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The combination of massive parallel sequencing with high-throughput cell bi-
ology technologies has given rise to single-cell Genomics. Similar to the paradigm
shift of the 90s characterized by the first molecular profiles of tissues, it is now
possible to characterize molecular heterogeneities at the cellular level (Saliba
et al., 2014). The statistical characterization of heterogeneities in single-cell ex-
pression data thus requires an appropriate model, since the transcripts abun-
dance is quantified for each cell using read counts. Hence, standard methods
based on Gaussian assumptions are likely to fail to catch the biological variability
of lowly expressed genes, and Poisson or Negative Binomial distributions consti-
tute an appropriate framework (Chen et al., 2016). Moreover, dropouts, either
technical (due to sampling difficulties) or biological (no expression or stochas-
tic transcriptional activity), constitute another major source of variability in
scRNA-seq (single-cell RNA-seq) data, which has motivated the development of
the so-called Zero-Inflated models (Kharchenko et al., 2014). A standard and
popular way of quantifying and visualizing the variability within a dataset is di-
mension reduction, principal component analysis (PCA) being the most widely
used technique in practice. Model-based PCA (Collins et al., 2001) offers the
unique advantage to be adapted to the data distribution and to be based on an
appropriate metric, the Bregman divergence. It consists in specifying the dis-
tribution of the data through a statistical model. A probabilistic zero-inflated
version of the Gaussian PCA was proposed by Pierson & Yau (2015) in the con-
text of single cell data analysis (the ZIFA method). However, scRNA-seq data
may be better analyzed by methods dedicated to count data such as the Non-
negative Matrix Factorization (Lee & Seung, 1999, NMF) or the Gamma-Poisson
factor model (Cemgil, 2009). However, none of the currently available dimen-
sion reduction methods fully model single-cell expression data, characterized by
overdispered zero inflated counts (Zappia et al., 2017). Our method is based on
a probabilistic count matrix factorization (pCMF). We propose a dimension re-
duction method that is dedicated to over-dispersed counts with dropouts, in high
dimension. Our factor model takes advantage of the Poisson Gamma representa-
tion to model counts from scRNA-seq data (Zappia et al., 2017). In particular,
we use Gamma priors on the distribution of principal components. We model



dropouts with a Zero-Inflated Poisson distribution, and we introduce sparsity in
the model thanks to a spike-and-slab approach (Malsiner-Walli & Wagner, 2011)
that is based on a two component sparsity-inducing prior on loadings (Titsias &
Lézaro-Gredilla, 2011). The model is inferred using a variational EM algorithm
that scales favorably to data dimension, as compared with Markov Chain Monte
Carlo (MCMC) methods (Blei et al., 2017). Then we propose a new criterion to
assess the quality of fit of the model to the data, as a percentage of explained
deviance, because the standard variance reduction that is used in PCA needs
to be adapted to the new framework dedicated to counts. We show that pCMF
better catches the variability of simulated data and experimental scRNA-seq
datasets. Finally, pCMF is available in the form of a R package available at
https://gitlab.inria.fr/gdurif/pCMF.
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