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Abstract12

In the context of the 2009 EU directive promoting the use of energy from
renewable sources, Italy has reached its 2020 target of a 17% share of re-
newables in the final energy consumption 6 years in advance. In this study,
we evaluate the existing renewable energy mix in Italy at regional scale by
comparing it to an optimized mix taking into account climate variability and
allowing full decommissioning of the currently installed plants. The vari-
ability of the production and of the demand over the 1989–2012 period is
resolved by plugging regional climate simulations of this period into a model
simulating the renewable energy production as well as the Italian electri-
cal consumption at regional scale. The optimal mix is then inferred from a
mean-risk analysis with as objectives both to maximize the mean of the total
renewable production and to minimize the variance, or risk, of the latter. We
consider two cases: in the first one the analysis takes cross-region correlations
in the production and the demand into account and in the second one the
analysis is local to each region. The optimal mix maximizing the ratio of the
total mean penetration over the total risk for the same renewable capacity
as installed in 2015 consists of about two thirds wind and one third solar,
i.e. twice as much wind as the actual 2015 Italian renewable mix. The spa-
tial distribution also differs significantly from the actual mix and from what
would be obtained ignoring the risk and low-frequency climate variability.

Keywords: Energy, Renewable, Climate, Variability, Mediterranean13

∗Corresponding author (alexis.tantet@lmd.polytechnique.fr)Preprint submitted to Energy Reports December 20, 2018



Highlights14

• Taking into account the risk strongly impacts the optimal Italian re-15

newable mix.16

• The risk should account for climate variability from hours to decades.17

• The actual Italian mix could yield a higher renewable penetration at a18

lower risk level after geographical optimization.19

1. Introduction20

The world net electricity generation is expected to increase by 45% be-21

tween 2015 and 2040 (IEA, 2017). In view of climate change and energy22

security concerns, the renewable energies will inevitably play a major role in23

satisfying this growing demand. Non-hydropower Renewable Energy Sources24

(RES) are the fastest-growing energy sources for new generation capacity and25

their share is expected to grow from 7% of total world generation in 201526

to 15% in 2040, with more than half of this growth coming from the wind27

power (IEA, 2017).28

However given the variable nature of the RES production and the need29

for a constant supply-demand balance, increasing penetration of renewables30

raises structural, technological and economical issues. On one hand, variabil-31

ity may lead to local power shortages or increased transmission congestion.32

This must be compensated at all times by an increased flexibility of the33

conventional generation systems such as coal plants or combined cycle gas34

turbines (Huber et al., 2014). On the other hand, it brings higher price insta-35

bility along with a reduction of the wholesale prices. In the long run falling36

prices may ‘erode’ the returns of both renewable and conventional producers,37

eventually pushing the latter out of the market while they are essential to38

smooth out the fluctuations of renewable power output and ensure system39

stability. Thereby the possibilities for a future large-scale renewable capacity40

are limited (Hirth, 2013; Spiecker and Weber, 2014).41

Technological and spatial diversification are possible strategies to circum-42

vent the problem of intermittency. In Europe, wind and solar-generated43

electricity roughly have negatively correlated seasonal cycles, solar genera-44

tion being maximal in summer and wind generation in winter (Heide et al.,45
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2010). Spatial diversification is only applicable at large scale, whenever the46

RES variability is sufficient (see Widén (2011) for a study focusing on Swe-47

den and Tsuchiya (2012) analyzing Japan). In light of those considerations,48

questions can be asked about how to implement this double strategy of di-49

versification.50

Technological and geographical optimization of renewable energy systems51

within a multi-objective framework has been discussed by several authors at52

continent and country scales. Complete electrical systems have been designed53

to quantify the requirements in installed power, transmission grid and storage54

capacity for a 100% of renewable energy scenario over Europe. For example,55

at the European scale, Heide et al. (2011) optimize the wind/solar mix in56

a fully renewable future European power system to reduce the storage and57

balancing needs; Rodŕıguez et al. (2014) do the same for the cross-border58

transmission capacities in the future; and Becker et al. (2014b) investigate59

the change in the optimal wind/solar mix in Europe as the transmission grid60

is enhanced. Becker et al. (2014a) optimize the wind/solar mix in the US61

to reduce storage needs and Nelson et al. (2012) simulate how a range of62

generation technologies, storage and transmission may meet the projected63

energy demand in the US at the least societal cost. Finally, Elliston et al.64

(2012) analyze how the Australian renewable mix should change in order65

to reduce the need for backup generation; and Lund and Mathiesen (2009)66

discuss feasible energy mix scenarios for a fully renewable electricity supply67

in Denmark.68

Other conceptual frameworks with less ambitious energy targets have69

been explored at continental and regional scale by repowering the current70

installed renewable energy capacity. Repowering consists in fully decommis-71

sioning current renewable energy capacity and in re-allocating this capacity72

according to specific objectives (Del Ŕıo et al., 2011). For example, Bel-73

tran (2009) applies the mean-variance optimization techniques to infer the74

optimal energy mix; Roques et al. (2010) use similar methods to determine75

optimal wind power deployment among 5 European countries; Thomaidis76

et al. (2016) and Santos-Alamillos et al. (2017) use mean-variance optimiza-77

tion to assess the optimal wind and solar deployment and repowering actions78

in Spain. These studies use the Markovitz mean-variance portfolio theory or79

analogous methodologies to define the optimal full re-allocation of existing80

power plants among regions. It relies on a trade-off between maximizing81

the mean renewable productivity while minimizing the aggregate renewable82

energy supply risk (i.e. variability).83
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The majority of assessments of the optimal renewable energy mix are84

based on the statistical properties of the historical production and demand.85

Due to the only recent deployment of wind and solar energy systems the86

length of regional production and demand time series is often limited to a87

few years, which is not sufficient to properly take into account the effect of88

multi-annual climate non-stationarity at time scales of the life cycle of a wind89

and solar farm (∼ 30y) and reliably estimate statistics such as the mean and90

the covariance of the production.91

In this article, we develop a methodology to analyze the repowering strate-92

gies of wind and solar plants in Italy and evaluate the current renewable mix.93

We determine the optimal geographical distribution of each renewable energy94

source using a mean-variance optimization. In addition to focusing on a dif-95

ferent region than the aforementioned studies, our work presents the following96

important methodological novelty. Models of electricity generation and con-97

sumption are designed to feature climate variables such as the wind speed,98

the solar irradiance and the temperature. These variables are taken from a99

hindcast of the 1989–2012 period over the Mediterranean region (Fig. 1b). In100

this way, our mean-variance analysis — and additional statistical diagnostics101

such as the frequency of occurrence of shortage and saturation situations —102

takes into account the impact of interannual to intraday climate variability103

on the renewable production and the demand. Applying the model to Italy,104

we show that resolving such a large spectrum of time scales is essential to105

design a renewable energy system that remains optimal over its full life cy-106

cle. By replacing the hindcast simulations with future climate projections107

it is possible to use our methodology to study the impact of future climate108

evolutions including antropogenic climate change on the optimal renewable109

mix, however this is left for further research.110

Italy offers an interesting case study of a market with high renewables111

penetration as it has reached its quota of 17% renewables in final energy112

consumption in 2014, therefore implementing the 2009 Climate Package six113

years ahead of the 2020 horizon (GSE, 2015). This is the result of ambitious114

support policies for RES development that have generated and still subsidize115

a significant amount of new investments, notably in solar and wind power116

plants.117

The analysis of the Italian renewable mix is based on wind and solar118

photovoltaics (henceforth PV) production and electricity consumption com-119

puted from a regional climate simulation performed in the framework of two120

international programs — the Hydrological Cycle in the Mediterranean Ex-121
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periment (HyMex Drobinski et al., 2014) and the Coordinated Downscaling122

Experiment for the Mediterranean (Med-CORDEX Ruti et al., 2016). Two123

cases for the optimization of the renewable energy mix are investigated: in the124

first case, the Italian electrical network is considered as unique and the over-125

all mix is optimized; in the second one, each interconnected zone minimizes126

its own risk in priority, ignoring potential benefits from taking covariance127

and interconnection between zones into account.128

This article gives a first proof of concept that it is possible to design129

optimal renewable energy mixes taking into account climate variability over130

a large range of temporal scales. The remainder of the paper is structured131

as follows. Section 2 details the datasets, the simulation and the produc-132

tion and demand models on which is based the analysis of the optimal mix.133

The mean-variance optimization problem and its mathematical properties are134

presented in Section 3. In Section 4 we calculate the optimal geographical135

distribution of wind and solar generation in Italy and analyze the properties136

of these mixes in terms of weight given to each technology and in terms of137

occurrence frequency of shortage and saturation situations. The impact of138

climate variability on the optimal mixes is discussed in Section 5, together139

with their comparison with the actual wind-solar mix in Italy. In Section 6140

we draw conclusions. The robustness of the numerical results to the climate141

data, the sampling and the model is tested in SI-1.142

2. Data143

2.1. GME and GSE databases144

Time series of the hourly Italian regional electricity demand and of the145

yearly regional renewable capacity factors are used to design the demand146

and generation models. These variables are extracted from two publicly147

available databases provided respectively by the market operator GME1 and148

the energy operator GSE2. For this reason, we first briefly comment on the149

structure of the Italian electricity market and next describe the databases150

we use.151

The Italian power market consists of 7 foreign virtual zones, 6 regional152

sub-markets, or bidding zones, and 5 poles of limited production. The 20153

1 Gestore del Mercato Elettrico: https://www.gse.it/dati-e-scenari/statistiche
2Gestore dei Servizi Energetici: https://www.gse.it/dati-e-scenari/statistiche
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(a) Italian electrical regions.
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(b) Domain of the HyMeX/MED-CORDEX simu-
lation covering Europe and the Mediterranean re-
gion. The rectangle indicates the domain of inves-
tigation of this study.

administrative regions composing the Italian territory are aggregated in the154

6 bidding zones (Fig. 1a): Northern Italy (NORD), Central-Northern Italy155

(CNOR), Central-Southern Italy (CSUD), Southern Italy (SUD), Sardinia156

(SARD) and Sicily (SICI). Each zone has its own generation mix determined157

by historical and geographic reasons and characterized by a given level of158

efficiency. For instance, the Northern regions have larger hydroelectric pro-159

duction due to the proximity to the Alps. Inter-zonal transmission capacities160

are not equally distributed either.161

The Italian power exchange, which is managed by the GME3 is composed162

of a spot market, a forward market and a platform for the physical delivery163

of contracts concluded on the financial derivatives segment of the Italian164

Stock Exchange. The spot market is composed of three sub-markets: the165

day-ahead, the intraday and the ancillary services markets. We focus on the166

day-ahead submarket. The liquidity of the day-ahead market, calculated as167

the ratio of volumes traded on the day-ahead market to the total volumes168

(including bilateral contracts) of the Italian power system, has increased169

between 2010 to 2015, passing from 62.6% with 198 operators in 2010 to170

67.8% with 259 operators in 2015. The peak liquidity has been reached in171

2013 with a 71.6% liquidity and 214 operators (GME, 2017).172

The GME database encompasses hourly bids and offers in the wholesale173

3 The GME manage as well the OTC Registration Platform for forward electricity
contracts that have been concluded off the bidding system.
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electricity market from 2004 to 2017; the offers are identified by supplier’s174

technology. The hourly electricity demand is appraised from this source.175

GSE annual reports (e.g. GSE, 2016) contain information about the yearly176

electrical production and the associated installed capacity4 detailed by region177

and sources from the beginning of 2008 to the end of 2016. At the beginning178

of this period, the installation of renewable energy capacity has shown a very179

rapid increase.180

The regional time-mean capacity factors for PV and wind are calculated181

from this source. Since 2013, the PV and wind capacity factors are relatively182

stable. The demand and the capacity factors for PV and wind for the 2013–183

2017 period are presented in Table 1.184

Region Electrical demand (GWh/day — %) Capacity Factor (PV — Wind)

NORD 312.2 — 56.5 12.1 — 20.4
CNOR 50.4 — 9.1 13.3 — 19.2
CSUD 82.0 — 14.9 14.1 — 18.8
SUD 44.2 — 8.0 15.6 — 20.9

SARD 26.7 — 4.8 14.5 — 19.6
SICI 36.8 — 6.7 15.9 — 18.7

Table 1: Regional electrical demand (from GME) and capacity factors for PV (blue) and
wind energy (green, both from GSE) averaged over the 2013–2017 period.

Table 2 summarizes the regional information on electrical installation —185

in particular the current installed capacity and transmission lines — at the186

end of 2015. In addition, Figure 2 represents the geographical distribution187

of the installed RES capacity. The PV (wind) installed capacity is 18.8 GW188

(8.9 GW). The Northern cross-border region contains the majority of the189

phovoltaic plants as well as the power lines. The Southern region has most of190

the Italian wind turbines and has the second transmission capacity, to foreign191

markets. Note that the electricity demand to Italy from other countries is192

not taken into account in this study. The share of the renewable energy193

production in the electricity demand over the six regions in 2015 is found to194

be 19.4%.195

4In the GSE reports, the capacity for a particular year is the installed capacity at the
end of this year.
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Region Transmission lines PV installed capacity Wind energy installed capacity
(MW) (MW) (MW)

NORD 53400 8241 113
CNOR 4550 2256 133
CSUD 12720 2631 1582
SUD 34100 3600 4351

SARD 595 721 1001
SICI 10100 1302 1753

Table 2: Characteristic of regional electrical infrastructure based on GSE database.

̀ * =21.5%

2500 MW

5000 MW

7500 MW

10000 MW

Figure 2: Geographical and technological distribution of the RES capacity installed by
the end of 2015 in Italy (GSE database).

2.2. Regional climate simulations196

A third variable employed in our study is the multi-year series of RES197

production. The deployment of RES capacity being relatively recent (starting198

around 2008 in Italy), available time series of observed RES production are199

not sufficiently long to estimate statistics taking into account low-frequency200

climate variability. To take into account climate variability, RES production201

is instead computed using regional climate simulations covering the historical202
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1989 to 2012 period.203

We use the version 3.1.1 of the Weather Research and Forecasting Model204

(WRF). WRF is a limited area model, non-hydrostatic, with terrain following205

eta-coordinate mesoscale modeling system designed to serve both operational206

forecasting and atmospheric research needs (Skamarock et al., 2005). The207

WRF simulation has been performed in the framework of HyMeX and MED-208

CORDEX programs with a 20 km horizontal resolution over the domain209

shown in Fig. 1b between 1989 and 2012 with initial and boundary condi-210

tions provided by the ERA-interim reanalysis and updated every 6 hr (Dee211

et al., 2011). The WRF simulation has been relaxed towards the ERA-I212

large scale fields (wind, temperature and humidity) with a nudging time of213

6 hr (Salameh et al., 2010; Omrani et al., 2013, 2015). A detailed description214

of the simulation configuration can be found in e.g. Flaounas et al. (2013).215

The simulation has been evaluated against ECA&D gridded precipitation216

and precipitation at the Mediterranean basin scale (Flaounas et al., 2013),217

and have been used to study heatwaves (Stéfanon et al., 2014; Chiriaco et al.,218

2014), heavy precipitation (Lebeaupin Brossier et al., 2013, 2015; Berthou219

et al., 2014, 2015, 2016) and offshore wind energy potential assessment (Om-220

rani et al., 2017) in a configuration coupled or not with a regional ocean221

model for the Mediterranean Sea (Drobinski et al., 2012). The simulation is222

available on the HyMex/MED-CORDEX database5.223

In the following sections, we describe the models used to estimate the224

wind and solar production and the electricity demand from the daily climate225

data. A large fraction of the variance of the production and of the demand is226

contained in shorter periods than a day and significantly impact the results227

of the mean-variance analysis (see SI-1). The production and demand models228

thus all include a parameterization of the intraday variability.229

2.2.1. Electricity production model230

To compute wind energy production simulated daily-mean horizontal231

wind-speeds are interpolated at hub height (101 m) using an empirical power-232

law with exponent 1/7 (Justus and Mikhail, 1976). A transfer function based233

on the power curve of a particular wind turbine, the relatively representative234

Siemens SWT-2.3 MW-101m, is applied to the wind speed to compute the235

5 ftp://www.medcordex.eu/MED-18/IPSL/ECMWF-ERAINT/evaluation/r1i1p1/

IPSL-WRF311/v1/day/
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electrical production at each climate-data gridpoint (Omrani et al., 2017)6
236

Before applying the transfer function, the wind speed at hub height is mul-237

tiplied by a factor (ρ/ρ0)(1/3) accounting for deviations of the daily-mean air238

density ρ from the standard density ρ0 for which the power curve has been239

obtained. The air density ρ is computed from the air temperature, pressure,240

and specific humidity at the surface from the WRF dataset using the ideal241

gas law for moist air7.242

In addition, it is essential in the mean-variance analysis to take intraday243

fluctuations of the wind production into account. In order to take into ac-244

count intraday wind fluctuations in the variance of the wind capacity factors,245

hourly realizations of the wind speed to be fed to the transfer function are246

obtained by randomly drawing samples from a Rayleigh distribution with247

mean given by the daily-mean speed at hub height. In other words, the wind248

magnitude V (d, h) at day d and hour h at some gridpoint is drawn from the249

Rayleigh distribution250

f(x|σ(d)) =
x

σ2(d)
e
− x2

2σ2(d) , x ≥ 0 (1)

with σ(d) =

√
2

π
V (d), (2)

where the mode σ(d) is defined such that the mean of the Rayleigh distribu-251

tion is equal to the available daily-mean wind-speed V (d) at the gridpoint.252

The effect of this parameterization of intraday wind fluctuations on the wind253

capacity factor of the north region is shown in Figure 3a and 3b, for a sample254

week in winter and another in summer 2010, respectively. One can see how255

the capacity factor increases with the daily-mean wind-speed, as well as the256

variance of intraday fluctuations due to the parameterization. However, it257

is clear from the figure that the intraday variability of the capacity factor is258

underestimated, a discrepancy that should be improved in future versions of259

the model.260

6 Note that, due to the bias correction (see Sect. 2.2.2), only the variability of the wind
production may be sensitive to this choice of power curve.

7This correction is applied to the wind speed rather than directly to the wind production
in order to shift the power curve horizontally rather than scale it vertically and hence
preserve the cut-in and cut-out behavior of the turbine.
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Figure 3: Illustration of the intraday parameterization of the wind (top) and solar (bottom)
generation for the north region, the first week of January 2010 (left) and of July 2010
(right). Top panels represents both the computed hourly wind capacity factor (blue) and
the daily-mean wind-speed (orange) from which the former is calculated. Bottom panels
represents both the computed hourly solar capacity factor (blue) and the daily-mean
horizontal surface radiation (orange) from which the former is calculated.

We simulate the PV production for arrays at each gridpoint composed261

of multi-crystalline silicon solar cells. The crystalline silicon solar cell occu-262

pies about 90% of the PV market, among which multi-crystalline solar cells263

have the highest share at 53% and mono-crystalline solar cells have a 33%264

share (Hosenuzzaman et al., 2015). Each module has a nominal power of265

250 Wm−2 for an area of 1.675 m2, resulting in a reference efficiency of about266

15%8. The real efficiency of the cell is, however, dependent on its tempera-267

ture, which is itself dependent on the air temperature and the wind from the268

8The nominal power itself is not important here, as only capacity factors are used
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WRF dataset and on the global tilted irradiance (see below). This depen-269

dence is modeled using the thermal model described in Duffie and Beckman270

(2013, Chap. 23)9. The efficiency of the overall electrical installation behind271

the modules is assumed to be of 86%.272

Solar radiation from WRF is partitioned into direct, diffuse and reflected273

components (Duffie and Beckman, 2013, Chap. 2.16) at every gridpoint. This274

partitioning depends on the clearness index K̄T and elevation angle of the275

sun at the gridpoint. The quantity KT (d), for some day d, is defined as the276

ratio of the horizontal radiation at ground level, I(d), to the correspond-277

ing radiation available at the top of the atmosphere, i.e. the extraterrestrial278

radiation I0(d).279

In order to take into account the effect of the diurnal cycle on the tilted280

irradiance, which accounts for most of the variance of the solar production281

(see Sect. SI-1), the hourly extraterrestrial solar radiation, I0(d, h), is com-282

puted for every hour h from the calendar information. The hourly horizontal283

radiation at the surface, I(d, h), for the hour h of the day d is then computed284

by multiplying the hourly extraterrestrial radiation I0(d, h) by the clearness285

index KT (d), assumed constant throughout the day. In other words,286

I(d, h) = KT (d) I0(d, h) (3)

with KT (d) =
I(d)

I0(d)
. (4)

Each array is assumed to be tilted by an angle equal to the latitude of287

the array and to face due South. To separate the diffuse component from the288

direct component of the global horizontal irradiance, the model from Reindl289

et al. (1990a) is used. For solar elevations below 10◦ and when the sun is290

behind the array, the direct horizontal irradiance is set to zero. The diffuse291

component of the tilted irradiance is computed following the model of Reindl292

et al. (1990b). The reflected component of the tilted irradiance depends on293

the zenith angle and follows the usual formula given by Duffie and Beckman294

(2013, Chap. 2.16) with an albedo of 0.210.295

9 The thermal model is configured for relatively common parameter values for cristalline
cells, i.e., for a temperature coefficient of 0.004 K−1, a reference temperature of 25 ◦C and
a cell temperature at nominal operating cell temperature of 46 ◦C (Skoplaki and Palyvos,
2009).

10The global tilted irradiance tends, however, to be dominated by its direct and diffuse
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The effect of the diurnal cycle on the solar capacity factor of the north296

region is shown in Figure 3c and 3d, for a sample week in winter and another297

in summer 2010, respectively. One can see how the solar production varies298

with the diurnal cycle and how this cycle is modulated by the clearness of299

the atmosphere. On the other hand, no variability associated with intraday300

changes in, e.g., the cloud cover is present since the clearness index remains301

fixed throughout the day. The variance of the solar capacity factor may thus302

be underestimated. This discrepancy should, however, remain limited to the303

extent that intraday variations of the clearness index are averaged out by the304

regional averages.305

2.2.2. Aggregation and bias correction306

The regional wind and PV capacity factors are obtained by dividing the307

computed production by its nominal value and then aggregating at regional308

level on an hourly basis. In so doing, a strong bias (up to 100%) is found309

between the yearly-averages of the computed capacity factors and the region’s310

capacity factors computed from the GSE data (Table 1). Since the second311

moment of the capacity factors roughly scales with their mean, we re-scale the312

computed capacity factors so that their average over the climate-data period313

(1989–2012) coincide with the GSE averages over the 2013–2017 period.

(a) (b)

Figure 4: Time evolution of weekly-averaged PV (orange) and wind (blue) capacity factors
(a) and demand (b). The shadings represent the standard deviation of the time series.

314

components.
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Figure 4a represents the weekly and regionally-averaged PV (orange) and315

wind (blue) capacity factors for a few sample years. Seasonal cycles of PV316

and wind energy production are phase shifted, with wind energy produc-317

tion (PV) peak yield in winter (summer). Wind energy production is also318

characterized by a stronger sub-seasonal variability when compared to PV at319

large-scale. Both the mean and the variance of the capacity factors for the320

wind production tend to be larger than those of the photovoltaic production.321

Albeit complementary over the year the wind and solar production requires322

additional energy inputs from other sources to counterbalance some recurrent323

short term deficit between the demand and the wind and solar production.324

Let us insist that the present bias correction only corrects for differences325

in the first moment of the capacity factors with the observed values. For the326

analysis of Section 4, higher moments, in particular the variance and covari-327

ance, are also important. Although one expects the variance of the capacity328

factors to scale with their mean, discrepancies may persist. Our computa-329

tions are tested against observations for bias in the variance in the SI-1.330

Note finally that the conventional production, which includes here ther-331

mal as well as hydropower plants, is not explicitly modeled in this study and332

is left for future work.333

2.2.3. Electricity demand model334

Since we are primarily interested in the impact of climate variability and335

change on the demand, the objective of the model is to predict the part of the336

daily regional demand depending on climate, in particular on the surface air337

temperature11, while preserving the statistics associated with other factors.338

We follow a statistical learning approach (Hastie et al., 2009) whereby the339

model is trained against the regionally-averaged temperature data from the340

WRF model as input and the regionally-averaged demand data from GME341

as output, from the beginning of 2005 to the end of 2011 (i.e. the intersection342

of the climate with the demand record).343

Let the electricity demand Din for the region i at the time step n and for344

a particular type of day (see below) be given by345

Din(Ti) = fi(Tin) + εin. (5)

11 Other variables, such as the specific humidity, the wind, or the irradiance where not
found to significantly affect the demand, in this case.

14



where fi, 1 ≤ i ≤ N is some real-valued function of the daily-mean tempera-346

ture Tin in the region i at the time step n (Tin is the same for two hours of347

the same day), and the residual ε accounts for other factors impacting the de-348

mand, such as changes in the population, the economy, tourism, individuals349

decisions, etc.350

It is known that the demand has a nonlinear dependence on the temper-351

ature. Electric heating is switched on only for lower temperatures, while air352

conditioning is switched on only for higher temperatures. This can be seen353

in Figure 4b for Italy. The demand has two main peaks per year, one during354

winter and one during summer, and lows in spring and fall and during hol-355

idays. In winter, the consumption peak is due to heating, especially in the356

northern part of Italy (see below). In summer, the consumption peak is due357

to tourism and air conditioning (Terna, 2016). Figure 4 shows that, except358

for the summer period, wind energy production is well correlated with the359

demand, whereas PV production is negatively correlated with the latter.360

Once an individual appliance is switched on, its electricity consumption361

is to a first approximation linear in the temperature. Assuming, that all362

consumers behave in the same way and that a consumer switches the heater363

(air conditioning) for a constant temperature threshold TH (TC), we define364

the functions fi as a piecewise-linear function of the temperature. In addi-365

tion, the behaviour of the consumers differs significantly for the week days,366

Saturdays, and Sundays and holidays (respectively marked work, sat and off,367

in the following) and the demand is known to strongly depend on the hour368

of the day (see SI-1). We thus choose to modulate the daily demand by a369

composite cycle which only depends on the hour of the day and the day type.370

The resulting model is given by,371

fi(Tin) =


fwork
i (Tin) if the day at n is a working day

f sat
i (Tin) if the day at n is a Saturday

f off
i (Tin) if the day at n is a holiday,

(6)

with f
work|sat|off
i (Tin) = a

work|sat|off
H Θ(TH − Tin)(TH − Tin) gwork|sat|off

n

+ a
work|sat|off
C Θ(Tin − TC)(Tin − TC) gwork|sat|off

n

+ a
work|sat|off
0 gwork|sat|off

n
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where Θ is the Heaviside step function12 and the coefficients g
work|sat|off
n are372

given by the average — over all days of the same day type and all hours of373

the same hour of the day — of the observed demand on which the model is374

trained. The model (6) has a total of 9 parameters a
work|sat|off
H , a

work|sat|off
C and375

a
work|sat|off
0 to be adjusted, for each region.376

The resulting linear model is fitted assuming that the thresholds TH and377

TC are constant over all regions and all day types. These thresholds con-378

stitute two hyper-parameters that we select via a grid-search with a cross-379

validation (Hastie et al., 2009) over seven blocks of one year.380

The linear model is fitted using the Bayesian ridge regression method381

(MacKay, 1992) both to avoid over-fitting and to take into account the vari-382

ance arising from factors that are not fully resolved by the deterministic383

part of the model13. A time series of the hourly regional demand over 1989–384

2012 is predicted from the full length of the temperature record by randomly385

drawing samples from the posterior distribution of the model at each time386

step. The way the Bayesian model operates is illustrated in Figure 5 where387

the predicted demand for the north region the first week of January 2010 is388

shown (plain blue line) together with the input daily-mean temperature Tin389

(plain orange line) and the series of composite daily cycles g
work|sat|off
n (dashed390

blue line).391

The resulting prediction of the regional demand is represented (only for392

daily-means) in Figure 6 versus the input temperature. The overall coeffi-393

cient of determination is 0.73. One can see that the temperature and type394

of day dependence of the demand is most clear for the economically most395

dynamic north region. This is also true, yet to a lesser extent, for the central396

south region. The shaded regions show that the part of the demand that397

is not explained by the temperature model is compensated by the Bayesian398

perturbations, although in a random fashion.399

To conclude, this method, as apposed to using the 13 years of observed400

demand provided by GME, allows to estimate the demand over the longer401

12 The relationship between the demand and the ambient temperature in European
countries is smoother than a piecewise-linear function (Bessec and Fouquau, 2008), in
part due to the non-homogeneous behaviour of the consumers. Here, however, we prefer
to keep the model as simple as possible using the above linear basis.

13 The implementation from scikit-learn (Buitinck et al., 2013) of the Bayesian ridge
regression is used, whereby the residual and the weights are given zero-mean isotropic
Gaussian priors. The variances of the latter are given as priors gamma distributions.
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Figure 5: Illustration of the intraday parameterization of the demand for the north region
the first week of January 2010. The computed hourly demand (plain blue line) is obtained

by modulating the series of composite daily cycles g
work|sat|off
n for each day type (dashed

blue line) by the function (6) of the daily-mean temperature (plain orange line) and by
adding random perturbations drawn from a normal distribution whose variance depends
both on the noise in the demand and the uncertainty in the parameters of the model.

record of the climate data so as to take into account variations in the demand402

due to low-frequency temperature variability14.403

3. Mean-variance analysis404

Geographic and technological diversification of renewable power plants is405

based on a mean-variance analysis that is inspired by Markowitz’s modern406

portfolio theory15.407

14Note that, assuming that the demand-temperature relation in (6) is valid, low-
frequency climate variability may be responsible in changes in the coefficients of the model
over periods longer than the observed demand record over which the model is fitted.

15 See, for example, Mencarelli and D’Ambrosio (2018) for a survey on mathematical
programming approaches for the portfolio selection problem.
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(a) NORD (b) CNOR (c) CSUD

(d) SUD (e) SARD (f) SICI

Figure 6: Daily-mean electricity demand for each zone versus the surface temperature.
Each point is an observed realization of temperature and demand. The lines represent

the functions f
work|sat|off
i of the demand model, while the associated shaded regions rep-

resent the variance of the prediction. Blue, orange and green data points and functions
correspond to working days, Saturdays, and Sundays and holidays, respectively. The two
vertical dashed lines represent the temperature thresholds TH = 9.5 and TC = 13.0.

In our context, the mean-variance analysis refers to the process of find-408

ing optimal spatial and technological distributions of renewable energy pro-409

duction achieving a trade-off between the mean penetration rate and some410

measure of the variance in the renewable energy production. The variance411

is a proxy for the risk: minimizing the variance corresponds to maximizing412

the diversification of the renewable configuration, which in turn lowers the413

variability of renewable energy penetration and improves the flexibility of414

the system and its resistance to shocks. In particular, a lower variance in415

the renewable energy mix is less demanding in services from conventional416

production (for which start up and shutting down services have a cost) or417

demand management.418

Each renewable mix may then be represented in a mean-variance chart.419

As a bi-objective optimization problem (Miettinen, 1999), mixes are to be420

optimal in the Pareto sense. A solution is said to be Pareto optimal if there421

exists no feasible solution with a better or equal value for each of the objective422
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functions (with at least one of these values being strictly better).423

Let us consider as an example Figure 7. The points under or to the right424

of the frontier are by definition suboptimal and will be discarded by a rational425

investor. The area above or to the left of the frontier cannot be reached.426

Two variations of the mean-variance analysis are considered here. In427

both, the mean RES penetration µ is given by the fraction of the expected428

total production over the expected total demand16, i.e.429

µ :=
E [
∑

kwkηk]

E [
∑

iDi]
=

∑
kwkE [ηk]

E [
∑

iDi]
, (7)

where k = (i, j) is the multi-index composed of a regional index i in {NORD,430

CNOR, CSUD, SUD, SARD, SICI} and a technological index j in {PV,wind},431

the wk are the installed capacities for each region and technology, the ηk are432

the corresponding predicted time-dependent capacity factors (Sect. 2.2.1)433

and the Di are the predicted regional demands (Sect. 2.2.3). Note that, in434

the following numerical applications, statistics such as the expectation or435

the covariance are replaced by sample estimates from the full records (1989–436

2012).437

In the first strategy, also called global, it is assumed that each region438

produces electricity to satisfy the total demand in priority with no consider-439

ation for their local demand or for transmission constraints between regions.440

In other words, the electricity produced at a given location is immediately441

available to meet the overall Italian demand. In this case, the risk squared442

σ2
global(w) is defined as the variance of the sum of the regional RES produc-443

tions normalized by the total demand, i.e.444

σ2
global(w) := V

[∑
kwkηk∑
iDi

]
=
∑
k

∑
l

wkG
global
k,l wl, (8)

where Gglobal
k,l := Cov[ηk/

∑
iDi, ηl/

∑
iDi] is the covariance matrix between445

the capacity factors normalized by the total demand for each pair of regions446

and technologies.447

16The normalization by the mean total demand in the definition (7) of the mean pene-
tration has no effect on the relative distribution of the capacities in the optimal problem.
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In the second strategy, also called regional, each region attempts to satisfy448

its local demand in priority. If the electrical production is larger than the449

demand, electricity can be exported. The risk squared σ2
regional(w) is thus450

defined as the sum of the variances of the regional production normalized by451

the regional demand.452

σ2
regional(w) :=

∑
i

V
[
w(i,PV)η(i,PV) + w(i,wind)η(i,wind)

NDi

]
(9)

=
∑
k

∑
l

wkG
regional
k,l wl,

where Gregional
k,l := Cov[ηk/(NDi), ηl/(NDj)] if i = j, 0 otherwise17.453

Note that in the global and the regional definitions of the risk, the RES454

production is normalized by the total and by the regional demand, respec-455

tively. This is particularly important for the regional optimization as nor-456

malizing by the local demand favors installing RES capacity in proportion457

to the latter.458

The goal of this study being to assess the optimal recommissioning of the459

Italian renewable energy mix, we also consider constraining the total installed460

RES capacity to its observed value wtotal = 27.7 GW in 2015 (Sect. 2.1). The461

mean-variance analysis, thus, consists in solving, the optimization problem462

min
w

σ2

global|regional(w)

max
w

∑
k

wkE[ηk]

subject to
∑
k

wk = wtotal

wk ≥ 0 ∀ k.

(10a)

(10b)

(10c)

(10d)

Assuming that the share of the demand that is not satisfied by RES is sup-463

plied by the conventional production normalized by the demand, the opti-464

mization problem (10) is equivalent to minimizing both the mean and the465

variance of the conventional production. Taking into account the full power466

17 The division by the number of regions N in (9) is there for comparison with the global
risk (8).
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flow of the transmission network together with the conventional production467

is left for future work.468

The classical method used in the following Section 4 to approximate the469

optimal frontier numerically is explained in SI-2. In this study, we refer to470

the optimal frontier as the curve
(
σglobal|regional(ŵ), µglobal|regional(ŵ)

)
, where471

the ŵ are the optimal solutions, although, strictly speaking, it is the risk472

squared that is minimized rather than the risk itself. The numerical results473

of the following section suggest that the so-defined frontier of the bi-objective474

problem (10) without the total capacity constraint (10c) is a half line with a475

positive slope that we refer to as the mean-risk ratio αglobal|regional. In other476

words, the optimal mixes for this problem are such that477

µglobal|regional(ŵ) = αglobal|regional σglobal|regional(ŵ), (11)

In the following, we assume that this is indeed the case and the mean-risk ra-478

tio αglobal|regional is used to diagnose the variants of the optimization problem.479

The proof of a rigorous mathematical result is left for future work.480

4. Optimizing the distribution of wind and solar generation481

Global and regional strategies are represented in Figure 8 (upper and482

lower panels respectively). Each point of the frontier represents an optimal483

combination of the capacities that maximizes the penetration for a given risk,484

while satisfying the constraints. The mixes in the region below or to the right485

of the efficient frontier are suboptimal. The straight black line represents an486

approximation of the optimal frontier of the same problem, but with the total487

capacity constraint (10c) removed.488

One may first observe that the optimal frontiers of the regional strategy489

(Fig. 8c) are shifted towards lower risk values compared to the frontiers of490

the global strategy (Fig. 8a). This shift is due to the different definitions (8)491

and (9) of the risk for the two strategies, respectively. It does not provide492

an objective argument to choose a regional policy over a global one. Instead,493

a trade-off exists between a strategy in which all regions cooperate for the494

national welfare and a strategy in which each region attempts to meet its495

own demand in priority18.496

18 Recall from Sect. 3, that in this study, the constraints imposed by the conventional
production and transmission network capacities are not considered.
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The mean-risk ratio αglobal|regional (the slope of the black curves) of the497

optimization problems without the total capacity constraint is also given498

in the sub-captions. It is of 1.69 for the global strategy and of 3.71 for499

the regional strategy. Increasing the mean penetration of the optimal mix500

necessarily comes at the price of an increased risk. For the same level of total501

mean penetration, adding the constraint on the present total capacity (blue502

curve) necessarily deteriorates the risk.503

The point at which both frontiers join (in black) corresponds to the opti-504

mal mix for which the total capacity constraint is inactive. This means that,505

for this level of mean penetration, the mix minimizing the risk naturally sat-506

isfies the total capacity constraint. It is thus the optimal mix satisfying the507

total capacity constraint that has the maximum mean-risk ratio. If no pref-508

erence is put on maximizing the mean penetration or minimizing the risk,509

this optimal mix is attractive. In the following, we refer to this mix as the510

maximum mean-risk ratio scenario.511

Yet, one may be interested in allowing for the deterioration of the mean-512

risk ratio in order to either decrease the risk or increase the total penetration.513

The blue dots in Fig. 8a and 8c correspond to the optimal mixes minimizing514

the risk. Their mean-risk ratio is then lowered to a value of 1.61 for the515

global strategy and of 3.53 for the regional strategy. We refer to this mix516

as the minimum risk scenario. For comparison with the actual mix the blue517

diamond in Fig. 8a and 8c represents the optimal mix that satisfies the same518

level of risk as the actual mix (gray dot) while maximizing the penetration519

rate. We refer to this mix as the high penetration scenario.520

Some important properties of the optimal mixes with the constraint on521

the total capacity are represented on the right panels of Fig. 8. The PV ratio,522

i.e. the fraction of photovoltaic capacity in the mix, is plotted in orange. A523

value of 100% (0%) corresponds to 100% (0%) PV production 0% (100%)524

wind energy production. The plain and dashed green curves represent the525

frequency of occurrence of shortage and saturation, respectively. Shortage526

situations are associated with insufficient energy production. This situation527

corresponds to large scale blocking atmospheric patterns associated with cold528

or heat waves and low renewable energy production, especially from wind.529

These configurations lead to underproduction of electricity from PV and530

wind farms. Here, it is assumed that conventional generation units are able531

to meet up to 80% of the maximum demand modeled. Shortage then occurs532

if the photovoltaic and wind generation is not able to meet the rest of the533

demand. In this case, electricity needs to be imported from the neighboring534
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countries (which is not explicitly accounted for in our modeling framework).535

Moreover, shortage situations result in an increase in the electricity market536

price and add pressure on power networks at continental scale. The second537

critical situation corresponds to network saturation, when electricity produc-538

tion from wind and PV plants is too large for the network and exceeds the539

technical limit of renewable energy fraction in the energy mix. In this study,540

saturation is defined to occur if more than 40% of the demand is met by pho-541

tovoltaic and wind sources. High probability of occurrence of such situations542

may jeopardize the funding system for renewable energy infrastructures and543

may lead to network instability. It can also generate very low or even neg-544

ative electricity prices (in Italy the prices cannot be negative, the floor is 0545

euro), jeopardizing the profitability of the conventional power plants, which546

are essential for network security. Figures 8d and 8d show the fraction of547

installed PV capacity and the frequency of occurrence of shortage and sat-548

uration situations as a function of the mean penetration for the global and549

the regional strategy, respectively.550

One can first see that the PV ratio is a decreasing function of the mean551

penetration reached by the mix. This is explained by the fact that the552

capacity factors from the wind generation are higher than those from the553

photovoltaic generation (cf. Tab. 1). Moreover, the shortage and the satu-554

ration curves (in green) have a distinct global minimum. The convexity of555

both curves is due to the fact that the probability of occurrence of extremes556

increases with the risk and that the latter increases faster for both smaller557

and larger values of the mean penetration. The vertical lines in Fig. 8b558

and 8d represent the level of mean penetration for the minimum risk, max-559

imum mean-risk ratio and high penetration scenarios. The minimum risk,560

the maximum mean-risk ratio and the high penetration scenarios respectively561

include 45%, 33% and 19% of PV capacity in the mix. The minimum risk562

scenario is relatively close to the minimum of saturation occurrence, while563

the maximum mean-risk ratio and the higher penetration scenarios are close564

to the minimum of shortage occurrence. Thus, favoring the minimization565

of the risk also allows to avoid saturation situations, while increasing the566

mean penetration allows to avoid shortage situations. Overall, the regional567

problem suggests installing more photovolatic capacity than wind capacity568

compared to the global problem.569

We represent in Figure 9 the resulting spatial distributions correspond-570

ing to the three scenarios for both the global and the regional problems.571

Focusing on the global problem, the minimum risk scenario distributes all572

23



the PV capacity in the north region, while achieving higher levels of mean573

penetration requires to move the PV capacity to the south and to Sicily. For574

all scenarios, the wind capacity is relatively spread over all regions but the575

central south one.576

The resulting capacity distribution for the regional strategy (right panels577

of Fig. 9) is dramatically different from that for the global strategy. In-578

deed, most of the RES capacity is installed in the north region, whatever the579

scenario, with more wind capacity to increase the mean penetration. Only580

minimal capacity is installed in the central north, Sardinia and Sicily. This581

can be understood from both facts that the definition of the risk for the582

regional problem favors minimizing the risk of each region individually be-583

fore minimizing the total risk and that the capacity factors in the risk are584

normalized by the demand. Since most of the demand occurs in the north585

(cf. Table 1), the variance of the capacity factors in that region is given less586

weight than the others in the definition of the regional risk. This corresponds587

to an incentive for the north region to satisfy its demand with its own RES588

resource first.589

The results obtained so far show a strong dependence of the optimal mix590

on the level of risk that should be achieved. A mix favoring a high level of591

mean production at the expense of the risk — like in the high penetration592

scenario — yields a very different PV ratio and geographical distribution of593

the renewable capacity than in mixes favoring a lower level of risk — like in594

the the maximum mean-risk ratio and minimum risk scenarios.595

5. Discussion596

The methodology developed in this article has specifically been designed597

(i) to exploit correlations between the RES production and the demand and598

between regions to optimize the renewable energy mix and (ii) to take into599

account the impact of the climate variability on this mix. This allows us to600

discuss in this section the role played by climate variability and the potential601

for improvement of the actual Italian mix.602

5.1. Impact of climate variability on the mix603

To assess the impact of interannual climate variability (as found in the604

CORDEX data) on the mix, we repeat the mean-variance analysis succes-605

sively using data blocks of one year, from 1989 to 2010. In other words, the606

mix of the 22 mixes that we obtain is optimized for the climatic conditions of607
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a given year. As a result, the optimal mix for one year may be different from608

the optimal mix for another year due to low-frequency climate variability.609

We focus on the mixes maximizing the mean-risk ratio αglobal for the610

global strategy. From the 22 values of the mean-risk ratios associated with611

each year, we obtain an estimation of their mean value and of an interval612

containing 95% of their realizations (see SI-1 for more explanations). The613

mean-risk ratio αglobal averages to 1.71 and 95% of its distribution belongs to614

the centered interval [1.57, 1.85]. Thus, even though the average of the yearly615

mean-risk ratio is close to the one of 1.69 obtained in Section 4 using the full616

record, interannual climate variability in the CORDEX data is responsible617

for year-to-year variations of the mean-risk ratio of up to 8.2%.618

To go further, we represent in Figure 10 the geographical and techno-619

logical distribution of the mixes for the year 1989, with a particularly low620

mean-risk ratio of 1.60, and for the year 1996, with a particularly high mean-621

risk ratio of 1.85. Due to the steeper optimal frontier for 1996, the mix for622

the maximum mean-risk ratio scenario achieves both a higher mean total623

penetration and a lower risk than that for 1989. The distribution of the RES624

capacity for 1996 also differs from that for 1989 as more wind capacity is625

installed in the central south and Sardinia regions.626

It is thus clear that the low-frequency climate variability has a large627

impact on the optimal mix and that the latter should be taken into account628

in order to assess future optimal RES mixes that are robust to changes in629

the climate.630

5.2. Comparison with the 2015 Italian mix631

The 2015 (actual) Italian mix is composed of 68% PV and 32% wind632

energy capacity (see Table 2). As can be seen from Figure 2, the largest633

fraction of installed PV capacity is in the North of Italy, whereas most of634

wind capacity is located in the South. Indeed, Italy has started investing in635

renewable energy resources since 1991 (with the feed in tariff CIP6), with636

the objective of developing national energy sources and so decreasing the637

dependency on imported gas. Historically, the bulk of PV has been developed638

in Northern Italy, where the entrepreneurial background has favored local639

business exploiting renewable energy resources subsidies. Wind farms have640

been installed in Sicily and Sardinia, where regional specific incentives have641

been set. Southern Italy has invested in renewable energy more recently,642

after the reinforcement of the main North-South transmission line.643
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To compare the actual mix with the optimization results, the actual mean644

penetration and risk are computed for the actual capacity distribution using645

the same capacity factor and demand data as used to obtain the optimal646

frontiers of Fig. 8. The corresponding mix is represented by the gray dot647

in the same figure. This point is not visible in Fig. 8c, for the regional648

problem, because the value of its risk is several orders of magnitude larger649

than the x-axis limits. For both the global and the regional problem, the650

gray point is to the right of the optimal frontiers. The actual mix installed651

in Italy is thus sub-optimal. For the global problem, this mix reaches a level652

of mean penetration comparable to that of the minimum risk scenario, but653

its risk is about 29% larger than that of the latter and its PV ratio about654

49% higher. The capacity distribution of the optimal mixes in Figure 9655

may also be compared to that of the 2015 Italian mix in Figure 2. The656

actual mix appears to be closest to the minimum risk and maximum mean-657

risk ratio scenarios of the global problem (Fig. 9a). However, the actual658

mix favors photovoltaic over wind capacities, especially in the north, and659

that more RES capacity is installed in the central south region. This is660

in strong contrast with all optimal scenarios. For instance, the maximum661

mean-risk ratio scenario yields about two third (one third) of wind (solar)662

capacity. However, these differences may partly be attributable to biases in663

the intraday variance, as the model tends to underestimate intraday variance664

of the wind capacity factors and to overestimate the intraday variance of the665

solar capacity factors (see Table 1)19.666

6. Conclusion667

This work is aimed at developing a proof-of-concept of an integrated668

modelling framework dedicated to the elaboration of optimal scenarios of669

renewable energy mix. The proposed framework relies on regional climate670

simulations. It is shown to be of practical interest for both short and long671

term renewable energy management, as the model is able to take into account672

variability in the renewable production and electricity demand from hourly673

to interannual time scales. The model allows to derive different scenarios674

consisting in either maximizing the total renewable energy penetration or675

19 Improving the resolution of the intraday variability of the production in the model
may require to develop a better parameterization or to rely on additional data. This is
left for future work.
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minimizing the total risk by taking advantage of (anti-)correlations between676

regions and technologies in an optimal way. Different optimization strategies677

have been chosen to establish the renewable energy mixes: the first optimiza-678

tion strategy, the global one, maximizes the national Italian welfare by taking679

full advantage of correlations between region and by ignoring any potential680

network constraint; the second strategy, the regional one, assumes that each681

region maximizes its own welfare in priority, disregarding the potential ben-682

efit of exploiting cross-regional correlations to improve the national welfare.683

The main results have been obtained by relying on the full length of684

the climate record (23 years), in order resolve the impact of interannual685

climate variability on the optimal mixes as well as possible. By computing686

additional mixes using only one year of climate data for all available years687

and by assessing the differences between these mixes, we could show that the688

impact of interannual climate variability on the optimal renewable energy689

mix should not be neglected.690

Comparison with the actual Italian renewable energy mix shows that the691

actual mix is closer to the global strategy that to the regional strategy as692

the renewable capacity is relatively evenly spread among regions. However,693

the scenario maximizing the ratio of the total mean penetration over the risk694

yields about two thirds (one third) of wind (solar) capacity, in strong contrast695

with the actual mix containing one third of installed wind capacity. The696

reasons for such differences are difficult to identify as the actual renewable697

energy capacity deployment did not follow an optimization elaborated at698

country scale, but relied on regional policies. Conversely, our optimal energy699

mix scenarios rely on selected optimization strategies and may be prone to700

biases in the resolution of the intraday variance of the production.701

The current framework takes the variance, or risk, of the fraction of the702

demand covered by the renewable production as a proxy for the flexibility703

service needed from the hydro and conventional production. Our modeling704

framework would benefit from the translation of this risk into an economic or705

a climate cost. For that purpose, the hydro and the conventional production706

would have to be modeled, taking into account reserve constraints and pri-707

ority orders between these energy sources. The transmission network would708

also have to be modeled to take network constraints into account as well as709

the arbitrage between producing locally and importing/exporting between710

regions.711

The current framework is also adapted to consider optimal strategies in712

a warming climate using 21st century projections from general circulation713
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models. Finally, the generalization of such integrated modeling tool at Euro-714

Mediterranean scale is a priority. Our framework opens the way for the study715

of energy transition scenarios at the European scale based on precise mod-716

eling of climate variability and climate change. The interconnected regions717

will then be replaced with interconnected countries.718
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tricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,773

B. K., Peubey, C., De Rosnay, P., Tavolato, C., Thépaut, J. N., Vitart, F.,774

2011. The ERA-Interim reanalysis: configuration and performance of the775

data assimilation system. Q. J. R. Meteorol. Soc. 137 (656), 553–597.776

Del Rı́o, P., Calvo Silvosa, A., Iglesias Gómez, G., 2011. Policies and de-777
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Figure 7: Example of the optimal frontier of a mean-variance bi-objective optimization
problem. The optimal frontier is one-dimensional and represented by a plain blue line.
Mixes in the white region to the right of the frontier are suboptimal. Points in the gray
region to the left of the frontier are not feasible. In this example, the optimal frontier
is bounded below by a minimum-risk optimal-mix (blue dot) below which the risk may
only increase. The optimal frontier is bounded above by a maximum-penetration optimal-
mix above which higher penetration mixes are not feasible due to the constraints of the
problem. The point B is an example of suboptimal mix, since a higher mean penetration
is achievable for the same risk (point A) and a lower risk is achievable for the same mean
penetration (point D). The dashed blue line is obtained by minimizing the risk for a range
of target mean penetration values. These solutions are, however, not Pareto optimal. For
instance, point C yields the same risk as point A but achieves a lower mean penetration.
Thus, A “dominates” C.
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Figure 8: Approximations of the optimal frontiers (left) and of the corresponding electric-
ity mix characteristics (right) for the global (top) and the regional (bottom) optimization
problems. The blue curve in the left panels represents the approximation of the optimal
frontier of the optimization problem (10). The straight black line is the optimal frontier
of the same problem, but with the total capacity constraint (10c) removed. The approxi-
mations were obtained using a discretization step of 0.1%. The black dot where the black
frontier is tangent to the blue one corresponds to the optimal electricity mix for which
the total capacity constraint is inactive (i.e. where adding this constraint has no effect on
the results of the optimization problem). The blue dots in panels (a) and (c) correspond
to the optimal energy mix for which the risk is minimized while satisfying the total ca-
pacity constraint. The gray dot in panel (a) is obtained from the same capacity factor
and demand data but applying the actual capacities installed in Italy in 2015 (cf. Tab. 2).
The blue diamond corresponds to the optimal mix achieving the same level of risk as the
actual mix in gray while maximizing the mean penetration. The blue squares correspond
to limits beyond which it is not possible to further decrease or increase the mean total
penetration while satisfying the total capacity constraint and the bounds. The values of
the mean-risk ratio of the unconstrained optimal frontiers, given by (11), are also reported
in the sub-captions. On the right panels are represented the fraction of photovoltaic ca-
pacity in the mix (plain orange line), or PV ratio as well as the shortage (plain green line)
and saturation (dashed green line) frequencies versus the mean penetration. The blue and
black dashed vertical lines mark the mean penetration values corresponding to the blue
and black dots and the blue diamond on the left panels. The orange dot represents the
PV ratio for the actual capacities installed in Italy in 2015.
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Figure 9: Geographical and technological distribution of the RES capacity for the global
(left) and regional (right) optimal mixes respecting the total capacity constraint. The top,
middle and bottom panels represent the optimal mixes for the minimum risk, maximum
mean-risk ratio and higher penetration scenarios, respectively (blue dot, black dot and
blue diamond in Fig. 8a and 8c). Note that there is no plot of the higher penetration
scenario for the regional strategy since the regional risk of the actual mix is too high to
be achieved by an optimal mix.
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Figure 10: Approximated Pareto frontiers (top) and geographical and technological dis-
tribution of the RES capacity (bottom) for the global optimization problem solved for the
years 1989 (left) and 1996 (right). The approximations were obtained using a discretization
step of 0.1%. The legend is the same as for Fig. 8 and Fig. 9.
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