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Abstract

In this paper, we present a general framework to construct section-averaged models when the flow is
constrained – e.g. by topography – to be almost one-dimensional. These models are consistent with the
two-dimensional shallow water equations. After rewriting the two-dimensional shallow water equations in
a suitable set of coordinates allowing to take care of a meandering configuration, we consider the quasi
one-dimensional regime. Then, we expand the water elevation and velocity field in the spirit of the diffusive
wave equations and establish a set of one-dimensional equations made of a mass, momentum and energy
equations, which are close to the ones usually used in hydraulic engineering. Our model reduces to classical
shallow water models with variable sections found in the literature. Out of these configurations, there
is an O(1) deviation of our model from the classical ones. Finally, we present the main mathematical
properties of our model and carry out numerical simulation as validation of our approach with comparison
to the full two-dimensional shallow water equations.

Keywords: shallow water equations, computational hydraulics, asymptotic expansions, section-averaged
models

1. Introduction

In environmental modeling of free surface flows, the “shallow water” model is often used in order to
reduce the complexity of the full Navier-Stokes equations and to reduce the computational cost implied
by numerically solving such three-dimensional free surface flow equations. To derive the shallow water
equations, it is assumed that the vertical variations of the water velocity are negligible with respect to
the horizontal variations, and that the wavelengths of the phenomena of interest are much larger than
the depth of the water. Under these assumptions (see for instance [29, 2, 13] and references therein),
it becomes natural to integrate the Navier-Stokes or Euler systems over the depth of the water, which
naturally introduces the water height as a new variable, and eliminates the vertical component of the water
velocity. The dispersive terms, which come from the vertical variations of the velocity, are usually neglected.
Otherwise, they can be reintroduced as viscosity terms (see [13]) or approximated using an empirical or
mathematical model (see for instance [12] and [2], Page 24, and references therein).

The shallow water model is commonly found in the simulation of various geophysical phenomena such
as rivers, coastal flows or floods, and it is a standard model in hydraulics. The mathematical derivation of
shallow water models is now well-documented for river flow simulations,under the assumption that the
section of the channel is rectangular. For instance, see [25] and [4] in the context of respectively turbulent
and laminar flows, and see [9] in the context of meander flows where the 2D shallow water equations are
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derived formally and numerical simulations are carried out under the assumption that sedimentation is
neglected.

We will focus in this paper in this particular regime of fixed topographies, which do not depend on
time. The shallow water equations on a two-dimensional geometry usually read as follows:





ht +∇∇∇X · (hu) = 0,

ut + u · ∇∇∇Xu + g∇∇∇Xh = g

(
−∇∇∇XZ −

u‖u‖
C(h,X)2

)
,

(1.1)

where g is the gravity constant, h the fluid height, u = (u1, u2) ∈ R2 the fluid velocity and C(h,X)
is a 2D friction model. The unknowns h and u depend on the time variable t and the space vari-
able X = (x1, x2) ∈ R2. For the sake of generality, we have chosen an arbitrary friction law. In some
applications, a simple friction law, which only involves the water height, can be used by taking

C(h,X)2 = C2
hh

p,

where C2
h is the Chézy friction term and p is usually taken equal to 4/3. The dependency in X of the

friction model is supposed to come from the Chézy friction coefficient Ch.
More complete models, providing a more accurate description of complex physical phenomena, also

exist in the literature. For instance, one may be referred to [14] for a multi-dimensional model of turbulent
hydraulic jumps or to [22] for a model with dispersive and dissipative effects. However, in the present
paper, we choose to consider the standard 2D shallow water system (1.1) for the sake of simplicity and to
be able to perform the forthcoming model developments.

In order to simplify the equations and reduce the computational efforts involved in solving the full
two-dimensional shallow water equations, we will consider the section-averaged shallow water equations.
These section-averaged models are of particular interest in hydraulic engineering due to their simplicity
and reduced computational cost. Such section-averaged models are particularly relevant to the specific
geometry of a river (that is to say, a channel whose typical length will be much greater than its typical
width). However, deriving section-averaged models like (1.2) from two-dimensional models like (1.1)
requires taking into account the specificities of the flow and of the geometry, usually through a relevant
non-dimensionalization and subsequent asymptotic analysis. Indeed, the river is supposed to flow in the
presence of meanders and the cross-section is variable.

The usual section-averaged models are obtained by integrating the 2D system (1.1) over the width of
the channel, to get: 




St +Qx = 0,

Qt +

(
β
Q2

S

)

x

+ gSHx = gS(I − J ),
(1.2)

where S is the wetted section, H the average level of the water surface (i.e. the free surface), Q the
section-averaged flow discharge, I is the main longitudinal slope of the river, J is a 1D friction model,
and β is the Boussinesq coefficient, defined below. The geometric quantities are displayed on Figure 1.

A usual expression of the friction model J is the following one:

J =
Q|Q|
c2SW

,

where the friction coefficient cSW depends on x and h. For instance, the Chézy formula prescribes

c2SW = C2
hRhS

2,
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Figure 1: Sketch of a slice of the channel geometry and notations: ξ1 and Ξ− ≤ ξ2 ≤ Ξ+ are the longitudinal and transverse
local coordinates, z is the depth coordinate, h is the water height, H is the average free surface position, S is the wetted
section, P is the wetted perimeter, L is the function representing the width of the channel and Z is the topography function.

where Rh is the hydraulic radius, given by Rh = S/P, where P is the wetted perimeter, see Figure 1. An
alternative is the Manning-Strickler formula

c2SW = K2
sR

4/3
h S2,

where Ks is the Manning-Strickler coefficient. Note that other formulas were derived in various situations,
e.g. triangular, trapezoidal, circular or compound channels, to get complicated forms of the bottom friction
valid mostly for stationary flows [31, 30]. One could also consider the Reynolds number of the flow to
derive friction laws based on the channel roughness, see for instance [19] for tabulated values or [25] for
analytic expressions.

Here, β ≥ 1 is the so-called Boussinesq term, which links the 1D behavior to the underlying 2D flow by
accounting for the variations of the cross-section. Indeed, it is defined as follows:

β =

∫
hu2

1 dy

SU2
,

where U = Q/S is the averaged 1D velocity and where u1 is the 2D velocity in the x-direction, with the
integral taken over the width of the channel. As soon as the flow is one-dimensional, i.e. constant in the
cross-stream direction, β is equal to 1. Many practical hydraulic engineering applications set β to some
constant value, close to 1 if the cross-section is smooth and somewhat larger if the cross-section becomes
more complex (see for instance [6, 27]). This means that, according to the table in [6] (Page 28), an error
of up to 30% can be introduced in the discharge computation by setting a wrong value of β. In addition,
modifying the discharge equation in (1.2) by adding the Boussinesq coefficient β implies that the energy
conservation is no longer satisfied. Indeed, one would also have to introduce the Coriolis coefficient α in
the energy equation, defined similarly to the Boussinesq coefficient:

α =

∫
hu3

1 dy

SU3
,

This framework has been introduced almost two centuries ago in [7]; one of our goals in this paper is to
suggest a better understanding of these issues. Indeed, a more involved discussion of these Boussinesq and
Coriolis coefficients is available in Section 5.1, starting with their precise definitions (5.2).
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It is our purpose to address the question of deriving 1D consistent shallow water models in the presence
of meanders and for arbitrary geometries of the channel. To define the consistency of the model, a relevant
small scaling parameter ε� 1 will be introduced. Contrary to the usual long wave approximation, in the

present setting, this purely geometrical parameter ε = C2
gX depends on the bottom friction scaling C and

the typical wavelength X . Thanks to this parameter, we are able to compute asymptotic expansions of the
free surface H and the section-averaged discharge Q, up to O(ε2). On the one hand, the 1D model will be
consistent up to the zeroth-order if it introduces a O(ε) error on the free surface and the discharge. On the
other hand, the 1D model will be consistent up to the first-order if a O(ε2) error is introduced on the free
surface and the discharge. In particular, we emphasize that the zeroth-order accuracy will be ensured by
a new expression of the 1D friction coefficient. Usually, hydraulic engineering models are able to recover
either free surface or the discharge up to O(ε) by using empirical friction coefficients. Getting an analytic
expression for the 1D friction coefficient that recovers both free surface and discharge up to O(ε) is one of
the new results of this manuscript.

1.1. Structure of the paper

In section 2, we introduce the 2D shallow water model, which we consider as the exact model for the
flow of a meandering river. We write this system in a set of curvilinear coordinates in order to describe
meandering. Then, in order to write a simplified 1D model, we introduce several scaling assumptions and
perform a non-dimensionalization of the 2D shallow water system, which is then averaged across the width
of the channel.

Section 3 is dedicated to carrying out asymptotic expansions of the free surface and the velocity field
in the one-dimensional limit in order to close the averaged shallow water equations. Regarding the free
surface, we show that it varies around an average value. Then, we exhibit expressions of the averaged
discharge, which only depend on geometric terms and on the average free surface. They yield non-standard
kinematic and diffusive wave approximations, which can depend on the slope of the free surface in addition
to the topography slope, and which degenerate to the standard ones when the free surface slope vanishes.
In addition, the influence of the meanders on the water surface is similar to the one obtained in studies
involving the centrifugal force (see for instance [6], Page 447).

In section 4, in the strongly meandering case, we build a zeroth-order shallow water model: the friction
term is built so as to ensure the consistency of the discharge rate to the main order. The structure is
very simple, completely similar to the section-averaged shallow water models found in the literature (see
e.g. [10]). The zeroth-order is achieved solely by manipulating the discharge equation.

In section 5, we propose our new model and analyze its mathematical structure in the case of weakly
meandering channels. It is a four-equation model describing the evolution of the wetted surface, the
discharge rate, the energy and an additional quantity, called “enstrophy”, which accounts for the vorticity
of the flow in the cross-stream direction. This new model provides a first-order accurate description of
the surface elevation and the discharge rate; in addition, it is hyperbolic. Contrary to the zeroth-order
model, here, both zeroth-order and first-order approximations are obtained by introducing a suitable energy
equation. The velocity-distribution coefficients, the Boussinesq coefficient β and the Coriolis coefficients
α, turn out the respectively correspond to the enstrophy and potential variables. As a consequence, this
first-order model is able to overcome the shortcomings of the previous hydraulic engineering models, which
usually set α and β to some constant value.

Finally, in section 6, we summarize the results we have obtained in the previous sections.
The last section of this paper, section 7, is dedicated to a numerical validation of our model. We

compare the accuracy of three section-averaged models: the two (zeroth- and first-order) models we derived
in this paper and a section-averaged shallow water model simply obtained by assuming that the downstream
velocity is constant across the channel section (and which is obviously non consistent for channels that are
not U-shaped).
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1.2. Perspectives

In this paper, we have restricted our attention to fixed topographies. It is of particular interest to
consider this type of model in the presence of sedimentation. In [20, 21], such a problem was considered for
stationary flows in order to determine the mechanisms of migration of meanders. A model was formally
derived and the study was completed with various numerical simulations. However, the asymptotic analysis
was conducted with non consistent assumptions on the velocity profile. A non-stationary model with
sedimentation was derived in [5] but for channels with vertical walls. We expect that our approach can be
extended to transport of sediments in channels with arbitrary cross-sections in a similar way.

Another problem of interest is the coupling between 1D and 2D shallow water models. Here, the goal is
either to carry out a complete modeling of an estuary, see for instance [1], or to model river floods, see for
instance [11]. Our model is built directly from the 2D shallow water equations, which ensures a natural
coupling between the two models.

As mentioned before, more complex phenomena are modeled by enhancing the 2D shallow water
system (1.1) with additional equations (see [14, 22]). It would be of particular interest to derive 1D models
from these enhanced 2D systems, in order to account, for example, for dispersive and dissipative effects.

2. Governing equations

In this section, we consider the two-dimensional shallow water equations with bottom friction




ht +∇∇∇X · (hu) = 0,

ut + u · ∇∇∇Xu + g∇∇∇Xh = g

(
−∇∇∇XZ −

u‖u‖
C(h,X)2

)
,

(2.1)

where g is the gravity constant, h the fluid height, u = (u1, u2) ∈ R2 the fluid velocity and C(h,X)
is the 2D friction model. The unknowns h and u depend on the time variable t and the space vari-
able X = (x1, x2) ∈ R2.

The system (2.1) admits an additional energy balance law:

(E2D)t +∇∇∇X ·
(
u

(
E2D +

1

2
gh2

))
= gh

(
−u · ∇∇∇XZ −

‖u‖3
C(h,X)2

)
.

where the energy E2D is given by E2D =
h

2
‖u‖2 + g

h2

2
. This equation can also be rewritten with a negative

source term:

(E2D + ghZ)t +∇∇∇X ·
(
u

(
E2D + ghZ +

1

2
gh2

))
= −gh ‖u‖3

C(h,X)2
.

We now write the system (2.1) in a reference frame which fits with the geometry of the channel. In
order to study the limit of quasi one-dimensional flows, we write the new system in a non-dimensional form
together with its exact section-averaged version.

2.1. Parameterization of the problem

In order to deal with the meanders of the river, we now introduce a parameterization of the river
bed: for that purpose, we assume that it follows a parameterized curve r : ξ1 7→ ( x̂(ξ1), ŷ(ξ1) ) such
that x̂′(ξ1)2 + ŷ′(ξ1)2 = 1, see Figure 2. Since this relation is satisfied, we introduce a function θ(ξ1) such
that x̂′(ξ1) = cos(θ(ξ1)) and ŷ′(ξ1) = sin(θ(ξ1)).

We then naturally introduce the Frenet reference frame, defined by a vector T(ξ1) tangent to the flow
and a vector N(ξ1) orthogonal to the flow. The tangent vector T(ξ1) is defined as follows:

T(ξ1) :=
r′(ξ1)

‖r(ξ1)‖ = ( cos(θ(ξ1)), sin(θ(ξ1)) ). (2.2)
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In the usual Frenet reference frame, the normal vector N(ξ1) is chosen to be orthogonal to T(ξ1) and
pointing towards the center of the osculating circle of the curve r. This is not desirable in the context of a
meandering river, since the orientation of the frame would sharply change with each meander. Instead, we
define N(ξ1) such that is always pointing towards the left of the river flow, as follows:

N(ξ1) := σ(ξ1)
T′(ξ1)

‖T(ξ1)‖ = (− sin(θ(ξ1)), cos(θ(ξ1)) ), (2.3)

where we have defined
σ(ξ1) := sgn(θ′(ξ1)).

The quantity σ(ξ1) represents the orientation of the meander. Indeed, the flow curves to the left if σ(ξ1) = 1,
and it curves to the right if σ(ξ1) = −1. Note that, contrary to the usual definition of N(ξ1), the equa-
tions (2.2) and (2.3) also define the reference frame for a curve with vanishing curvature, i.e. when θ′(ξ1) = 0,
see Figure 2.

We define the curvature radius R(ξ1) as follows:

T′(ξ1) = |θ′(ξ1)|N(ξ1) :=
1

R(ξ1)
N(ξ1), i.e. R(ξ1) =

1

|θ′(ξ1)| .

Note that this curvature radius tends to infinity when θ′(ξ1) vanishes. Since this situation correspond to a
straight river with no meanders, this behavior makes sense.

We now introduce the bijective change of variables from the Euclidean space to the Frenet reference
frame. A point ξξξ = (ξ1, ξ2) of the Frenet reference frame transforms into a point X = (x1, x2) of the
Euclidean space according to X(ξ1, ξ2) = r(ξ1) + ξ2N(ξ1). In what follows, we introduce the bijective
change of variables ξξξ = a(X) from the Euclidean space to the Frenet reference frame, whose inverse function
is defined by

a−1(ξ1, ξ2) =

(
x1(ξ1, ξ2)
x2(ξ1, ξ2)

)
=

(
x̂(ξ1)− ξ2 sin(θ(ξ1))
ŷ(ξ1) + ξ2 cos(θ(ξ1))

)
.

In this reference frame, we assume that the bottom topography is parameterized by (see Figure 1)

Z(x1(ξ1, ξ2), x2(ξ1, ξ2)) = b0(ξ1) + φ(ξ1, ξ2), φ(ξ1, 0) = 0, ∀ξ1 ∈ R.

Now, we rewrite the shallow water equation system (2.1) in this new set of coordinates. For that
purpose, we denote by

F(ξ1, ξ2) := A−1(ξ1, ξ2) =




cos(θ(ξ1))

(
1− ξ2

σ(ξ1)

R(ξ1)

)
− sin(θ(ξ1))

sin(θ(ξ1))

(
1− ξ2

σ(ξ1)

R(ξ1)

)
cos(θ(ξ1))




the Jacobian matrix of the change of variables a−1(ξ1, ξ2) defined above. Note that, if σ(ξ1) vanishes, i.e.
if the curve becomes a straight line, this Jacobian matrix simply becomes the matrix describing a rotation
of angle θ(ξ1) with respect to the Euclidean frame. We also set

|F| := det(F) = 1− ξ2
σ(ξ1)

R(ξ1)
.

For the change of variables to be bijective, we need |F| > 0. This is valid as soon as |ξ2| < R(ξ1).
Assuming that |ξ2|/R(ξ1) > |F|m, we get 1 − |F|m < |F| < 1 + |F|m. This inequality is satisfied in the
usual context of a meandering river as represented by Figure 2. More generally, the inequality imposes
an upper bound on ξ2, which may prevent us from considering a river with a strong lateral overflow,
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θ′(ξ1) < 0, i.e. σ(ξ1) = −1

T(ξ1)

N(ξ1)

R(ξ1)

ξ 2
=
0

ξ 2
=
Ξ
+

ξ 2
=
Ξ
−

θ′(ξ1) = 0, i.e. σ(ξ1) = 0

T(ξ1) N(ξ1)

θ′(ξ1) > 0, i.e. σ(ξ1) = 1

T(ξ1)

N(ξ1)

r(ξ1)

x2

x1

�z

Figure 2: Sketch of a meandering river viewed from above. The Frenet reference frame (T(ξ1),N(ξ1)) is displayed for several
values of ξ1. The left bank of the river is defined by ξ2 = Ξ+, and the right bank is defined by ξ2 = Ξ−. Note that the vector
N(ξ1) always points towards the left bank of the river. The right meander, straight section and left meander respectively
correspond to θ′(ξ1) < 0, θ′(ξ1) = 0 and θ′(ξ1) > 0.

unless the geometry specifically takes this situation into account. However, in this case, the flow becomes
two-dimensional rather than one-dimensional, which falls out of the scope of the current study.

We introduce the fluid velocity v = (v1, v2) in the Frenet frame, defined by u = F(ξ1, ξ2)v. We denote
by A(x1, x2) the Jacobian matrix of the change of variables a(x1, x2). We then have the following chain
rules:

Lemma 2.1. For any vector fields z and v = Au, the differential operators transform according to

|F|∇∇∇X · z =∇∇∇ξξξ · (|F|Az), u · ∇∇∇X = v · ∇∇∇ξξξ, ∇∇∇X = AT∇∇∇ξξξ.

Let us rewrite (2.1) in this new system of coordinates. We first consider the mass conservation law.
According to Lemma 2.1, we get:

|F|ht = −|F|∇∇∇X · (hu) = −∇∇∇ξξξ · (|F|Au) = −∇∇∇ξξξ · (|F|hv).

We introduce the notation h̃ = |F|h. The mass conservation law in this new system of coordinates reads

h̃t +∇∇∇ξξξ · (h̃v) = 0.
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Let us now consider the discharge balance law. Using Lemma 2.1, we get

vt +Av · ∇∇∇ξξξ (A−1v) + g AAT∇∇∇ξξξ (h+ Z) = − g|A−1v|
C(h, a(X))2

v.

Straightforward but tedious computations that AAT = diag(|F|−2, 1) and

Av · ∇∇∇ξξξ
(
A−1v

)
= v · ∇∇∇ξξξv + ΓΓΓ(v), where ΓΓΓ(v) =




v2
1

R(ξ1)

ξ2R
′(ξ1)

R(ξ1)− ξ2
− v1v2

R(ξ1)

2R(ξ1)

σ(ξ1)R(ξ1)− ξ2
v2

1

R(ξ1)

σ(ξ1)R(ξ1)− ξ2
R(ξ1)


.

The additional term ΓΓΓ represents centripetal forces. In this new reference frame, the shallow water system
reads:





h̃t + (h̃v1)ξ1 + (h̃v2)ξ2 = 0,

(v1)t + v1(v1)ξ1 + v2(v1)ξ2 +
v2

1

R

ξ2R
′

|F|R −
2σv1v2

|F|R +
g

|F|2 (h+ Z)ξ1 = −gv1

√
|F|2v2

1 + v2
2

C(h, a(X))2
,

(v2)t + v1(v2)ξ1 + v2(v2)ξ2 + σ|F|v
2
1

R
+ g(h+ Z)ξ2 = −gv2

√
|F|2v2

1 + v2
2

C(h, a(X))2
,

(2.4)

where the dependency in ξ1 of R(ξ1) and σ(ξ1) is implicit.
The energy equation reads, in that setting,

(|F|E2D)t +∇∇∇ξξξ ·
(
|F|v

(
E2D +

1

2
gh2

))
= gh̃

(
−v · ∇∇∇Z − |A−1v|3

C(h, a(X))2

)
,

or, equivalently, to highlight that the energy is only dissipated through friction:

(|F|(E2D + ghZ))t +∇∇∇ξξξ ·
(
|F|v

(
E2D + ghZ +

1

2
gh2

))
= −gh̃ |A−1v|3

C(h, a(X))2
.

2.2. Non-dimensional form of the system

Next, in order to study the quasi one-dimensional flow limit, we write the system (2.4) in a non-
dimensional form. For that purpose, we introduce the following reference scales and rescaled quantities,
denoted with a bar:

v1 =: Uv1, v2 =: Vv2, h =: Hh, ξ1 =: X ξ1, ξ2 =: Yξ2,

where U is the typical fluid velocity in the downstream direction whereas V is the typical fluid velocity
in the cross-stream direction. The height H represents the typical fluid height, whereas Y is the typical
channel width and X is a characteristic wavelength. We also introduce the typical time scale T = X/U .
The non-dimensional mass conservation law then reads

(|F|h)t + (|F|hv1)ξ1 +
Rv
Rl

(|F|hv2)ξ2 = 0, with Rv =
V
U and Rl =

Y
X .

In what follows, we assume Rv = Rl in order to keep the mass conservation law unchanged. We also
take R =: RR, where R is the typical curvature radius found in the meanders of the river, and we set

Ry =
Y
R .
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In that setting, noting that σ is already a non-dimensional quantity, we have

|F| = 1−Ry ξ2
σ(ξ1)

R(ξ1)
.

We scale the bottom topography as follows:

b0

(
ξ1
X

)
=: Bb0(ξ1), φ

(
ξ1
X ,

ξ2
Y

)
=: Hφ(ξ1, ξ2).

Note that the scaling parameter of the transverse topography φ is H, that is to say we take φ to be of the
same order as the water height h. According to Figure 1, this scaling is valid. Therefore, the rescaling of
the topography reads:

Z

(
ξ1
X ,

ξ2
Y

)
=: Bb0(ξ1) +Hφ(ξ1, ξ2).

Note that the quantity h+ φ represents the non-dimensional free surface of the water flow.
Finally, we scale the bottom friction as follows:

C

(
h

H ,
ξ1
X ,

ξ2
Y

)
=: C0C(h, ξ1, ξ2).

The non-dimensional form of the shallow water system (2.4) therefore reads:




(|F|h)t + (|F|hv1)ξ1 + (|F|hv2)ξ2 = 0, (2.5a)

(v1)t + v1(v1)ξ1 + v2(v1)ξ2 +
Ryv1

|F|R

(
ξ2R

′

R
v1 − 2σv2

)
+

1

|F|2F 2
(h+ φ)ξ1

=
−1

δF 2

(
I0b0

′

|F|2
+ J0

v1

C2

√
|F|2v1

2 +R2
l v2

2

)
,

(2.5b)

(v2)t + v1(v2)ξ1 + v2(v2)ξ2 +
Ry
R2
l

σ|F|v1
2

R
+

1

R2
l F

2
(h+ φ)ξ2 = − J0

δF 2

v2

C2

√
|F|2v1

2 +R2
l v2

2, (2.5c)

where R′ = Rξ1 , where we have set the scaling parameters

I0 =
B
X , J0 =

U|U|
C2

0

, δ =
H
X ,

1

F 2
=
gH
U2

, (2.6)

and where the dependency in h and ξξξ of the friction law C is implicit. The above non-dimensional parameters
correspond to the large-scale typical slope I0, the friction slope J0 (which we assume to be different from I0
in order to handle very low large-scale slopes, present for instance in estuary configurations), the long wave
parameter δ (which is small in the usual shallow water context), and the Froude number F . Note that the
equation (2.5) has been written using only the non-dimensional parameters I0, J0, δ, F , Rl and Ry. These
six non-dimensional parameters are independent, and they characterize the scales under consideration.

To highlight the variations with respect to ξ2 of the free surface h+ φ, we write the last equation as

(h+ φ)ξ2 +Ryσ|F|F 2 v1
2

R
= −J0R

2
l

δ

v2

C2

√
|F|2v1

2 +R2
l v2

2 −R2
l F

2
(

(v2)t + v1(v2)ξ1 + v2(v2)ξ2

)
. (2.7)

The non-dimensional form of the energy is E2D =
h

2

(
|F|2v1

2 +R2
l v2

2
)

+
h2

2F 2
, and the energy equation

reads

(|F|E2D)t +∇∇∇ξξξ ·
(
|F|v

(
E2D +

h2

2F 2

))
=
|F|h
δF 2

(
−I0b0′v1 − δv · ∇∇∇ξξξφ− J0

|F|2v1
2 +R2

l v2
2)3/2

C2

)
, (2.8)
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or, equivalently, to highlight that the energy dissipation comes from the friction term:
(
|F|
(
E2D +

h

F 2

(
I0
δ
b0 + φ

)))

t

+∇∇∇ξξξ ·
(
|F|v

(
E2D +

h

F 2

(
I0
δ
b0 + φ+

h

2

)))

= − J0

δF 2
|F|h (|F|2v1

2 +R2
l v2

2)3/2

C2 .

(2.9)

In what follows, we will not revert back to the dimensional quantities. For the sake of simplicity in the
notations, from now on, the non-dimensional quantities will be written without bars.

2.3. Transverse averaging

Recall that the ultimate goal of these developments is to provide a suitable 1D section-averaged model
to approximate the full 2D system (2.5). To that end, we need to write an average of the 2D system over
the width of the channel. In what follows, we denote by Ξ−(ξ1, t) < Ξ+(ξ1, t) the positions of the edges
of the river. Either the channel is walled, and the river sides are the same as the given channel sides, or
the channel does not have walls, like in Figure 1. In this second case, Ξ− and Ξ+ are defined implicitly as
solutions of

h(ξ1,Ξ−(ξ1, t), t) = 0, h(ξ1,Ξ+(ξ1, t), t) = 0, ∀t > 0, ∀ξ1 ∈ R.
These are smooth functions of ξ1 and t as long as φξ2(ξ1,Ξ±(ξ1, t)) 6= 0. This assumption is satisfied in the
usual channels, for instance those with a trapezoidal or a triangular section. From now on, we consider this
assumption to be satisfied. As a consequence, averaging the 2D system across the width of the channel
consists in integrating the governing 2D equations between Ξ− and Ξ+. Note that it is possible to define
the centerline of the channel such that Ξ− = −Ξ+. However, for the sake of generality, we do not make
this assumption in the forthcoming developments.

We now apply this integration procedure to the equations (2.5a), (2.5b) (multiplied by h̃) and (2.8), i.e.
the mass, x-discharge and energy equations of the non-dimensional 2D shallow water equations, to get:




St +Qξ1 = 0, (2.10a)

Qt +

(∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

ξ1

+
1

F 2

∫ Ξ+

Ξ−

h̃

|F|2 (h+ φ)ξ1 dξ2 +
Ry
R(ξ1)

∫ Ξ+

Ξ−

hv1

(
ξ2v1

R′(ξ1)

R(ξ1)
− 2σv2

)
dξ2

= − I0
δF 2

∫ Ξ+

Ξ−

h̃

|F|2 b
′
0 dξ2 −

J0

δF 2

∫ Ξ+

Ξ−

|F|hv1

√
|F|2v2

1 +R2
l v

2
2

C2
dξ2,

(2.10b)

(∫ Ξ+

Ξ−

|F|E dξ2
)

t

+

(∫ Ξ+

Ξ−

|F|v1

(
E +

h2

2F 2

)
dξ2

)

ξ1

=
1

δF 2

∫ Ξ+

Ξ−

|F|h
(
−I0b′0v1 − δv · ∇∇∇ξξξφ− J0

(|F|2v2
1 +R2

l v
2
2)3/2

C2

)
dξ2,

(2.10c)

where we have defined the wetted section S and the average discharge Q by:

S =

∫ Ξ+

Ξ−

h̃ dξ2 and Q =

∫ Ξ+

Ξ−

h̃v1 dξ2. (2.11)

3. Asymptotic expansions

We have exhibited a natural parameter in the system, which we denote by

ε :=
δF 2

J0
. (3.1)
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Recall the definitions of δ, F 2 and J0, given by (2.6) with respect to the scaling parameters. We note
that F 2/J0 is a non-dimensional number which does not depend on the flow velocity U , and therefore it is
purely geometric. Then, the definition (3.1) of ε reduces to

ε =
C2

0

gX .

Note that C2
0/g has the dimension of a length. Therefore, the parameter ε is nothing but a geometrical

term linking the friction scaling with the typical wavelength.
In this section, we expand the fluid velocity field, in the case where ε � 1, F 2 ≤ O(1), I0 ≤ O(1),

δ/J0 ≤ O(1), and in the quasi-dimensional setting Rl = O(ε). Note that the condition Rl = O(ε) is a
geometric hypothesis, and it is satisfied in the regimes under consideration. We first consider the transverse
equilibrium and show that, asymptotically, the free surface is horizontal. Then, we consider the zeroth-order
longitudinal equilibrium where the flow is dominated by the competition between the gravity effects and
the bottom friction, and for arbitrary meanders, i.e. Ry ≤ O(1). Afterwards, we go a step further in the
case where Ry = O(ε) to exhibit the complete first-order asymptotic regime. Finally, we compute the
first-order surelevation of the free surface for a meandering river.

We can justify the regime ε� 1 as follows. Usually, the friction scaling C2
0 will be defined according

to the Manning-Strickler law, to get C2
0 = K2

sH4/3. For standard values of Ks around 30m1/3.s-1, H
around 2m and g around 10m.s-2, we show that ε ' 100H

X = 100δ. Therefore, in the configurations of
interest, the parameter ε will be considered small as soon as the typical wavelength X is large enough with
respect to roughly 100H. Moreover, according to the definition (3.1) of ε, we get ε ' 100δ is equivalent
to F 2 ' 100J0, which means that F 2 should be small enough with respect to roughly 100J0 for ε to be
small. Furthermore, we will consider the geometric hypothesis Rl = O(ε), which here means that Y should
be small enough with respect to 100H for ε to be small.

The main goal of this section is to provide asymptotic expansions of the quantities that will be used in
the forthcoming 1D models. Therefore, we exhibit expansions of the free surface h+ φ and of the average
discharge Q with respect to the scaling parameters. Over the course of the section, we prove that

Q(ξ1, t) = Q(0)(ξ1, t) + εQ(1)(ξ1, t) +O(ε2),

(h+ φ)(ξ1, ξ2, t) = H(ξ1, t) + F 2∆H(ξ1, ξ2, t) +O(εF 2),

and we exhibit explicit expressions for Q(0), Q(1) and ∆H.
Note that Q(0) and Q(0) + εQ(1) respectively give models of kinematic and diffusive waves, respectively

defined by St +Q
(0)
ξ1

= 0 and St + (Q(0) + εQ(1))ξ1 = 0. These models will be nonstandard. Indeed, the
standard models are given by

St + (Q
(0)
SW )ξ1 = 0 for the kinematic waves model,

St + (Q
(0)
SW + εQ

(1)
SW )ξ1 = 0 for the diffusive waves model,

where Q
(0)
SW and Q

(1)
SW are the zeroth- and first-order averaged discharge rates for the classical 1D shallow

water system (1.2) with β = 1. They are given, in non-dimensional form, by

Q
(0)
SW = sgn(I)

√
|I| cSW and Q

(1)
SW = −Q

(0)
SW

2SI

(
(Q

(0)
SW )t +

(
(Q

(0)
SW )2

S

)

x

+
SHx

F 2

)
. (3.2)

3.1. Zeroth-order expansions

In this first part of Section 3, we consider a river with arbitrary meanders, i.e. Ry ≤ O(1).The goal is
to exhibit the zeroth-order asymptotic expansion in ε satisfied by the unknowns of the system.
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3.1.1. Transverse equilibrium

In the asymptotic regime under consideration, the equation (2.7) for the free surface elevation reads

δ

J0
(h+ φ)ξ2 = O

(
δF 2

J0
Ry +R2

l

(
1 +

δF 2

J0

))
= O

(
δF 2

J0
Ry +R2

l

)
.

In this framework, there exists a new unknown function H(ξ1, t), which corresponds to an average free
surface, such that

δ

J0
(h(ξ1, ξ2, t) + φ(ξ1, ξ2) ) =

δ

J0
H(ξ1, t) +O(εH), (3.3)

where we have set

εH =
δF 2

J0
Ry +R2

l = O(ε)� 1.

Thus, the asymptotic expansion (3.3) means that the free surface h+ φ is flat (that is to say, it does not
depend on ξ2) up to O(F 2Ry).

3.1.2. Longitudinal equilibrium

Let us now carry out an asymptotic expansion of the fluid velocity field (v1, v2). The longitudinal
discharge equation (2.5b) can be written as

δ

J0

(h+ φ)ξ1
|F|2 +

I0
J0

b′0
|F|2 +

v1

√
|F|2v2

1 +R2
l v

2
2

C2

=
δF 2

J0

(
(v1)t + v1(v1)ξ1 + v2(v1)ξ2 +

Ryv1

|F|R(ξ1)

(
ξ2R

′(ξ1)

R(ξ1)
v1 − 2v2

))
.

(3.4)

For the sake of clarity, we introduce the notation

ε̃ =
δF 2

J0
(1 +Ry) +R2

l = O(ε)� 1.

Recalling the definition (3.3) of the average free surface H, the equation (3.4) reads, in the asymptotic
regime under consideration, as follows:

1

|F|2
(
I0
J0
b′0 +

δ

J0
Hξ1

)
+
|F|v1|v1|
C2

= O(ε̃). (3.5)

The equation (3.5) is nothing but the definition of a uniform flow (see [6], Chapter 5), where the topography
and the friction are balanced. Assuming the asymptotic expansion

v1(ξ1, ξ2, t) = v
(0)
1 (ξ1, ξ2, t) +O(ε̃)

on the longitudinal velocity, the equation (3.5) can be solved, to get

v
(0)
1 (ξ1, ξ2, t) =

Λ(ξ1, t)√
|Λ(ξ1, t)|

C
(
ξ1, ξ2, H(ξ1, t)− φ(ξ1, ξ2)

)

|F|(ξ1, ξ2)3/2
, (3.6)

where we have defined the corrected slope

Λ(ξ1, t) = − I0
J0
b′0(ξ1)− δ

J0
Hξ1(ξ1, t). (3.7)
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The corrected slope Λ, rather than the main longitudinal slope b′0(ξ1), is involved in all asymptotic
expansions. The global gravity effects, both stemming from the slope of the topography and the slope of
the free surface, are merged in Λ. Let us remark that the choice I0 6= J0, here, allows us to consider a
flow driven mainly by the free surface slope in the case of a channel with a very weak slope (a situation
encountered for instance in an estuary). Note that we need Λ = O(1), i.e. to make sure that Λ does

not contain any term in O(1/ε), for the asymptotic expansion v
(0)
1 to be well-defined. According to the

definition (3.7), a sufficient condition for Λ = O(1) is to impose I0
J0

= O(1) and δ
J0

= O(1). This means that
the friction slope should not be much smaller than the topography slope. In addition, in the specific case
where I0 6= 0, this also means that δ

I0
= O(1), which is yet another purely geometric condition, rewritable

as HB = O(1).

From this expansion, we can deduce an expansion of the transverse velocity v2 by writing v2 = v
(0)
2 +O(ε̃)

and using the mass conservation law:
(
h̃v

(0)
2

)
ξ2

= −h̃t −
(
h̃v

(0)
1

)
ξ1

+O(ε̃).

Then, we get

h̃v
(0)
2 (ξ1, ξ2, t) = −

∫ ξ2

Ξ−(ξ1,t)

(
h̃t −

(
h̃v

(0)
1

)
ξ1

)
(ξ1, η, t)dη +O(ε̃).

Finally, note that the width-integrated longitudinal discharge Q also satisfies Q = Q(0) +O(ε̃). Arguing

the definition (3.6) of v
(0)
1 , we get the following expansion:

Q(0) :=

∫ Ξ+

Ξ−

h̃v
(0)
1 dξ2 =

∫ Ξ+

Ξ−

√
|Λ| sgn(Λ)

|F|hC
|F|
√
|F|

dξ2.

Noting that Λ does not depend on ξ2, the definition of Q(0) can be simplified as follows:

Q(0) =
√
|Λ| sgn(Λ)

∫ Ξ+

Ξ−

hC√
|F|

dξ2. (3.8)

Note that Q(0) depends only on geometric quantities and on H. Since Q(0) comes from the definition

of v
(0)
1 , which stems for the definition (3.5) of a uniform flow, it turns out that Q(0) represents the averaged

discharge of a uniform flow. The expression of Q(0) gives the discharge of a uniform flow, and it will
therefore be used in the definition of the averaged friction term in the model developed in the next section.

Moreover, the kinematic waves model St + Q
(0)
ξ1

= 0 turns out to be nonstandard as soon as Hξ1 6= 0.

Indeed, in usual kinematic waves models, Q(0) given by (3.2) depends on H, see for instance [16]. Here,
because of Λ, Q(0) depends on both H and Hξ1 . Since we consider that the effects of the free surface slope
are relevant, it makes sense that these effects appear in the kinematic wave approximation.

3.2. First-order expansion

So far, we have provided a zeroth-order expansion of the unknowns of the problem, with respect to εH
and ε̃. Let us now consider the next order. If we consider the general case Ry = O(1), going further to a
first-order expansion of the longitudinal velocity would be troublesome since, in this case, εH = O(ε). As a
result, we would get a term in εRy in the first-order expansion of H, which would make the computations
barely tractable.

Therefore, we first consider the case Ry = O(ε), i.e. that of a weakly meandering river. In this case,
we derive the complete first-order expansion of the flow, that is to say we compute the first-order free
surface and longitudinal velocity. Note that the hypothesis Ry = O(ε) is nothing but a geometric condition,
satisfied as soon as the river is not strongly meandering. Then, we go back to the case Ry = O(1), but only
to compute the first-order surelevation of the water surface.
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3.2.1. Weakly meandering case: free surface and longitudinal velocity

Let us consider a weakly meandering river, given by Ry = O(ε). Therefore, since we still have Rl = O(ε),
we get εH = O(ε2) and ε̃ = O(ε). In this context, we are able to write a tractable first-order expansion of
the longitudinal fluid velocity.

By rewriting the equation (3.4) and by taking into account these asymptotic expansions, we get:

|F|(v(0)
1 |v

(0)
1 | − v1|v1|)
C2

= ε
(

(v1)t + v1(v1)ξ1 + v2(v1)ξ2

)
+O(ε2).

Therefore, if v1 = v
(0)
1 + εv

(1)
1 +O(ε2), we immediately obtain:

v
(1)
1 = −|F|

2v
(0)
1

2Λ

((
v

(0)
1

)
t

+ v
(0)
1

(
v

(0)
1

)
ξ1

+ v
(0)
2

(
v

(0)
1

)
ξ2

)
. (3.9)

Equipped with the above formula for v
(1)
1 , we are now in a position to compute the first-order expansion

of Q, defined by Q(1) =
∫ Ξ+

Ξ−
h̃v

(1)
1 dξ2. Using the chain rule, arguing the mass conservation equation and

performing straightforward computations, we get

Q(1) = −
∫ Ξ+

Ξ−

|F|2
4Λ

(
h̃
(
v

(0)
1

)2
)

t

dξ2 −
∫ Ξ+

Ξ−

|F|2
4Λ

(
h̃
(
v

(0)
1

)3
)

ξ1

dξ2.

Remark that |F| = 1 +O(ε). Therefore, the following expression of Q(1) is equivalent to the above formula,
up to O(ε):

Q(1) =
−1

4Λ



(∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

t

+

(∫ Ξ+

Ξ−

h̃v3
1 dξ2

)

ξ1


+O(ε). (3.10)

Note that, like Q(0), Q(1) only depends on geometric quantities and on H (through v
(0)
1 ). In addition,

note that the diffusive waves model St + (Q(0) + εQ(1))ξ1 = 0 also turns out to be nonstandard, like the
kinematic waves model. Here, Q(1) depends on H, on Hξ1 through Λ, on Hξ1ξ1 through Λξ1 and on Hξ1ξ1ξ1

through Λt, instead of only depending on H and Hξ1 like in (3.2).

3.2.2. Strongly meandering case: free surface surelevation

We now consider a strongly meandering river, where Ry = O(1). We still assume Rl = O(ε). Therefore,
the free surface equation (2.7) reads as follows:

δ

J0
(h+ φ)ξ2 +Ryσ|F|ε

v2
1

R
= O(εF 2).

We once again introduce the average free surface H = H(ξ1, t), to write:

δ

J0
(h+ φ) =

δ

J0
H −

∫ ξ2

0

Ryσ|F|ε
v2

1

R
dη +O(εF 2).

Since v1 = v
(0)
1 +O(ε), where v

(0)
1 is given by (3.5), we define the water surface surelevation ∆H(ξ1, ξ2, t)

as follows:

δ

J0
(h+ φ) =

δ

J0
H + ε∆H +O(εF 2), where ∆H = −σRy

R
|Λ|
∫ ξ2

0

C(H − φ)

|F|2 dη. (3.11)

By inspection, we note that ∆H vanishes as soon as the river is straight, i.e. when σ = 0. In addition,
since the only quantities whose sign is nonconstant are ξ2 and σ, we note that the sign of the free surface
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surelevation ∆H given by (3.11) is the same as the sign of −σξ2. According to Figure 2, this relation
means that the water surface is higher on the side of the river opposite the meander, and lower close to
the meander. Indeed, it stands to reason that the centrifugal force within the meander will drive the flow
towards the outer region of the meander. This behavior is consistent with the experiments and subsequent
open-channel hydraulics models (see for instance [6], Page 447).

4. Zeroth-order two-equation model for a strongly meandering river

In this Section, we assume that the river is strongly meandering, meaning that Ry ≤ O(1), and we
derive a 1D section-averaged model which is consistent up to O(ε) with the 2D shallow water system. The
variables of this new model should only depend on t and ξ1, although an underlying 2D dependency will
remain for known quantities (e.g. the shape of the channel or the friction distribution).

We start with the section-averaged mass and x-discharge equations (2.10a) – (2.10b). The mass
conservation equation is already written in a 1D form, with the 1D variables S and Q, and there is nothing
further to do. To get a zeroth-order model, the discharge equation of the 1D model must be consistent
with (2.10b) up to O(1), since (2.10b) contains 1

ε . In this context, since Λ does not depend on ξ2, the
equation (2.10b) rewrites as follows after multiplying by ε and rearranging the terms:

Λ

∫ Ξ+

Ξ−

h̃

|F|2 dξ2 −
∫ Ξ+

Ξ−

|F|hv1|v1|
C2

dξ2 = ε


Qt +

(∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

ξ1


+O(ε). (4.1)

The higher-order terms of the above equation correspond to the geometry and friction terms, and they lie in
its left-hand side. To write a fully 1D model, we need to replace the integrals involving the 2D variable v1,
which depends on ξ2, by truly 1D consistent approximations. Therefore, the first step to writing a model
with 1D variables is to derive a friction model, consistent up to O(ε).

We wish to approximate the left-hand side as follows:

− Λ

∫ Ξ+

Ξ−

h̃

|F|2 dξ2 −
∫ Ξ+

Ξ−

|F|hv1|v1|
C2

dξ2 = Sm(Λ− Jm) +O(ε), (4.2)

where Sm is defined by

Sm :=

∫ Ξ+

Ξ−

h̃

|F|2 dξ2,

and where Jm is a 1D friction model, which we take according to the usual hydraulic engineering expressions:

Jm :=
Q|Q|

(Ch)2
mRhS

2
,

where (Ch)m is a 1D friction coefficient whose expression will be computed to ensure consistency.
Combining (4.1) and (4.2) with the expression of Jm, we obtain that the following equality has to be

satisfied by the friction coefficient (Ch)m:

Λ =
Q|Q|

(Ch)2
mRhS

2
+O(ε).

Since we also want to ensureQ = Q(0)+O(ε) for our model to be consistent, we can replaceQ withQ(0) (given
by (3.8)) in the above equality, to choose the following friction coefficient:

(Ch)2
m =

Q(0)|Q(0)|
RhS2Λ

=
1

RhS2

(∫ Ξ+

Ξ−

hC√
|F|

dξ2

)2

. (4.3)
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Note that, despite the expression of Q(0) containing the differential term Hξ1 , present in Λ, the resulting
friction coefficient (Ch)m does not contain any differential terms. It is therefore a suitable component of
the friction source term. We also note that the 1D friction model reads as follows:

Jm = Λ
Q|Q|

Q(0)|Q(0)| = Q|Q|
(∫ Ξ+

Ξ−

hC√
|F|

dξ2

)−2

. (4.4)

The discharge equation (4.1) then rewrites:

Qt +

(∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

ξ1

=
1

ε
S(Λ− Jm) +O(1). (4.5)

The Λ in the source term contains the differential term Hξ1 , which should be contained in the flux.
Introducing the longitudinal slope I as

I = − I0
J0
b′0,

we note that Λ = I − δ
J0
Hξ1 , and we are thus able to regroup the differential terms in the left-hand

side of (4.5). Finally, by analogy with the classical shallow water system in (S,Q) variables, let us

approximate
∫ Ξ+

Ξ−
h̃v2

1 dξ2 with Q2

S , which is valid up to O(1). The complete zeroth-order 1D model for a

meandering river thus reads:




St +Qx = 0

Qt +

(
Q2

S

)

ξ1

+
SHξ1

F 2
=

1

ε
S(I − Jm).

(4.6)

This is the canonical form of section-averaged shallow water equations found in the literature: see
for instance [6, 27] and references therein. We removed O(1) terms accounting for the influence of the
meandering in order to get a simple formulation of the shallow water model. However, the form of the
source term ensures the consistency of this shallow water model up to order O(ε) with the 2D shallow
water equations, which is far from being obvious for other similar models. By construction, our model
conserves the fluid mass and is consistent up to O(ε) with the 2D model in the asymptotic regime under
consideration. In addition, its homogeneous form is hyperbolic, by analogy with the classical shallow water
model in (S,Q) variables.

Thus, the complexity of the model does not lie in the form of the equations (4.6), which are nothing
but the classical mass and discharge equations of the usual section-averaged shallow water equations.
Rather, the complexity is in the expression of the friction model Jm, and more specifically in the friction
coefficient (Ch)m, given by (4.3). For U-shaped channels with uniform friction, straightforward computations
show that this friction coefficient is equivalent to the usual hydraulic engineering ones. For a non-uniform
geometry or friction, this zeroth-order coefficient gives a new formula to derive a 1D friction model. In any
case, this friction coefficient ensures that the uniform and stationary flows are correctly captured by the
model (4.6).

Even though this model does not capture the first-order variations of the section-averaged discharge, it
is able to take into account the water surface surelevation. Indeed, from the definition (2.11) of the wetted

section S =
∫ Ξ+

Ξ−
h̃ dξ2, we get:

S = H

∫ Ξ+

Ξ−

|F| dξ2 −
∫ Ξ+

Ξ−

|F|φdξ2 + F 2

∫ Ξ+

Ξ−

|F|∆H dξ2 +O(εF 2), (4.7)

where the surelevation ∆H is given by (3.11). All the terms in the above equality are geometrical, so it is
possible to compute S from H and H from S up to O(εF 2). However, in general, the computations require
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a nonlinear solver since ∆H depends nonlinearly on H. Let us note that, for a U-shaped channel, the
following equality holds:

|F|∆H = −σ Ry
R
|Λ|C(H) ξ2.

Thus, we immediately get, for a U-shaped channel where Ξ− = −Ξ+,

∫ Ξ+

Ξ−

|F|∆H dξ2 = 0.

The wetted section given by (4.7) is then very easy to compute for a U-shaped channel. Furthermore, tests

made on several channel shapes (circular, trapezoidal, . . . ) have all shown that the
∫ Ξ+

Ξ−
|F|∆H dξ2 is

always very small. It should therefore be safe to neglect this term even for non-U-shaped channels. As a
consequence, the 1D model (4.6), despite being only zeroth-order accurate on the averaged discharge, is
able to compute the water surface surelevation up to first-order accuracy with an a posteriori treatment of
the zeroth-order free surface.

5. First-order four-equation model for a weakly meandering river

We now assume that the river is weakly meandering, meaning that Ry = O(ε). The goal of this section is
to derive a suitable 1D model, consistent up to first-order (i.e. up to O(ε2)) with the 2D system (2.5) – (2.8).
Similarly to the strongly meandering case, the variables of this new model should only depend on t and ξ1.

To that end, we start with the section-averaged system (2.10), and we introduce a relevant friction
model as well as new 1D variables. Then, we propose an Euler-like four-equation model to satisfy the
asymptotic regime under consideration. Finally, we exhibit some mathematical properties satisfied by this
new system.

5.1. Consistent section-averaged system

To consider a first-order model, we set the forthcoming developments in the context of Section 3.2,
i.e. we assume that Rl = O(ε) and Ry = O(ε). In this case, we have |F| = 1 +O(Ry) = 1 +O(ε), and

thus h̃ = h+O(ε). These remarks allow us to write the following asymptotic expansion of the integrated
system (2.10):





St +Qξ1 = 0, (5.1a)

Qt +

(∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

ξ1

=
1

ε

(
Λ

∫ Ξ+

Ξ−

h̃

|F|2 dξ2 −
∫ Ξ+

Ξ−

|F|h̃v1|v1|
C2

dξ2

)
+O(ε), (5.1b)

(∫ Ξ+

Ξ−

1

2
h̃v2

1 dξ2

)

t

+

(∫ Ξ+

Ξ−

1

2
h̃v3

1 dξ2

)

ξ1

=
1

ε

(
ΛQ−

∫ Ξ+

Ξ−

h̃v1|F|3v1|v1|
C2

dξ2

)
+O(ε). (5.1c)

These equations can be rewritten to introduce the so-called velocity-distribution terms α and β, see
for instance [6], Page 27. The Boussinesq coefficient β is a correction term in the discharge flux, and the
Coriolis coefficient α is a correction of the energy flux. These non-dimensional coefficients are defined as
the following ratios:

β =

∫ Ξ+

Ξ−

h̃v2
1 dξ2

1

S

(∫ Ξ+

Ξ−

h̃v1 dξ2

)2 =

∫ Ξ+

Ξ−

h̃v2
1 dξ2

Q2

S

and α =

∫ Ξ+

Ξ−

h̃v3
1 dξ2

1

S2

(∫ Ξ+

Ξ−

h̃v1 dξ2

)3 =

∫ Ξ+

Ξ−

h̃v3
1 dξ2

Q3

S2

. (5.2)
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Introducing the averaged velocity U defined by Q = SU , the system (5.1) can thus be rewritten with the
velocity-distribution coefficients, as follows:





St +Qξ1 = 0,

Qt +
(
βSU2

)
ξ1

=
1

ε

(
Λ

∫ Ξ+

Ξ−

h̃

|F|2 dξ2 −
∫ Ξ+

Ξ−

|F|h̃v1|v1|
C2

dξ2

)
+O(ε),

(
1

2
βSU2

)

t

+

(
1

2
αSU3

)

ξ1

=
1

ε

(
ΛQ−

∫ Ξ+

Ξ−

h̃v1|F|3v1|v1|
C2

dξ2

)
+O(ε).

Usually, the terms α and β are given an empiric constant value, which depends on the shape of the
channel (see [6], Page 28). Instead, we consider these terms an unknowns in the forthcoming developments,
and we provide analytic expressions for their asymptotic expansions.

The goal of the remainder of this section is to propose a 1D model that is first-order accurate with
respect to the small parameter ε. That is to say, contrary to Section 4 where we had the zeroth-order
expansion Q = Q(0) +O(ε), we now wish to recover a higher accuracy: Q = Q(0) + εQ(1) +O(ε2).

In order to address this issue, we first consider a zeroth-order approximation of the discharge equation,
like in Section 4. This approximation is obtained by defining a relevant friction model. Equipped with this
friction model, we turn to providing a consistent approximation of the energy equation up to first-order
in ε. Finally, we propose a conservative form of the proposed first-order system.

5.1.1. The friction model

In order to get a 1D system from the integrated equations (5.1), we introduce a model for the friction
term, consistent with the standard engineering ones. Starting with the discharge equation (5.1b), we seek
a 1D friction model that is consistent with the 2D friction term up to O(ε). We now proceed in a similar
way as in Section 4. Noting that a zeroth-order expansion of the integrated discharge equation (5.1b) reads
as follows:

Qt +

(∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

ξ1

=
1

ε

(
ΛS −

∫ Ξ+

Ξ−

|F|h̃v1|v1|
C2

dξ2

)
+O(1),

we therefore seek Ch such that

∫ Ξ+

Ξ−

|F|h̃v1|v1|
C2

dξ2 = S
Q|Q|

C2
hRhS

2
+O(ε) =: SJ +O(ε).

Like in Section 4, it is sufficient to choose Ch such that Λ = Q(0)|Q(0)|
C2

hRhS2 , and we get the same friction

coefficient:

C2
h =

Q(0)|Q(0)|
RhS2Λ

=
1

RhS2

(∫ Ξ+

Ξ−

hC√
|F|

dξ2

)2

. (5.3)

We then rewrite the discharge equation (2.10b) as follows:

Qt +

(∫ Ξ+

Ξ−

hv2
1 dξ2

)

ξ1

=
1

ε
S(Λ− J ) +O(1). (5.4)

The term Λ of this equation contains the differential term Hξ1 , which should be included in the flux rather
than in the source term. This discrepancy will be dealt with in a later Section.
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Let us note that J does not contain any differential term coming from Λ, even though Λ contains Hξ1 .
Indeed, since Ch is given by (5.3) and Q(0) is given by (3.8), we obtain the same friction term (4.4) as in
the strongly meandering case:

J = Λ
Q|Q|

Q(0)|Q(0)| = Q|Q|
(∫ Ξ+

Ξ−

hC√
|F|

dξ2

)−2

. (5.5)

5.1.2. Consistent energy equation

The discharge equation (5.4), thanks to the friction model (5.3), correctly recovers the zeroth-order
asymptotic expansion Q = Q(0) +O(ε) when ε→ 0. As a consequence, plugging this friction model into
the classical shallow water system would be sufficient to ensure the accuracy of this asymptotic expansion.
However, we wish to go one step further and actually get accuracy up to the first-order asymptotic expansion

Q = Q(0) + εQ(1) +O(ε2), (5.6)

where Q(1) is given by (3.10). The mathematical structure of the discharge equation is well-understood and
ensures essential properties, such as hyperbolicity. Therefore, we do not wish to modify this equation. To
address this issue, we elect to add a new equation to the model. Indeed, we choose to deriving a suitable
approximation of the integrated energy equation (2.10c) in order to achieve the more accurate first-order
approximation of the averaged discharge. Such an approach was already suggested to derive consistent
shallow water models for thin film flows down an incline [17].

In order to mimic the structure of Euler equations for numerical simulation purpose and ensure a
good mathematical structure, we search for an averaged energy equation that could be derived from the
momentum equation. Thus, we search for a source term in the energy equation that is the product of the
source term in the momentum equation with the discharge rate. The source term of this new energy balance
law, plugging the asymptotic expansion (3.8) – (3.10) into the expression (5.5) of the friction model J ,
satisfies:

1

ε
Q(Λ− J ) = −2ΛQ(1) +O(ε).

Since Q(1) is given by (3.10), the new energy equation reads
(

1

2

∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

t

+

(
1

2

∫ Ξ+

Ξ−

h̃v3
1 dξ2

)

ξ1

=
1

ε
Q(Λ− J ) +O(ε). (5.7)

This energy equation is consistent with the averaged energy equation (5.1c) up to O(ε).

5.1.3. Final conservative form of the integrated 2D system

Thanks to the friction model (5.3) and therefore the equations (5.4) and (5.7), the system (5.1) rewrites:





St +Qξ1 = 0,

Qt +

(∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

ξ1

=
1

ε
S(Λ− J ) +O(1),

(
1

2

∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

t

+

(
1

2

∫ Ξ+

Ξ−

h̃v3
1 dξ2

)

ξ1

=
1

ε
Q(Λ− J ) +O(ε).

(5.8)

Compared to the integrated 2D equations (5.1), the momentum equation has a O(1) deviation and the
energy equation has a O(ε) deviation. Nevertheless, these deviations are enough to ensure that the
asymptotic expansion of Q is satisfied up to O(ε2): we get Q = Q(0) + εQ(1) +O(ε2) when ε→ 0.
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Note that Λ contains the space derivative Hξ1 . No differential term should remain in the source; rather,
they should be regrouped in the flux to get a good mathematical structure. Since Λ is given by (3.7), the
system (5.8) is equivalent to





St +Qξ1 = 0,

Qt +

(∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

ξ1

+
SHξ1

F 2
=

1

ε
S(I − J ) +O(1),

(
1

2

∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

t

+

(
1

2

∫ Ξ+

Ξ−

h̃v3
1 dξ2

)

ξ1

+
QHξ1

F 2
=

1

ε
Q(I − J ) +O(ε).

(5.9)

The above system can be recast under a conservative form. Let us define the width function L(ξ1, z)

such that S =
∫H

0
L(z) dz, see Figure 1. First, note the following chain of equalities:

SHξ1

F 2
=
Hξ1

F 2

∫ H

0

Ldz =

(
1

F 2

∫ H

0

(H − z)Ldz
)

ξ1

− 1

F 2

∫ H

0

(H − z)Lξ1 dz =: Phyξ1 − P
lat,

where Phy is the hydrostatic pressure and P lat is the lateral pressure, see [28]. In addition, remark that

QHξ1

F 2
=
HSt + (HQ)ξ1

F 2
=

(
1

F 2

∫ H

0

zL dz

)

t

+

(
U

F 2

(∫ H

0

HLdz

))

ξ1

=: Et + (U(E + Phy))ξ1 ,

where E is the potential gravity energy, and where the averaged flow velocity U is defined by U = Q/S.
Therefore, the system (5.9) reads:





St +Qξ1 = 0, (5.10a)

Qt +

(
Phy +

∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

ξ1

= P lat +
1

ε
S(I − J ) +O(1), (5.10b)

(
E +

1

2

∫ Ξ+

Ξ−

h̃v2
1 dξ2

)

t

+

(
E + Phy +

1

2

∫ Ξ+

Ξ−

h̃v3
1 dξ2

)

ξ1

=
1

ε
Q(I − J ) +O(ε). (5.10c)

The above equations are written under the form of a system of balance laws, where no differential terms
subsist in the source term. They are consistent with the width-integrated equations (5.1) and they ensure
the first-order asymptotic expansion of the discharge Q = Q(0) + εQ(1) +O(ε2) when ε→ 0.

5.2. An Euler-like model

We now wish to recast the above 1D system under an Euler-like formulation to eliminate the integral
terms and to ensure relevant mathematical properties, such as hyperbolicity. We first introduce a relevant
energy and pressure. Then, we add a fourth equation to the model to account for the temporal variations
of the pressure. We briefly recall the classical form of the 1D homogeneous Euler system, describing fluid
dynamics: 




St + (SU)ξ1 = 0,

(SU)t +
(
SU2 + P

)
ξ1

= 0,

Et + (U(E + P ))ξ1 = 0,
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where U = Q/S is the velocity, E is the energy and P is the pressure, usually given by a pressure
law P (S,U,E). A well-known example of a pressure law is the ideal gas law, defined by

P = (γ − 1)

(
E − SU2

2

)
, with γ ≥ 1. (5.11)

5.2.1. Introduction of an energy and a pressure

The mass conservation equation (5.10a) is exact and similar to that of the Euler system, so no work
needs to be done on this equation. Next, consider the discharge balance equation (5.10b). To recover an
Euler-like formulation, we introduce a pressure P such that

SU2 + P =

∫ Ξ+

Ξ−

h̃v2
1 dξ2 + Phy. (5.12)

As a consequence, it is natural to introduce a new variable Ψ, the so-called enstrophy (see for instance
[23, 26, 24]), which corresponds to the variance of the velocity with respect to the mean flow. The enstrophy
Ψ is therefore defined as follows:

SΨ =

∫ Ξ+

Ξ−

h̃v2
1 dξ2 − SU2. (5.13)

The pressure P defined by (5.12) becomes

P = Phy + SΨ.

By inspection of the time derivative within the energy balance equation (5.10c), we propose the following
natural definition of the energy:

E = E +
1

2
SU2 +

1

2
SΨ,

such that the time derivative is applied to E. To take care of the spatial derivative in this equation, we
introduce the variable Π, taking inspiration from the definition (5.13) of Ψ:

SΠ =
1

U

∫ Ξ+

Ξ−

h̃v3
1 dξ2 − SU2.

In order to better understand the roles played by the new variables Ψ and Π, let us rewrite each of
them as a single integral. Straightforward computations yield the following expressions:

SΨ =

∫ Ξ+

Ξ−

h̃(v1 − U)2 dξ2 and SΠ =

∫ Ξ+

Ξ−

h̃(v1 − U)2
(

2 +
v1

U

)
dξ2.

The enstrophy Ψ accounts for the vorticity of the flow in the cross-stream direction: it is the variance of the
fluid velocity u in the cross-stream direction. The variable Π plays the role of and will be referred to as a
potential. Additionally, recall the expressions of the Coriolis coefficient α and the Boussinesq coefficient β,
defined by (5.2). Straightforward computations show that we can rewrite the enstrophy and potential as
follows:

SΨ

SU2
= β − 1 and

SΠ

SU2
= α− 1.

Recall that α ≥ 1 and β ≥ 1 in the literature (see for instance [6], Page 29), where the equality case
corresponds to a uniform cross-section. We thus get that Ψ ≥ 0 and Π ≥ 0, and that these quantities
vanish in the case of a uniform cross-section.
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According to these definitions, we suggest the following fully 1D model to replace the averaged 2D
system (5.10):





St +Qξ1 = 0,

Qt +

(
Q2

S
+ P

)

ξ1

= P lat +
1

ε
S(I − J ) +O(1),

Et +

(
Q

S
(E + P )

)

ξ1

+

(
1

2

Q

S
S(Π− 3Ψ)

)

ξ1

=
1

ε
Q(I − J ) +O(ε).

(5.14)

At this level, we focus on the homogeneous part of the model (5.14), in order to obtain a hyperbolic system.
Recall that both E and P contain the enstrophy Ψ. Therefore, the enstrophy is a natural variable of the
model (5.14). However, a rule to compute the potential Π is still missing to close (5.14). The goal of
section 5.2.2 is to propose such a rule while ensuring that the system becomes hyperbolic. Afterwards, in
section 5.2.3, we will further modify the system to ensure the required asymptotic expansion (5.6).

5.2.2. A four-equation Euler-like model

The time evolution of the potential Π is not prescribed by the three-equation system (5.14). Therefore,
we need to add an equation to this system, whose time derivative will have to contain Π. In addition,
compared to a classical Euler system, the energy equation of (5.14) has an extra differential term. To treat
this term, let us denote by e the following quantity:

e =
1

2
S(Π− 3Ψ).

It becomes natural to add to the system an equation prescribing the time evolution of e. For the sake of
simplicity, we choose to add the equation et = O(1). Adding this equation to the system (5.14) yields the
following four-equation model:





St +Qξ1 = 0,

Qt +

(
Q2

S
+ P

)

ξ1

= P lat +
1

ε
S(I − J ) +O(1),

(E + e)t +

(
Q

S
(E + e+ P )

)

ξ1

=
1

ε
Q(I − J ) +O(ε),

et = O(1).

(5.15)

The homogeneous part of the first three equations of this model correspond to an Euler model with
energy E + e, where the variable e plays the role of an internal energy. The choice of the stationary
wave et = O(1) easily ensures the hyperbolicity of the four-equation system (5.15). Indeed, its characteristic
velocities (i.e. the eigenvalues of the Jacobian matrix of the flux function) are given by:

0, U, U ±
√

S

F 2L(H)
+ Π.

It would have been possible to choose another equation for et, but the hyperbolicity of the system would
not have been guaranteed.

The structure of the homogeneous part of the system (5.15) mimics that of the classical Euler system
with an additional stationary wave. In this context, the pressure law is

P (S,U,E) = 2E − SU2 + Phy − 2E = 2

(
E − 1

2
SU2

)
+

1

F 2

∫ H

0

(H − 3z)Ldz.
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Remark that the non-geometrical terms of this pressure law are similar to the usual ideal gas law (5.11) of
the Euler system of gas dynamics. Also, note that, by definition of e, Ψ and Π, we get

e =
1

2
S(Π− 3Ψ) =

1

2U

∫ Ξ+

Ξ−

h̃(v1 − U)
3
dξ2,

and the internal energy e is nothing but the third-order moment of the velocity. Finally, remark that the
total energy E + e has a physical meaning. Indeed, we have

E + e =
1

2

Q2

S
+

1

2
S(Π− 2Ψ) + E

= E +
1

2
SU2 +

1

2

∫ Ξ+

Ξ−

h̃(v1 − U)2 dξ2 +
1

2U

∫ Ξ+

Ξ−

h̃(v1 − U)3 dξ2.

Therefore, the total energy corresponds to the sum of the potential energy, the kinetic energy, and the
quadratic and cubic errors with respect to the averaged velocity U .

For future reference, let us also write the system (5.15) in the set of variables (S,Q,Ψ,Π):





St +Qξ1 = 0,

Qt +

(
Q2

S
+ SΨ

)

ξ1

+
SHξ1

F 2
=

1

ε
S(I − J ) +O(1),

(
1

2

Q2

S
+

1

2
SΨ

)

t

+

(
Q

S

(
1

2

Q2

S
+

1

2
SΠ

))

ξ1

+
QHξ1

F 2
=

1

ε
Q(I − J ) +O(ε),

(
1

2
S(Π− 3Ψ)

)

t

= O(1).

(5.16)

At this level, the above system is hyperbolic but it does not recover the required asymptotic expansion
(5.6). The goal of the next section is to calibrate the O(1) in order to recover (5.6).

5.2.3. Consistency of the new model with the asymptotic expansions

In (5.16), the zeroth-order asymptotic expansion of the discharge Q is satisfied by construction of the
discharge equation, see Section 5.1. However, we also wish to recover its first-order asymptotic expansion,
from which the energy equation of the model (5.16) is based. To that end, we necessarily need to ensure
the zeroth-order asymptotic expansions of Ψ and Π for the left-hand side of the energy equation to be
consistent with the asymptotic regime. Therefore, the following asymptotic expansions on the discharge,
enstrophy and potential have to be satisfied by the final four-equation model:

Q = Q(0) + εQ(1) +O(ε2), Ψ = Ψ(0) +O(ε) and Π = Π(0) +O(ε). (5.17)

To write the expressions of Ψ(0) and Π(0) in a more compact way, we introduce the following simplified
notation:

Mn =

∫ Ξ+

Ξ−

h̃

(
C

|F|3/2
)n

dξ2.

Using this notation, we immediately obtain S =M0 and Q(0) =
√
|Λ| sgn(Λ)M1. In addition, straightfor-

ward computations yield the following asymptotic expansions for Ψ and Π:

SΨ(0) = |Λ|
(
M2 −

M2
1

M0

)
and SΠ(0) = |Λ|

(M0M3

M1
− M

2
1

M0

)
. (5.18)
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As expected, in a U-shaped channel, these two quantities vanish. Note that, like the asymptotic expansions
of Q, we get that Ψ(0) and Π(0) only depend on geometric quantities and on H.

To ensure the asymptotic expansions (5.17), we suggest the introduction of new source terms in the
model, designed to relax the enstrophy and the potential towards their respective zeroth-order expansions.
These source terms cannot be added to the energy equation, since its current form is necessary to recover
the first-order approximation of the discharge.

In addition, the new relaxation source terms shall have to be independent of Λ, since Λ contains Hξ1 .
Therefore, the naive choice which consists in simply adding a source term under the form 1

ε (Ψ(0) −Ψ) is

not advisable, since Ψ(0), given by (5.18), contains Λ. This remark also holds for Π(0). To address this
issue, we mimic the way the friction term J was defined to introduce JΨ and JΠ, given by:

JΨ = Λ
Ψ

Ψ(0)
= sgn(Q)|Λ| Ψ

Ψ(0)
and JΠ = Λ

Π

Π(0)
= sgn(Q)|Λ| Π

Π(0)
.

According to the definitions (5.18), JΨ and JΠ are indeed independent of Λ. In addition, we have
replaced sgn(Λ) with sgn(Q) since sgn(Λ) = sgn(Q(0)) = sgn(Q) for small enough ε.

Then, we add the following relaxation term to the discharge equation:

1

ε
SK1Λ

(
1− Ψ

Ψ(0)

)
=

1

ε
SK1(Λ− JΨ) =

1

ε
SK1(I − JΨ)−K1

SHξ1

F 2
, (5.19)

where K1 is a nonzero function of S, Q, Ψ and Π, to be determined. This term ensures that Ψ relaxes
towards Ψ(0) when ε goes to 0, whatever the value of K1, but it adds a differential term in Hξ1 .

We now have to relax Π towards Π(0) when ε goes to 0, using only the fourth equation of the system.
To avoid adding another differential term in Hξ1 and to retain the stationary wave, we add the following
relaxation term to the fourth equation:

1

ε
QK2Λ

(
Ψ

Ψ(0)
− Π

Π(0)

)
=

1

ε
QK2(JΨ − Jπ), (5.20)

where K2 is another nonzero function of S, Q, Ψ and Π, to be determined. Let us emphasize that, for
all K1 6= 0 and K2 6= 0, the additional terms (5.19) and (5.20) respectively relax Ψ towards Ψ(0) and Π
towards Π(0).

We thus modify (5.16) as follows:





St +Qξ1 = 0, (5.21a)

Qt +

(
Q2

S
+ SΨ

)

ξ1

+ (1 +K1)
SHξ1

F 2
=

1

ε
S(I − J +K1(I − JΨ)), (5.21b)

(
1

2

Q2

S
+

1

2
SΨ

)

t

+

(
Q

S

(
1

2

Q2

S
+

1

2
SΠ

))

ξ1

+
QHξ1

F 2
=

1

ε
Q(I − J ), (5.21c)

(
1

2
S(Π− 3Ψ)

)

t

=
1

ε
QK2(JΨ − JΠ). (5.21d)

Note that we have added relaxation source terms in O(1) in the discharge and internal energy equations,
which is consistent with what was prescribed in (5.16). Since (5.21) is the final model, up to the choice
of K1 and K2, we have now removed the O(1) and O(ε). The above model is equivalent to the following
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one, obtained by introducing Λ back in the system:





St +Qξ1 = 0, (5.22a)

Qt +

(
Q2

S
+ SΨ

)

ξ1

=
1

ε
S(Λ− J +K1(Λ− JΨ)), (5.22b)

(
1

2

Q2

S
+

1

2
SΨ

)

t

+

(
Q

S

(
1

2

Q2

S
+

1

2
SΠ

))

ξ1

=
1

ε
Q(Λ− J ), (5.22c)

(
1

2
S(Π− 3Ψ)

)

t

=
1

ε
QK2(JΨ − JΠ). (5.22d)

To summarize, from the zeroth-order asymptotic expansion of the energy equation (5.22c), we imme-
diately recover Λ = J , and thus Q = Q(0). Then, from the zeroth-order asymptotic expansion of the
discharge equation (5.22b), we get Λ = JΨ, i.e. Ψ = Ψ(0). Afterwards, the zeroth-order expansion of the
internal energy equation (5.22d) ensures that Λ = JΠ, which yields Π = Π(0). Thus, the three required
zeroth-order asymptotic expansions are recovered. In addition, it turns out that the first-order expansion of
the energy equation (5.22c) instantly recovers the correct formula for Q(1). Therefore, the model (5.22) (or,
equivalently, (5.21)) ensures the required asymptotic expansions (5.17), whatever the choice of K1 and K2.

5.3. Mathematical properties of the model; comparison with the classical shallow water system

Equipped with the model (5.21) (or equivalently (5.22)), we are now able to check its mathematical
properties, as well as perform a theoretical comparison with the classical shallow water system. In addition,
we need to fix the values of the – so far – arbitrary functions K1 and K2.

We first note that, unfortunately, the addition of the term K1SHξ1/F
2 in (5.21b) prevents us from

rewriting the system under an Euler-like form, since the pressure in (5.21b) would be different from the
one in (5.21c). However, we are able to use the almost-Euler-like underlying structure to our advantage in
the next developments.

To simplify the forthcoming analysis, we note that Sξ1 = L(H)Hξ1 to rewrite the system (5.21) under
the non-conservative form Wt + A(W )Wξ1 = R(W ), with W = (S,U, SΨ, SΠ)T , and where the flux
matrix A(W ) and source terms vector R(W ) are given by

A(W ) =




U S 0 0

1 +K1

L(H)F 2
U

1

S
0

−2SUK1

L(H)F 2
SΠ −2U U

−6SUK1

L(H)F 2
3SΠ −6U 3U




and R(W ) =
1

ε




0

I − J +K1(I − JΨ)

−2SUK1(I − JΨ)

2SU [K2(JΨ − JΠ)− 3K1(I − JΨ)]




.

5.3.1. Hyperbolicity and algebraic properties

For comparison purposes, recall that the characteristic velocities of the classical shallow water system
in (S,Q) variables are

U ±
√

S

F 2L(H)
.

In addition, the two characteristic fields associated to these characteristic velocities are genuinely nonlinear.
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As stated in Section 5.2.2, before adding the relaxation source term for Ψ, i.e. for K1 = 0, the
characteristic velocities of the four-equation model were

0, λU = U, λ± = U ±
√

S

F 2L(H)
+ Π.

The characteristic fields associated to 0 and U were linearly degenerate, while the other two characteristic
fields were genuinely nonlinear. Straightforward computations show that this system was hyperbolic as
soon as S 6= 0, and strictly hyperbolic as soon as S 6= 0 and U 6= 0.

Now, because of the relaxation terms, the characteristic velocities of the system (5.21), i.e. the
eigenvalues of the matrix A(W ), can no longer be written under a tractable form. Thanks to (5.21d), 0 is
still a characteristic velocity of this system. In order to get a better idea of the other three eigenvalues, we
perform an asymptotic expansion with respect to the small Froude number F . Let us denote by χA(W )(λ)
the characteristic polynomial of the matrix A(W ). After tedious but straightforward computations, we
prove that the following asymptotic expansions of λ ensure that χA(W )(λ) = O(F 2):

λK1

U = U
1 + 3K1

1 +K1
+O(F 2),

λK1
± =

U

1 +K1
±
√

S

L(H)

(√
1 +K1

F
+
F

2

Π +K1(2Π +K1(Π− 3U2))

(1 +K1)5/2

)
+O(F 2).

Note that, if K1 = 0, we recover the characteristic velocities λU and λ±. In addition, for the system to be
hyperbolic, these eigenvalues have to take real values. Therefore, for small enough F , a necessary condition
for the hyperbolicity is 1 +K1 > 0, and we need to determine K1 with this constraint in mind.

5.3.2. Linear stability

Let us proceed with determining suitable K1 and K2. To that end, we perform a linear stability analysis
of the system (5.22). We linearize this system around the equilibrium state W0 = (S0, U0, SΨ0, SΠ0)T such
that R(W0) = 0, that is to say

U0 =
Q(0)

S

√
I
Λ
6= 0, SΨ0 = SΨ(0) I

Λ
and SΠ0 = SΠ(0) I

Λ
.

Note that W0 does not depend on Λ. For the sake of simplicity, let us temporarily assume that Q(0), Ψ(0)

and Π(0) do not depend on S. This assumption, although false in the general case, allows us to greatly
simplify the analysis and to set a framework for the S-dependent case.

To perform a linear stability analysis, we consider the eigenvalues (ωl)1≤l≤4 of the matrix M(k) :=
kA(W0) + i∇∇∇WR(W ), for all k ∈ R. The system will be linearly stable if, for each l ∈ [[1, 4]], Im ωl ≤ 0.
For the four-equation model (5.22), the matrix M(k) is given by:

M(k) =




kU0 kS0 0 0

k(1 +K1)

L(H)F 2
kU0 − 2i

1

ε

I
U0

k

S
− i1

ε
K1

I
SΨ0

0

−2kSU0K1

L(H)F 2
k
SΠ0

I −2kU0 + 2i
1

ε
K1

SU0

SΨ0
kU0

−6kSU0K1

L(H)F 2
3k
SΠ0

I −6kU0 + 2i
1

ε
(K2 + 3K1)

SU0

SΨ0
3kU0 − 2i

1

ε
K2

SU0

SΠ0




.
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Let us start with the case k = 0, where we can exactly compute the eigenvalues, to get the following
expressions:

ω
(0)
1 = 0, ω

(0)
2 = −2i

1

ε

I
U0
, ω

(0)
3 = 2i

1

ε
K1

SU0

SΨ0
, ω

(0)
4 = −2i

1

ε
K2

SU0

SΠ0
. (5.23)

The first two eigenvalues, ω
(0)
1 and ω

(0)
2 , correspond to the ones of the classical shallow water system, and

we get two additional ones related to the relaxation source terms. Since sgn(U0) = sgn(Q(0)) = sgn(I) in
the usual range of applications, both shallow water eigenvalues have a non-positive imaginary part. Then,

a natural simplification of the other two eigenvalues consists in taking K1 and K2 such that ω
(0)
3 and ω

(0)
4

become equal to ω
(0)
2 , as follows:

K1 = −SΨ0

SU2
0

= −S
2Ψ(0)

(Q(0))2
and K2 =

SΠ0

SU2
0

=
S2Π(0)

(Q(0))2
. (5.24)

With this choice, we immediately obtain that all four eigenvalues (5.23) have a non-positive imaginary part.
However, this case k = 0 only yields necessary conditions for the linear stability, and we need to take

care of the case of a nonzero k. After tedious computations, we get two eigenvalues ωl = 1
ε

∑3
j=0 ω

(j)
l ,

for l ∈ {1, 2}, such that χ(k, ωl) = O((ε)3), where ω 7→ χ(k, ω) is the characteristic polynomial of M(k).
For the sake of conciseness, we do not write their expressions here. These eigenvalues have a negative
imaginary part (i.e. the system is asymptotically linearly stable) as soon as the following condition is
satisfied:

U2
0 <

4S0

L(H)
+ Π. (5.25)

This condition can be compared to the asymptotic linear stability condition for the shallow water equations,
which reads U2

0 < 4S0/L(H). Note that, since Π ≥ 0, the linear stability condition for the four-equation
model is less restrictive than that of the shallow water equations.

Lastly, recall that we had assumed that U (0), Ψ(0) and Π(0) did not depend on S. We now address
the real case where these quantities depend on S. To shorten the notations, let us introduce c(S) such

that J = U |U |/(Sc), Ψ
(0)
S = ∂(SΨ(0))/∂S and Π

(0)
S = ∂(SΠ(0))/∂S. Under the condition (5.25), we obtain

the following additional sufficient condition on S for the asymptotic linear stability of the four-equation
model:

c2
(

3Ψ
(0)
S − 2Π

(0)
S

)
+ S2

(
U (0)

)2

c2S +

(
2S
(
U (0)

)2

−Π(0) + SΨ
(0)
S

)
ccS < 0.

As a conclusion, the final hyperbolic four-equation model prescribed by this linear stability analysis is:





St +Qξ1 = 0,

Qt +

(
Q2

S
+ SΨ

)

ξ1

+

(
1− S2Ψ(0)

(Q(0))2

)
SHξ1

F 2
=

1

ε
S

(
I − J − S2Ψ(0)

(Q(0))2
(I − JΨ)

)
,

(
1

2

Q2

S
+

1

2
SΨ

)

t

+

(
Q

S

(
1

2

Q2

S
+

1

2
SΠ

))

ξ1

+
QHξ1

F 2
=

1

ε
Q(I − J ),

(
1

2
S(Π− 3Ψ)

)

t

=
1

ε
Q
S2Π(0)

(Q(0))2
(JΨ − JΠ),

(5.26)

The study of the linear stability of the system (5.26) is thus complete.
Regarding the hyperbolicity of this system, recall that it is hyperbolic under the condition 1 +K1 > 0

for small enough F . With K1 given by (5.24), this condition becomes SΨ(0) < (Q(0))2/S. Firstly, note
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that for a U -shaped channel with uniform friction, SΨ(0) vanishes and the hyperbolicity condition is always
satisfied. Secondly, according to the definition (5.13) of SΨ, this hyperbolicity condition is equivalent to

∫ Ξ+

Ξ−

h(u(0))2 dξ2 < 2S
(
U (0)

)2
,

where U (0) = Q(0)/S. Since 2S(U (0))2 is two times an average of h(u(0))2, this condition should be satisfied
in the regimes under consideration. Indeed, multiple tests run by the authors, in many geometries and for
many friction laws, have all shown that this condition is easily satisfied. As a consequence, the system (5.26)
is hyperbolic.

6. Summary of results

In this last section before the validation of the models, we summarize the results we have obtained thus
far. Considering the small parameter

ε =
C2

0

gX ,

which is a geometrical term linking the friction scaling to the typical wavelength, we have obtained
asymptotic expansions with respect to ε of the solutions of the 2D shallow water system (2.5). Then, we
have developed two 1D models, whose solutions deviate in O(ε) or O(ε2) from the asymptotic expansions.
In this section, we first recall the zeroth-order model (with an O(ε) deviation) and we then summarize the
first-order model (with an O(ε2) deviation).

6.1. Zeroth-order model

We consider an arbitrarily meandering river. It can be strongly meandering, i.e. Ry = O(1), or weakly
meandering, i.e. Ry = O(ε). The zeroth-order model, hyperbolic and linearly stable, is then given by (4.6),
or, equivalently, by: 




St +Qx = 0

Qt +

(
Q2

S

)

ξ1

=
1

ε
S(Λ− Jm).

(6.1)

In (6.1), S is the wetted section, H the free surface, and Q the section-averaged discharge. In addition, I
is the main longitudinal slope and Λ is a corrected slope, defined by

Λ = I − δ

J0
Hξ1 . (6.2)

The zeroth-order asymptotic expansion used in (6.1) is defined by

Q(0) =
√
|Λ| sgn(Λ)

∫ Ξ+

Ξ−

(H − φ)
C√
|F|

dξ2, where |F| = 1−Ry ξ2
σ(ξ1)

R(ξ1)
.

The friction source term Jm is defined by

Jm = |Λ| Q|Q|
Q(0)|Q(0)| =

Q|Q|
(C2

h)mRhS2
, where (C2

h)m =
1

RhS2

(∫ Ξ+

Ξ−

(H − φ)
C√
|F|

dξ2

)2

. (6.3)

The discharge equation from (6.1) deviates with O(1) from the integrated longitudinal velocity equa-
tion (2.10b). As a consequence, performing a Chapman-Enskog asymptotic expansion of the discharge
in (6.1) yields a Q = Q(0) +O(ε), and the model is zeroth-order accurate.

Furthermore, note that the zeroth-order model (6.1) has the same form that the usual hydraulic
engineering models (see for instance [6, 27]). The only difference comes from the friction model (6.3), which
seems to be a new feature of this model.
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6.2. First-order model

We now consider only a weakly meandering river, i.e. Ry = O(ε). The first-order model, hyperbolic
and linearly stable, is then given by (5.26), or, equivalently, by:





St +Qξ1 = 0,

Qt +

(
Q2

S
+ SΨ

)

ξ1

=
1

ε
S

(
Λ− J − S2Ψ(0)

(Q(0))2
(Λ− JΨ)

)
,

(
1

2

Q2

S
+

1

2
SΨ

)

t

+

(
Q

S

(
1

2

Q2

S
+

1

2
SΠ

))

ξ1

=
1

ε
Q(Λ− J ),

(
1

2
S(Π− 3Ψ)

)

t

=
1

ε
Q
S2Π(0)

(Q(0))2
(JΨ − JΠ).

(6.4)

In (6.4), S is the wetted section, H the free surface, Q the section-averaged discharge, Ψ and Π the
enstrophy and the potential, defined by:

SΨ =

∫ Ξ+

Ξ−

h̃(v1 − U)2 dξ2 ≥ 0 and SΠ =

∫ Ξ+

Ξ−

h̃(v1 − U)2
(

2 +
v1

U

)
dξ2 ≥ 0.

In addition, I is the main longitudinal slope and Λ is a corrected slope, defined by (6.2). The zeroth-order
asymptotic expansions used in (6.4) are defined by

Q(0) =
√
|Λ| sgn(Λ)M1 , SΨ(0) = |Λ|

(
M2 −

M2
1

M0

)
, SΠ(0) = |Λ|

(M0M3

M1
− M

2
1

M0

)
,

where we have introduced the shorter notation

Mn =

∫ Ξ+

Ξ−

(H − φ)|F|
(

C

|F|3/2
)n

dξ2.

The friction source term J is taken equal to Jm, defined by (6.3). The other two relaxation source terms
are defined by

JΨ = sgn(Q)|Λ| Ψ

Ψ(0)
and JΠ = sgn(Q)|Λ| Π

Π(0)
.

The discharge equation from (6.1) deviates with O(1) from the integrated longitudinal velocity equa-
tion (2.10b). Similarly, a O(1) error is introduced in the fourth equation of (6.1). However, the energy
equation from (6.1) deviates with O(ε) from the integrated energy equation (2.10c). As a consequence, per-
forming a Chapman-Enskog asymptotic expansion of the discharge in (6.1) yields a Q = Q(0) +εQ(1) +O(ε2),
and the model is first-order accurate.

In addition, note that the first-order structure naturally involves the enstrophy Ψ, which gives a better
understanding of the cross-stream velocity variations. Such a quantity was also introduced in [14, 22] to
enhance the 2D shallow water equations with vertical velocity variations. Therefore, the enstrophy seems
to be a natural quantity to consider when modeling complex water flow phenomena.

Finally, remark that the energy equations of the zeroth- and first-order models can be rewritten to
highlight that the energy is only dissipated due to the friction. Let us note that the following identity holds:

1

ε
QΛ = −

(
E +

1

ε

I0
J0
Sb0

)

t

−
(
Q

ε

(
I0
J0
b0 +

δ

J0
H

))

ξ1

, (6.5)
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where E = 1
F 2

∫H
0
zL dz is the potential gravity energy. Using (6.5), the energy equation of the zeroth-order

model (6.1) reads as follows:

(
1

2

Q2

S
+ E +

1

ε

I0
J0
Sb0

)

t

+

(
Q

S

[
1

2

Q2

S
+
S

ε

(
I0
J0
b0 +

δ

J0
H

)])

ξ1

= −Q
ε
J .

while the one of the first-order model (6.4) can be rewritten as:

(
1

2

Q2

S
+

1

2
SΨ + E +

1

ε

I0
J0
Sb0

)

t

+

(
Q

S

[
1

2

Q2

S
+

1

2
SΠ +

S

ε

(
I0
J0
b0 +

δ

J0
H

)])

ξ1

= −Q
ε
J .

These formulations also emphasize the main difference between the zeroth- and first-order models. Namely,
introducing the terms in Ψ and Π in the first-order model is enough to ensure a O(ε) deviation from the
asymptotic expansions, compared to the O(1) deviation present in the zeroth-order model. In addition,
these formulations are nothing but the 1D versions of the 2D energy equation (2.9).

7. Validation of the four-equation model

The four-equation model (5.26) has been built in order to possess the required consistency properties.
This last section is devoted to the numerical validation of our four-equation model. In its first part, we
present some reference solutions, as well as the numerical schemes we use to approximate these solutions.
The second part of this section is then dedicated to the numerical experiments themselves.

In this section, we will consider the three 1D models at our disposal:

• the classical shallow water model, later referred to as SW, given by the non-dimensional version
of (1.2) with β = 1, which is consistent only when considering U-shaped channels;

• the shallow water model equipped with the friction term (5.3), later referred to as A0, consistent
with the zeroth-order asymptotic expansion of Q and summarized in section 6.1;

• the four-equation model (5.26), later referred to as A1, consistent with the first-order asymptotic
expansion of Q and summarized in section 6.2.

The goal of this section is to compare the results of the three models under consideration. We expect
the SW model to be inconsistent as soon as the channel is not U-shaped. Moreover, we also expect that
the A1 model should yield more accurate results than the A0 one.

7.1. Reference solutions and numerical considerations

We begin by discussing the theory of the backwater curves (i.e. the stationary solutions) of the three 1D
models at our disposal. Then, we introduce the manufactured stationary 2D reference solution that will be
used to perform several stationary numerical experiments. Lastly, we present the numerical discretization
used throughout the experiments.

7.1.1. Backwater curves in 1D

We first consider the backwater curves of the 1D models under consideration (i.e. its stationary solutions,
free from time). For the classical shallow water system in (S,Q) variables (i.e. the non-dimensional version
of (1.2)), they are given by a constant discharge Q = Q0 and the profile equation

Hξ1 =
J0

δ

I − JSW
1− F 2L(H)

Q2
0

S3

, (7.1)
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where the friction model JSW is given by

JSW =
Q0|Q0|

H2+pc2SW

As δ/J0 goes to 0, the backwater curves become driven only by the numerator of the Hξ1 equation. More
specifically, H will be equal to HSW

n , defined as the value of H canceling the numerator I − JSW for a
uniform flow. This quantity Hn is referred to as the normal height in the hydraulic literature. Thus, we get

HSW
n =

(
Q0|Q0|
I c2SW

) 1
2+p

. (7.2)

For the A0 model, the only difference is the friction model, and the backwater equation reads

Hξ1 =
J0

δ

I − J

1− F 2L(H)
Q2

0

S3

, (7.3)

instead of (7.1). Therefore, we note that the value of the normal height depends on the friction model J
under consideration, given by (5.5): J depends on S, and thus on H. The normal height HA0

n is now
implicitly defined as the value of H canceling I − J .

The backwater curves of the four-equation model (5.26), in addition to the constant discharge Q = Q0,
read as follows:





Hξ1 =
J0

δ

I − J − F 2

2S
(SΠ)ξ1

1− F 2L(H)

(
Q2

0

S3
+
SΠ

2S2

) ,

(SΨ)ξ1 =
1

ε
S

(
I − J − SΨ(0)

(Q(0))2
(I − JΨ)

)
−
(

1− SΨ(0)

(Q(0))2
− F 2L(H)

Q2
0

S3

)
SHξ1

F 2
,

Ψ

Ψ(0)
=

Π

Π(0)
.

(7.4)

We note that the normal height HA1
n associated to the four-equation model is also defined by I − J = 0.

However, the backwater curve for the four-equation model contains an additional O(F 2) term compared to
the one of the shallow water model. This additional term comes from the fact that we ensure a first-order
approximation on the discharge.

7.1.2. Steady 2D reference solution

In the forthcoming developments, we consider a stationary solution of the 2D equations (2.5) in the
weakly meandering asymptotic regime, characterized by Ry = O(ε), Rl = O(ε) and ε � 1. The goal of
these computations is to rewrite this system under a computationally tractable form. Thanks to this new
form, we will be able to manufacture a steady reference solution, against which the three 1D models will be
tested.

Let us begin by writing the unsteady system (2.5) in the asymptotic regime under consideration.
Assuming a stationary solution and a weakly meandering river, (2.5) becomes:





(h̃v1)ξ1 + (h̃v2)ξ2 = 0, (7.5a)

v1(v1)ξ1 + v2(v1)ξ2 +
1

|F|2F 2
(hξ1 + φξ1) =

1

ε

( I
|F|2 −

|F|v1|v1|
C2

)
+O(ε), (7.5b)

hξ2 + φξ2 = O(ε2). (7.5c)
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The first step to solve this system is to note that (7.5a) imposes that the discharge be divergence-
free. Therefore, we introduce a discharge potential Φ, such that h̃v1 = Φξ1 and h̃v2 = Φξ2 . In this
context, the equation (7.5a) is equivalent to ∆Φ = 0. We prescribe suitable boundary conditions, ensuring
that h̃v2 = O(ε) to satisfy the asymptotic regime. Numerically solving this first equation gives the
quantities h̃v1 and h̃v2.

Now, we need to compute h(ξ1, ξ2). Since h̃v2 = O(ε), (7.5b) becomes

|F|v1|v1|
C2

=
Λ

|F|2 − εv1(v1)ξ1 +O(ε2). (7.6)

We assume that the friction law is the usual Chézy one, given in non-dimensional variables by C2 = c2hp.
We look for a non-uniform Chézy coefficient c(ξ1, ξ2), which therefore becomes an unknown of the problem.
At this level, we have two unknowns, h(ξ1, ξ2) and c(ξ1, ξ2).

To address this issue, let us use both the divergence-free discharge and the asymptotic regime. First,
we get from (7.6) the equation on c, as follows:

c2 =
|F|2q|q|h1−p

|F|Λh3 − εq
(
h̃qξ1 − qh̃ξ1

) +O(ε2), (7.7)

where the already computed quantity h̃v1 is denoted by q. Then, we replace the velocities in (7.6) by their
asymptotic expansions. Therefore, the equation (7.6) becomes

ε

(
v

(0)
1

(
v

(0)
1

)
ξ1

+
2|F|v(1)

1

∣∣v(0)
1

∣∣
(1 + c)2hp

)
=

Λ

|F|2 −
|F|v(0)

1

∣∣v(0)
1

∣∣
c2hp

+O(ε2), (7.8)

where the asymptotic expansions v
(0)
1 and v

(1)
1 are respectively given by (3.6) and (3.9).

Injecting (7.7) into (7.8) therefore yields an equation whose only unknown is h, and which manufactures
the Chézy coefficient such that h + φ is almost uniform in space. Solving this equation for h allows us
to plug this value into (7.7), and therefore to complete the determination of the 2D reference stationary
solution, while ensuring that the correct asymptotic regime is satisfied. These computations are made
easier by the fact that we have hξ2 + φξ2 = 0.

This process, in addition to the usual reference scaling, requires to fix the values of h̃v1 and h̃v2 at
the boundaries, as well as an equivalent to the 1D normal height discussed in Section 7.1.1. These three
non-dimensional quantities will respectively be denoted by h̃(v1)0, h̃(v2)0, and H2D

n , and numerical values
will be given in the relevant Section. In the end, we get a solution whose free surface H = h+ φ will be
close to the fixed normal height.

7.1.3. Discretization

We now briefly discuss the numerical discretization of the models under consideration, to be used in the
validation numerical experiments of the next part of this Section.

The steady 2D reference solution. Obtaining this 2D reference solution relies on a natural discretization of
the set of equations presented in Section 7.1.2. For the sake of simplicity, we use a finite difference method
on a Cartesian grid with nξ1 points in the ξ1-direction and nξ2 points in the ξ2-direction.

The backwater curves. Since the parameter δ/J0 can become small, stiff terms can appear in the backwater
curves given by (7.1), (7.3) and (7.4). Therefore, we adopt a fully implicit finite difference discretization of
the three models under consideration. We use a uniform 1D mesh with nξ1 discretization elements. In
addition, for the Chézy coefficient and the topography, an underlying 2D mesh is needed. To address this
issue, we use the mesh presented above, with nξ1 × nξ2 points.
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The unsteady problem in 1D. Numerical experiments with steady solutions will have convinced us that
the SW model is unsuitable as soon as the channel is no longer U-shaped. Therefore, we only consider
the A0 and A1 models for 1D unsteady problems. These models are governed by hyperbolic systems of
balance laws. In addition, some terms in O( 1

ε ) and O( 1
F 2 ) are stiff. These two remarks prompt us to

propose a finite difference splitting strategy, where the non-stiff part is treated explicitly, and the stiff part
is treated implicitly. This amounts to introducing IMEX strategies that are both asymptotic preserving
(regarding stiff source terms) and adapted to Low Froude number limits: see e.g. [3] and references therein
for more details.

For the A0 model, we denote by (SA0)ni and (QA0)ni the discretizations of the section and the discharge
at the spatial node (ξ1)i and at time tn. The first step of the space-time discretization consists in considering
the non-stiff part of the A0 system, given by:





St +Qξ1 = 0,

Qt +

(
Q2

S

)

ξ1

= 0.

This non-stiff part is discretized explicitly using an upwind flux, as follows:




(SA0)
n+ 1

2
i = (SA0)ni −

∆t

∆x

(
(QA0)ni+ 1

2
− (QA0)ni− 1

2

)
,

(QA0)
n+ 1

2
i = (QA0)ni −

∆t

∆x

((
Q2
A0

SA0

)n

i+ 1
2

−
(
Q2
A0

SA0

)n

i− 1
2

)
,

where the upwind fluxes are given, for any quantity X, by

Xn
i+ 1

2
=





Xn
i if

1

2

(
(QA0)ni + (QA0)ni+1

)
> 0,

Xn
i+1 otherwise,

where ∆x is the space step, and where ∆t is the time step, related to ∆x through a usual CFL-like

condition (see e.g. [15]), and such that ∆t = O(∆x). The intermediate values (SA0)
n+ 1

2
i and (QA0)

n+ 1
2

i are
then used as initial conditions for the stiff part of the A0 system, given by:





St = 0,

Qt +
SHξ1

F 2
=

1

ε
S

(
I − Λ

Q|Q|
Q(0)|Q(0)|

)
.

We immediately note that S, and therefore H, is time-independent in this stiff second step. Therefore, we

obtain (SA0)n+1
i = (SA0)

n+ 1
2

i . Recalling the friction model (5.3) and noting that sgn(Q) = sgn(Q(0)) for
small enough ε, the updated discharge is then given by the ODE

Qt =
1

ε
SΛ

(
1− Q2

(Q(0))2

)
,

whose only unknown is Q. Integrating this ODE between times 0 and t, we get the following exact expression
for Q:

Q(t) = Q(0)

tanh

(
1

ε

S|Λ|
|Q(0)| t

)
+
Q(0)

Q(0)

1 + tanh

(
1

ε

S|Λ|
|Q(0)| t

)
Q(0)

Q(0)

.
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The corresponding discretization reads as follows:

(QA0)n+1
i = (Q(0))n+1

i

tanh

(
1

ε

(SA0)n+1
i (|Λ|)n+1

i

|(Q(0))n+1
i | ∆t

)
+

(QA0)
n+ 1

2
i

(Q(0))n+1
i

1 + tanh

(
1

ε

(SA0)n+1
i (|Λ|)n+1

i

|(Q(0))n+1
i | ∆t

)
(QA0)

n+ 1
2

i

(Q(0))n+1
i

,

where we recall that Λ and Q(0) only depend on SA0 and the node i, and therefore we note that the above
equation explicitly determines (QA0)n+1

i . In addition, note that we correctly recover (QA0)n+1
i → (Q(0))n+1

i

when ε→ 0. The presentation of the numerical discretization of the model A0 is thus complete.
For the A1 model, we apply a similar procedure, which we do not write in detail for the sake of

conciseness. The main difference between the two discretizations is that the system of ODEs resulting
from the stiff part can no longer be exactly solved, and a multivariate nonlinear root-finding algorithm
(in practice, Newton’s method) has to be applied. In addition, thanks to the splitting procedure, we also
correctly recover the discrete first-order asymptotic regime.

The unsteady model in 2D. Finally, to compare unsteady 1D results to a reference solution, we require a
numerical scheme for the 2D system (2.4). We elect to use the DASSFLOW code [8, 18], designed to solve
this system in conservative form and validated on multiple 2D test cases.

7.2. Numerical validation

The second part of this section is devoted to the numerical validation itself. We begin by discussing
the chosen geometries and the values we give to the reference dimensionalization parameters. Then, we
compare the steady solutions of each 1D model to the stationary 2D reference solution, as well as the
unsteady solutions of the 1D models.

7.2.1. Geometry and values of the dimensionalization parameters

For the sake of simplicity, we consider a non-meandering, evenly sloped and symmetrical trapezoidal
channel. In addition, to avoid treating dry areas in the discretization, we suppose that the channel is
walled and filled with water. The dimensionalization parameters are chosen such that the channel roughly
corresponds to the Garonne river upstream of the city of Toulouse.

Geometry. Recall that the topography is given by Z(ξ1, ξ2) = b0(ξ1) + δ
I0
φ(ξ1, ξ2). Also, note that b0(ξ1)

only intervenes through its derivative (b0)ξ1 , which we take equal to 1. Furthermore, we assume that the
computational domain is [0, (ξ1)+], whose numerical value is given later. For simplicity, we assume that
the longitudinal slope is only driven by b0, and we take φ(ξ1, ξ2) = φ(ξ2). Then, we get a symmetrical
trapezoidal channel by considering

φ(ξ2) =





(−ξ2 − l) tan θ if Ξ− < ξ2 ≤ −l,
0 if − l ≤ ξ2 ≤ l,
(ξ2 − l) tan θ if l ≤ ξ2 < Ξ+,

(7.9)

where the notations are explained in Figure 3, and where we take Ξ− = −Ξ+. The numerical values of Ξ±, l
and θ are given in the next paragraph, for each experiment. Note that a U-shaped channel is a specific
case of this geometry. Finally, remark that walls are present on each bank of the channel in Figure 3. We
introduced these walls to avoid dry areas.
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Figure 3: Sketch of the function φ(ξ2).

For the sake of completeness, we finally provide the expression of the channel width L(z), as well as the
correspondence between S and H. According to (7.9), we have

L(z) =





2l +
2z

tan θ
if 0 ≤ z ≤ (Ξ+ − l) tan θ,

2Ξ+ otherwise.

Therefore, since we assume H > (Ξ+ − l) tan θ to avoid dry areas, we get

S(H) =

∫ H

0

L(z) dz = 2HΞ+ − (Ξ+ − l)2 tan θ.

Chézy distributio. For the sake of simplicity, we consider a Chézy friction law. The dimensional friction law
reads C(h, ξ1, ξ2)2 = Ch(ξ1, ξ2)2hp. To determine the scaling parameter C0 of the whole friction law, we
introduce the non-dimensional Chézy friction coefficient, defined by Ch := Cc. Therefore, we get C2

0 = C2Hp.
For the experiment #1a, we take a uniform Chézy distribution, i.e. c(ξ1, ξ2) = 1. For the experiment #1b,
we set:

c(ξ1, ξ2) = 1 + 1.99
ξ2 − (Ξ− + Ξ+)/2

Ξ+ − Ξ−
.

For the experiment #2, the Chézy distribution is algorithmically computed according to the asymptotic
regime and to the procedure detailed in Section 7.1.2. Finally, for the experiment #3, we set

c(ξ1, ξ2) = 1.5− 2
|ξ2 − (Ξ− + Ξ+)/2|

Ξ+ − Ξ−
.

Values of the reference parameters. We now give, for each of the three experiments performed in the
remainder of this Section, the chosen values of the reference parameters in Tables 1 and 2, as well as the
geometry and numerical discretization in Table 3. The reference discharge Q is defined by Q = HU . The
experiment #1, presented in Section 7.2.2, concerns the simulation of backwater curves. In Table 3, we
highlight the two parts of this experiment, #1a and #1b, respectively corresponding to a U-shaped channel
and to a trapezoidal channel. The experiment #2, in Section 7.2.3, provides a comparison with the 2D
reference solution. The experiment #3, in Section 7.2.4, is the unsteady simulation of a flood. For this
experiment, X is computed according to the characteristic time of the flood. All numerical results will be
presented in non-dimensional variables.

7.2.2. Numerical experiment: backwater curves

We start with the simulation of backwater curves, presented in Section 7.1.1, and labeled experiment #1
in Tables 1, 2 and 3. We stress that the backwater curves satisfy the mass conservation equation, which
imposes a constant and uniform averaged discharge Q for stationary solutions. We set the normal height Hn
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parameter g (m.s-2) p X (km) Y (m) Q (m3.s-1) I0 C (m5/3.s-1) F

experiment #1 9.81 4/3 5 45 225 4× 10−4 25 0.075
experiment #2 9.81 4/3 10 50 25 1× 10−3 20 0.1
experiment #3 9.81 4/3 ∼ 1.77 90 40 1.6× 10−3 45 0.09

Table 1: Values of the reference parameters for each experiment.

parameter H (m) U (m.s-1) J0 δ Rl ε

experiment #1 7.68 0.651 4.47× 10−5 1.53× 10−3 9× 10−3 0.193
experiment #2 1.37 0.366 2.21× 10−4 1.37× 10−4 5× 10−3 6.18× 10−3

experiment #3 1.35 0.328 3.55× 10−5 7.65× 10−4 5.08× 10−2 0.175

Table 2: Approximate values of the other parameters for each experiment, computed from Table 1.

parameter (ξ1)+ nξ1 l θ Ξ+ nξ2

experiment #1a 5 500 0 0 0.5 100
experiment #1b 5 500 0.25 45 0.5 100
experiment #2 1 200 0.15 60 0.5 20
experiment #3 ∼ 36.7 400 0.15 45 0.5 40

Table 3: Values of the geometry and discretization parameters for each experiment.

equal to 1, and we compute the uniform and constant discharge Q according to this value of Hn by taking
Q = Q(0).

In the first part of this experiment, labeled #1a, we take a U-shaped channel with uniform friction, to
get Q ' 2.99. Then, in experiment #1b, we switch to a trapezoidal channel with non-uniform friction, to
get Q ' 2.72. The corresponding dimensional values are roughly equal to 650 m3.s-1, which characterizes a
mild flood regime.

Let us make the important remark that usual hydraulic engineering models are able to recover the
correct normal height Hn, consistent with the full 2D systems. However, as soon as the channel is no
longer U-shaped, these usual models are not zeroth-order accurate on the averaged discharge Q. Therefore,
compared the the usual models, even our zeroth-order accurate model is able to recover both the correct
normal height Hn and the correct zeroth-order constant and uniform discharge Q(0).

Let us consider the example of the trapezoidal channel described above. The process used by the usual
models consists in forcing Hn = 1 by modifying Q(0). The normal height for the SW model is given by (7.2).
Therefore, to get Hn = 1, the constant and uniform discharge would have to be Q ' 3.02. This is far from
being equal to Q(0) ' 2.72. As a consequence, for the usual models, either the normal height is correct and
the constant discharge is incorrect (this is the usual approach), or the normal height is incorrect and the
constant discharge is correct. In this set of numerical experiments, in order to highlight the shortcomings
of the usual models, we elect to have the correct constant discharge. As a consequence, the normal height
given by the SW model will be incorrect as soon as the channel is no longer U-shaped.

From Section 7.1.1, we note that the backwater curves are governed by a system of ODEs, and thus
we only require a single boundary condition on the height, H0, to drive this steady flow. In practice, we
take H0 = (Hn + 9Hc)/10, where Hc is the critical height, defined by canceling the denominator of the Hξ1

equation. For the A1 system, the enstrophy and potential are initialized by taking the values Ψ(0) and Π(0)

corresponding to H0. The numerical results are presented in Figure 4.
In the left panels of Figure 4, we have represented the free surface H for the three models, denoted
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Figure 4: Simulation of backwater curves. Top panels: U-shaped channel with uniform friction. Bottom panels: trapezoidal
channel with non-uniform friction. Left panel: height and normal height with respect to the position, for the three models.
Right panel: enstrophy Ψ and potential Π for the A1 model.

in the legend by HSW , HA0 and HA1, as well as the associated normal heights Hn for each model. As
expected, we note that the free surface H converges towards the relevant normal height when x goes to 0.
Moreover, as explained in Section 7.1.1, this normal height only depends on the friction model. Since we
have the same friction model for the A0 and A1 models, the normal height associated to these models are
the same, contrary to the one associated to the SW model, unless the channel is U-shaped. By comparing
the two left panels of Figure 4, we note that, as expected, the three models give the same results when
the channel is U-shaped. However, as soon as it is no longer the case, the SW model greatly differs from
the other two, which allows us to conclude that the SW model is irrelevant as soon as the channel is
not U-shaped. We emphasize once again that the standard practice in hydraulic engineering is to force the
correct normal height on the SW model. However, this approach does not recover the correct averaged
discharge, and the resulting models are not zeroth-order accurate. Finally, note that the backwater curves
of the A0 and A1 models are different when the channel is not U-shaped, up to O(ε2), as expected.

In the right panels of Figure 4, we have displayed the enstrophy Ψ and the potential Π computed
by the A1 model. As expected, these quantities vanish when the channel is U-shaped and the friction
is uniform. In addition, once this is no longer the case, we note a similar behavior of these quantities
compared to the height, in the sense that they tend towards a constant value when x goes to 0.

7.2.3. Numerical experiment: comparison to 2D steady solution

We now turn to the comparison between the 2D reference steady solution from Section 7.1.2 and the
models under consideration.

Recall that the 2D solution is only driven by its boundary conditions h̃(v1)0 and h̃(v2)0 on the discharge,
and that it will produce a steady flow at normal height H2D

n . To compute this reference solution, we
take H2D

n = 1, h̃(v1)0 ' 0.75 and |h̃(v2)0| = O(ε). These 2D results are presented in Figure 5.
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Figure 5: The 2D reference steady solution, computed from the process exhibited in Section 7.1.2. From left to right: free
surface H(ξ1) = h(ξ1, ξ2) + φ(ξ2), ξ1-discharge h̃v1(ξ1, ξ2) and ξ2-discharge h̃v2(ξ1, ξ2).

Equipped with this 2D solution, we can compare it to the three 1D models at our disposal. The

constant and uniform 1D discharge is defined by Q =
∫ Ξ+

Ξ−
h̃v1(0.5, y) dξ2. In Figure 6, we present the

free surface H(ξ1) computed by the SW (dotted lines), A0 (dashed lines) and A1 (solid lines) models, in
addition to the corresponding normal heights.

The left panel of Figure 6 contains these comparisons. We note that the normal height associated to
the SW model does not correspond at all to the 2D normal height (we get HSW

n ' 0.736 while we have
set H2D

n = 1). Thus, the free surface computed by the classical SW model is once again wildly inconsistent
with the reference 2D solution. We once again stress that we have chosen to take the same averaged
discharge for the three models, instead of fitting the correct HSW

n as is usually the case in hydraulic
engineering.

Turning to the right panel of Figure 6, which displays a zoom of the left panel around the line H = 1,
we observe that the A0 and A1 models are consistent with the 2D reference solution. Indeed, the small
variations in free surface are due to the uniformity in space of the 1D discharge, compared to the 2D
discharge whose divergence vanishes, but whose ξ1-derivative is nonzero. Moreover, the 2D height becomes
very close to the 1D ones around ξ1 = 0.5, since the 1D discharge is the ξ2-average of the 2D one at
point ξ1 = 0.5. We do not observe much difference between the solutions of the A0 and A1 models: the
relative error in L2 norm is around 5 × 10−5. This was to be expected since ε ' 6.18 × 10−3 in this
experiment, and the difference between the A0 and A1 models is O(ε2).

Finally, in Figure 7, we display the relative errors in L2 norm between the enstrophy Ψ (left panel) or
the potential Π (right panel), computed by the A1 model, and their zeroth- and first-order approximations.
As expected, these errors are O(ε2), since the A1 model is consistent up to O(ε) in Ψ and Π.

7.2.4. Numerical experiment: unsteady flow

In this final experiment, we consider the unsteady case of a flood. The reference solution is given by
the DASSFLOW code [8, 18]. Since the SW model has been proven to be inconsistent by the previous
two experiments, we no longer consider it. We compare the A0 and A1 models, discretized as explained in
Section 7.1.3, to the reference solution.

In addition, we consider the kinematic waves (KW) approximation, which consists in taking the mass
conservation equation of the shallow water equations and considering Q = Q(0)(S), as follows:

St + (Q(0)(S))ξ1 = 0.
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Figure 6: Comparison with the 2D steady reference solution. Left panel: height and normal height with respect to the
position, for the three models; comparison with the 2D height. Right panel: zoom on the left panel to highlight the differences
between the 2D height and the one computed by the A0 and A1 models.
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Figure 7: Errors between the computed enstrophy (left panel) or potential (right panel) and their zeroth- and first-order
expansions, computed using the A1 model.

Since Q(0) depends nonlinearly on Λ, it depends on Sξ1 . The kinematic wave equation therefore is a
nonlinear diffusion equation, which we discretize with a classical upwind scheme. Note that this numerical
scheme involves a restrictive stability condition on the time step, in ∆t = O(∆x2).

The reference parameters for this experiment correspond to the Garonne river upstream of Toulouse (see
Tables 1 and 3). We consider a flood lasting a dimensional time of 7.5h, and the total dimensional time of the
unsteady experiment is 10h. The discharge increases during the dimensional time T = 1.5h, then stagnates
during the dimensional time 1.5h, and finally decreases to the initial level during the dimensional time 4.5h.
We get the characteristic length X from the characteristic flood time T by setting X = UT ' 1.772km.
The total dimensional length is 65km (ξ1 ∈ [0, 65/X ], where 65/X ' 36.69), and we consider a probe at
dimensional position 62.25km (ξ1 ' 34.57). This domain roughly corresponds to the Marquefave-Toulouse
portion of the Garonne river.

The free surface is initialized at the normal height. From this normal height, we compute the initial
discharge Qn, enstrophy and potential through their respective zeroth-order asymptotic expansions. As a
consequence, the flow of water in the river is a steady solution before the flood begins. The flood itself is

39



simulated by a time-dependent left boundary condition on the discharge Q. We take Q(t, 0) = Qin(t), with

Qin(t) =





Qn +

(
2200

Q −Qn
)

t

0.15 tend
if t ≤ 0.15 tend,

2200

Q if 0.15 tend ≤ t ≤ 0.30 tend,

Qn +

(
2200

Q −Qn
)

0.75 tend − t
0.75 tend − 0.30 tend

if 0.30 tend ≤ t ≤ 0.75 tend,

Qn otherwise,

where tend is the non-dimensional final time. This boundary condition ensures a dimensional peak flood
discharge of 2200m3.s-1, which corresponds to a 5-year flood for the Garonne river. The left boundary
condition on the section is obtained by computing Sin(t) such that Qin(t) = Q(0)(Sin(t)). The left boundary
conditions on the enstrophy and potential are their respective zeroth-order asymptotic expansions. Finally,
we consider homogeneous Neumann boundary conditions on the right boundary. Regarding the 2D code,
the top and bottom boundaries are solid walls, and we prescribe standard 2D inflow and outflow boundary
conditions at the left and right boundaries, respectively. These boundary conditions distribute the 1D
discharge Qn over the whole channel, taking into account the specific geometry of the flow. From this
discharge, the water height is computed at the boundaries.

In Figure 8, we display the free surface H (left panels) and discharge Q (right panels) at dimensional
times 2h (top panels) and 9h (bottom panels). The solid blue line with × marks represents the width-
averaged 2D reference solution. The dashed line and the solid line with + marks respectively represent
the results of the A0 and A1 models. The results of the kinematic waves approximation, labeled HKW

and QKW = Q(0)(HKW ), are represented with dotted lines. On each panel, we magnify the point where
the differences between the four models are the largest. The magnification level for each panel is written
under the line connecting the magnifying glass to the graphs.

We consistently observe that the A1 model yields the best approximation of the 2D reference solution,
as expected since it recovers the first-order expansion of the discharge. The approximation obtained with
the KW model is worse than the one coming from the A0 model, even if both recover the zeroth-order
expansion Q(0) of the discharge. The most striking differences between the models are located where the
flood advances on the steady river. This denotes a difference between the zeroth-order and first-order
friction models.

To get a better understanding of the relevance of the A1 model compared to the A0 one, we now display
in Figure 9 the relative errors in space between the 2D reference solution and the models with respect to
the dimensional time. The relative spatial errors in L2 norm are computed as follows:

∥∥∥∥
HA1(·, t)−H2D(·, t)

H2D(·, t)

∥∥∥∥
L2

=

√∫

ξ1

∣∣∣∣
HA1(ξ1, t)−H2D(ξ1, t)

H2D(ξ1, t)

∣∣∣∣
2

dξ1,

and the relative spatial errors in L∞ norm as defined by:

∥∥∥∥
HA1(·, t)−H2D(·, t)

H2D(·, t)

∥∥∥∥
L∞

= max
ξ1

∣∣∣∣
HA1(ξ1, t)−H2D(ξ1, t)

H2D(ξ1, t)

∣∣∣∣.

In the left panel of Figure 9, we display the errors in L2 norm, and we display the errors in L∞ norm in its
right panel. The errors made by the KW, A0 and A1 models are respectively depicted with dotted lines,
dashed lines and solid lines.

We observe, like in Figure 8, that the KW model produces a worse approximation than the A0 model,
whose approximation is itself worse than the one given by A1 model. Indeed, the maximum over time
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Figure 8: Free surface H (left panels) and discharge Q (right panels) for the flood experiment. Comparison of the 2D
reference solution with the A0 and A1 models, as well as the kinematic waves (KW) approximation. The results are displayed
with respect to the position, at dimensional times t = 2h (top panels) and t = 9h (bottom panels). Magnification of the zones
where the three models yield the most different results, with magnification level written below the line linking the magnifying
glass to the graphs.

of the spatial error in L2 norm is around 23.6% for the KW model, 11.3% for the A0 model and 3.17%
for the A1 model. The maximum over time of the spatial error in L∞ norm is around 22.6% for the KW
model, 14.0% for the A0 model and 3.81% for the A1 model. Once again, the advantages of the A1 model
over the other two models are undeniable. Note that similar conclusions can be obtained from the study of
the discharge errors, and we do not display the error curves here for the sake of conciseness.
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Figure 9: Relative errors in space in L2 norm (left panel) and in L∞ norm (right panel) between the 2D reference solution
and the KW model (dotted lines), the A0 model (dashed lines) and the A1 model (solid lines), represented with respect to the
dimensional time.

In the left panels of Figure 10, we display the relative errors between the reference solution and the
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models, with respect to time and at the probe located at ξ1 ' 34.57. The top left panel displays the error
on H while the bottom left panel displays the error on Q. The errors between the 2D reference solution
and the A0 and A1 models are respectively represented with a dashed line and a solid line. In the right
panels, we display a zoom around the point ξ1 ' 34.57 at dimensional time 3.35h, when the errors are the
largest. The top right panel displays H and the bottom right one displays Q. The color coding is the same
as in Figure 8.

The observations we had made in Figure 8 are confirmed by Figure 10. Indeed, at the probe, the largest
difference in free surface H are around 11.9% for the A0 model and 2.00% for the A1 model. Regarding the
discharge Q, the largest differences at the probe are about 25.9% for the A0 model and 4.86% for the A1
model. These differences are obtained around dimensional time 3.35h, when the peak of the advancing
flood reaches the probe at ξ1 ' 34.57. Note that the differences between the reference solution and the
zeroth-order models are closely related to the values of ε ' 0.175 and ε2 ' 3.06× 10−2.
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Figure 10: Left panels: relative errors between the 2D reference solution and the A0 and A1 models (the dashed line for
the A0 model and the solid line for the A1 model). The errors on H are displayed in the top left panel and the ones on Q
are depicted in the bottom left panel. These errors are computed at non-dimensional position ξ1 ' 34.57 and are plotted
with respect to the dimensional time. Right panels: free surface H (on top) and discharge Q (at the bottom) for the flood
experiment, computed with the 2D system as well as the A0 and A1 models, and displayed with respect to the position, at
dimensional time 3.35h. Magnification of the zones where the three models yield the most different results, with magnification
level written below the line linking the magnifying glass to the graphs.
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