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Abstract—Cloud computing provides computing resources with
elasticity following a pay-as-you-go model. This raises Multi-
Objective Optimization Problems (MOOP), in particular to find
Query Execution Plans (QEPs) with respect to users’ preferences
being for example response time, money, quality, etc. In such a
context, MOOP may generate Pareto-optimal front with high
complexity. Pareto-dominated based Multi-objective Evolution-
ary Algorithms (MOEA) are often used as an alternative solution,
like Non-dominated Sorting Genetic Algorithms (NSGAs) that
provide better computational complexity. This paper presents
NSGA-G, a NSGA based on Grid Partitioning for improving
complexity and quality of current NSGAs. Experiments on
DTLZ test problems using Generational Distance (GD), Inverted
Generational Distance (IGD) and Maximum Pareto Front Error
prove the relevance of our solution.

Index Terms—Multi-objective Optimization, Pareto-optimal
solutions, Genetic algorithms, Non-dominated Sorting Genetic
Algorithm

I. INTRODUCTION

Cloud computing provides computing resources with elas-
ticity following a pay-as-you-go model. This raises Multi-
Objective Optimization Problems (MOOP), in particular to
find Query Execution Plans (QEPs). Indeed, Users may face
conflicting objectives. Let’s consider a query Q in a example
below.

Example 1.1: A query Q in the medical domain, based on
TPC-H query 3 and 4 [1] be:

SELECT p.UID, p.PatientID, s.PatientName,
.PatientBrithDate, p.PatientSex,
.EthnicGroup, p.SmokingStatus,
.PatientAge, s.PatientWeight,
.PatientSize, 1i.GeneralName,
.GeneralValues, g.UID,
.SequenceTags, g.SequenceVRs,

g.SequenceNames, g.SequenceValues
FROM Patient p, GenerallInfoTable i,

Q F- 0 n T T

Study s, SequenceAttributes g
WHERE p.UID = s.UID

AND p.UID = 1.UID

AND p.UID = q.UID

AND p.PatientSex = "M’

AND p.SmokingStatus = ’'NO’

AND s.PatientAge >= x
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AND g.SequenceNames
LIKE ’'%$X-ray%’

This query is optimized and transformed into a logical plan.
After that a physical tree is generated and then translated into
physical tasks with respect to the infrastructure and its config-
uration. From a physical tree, various QEPs are generated with
respect to the number of nodes, their capacity in terms of CPU,
memory and disk and the pricing model. Table I presents an
example of possible QEPs for Q. Choosing an execution plan
is a tradeoff between objectives such as the response time or
the monetary cost, and depends on users’ preferences: a user
A may prefer minimizing his budget (QEP1); a user B may
want the lowest response time (QEP2); a user C may look for
a tradeoff between time and money (QEP3).

TABLE I: Multiple Objectives for Query Execution Plans

QEP  Vms Price (/60min) Time (min) Monetary ($)
QEP1 10 0.02 60 0.2
QEP2 40 0.02 22 0.29
QEP3 30 0.02 26 0.26

MOOP can be defined as [2]:
minimize(F(z) = (f1(z), f2(z)..., fm(z))T)

where z = (z1, ..., :cn)T € 2 C R™ is an n-dimensional vector
of the decision variables, {2 is the decision (variable) space and
F' is the objective vector function that contains m real value
functions. In general, there is no point in 2 that minimizes
all the objectives together. Pareto optimality is defined by
tradeoffs among the objectives. If there is no point =z € ()
such that F'(z) dominates F'(z*), z* € Q, x* is called Pareto
optimal, and F'(z*) is called a Pareto optimal vector. A set of
all the Pareto optimal points is the Pareto set. A Pareto front
is a set of all the Pareto optimal objective vectors.

Generating the Pareto-optimal front can be computationally
expensive and is often infeasible [3]. In the context of cloud
computing, a challenging problem is thus: how to efficiently
propose diverse QEPs?

As an alternative to the Pareto-optimal, Evolutionary Al-
gorithms (EAs) look for approximations (set of solutions not
far away from the optimal front). Evolutionary Multi-objective
Optimization (EMO) approaches [4]-[8] have been developed



based on Pareto dominance techniques [4], Pareto Archived
Evolution Strategy (PAES) [5], Strength Pareto Evolutionary
Algorithm (SPEA) [6]. EMO algorithms aims to find and
maintain a front of non-dominated solutions, to find optimal
Pareto set solutions. An evolutionary process enables to ex-
plore the search space. The non-dominated set is maintained
and prepared for the next population of candidate solutions.

Among EMO approaches, Non-dominated Sorting Algo-
rithms (NSGAs) [7], [9] aims to reduce computational com-
plexity while maintaining diversity among solutions. NSGA-
IT [7] and SPEA-II [6] use crowding distances to maintain
diversity. However, complexity is high and diversity cannot
be preserved with more than two objectives [10]. Zhang and
Li proposed an algorithm maintaining diversity with more
than three objectives problem, MOEA/D [2]. MOEA/D uses
a decomposition approach to divide multiple objectives into
various single objective optimization subproblems and solved
up to four objectives [11]. In 2013, Deb and Jain proposed
NSGA-III [8], using a set of reference directions to guide the
search process. However the computation complexity is the
highest among algorithms.

This paper presents NSGA-G (Non-dominated Sorting Al-
gorithm based on Grid Partitioning) to improve both diversity
and efficiency. NSGA-G maintains diversity by selecting so-
lutions in a Pareto set in multiple groups randomly, which
are divided by a Grid Partitioning in the space of solutions.
A solution is selected by comparison in a group, instead of
between all members in a Pareto set. This approach reduces
the computation time in EMO with large populations. NSGA-
G does not only inheritances of the superior characteristics of
NSGAs in computational complexity, but also improve both
quality and computation time to solving MOOP in cloud com-
puting becoming easier. NSGA-G has been validated though
experiments on DTLZ problems [12].

The remainder of this paper is organized as follows. Section
2 presents the background of our research. NSGA-G is pre-
sented in Section 3. Section 4 presents experiments to validate
NSGA-G. Finally, Section 5 concludes this paper and lists
some perspectives.

II. BACKGROUD

As a running example let a query Q in Example 1.1. Let’s
assume the query is processed on Amazon EC2. The master
consists in a m2.4xlarge instance (8 virtual cores and with
68.4 GB of RAM). Workers consist in m3.2xlarge instances
(8 wvirtual cores and with 30 GB of RAM). If the pool of
resources is 70 VCPU with 260GB of memory, the number
of QEPs is thus 70 x 260 = 18,200. The problem is then how
to optimize such a query, with respect to multiple objectives
(response time, monetary cost, etc.).

A. Pareto plan set

Let a query g be an information request from databases,
presented by a set Q of tables. A Query Execution Plan
(QEP) includes an ordered set of operators (select, project,
join, etc.). The set of QEPs p of ¢ is denoted by symbol P.

The set of operators is denoted by O. A plan p can be divided
into two sub-plans p; and p, if p is the result of function
Combine(p1, p2,0), where o € O.

The execution cost of a QEP depends on parameters, which
values are not known at the optimization time. A vector x
denotes parameters’ value and the parameter space X is the
set of all possible parameter vectors x. In MOOP, let denote N
the set of n cost metrics. We can compare QEPs according to n
cost metrics which are processed with respect to the parameter
vector x and cost functions ¢"(p, x). Let C denotes the set of
cost function c.

Let p1,p2 € P, p1 dominates p, if the cost values accord-
ing to each cost metrics of plan p; is less than or equal to the
corresponding values of plan p. in all the space of parameter
X. That is to say C(p1,X) < C(pa, X) | Vn € N,¥x €
X ™(p1,x) < ™(p2,x). The function Dom(py,p2) C X
yields the parameter space region where p; dominates po [13]:
Dom(p1,p2) ={x € X |Vn € N : "(p1,z) < c"(p2, )}
Assume that in the area x € A, A C X, p; dominates ps,
C(p1,A) 2 C(p2, A), Dom(p1,p2) = AC X.

p1 strictly dominates p, if all the values for the cost
functions of p; are less than the corresponding values for ps
[14]: StriDom(p1,p2) = {z € X | Vn € N : "(p1,x) <
¢ (pa, )}

A Pareto region of a plan is a space of parameters where
there is no alternative plan that has lower cost than itself [15]:

PaReg(p) = X\ ( *Lgp StriDom(p*,p))

B. Non-dominated Sorting Genetic Algorithms

Non-dominated sorting Filter Front

Fi1
Pt F2

F4

Fig. 1: NSGA-II and NSGA-III procedure [7], [8]

Among EMO approaches, Non-dominated Sorting Genetic
Algorithms provide low computational complexity of non-
dominated sorting. Initially, NSGAs start with a population,
Py, consisting of N solutions. In query processing in cloud
computing, a population represents for a set of candidates QEP.
The size of P, is smaller than the space of all candidates. Each
solution is on a specified rank or non-domination level (any
solution in level 1 is not dominated, any solution in level 2 is
dominated by one or more solutions in level 1, and so on). At
first, the offspring populations g, IV solutions, is created by
the binary tournament selection, and mutation operators [16].
Secondly, a population Ry = Py U (Jp with the size of 2N
should be divided into subpopulations based on the ordering of
Pareto dominance. The appropriate N members from Ry will



be chosen for the next generation. The non-dominated sorting
based on usual domination principle [17] is first used, which
classifies Ry into different non-domination levels (F;, F», and
so on). After that, a parent population of next-generation P;
is selected in Ry from level 1 to level k so that the size of
P; = N, and so on.

NSGA-II [7] and NSGA-III [8] follow the same process,
illustrated by Algorithm 1. Assume that the process is at t'"
generation. A combined population R; = P, U ) is formed.
The population R; is sorted in level F7, F2, .... Now solutions
that belong to the best non-dominated /7 are good solutions
in R;. If the size of F; is smaller than N, all members of F;
are selected to P;1q. Thus, solutions in JF» are chosen next,
and so on. This process continues until no more level can
be fitted in p;4;. The last level F; cannot be filled in P;,;:
Z;=1 | F; |> N. The procedure is illustared by Fig. 1.

Algorithm 1 Generation ¢ of NSGA-II and NSGA-III [7], [8]

1: function EVALUATION(FP;,N)

2 S =0,i=1

3 Q@+ = Recombineation + Mutation(P;)
4: Rt == Pt U Qt

5: Fi,Fa,... = Non — diminated — sort(Ry)
6: while | S; [< N do

7 S =S UF;

8: i+ +

9: end while

10: Last front is JF;

11: if | St |= N then

12: Py = Sy

13: break

14: else ‘

15: select N — Z;j{l | 5 | solutions in F;
16: end if

17: return P,

18: end function

Time

1.00—W---/-7--1--- mees

0.75

Grid Max Point

0.5 [-----

0.25

Grid Min Point |

00 025 0.5

075 1.0

Monetary

Fig. 2: Grid points and Groups

NSGA-II, NSGA-III and other NSGAs differ in the way
to select members in the last level F;. To keep the diversity,
NSGA-II in [7] and SPEA-II [6] use crowding distance among
solutions in their selection. K oppen and Yoshida [18], [19]

stated that NSGA-II procedure is not suitable for multi-
objective optimization problems and should replace crowding
distance operator for better performance. Hence, when the
population has a high-density area, higher than others, NSGA-
IT will prefer the solution that is located in a lesser crowded
region. For example, when the size of the population is 10,
NSGA-II will reject four solutions in an area limited by 4
points, near (1.0,0.0), in Fig. 2. In example 1.1, user A and
B tend to choose solution (0.0,1.0) or (1.0,0.0), while NSGA-
IT leads to skipping the particular points closed to (1.0,0.0).
For exmaple, the minimum monetary and longest computation
time.

On the other hand, MOEA/D [2] decomposed a multiple
objectives problem into a various scalar optimization sub-
problems. The diversity of solutions depends on the scalar
objectives. However, the number of the neighborhood should
be defined before running the algorithm, and the authors did
not show how to estimate a good neighborhood. The diversity
was considered as the selecting solution associated with these
different subproblems. The experiments in [8] showed various
versions of MOEA/D approaches fail to maintain a good
distribution of points

NSGA-III, an Evolutionary Many-Objective Optimization
Algorithm Using Reference-point Based Non-Dominated Sort-
ing Approach, Deb et al. [8] using different directions to
maintain the diversity of solutions. NSGA-III replaces the
crowding distance operator by comparing solutions, each solu-
tion being associated to a Reference Point [8], which impacts
the execution time to built the Reference Points in each
generation. The diversity of NSGA-III is better than others, but
the execution time is very high. For instance, with 2 objectives
and 2 divisions, 3 reference points will be created, (0.0,1.0),
(1.0,0.0), and (0.5,0.5) in Fig. 2. After selecting process, the
diversity of population is better than NSGA-II with solutions
near 3 reference points. However, NSGA-III should compare
all solutions for each point, so the computation time is very
high.

In addition, NSGAs often compare all solutions to choose
good solutions in F;. Therefore, when the number of solu-
tions or objectives is significant, the time for calculating and
comparing is considerable.

C. Motivation

Using our running example, the traditional approach to build
Pareto QEPs set may lead to a space of 18,200 solutions.
Indeed, in the worst case of MOOP, all solutions are in Pareto
plan set. Using NSGAs, this space would be reduce to the size
of the population, N. Nevertheless none of the solution, being
NSGA-II or NSGA-III, is satisfactory since there is a tradeoff
between complexity and diversity.

III. NONDOMINATED SORTING GENETIC ALGORITHM
BASED ON GRID PARTITIONING

This paper presents our Non-dominated Sorting Algorithm
based on the Grid Partitioning (NSGA-G) to improve both



diversity and convergence while having an efficient computa-
tion time by reducing the space of selecting good solutions
in the truncating process. At ! generation of Non-dominated
Sorting Algorithms, P, presents the parent population with NV
size and @ is offspring population with N members created
by P;. Ry = P, U Q) is a group which need to be chosen N
members for Ppy.

A. NSGA-G

NSGA-G finds the nearest smaller and bigger grid point for
each solution. For example, Fig. 2 shows an example of a two-
objective problems. If we have the unit of the grid point is 0.25
(the number of grids is 4) and the solution with two objectives
values of [0.35,0.45], the closest smaller point is [0.25,0.5]
and the nearest bigger point is [0.5,0.5]. To avoid calculating
multiple objective cost values of all solutions in the population,
we divide the space into multiple small groups by Grid Min
Point and Grid Max Point, as shown in Fig. 2. Each group
has one Grid Min Point, the nearest smaller point, and one
Grid Max Point, the nearest bigger point. We only calculate
and compare solutions in a group. In this way, in any loop,
we do not need to compare solutions among all members in
Fy, as F5 in Fig. 2. Besides, the characteristic of diversity
in removing the solution among members is maintained by
choosing a group randomly. The next algorithm will show our
strategy to select N — 22;11 F; members in F;.

Algorithm 2 Filter front in NSGA-G

1: function FILTER(F, M = N — Y"1 F))
2: updateldealPoint()

3 updateldealMaxPoint()

4: translateBylIdealPoint()

5: normalizeByMinMax()
6
7
8
9

createGroups
while | 7; |> M do
selectRandomGroup()
: removeMaxSolutionInGroup()
10: end while
11: return F;
12: end function

The functions in line 1 and 2 will determine the new origin
coordinates and the maximum objective values of all solutions,
respectively. After that, they will be normalized to a range of
0 — 1. All solutions will be in the different groups, depending
on the coefficient of the grid. The most important characteristic
of this algorithm is that we select the group randomly like
NSGA-III to keep the diversity characteristic and remove the
solution among members of that group. This selection helps
to avoid comparing and calculating the maximum objectives
in all solutions.

B. Quality of NSGA-G

1) Convergence: In terms of convergence, Pareto domi-
nance is a fundamental criterion to compare solutions. Our

algorithm keeps the generation process of NSGAs, except the
removing solution for the next generation. The convergence
characteristic of NSGA-G does not only keep the specification
of NSGAs, but also better than original NSGAs. This will be
shown in experiments of Generational Distance (GD) [20],
Inverted Generational Distance (IGD) [21] in next session.

2) Diversity: Our approach uses Grid Partitioning to guar-
antee that the solutions are distributed in all solution space. In
the problems of N objectives, N > 4, we assume that the last
front should be removed £ solutions. In each axis coordinate
with the number of grids is n, the maximum of groups in all
space of N axis coordinates is nV, and we chose the maximum
of groups in the last front included all non-dominated solutions
should be removed is V1. Our idea is keeping the diversity
characteristic of the genetic algorithm by generating k groups,
removing k solutions which have the longest distance to the
minimum grid point. Hence, in our algorithm, the number of
grids is n = [/ (N-1],

3) Computation: In this paper, we study the different ref-
erence points based on the grid point to reduce the computing
of selecting good solution in the last front. By dividing into
small groups, our algorithm selection a good solution in a
small group, which has the smaller number of solutions than
all of the solutions in the last front.

C. Application to Query Processing in Cloud Computing

In cloud computing, QEPs depend on the number of tables
but also on the configuration of virtual machines to be used
to execute jobs. Hence, generating the Pareto-optimal front
can be computationally expensive and is often infeasible,
because of the complexity of the underlying application [3].
Evolutionary algorithms (EAs) are an alternative: they try to
look for a good approximation. The set of solution is not too
far away from the optimal front. This paper aims to apply
NSGA-G to find optimal QEPs in cloud computing, that is to
say elastic environments with a the pay-as-you-go model.

Algorithm 3 and 4 show our application of NSGA-G to
query processing in cloud computing. A Pareto set of QEPs
will be generated after line 5 in Algorithm 3 with the size of
QEPs being the size of NSGA’s population. Depending on the
weighted sum model W and users’ constraints B [22], the best
QEP will be chosen by Algorithm 4.

Algorithm 3 Find a query execution plan for a query Q in the
cloud computing

1: function BESTPLAN(Q, W, G, B)

2 /l Find a Pareto set with weight sum model W,
configuration G, Constraint B

3 N + |Q| //possible logical query plans

4 M <« |G| //possible VM configuration

5 P+ NSGA—-G(N,M)

6: //Return best plan in P with weight sum model

7

8

: return BestInPareto(P,W,B)
: end function




Algorithm 4 Select best plan in P for weights W and
constraints B

1: function BESTINPARETO(P, W, B)
2 P <+ peP|vn < |B|:cn(p) < By
3: if Pg # () then
4

return  p € Pg|C(p) =
min(WeightSum(Pp, W))
5 else
6: return p € P|C(p) = min(WeightSum(P,W))
7 end if
8: end function

IV. EXPERIMENT

A. Environment

For fair comparison and evaluation, we have used the same
parameters such as Simulated binary crossover (30), Poly-
nomial mutation (20), max evaluations (10000), populations
(100) for 1. eMOEA [23], 2. NSGA-II, 3. MOEA/D [2] 4.
NSGA-III, 5. NSGA-G!, during their 50 independent runs
in solving two types of problems: DTLZ test problems [12]
with more than 4 objectives, m, in multiobjective evolutionary
algorithms (MOEA) framework [24] in Open JDK Java 1.8.
These algorithms use the same population size N = 100 and
the maximum evaluation M = 10000.

B. Results

To estimate the qualities of the different algorithms, we use
the Generational Distance (GD) [20], the Inverted Generational
Distance (IGD) [21] and the maximum Pareto Front Error
[25]. GD measures how far the evolved solution set is from
the true Pareto front [26]. IGD is a metric for estimating
the quality of approximations to the Pareto front obtained
by multi-objective optimization algorithms [27], and could
measure both convergence and diversity in a sense. The max-
imum Pareto Front Error shows the most significant distance
between the individual in Pareto front and the solutions in
the approximation front [26]. For all metrics, a lower value
indicates the better quality.

By dividing the space of solution into multiple partitions and
selecting groups randomly, our algorithm has both advantage
of diversity and convergence, comparing to other NSGAs. The
advantage of NSGA-G is not only shown in the experiments of
GD, IGD in Table II, IV, but also is present in the Maximum
Pareto Front Error experiment in VI. The convergence and
diversity of NSGA-G are often the most or second quality in
the tests (Table II and IV).

By comparing solutions in a group, instead of all the space,
our algorithm has an advantage of computation time with
the high computation problems. Tables III, V, VII show the
advantage of NSGA-G in the computation time. It can be seen
that NSGA-G is better than other solutions when the number
of objectives is large.

Thttps://github.com/dungltr/MOEA

TABLE II: Generational Distance

m eMOEA NSGA-II MOEAD NSGA-III NSGA-G
DTLZ1 5 3.675e-02 4.949e+01 1.129e-01 2.494e+00 | 2.721e-03
DTLZ3 5 1.030e-01 4.418¢+00  1.951e-01 7.214e-01 6.342e-03
DTLZ1 6 1.600e-01 9.637e+01 3.138e-01 1.049e+00 | 3.850e-02
DTLZ3 6 1.306e+01 1.289e+02 = 5.265e+00  9.577e+00 = 9.92le-01
DTLZ1 7 1.390e-01 5.283e+01 1.515e-01 4.515e-01 1.542e-02
DTLZ3 7 3.793e-01 3.714e+00 = 2.251e-02 1.600e-01 2.379e-03
DTLZ1 8 6.817e-01 1.175e+02 ~ 2.608e-01 1.949e+00 | 8.223e-02
DTLZ3 8 1.419e+01 1.667e+02 ~ 5.320e+00  1.351e+01 9.146e-01
DTLZ1 9 4.451e-01 4.808e+01 1.101e-01 1.917e+00 | 1.040e-02
DTLZ3 9 6.843e-02 1.620e+00 = 5.237e-03 1.280e-01 1.325e-03
DTLZ1 10 3.431e-01 4.340e+01 1.432e-01 2.115e+00 | 0.000e+00
DTLZ3 10 8.458e-02 1.593e+00 ~ 6.763e-03 1.627e-01 1.815e-03

TABLE III: Average compute time (seconds) in Generational
Distance experiment

m  cMOEA NSGAIl  MOEAD  NSGA-Il _NSGAG
DTLZI 5 | 50046401 | 1.063¢+02  2.264e+02  4.786e+02  1.261e+02
DTLZ3 5 | 1.005e+02  1.111e+02  2.358¢+02  5.040e+02  1.233e+02
DTLZ]I 6 | 9.024e+01 = 1.089e+02  2.320e+02  3.509e+02 | 1.083e+02
DTLZ3 6  1.602e+02 | 1.243e+02  2.520e+02  3.653e+02 | 1.209e+02
DTLZI 7 [DI0388¥020 1.200e+02  2.839e+02  3.986e+02  1.244e+02
DTLZ3 7  2.946e+02  1381e+02  2.820e+02  3.565¢+02 [WI3426402
DTLZI 8  1463e+02 = 1.313e+02  2.896e+02  4.926e+02 | 1.249e+02
DTLZ3 8  5.575e+02 = 1.54le+02  3.458¢+02  5.633e+02 | 1.399e+02
DTLZlI 9  1.573e+02 | 1.428e+02  3.242¢+02  6.823e+02 = 1.496e+02
DTLZ3 9  8.147e+02 = 1.988e+02  3.721e+02  8.136e+02 | 1.640e+02
DTLZI 10 | 1436e+02  1.611e+02  3.745¢+02  9.589e+02 | 1.370e+02
DTLZ3 10  9.15le+02 | 1.801e+02 = 3.907¢+02  9.805e+02 | 1.577e+02

TABLE IV: Inverted Generational Distance

m  eMOEA NSGAII  MOEAD  NSGA.II  NSGAG
DTLZI 5  4.070e-01  8.247e+01 | 3.434e-01  2.796e+00 | 3314e01
DTLZ3 5 [UI6566017 6.364e+00  3.335¢-01  1.383e+00 = 1.922e-01
DTLZI 6  7.98le-01  1.786e+02  9.150e-01  3.040e+00 | 7.034e-01
DTLZ3 6  4429e+01  4.526e+02 | 1.164e+01  3.103e+01 | 8.100e+00
DTLZlI 7  4.188e-01  2203e+01 | 3.280e-01 | 5.024e-01  3.715e-01
DTLZ3 7  9.630e-01  9.286e+00 ~ 1.929e-01  3.901e-01 | 1.667e-01
DTLZI 8  1417e+00  2.691e+02 =~ 1.023e+00  4.195¢+00 | 9.540e-01
DTLZ3 8  1.023e+02  6.471e+02 = 1.167e+01  4.194e+01 | 7.513e+00
DTLZI 9  4432e-01  2.39e+01 | 3.019¢-01 | 6.685e-01 = 3.147e-01
DTLZ3 9  3.737e-01  3.368e+00 = 1.381e-01  2.516e-01 | 1.331e-01
DTLZI 10  5912e-01  1.723e+01 = 3.737e-01  8.963¢-01 | 3.613e-01
DTLZ3 10 6287e-01  6.049e+00 | 1.296e-01 @ 5.049e-01  1.521e-01

TABLE V: Average compute time (seconds) in Inverted Gen-
erational Distance experiment

m eMOEA NSGA-II MOEAD NSGA-III NSGA-G
DTLZ1 5 6.780e+01 = 9.430e+01  2.292e+02  4.564e+02  9.646e+01
DTLZ3 5 9.976e+01 1.156e+02  2.564e+02  5.036e+02  1.166e+02
DTLZ1 6 7.696e+01 1.078e+02  2.451e+02  3.471e+02 1.178e+02
DTLZ3 6 1.549e+02 = 1.300e+02  2.527e+02  3.714e+02 1.986e+02
DTLZ1 7 1.021e+02  1.286e+02  2.732e+02  3.271e+02  1.297e+02
DTLZ3 7 3.522e+02  1.942e+02  3.794e+02  3.582e+02 | 1.523e+02
DTLZ1 8 1.170e+02 1.292e+02  3.222e+02  4.677e+02 = 1.212e+02
DTLZ3 8 5.333e+02  1.526e+02  3.140e+02  5.190e+02 | 1.431e+02
DTLZI 9 1.435e+02 1.812e+02  3.120e+02  7.548e+02  1.544e+02
DTLZ3 9 7.445e+02  2.171e+02  3.533e+02  7.884e+02 | 1.485e+02
DTLZ1 10~ 2.104e+02 = 1.786e+02  3.942e+02 1.532e+03  2.182e+02
DTLZ3 10 1.195e+03 ~ 2.526e+02  5.766e+02 1.302e+03 [ 2.131e+02




TABLE VI: Maximum Pareto Front Error

m eMOEA NSGA-IT MOEAD NSGA-III NSGA-G
DTLZ1 5 7.363e-01 8.969e+02  2.556e+00  2.260e+02 1.024e-01
DTLZ3 5 9.455e+00 1.015e+02 = 3.692e+00  4.002e+01 1.957e-01
DTLZ1 6 4.699e+00 1.584e+03  8.950e+00  7.488e+01 3.375e-01
DTLZ3 6 5.112e+02 1.862e+03 ~ 9.387e+01  4.340e+02 1.244e+01
DTLZ1 7 9.524e+00 1.012e+03 ~ 3.074e+00 1.802e+01 1.695e-01
DTLZ3 7 1.458e+01 3.163e+01 2.035e-01 3.116e+00 | 2.708e-02
DTLZ1 8 3.186e+01 2.041e+03 =~ 5.685e+00  2.127e+02 | 5.532e-01
DTLZ3 8 1.170e+03  2.247e+03 = 9.867e+01 5.268e+02 1.145e+01
DTLZ1 9 1.111e+01 1.036e+03 ~ 2.075e+00 1.496e+02 | 3.106e-01
DTLZ3 9 1.320e+01  4.065e+01 1.354e-01 8.366e+00 | 3.195e-02
DTLZ1 10 2.641e+01 1.026e+03 = 2.793e+00  2.293e+02 | 0.000e+00
DTLZ3 10 1.492e+01 4.185e+01 1.368e-01 1.079e+01 2.744e-02

TABLE VII: Average compute
Pareto Front Error experiment

time (seconds) in Maximum

eMOEA NSGA-II MOEAD NSGA-III NSGA-G
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DTLZ1 5 7.454e+01 1214e+02  2.742e+02  5.796e+02 1.221e+02
DTLZ3 5 1.231e+02 1.437e+02  3.118e+02  6.035e+02 1.286e+02
DTLZ1 6 1.040e+02 1.318e+02  2.848e+02  4.258e+02 1.276e+02
DTLZ3 6 2.166e+02 1.673e+02  3.462e+02  5.014e+02 1.575e+02
DTLZ1 7 1.276e+02 1.638e+02  3.230e+02  4.314e+02 1.424e+02
DTLZ3 7 4.594e+02 1.959e+02  4.188e+02  5.557e+02 1.774e+02
DTLZ1 8 1.637e+02 1.609e+02  3.832e+02  5.952e+02 1.466e+02
DTLZ3 8 5.940e+02 1.963e+02  3.640e+02  6.025e+02 1.453e+02
DTLZ1 9 1.369e+02 1.474e+02  3.148e+02  7.728e+02 1.559e+02
DTLZ3 9 6.596e+02 1.982e+02  3.984e+02  8.069e+02 1.516e+02
DTLZ1 10 1.546e+02 1.540e+02  3.555e+02  9.331e+02 1.400e+02
DTLZ3 10 8.219e+02 1.841e+02  3.601e+02  9.677e+02 1.619e+02

V. CONCLUSIONS

In this paper we have introduced a Non-dominated Sorting
Genetic Algorithm based on Grid Partitioning improving the
diversity and convergence characteristic of Non-dominated
Sorting Genetic Algorithms. The proposed algorithm intro-
duced the grid partitioning strategy in selecting, combining
parents and offspring solutions to reduce the computation time.
Experimental results have shown that the proposed algorithm
achieves better computation performance and quality than
other algorithms, such as NSGA-II, NSGA-III, and MOEA/D
on DTLZ problems with more than four objectives.

In the scope of this paper, our experiments are based on
DTLZ problems, which are often used for estimating the
quality of Multi-objective Evolutionary Algorithms. NSGA-
G will be applied for Multi-objective Query Optimization
(MOQO) so as to define data configurations and query process-
ing strategy in an elastic environments with a pay-as-you-go
model.
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