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Abstract: We develop an open-source Python software integrating flexibility needs from Variable
Renewable Energies (VREs) in the development of regional energy mixes. It provides a flexible
and extensible tool to researchers/engineers, and for education/outreach. It aims at evaluating and
optimizing energy deployment strategies with higher shares of VRE, assessing the impact of new
technologies and of climate variability and conducting sensitivity studies. Specifically, to limit the
algorithm’s complexity, we avoid solving a full-mix cost-minimization problem by taking the mean
and variance of the renewable production–demand ratio as proxies to balance services. Second,
observations of VRE technologies being typically too short or nonexistent, the hourly demand and
production are estimated from climate time series and fitted to available observations. We illustrate
E4CLIM’s potential with an optimal recommissioning-study of the 2015 Italian PV-wind mix testing
different climate data sources and strategies and assessing the impact of climate variability and the
robustness of the results.

Keywords: renewable energy; climate variability; energy mix; mean-variance; sensitivity

1. Introduction

We present the E4CLIM open-source software for energy mix assessments. The world electricity
generation is expected to increase by 66% between 2017 and 2040 (IEA [1]; the figures for 2017 are
estimated, the figure for 2040 refers to the Current policy scenario). In view of climate change and
energy security concerns, the renewable energies will inevitably play a major role in satisfying this
growing demand. Solar photovoltaics (PV) and wind energy are the fastest-growing energy sources
for new generation capacity and the share of their generation is expected to grow from 5.9% (6.8%) of
total world generation (of final consumption) in 2017 to 16% (17.8%) in 2040, with more than half of
this growth coming from the wind power [1]. Because wind and PV production varies in time and
space with meteorological conditions and that most of it is non-dispatchable, we refer to PV and wind
energy as Variable Renewable Energy (VRE) sources, and the aggregate production of a system of VRE
units as the VRE production.
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While the size of VRE projects varies greatly, the harvesting of wind and solar energy is necessarily
spread in space. As they develop, VRE systems interact in a non-trivial way with a number of
actors, such as citizens, ecosystems, markets and electricity networks [2]. Leaving aside critical
social and political aspects of energy transitions, we focus on the integration of VRE to an existing
interconnected system.

Major challenges from the integration of high shares of PV and wind energy in power systems are
summarized by Ueckerdt et al. [3]. A key issue is the variable, uncertain and location-specific nature
of the renewable energy production and the need for a constant balancing of the demand-supply.
This results in “integration costs” that are not reflected by the marginal costs of VREs [4]. For systems
historically dimensioned to face the variability of the demand only, variability in the renewable energy
production may lead to local power shortages due to the low capacity credit [5] of VREs or to increased
transmission congestion and over-produced generation leading to curtailment. Today, this must be
compensated at all times via ancillary services [6] over a broad range of frequencies [7,8], e.g., by an
increased flexibility of the conventional generation systems such as coal plants or combined cycle gas
turbines [9,10]. On the other hand, this increased variability brings higher price instability along with
a reduction of wholesale prices. In the long run falling prices associated with the low marginal costs of
VREs may ‘erode’ the returns of both renewable and conventional producers, pushing the latter out
of the market. The latter are, however, essential to smooth out the fluctuations of renewable-power
output and ensure system stability, unless non-fossil flexibility solutions take over. Therefore, the
possibilities for a future large-scale renewable penetration are still controversial [11–13]. The 1st
objective of E4CLIM is to help designing and analysing mixes with high shares of VREs.

Cross-boarder transmission, demand flexibility and different types of storage are important
options for the integration of high shares of VREs. To evaluate the needs for and the viability of such
solutions, the variability of the renewable energy production is analyzed in a number of studies for
different temporal and spatial scales, locations and VRE sources. Widén et al. [14] review studies
on the assessment of variability and forecasting of solar, wind, wave and tidal energy. Graabak and
Korpås [15] review works on the variability of the wind and solar resources in Europe. An essential
point on which we build is that this variability may be partly smoothed out by aggregating the
production from different units of a farm and from sites at different locations (spatial diversification),
or by exploiting the complementarity between energy sources (technological diversification).

Spatial diversification is all the more effective if the different production sites are weakly or
negatively correlated. In the midlatitudes, mesoscale (about 10–100 km) weather patterns are associated
with a relatively quick decline in wind-speed correlations with distance, but synoptic weather systems
and persistent atmospheric regimes are responsible for correlations at synoptic scales of about 1000 km
or more [16,17]. The major part of the variability of the solar resource, on the other hand, is associated
with the diurnal and the seasonal cycle and is thus highly correlated in space. However, a fraction of
the solar-resource variability is associated with clouds and decorrelates quickly with distance [18].

Spatial diversification is thus only applicable at sufficiently large scales, whenever the renewable
energy variability is sufficient. Holttinen [19] quantify the reduction of the variance of the
production thanks to the distribution of the wind power in Nordic countries using generation data.
Katzenstein et al. [20] show that the correlation between the power output of wind turbines in Texas
200 km away is half that of collocated turbines. Tarroja et al. [21] analyze the variability of wind
generation in the US to quantify the imact of aggregation per frequency. Giebel [22] use meteorological
data to model the whole generation system of Europe as a single node and analyze the benefits
of distributed wind generation. Smoothing of offshore wind production in the US via large-scale
interconnections is modeled in Kempton et al. [23]. The benefits of spatial diversification for solar
energy is also assessed by a number of authors [14,15,24,25], while Buttler et al. [26] study the
joint smoothing from the distribution of both wind and solar energy in Europe using measured
generation data.
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Technological complementarity may also help reduce the VRE-production variability. In Europe,
for instance, wind and solar productions have negatively correlated seasonal cycles, the latter being
maximal in summer, the former in winter [27]. The interaction between wind and demand in the four
Nordic countries is studied by Holttinen [28] based on observed hourly wind-production and load data.
Sinden [29], Bett and Thornton [30] and Coker et al. [31] respectively analyze the complementarity in
the UK between wind and demand, wind and PV, and the wind, solar, tidal and demand. Widén [32]
use eight years of hourly climate and generation data for Sweden to assess the correlations between
wind units and between solar units at various time scales and the reduction of the total variability by
combining wind and solar power. Miglietta et al. [33] focus on the local complementarity of wind
and solar energy resources over Europe, while Santos-Alamillos et al. [34] use canonical component
analysis to extract the most correlated spatial patterns of wind and solar resources in the Southern
Iberian Peninsula. The 2nd objective of E4CLIM is to evaluate the benefits of distributing VRE capacities
spatially and technologically.

Most studies mentioned so far are based on an existing or a uniform distribution of VRE capacities.
Instead, this VRE mix may be optimized in order to leverage weaker correlations between production
sites to minimize the variability of the production/production–demand mismatch once aggregated
by an interconnection network. To this end, the distribution of VRE capacities may be optimized
technologically, geographically or both. The integration of VREs in power systems do not only induce
costs from the installation of new plants, but also integration costs for grids, balancing services,
more flexible operation of thermal plants, and reduced utilization of the capital stock embodied in
infrastructure [4]. For this reason, different VRE-mix-optimization approaches have been developed
which rely on some measure of the variability of the renewable production in addition to its expectation.

As reviewed by Hirth [35,36], many economic studies explicitly or implicitly maximize welfare by
determining an optimum from the intersection of long-term marginal costs and of the marginal value.
For instance, in Shirizadeh et al. [37], an open-source dispatch and investment model is developed
to study the dependence of optimal fully renewable power systems to technology cost uncertainty,
in continental France. At the European scale, Heide et al. [38] optimize the wind-solar mix in a fully
renewable future European power system (modeled as a single node) to reduce storage and balancing
needs. Depending on the objectives to minimize storage capacity, annual balancing energy or balancing
power, they find different optimal mixes, mainly due to intraday mismatch dynamics. In both cases,
capacities for each VRE source are aggregated at the national or European level, so that the regional
distribution is not optimized. Instead, Rodríguez et al. [39] distribute the wind share per country in a
100% wind-solar mix (on average) to minimize balancing needs and transmission flows between 30
European countries. Becker et al. [40] build on this work to investigate pathways to fully renewable
scenarios and their sensitivity to transmission capacities. Becker et al. [41] optimize the wind-solar
mix in the US to reduce storage needs using 32 years of weather data and Nelson et al. [42] simulate
how a range of generation technologies, storage and transmission may meet the projected energy
demand in the US at the least societal cost. Lund and Mathiesen [43] discuss energy-mix scenarios
for a fully renewable electricity supply in Denmark. François et al. [44] analyse the complementary
of run-of-the river hydropower (RoR) with PV in northern Italy, while Raynaud et al. [45] evaluate
optimal RoR-PV-wind mixes in 12 independent Euro-Mediterranean regions. Finally, methodologies
and softwares have been developed by Perera et al. [46] and Siraganyan et al. [47] to optimize urban
and distributed energy systems. Other studies with less ambitious energy targets have been explored at
continental and regional scale by repowering VRE capacities, i.e., by decommissioning and reallocating
current capacities [48].

Instead of relying on the expected market value or balancing needs alone, approaches based on
Markowitz’ mean-variance portfolio theory [49] introduce the notion of “risk” associated with the
variability of indices such as the VRE production, generation costs or electricity prices. The advantage
of this type of approach is that space is left for decision makers to find a trade-off between maximizing
the expected renewable energy penetration or revenue and minimizing the risk. Depending on the
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application, the risk may be understood in different ways. First, Brazilian and Roques [50] provide
an overview of the recent research applying mean-variance analysis to energy planning focusing on
fossil-fuel prices. In this case, the financial risk is minimized in order to protect investments from
price volatility. For instance, Beltran [51] applies the mean-variance optimization technique to infer the
optimal energy mix with VREs in Mexico from levelized generation costs. However, they estimate the
variance of yearly costs, so that critical balancing needs within a year are not resolved. Instead, the risk
may be used as a proxy for the electricity system’s reliability or for integration costs due to the variable
nature of renewable energy sources. In particular, reducing the risk as measured by the variance
of the renewable energy penetration is done through geographical/technological diversification by
leveraging weaker correlations between sites and sources. For instance, Roques et al. [52] (see also
references therein) use a mean-variance analysis to determine optimal wind-power deployment among
five European countries. They show that there is space for improving the European mix and that
optimal mixes differ when the focus is on maximizing the wind-power variability or on maximizing
the contribution of wind power during peak hours. Thomaidis et al. [53] assess the optimal wind and
solar deployment and repowering actions in the southern Iberian Peninsula with a mean-variance
analysis based on modeled daily mean capacity factors on a grid of 9 km resolution. This leads
to high-resolution problem that they ingeniously solve using an implementation of the critical line
method. Unfortunately, they do not validate the modeled capacity factors and use daily rather than
hourly data over three years, thus ignoring intraday balancing needs and interannual variability.
Santos-Alamillos et al. [54] instead apply mean-variance optimization to the full Spanish wind mix
using ten years of hourly wind capacity factors estimated from a regional simulation of wind speed.
However, the reliability of these capacity factors is not assessed. Note that these three studies evaluate
the variance of a given renewable energy mix using production data only, whereas the reliability of
the system depends on consumption as well. The 3rd and 4th objectives of E4CLIM are respectively to
evaluate different optimization strategies taking the variability of both the generation and the demand
into account, and to allow decision makers to arbiter between different mixes.

Before to present our approach, we discuss the impact of low-frequency climate variability
on optimal mixes. Climate variability is not only relevant for the potential smoothing of the VRE
penetration, but also because of year-to-year climatic changes affecting energy systems over their
lifetime. Variability on time scales longer than a year may be decomposed into interannual fluctuations
and long-term trends (whether due to artefacts from very-low-frequency intrinsic variability or to
anthropogenic forcing). Interannual wind indices over Europe are known to change sign around
45◦ N [55], while significant interannual solar radiation changes are organized in regional to
planetary-scale patterns [56]. Andresen et al. [57] and Zeyringer et al. [58] respectively stress the
important impact of interannual variability in the wind and PV production in Denmark and the
UK. Pozo-Vazquez et al. [59] reveal that interannual variability in the wind and solar resources in the
Mediterranean associated with changes in the phase of the North Atlantic Oscillation (NAO, [60])
can reach values above 20%. Thornton et al. [61] show how weather patterns affect the winter
wind production and demand simultaneously in Great Britain. Combining a detailed continent-wide
modeling of Europe’s future power system with 30 years of historical weather data, Collins et al. [62]
assess the interannual variability of CO2 emissions and total generation costs due to weather
fluctuations. Bett et al. [63] study the long-term wind variability and trend in Europe over the last
140 years. In addition, Vautard et al. [64] and Bakker et al. [65] respectively show that trends in the
wind resource may also be attributed to changes in the land surface and in energy-system operations.
Finally, several studies demonstrate that climate change will have a significant impact on the European
onshore/offshore wind and PV production, and on the demand [66–70]. However, many assessments
of the optimal renewable energy mix are based on the statistical properties of the historical production
and demand. Due to the only recent deployment and monitoring of wind and solar energy systems,
the length of regional production and demand time series is often limited to a few years at best. This is
not sufficient to take into account the effect of interannual climate fluctuations [71] on covariances
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between energy time series properly. In addition, relying on energy observations does not allow for
considering new technologies (e.g., offshore wind energy), for which little or no observations exist.
The 5th, 6th and 7th objectives of E4CLIM are respectively to assess the impact of variability on energy
mixes on a broad range of time scales (from hours to decades), allow one to study the impact of climate
change scenarios, and to help integrating new technologies.

To alleviate these issues, other studies (e.g., [72]), rely on weather observations or climate
simulations (such as reanalyses or projections) to estimate the renewable production and the electricity
demand (see [73,74], for an evaluation of the use of reanalysis and satellite data for the estimation
of the wind and PV resource in Europe). Times series from observations are often still too short,
however, to include contributions from all significant time scales to the variance. On the other hand,
climate simulations are strongly biased at regional scale, so that multi-model approaches are essential
to estimate errors in energy estimates due to the climate data, even when applying bias correction.
Moreover, open-licensed datasets using different methodologies to estimate solar and wind generation
data from climate data have been found to introduce significant additional biases [75]. The sensitivity
of technical and economic model predictions to such differences in energy generation data is still
controversial [57,58,76], thus calling for the possibility to develop and validate different generation
modeling methods. The 8th objective of E4CLIM is to be able to assess the robustness of results to input
data and modeling approach.

Weijermars et al. [77] review energy-mix optimization models at the macroscopic scale and
calls for more transparancy and for approaches integrating theoretical optimizations in the broader
political and social context. Here, we focus on the modeling of electricity systems integrating high
shares of VREs. Ringkjøb et al. [78] extend previous works to review more than seventy modeling
tools. The complexity of these models vary greatly so that not all are sufficiently tractable to perform
sensitivity studies to parameters and modeling assumptions. The authors also show that challenges
remain in the representation of variability; in the description of the interaction between sectors within
and beyond the energy system; regarding validation and transparency; in representing forecast errors,
uncertainty and the impact of climate change. Moreover, although some are, most of the modeling
tools reviewed are not fully open-source softwares. By that, we mean that not only the source of the
software itself is open, but also the data taken as input and the third-party programs (e.g., optimization
solvers) on which it relies. Pfenninger et al. [79], on the other hand, call for promoting more open and
reproducible science. The 9th, 10th and 11th objectives of E4CLIM are to provide a fully open-source
modeling tool covering the download of input data to the representation of results, which is sufficiently
simple to perform sensitivity analyses, and that can be easily adapted to different case studies and
new research questions.

Specifications. E4CLIM should allow one to

1. Design and analyse mixes with high shares of VREs,
2. Evaluate the benefits of spatial and technological diversification,
3. Assess different optimization strategies taking the variability of both the generation and the demand

into account,
4. Choose between optimal mixes representing different trade-offs,
5. Assess the impact of climate variability on energy mixes on a broad range of time scales (from hours

to decades),
6. Take the impact of climate change into account,
7. Integrate new technologies for which little data is available,
8. Track uncertainties and evaluate the robustness of results to input data and modeling approaches using

observations, statistical models and multiple input data sources,
9. Use a fully open-source tool available to the research, engineering and education communities, helping access

and manage open-data, relying on free third-party libraries, and covering the whole chain of operations,
from downloading input data to representing results,

10. Perform sensitivity analyses which are computationally tractable,
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11. Easily configure and extend the model to new applications and research questions.

While each of these individual characteristics may be found in previous studies and existing tools,
the originality of E4CLIM is to provide a versatile modeling platform satisfying these specifications
and allowing one to select some of these features or to extend the model with new ones to study
interdisciplinary research questions at the cross-road between energy, economy and climate science.

In this article, after presenting the general design of the software to show its potential for future
works, we focus on the current concrete implementation of the software and demonstrate its application
to a case study. We chose to work at the scale of regions of a country (e.g., Italy) or of a broader domain
(e.g., Europe), for several reasons. First, the territory covered by the regions between which VRE
capacities are optimized must be sufficiently large to allow for weaker correlations between regions to
be exploited to reduce the variability of the renewable energy production with respect to the demand.
Due to the large-scale character of wind and solar patterns, a higher level of granularity is not expected
to allow one to optimize the VRE mix much further. Second, our approach relies on climate data and
is thus limited by the scales resolved by observation systems and models. Regional climate models
provide information at the scale of regions (50–100 km), but smaller scales are not sufficiently well
resolved [80]. Third, operators in several countries, such as Italy and France, publicly provide energy
data at the regional level allowing one to validate results obtained from climate data. Finally, the
division into administrative regions may allow for the planning of the distribution of VRE capacities
among regions.

To illustrate the present capabilities and the potential of this software and its methodology,
we show an application to the recommissioning of the 2015 Italian PV-wind mix based on historical
climate and energy data. The complementarity between the wind and the solar generation in Italy is
studied by Monforti et al. [81] who show, using solar radiation and wind speed data for one sample
year, that the Italian solar-wind mix offers a potential for both local complementarity between energy
sources and geographical complementarity on monthly time-scales. Here, we provide new insights
regarding the distribution of PV-wind capacities in Italy that minimize flexibility needs.

Let us finally note that we have designed the E4CLIM software as a framework allowing
applications to satisfy some or all aforementioned objectives. The concrete application to Italy
presented, here, however, depends on the available energy observations and relies on approximations
which impose some limitations on the energy estimates. For instance, PV variability associated with
intraday changes in the clearness index is not resolved when using the regional climate simulation
instead of the reanalysis and the linear regression used to correct PV and wind capacity factors against
observations may not be appropriate to resolve the nonlinear response of the production to climate
change. Moreover, present or future network constraints are not considered, here, making the analysis
of the benefits brought by spatial and technological diversification only partial. Future applications on
these topics should tackle these issues.

The remainder of the paper is structured as follows. Section 2 outlines the methodology and the
general software design. A concrete implementation of the complete chain of modules allowing to
perform a climate-aware mean-variance analysis is presented in Section 3. In Section 4 we illustrate the
capabilities of E4CLIM with an optimization of geographical distribution of wind and PV generation
in Italy for historical climate conditions, with a comparison with the actual PV-wind mix. We also
show how E4CLIM can be used to assess the impact of climate variability on the optimal mixes and the
sensitivity of the results to the climate data. Conclusions are drawn in Section 5 and known limitations
of the software and methodology made explicit in Section 6.

Furthermore, an extensive supplementary material is provided. Appendix A details the energy
and climate datasets, the production and demand models. The mean-variance optimization problem,
its mathematical formulation and the algorithm are presented in Appendix B. Finally, the E4CLIM

source code is available online under GPL license at https://doi.org/10.14768/20191105001.1 (accessed

https://doi.org/10.14768/20191105001.1
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on 10th of November 2019). This page also links to the E4CLIM documentation, which includes all
cases from this study.

2. Methodology and Software Design

The purpose of this section is to outline the design of E4CLIM. To show its full potential, this
description remains voluntarily abstract, while the next Section 3 gives the concrete implementation of
the climate-aware mean-variance analysis.

Summarizing some of the methodology’s main objectives (Section 1), the E4CLIM software is a
flexible tool allowing for the evaluation of energy mixes, taking into account the variability of the
demand and production, from both mature and emerging technologies, on a broad range of time scales.
An energy mix is defined here as a set of georeferenced capacities (e.g., at the scale of bidding zones,
administrative regions or states) per energy source and may be prescribed, e.g., taking the actual mix of
a given area, or optimized, e.g., with the mean-variance analysis detailed in the next Section 3. We are
interested in properties of the energy mixes such as the mean penetration, the variance, the frequency of
occurrence of critical situations, costs, GHG emissions, etc. These properties may provide the objectives
of an optimization problem or may be computed ex post. They are computed from georeferenced
energy data, such as demand and capacity factors per source and electrical region. The software’s
stand-alone design is such that the whole chain of operations is covered, from downloading the data
from its original sources to representing the results.

In E4CLIM, energy time series may be taken from observations directly. However, in order to
consider new technologies and to resolve the impact of low-frequency variability on the production,
it is also possible to estimate energy data by applying statistical models to climate time series, e.g., of
temperature, wind speed or irradiance. To summarize, an E4CLIM project is divided in three phases:

1. Computing georeferenced energy time series from historic or climate data,
2. Distributing capacities spatially and technologically,
3. Post-processing and analyzing the resulting mixes.

A project thus takes as input energy, climate and geographic data to output mixes of georeferenced
VRE capacities and properties that may be derived from this data.

Energy mixes are based on several components, i.e., loads or sources (wind, PV, etc.) for which
georeferenced time series of relevant variables (demand, capacity factors, etc.) must be estimated
or parsed, for a given area (e.g., a country or a macro region). The algorithms used to compute
these variables are composed of statistical models made of sequences of blocks, and of data sources
required by the models (see Appendix A for a description of the models and data sources used in
the application of Section 4). Statistical models and data sources are, however, independent from
each other and connected through a standard interface. New algorithms may thus be composed by
assembling different sources and models. In particular, it is possible to either use energy observations
provided by utilities directly, or to rely on statistical learning to fit existing or new demand/production
models to observations and make predictions over a longer/future period from climate data.

These time series are then used in the optimization step and for the mix analysis together with
installed capacities. In the future, controllable solutions (production, storage) could be dispatched in
this post-processing stage to compute economic/carbon costs associated with the satisfaction of the
mismatch between the demand and the VRE production.

3. A Concrete Implementation for Mean-Variance Analyses

We now describe the implementation in E4CLIM of the mean-variance analysis applied in the next
Section 4. The corresponding flow chart is given in Figure 1. Energy, climate and geographic data are
used to compute optimal mixes and their properties. We base the computation of optimal mixes on a
mean-variance analysis both to consider different optimal mixes and to limit the complexity of the
program to the optimization of the VRE capacities. We assume that all installed VRE capacities are
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fully operational, that all the VRE production is injected to a copper plate network in which maximum
transfer capacities are sufficiently high to prevent congestion (no constraints on the transmission) and
that the mismatch between the actual demand and the VRE production is satisfied by conventional
plants or other means. Assumptions about these plants are not needed at this stage since costs
evaluation and more realistic constraints are left for future works.

We now proceed backward from the end of Figure 1 to describe this program.

Figure 1. Flow chart of the concrete implementation of the mean-variance analysis for the Italian
PV-wind mix.

3.1. Mix Analysis

The “post-processing” (quoted expressions refer to blocks in Figure 1) step translates capacities
into mix properties such as the PV fraction and shortage and saturation occurrence frequencies
(see plots for Italy in Section 4). This step may be further developed to compute economic costs and
GHG emissions associated with a mix, etc.

3.2. Mix Optimization

In E4CLIM, a mix is either prescribed, or obtained as the solution of an optimization problem.
In order to isolate the optimization of the VRE capacities from other energy systems, we use a
“mean-variance” analysis of the VRE production with respect to the demand. The latter is based on
two measures: the mean penetration,

µ(w) := E

 ∑
k=(i,j)∈I×J

wk
ηk(·)

∑i∈I Di(·)

 = ∑
k=(i,j)∈I×J

wkE
[

ηk(·)
∑i∈I Di(·)

]
, (1)

and what we refer to as the global version of the total variance,
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σ2
global(w) := V

 ∑
k=(i,j)∈I×J

wk
ηk(·)

∑i∈I Di(·)

 . (2)

(Here, k = (i, j) is the multi-index composed of an index i in the set I of zones, or electricity regions,
and a technological index j in the set J of energy sources. The bold-faced symbol w denotes the
vector with components wk giving the installed capacities for each region and technology. The ηk(t)
are the corresponding time-dependent zonal capacity factors and the Di(t) are the zonal demands
(Appendix A.3). We refer to the ratios ηk(t)/ ∑i∈I Di(t) as the normalized capacity factors. The
symbol Σ denotes the sum over the index in subscript. The symbols E and V respectively denote
the expectation and the variance of the random variable within brackets. In the following numerical
applications, these statistics are replaced by sample estimates from the climate record [82].)

In other words, the mean penetration, µ(w), and the global variance, σ2
global(w), are respectively

given by the mean and the variance of the ratio between the total PV and wind production over
the total demand. The variance serves as a proxy for flexibility services: minimizing the variance
corresponds to maximizing the diversification of the renewable configuration, which in turn lowers the
variability of renewable energy penetration and improves the flexibility of the system and its resistance
to shocks. In particular, a lower variance in the renewable energy mix is less demanding in services
from conventional production (for which start up and shutting down services have a cost) or demand
management (see below).

Two alternate versions of the total variance are also considered. The technology variance,

σ2
technology(w) := ∑

i∈I
V
[
∑
j∈J

w(i,j)
η(i,j)(·)

∑i∈I Di(·)

]
, (3)

is defined as the sum over zones of the variance of the total PV and wind production per zone over the
total demand. The base variance,

σ2
base(w) := ∑

k=(i,j)∈I×J
V
[

wk
ηk

∑i∈I Di(·)

]
. (4)

is defined as the sum over zones and technologies of the variance of the production per zone and
technology over the demand (we discuss the implications of these alternative definitions regarding the
optimization problem below) (Formally, these two measures do not correspond to a variance but to
sums of variances).

Taking the mean penetration, µ, and a version of the total variance, σ2, as two objectives, the
mean-variance analysis translates into an optimization problem distributing PV and wind capacities:

min
w

σ2
global|technology|base(w)

max
w

µ(w)

subject to ∑
k

wk = wtotal

wk ≥ 0 ∀ k,

(5a)

(5b)

(5c)

(5d)

Here, the Equations (5a) and (5b) are the two objective functions. Equations (5c) and (5d) are
respectively an equality constraint fixing the total VRE capacity to some value, wtotal, and an inequality
constraint preventing VRE capacities to be negative. In Section 4, we analyze results with and without
the total VRE capacity constraint (5c).
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Before to discuss the technical signification of this optimization problem, let us describe the
mathematics. As a biobjective optimization problem [83], there exists a set of Pareto-optimal mixes,
the optimal frontier. Each optimal mix may be represented in a mean-variance chart, as illustrated in
Figure 2. A solution is said to be Pareto optimal if there exists no feasible solution with a better or
equal value for each of the objective functions. The points under or to the right of the frontier are by
definition suboptimal and will be discarded by a rational investor. The area above or to the left of the
frontier cannot be reached. A detailed description of the mean-variance analysis procedure is given in
Appendix B.
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Figure 2. Example of the optimal frontier of a mean-variance biobjective optimization problem.
The optimal frontier is one-dimensional and represented by a plain blue line. Mixes in the white region
to the right of the frontier are suboptimal. Points in the gray region to the left of the frontier are not
feasible. In this example, the optimal frontier is bounded below by a minimum-variance optimal mix
(blue dot) below which the variance may only increase. The optimal frontier is bounded above by
a maximum-penetration optimal mix above which higher penetration mixes are not feasible due to
the constraints of the problem. The point B is an example of suboptimal mix, since a higher mean
penetration is achievable for the same variance (point A) and a lower variance is achievable for the same
mean penetration (point D). The dashed blue line is obtained by minimizing the variance for a range of
target mean penetration values. These solutions are, however, not Pareto optimal. For instance, point C
yields the same variance as point A but achieves a lower mean penetration. Thus, A “dominates” C.

From a technical point of view, problem (5) is equivalent to minimizing the mean and the variance
of the mismatch between the demand and the VRE production. Thus, assuming that this mismatch
is satisfied by the conventional production (e.g., thermal and hydroelectric power plants), we expect
that the mix minimizing economic costs from the conventional production and the mix minimizing
GHG emissions are close to one of the mixes on the optimal frontier of (5). Before to discuss this
heuristic further, let us mention that, although not a formal result, it allows one to limit the complexity
of the optimization problem by reducing it to the optimization of VRE capacities, independently from
conventional systems, thus making this methodology appropriate for sensitivity studies.

Quantifying the degree to which this heuristic is valid depends on the energy systems considered
and is out of the scope of this study. However, let us remark the following. Overall, economic costs
can be decomposed in: (i) fixed costs (e.g., capital expenditures, running costs); (ii) costs proportional
to the megawatt-hours produced (e.g., operating expenses); and (iii) nonlinear costs (e.g., start up and
shutting down costs during shortage or congestion situations). GHG emissions also include: (i) fixed
life-cycle emissions associated with infrastructures; (ii) emissions due to fossil-fuel combustion in
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thermal power-plants at nominal power and proportional to the megawatt-hours produced; and (iii)
nonlinear emissions, e.g., associated with generation regime changes. Maximizing the mean VRE
penetration thus corresponds to minimizing costs or emissions proportional to the production needed
to satisfy the mismatch between the demand and the VRE production. On the other hand, minimizing
the variance accounts for part of the nonlinear costs and emissions resulting from satisfying the
mismatch at each time step. Note, however, that costs are usually higher for shortage than for surplus
situations, an asymmetry that is not reflected by the variance.

Finally, the three versions of the variance are based on aggregating the production and the
demand, ignoring both network constraints and exchanges with other countries. By minimizing the
global variance (2), weaker covariances between regions and technologies are leveraged. We refer to
this case as the global strategy. Regarding the two other strategies considered, the technology variance (3)
ignores covariances between different zones, while the base variance (4) ignores all covariances between
different zones and technologies. Comparing mixes from these strategies thus allows us to assess the
benefits from technological and geographical diversification.

3.3. Energy Models

We base the recommissioning study of Section 4 on historical data, so that resulting mixes are
optimal for the historical period covered (1979–2012) (if the statistics are stationary and if the period
covered is sufficiently long for sample means to converge, the mixes are also optimal for future periods).
A proper estimation of the mean penetration and the variance is key to the mean-variance analysis.
“Demand” and “capacity factor time series” are thus needed.

While computing the mean does not require data at a particular sampling frequency, the variance
should be computed from long time series at a high sampling frequency to measure variability on
a sufficiently wide range of time scales. Indeed, the variance of the renewable production, and,
to some extent, of the demand, stems from climate variability and is distributed over a broad
range of spatial and temporal scales [84]. VRE systems operating during several decades, they
are impacted by year-to-year variability. On the other hand, several power markets operate with an
hourly resolution (day-ahead) and several types of dispatchable power plants react on these time
scales [22]. Moreover, Heide et al. [38] show that mismatch dynamics on intraday time scales have a
large impact on optimal mixes. Here, we do not consider time scales smaller than an hour, that are
essential when balancing the frequency using reserves [8].

In order to take time scales ranging from hours to decades into account and to be able to integrate
additional capacities or new technologies for which no or little data is available, time series of the
demands and capacity factors per zone are computed from climate data. On the other hand, energy
estimates from climate data are prone to be biased compared to observations [73,74,85], so that they
need to be adjusted statistically. To do so:

• the “wind” production is “predicted” from wind data fed to a power curve at each grid point
of the climate data (Appendix A.3.1), summed over each zone, and bias corrected against wind
production observations (Appendix A.3.3),

• the “PV” production is computed from surface irradiance and temperature data fed to an electric
model (Appendix A.3.2), summed over each zone, and bias corrected against PV production
observations (Appendix A.3.3),

• the “demand” is estimated via a linear Bayesian regression model taking as input warming and
cooling degree days averaged over each zone and fitted to demand observations (Appendix A.3.4).

Although these models are key components of the concrete implementation of the software for the
application of Section 4, we prefer to encourage the reader to learn more about them in Appendix A.3.

Importantly, when used with daily mean climate data, these models include a parametrization of
intraday fluctuations. Results from the application are indeed derived from the daily mean climate
data (Appendix A.2.1). We have made this choice to illustrate the possibility to use this software with
daily mean climate data, more of such data being available than hourly climate data.
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3.4. Energy, Climate and Geographic Data

The energy models rely on “demand”, “generation” and “climate data”. Application Programming
Interfaces (APIs) are developed to download and format the required data (“API parsing”).
Downstream, E4CLIM data management follows a standard format allowing one to use different
data sources for the same function. In particular, several climate data sources may be used to assess
biases stemming from the latter. The data sources used for the application of the next Section 4 are
described in Appendixes A.1 and A.2. We use hourly electricity-demand data per zone from the market
operator, GME; yearly mean capacity-factors per zone from the TSO; daily mean regional climate data
from CORDEX; and hourly global climate data from MERRA-2 (only for the intraday parametrization
and the evaluation). Finally, the regional boundaries used to map grid points from the climate data to
regions are obtained from GISCO (https://ec.europa.eu/eurostat/web/gisco).

4. Application: Italian PV-Wind Optimal Recommissioning

We now present the application to the Italian PV-wind mix illustrating the potential of the
methodology and the software. We focus on Italy and its six bidding zones, or electrical regions,
as shown in Figure 3a. Italy offers an interesting case study of a market with a high VRE penetration as
it has reached its quota of 17% renewables in final energy consumption in 2014, therefore implementing
the 2009 Climate Package six years ahead of the 2020 horizon [86]. Figure 3b represents the geographical
distribution of the installed PV-wind capacities. The PV (wind) installed capacity is 18.9 GW (9.2 GW).
The share of the renewable energy production in the electricity demand over the six zones was 19.4%
in 2015.

(a)
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2634 1632

3619 4518
724 1005

1308 1758
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5000 MW
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(b)
Figure 3. (a) Italian bidding zones. (b) PV and wind capacities installed by the end of 2015 in Italy
(from Terna, see Appendix A.1). Capacities are graphically represented by the size of the disks and the
corresponding legend and explicitly given in megawatts by the text boxes to the left and to the right of
the disks.

4.1. General Results

We represent the optimal frontiers obtained from the CORDEX data [87] with the intraday
parametrizations over the 1989–2012 period (Appendix A) in Figure 4a. Four different frontiers are
represented. Each point of a frontier represents an optimal distribution of the PV and wind capacities.
Representing frontiers rather than single optimal mixes leaves more space for arbitrages between

https://ec.europa.eu/eurostat/web/gisco
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mixes with higher shares of VREs and mixes requiring less flexibility (low variance). The latter could
in turn be guided by associated costs, GHG emissions, expert knowledge, values, etc.
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Figure 4. (a) Approximations of the optimal frontiers from the CORDEX hourly data with the global
standard deviation σglobal (2) in abscissa and the mean penetration µ (1) in ordinate. The thick plain
curves represent numerical approximations of the frontiers for the global strategy with (plain blue
line) and without (plain black curve) the total-capacity constraint (5c). The dashed and point-dashed
black lines represent the optimal frontier for the technology and the base strategies without the
total-capacity constraint. The black dot, blue dot and blue diamond represent the maximum-ratio mix,
the minimum-variance mix and the high-penetration mix, respectively. (b) Fraction of PV capacity in
the mix (plain orange line); shortage frequency (plain green line); saturation frequency (dashed green
line) (x axis); versus the mean penetration, for the global strategy with the total-capacity constraint
(y axis). The blue and black dashed horizontal lines mark the mean-penetration values corresponding
to the blue and black dots and the blue diamond on the left panels. The orange dot represents the PV
ratio for the actual capacities installed in Italy in 2015.

Two variants are represented in Figure 4a: one in which the total capacity is constrained (plain blue
curve), and one without such constraint (plain black curve). We can see that the optimal frontier
without the total-capacity constraint (thick black line) is a straight line passing through the origin.
Its slope, the mean-standard deviation ratio, is of 1.44. In other words, letting the square root of the global
variance increase by 1.00% results in an increase of the mean penetration by 1.44%, at best. Thus, this
ratio gives a simple diagnostic to compare different unconstrained frontiers.

On the other hand, the frontier with the constraint allows us to consider the optimal
recommissioning of the VRE capacities for the total capacity of 28.1 GW installed in 2015 in Italy.
In this case, the frontier bends away from the unconstrained one to the right, as the additional
constraint renders the minimization of the variance more difficult. The point in Figure 4a at which
both curves intersect represents the mix for which the total-capacity constraint is inactive (satisfied
without the need to force it). It is thus the optimal mix satisfying the total-capacity constraint that
has the maximum mean-standard deviation ratio, the maximum-ratio mix. If no preference is put on
maximizing the mean penetration or on minimizing the variance, this optimal mix is the most attractive
mix satisfying the total-capacity constraint.

For a recommissioning, one may, however, be interested in allowing for the deterioration of
the mean-standard deviation ratio in order to either decrease the variance or increase the mean
penetration. The blue dot in Figure 4a corresponds to the optimal mix minimizing the variance while
satisfying the total-capacity constraint, the minimum-variance mix. For comparison with the actual mix,
the blue diamond in Figure 4a represents the optimal mix satisfying the same level of variance as the
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actual mix (gray dot, see Section 4.2) while maximizing the penetration rate, the high-penetration mix
(The high-penetration mix corresponds to the EqRisk mix considered by Santos-Alamillos et al. [54]).

Benefits from interconnections between zones and synergies between technologies can be assessed
by comparing the frontiers obtained for the global, technology and base strategies. The technology and
base frontiers without the total-capacity constraints (respectively the dashed and point-dashed thin
black lines in Figure 4a) roughly coincide. Therefore, taking local correlations between the normalized
PV capacity factors and the normalized wind capacity factors into account do not significantly reduce
the variance. The technological complementarity is weak. However, with a mean-standard deviation
ratio of 1.37 and 1.38, respectively, these frontiers lie to the right of the global frontier (plain black line).
Thus, for a given level of mean penetration, taking correlations between zones into account allows one
to reduce the standard deviation by about 4.9%. A significant level of smoothing is achieved through
geographical diversification.

Properties of the optimal mixes along a frontier may then be derived. To illustrate this, the fraction
of PV capacity in mixes (orange) and the shortage (plain green) and saturation (dashed green)
frequencies are represented in Figure 4b, for the global strategy with the total-capacity constraint.
Shortage and saturation situations are examples of critical situations expected to become more
problematic with increasing shares of VREs [3]. Here, it is assumed that conventional generation units
are able to meet up to 80% of the modeled-demand maximum. Shortage then occurs if the PV and
wind generation is not able to meet the rest of the demand. The second critical situation corresponds
to network saturation, when PV and wind production exceeds technical limits of renewable energy
fraction in the mix. In this study, saturation is defined to occur if more than 40% of the demand has to
be met by PV and wind sources.

Because wind capacity factors are higher than PV ones, the PV ratio in Figure 4b is a decreasing
function of the mean penetration. The shortage and the saturation curves (in green) have distinct global
minima due to the increase of the probability of occurrence of extremes with the variance. The vertical
lines in Figure 4b represent the level of mean penetration for the minimum-variance, maximum-ratio
and high-penetration mixes. The minimum-variance, the maximum-ratio and the high-penetration
mixes respectively include 58%, 41% and 39% of PV capacity in the mix. Saturation situations occur
less often for the minimum-variance mix, while the maximum mean-standard deviation ratio and
the high-penetration mixes are close to the shortage-occurrence minimum. Together with costs and
GHG emissions (not implemented yet) these properties and the analysis of their behavior along a
frontier may guide the choice of mixes and help evaluate their sensitivity to changes in the target mean
penetration or variance.

Finally, the geographic distribution PV-wind capacities of different mixes may be represented,
as in Figure 5, to compare them. Significant differences exist between these mixes, showing that the
optimal distribution is relatively sensitive to the objectives.

To summarize, optimal mixes and their properties strongly depend on the level of variance that is
tolerated. As a consequence, capacities are not necessarily distributed where they would be expected
based on the resource mean potential only.
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Figure 5. PV-wind capacity distributions obtained from the CORDEX hourly data for the global strategy
with the total-capacity constraint. The left, middle and right panels represent the optimal mixes for the
minimum-variance (a), maximum mean-standard deviation-ratio (b) and high-penetration mixes (c),
respectively (blue dot, black dot and blue diamond in Figure 4a).

4.2. Comparison with the 2015 Italian Mix

The 2015 (actual) Italian mix (Figure 3b), is composed of 67% PV and 33% wind energy capacity.
For historic and economic reasons, the largest fraction of installed PV capacity is in the North of Italy,
whereas most of wind capacity is located in the South.

To compare the optimal mixes discussed so far with the actual 2015 Italian mix, it is possible to
provide the latter to the E4CLIM post-processing step directly (Figure 1). This mix is represented by the
gray point in Figure 4a. It lies to the right of the optimal frontiers. The actual Italian mix thus appears
to be suboptimal. For the global problem, this mix reaches a level of mean penetration comparable to
that of the minimum-variance mix (larger by 1.0%), but its mean-standard deviation ratio is larger by
1.9% and its PV ratio (orange point in Figure 4b) larger by 9.2%.

By comparing the actual capacity distribution in Figure 3b with one of the optimal mixes in
Figure 5, we can see that the actual mix has less wind capacity in the northern regions and more PV
capacity everywhere.

4.3. Choice of the Climate Data and Climate Variability

By estimating the energy production and demand from climate data with E4CLIM, we can discuss
the impact of climate variability on mixes, change the distribution of capacities within a zone (which
affects the zonal capacity factors) and study the impact of the introduction of new technologies. On the
other hand, climate-data biases may also impact the quality of the results [73,85], thus calling for
multi-model approaches. Both points are now discussed.

4.3.1. Dependence on the Climate Data

The robustness of the mean-variance analysis presented in Section 3 depends on the quality of
the energy estimates from the climate data. The latter is in turn impacted by climate-model biases.
With the E4CLIM software, it is possible to use different climate-data sources to test the sensitivity of
the results to biases stemming from the climate data.

To illustrate this point, we compare the results of Section 4 obtained with the daily CORDEX data
with the intraday parametrizations (Appendix A.3) with results obtained from hourly simulations
from the MERRA-2 reanalysis (Appendix A.2.2), over the same period (1989–2012). With this dataset,
no intraday parametrizations are needed. Divergence in the results may thus stem both from differences
in the climate data and from these parametrizations. In summary, the MERRA-2 reanalysis presents
the advantage to be hourly sampled and to cover a longer period (1980–present), while the CORDEX
data presents the potential for using projections for the 21st century. Last, both the 10 m and the 50 m
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winds are provided in the MERRA-2 dataset. Comparing results using either winds is interesting
because 10 m winds are expected to be more impacted by surface friction and because 50 m winds are
closer to the hub height (101 m).

Figure 6 shows the approximated optimal frontiers (top) and the corresponding capacities for
the mix maximizing the mean-standard deviation ratio of the global strategy (bottom) obtained by
applying the hourly demand and capacity-factor models to the MERRA-2 data using 10 m winds
(left) and 50 m winds (right). Overall, the qualitative picture of the frontiers remains unchanged
(cf. Figure 4a), but important quantitative differences exist. First, the mean-standard deviation ratio for
the MERRA-2 data with 50m winds, with a value of 1.46, is close to that for the CORDEX data (1.44),
but is larger for the MERRA-2 data with 10m-winds by about 15%. This difference in the ratios is in
fact larger that that of 4.9% found between the global and the technology strategies with the CORDEX
data. Differences between the capacity distributions also exist between all three cases, but perhaps less
so between the MERRA-2 with 50 m winds maximum-ratio mix and the CORDEX high-penetration
mix. This shows that differences between capacity distributions may exist even if the mean-standard
deviation ratios are similar.
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Figure 6. Optimal frontiers approximations (a,b) and PV-wind capacity distributions (c,d) for the
global strategy computed using hourly MERRA-2 data with 10 m-winds (a,c) and with 50 m-winds
(b,d). To be compared with Figures 4a and 5b.
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Differences between the mean-variance analyses using the CORDEX data and the MERRA-2 data
may stem from discrepancies in the means of the estimated demand and capacity factors. However, the
latter are practically indistinguishable (not shown here), due to the regressions against observations
(see Appendix A.3). Differences may instead be due to the variances and covariances of the estimates.
We compare in Figure 7, the variance of the electricity demand (left), PV capacity factor (middle) and
wind capacity factor (right) explained by periods greater than a year (green), less than or equal to a
year (orange) and greater than a day, and less than or equal to a day and greater than an hour (blue).
These values are estimated (i) from the models applied to the daily CORDEX data (left bars); (ii) from
the models applied to the MERRA-2 data with 10 m wind (middle bars) and 50 m wind (right bars)
(the variance explained by each frequency band is calculated from the variance of the respectively
low-pass, band-pass and high-pass filtered time series using rolling averages as filters).
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Figure 7. Decomposition of the variance over 1989–2011 of the demand (a), PV capacity factors (b)
and wind capacity factors (c) into intraday (blue), seasonal (orange) and interannual (green) frequency
bands for CORDEX (left bars), MERRA-2 with 10 m winds (middle bars) and MERRA-2 with 50 m
winds (right bars).

In all cases, interannual variability is very week, although non-vanishing for the wind capacity
factors. Differences between the MERRA-2 10 m and 50 m wind results only impact the wind
capacity-factor estimates, although differences exist in the demand due to the stochastic nature of the
Bayesian model. The electricity demand and PV capacity-factor estimates are relatively close between
the CORDEX and the MERRA-2 data, although the CORDEX intraday variance of the PV capacity
factors tends to be underestimated compared to the MERRA-2 estimates. This could be explained
by the fact that the intraday parameterization used to estimate the hourly PV capacity factors from
the daily CORDEX data neglects intraday variations of the clearness index (see Appendix A.3.2).
Most differences between the CORDEX and the MERRA-2 estimates are for the wind capacity factors.
Indeed, the intraday variance computed from the MERRA-2 10 m winds is larger than for the other
two cases and the seasonal variance computed from the MERRA-2 10 m and 50 m winds is also larger
that for the CORDEX winds. These differences are likely to be responsible for the changes in the
mean-variance analysis results.

This shows that the sensitivity of the mean-variance results to the climate data can be large.
Care should thus be taken to test this sensitivity, e.g., via multi-model approaches.

4.3.2. Interannual to Decadal Variability

To assess the impact of interannual climate variability (as found in the CORDEX data) on energy
mixes, we repeat the mean-variance analysis successively using data blocks of one year, from 1989 to
2012, rather than using the full 1989–2012 block. In other words, each of the 23 optimal frontiers are
optimized for the climatic conditions of a given year and low-frequency climate variability results in
different optimal mixes for each year. The mean-standard deviation ratio for the unconstrained global
frontier can be used as a synthetic observable of these changes. It is found to average to 1.43 and to
range from 1.37 to 1.58. Thus, even though the average of the yearly mean-standard deviation ratio is
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close to the one of 1.44 obtained using the full record in Section 4.1, interannual climate variability in
the CORDEX data is responsible for year-to-year variations of the mean-standard deviation ratio of up
to 11%. As an example, we represent in Figure 8 the geographical and technological distributions of
the mixes for the year 1989, with a particularly low mean-standard deviation ratio of 1.37, and for the
year 1996, with a particularly high mean-standard deviation ratio of 1.58.

These preliminary results show (i) that E4CLIM is able to resolve some interannual variability
associated with climate fluctuations and (ii) the importance of assessing VRE mixes over several
years of data to take into account the impact of interannual variability on mixes. (We leave the
validation of this variability against observations for future work. However, the representation of
interannual climate variability in the CORDEX and MERRA-2 datasets has been studied in previous
works. See Ruti et al. [87] and Long et al. [88].)
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Figure 8. Optimal frontiers approximations (upr) and PV-wind capacity distributions (down) for the
global optimization problem obtained from the CORDEX hourly data over the years 1989 (left) and
1996 (right). To be compared with Figures 4a and 5b.

4.3.3. Intraday Variability

A large fraction of the PV, demand and wind variance is contained in the intraday range. Yet,
climate data is not always available at an hourly sampling. This is for instance the case of the CORDEX
data used here, for which intraday parametrizations are added to the energy models (Appendix A.3).
To test the impact of ignoring such fluctuations on the optimal mixes, we represent in Figure 9 optimal
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frontiers (left) and the PV-wind distribution of the maximum-ratio mix (right) obtained directly from
the daily CORDEX data without intraday parametrizations. It is clear that the standard deviation is
underestimated by a factor two or more compared to the one obtained using hourly data (c.f. Figures 4
and 5). This can be understood from the fact that, while the mean capacity factors remain unchanged,
the variance in the modeled daily PV and wind capacity factors is dramatically underestimated
(see Appendix A.3.3). Because the PV production is more variable during the day than the wind
production, ignoring intraday fluctuations results in distributing more PV capacities. Here, we do not
discuss the impact of variability on time scales shorter that an hour. The latter are, however, important
when assessing the stability of the network.
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Figure 9. Optimal frontiers approximations (a) and PV-wind distribution for the maximum-ratio mix
(b) computed using daily CORDEX data without the intraday parametrizations. To be compared with
Figures 4a and 5b.

5. Conclusions

This work is aimed at developing a modeling tool dedicated to the assessment and elaboration
of optimal energy mixes taking into account flexibility needs associated with higher shares of VRE.
It relies on mean-variance analysis to allow decision makers to arbiter between different strategies
and mixes and offers the potential for low-frequency climate variability to be resolved and for new
technologies to be integrated. This methodology is implemented as an extensible open-source Python
software, E4CLIM. Its potential is demonstrated with an application to a recommissioning of the
2015 Italian PV-wind mix. However, this application is but one example of possible implementations
within E4CLIM.

The software’s flow is divided in three steps: (i) energy time series are first estimated from climate
data and fitted to observations; (ii) a VRE mix is then prescribed or optimized by, e.g.„ mean-variance
analysis; (iii) the mix properties are finally analysed. The first step relies on climate data to take
production and demand variability on a broad range of time scales into account and to allow for the
integration of new technologies for which no or little observations are available. The current version of
E4CLIM is also adapted to consider optimal strategies in a warming climate using 21st century regional
projections provided by the CORDEX program (not shown here). We recommend using climate data
from multiple independent sources to estimate errors stemming from these sources.

Different optimal scenarios are derived in the second step, ranging from maximizing the total
renewable energy penetration to minimizing the variance, and so, flexibility requirements to meet the
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demand. Different strategies can quickly be tested, allowing one, for instance, to evaluate benefits
from leveraging correlations between zones.

In addition to the mean and the standard deviation of the VRE penetration, we have illustrated
the value of the ratio of these two metrics, the mean-standard deviation ratio, to compare different
strategies. First, this ratio defines optimal frontiers for the unconstrained problems. Second, it provides
a simple diagnostic to assess the extent to which leveraging weaker correlations between regions allows
for the reduction of the variability of the aggregate production with respect to the demand. However,
similar mean-standard deviation values for different cases do not preclude significant differences
between the corresponding capacity distributions.

As opposed to cost-minimizing problems for full mixes, the mean-variance analysis allows us to
focus on VRE capacities alone, thus limiting the complexity of the algorithm and making it a fast and
flexible tool for sensitivity analyses. This leaves the estimation of associated economic costs and GHG
emissions to the third (post-processing) step. For that purpose, the conventional production would
have to be modeled with reserve, network and dispatch constraints. In addition, the application of this
model to the Euro-Mediterranean region is a priority.

6. Known Limitations of the Software and Methodology

In order to facilitate further improvements and applications of the model, let us finish by
mentioning some of the limitations of its current implementation (Section 3).

First, the domain of application of the software could be extended in several directions.
For instance, it could include more renewable energy sources than PV and wind alone. To better
evaluate the benefits from spatial and technological diversification, present or future network
constraints could be added, for instance relying on a DC power-flow approximation with net transfer
capacities (see e.g., Rodríguez et al. [39]). Flexibility services such as storage, demand management
and imports/exports could also be added. Depending on the area considered, modeling such systems
may be necessary to compute costs associated with energy mixes. An important question is whether
these systems have to be part of the VRE-capacity optimization problem or whether they can be kept
separate to limit the complexity of the model. Interfaces to other data sources may also be added to
consider other areas than Italy.

Second, as discussed in Appendix A.3.3, the robustness of solutions to the mean-variance
optimization problem depends on the accuracy of the inputs to this problem, namely, the vector
of mean capacity factors and the covariance matrix entering the definition of the mean penetration (1)
and of the variance (2). The latter being estimated from the climate data, they depend on the quality of
the latter at regional scale. When observations of the yearly mean of the production and of the demand
per zone are available, supervised learning can be used to correct for biases, as in this study. We have,
however, directly corrected the capacity factors. Due to the nonlinear relationship between wind speeds
and wind power, keeping expressing the loss function for the training in terms of capacity factors but
correcting the wind speeds before to apply the power curve, as in Staffell and Pfenninger [73], could
be more appropriate for climate change studies.

To further assess the accuracy of the estimates of the covariance matrix against observations,
hourly observations per zone and technology are required. Such data is difficult to acquire. In the case
of Italy, for instance, hourly data is provided by Terna and also available on the ENTSO-E Transparency
Platform. However, the latter is not consolidated and the yearly means were not found to be consistent
with yearly mean data provided by Terna separately.

A large source of error also stems from the assumption that VRE capacities are uniformly
distributed within a zone and that the production is computed for an arbitrary technology. This ignores
the fact that the most favorable sites within a zone may have been selected to install existing capacities.
While the bias correction used here removes discrepancies in the zonal-mean capacity factors and
demand, it does not correct for errors in the variance, nor does it take into account the fact that
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new VRE installations may not yield capacity factors as high as for existing installations, unless
technologies improve.

Third, we have chosen the variance as a proxy for costs arising from the variability of the
renewable production. This metric is symmetric, in the sense that negative and positive deviations
from the variance are given the same weight. Yet, it is known that shortages in the production tend to
cost more than excesses. The extent to which the mean and the variance are, together, good proxies for
economic or GHG costs should be addressed. Other metrics such as the skewness could be considered
and links to the micreconomic theory of energy markets made.
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Appendix A. Data and Model Description

An E4CLIM project relies on models to predict energy time series (demand and capacity factors)
from climate data. These models depend on energy data to be fitted via regression or bias correction.
The energy data, climate data and demand, PV and wind models are described here.

Appendix A.1. Energy Data: GME and Terna Databases

Time series of the hourly Italian zonal electricity demand and of the yearly zonal renewable
capacity factors are used to train the demand and generation models. See the “demand” and
“generation data” blocks at the top of Figure 1. These variables are extracted from three publicly
available databases provided respectively by the market operator GME (Gestore del Mercato
Elettrico: https://www.gse.it/dati-e-scenari/statistiche) and the Transmission System Operator
(TSO) Terna (https://www.terna.it/en/electric-system/statistical-data-forecast/evolution-electricity-
market). For this reason, we first briefly comment on the structure of the Italian electricity market and
next describe the databases we use.

The Italian power market consists of 7 foreign virtual zones, 6 regional sub-markets, or bidding
zones, and 5 poles of limited production. The 20 administrative regions composing the Italian
territory are aggregated in the 6 bidding zones (Figure 3a): Northern Italy (NORD), Central-Northern
Italy (CNOR), Central-Southern Italy (CSUD), Southern Italy (SUD), Sardinia (SARD) and Sicily
(SICI). Each zone has its own generation mix determined by historical and geographic reasons and
characterized by a given level of efficiency. For instance, the Northern regions have larger hydroelectric
production due to the proximity to the Alps. Inter-zonal transmission capacities are not equally
distributed either.

The Italian power exchange, which is managed by GME is composed of a spot market, a forward
market and a platform for the physical delivery of contracts concluded on the financial derivatives
segment of the Italian Stock Exchange. The spot market is composed of three submarkets: the

https://doi.org/10.14768/20191105001.1
https://www.gse.it/dati-e-scenari/statistiche
https://www.terna.it/en/electric-system/statistical-data-forecast/evolution-electricity-market
https://www.terna.it/en/electric-system/statistical-data-forecast/evolution-electricity-market
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day-ahead, the intraday and the ancillary services markets. We focus on the day-ahead submarket.
The liquidity of the day-ahead market, calculated as the ratio of volumes traded on the day-ahead
market to the total volumes (including bilateral contracts) of the Italian power system, has increased
between 2010 to 2015, passing from 62.6% with 198 operators in 2010 to 67.8% with 259 operators in
2015. The peak liquidity has been reached in 2013 with a 71.6% liquidity and 214 operators (GME, 2017).

The GME database encompasses hourly bids and offers in the wholesale electricity market from
2005 to 2018; the offers are identified by supplier’s technology. The hourly electricity demand is
appraised from this source. We select the demand data for the six aforementioned bidding zones only,
accounting for about two third of the total demand including exports.

Terna’s statistical data contains information about the yearly electrical production and the
associated installed capacity at the end of each year detailed by region and sources from the beginning
of 2000 to the end of 2018. This corresponds to the longest dataset that we have found at the zonal
scale. The time-mean capacity factors for PV and wind per zone are calculated from this source. At the
beginning of the available period, the installation of VRE capacity shows a rapid increase. Moreover,
PV capacity factors increase at a rate that cannot be explained by interannual climate variability until
about 2010–2011 (not shown here). Since then, PV and wind capacity factors are relatively stable.

Note also that, although hourly wind and PV capacity factors may in principle be computed from
the hourly generation and capacity provided by Terna over 2015–2018, the latter are not consolidated.
Once averaged over each year, we have in fact found this data to be inconsistent with the corresponding
consolidated yearly means provided by Terna separately. We thus do not have hourly data at our
disposition to validate estimates at shorter time scales than a year against observations.

The demand and the PV and wind capacity factors per zone and averaged over the 2010–2018
period are presented in Table A1. Figure 3b summarizes the current installed capacity at the end
of 2015.

Table A1. Yearly electrical demand (from GME) and yearly mean PV and wind capacity factors (from
Terna) averaged over 2010–2018.

Zone Electrical Demand Capacity Factor (%)
(TWh/y) (%) PV Wind

NORD 121 58 11.7 20.0
CNOR 19.4 9.2 13.4 19.5
CSUD 30.3 14 13.9 18.9
SUD 15.0 7.1 15.0 21.0
SARD 10.8 5.1 14.4 18.5
SICI 13.5 6.4 15.2 18.6

Appendix A.2. Climate Data

The mean-variance optimization problem (Appendix B) relies on electricity demand and PV and
wind capacity-factor time series. Observed time series are only a few years long, too short to resolve
low-frequency climate variability. The models described in Appendix A.3 are thus used to predict
these energy time series from climate data. See the “climate data” block at the top of Figure 1. In this
study, one particular CORDEX regional simulation is mainly used, that we refer to as the CORDEX
data. This choice is motivated by the fact that, contrary to reanalysis products, CORDEX projections
for the 21st century are also available, which could be used to apply the E4CLIM software to assess
the impact of climate change on energy mixes in the future. Another climate dataset, the MERRA-2
reanalysis, is also used to (i) parametrize intraday wind-fluctuations not resolved by the CORDEX
data (Appendix A.3.1) and (ii) test the dependence of the Italian-application results to the choice of the
climate dataset in Section 4.3.1.
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Appendix A.2.1. CORDEX Regional Simulations

The deployment of VREs being relatively recent (starting around 2008 in Italy), available time
series of the observed VRE production are not sufficiently long to estimate statistics resolving
low-frequency climate variability. To take it into account, the VRE production is instead computed
using regional climate simulations covering a historical period (1989–2012).

We use the version 3.1.1 of the Weather Research and Forecasting Model (WRF). WRF is a
limited area model, non-hydrostatic, with terrain following eta-coordinate mesoscale modeling system
designed to serve both operational forecasting and atmospheric research needs [89]. The WRF
simulation has been performed in the framework of HyMeX [90] and MED-CORDEX [87] programs
with a 20 km horizontal resolution over the domain shown in Figure A1 between 1989 and 2012 with
initial and boundary conditions provided by the ERA-interim reanalysis and updated every 6 h [91].
The WRF simulation has been relaxed towards the ERA-I large scale fields (wind, temperature and
humidity) with a nudging time of 6 h [92–94]. A detailed description of the simulation configuration
can be found in e.g., Flaounas et al. [95].
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Atlantic 
 Ocean
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Figure A1. Domain of the HyMeX/MED-CORDEX simulation covering Europe and the Mediterranean
region. The rectangle indicates the domain of investigation of this study.

The simulation has been evaluated against ECA&D gridded precipitation and precipitation
at the Mediterranean basin scale [95], and have been used to study heatwaves [96,97], heavy
precipitation [98–102] and offshore wind energy potential assessment [103] in a configuration coupled
or not with a regional ocean model for the Mediterranean Sea [104]. The simulation, that we refer to as
the CORDEX data, is available on the HyMex/MED-CORDEX database (ftp://www.medcordex.eu/
MED-18/IPSL/ECMWF-ERAINT/evaluation/r1i1p1/IPSL-WRF311/v1/day/).

Appendix A.2.2. MERRA-2 Reanalysis

The MERRA-2 dataset, used in Section 4.3.1, is a state-of-the-art reanalysis providing, among
other products, hourly time series of atmospheric variables from 1980 to present day. As a reanalysis it
combines observation data from NASA’s GMAO with NASA’s GEOS modeling and analysis system.
See Gelaro et al. [105] for a full description, and Fujiwara et al. [106], for a comparison of various
reanalyses. The MERRA-2 product presents the advantage over the CORDEX data of being provided
at an hourly sampling, of containing 50 m (in addition to 10 m) wind data and of overlapping with the
electricity data over a large period. However, we have chosen to use the CORDEX data for the main
results of the application to Italy, in order to be able to extend this study to climate change scenarios
using CORDEX projections in future works.

Appendix A.3. Model Description

We describe here the wind-production, PV-production, and demand models that are fitted to
the energy data and applied to the climate data to produce the energy time series taken as input
to the optimization problem; see the “Wind”, “PV” and “Demand prediction” blocks at the top of
Figure 1. These models aim at estimating the instantaneous demand or generation for a historical

ftp://www.medcordex.eu/MED-18/IPSL/ECMWF-ERAINT/evaluation/r1i1p1/IPSL-WRF311/v1/day/
ftp://www.medcordex.eu/MED-18/IPSL/ECMWF-ERAINT/evaluation/r1i1p1/IPSL-WRF311/v1/day/
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period from the climate data. To produce hourly time series these models include a parametrization of
the intraday variability when used with daily mean climate data from CORDEX. Note that, although
significant [14,107–109], sub-hourly variations are not modeled here, and neither are uncertainties
stemming from forecasts used to sell VRE electricity on the spot market.

Appendix A.3.1. Wind Model

The wind and PV models are based on a feature-extraction step transforming climate data into
capacity factors per climate-data grid-point (similarly to [27,57]). The latter are then aggregated per
zone and regressed against yearly observations, as described in Appendix A.3.3.

To compute wind capacity factors from climate data (Appendix A.2.1), horizontal wind-speeds
are first extrapolated at hub height (101 m) using an empirical power-law with exponent 1/7 [110].
The power-law method only provides a rough estimate of the wind at hub height. Using a log formula
based on roughness-height data does not, however, help improve estimation biases (not shown here).
In fact, Jourdier [71] gives evidence that more advanced methods to extrapolate the wind at heights do
not allow one to universally improve estimates compared to the power-law method. We could let the
power-law coefficient vary in space in order to reduce biases compared to observations. We prefer
to rely on the bias correction presented in Appendix A.3.3 instead. It is assumed that the turbine is
always facing the wind, so only the total speed is used. Thus, effects related to the wind direction such
as wake losses are not captured.

A transfer function based on the power curve of a particular wind turbine, the relatively
representative Siemens SWT-2.3 MW-101m, is applied to the wind speed to compute the electrical
production at each climate-data grid-point [103] (note that due to the bias correction only the variability
of the wind production may be sensitive to this choice of power curve, see Appendix A.3.3). Before
applying the transfer function, the wind speed at hub height is multiplied by a factor (ρ/ρ0)

(1/3)

accounting for deviations of the daily mean air density ρ from the standard density ρ0 for which the
power curve has been obtained. The air density ρ is computed from the air temperature, pressure, and
specific humidity at the surface using the ideal gas law for moist air (this correction is applied to the
wind speed rather than directly to the wind production in order to shift the power curve horizontally
rather than scale it vertically and hence preserve the cut-in and cut-out behavior of the turbine).

In addition, it is essential for the mean-variance analysis (Appendix B) to take intraday fluctuations
of the wind production into account. However, the CORDEX data presented in Appendix A.2.1 is
provided as daily means. To parametrize intraday wind fluctuations at all grid points from these daily
means, one approach could be to draw independent and identically distributed realizations of some
random process for each hour and at each grid point. Doing so, we would not, however, account for
correlations between intraday wind fluctuations at nearby grid points. When averaging the wind
production computed from these hourly estimates of the wind speed over a zone, the part of the
variance explained by intraday fluctuations would thus be underestimated. To take these correlations
into account, we instead assume that intraday wind speed fluctuations follow a multivariate Weibull
distribution [111] with a mean vector given by the daily mean wind-speed at hub height. Such
a distribution is defined by two vectors, with elements associating a scale parameter and a shape
parameter to each grid point, and by a matrix of correlations between grid points. These parameters
must be estimated from data. For each day and for a given vector of shape parameters and a correlation
matrix, the scale parameter is taken so as for the mean of the distribution to coincide with the daily
mean wind speed. This procedure allows for the daily variance to adapt to changes in the daily
mean wind speed. The vector of shape parameters and the correlation matrix are assumed to be
constant and are estimated from the MERRA-2 10 m-wind data (Appendix A.2.2). The validity of our
parametrization thus relies on the following assumptions: (i) at each grid point, intraday fluctuations
are identically Weibull-distributed and independent; (ii) the shape parameters and the correlation
matrix are time-independent; (iii) these parameters are the same for the MERRA-2 and the CORDEX
datasets, respectively.
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Hourly realizations to be fed to the transfer function are then obtained by randomly drawing
samples from the multivariate Weibull distribution. In order to estimate the parameters and to
draw samples, we use a change of variable from a Weibull to a normal distribution, as described in
Villanueva et al. [111]. The effect of this parametrization of intraday wind fluctuations on the wind
capacity factor of the NORD zone is shown in Figure A2a,b, for a sample week in winter and another
in summer 2010, respectively.

2010-01-01 2010-01-02 2010-01-03 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
0.0

0.1

0.2

0.3

0.4

0.5

W
in

d
 C

a
p

a
ci

ty
 F

a
ct

o
r

(a)

2010-07-01 2010-07-02 2010-07-03 2010-07-04 2010-07-05 2010-07-06 2010-07-07 2010-07-08
0.0

0.1

0.2

0.3

0.4

0.5

W
in

d
 C

a
p

a
ci

ty
 F

a
ct

o
r

(b)

2010-01-01 2010-01-02 2010-01-03 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
0.0

0.1

0.2

0.3

0.4

0.5

P
V

 C
a

p
a

ci
ty

 F
a

ct
o

r

(c)

2010-07-01 2010-07-02 2010-07-03 2010-07-04 2010-07-05 2010-07-06 2010-07-07 2010-07-08
0.0

0.1

0.2

0.3

0.4

0.5

P
V

 C
a

p
a

ci
ty

 F
a

ct
o

r

(d)

2010-01-01 2010-01-02 2010-01-03 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08

7500

10000

12500

15000

17500

20000

22500

25000

De
m
an

d 
 (M

W
h/
h)

(e)

2010-07-01 2010-07-02 2010-07-03 2010-07-04 2010-07-05 2010-07-06 2010-07-07 2010-07-08
7500

10000

12500

15000

17500

20000

22500

25000

De
m
an

d 
 (M

W
h/
h)

(f)

Figure A2. Hourly (orange) and daily mean (blue) wind capacity factor (a,b), PV capacity factor
(c,d) and electricity demand (e,f) for the NORD zone, the first week of January (left) and of July
(right) 2010. The data is predicted from the daily mean CORDEX data with the models and intra-day
parametrizations described in Appendix A.3.

Appendix A.3.2. PV Model

Here, we describe how the PV production is computed from climate data; See Pfenninger and
Staffell [74] for a discussion on the validation of the European PV output computed from reanalyses
and satellite data.

We simulate the PV production for arrays at each gridpoint composed of multi-crystalline
silicon PV cells. The crystalline silicon PV cell occupies about 90% of the PV market, among which
multi-crystalline PV cells have the highest share at 53% and mono-crystalline PV cells have a 33%
share [112]. Each module has a nominal power of 250 W for an area of 1.675 m2, resulting in a reference
efficiency of about 15% (the nominal power itself is not important for this methodology, as only
capacity factors are used). The real efficiency of the cell is, however, dependent on its temperature,
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which is itself dependent on the air temperature and the wind from the CORDEX data and on the
global tilted irradiance (see below). This dependence is modeled using the thermal model described in
(Chap. 23, [18]). The thermal model is configured for common parameter values for crystalline cells,
i.e., for a temperature coefficient of 0.004 K−1, a reference temperature of 25 ◦C and a cell temperature
at nominal operatning cell temperature of 46 ◦C [113]. The efficiency of the overall electrical installation
behind the modules is assumed to be of 86%. Note, however, that constant multiplicative factors such
as the electrical efficiency do not play a role in this study, due to the bias correction of the capacity
factors presented in Appendix A.3.3.

Solar radiation from CORDEX or MERRA-2 is partitioned into direct, diffuse and reflected
components (Chap. 2.16, [18]) at every gridpoint. This partitioning depends on the clearness index K̄T
and elevation angle of the sun at the gridpoint. The quantity KT(d), for some day d, is defined as the
ratio of the horizontal radiation at ground level, I(d), to the corresponding radiation available at the
top of the atmosphere, i.e., the extraterrestrial radiation I0(d).

Contrary to the MERRA-2 data, only daily mean extraterrestrial and surface irradiances are
available in the CORDEX data. Yet, the effect of the diurnal cycle on the tilted irradiance accounts for
most of the variance of the PV production (see Appendix A.3.3). In order to take the diurnal cycle into
account, the hourly extraterrestrial solar radiation, I0(d, h), is instead computed for every hour h from
the calendar data. The hourly horizontal radiation at the surface, I(d, h), for the hour h of the day d
is then computed by multiplying the hourly extraterrestrial radiation I0(d, h) by the clearness index
KT(d), assumed constant throughout the day. In other words,

I(d, h) = KT(d) I0(d, h) (A1)

with KT(d) =
I(d)
I0(d)

. (A2)

Fluctuations associated with intraday variations of the clearness index, e.g., associated with
changes in the cloud cover, are, however, still ignored.

PV arrays are assumed to be tilted by an angle equal to the latitude of the array and to face
due South. To separate the diffuse component from the direct component of the global horizontal
irradiance, the model from Reindl et al. [114] is used. For solar elevations below 10◦ and when the sun
is behind the array, the direct horizontal irradiance is set to zero. The diffuse component of the tilted
irradiance is computed following the model of Reindl et al. [115]. The reflected component of the tilted
irradiance depends on the zenith angle and follows the usual formula given by (Chap. 2.16, [18]) with
an albedo of 0.2 (in our case, the global tilted irradiance tends to be dominated by its direct and diffuse
components).

The effect of the diurnal cycle on the PV capacity factor of the NORD zone is shown in Figure A2c,d,
for a sample week in winter and another in summer 2010, respectively.

Appendix A.3.3. Aggregation and Bias Correction

The wind and PV capacity factors per zone are obtained by dividing the computed production at
each grid point of the climate data by its nominal value and then averaging it over the zone. In other
words, it is assumed that the VRE capacities are uniformly spread over a zone—as discretized by the
climate-data grid—rather than located at actual or most favorable locations within the zone. Moreover,
the types of units that are installed within a zone today or that will be installed in the future are
not known, so that productions are computed for a common, yet arbitrary, type of unit. Thus, our
wind and PV estimates are expected to present a bias with respect to observations which must be
corrected. See Boccard [85], for other potential factors explaining this discrepancy in the case of the
wind production. In so doing, we assume that the bias between the simulations and the observations
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is stationary (this assumption may be violated, for instance, by operational and methodological factors
in the energy sector [65]).

To estimate the bias between the capacity factors computed from the CORDEX or MERRA-2 data
and the Terna capacity factors, we compute the mean difference between yearly averages over the
2010–2011 period for PV and over the 2001–2011 period for wind energy. These two different periods
correspond to the largest periods covered by both datasets and over which the yearly capacity factors
are non-zero and without obvious trends. Unfortunately this respectively leaves only 2 and 11 points
from which to compute the bias. Biases up to 44% and 37% for PV and wind energy, respectively.

To correct these biases, we rescale the computed PV and wind capacity factors by linear regression
with ridge regularization against the yearly Terna capacity factors over the 2010–2011 and 2001–2011
periods, respectively. The prediction error is estimated via cross-validation splitting the data per year,
giving a coefficient of determination of 0.46 (0.38) and 0.38 (0.33) for PV and wind capacity factors,
respectively, for the CORDEX data (the MERRA-2 data). Note that the absence of consolidated hourly
observations (see Appendix A.1) prevents validating capacity-factor estimates against observations on
time scales shorter than a year.

Figure A3a represents the weekly and regionally averaged PV (orange) and wind (blue) capacity
factors for a few sample years. Seasonal cycles of PV and wind energy production are phase shifted,
with wind energy production (PV) peak yield in winter (summer). Wind energy production is also
characterized by a stronger sub-seasonal variability when compared to PV at large-scale. Both the
mean and the variance of the capacity factors for the wind production tend to be larger than those of
the photovoltaic production. Albeit complementary over a typical year the wind and PV production
requires additional energy inputs from other sources to counterbalance some recurrent short term
deficit between the demand and the wind and PV production.

(a) (b)
Figure A3. Time evolution of weekly averaged PV (orange) and wind (blue) capacity factors (a) and
demand (b). The shadings represent the standard deviation of the time series.

Let us insist that the present regression only corrects for differences in the yearly means of the
capacity factors with the observed values, based on the few available years. For the analysis of
Section 4.1, higher moments, in particular the variance and covariance, are also important. Although
one expects the variance of the capacity factors to scale with their mean, discrepancies may persist, as
seen in Figure 7.

Appendix A.3.4. Electricity-Demand Model

Several demand models have been developed for a variety of:

• applications: assessments, forecasting [116],
• areas: e.g., Europe [117,118], Italy [119–122],
• and factors: economic ones [119], meteorological ones [120].
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Here, we are primarily interested in the impact of climate variability on the hourly electricity
demand per Italian zone over the period covered by the climate data. Our objective is thus to model
the part of the hourly zonal Italian demand depending on climate variables while preserving the
statistics associated with other factors. To our knowledge, there is no model available satisfying all of
these requirements. We thus present the model that we have designed for the Italian application of
Section 4.

We follow a statistical learning approach [123] whereby the model is trained against some climate
variables. According to Apadula et al. [120], the surface air temperature is the main meteorological
variable influencing the monthly Italian electricity-demand, while a heat index and the cloud cover
may also be important factors some months of the year. Here, we use the average temperature per
zone as input. Other variables, such as specific humidity, wind speed, or irradiance were not found
to significantly affect the demand. We use the GME demand per zone as output, over the period
intersecting with the climate data (2005–2012 with CORDEX, 2005–2018 with MERRA-2). Since other
factors not related to the temperature may significantly affect the demand, we adopt a Bayesian
approach (O’Hagan, 1994) allowing not only for the prediction of the mean of the demand conditioned
on the temperature, but also of the conditional distribution around this mean.

Let the electricity demand Din for the zone i at the time step n and for a particular type of day
(see below) be given by

Din(Ti) = fi(Tin) + εin(Tin). (A3)

where fi, 1 ≤ i ≤ N is some real-valued function of the daily mean temperature Tin in the zone i at the
time step n (Tin is constant within a day), and the residual ε accounts for other factors impacting the
demand, such as changes in the population, the economy, tourism, individuals decisions, etc. [119].

It is known that the demand has a nonlinear dependence on the temperature. Electric heating
is switched on only for lower temperatures, while air conditioning is switched on only for higher
temperatures. This can be seen in Figure A3b for Italy. The demand has two main peaks per year, one
during winter and one during summer, and lows in spring and fall and during holidays. In winter, the
consumption peak is due to heating, especially in the northern part of Italy (see below). In summer,
the consumption peak is due to tourism and air conditioning [124]. Figure A3 shows that, except in
summer, the wind energy production is well correlated with the demand, whereas the PV production
is negatively correlated with the latter.

Once an individual appliance is switched on, its electricity consumption is to a first approximation
linear in the temperature. Assuming, that all consumers behave in the same way and that a consumer
switches the heater (air conditioning) for a constant temperature threshold TH (TC), we define the
functions fi as a piecewise-linear function of the temperature. The relationship between the demand
and the ambient temperature in European countries is smoother than a piecewise-linear function [117],
in part due to the non-homogeneous behaviour of the consumers. Here, however, we prefer to keep the
model as simple as possible using the above linear basis. In addition, the behaviour of the consumers
differs significantly for the week days, Saturdays, and Sundays and holidays (respectively marked
work, sat and off, in the following) and the demand is known to depend on the hour of the day strongly
(see Figure 7). We thus choose to modulate the daily demand by a composite cycle which only depends
on the hour of the day and the day type. This cycle is computed from the GME data by averaging all
24 h daily cycles over the years for each day type. The resulting model is given by,
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fi(Tin) =


f work
i (Tin) if the day at n is a working day

f sat
i (Tin) if the day at n is a Saturday

f off
i (Tin) if the day at n is a holiday,

(A4)

with f work|sat|off
i (Tin) = (awork|sat|off

H Θ(TH − Tin)(TH − Tin)

+ awork|sat|off
C Θ(Tin − TC)(Tin − TC)

+ awork|sat|off
0 ) gwork|sat|off

n

where Θ is the Heaviside step function and the coefficients gwork|sat|off
n are given by the average—over

all days of the same day type and all hours of the same hour of the day—of the observed demand
on which the model is trained. The model (A4) has a total of 9 parameters awork|sat|off

H , awork|sat|off
C and

awork|sat|off
0 to be adjusted, for each zone.

The resulting linear model is fitted assuming that the thresholds TH and TC are constant over
all zones and all day types. These thresholds constitute two hyperparameters that we select via a
grid-search with a cross-validation [123] over seven blocks of one year.

The linear model is fitted using the Bayesian ridge regression method [125] both to avoid
overfitting and to take into account the variance arising from factors that are not fully resolved by
the deterministic part of the model. The implementation from scikit-learn [126] of the Bayesian ridge
regression is used, whereby the residual and the weights are given zero-mean isotropic Gaussian
priors. The variances of the latter are given as priors gamma distributions. A time series of the hourly
zonal demand over 1989–2012 is predicted from the full length of the temperature record by randomly
drawing samples from the posterior distribution of the model at each time step.

Snippets of this prediction for the NORD zone the first week of January and of July 2010 are
represented as a time series in Figure A2. We also represent the daily means of the demand prediction
for each zone in Figure A4 versus the input temperature from the CORDEX data. The overall coefficient
of determination is 0.73. One can see that the temperature and type of day dependence of the demand
is most clear for the economically most dynamic NORD zone. This is also true, yet to a lesser extent,
for the central south zone. The shaded regions show that the part of the demand that is not explained by
the temperature model is compensated by the Bayesian perturbations, although in a random fashion.
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(a) NORD (b) CNOR (c) CSUD

(d) SUD (e) SARD (f) SICI
Figure A4. Daily mean electricity demand versus the surface temperature for each zone. Each point is

an observed realization of temperature and demand. The lines represent the functions f work|sat|off
i of

the demand model, while the associated shaded regions represent the variance of the prediction. Blue,
orange and green data points and functions correspond to working days, Saturdays, and Sundays and
holidays, respectively. The two vertical dashed lines represent the temperature thresholds TH = 9.5
and TC = 13.0.

Appendix B. Mean-Variance Analysis

Geographic and technological diversification of renewable power plants is based on a
mean-variance analysis that is inspired by Markowitz’s modern portfolio theory (see Mencarelli and
D’Ambrosio [127] for a survey on mathematical programming approaches for the portfolio selection
problem). We now give further details on the optimization problem associated with the mean-variance
analysis implemented in E4CLIM and applied in Section 4. See the “optimize mean-variance” block at
the top of Figure 1.

Appendix B.1. Mean-Variance Optimization Problem

In our context, the mean-variance analysis refers to the process of finding optimal spatial and
technological distributions of VRE capacities achieving a trade-off between the mean penetration and
the variance of the renewable energy production. The mean VRE penetration µ is given by (1), while
the global, technology and base variances are given by (2)–(4), respectively.

The classical method used in the following Section 4 to approximate the optimal frontier
numerically is explained in Appendix B.2. In this study, we refer to the optimal frontier as the
curve

(
σglobal(ŵ), µ(ŵ)

)
, where the ŵ are the optimal solutions for either of the three strategies

(global, technology, base). Thus, independently of the version of the variance that is minimized,
we represent the global standard deviation (the square root of (2)) on every plots. The numerical results
of the following section suggest that the so-defined frontier of the biobjective problem (5) without the
total capacity constraint (5c) is a half line with a positive slope that we refer to as the mean-standard
deviation ratio α. In other words, the optimal mixes for this problem are such that

µ(ŵ) = α σglobal(ŵ). (A5)
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In the following, we assume that this is indeed the case and we use the mean-standard deviation
ratio α to diagnose the variants of the optimization problem. The proof of a rigorous mathematical
result is left for future work.

Appendix B.2. Method to Find an Approximation of the Optimal Frontier

The results of the following sections are valid for all three strategies. First of all, let us define
two single objective subproblems which represent a restriction of the biobjective problem we aim at
solving. We follow the well-known method called ε-constraint, see, for example, (Chap. II.3, [83]).

The first subproblem (P)min is defined by

min
w

σ2(w) (A6)

subject to ∑k∈I×J wk = wtotal (A7)

wk ≥ 0 ∀ k ∈ I × J (A8)

µ(w) ≥ µ∗ (A9)

where µ∗ ranges from lo f 2 to uo f 2 where lo f 2 and uo f 2 are the lower and the upper bound on the value
of the second objective function (A10) (see below), respectively.

The second subproblem (P)max is defined by

max
w

µ(w) (A10)

subject to ∑k∈I×J wk = wtotal (A11)

wk ≥ 0 ∀ k ∈ I × J (A12)

σ2(w) ≤ (σ∗)2 (A13)

where (σ∗)2 is defined in [lo f 1, uo f 1], where lo f 1 and uo f 1 are the lower and the upper bound on the
value of the first objective function (A6), respectively.

Appendix B.2.1. The Biobjective Algorithm

The idea is to find the best value of (A6) by solving (P)min for each value of µ∗

(see Appendix B.2.3, for a description of the algorithm used to solve these single-objective problems).
As µ∗ is continuously defined, it is, of course, impossible to solve it for each possible value of it. Thus,
we discretize the possible values of µ∗ with a step of 0.1% and find just a subset of the optimal frontier.

Note that solving (P)min for different values of µ∗ is not enough to guarantee that the solutions
found are not dominated by any other solution. For this reason, it is necessary to alternate between

solving (P)min for a given value of µ∗, then solving (P)max by setting (σ∗)2 equal to the objective

function value found by solving (P)min, then update µ∗ accordingly and solving (P)max again, and
so on, until the values µ∗ and (σ∗)2 cannot be updated anymore.

If we do not perform this alternating update and solve the two subproblems it might happen

that solving only (P)min or (P)max will produce a dominated solution. Take the case of Figure 2, for
example: point C and A are both minimizing the variance for some value of the mean penetration,

i.e., they are both solutions of (P)min with constraint (A9). However, point A dominates point C,
since the value of the mean penetration it achieves is higher than that of point C, for a same value of
the variance.

Appendix B.2.2. How to Find the Bound on the RHS of (A9) and (A13)

We aim at finding the lower and upper bound of the objective functions (A6) and (A10) so as to
be able to define the interval over which we can vary the right-hand-side of constraints (A9) or (A13).
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For the lower bound of (A6) (resp. the upper bound of (A10)) it is simple: we drop (A10)
(resp. (A6)) and solve the corresponding single objective problem, which is a relaxation of original
biobjective problem. To find the upper bound of (A6) (resp. the lower bound of (A10)) it is sufficient to
drop (A10) (resp. (A6)), invert the direction of (A6) (resp. (A10)) and solve the corresponding single
objective problem.

Appendix B.2.3. Algorithm to Solve the Single-Objective Problems

The first subproblem (P)min is a strictly convex quadratic program with linear equality and
inequality constraints [128]. The strict convexity stems from the positive definiteness observed for
all covariance matrices estimated in this study. Solutions of the first sub-problem for each value
of the target mean-penetration thus exist and are unique. To solve it we use the quadprog (https:
//github.com/rmcgibbo/quadprog) implementation of the Goldfarb and Idnani [129] dual algorithm.

To solve the second subproblem (P)max, we leverage the strict convexity of the first sub-problem
by simply removing from its solutions those which are dominated by other solutions.
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