 12: Detail of heating system.
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Fig. 2 Mini channel with hydraulic circuit, and infrared and thermocouple temperature measurement and 

detail of heating system. 
 
The heating system, whose electrical power (tension V  and current I ) is recorded, is detailed in Fig. 2 
(left):  it is composed of a rectangular foil heating resistance, of  area equal to hw , which is separated from 
the front face of the channel by a copper bar, of length w and cross section hhe  , with a thermocouple set at 
its center. In order to have a low contact resistance between the copper bar and the channel front face, a 25 
µm thick Indium foil is set in between. Prior to heating, the syringe pump is activated during a time long 
enough in order to get either the front face or the rear face temperature 0T , monitored by the infrared camera, 
uniform and equal to inT . So the incoming liquid temperature, the ambient temperature and the temperature 
field in the whole system are initially equal, which means that the temperature rise wherever in the system 
will be caused by Joule effect only. Pictures of the channel as well as on the whole setup are shown in Fig. 3.  
 
 

 
 

Fig. 3 Mini channel with hydraulic circuit, and surface heat source. 
 
 
The different geometrical and thermopysical parameters of the system are given in Table 1. 
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Figure 13: Mini channel with hydraulic circuit, and surface heat source..

Table 5: Geometrical parameters.

e1 = e2(mm) ef (mm) 2`(mm) 2`c(mm) w(mm) `h(mm)
2 1 65 120 50 10
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Table 6: Thermopysical parameters.

λs ρcs λf ρcf
(W.m−1.K−1) (kJ.m−3.K−1) (W.m−1.K−1) (kJ.m−3.K−1)

0.215 1440 0.63 4186

5.2. Front face temperature measurement and preprocessing
For an imposed average water velocity Um = 10−4m.s−1 (Pe = 1.4), the

temperature field over the hot (front) face, θh(x, t) is measured either by the
thermocouple located inside the copper bar over the heating length `h, or
by an infrared camera focused on the external (front) surface of the channel
right after the initial time when electrical heating starts until tf = 2400 s. A
time average of 5 frames, which are acquired with a period of 0.2s, followed
by a space averaging of the thermographic signal over 5 columns of pixels in
the x direction is made, which result in the measurement of a x-temperature
profile with a period 4t′ = 1s, which is the same as the acquisition time
step of the thermocouple located inside the copper bar, see Figure 11. The
infrared plane array InSb camera FLIR-Cedip Jade II works in the 3.5-5.6mm
spectral interval. The temperature of the surrounding radiative environment
is supposed to be equal to T∞. The uniform temperature of the copper bar
is distributed over ficticious "pixels" of the same space step 4x as the pixels
measured by the infrared camera. Because of the thickness of the heating
assembly, see Figure 11 and Figure 13, and of the space transfer function of
the camera which acts as a low pass filter (about 5 pixels are necessary to
grasp a sharp temperature transition), the pixels in the vicinity of the copper
bar cannot be measured and are replaced by a linear interpolation between
the copper temperature and the recorded temperature beyond this 5 pixels
interval.

5.3. Experimental results
We present in Figure 14 the measured and recalculated hot front face

temperature only at times 80, 400, 800, 1200 and 1600 seconds past the start
of the electrical step excitation. The chosen time step is4t = 44t′ = 4s and
TSVD regularization has been implemented for the Nx = 250 pixels of the
front face temperature over the ]− `; +`] interval and for L = 2` in order to
estimate the Nh = Nx harmonics of the front face temperature spectrum with
only αx = 130 singular values. The estimated hot interface temperature Twh,
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the estimated bulk temperature Tb, the estimated cold interface temperature
Twc as well as the estimated rear face temperature Tc are plotted respectively
in Figure 15 to Figure 17.
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Figure 14: Hot front face temperature Th profiles (measured "full lines" and
recalculated "circle" with αx = 130 for Nx = 250).
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Figure 15: Estimated hot interface temperature Twh "full lines" and bulk
fluid temperature Tb "circle" profiles.
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Figure 16: Estimated cold interface temperature Twc "full lines" and bulk
fluid temperature Tb "circle" profiles.
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Figure 17: Estimated cold rear face temperature Tc profile.

We can see that the reconstruction of the front face temperature, see
Figure 14, is very good. In Figure 15 to Figure 17, at short times, we can
see the symmetry with respect to the heating interval, with a downstream
shift for longer times because of advection. One can notice the start of a
steep decrease of the temperature distributions, for the longer times, in the
downstream regions : this is due to the change of thickness of the front and
rear walls in this region. In the downstream region, we can also see that we
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have Tb > Twh and Tb > Twc past the heating stop : this can be explained by
the fact that the thermal diffusivity of fluid af is slightly higher than that of
walls asi and that Pe > 1.

As shown in section 4, the surface heat source can be estimated by the
technique proposed in this paper. In Figure 18 the estimated heat source
is presented. In this experience, the surface heat source has been imposed
electrically as a step function in time : the delay between the times t = 80 s
and t = 1600 s can be explained by the thermal inertia of the heating sys-
tem. The maximum is close to 500W.m−2 for the last time shown (1600 s
"steady state"), with an average value over the heating interval lower than
400W.m−2 : it is coherent with the measured electrical power density of
405W.m−2 over the same time interval. The difference stems from the heat
losses towards the insulating material at the back of the heating resistance
and from the heat losses of the lateral surface of the copper bar, which are
not taken into account in the model.

So, the source q that is estimated here and shown in Figure 18 is just an
equivanent one. Hence, it is interested to estimate also the flux ϕh entering
the external face of the hot face wall, see Figure 19, and compare it to its
counterpart shown in Figure 9 and estimated from simulated hot face tem-
perature measurements. One can notice in Figure 9 larger oscillations near
the boundaries of the channel than in Figure 19, where the signal over noise
ratios were about the same in the simulated and real experiments. This dif-
ference stems from the abrupt variation of the source of ϕh in the simulated
experiement (a Heaviside function for the source q) for short times, while
the prsence of the heating device shown in Figure 12, which is not model-
led, allowed a continuous variation of flux ϕh in the real experiment, with a
lot easier regularization that prevented large Gibbs phenomena at the two
boundaries of the channel.

Other interesting information that can be derived are space distributions
of the internal heat fluxes ϕwh and ϕwc. In Figure 20, the estimated hot
interface heat flux ϕwh is presented. It is interesting to note that the heated
fluid gives heat back to the wall past the heating region (negative flux). In
Figure 21 the estimated cold interface heat flux ϕwc is presented. Another
non obvious effect can be found in this figure : the fluid upstream the heating
region is colder than the cold wall, which means that this rear wall gives heat

27



to the fluid (negative flux). The external cold heat flux, ϕc is not shown here :
it is proportional to the temperature variation of the cold face whose estimate
is shown in Figure 17, which can be calculated as : ϕc(x, t) = −h2 (Tc(x, t)−
T∞), (see equation 4).
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Figure 18: Estimated surface heat source q (deconvolution, αt = 599 for
Nt = 600) profiles.
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Figure 19: Estimated front face heat flux ϕh profiles.
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Figure 20: Estimated hot interface heat flux ϕwh profiles.
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Figure 21: Estimated cold interface heat flux ϕwc profiles.

6. Conclusion

We have shown that in a mini heat extractor the heat source, as well as the
internal normal heat flux and temperature distributions, including the bulk
temperature of the liquid flow, can be estimated at any time from external
mesurements using a non intrusive inverse technique and a semi-analytical
model. This stems from the existence of analytical transfer functions in the
double transformed domain, that is Laplace in time and Fourier in space,
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in the direction x of the flow. This has also required the implementation of
a numerical Laplace inversion algorithm, to make convolution products in
time appear between Fourier harmonics of instantaneous x distributions of
the different quantities.

As in our previous work [2] where an instantaneous temperature response,
at a given point of a channel, to an upstream thermal power excitation in the
fluid, was explained by an impedance Z involved in a convolution product,
such can also be the case here. For example, the corresponding relationship
between the intensity Q(t) of the heating power and its point response at a
point x of the cold face is given by :

θc(x, t) = Zc(x, t) ∗Q(t) (35a)

where

Zc(x, t) =
1

2L

nh∑
n=−nh+1

Z̃c
n (t) eιαnx with Z̃c

n (t) = L−1
[

1

Cn(p)

]
(35b)

These analytical functions are available here because of the simple geometry
of the channel that makes the use of the Quadrupole method possible. For a
complexe system (ex : heat exchanger with fins, turbulent, rough walls, ...), it
can be identified by a calibration experiment [2]. Let us also note, that trans-
fer functions, once known (model reduction or experiemental identification)
are alternatives to the classical detailed modelling which sometimes requires
large calculation times and memory, especially in transient simulation. Let
us remark here that in this work, the input of the inverse problem is the
measured instantaneous temperature distribution over the front face, that is
the face that is heated. This implies of course the implementation of some
kind of space regularization to recover its Fourier spectrum and some time
regularization to estimate the history of each harmonics of any of the quan-
tities (temperture, heat fluxes or heat sources, see left column of Table 1)
that are looked for. However, we are in a favorable configuration because
the front face temperature measurements is characterized by the presence of
high space frequencies, which explains the low levels of the estimation errors
shown in Figure 4 to Figure 8. Had the rear face temperature been measured,
instead of the front one, the corresponding estimations would not have been
as good, because of the necessary inversion of a temperature signal where
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high frequencies of the front face excitation have been damped by the solid
walls and flowing fluid (low pass filter).
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