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Abstract

The Shapley effects are global sensitivity indices: they quantify the
impact of each input variable on the output variable in a model. In this
work, we suggest new estimators of these sensitivity indices. When the
input distribution is known, we investigate the already existing estimator
defined in [I8] and suggest a new one with a lower variance. Then, when
the distribution of the inputs is unknown, we extend these estimators.
Finally, we provide asymptotic properties of the estimators studied in
this article.

1 Introduction

Sensitivity indices are important tools in sensitivity analysis. They aim at quan-
tify the impact of the input variables on the output of a model. In this way,
they give a better understanding of numerical models and improve their inter-
pretability. For example, the sensitivity indices enable to know if the variation
of an input variable can lead to an important variation of the output or not.

In global sensitivity analysis, the input variables X, ..., X, are asummed to
be random variables. Sobol defined the first sensitivity indices for a general
framework, called the Sobol indices, in [I7]. Many other sensitivity indices
have been defined and studied (see [I] for a general review of these indices).
Nevertheless, many of these indices suffer from a lack of interpretation when the
input variables are dependent. To overcome this lack of interpretation, many
variants of Sobol indices have been suggested for dependent input variables (see
for example [11], [12] and [3]).

Recently, Owen defined new sensitivity indices in [I4] called ” Shapley effects”
that have good properties and that are easy to interpret, even in the dependent
case. The main advantages of these sensitivity indices compared to the Sobol



indices (and their variants) are: they remain positive, their sum is equal to one
and there is exactly one indice for each input (and there are no indices for groups
of variables). The Shapley effects are based on the notion of ”Shapley value”,
that originates from game theory in [I6]. The Shapley value has been widely
studied ([], [5]) and applied in different fields (see for example [13] or [9]).
However, only few articles focus on the Shapley effects in sensitivity analysis
(see [14], [18], [I5], 0], [2]).

In this paper, we work on the Shapley effects and their estimation. We
divide this estimation into two parts. The first part is the estimation of the
quantities that we call the ”conditional elements” which the Shapley effects
depend on. The second part is the way to estimate the Shapley effects when we
have estimates of the conditional elements. We call this part the W-aggregation
procedure. We refer to Sections [3] and [] for more details on these two parts.
Song et al. suggested an algorithm to estimate the Shapley effects in [I8] that
is implemented in the R package "sensitivity”. The algorithm of [I§] uses a
W-aggregation procedure based on permutations of {1, ..., p}. We study this W-
aggregation procedure and explain why it minimizes the variance of the estimate
of the Shapley effect corresponding to a single input variable. We then suggest a
new W-aggregation procedure, based on the subsets of {1, ..., p}, to estimate all
the Shapley effects (for all the input variables) at the same time. We choose the
best parameters to minimize the sum of the variances of all the Shapley effects
estimators. This provides an improved accuracy, compared to the first W-
aggregation procedure in [I§]. The comparison between the two W-aggregation
procedures is illustrated with numerical experiments.

Then, we focus on the estimation of the conditional elements with two dif-
ferent estimators: the double Monte-Carlo estimator (used in the algorithm of
[18]) and the Pick-and-Freeze estimator (see [8] for the independent case) that
we extend to the case where the inputs are dependent. We give their definition
when it is possible to sample from the conditional distributions of the input
vector. Then we extend these estimators to the case where we just observe an
i.i.d. sample from the input variables. The extension relies on nearest-neighbour
techniques. To the best of our knowledge, the estimators we suggest are the first
that do not require exact samples from the conditional distribution of the in-
put variables. One of our main result is the consistency of these estimators
under some mild assumptions, and their rate of convergence under additional
regularity assumptions. We conclude giving the consistency of the estimators
of the Shapley effects with the two W-aggregation procedures and using the
double Monte-Carlo estimator or the Pick-and-Freeze estimator. To highlight
the efficiency of these estimators, we provide numerical experiments in the two
following cases: where it is possible to sample from the conditional distributions
of the input vector and where we just observe an i.i.d. sample from the input
variables. We observe that in the second case, the estimators of the Shapley
effects have a similar accuracy as in the first case.

The paper is organized as follows. In Section [2] we define the framework of
global sensitivity analysis and we recall the definition and some properties of the
Shapley effects. In Section [3] we study the W-aggregation procedure used by



the algorithm of [I8] and we suggest a new one. In Section we assume that the
input distribution is known. We give two methods to estimate the conditional
elements and we illustrate the various estimators of the Shapley effects with
numerical applications. In Section [5} we assume that the input distribution is
unknown and that we just observe a sample of the input vector. We give consis-
tent estimators of the conditional elements and thus consistent estimators of the
Shapley effects in this case, and we illustrate this with numerical experiments.
We conclude in Section [6} All the proofs are provided in the appendix.

2 The Shapley effects

We let X = (X3, ..., X,) be the input random vector on E = E; x ... X E, with
distribution Px. We assume that there is an output variable Y defined by

Y = f(X) (1)

with f € L?(Px). We write [1 : p] for the set {1,2,...,p}. We can now define
the conditional elements (W), and the Shapley effects (1;)icqi:p)-
For all u C [1 : p], we define:

Vi, := Var(E(Y|X,)) (2)

and
E, :=E(Var(Y|X_,)), (3)
where —u := [1 : p] \ u. We define the conditional elements (Wy),c[1.y as being

either (Vi)ucqip) O (Eu)ucpizp). For all i € [1: p], we define the Shapley effect
n; as in [18] by:

1 PN
= pVar(Y) Z ( ] ) Wangiy = Wa), )

uC—1i
where —i is the subset [1: p] \ {i}.

Remark 1. As explained in [18], the Shapley effects do not depend on whether
(Wow)ucp:p denotes (Va)ucpizp) 0r (Eu)uciiip)-

Remark 2. We have that Wy and W),y are equal to 0 and Var(Y') respectively.
The variance of Y is easy to estimate, so we assume without loss of generality
that we know the theoretical value Var(Y).

We can notice that the Shapley effects are a sum over the subsets u C
—i. Another classical way to compute the Shapley effects is to sum over the
permutations of [1 : p|, see Proposition

Proposition 1. We have
1

Var(¥) Z (Wh,(oyutiy — Whi(0)))s (5)

=
plVar ces,

where S, is the set of permutations of [1 : p| and P;(o) :=={o(j), j € [1 :14]}.



Our aim is to estimate the Shapley effects. We have seen two different ways
to compute the Shapley effects, given by Equation (with a sum over the
subsets) and Equation (with a sum over the permutations). These two
equations will represent two different W-aggregation procedures of the Shapley
effects.

To simplify notations, if u C —i, we write u + ¢ for u U {i}.

3 W-agregation procedures

As we can see in Equation or in Equation , the Shapley effects are func-
tions of the conditional elements (W,),. For now, we do not focus on the
estimation of W,. We assume that we have a ranggm function ¥ : u — W
which, for all w C [1 : p], gives a random estimate W,, of W,,. From Remark
we let ¥(0) = 0 and ¥([1 : p]) = Var(Y). We call ”W-aggregation procedure”
an algorithm that estimates the Shapley effects from a such function. We begin
to explain the W-aggregation procedure of [I8]. Then we suggest an improved
W-aggregation procedure.

3.1 The random-permutation procedure

In this section, we present the "random-permutation W-aggregation procedure”
suggested in [I8§].

3.1.1 Estimator

The W-aggregation procedure of the algorithm of [I8] is based on Equation ().
Thus we could estimate n; by

~ 1 w w
= ) 2 (Ve — Wao) ©

However, as the number of permutations is p!, there are too many summands
and [I8] suggests to replace the sum over all the p! permutations by the sum
over M (M < p!) random uniformly distributed permutations. Thus, we can
estimate n; by

M
1 - -
i = o O (Wit = W) 7
! MVar(Y)m:1< Pilom)+i = W Pi(om) ()

where the oy, are i.i.d. and uniformly distributed on .S,.
Finally, [I8] reduces the computation cost using the following idea. They
notice that for ¢ < p and for any permutation o, we have P, (;11)(0) = P,;)(0)+

i. Thus, the algorithm of [I8] uses every estimate Wp_ y for 7,(;) and for

(i+1)(om
No(i+1)- S0, the number of estimations of W, (for u # () is divided by two when
estimating the Shapley effects. The W-aggregation procedure is



1. Forallm=1,2,.... M
(a) Generate o,y
(b) Let prevC =0
(¢) Foralli=1,2,....p
i. Estimate Wp_ ) NCISEE by Wpﬂm(i)(gm)Jri = \I/(Pgm(i) (om) +1).
ii. Compute A= Wp o iy (T )+ prevC
iii. Update 7, (J’) = No, () + Aam(j)c(gm)~
iv. Set prevC = Wp o (i ()i
2. Let m; =7;/(Var(Y)M) for alli =1,...,p
We write this W-aggregation procedure ”"random-permutation W-aggregation
procedure”.
3.1.2 The precision of the estimate of W, is adapted with u

In this section, we explain how the Shapley effect estimation given by Equation
is equivalent to an estimation given by

3
S

~ 1 p—1 -t i

where Wu is some estimation of W, with a precision adapted with u. The W,,
which have a large coefficient in will be better estimated than the W, that
have a small coefficient.

First of all, let us show how to link Equation with Equation . We
have

1 Mo —
o= MVar( )Zl(WP“’mW_WPi(“m))
— -1 ~ ~
- Vai(Y) Z (Pu|1> (Wqui_Wu)

uC—1

v (p—1\p W Vars = (P 1) 2 W

m,Pi(om)=u m,P;(om)=u

Yet, the map P; : S, — P([1 : p] \ {i}) is not injective. So, the number of m
such that P;(0,,) = u can be larger than 1, even if the random permutations



(0k)k<m are two by two distinct. Actually, if u C —i, the number N, = Nu’M
(resp. Nyti = Nyyiar) of estimates W, (resp. W\U_H) used for W, (resp. Wyi:)
is the random variable [{m < M, P;(o,,) = u}| ~ B(M, W), where B
is the binomial distribution. To simplify notations, if u C —i, let us write

ull(p—1 — |ul)!
B 1 1}
p!

(9)

We want to study the cost-accuracy tradeoff of the different estimators of the
(W4) to minimize the variance of the Shapley effect estimator #;. To that end,
we introduce the following assumption.

Assumption 1. Each Wu s computed with the same cost No by W, = Nio Z/Ig\/:1 Al(tk)

where the (/VEE’“)),C are independent and identically distributed. The (Wu)u are
independent.

Thus, under Assumtion |1} each Wu has a random cost Nu with
E(Nu) = NOMpu
and B
Var(N,) = NgMpu(l — Du)-

To conclude, the estimation of 7; given by Equation is equivalent to an
estimation given by where each W, is computed with a random cost N,
that depends on u. We show in that this random cost is actually a good
choice. Before giving the proposition, let us introduce another assumption.

Assumption 2. Each W, is computed with a cost N, by W, = J\}1 Z,iv;”l Wk

where the (/V%k))k are independent and identically distributed. The (W), are
independent.

Proposition 2. Let i Gél : p| be fized. Assume that we estimate n; by Equation

under Assumption |4 and assume that Var(W,Sl)) does not depend on wu.
Then, the solution of the relazed problem (i.e. the problem without the constraint
of letting the (N, )y be integers) miny,y, Var(n;) subject to ", N, = 2M No is
N: = NoMp, = E(Nu)

Note that when we want to estimate only 7; using @ and under Assumption
the total cost for 7); is 2M No. So, according to Proposition [2] the average of
the costs of (W), is optimal to minimize Var(7;).

Remark 3. When the number of inputs p is small, [I8] suggest to take all the
permutations of [1 : p| instead of choosing random permutations. In this case,
the number N,, is no longer random and is exactly Nop\p., which is the ezact
solution of the problem miny, ), Var(n;) subject to >, N, = 2p!No. However,
this algorithm requires small values of p and the total cost is a multiple of 2p!
(so there are very restricted possible values). Hence, the algorithm with all the
permutations is not explicitely detailed in [18].



3.1.3 Choice of Np

In this section, we explain why we should choose Np = 1 under Assumption [T}

Proposition [3|is actually given in [I8] in the particular case of the algorithm
of [I8], with more complicated computations than in the proof of Proposition
(they explain how to choose other parameters). We just give the result in a
more general case, which totally arises from [I8].

Proposition 3. Under Assumption |1| and assuming that for all uw C [1 : p],

E(/\qgl)) = W, in order to minimize, over No and M, the variance of 1; with
a fized cost 2M No =: 2C' , we have to choose No =1 and M = C.

Now, we give another reason for choosing Np = 1. According to Proposition
for all u, E(N,) = N} is the best cost of W, for minimizing Var(7;). Thus,
we would want NV, to be close to its mean. So, we want to minimize its variance
Var(N,) = N3 Mp,(1 — p,). When to total cost 2M Np = 2C is fixed, in order
to minimize Var(N,), we have to choose M = C and Np = 1.

From now on, we assume that No = 1 when we use the random-permutation
W-aggregation procedure and we will let M, the number of random permuta-
tions, go to infinity. So, for the same subset u, we will call several times the
random function value ¥(u). We will write (qul))izl to differentiate the various
calls to ¥(u) when using the random-permutation procedure. Notice that the
cost of each /I/IZY) is equal to one because Np = 1.

Finally, since we let U(()) = 0 and ¥([1 : p]) = Var(Y"), their cost is equal to 0.
Then, the total cost Ny of the random-permutation W-aggregation procedure
is equal to Nyor = M (p — 1), for estimating the p Shapley effects ny,. .., 7.

3.1.4 Consistency

We give sufficient conditions to have the consistency of the estimators of the
Shapley effects given by the random-permutation W-aggregation procedure.

Proposition 4. Assume that for all u such that © & uv G [1 : p], (Wéz))izl
(the different calls to the function ¥(u)) are identically distributed and that
we estimate the Shapley effects using the random-permutation W -aggregation
procedure. Let Nyt = M(p — 1) be the total cost of the random-permutation
W -aggregation procedure.

1. If for all u such that ® G u & [1 : p], the (Wﬁi))izl are unbiased and
independent, then the estimates of the Shapley effects are consistent when
Niot goes to +oo.

2. Assume that for all u such that 0 G u G [1 : p|, the distribution of the
WQEZ) depends on an integer N such that

E (Wqﬁl)) N W,.



Assume that for all u such that O G u & [1:p],

1 o —) 0
~ () (y))
3 Z cov (Wu W N,r:?koo 0,
3,j=1
where n is the number of the various calls to the random function value
U(u). Then, the estimates of Shapley effects are consistent when Nyoe and
N go to +c.

3.2 The subset procedure

In this section, we suggest a new W-aggregation procedure for the Shapley
effects. We want to compute once for all the estimates W, for all u C [1 : p],
and to store them. Then, we use these estimates to estimate all the Shapley
effects.

3.2.1 Estimator

We can estimate the Shapley effects (1;);¢[1.p) by using the following 1W-aggregation
procedure:
e For all u C [1: p], estimate W,, by W, = U(u) and store it.

e For all i € [1: p], estimate n; by

—1

—1

We call this W-aggregation procedure "subset W-aggregation procedure”. We
can note that each estimate W, is used for all the estimates ﬁie[l:p]. Recall that

with the random-permutation W-aggregation procedure, each estimate /Wu was
used for the estimate of only two Shapley effects: more particularly Wp,_ (41 (Tm)
was used for 7,(;) and for 7,(;+1). Thus the subset W-aggregation procedure
seems to be more efficient.

Remark 4. When the number of inputs p is large (for example p = 100), it
is too costly to estimate W,, for all u C [1 : p|. So, the subset W-aggregation
procedure is, at first sight, limited to small to moderate values of p. Fortunately,
we will suggest in Section not to estimate all the (W), with the same
accuracy. Thus, when the number of variables p is large, most of the (W), will
be approximated by 0 and the subset W -aggregation procedure will work for any
value of p.

3.2.2 Choice of the precision of each Wu

We have seen in Section that the random-permutation W-aggregation
procedure adapts the cost of each W, with u. This cost is random but the



average cost is the optimal cost for minimizing Var(7;). We want to use this
idea for the subset W-aggregation procedure: we will adapt the cost of each
W, in order to minimize the variance. However, for the subset W-aggregation
procedure, we estimate all the (7;);c[1.p) at the same time. Thus, we choose to
minimize ), Var(7;). In the following proposition, we give the best choice of
the costs (Ny), to minimize this sum of variances.

Proposition 5. Under Assumption@ (where W, in this assumption corresponds
to Wu i FEquation ), the solution of the relaxed program (i.e. the problem
without the constraint of letting the (N,,), be integers)
P
min ZVar(ﬁi) subject to Z N, = Niot (11)
Nuogugip {4 0CuC [1:p)

8 (N:;*)Q)gug[l:p] with

V= L)l (p — [ul = D(ful — 1)1Var(WD)

N;* = Niot .
T15(1
Socociig V(= WDUlp = fol = DX(je] — 1)!Var (WD)

Usually, we do not know the values of Var(ﬁ/\él)). Practically, we will assume
that these values are equal in order to compute N, *. Furthermore, the sum over
the subsets v such that § & v & [1 : p] can be long to compute. So, we do the
following approximations in practice:

-1
p
(1)

-3 -3
p p
N (UI) <|U| - 1>
Nu ~ Ntot Ntot —1
p
Z@Qv@[l:p] (|U|)

p p o\
Z@;vgu:p} (|v|> (|v| _ 1)

So, in the following, with the subset W-aggregation procedure, we will choose

- O

Nl
SIS

N, as the closest integer to Nyt <Z|) (p—1)~L. In this way, for a fixed total

cost, we take the costs (N, ), near the optimal choice to minimize ), Var(n;).
Hence, the parameter N, is now the only parameter left to chose.

Remark 5. With this method, the real total cost ngug[lm] N, can be different
from the Nyot chosen (because of the approxzimations and the choice of the closest
integer). In this case, we suggest to adapt the value of Nyo in order to have the
desired total cost Z@gug[lzp] N,.

Remark 6. For example, if the number of inputs is p = 100 and we want a
total cost of 10%. The previous results suggest to choose N, = 1700 is |u| =1 or
lul=p—1, Ny =34 if lu=2o0r|ul=p—2, Ny=1if lu=3 or|ul=p—3
and N, =0 if 3 < |u| < p—3. If N, =0, we take W, = 0. So, there are 333500
quantities W,, to estimate, instead of 2100 — 2 ~ 1030 if we wanted to estimate
all the W,.



3.2.3 Consistency

A straightforward consequence of the subset W-aggregation procedure and Equa-
tion is that the consistency of (W, ),c[1:p) implies the consistency of (7;)ic[1:p)-

Proposition 6. Assume that for all u, we have consistent (resp. strongly con-
sistent) estimators /V[7u when N, goes to 400, where N, is the cost of ﬁ/\u. If we
use the subset W -aggregation procedure with the choice of (N, ) given in Section
the estimators of Shapley effects are consistent (resp. strongly consistent)
when Nyt goes +00 (where Nyt is the total cost of the subset W-aggregation
procedure).

4 Complete algorithms

We have seen in Section [3| two different procedures to estimate the Shapley
effects considering that estimates of the conditional elements (W), can be
obtained. We explain now how to estimate these (W,,), in a restricted setting
and we give numerical experiments to compare the various estimators in this
framework. The restricted setting is the following: as in [I8], we will assume
that for any u and x,, it is feasible to compute an i.i.d. sample of law X_,
conditionally to X,, = x,. Moreover, we assume that we have access to the
computer code of f. Finally, we assume that each evaluation of f is costly, so
we define the cost of each estimator W, as the number of evaluations of f it
requires.

Since Wg and Wiy, are equal to 0 and Var(Y') respectively, we assume that
lule1:p—1].

4.1 Estimators of W,

To estimate W,, we suggest two different estimators. The first consists in a
double Monte-Carlo procedure to estimate F,, and it is the estimator used in
the algorithm of [I8]. The other one is the well-known Pick-and-Freeze estimator
(see [§] for the first definition, [0} [7] for theoretical studies) for V,,, that we extend
to the case where the inputs variables (X;); are not independent.

4.1.1 Double Monte-Carlo

A first way to estimate E, = E(Var(Y|X,)) is using double Monte-Carlo: one
of size Ny for the conditional variance, one other of size Ny for the expectation.
Thus, the estimator of E, suggested in [I§] is

No

Eu,MC =

Ly (Fxx9) — 5x7D) .
NO — NI _ 1 — —u’ u —Uu ’

where f(X(_Z)) = N;! ZQL (X(_Z), X&"’k)), (X("))n is an i.i.d. sample of law

—Uu

X_, and (X)), conditionally to X is i.i.d. of law X, conditionally to

—Uu

10



has a cost (number of evaluations of f) of 3Np.

X_ .= X(?. We will take N; = 3, as suggested in [I8]. Thus, this estimator

Remark 7. It is an unbiased estimator of E, = E(Var(Y|X,)).

Remark 8. The algorithm of [18] is the combination of the random-permutation

W -aggregation procedure with the double Monte-Carlo estimator Ey pc, and it
is suggested to choose No =1 and Ny = 3.

According to Propositions [f] and [f] the random-permutation W-aggregation
procedure and the subset W-aggregation procedure are consistent when taking
the double Monte-Carlo estimator W,, = E, ac-

4.1.2 Pick-and-freeze

We now give a second estimator of W,,: the pick-and-freeze estimator for V,.
Remark that

V., = Var(E(Y|X,)) = E(E(Y|X,)?) — E(Y)2

Remark that E(Y) is easy to estimate so we do not focus on the estimation
of E(Y) (for the numerical applications, we will take the empirical mean). It
remains to estimate E(E(Y'|X,,)?), which seems to be complicated. We prove the
following proposition that enables to simplify the formulation of this quantity.

Proposition 7. Let X = (X,,X_,) and X* = (X,, X" ) of law L(X) such
that, a.s. P(X,M,XLu)\Xu:wu =Px_,1xu=2. ®Px_,|x,=2,- We have

E(E(Y]X.)?) = E(f(X)f(X")). (13)

Remark that Proposition [7] enables to write a double expectation as one
simple expectation, that we estimate by a simple Monte-Carlo. Thus, we suggest
the pick-and-freeze estimator:

-~

N
Vurr = g > (X090, X00) 7 (x0, x02) “mry2, (1
n=1

where (X&"))n is an i.i.d. sample of law X,, and where (X(fl’l), X(:Z’Q)) condi-
tionally to Xq(tn) isi.i.d. of law X_,, conditionally to X, = Xff). This estimator
has a cost of 2Nop.

As we have seen in Section [3.1.3] when we use the random-permutation
W-aggregation procedure, we choose No = 1. According to Propositions [
and [6] the random-permutation W-aggregation procedure and the subset W-
aggregation procedure are consistent with the Pick-and-Freeze estimator W, =
Vu,PF-

11



4.2 Numerical comparison of the different algorithms

In this section, we carry out numerical experiments on the different algorithms
in the restricted framework (where the conditional samples are available). Recall
that in Section [3] we have seen two W-aggregation precedures for the Shapley
effects using estimators of the (WW,),: the random-permutation W-aggregation
procedure (used in the algorithm of [I8]) and the subset W-aggregation pro-
cedure. In Section we have seen two estimators of the (W,),: double
Monte-Carlo (used in the algorithm of [I§]) and Pick-and-Freeze. To sum up,
we have four consistent estimators of the Shapley effects:

e subset W-aggregation procedure with double Monte-Carlo, that we write
”subset double Monte-Carlo”;

e subset W-aggregation procedure with Pick-and-Freeze, that we write ”sub-
set Pick-and-Freeze”;

e random-permutation W-aggregation procedure with double Monte-Carlo,
that we
write ”"random-permutation double Monte-Carlo”, and which is the al-
ready existing algorithm of [I8];

e random-permutation W-aggregation procedure with Pick-and-Freeze, that
we write "random-permutation Pick-and-Freeze”.

To compare these estimators, we use the linear Gaussian framework: X ~
N(p,T) and Y = >P | 3;X;. In this case, the theoretical values are easily
computable (see [I5 [10, 2]). We choose p = 10, 3; = 1 for all i and ' = AT A
where A € M,, is a realisation of p? i.i.d. Gaussian variables with zero mean
and unit variance. To compare these different estimators, we fix a total cost of
Ny = 54000. We compute 1000 realizations of each estimator.

In Figure [1} we plot the theoretical values of the Shapley effects together
with the 1000 realizations of each estimator.

In Figure we plot the sum over i of the quadratic risk: Y7 | E (s — m:)?)
(estimated with 1000 realizations) of each estimator.

We can see that the subset W-aggregation procedure gives better results
than the random-permutation W-aggregation procedure, and the estimator dou-
ble Monte-Carlo is better than the estimator Pick-and-freeze. To conclude,
we improved the already existing algorithm of [I§] (random-permutation W-
aggregation procedure with double Monte-Carlo) by the estimator given by the
subset W-aggregation procedure with double Monte-Carlo.

5 Extension when we observe an i.i.d. sample
In Section [ we have considered a restricted framework: we assumed that for

all v and all z,, we could generate an i.i.d. sample of law X_,, conditionally to
X, = x,. However, in many cases, we can not generate such samples, as we only

12
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Figure 1: Estimation of the Shapley effects in the linear Gaussian framework.
In black (s*) we show the theoretical values, in red (ssMC) the estimates
from the subset W-aggregation procedure with the double Monte-Carlo estima-
tor, in green (ss_PF) the estimates from the subset W-aggregation procedure
with the Pick-and-Freeze estimator, in blue (spr-MC) the estimates from the
random-permutation W-aggregation procedure with the double Monte-Carlo
estimator and in yellow (spr_PF) the estimates from the random-permutation
W-aggregation procedure with the Pick-and-Freeze estimator.
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Figure 2: Sum over ¢ of the estimated quadratic risks of the four estimators of
the Shapley effects in the linear Gaussian framework.

observe an i.i.d. sample of X. In this section, we assume that we just observe
a sample of X and that we have access to the computer code f. We extend
the double Monte-Carlo and Pick-and-Freeze estimator in this general case and
show their consistency and rates of convergence. We then give the consistency of
the implied estimators of the Shapley effects (obtained from the W-aggregation
procedures studied previously). To the best of our knowledge, these suggested
estimators are the first estimators of Shapley effects in this general framework.
We conclude giving numerical experiments.

5.1 Estimators of W,

As far as we know, only [20] suggest an estimator of W,, when we only observe
an i.i.d. sample and when the input variables can be dependent, and only for
V., with |u| = 1. The estimator suggested in [20] is asymptotically efficient
but the fact that u has to be a singleton prevents us to use this estimator for
the Shapley effects (because we have to estimate W, for all w C [1 : p]). In
this section we introduce two consistent estimators of W, when we observe
only an i.i.d. sample of X, and which are easy to implement. These two
estimators follow the principle of the double Monte-Carlo and Pick-and-Freeze
estimators, but replacing the i.i.d. sample of law X_,, conditionally to X, =
x, by the observations (X(_T:j), ...,X(_Tif)) such that (Xq([”), ey Xq(f”“)) are the k
nearest neighbours of z,. For each estimator, we give the consistency and the
rate of convergence.

14



5.1.1 Double Monte-Carlo

In order to define the double Monte-Carlo estimator of W,, with only an i.i.d.
sample of X, we introduce the following notations.

Let N € N and (X,,)n<n be an i.i.d. sample of X. We write (s(1))i<n, a
sample of uniformly distributed integers in [1 : N] (with or without replacement)
independent of the other random variables. Let us write k(I,n) for the index of
the observation such that X(k(l’n)) is the (or one of the) n-th closest element to

X(l) in (X( ))Z<N7 and such that (kn(l,n)n<n, are two by two distinct. Then,
we define two slightly different versions of the double Monte-Carlo estimator by

~ . 1 <&~ .

mix Emiz , 15

u,MC No ; u,s(l),MC ( )
and

5”1\20* No Z 5”!&) MC» (16)
with

L& ) 1 ) ’
pmix _ (W) x(k(s,)) _ 1 (s) 5 (k(s(D),h)
e = Nl_lz[f (. e O0) - 3 (. X )]
i=1 h=1

and

Np

E,’ffé?z),Mc = ﬁ ; lf (X(k(s(l),i))) Zf ( X (B(s), h)))] 2.

Remark 9. The index k(l,n) could be not well-defined is there exist different

observations X( D at equal distance from X( ) In this case, we will choose k(I,n)
uniformly over the indices of these obsematwns, as it is explained in Theorem
[1 However, when X_,, is absolutely continuous with respect to the Lebesgue
measure, this situation can not happen and k(l,n) is uniquely defined.

The index k(l,n) depends on N but this dependency is implicit. However,
to avoid confusion, we could write ky(l,n).

The double Monte-Carlo estimator has two sums: one of size Ny for the
conditional variance, one other of size Ny for the expectation. The integer N;
is also the number of nearest neighbours and it is a fixed parameter to choose.
For example, we can choose N; = 3 (as in the case where the conditional samples
are available).

Remark 10. The integer N is the size of the sample of X (that enables us
to estimate implicitly its law through the nearest neighbours) and the integer

No 1is the accuracy of the estimator /VVWMC from the estimated law of X. Of
course, it would be intuitive to take No = N and (s(1)); without replacement,
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but this framework would not be general enough for the random-permutation
W -aggregation procedure (in which there are replacements and the accuracy N,
is a random variable, as it is explained in Section or for the subset W -

aggregation procedure (in which the accuracy N, of Wy pr depends on u).

Now that we defined the two versions of the double Monte-Carlo estimator
for an unknown input distribution, we give the consistency of these estimators

in Theorem (1} We let Eu mc be given by (5.1.1) or (5.1.1). In the asymptotic
results below, N7 is fixed and N and No go to infinity.

Theorem 1. Assume that for all i, (E;,d;) is a Polish space, that condi-
tionally to (X(_Z))n, the kn(l,1) are uniformly chosen over the indices of all
the i-th nearest neighbours of X(_lz m (XE”J)ne[l:N], and such that for all N,

(ene (1, 1))i<ny vt Lo ((X6 ), (B (L 3))i<n, ) and (ki (1,3) i<y AL o ((XE)n, (o (1) )i<,)
for alll # 1. Assume that X = (X, X_,) has a continuous density fx with

respect to a finite measure i = [y, @ p—y. If f is bounded, then E, pc is

consistent when N and No go to +oo.

Furthermore, with additional regularity assumptions, we can give the rate
of convergence of these estimators in Theorems [2| and

Theorem 2. Assume that f is C', E is compact, X has a density fx with
respect to the Lebesgue measure Ay, on RP such that A\, a.s. we have 0 < Cins <
fx < Csup < +00 and such that fx is Lipschitz continuous. Then, for alle > 0,

¢’ > 0, there exist fized constants C’é&% (€") and CS(EI), such that
Clan(e) | cla

p( >e) < 512 <Np1|u_€, S ) . (17)

Corollary 1. Under the assumptions of Theorem@ choosing No > C N1/ (p=lul)

we have for all § > 0,
()
=0, | ———— ).
P\ Nzoeran ¢

We remark that for |u| = p — 1, we nearly obtain a parametric rate of

~

Eu,MC - Eu

’Eu,MC - Ey

convergence N 2. The rate of convergence decreases when |u| decreases which
can be interpreted by the fact that we estimate non-parametrically the function
ZT_y > Var(f(X)|X_, = x_,). The estimation problem is high-dimensional
when |u| decreases.

5.1.2 Pick-and-Freeze

We now give similar results for the Pick-and-Freeze estimators. Let N € N
and (X,,)n<n be an i.id. sample of X. We write (s(1));<n, a sample of ran-
dom integers uniformly distributed on [1 : N] (with or without replacement)
independent of the other random variables. Let k(m,2) be the (or one of the)

16



index in (qun))ng n of the second nearest neighbour of X&m), thus, the index of

the nearest neighbour of Xx{™ different from m. Notice that in Section
k(m,2) refers to distances relative to X,,, while k(I,n) refers to distances rela-
tive to X_, in Section Assume that E(Y) is known. Then, we define two
slightly different versions of the Pick-and-Freeze estimator by

rmix mi:v
u,PF — N us(l

and
1 o
i rknn Trknn
u = N Vu s ’
PF No ; ,s(1),PF
with el
Vi pe = £ (XCW) £ (X, xECOD) _pv2 (s)
and R
Vit pp = FXCON F(xFED2)) _ F(y)2, (19)

Remark 11. The index k(m,2) depends on N but this dependency is implicit.
However, to avoid confusion, we could write ky(m, 2).

As for the double Monte-Carlo estimators, we give the consistency of the
Pick-and-Freeze estimators in Theorem |3] [B] and the rate of convergence in Theo-

rem 4| and in Corollary [2| We let Vu pr be given by - or -
Theorem 3. Assume that for all i, (E;,d;) is a Polish space, that condi-
tionally to (Xﬁn))n, the k(1,2) are chosen uniformly over all the indices of
the nearest neighbours of xY in (X&"))ne[l:N]\{l}, such that for all I # U,
kn(1,2) 1L ((X("))n,kN(l’ )) and such that

(kn(1,2))nrgn AL ((X(n))n, kn(l, 2)) Assume that X = (Xy, X_y) has a con-
tinuous density fx with respect to a finite measure b = phy ® p—y. If f is
bounded, then V,, pr is consistent when N and No go to +oo.

Theorem 4. Assume that f is C', E is compact, X has a density fx with
respect to the Lebesgue measure Ay, on RP such that A\, a.s. we have 0 < Cins <
fx < Csup < 400 and such that fx is Lipschitz continuous. Then, if |u| = 1,
for alle >0, & >0,

- 1 (clleE) )
_ < =
P( Vu,PF ) ( Nil-e + NO ) (20)
and if |u| > 1, for all e > 0,
N o (1 1
_ < T
P(vu,pp ) <5 (Ni + No)’ (21)

with fized constants Cs(&)p(e') < 400, C'S(E)p < 400 and C’s(ﬁ,)) < 4o00.
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Corollary 2. Under the assumptions of TheoreleI, choosing No > CN/1ul,
we have

1. for all w such that |u| =1, for all 6 > 0,

B 1
—\Nid )
1
=0, ——).
p(Nzu)

The interpretation of the rates of convergence is the same as for the double
Monte-Carlo estimators.

Vu,PF - Vu

2. for all u such that |u| > 1,

Vu,pr —

5.2 Consistency of the Shapley effect estimators

Now that we have constructed estimators of W, with an unknown input dis-
tribution, we can obtain estimators of the Shapley effects using the subset
and random-permutation W-aggregation procedures. Note that for each W-
aggregation procedure, we need to choose the accuracy No of the (Wu) Al-

though Assumptions I and I do not hold with the estimators Eu Mmc and Vu PF,
we keep choosing Np = 1 with the random-permutation W-aggregation proce-

—1
dure and Np as the closest integer to N (|z> (p + 1)—1 with the subset

W-aggregation procedure. To unify notations, let Ny = 2 when estimators of
the conditional elements (W, ),, are the Pick-and-freeze estimators (in this way,
Ny is the number of the nearest neighbours). With the double Monte-Carlo
estimators, let Ny be a fixed integer (for example N; = 3).

Proposition 8. Assume that for all i, (E;,d;) is a polish space, that condi-

tionally to (X?u (resp. (X&n))n), the kn(l,7) are uniformly chosen over the

indices of all the i-th nearest neighbours of X(BL (resp. X,gl)) n (X( ))ne[l ‘N

(resp. (X$)nepeny)s and such that for all N, (kn+(1,9))icn; nren Lo (X)), (kv (1,9))i<n;)
and (kn (1,7))i<n, Lo (X)),
(kn(U,9))i<n,) for alll # 1 (resp. such that for alll #1', kn(1,2) 1L ((X(JL))m kn (U, 2))

and such that (kn+(1,2)) nr2n AL ((X(n))n, kn(l, 2))) Assume that X = (X1,...,Xp)
has a continuous density fx with respect to a finite measure p = @ ;. If f

is bounded, then the estimator of the Shapley effects defined by the random-
permutation W - aggregatzon procedure_or the subset W-aggregation procedure
combined with W wMc (resp. W = u,pp) are consistent when N and
Niot go to +oo.
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5.3 Numerical experiments

In this section, we compute numerically the estimators of the Shapley effects
with an unknown input distribution. As in Section 2] we choose the linear
Gaussian framework to compute the theoretical values of the Shapley effects.

We take the same parameters as in Section The size N of the observed
sample (X ("))ng ~ is 10000. Each estimator is computed 200 times. We now
have 8 consistent estimators given by:

o 2 different W-aggregation procedures: subset or random-permutation;
e 2 different estimators of W,,: double Monte-Carlo or Pick-and-Freeze;
e 2 slightly different versions of the estimators of W,,: "mix” or "knn”.

In Figure [3| we plot the theoretical values of the Shapley effects, together
with the 200 realizations of each estimator.

Remark 12. In the linear Gaussian framework, the function f is not bounded
and the assumptions of Proposition [§ do not hold. We can not guarantee the
consistency of the Shapley effects estimators. However, this framework enables
to compute the theoretical Shapley effects and we can see numerically that the
estimators seem to be consistent.

We show the boxplots of the 8 estimators in Figure [3| and the sums over
i € [1 : p] of their quadratic risks (estimated with 200 realizations) in Fig-
ure [4 As in Section [£:2] the subset W-aggregation procedure is better than
the random-permutation W-aggregation procedure and double Monte-Carlo is
better than Pick-and-Freeze. Furthermore, there are no significant differences
between the version ”mix” and the version "knn”. We can remark that, in order
to compute the estimators with the "mix” version, we need to call the computer
code of f at new inputs whereas "knn” only needs an i.i.d. sample (X, f(X)n)n.

We now compare the sums over i € [1 : p] of the estimated quadratic risks
of the estimators from the subset W-aggregation procedure with double Monte-
Carlo when we know the law of X (results of Section and when we just
observe a sample of size 10000 (previous results of this section). These values
are equal to 5.9 1073 when we know the law of X, to 6.6 10~3 when we only

mix

observe the sample with E}")7~ and to 7.4 1073 when we only observe the

sample with E’;T}@C Thus, in dimension 10, replacing the knowledge of X by a
sample of size 10000 does not seem to deteriorate significantly our estimates of
the Shapley effets.

6 Conclusion
In this article, we focused on the estimation of the Shapley effects. We ex-

plained that this estimation is divided into two parts: the W-aggregation pro-
cedure and the estimation of the conditional elements (W, ),c[1:y). Based on an
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Figure 3: Estimation of the Shapley effects in the linear Gaussian framework
when we only observe a sample of X. In black (s*) we show the theoret-
ical results, in red the estimates from the subset W-aggregation procedure
with the double Monte-Carlo estimator (ss_MC_mix and ss_MC_knn), in green
the estimates from the subset W-aggregation procedure with the Pick-and-
Freeze estimator (ss_PF_mix and ss_PF _knn), in blue the estimates from the
random-permutation W-aggregation procedure with the double Monte-Carlo
estimator (spr-MC_mix and spr- MC_knn) and in yellow the estimates from the
random-permutation W-aggregation procedure with the Pick-and-Freeze esti-
mator (spr_PF_mix and spr_PF knn).
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Figure 4: Sum over ¢ of the estimated quadratic risks of the eight estimators of
the Shapley effects in the linear Gaussian framework when we only observe a
sample of X.
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analysis of the already existing algorithm of [I8], we suggested the new subset
W-aggregation procedure that is theoretically more efficient. We highlighted
this efficiency by numerical experiments. In a second part, we suggested various
estimators of (W,), when the input distribution is unknown and when we just
observe an i.i.d. sample of the input variables. We proved their consistency
and gave the rates of convergence. Then, we used these new estimators to esti-
mate the Shapley effects with consistency. We illustrated the efficiency of these
estimators with numerical experiments.
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Appendix A Proofs for the double Monte-Carlo
and Pick-and-Freeze estimators: The-

orems [1}, [2, [3] and [4]

To unify notations, let us write

1L\ M LS, ) :
miz () a(ND) S £, a®) - 23 pl), 20
MC - (l’ yeey L ) NI_lkzl (f( —u u ) NI i f( —u’ u )) )

N. N.
(I)k:nn . (.’13(1) m(NI)> N 1 ZI f(SC(k)> _ L Zlf(l'(l))
MC PREXD) NI 1 NI

k=1
B @2@) s faW) fl),2) —B(Y)?,
e (@M, 2®)  — faW) f(@®) —E(Y)%

Remark that all these four functions as bounded as f is bounded. When we
do not write the exponent mixz or knn of ® or of the estimators, it means that
we refer to both of them (mix and knn). We write the proofs only for Ey, prc.

For the estimators ‘A/u,pp, it suffices to replace ®pr¢c by ®pp, —u by u (and
vice-versa), B, by V,, Var(Y|X_,) by E(Y|X,)? — E(Y)? and N; by 2. Hence,
we shall only write the complete proofs for Theorems [I] and To simplify
notation, we will write E,, for E, yc, Ey, for B, pc and @ for @pc. Ny is
a fixed integer.

Remark 13. In the definition of Vu pr given in Section the random
variables Vu,hpF depend on XD gnd Xk 2), i.e.

Vu,l,PF = Opp(XO, XHO2),
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We could choose them to depend on X*E1) and X#12) i e to replace X1
by X*n(D) - These two definitions are equivalent under the assumptions of
Theorem |4| but can be different under the assumptions of Theorem @ (more
particularly in the case where X,(Ll) is not the only nearest neighbour of Xﬁl), i.e.
there is another X&"), n # 1 such that X&n) = Xi(f)). However, the proof of
Theorem [3 works in both cases. To unify the notations of Theorems [3 and [1]
we will assume in the proof that V,; pr depends on XEGD) gnd X*EE2) 4 e

‘A/u |,PF = (I)pF(X(k(lvl))7Xk(l,2))'

A.0.1 Proof of consistency: Theorems [I] and

Recall that for all i € [1: p|, (E;, d;) is a Polish space. Then, for all v C [1 : p],
FE, := X;coF; is a Polish space for the distance d, := max;c, d;. We will
write B, (x,,r) the open ball in E, of radius r and center z,. Recall that
the choice of the Nj-nearest neighbours could be not unique. In this case,
conditionally to (X (_73)7“ the (kn(l,%))n,1,; are random variables that we choose

in the following way. Conditionally to (X (f;))n, we choose ky (I,) uniformly over

all the indices of the i-th nearest neighbours such that the (kn(1,%))i<n, are two
by two distinct and, for all N, (kn+(l,1))i<n, nN#n AL 0((X75n))n, (kn(1,9))i<n,)

and (kn(1,1))i<n, AL o (X)), (b (I,4))i<n, ) for all 1 £ 1.

To simplify notation, let us write ky (i) := kn(1,4) (the index of one i-
th neighbour of ng) and k(i) = kn(2,4) (the index of one i-th neigh-
bour of X(_QZ). Remark that X(_kuN(i)) does not depend on ky(i). Let k :=
(kn(9)i<n, Nen+ and ky = (kn(i))i<n,. We will use the letter h for the
realizations of the variable k.

To begin with, let us recall two well-known results that we will use in the
following.

Lemma 1. If H is independent of o(o(X),G), then
E(X|o(G,H)) = B(X]G).
Lemma 2. For all measurable ¢,
LOX, V)X =) = L($(2,Y)|X =)
and if Y is independent of X, then
LOOX,Y)|X =2) = L($(z,Y)).

Now, to demonstrate Theorem [I} we need to prove several intermediate
results.

Lemma 3. For alll € N*,

xEv®) ase x @) (22)



Proof. First, let us show that for all e > 0, P(d_ (X(l) X(z)) g) > 0. Indeed,

—ur

as E/_, is a polish space, its support has measure 1. Thus

Pld_o (X X <o) = / Lae ve y<edPx_, @Px_, (2_y,a,)

—u

_ / (@, ))dPx_ (2_4)

= / Px_, (B_y(x_y,e))dPx_, (z_y)
supp(E w)

because if _,, € supp(E_,), then B_,(z_y,€) ¢ supp(E_,)¢ and Px_  (B_y(T_u,€)) >
0.

Next, remark that

X(kN(l)) 2) X(l) — X(kN(Q)) 2) X(l)

—u

N——+oc0 N—+oc0
and,
(kn (2)) (1) () vy 1
P({re ) ) e (Y Qe =g
k>1n>1
1 1 1
<STE(P[ ) dou(x®),x0) > E|X(_3
k>1 n>1
1 N
:ZE( i (4,062 x0) = 1) )
N—+oo k
E>1
1 N
:ZE( lim [1—P<d L(X® x Wy o )] )
N—+oc0 ]{
k>1
:Z()
k>1
= 0.

Lemma 4. There exists a continuous version of

LOXIX =) ([ > 0} d ) — (My(BL), T(weak))
(where T (weak) is the topology of weak convergence).
Proof. Let z,, € E,. For all z_,, € E_,, such that fx_ (z_,) > 0, we have

f(mua l‘,u)
fx_. (x—u) .

Ixux_y=a_,(Tu) =
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Let (m(fg) be a sequence converging to z_,, with fx_, (x_,) > 0. There exists ng

such that for all n > ng, fx_, (ac(_ng) > 0. Thus, by continuity of f which respect

to x_, and fx_,, we have fx |x .-z ,(%4) = lim, i Fxoxwma™ (@u).

Then, using the dominated converging Theorem, -
L(Xu| Xy =2™)) MY XXy = 2).

—u N —+4oc0
U

Remark 14. The assumption "X = (X, X_4) has a continuous density fx
with respect to a finite measure p = p, ® p—_y” is only used is the proof of
Lemma [

Remark 15. There exists a different proof of Lemma [ if we assume that p
is reqular. Theorem 8.1 of [19] ensures that the conditional distribution in the
sense of Tjur is defined for all x_,, such that fx_, > 0 (and not only for almost
all x_y,) and the continuity of fx,|x_,—x_, (Tu) with respect to x_,, comes from
Theorem 22.1 of [19].

Remark 16. To avoid confusion, we can now define L(X | X_, = x_,,) as
the probability measure of density M which is defined for all (and not

Xy (T—w)?
“almost all”) x,, in {fx_, > 0}.
Proposition 9. If
LXy|X_w="):(E_y,d_y) — (Mi(Ey), T (weak))
is continuous (where T (weak) is the topology of weak convergence), then, for

almost all ((x("))n,h), we have

—Uu

E (Eu,l ](XY;))" = ")k = h) s Var(Y[X_, =20))  (23)

—u N—+oo

and,

E(E,1) o B (24)

Proof. Let Z = (Z1, ..., Zn,) : (2, A) — (EN1,E9N1) measurable such that for

almost all ((ac(_nqz)n, h), we have

£ (21X = @Ok = h) = Q@ £(xX VXL = 2l).

It suffices to show that, for almost all ((x("))n, h),

—Uu

L)y _ )y
) (X D=0 k=h
- N—+o0
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Indeed, if is true, then, using that ® is bounded,
B (Bua |(X00)0 = @)k = 1)
- E [(I) ((X(kN(i)))iSNI)

. E@@) (X)), = @k =h)

(X", = @k =h

= E@2z)xY =21)

= Var(Y|X_, =2").

—’LL

Thus, we have . Furthermore, using dominated convergence theorem, inte-

grating on (( (n ))n,h), we obtain (24).

Thus, it remains to show that conditionally to (X)), = (z"),..k = h,

u
the random vector (X *~ (1)), converges in distribution to Z. We prove this

convergence step by step.

Lemma 5. For almost all (a;(_”g)n,

LX) (X7 = @) = Q) L(Xul Xy = 2)).

n>1

Proof. Let (X( Jn : @ — EN, be an i.i.d. sequence of distribution £(X_,).
Then, we let (X&"))n : Q — EY be a sequence with conditional distribution

LIXM) (X0 = @) = Q) L(Xul Xy = 2)).

n>1

We just have to prove that (X(™),, is an i.i.d. sample of distribution £(X).
Each X (™ has a distribution £(X) because for all bounded measurable ¢,

E(p(X™)) /¢XW dP(w)

- / (s &) AB s o (@ar T)
E.,xE_,

:/ </ G(Tu, T—0)dPx | x M(:cu))dﬂbxu(w_u)
/¢ JdPx (x

Moreover, (f( (")), are independent because if n # m, then, for all bounded
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Borel functions ¢ and ¢5, we have:

E(¢1(X ™) o (X ™))
/Ez |, @ alDoa@ NP e g xiy sy @3 al o 0)
X u —u

/EZ ( hiaia ))@(@(‘m)’x(*n;))d]?(xw,xam>>|<x<_"u>,x<_'11’> (@)l (@ <m>)>

dP(X(_"J,X(_?)(x(—n’E’ .73(_72))

/m ( (@, 20 o (a2 " VaP <ng®%xu=x<vp<xg">,x7&m>>> P2 (1), 2)

/Ez (/ N Ll S <’%3(”C73n))>

</ o2 EDAP gt (2 )> AP (), 2"))
Jo. (/ O A o)) )
</ Ga(x™, &) dP Xu X e (m)( )) dPx_, (™)

= E(x(X™)E (@(X“"’))

That concludes the proof of Lemma O

Lemma 6. For almost all ((x(_ng)n, h), we have:

L ((XékN(i)))iSNIKX(—TL))n = ( nak h) ®£ (X | X—w = (—hé\j(z )> :
Proof. For all bounded Borel function ¢,

B (¢((XD)icn, >|<X<_’22> = @"))nk = 1)

(0 ((XEYOicn)) [ (X = @ (o (s, s = (o (D) v )
(o (v @) ))X“”n: (@0, (o ()i, = (0 (D), )

(& (XY D)y, V1K D0 = @)
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using Lemmas |1 and [2| conditionally to (X (f;))n = (x(fg)n Then,
E (& (X8 D)icn, ) (K00 = @")0)

/ oz (1) - NI))d]P(X(hN())) \(Xi’”)n:(x(f))n(xgtl)’""ngI))

N /NI ¢z, £ NI) d®PX [X <hN<i)>($z(Ll)a---,17q(LNI))-
Ey Tou

That concludes the proof of Lemma [6] O

Recall that X(_kuN(i))) NS X(l) P-a.e., thus, for almost all (( ("))n,h),
— 400

2N (@)

—Uu

20

—u"

—
N—+o0

Thus, using the continuity of the conditional distribution given by Lemma [4]
for almost all ((:z:(_"g)n, h) we have that =" 6 {fx_, >0} and

£(XU|X, (hN(z))) weakly E(X ‘X, —{E(l))

Teu N—>+oo
Thus, for almost all ((x(fg)n, h),
®£ (ol =) Y R £, = 2 = £z X = 2

N—>+oo )
i=1

So, using Lemma@ for almost all ((x(_n))n, h),

u

L ((Xq(»kN(i)))isNJ(X@)n = (@), k= h) Y 22X = 2.

N—+o00 -

So, for almost all ((x(_"g)n, h),

£ (K iz (K = @)k = ) Y £ (200X = @k =)

N —+o0 “

Using Slutsky lemma, for almost all ((x(j,z)n, h),

(kn (). )y _ () _ weakly )y _ () _
£ (X e [(X0) = @k = 1) " £ (20, = @)k = 1),

that concludes the proof of Proposition [9} O

Lemma 7. The value of Var(E w1,MC) 15 bounded by 32(N e £
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Proof. As f is bounded, ® is bounded by ﬁ ZNI 2] flle0)? = ijil4|\f||§o
so Var(E 1) is bounded by 2||®||% = 32(N1 NE I O

Proposition 10. We have

COU(EuJ, Eug) N?oo 0.

Proof. We use the law of total covariance

~

cov(Eu,l, E.2)=E (cov <Eu71, Eu,2|X(_111,X(2)))+cov (E(Euyl\X(_lg,X@)) E( u,2|X

(26)
We will show that both terms go to 0 as N goes to +oco. Let us compute the
first term. Using Proposition [9]

cov (B(Eu|X 1), X)), BB, 21X, x2))
= B (BB X, XEDE(Bual X0, XE)) — B(Eu1)E(E.2)
— E (Var(Y|X,u = XD \War(Y|X_, = X(jj)) -~ E?

N—+oo u

= 0.

It remains to prove that E (cov (Eu,l, E ) X( ))) goes to 0. By domi-

A
nated convergence theorem, it suffices to show that for almost all (xgi, x(_gz),

cov (Bua, Bual X =2, x8) =) — 0. (27)
N —+o00
From now on, we aim at proving
Fist, we want to prove ) for m(l) #* x(z) Using dominated convergence
theorem and Proposition @ it vvlll suffice to show that (conditionally to X (_111 =
21 XP = 23 for almost all ((2™)),>3, h, 1),

7’U,7 —Uu

E (Eu,l,EmKXY:})n = @™k = h K = h’) 4 E (Eu71|X(,13L = xil,{) E (Eu72|x(ji

N—+oco

Let

wm [ ) 180 S )
N—+oco N —+oc0o
The set A has probability 1 thanks to Lemma Let (( (n))n,h h’) € A be

such that x(l + x(z) and let § :=d_,(x (_11)“ )/2 There exists N7 such that
for all N > Ny,

d,u( (1) <hN<NI>>) _0 dﬂ( @) x(h'Nuvz))) < g

7’U47 7u7 —Uu

[\]
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Thus, for all N > Ny,

E(Ey1Eyo| (X)) = (@) k= hoK = 1)
(Xkﬁv(l) iSNI> (X(n) n — (x(_n))na k= hvkl = h’:|

u

—Uu

)
(XY, = @ ™), ke = hay, Ky = h&v}
)

E
E
E
- E (XM D), ) | (XD = @]
- Elo(@"®), ,X3N<>)Z<N,)h((x’1z<”)z (XM @)y ,)‘(Xi’;))n_(x<">)n]
= B (@ )ien, (XY Dicn ) [ (X0 = @000
E[@ (@5 iens (XD, )| (X0 = @]
= B[ Bua| (X0 = @0)n k= b B[ Bus| (X0 = @000, ' = ]
v BB | X0 =20 B[ Bua| X8 = 2],

thanks to Proposition [9}

Assume now that X(_ll)t = X(_Qz = 2_,. We can assume without lost of
generality that P(X_, = z_,) > 0 because if we write H := {z_,,P(X_, =

z_y) = 0}, we have ]P’(X(,lg = X(jz € H) = 0. We have to show that

E (Eu,lﬁu,ﬂxiﬁj = x® = x,u) BB, XY = 2 )E(Buo] X2 = 2_,) vl
— 400

Let € > 0.
Let My the number of observations which are equal to x_,,,
My :=#{n < N| X(,nu) =T_y},

and let Hy the number of nearest neighbours (up to Ny-nearest) shared by X (7112
and X(jz7
Hy = # [{k‘N(’L)| 1 < N[} N {k‘?v(l), 1< N[}] .

If M,, =m > 2Ny, X(_lg =T_, = X(_?, then the Nj-nearest neighbours ky of

X(JU) and k7 of X(jj are independent and are samples of uniformly distributed
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variables on the same set of cardinal m, without replacement. Thus,

P(Hy = 0|My =m, X") = x®) = z_,)
m — N[
Ny
m
Ny

(m— 2N[ —|— 1)(m— 2N[ —|—2)(m— N[)
(m—Nyr+1)(m—Nr+2)..m

— 1.

m——+oo

Thus, there exists my such that

Oy = P(Hy =0[My >my, XD =x® =2 ) >1- m. (28)
So,
E (EUJEU’2|X93 = x® = x,u)
- B (EUJEU,Q|X(_2 =x® =y, My < ml) P(My < m| X% = x@ = 2_,)
+E (Eu71Eu72|X(_13 = X® g My > ml) P(My > mi| XY = X = 2_).
Let

B i= B (Bua BualXU) = X&) = oo My < ) P(My < | X0 = X&) =),

Conditionally to X(}g = ng = Z_y, we know that My—2 ~ B(N —2,P(X_, = z_,)).
Thus, there exists Ny such that for all N > Ny,

p (MN <m|x® = x® c (29)

E= ) < St T
and so, for all N > Ny, Sy < ¢/5. Furthermore
E (EUJEU’2|X93 =X =, My > ml)
- E (EUJE”,Q|X(_2 = X% =z, My >my, Hy = 0) P(Hy =01 XY) = x® = 2_,, My >my)
+E (E‘u71Eu72|X(_13 = X® =z . My >my, Hy > 1) P(Hy > 11XY = X® =2, My > my).

Let
v =P (My =m0 = X% =2,).

Moreover, conditionally to X(_lg = X(_%j =2_y, My > mq, Hy = 0 implies that
E,1 1 E, > thanks to Lemma
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Lemma 8. Conditionally to Xgi = X(jz =x_u, My >mq, Hy =0, the vector
((X(kN(i)))iSNI, (X(kg\’(i)))igj\[]) is composed of 2Ny i.i.d. random variables of
distribution X conditionally to X_, = x_,,.

Proof. We know that, conditionally to X(jg = X(jj =T_ou, My >mq, Hy =0,
the vector ((XSkN(i)))i<N ,(X(fkg\’(i)))iqv,) is constant equal to (x_,)i<on,. It
suffices to show that, conditionally to X(l) X(_Qg =x_y, My >mq, Hy =0,
the vector ((qukN( ))) (X(kN( )))Z Nz) is composed of 2Ny ii.d. random
variables of distribution X conditionally to X_,, = z_,. Let ((z (n))n, hn,hy)
such that X(l) = X(2) =2_u,Mny > mi and Hy = 0. As My > mq > Ny,

for all ¢« < Ny, we have a:(kN(Z)) T_, = :E(_kN(l)) As Hy = 0, then, for all ¢
and j smaller than Ny, hN( ) # hy(j). Thus, we have for any bounded Borel
function qb,

e (XS ]| ) = @)y = o, Ky = By

I
=

)<
Micrs (KNP || (XD = @00k = B )
(O, (XN D) i || (XD = @), )
Ji<n KXihGV(i)))igNz: (XN, ny = @iz, (XN D) ey, = (x*u)iSNz)

(X))o, = (I—u)z‘gzm) :

é :(XfﬁNW) (O, } =X =2y My > my, Hy =0)

E <¢ [(X(’“N(Z))) L (x Dy, } \ng X® =g My >my, Hy =0, (X)), k, k’)}
E (cﬁ [(Xz(f))igzvn (XﬁHN’))igNI} ‘ (X))i<an, = (w—u)iswz)}

= E (¢ {(Xz(j))iSNn (Xz(zi+NI))iSNI:| ‘ (X"))i<an, = (x*u)iSQNI) ;

that concludes the proof of Lemma O

Thus

E (Eu 1BualXW = x@ =4, My >my, Hy = 0)
- E (Eu71|X(_1) X® =g My >my, Hy = 0)
and so, using Proposition [9] there exists Ny such that for all N > No,
‘E( w1 Buo XY = X® = o My >my, Hy = 0) E(E,.|x%) = x,u)Q‘ < g
(30)
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Thus, for all N > max(Ny, Na),

~

‘E (E\u71Eu,2|X£112 - X(,QI)L = l'_u) — E(Eu,l

x® _ x_u)z‘

< BN+ "VNE (Eu@Eu,z\X(}g = X(EZ =z_,,My>mq, Hy > 1) (1—am,)

2)

+ "YNOlmlE (Eu,1Eu72|X(_1& =X w I_u,MN Z my, HN = 0) - E(Eu,llX(_lqi = x—u)Q‘ .

The upper-bound is a sum of three terms. The first one is bounded by £/5 using
and the second one is bounded by /5 using . For the last one, we use
that, for all C' € R,

YN, C = (ynam, —1)C + C.

Thus,
’E (Eu,1Eu12|X(jl —x® = x,u) BB, 1x) = x,u)Q‘
< f4 i+ hvam, — 1@l
+ ’E (BunBualX) = X&) =2y, My 2 ma, Hy =0) = E(Byn|XU) = 2,)°
< ot (b~ taw +lay — 1) [ using
< e

using and (28). Finally, we proved that

E (Eu,lﬁu,ﬂxfg —Xx® = x_u) BB | XY = 2 )B(Eua X =2_,) — 0.

—u N—+o0
Hence, is proved and the proof of Proposition [10]is concluded. O

Proposition 11. We have

E,—E (Eul) 2o, (31)
N—+o00,
No—+oo

Proof. Let € > 0. By Chebyshev’s inequality,
~ ~ E
P(‘EU—E(Eu) >5) < Var(Bw) (32)

-2
If (s(1))i<n, is a sample of uniformly distributed variables on [1 : N] with
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replacement, we remark that for all i # 7,
o0 (Buoy Bty
= BB Fus) = BBus@)E(Fus)
= B(Bust By |5(0) # sG)E() # 5() i
AE(Eu () Bu,s() 5(1) = 5(7))P(s(i) = 5(j)) — E( usm)E( usm)
= [EBusr Busiyls) # 5(3)) - E,>EE )] B(s
o [BBu st st |6) = () = B(Bu1)?] B(s(0) = 5())
= [EBuaBuols (>—1,s<j>=2>—E<Eu,1>E<Eu2>] B(s(3) # 5())
+ BB Buls(i) = 5() = 1) — E(Bur)?| B(s(0) = s(3))

cov (Bur, Bu) B(s(i) # 5(3)) + Var (B ) B(s(i) = (7)),

thus
1 o
Var(E,) = Nz Z cov (Eu,s(i)vEu,s(j))
O =1
1 o
= 7 > cov(Bur Buz) P(s(0) # ()
O izj=1
1 No R No
- % Z Var (Eu71> ]P)(S(Z) = S(-])) + Nig ZV&I‘ (Eu s(z))
i#j=1 =1
1 & PO
< = D, ‘cov (Eul,Euz)‘
o #j,l
12 Z Var Eul 1 2E:Var w1
N oyl N N§
i#j=

IN

‘CO’U (Eu,hE%Q)‘ + Var ( ) (N * ]VO)

If (s(1))i<no is a sample of uniformly distributed variables on [1 : N] without
replacement, we have

Var(Eu) =




In both cases (with or without replacement), thanks to Proposition we have

JCR

>5) — 0.
N —+o0,
No—+o0

O

Now, to prove Theorem |1, we only have to use Proposition |§| (which can be
applied thanks to Lemma [4]) and Proposition

A.0.2 Proof for rate of convergence: Theorems [2] and

We want to prove Theorems[2] and [d about the rate of convergence of the double
Monte-Carlo and Pick-and-Freeze estimators. We have to add some notations.
We will write Cqyp for a generic non-negative finite constant (depending only
on u, f and the distribution of X). The actual value of Cgyy is of no interest
and can change in the same sequence of equations. Similarly, we will write
Cint & generic strictly positive constant. We will write Cg,p(¢) for a generic
non-negative finite constant depending only on €, u, f and the distribution of
X.

Recall that for all 4, E; is a compact subset of R and that f is C'. Moreover
recall that X has a probability density fx with respect to A, (the Lebesgue
measure on RP) such that A, a.e, we have 0 < Cinr < fx < Cyyp, and such that
fx is Lipschitz continuous.

Note that with these assumptions, ® is C! on the compact set E and so
Lipschitz continuous. For all n, we will write d for the euclidean distance on R™
and B(z,r) for the open ball of radius r and center x.

Remark that
P (d(x1), x2) = a(x), %))

[, B (a2 = da, X)) a2 (o) 4%

< Cup / A (S dla ) a2 @2 %)

because the Lebesgue measure of the sphere is zero. Thus, almost everywhere,
for all [ and all ¢ # j,

a(x0,x9) £a(x,x1).

Thus, the indices of the nearest neighbours (ky(l,));; are constant random

variables conditionally to (X(n)) or to (X(n))n<N In particular, for all N and
I, ky(I,1) = 1. Thanks to Doob-Dynkin lemma, we can write, abusing nota-

tions, ky(1,1)(w) = kn (L, )[(X") (w)n] = kn (1, 1)[(X ”>(w))n§N}. To simplify
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notation, let us write kx(¢) := kn(1,) (the index of one i-th neighbour of X(}i)
and k(i) := kn(2,4) (the index of one i-th neighbour of X(jj).

Remark 17. We can prove the rate of convergence in a more general framework
than the Fuclidean space with the Lebesgue measure. It suffices to have a com-
pact set E with a dominating finite measure u = @ u; such that for u;-almost
all x; € E; and for all § > 0,

Cinf(s < ,U/z(B(xza 6)) = MZ(E(‘TZ) 6)) < Csupé-
We prove Theorems 2] and [ step by step.

Lemma 9. Assume that (a;); and (b;); are sequences such that for all i, |a;| <
M, |b;| <M et |a; —b;| <e. Then, for all N € N*

N N

[e - IT»

i=1 =1

< NMN— e

Proof. By induction. O

Lemma 10. If for all i < N, d(z"),,y"")) < ¢, then, for all (a""),)i<n, € EN

N
’E {‘I’ ( @ )iz, (XT(j))iSNI)‘ (X<, = (wgl)ism}
- E{ (( (j?u,)71<NI7(X1(j))iSNI)‘(X(j'l)t)iSNI (())z<NI}

Proof.

< CYsupg-

’E [<I> ( (ZL)Z<N,, (XS))KNI)‘ (Xgi)i<NI = (xgl)iSNz}
B [0 ((@)isve XD, )| (X isw, = G i

[EN, o((a"))i<n, (2)izn,) <f<xfi>>

e XDy =Dy, (@i,

X )icn, |<X<_7‘3‘>1-<N,:<y<_13)1-<N, ((”Jgf))iﬁk)) d((@)izw)

Csup / N

H XulX_u=a foux Ly (@)

IN

d((z0)i<n,)-
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We know that,

X1 umr o (Tu) = X)X umy o (@)
< fX(xua'r—u - fX(any—u)
B fEu fx (@, v_)d(z},) fEu Ix (@, y—u)d(),)

1

< J"Eu fX(.T;,.Tfu)d(l‘L) ‘fX(mu7$7u>_fX(xuay7u)|

hx(n ) 1 - :

M @l n)d@l) T, Tl y—d())

< Csup |fX($u, x—u) - fX(xuay—u)‘ + Csup |fX($uvx—u) - fX(xuay—u”
< Conpd(T iy Yu)-

Thus, for all ¢ € [1: N;] and for all aP,
‘fxuwxfu:zﬂ (@) - Fxuix umy® (ng))’ < Coupt-
Thus, using Lemma [9]
}E {‘1) ((a%)igzvn (Xff))igNz)‘ (X)i<n, = (mg)z‘gm}

—B[8 (@) izns, (X, )| (X izns = 6001w,

< CVsupf':-

Lemma 11. If for all i, d(m(fi,y(fzt) < g, then

(X)ien, = (xﬂ)ism]

(X izny = )i |

Bl® (@ icn,, (X )isw,)
— B[ ()ien, (X, )

Proof.

< Caype.

’E [<I> ((x(_iL)iSNU (Xz(f))igw) (X(—iZL)iSNI = (l’%)igm}
—B[@ (0 iene (X, )| (X isrs = 6 0)isw,]
’E [@ ((fcﬂ)ismv (Xz(f))ism) (XD)icn, = (l“i)z'sm}

(XU))ien, = (y_ii)igNz}

+ ‘E [‘P ((wgl)iszvu (Xq(f))i<N1) - ((y%)igzvu (Xg))iszw) (XE))ien, = (ygl)igm}
< C'sup<€ + Csupgv

IN

using Lemma [10] and using that ® is Lipschitz continuous on FE. O
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Lemma 12. There ezists Cs,p < 400 such that for all a > 0,
P (d (Xﬁlg,x(_’“uwa))) > a’ ng) < Caup NV (1 — Chyral *)N=N1 (33)

Proof. Let K(a) := #{n € [2: N], d(X(l) X(n)) < a}. Conditionally to xW

K(a) ~ B(N —1,p(a, X)), writing p(a, X")) := P(d(X"), X®)) < o|x")).
Thus,

[P(d(X(l X(kN(NI))) ‘ (,1,2)

_ ]P’(K ) < Ny — 1|X<_£j)

- NZ( ) plo X = pla XY

N-1 _ () \N—N;
Ny (NI _ 1) (1 p(mX,u))

Coup NN (1 = p(a, XU))N N1,

IN

IN

We know that

pla, X)) = / Fr(@u)do
(X(l) 7a)

Y

CYinf>\|—u| (B(ng, a))
Cinfa‘7u| .

V

Thus

P((a (X0, XU O) > o X)) < Cop NV (1 = Cugal )M (30)

O
Lemma 13. For all € > 0, there exists Cqup(€) such that
B (d (x 0, xtom)) < Sl (35)
N p—Tul
and for all a:(_lz,
E (d(X(_li’XwN(NI)))‘X(_lJ (1)) Coup() (36)

N p—Tul \u -
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Proof. Using Lemma we have
B (V= Npyraa (x 0, x ) x )

N AR

—u’ —Uu

+oo
< 1+/1 P (a (), XU (v - Np) T X)) ar
too ) 1
= 1+ 1 / sm_lp(d <X£1)7X£kN(NI))) > sTa(N — NI)—W-&-E X£1)> ds
| —ul Jy we u
1 I N |—ule—1\N—N
< 1+ | 7.L| CsupN I(l - CinfS(N — N]) € ) Tds,
—ul Jy
and
(1= Cines(N — Np)lmule=h)N=Nr - — oy [(N ~ Nyl (1 — Cirs(N — N1)|*“‘5*1>}
< oxp [(V = Np) (~Crues(V — Np) =)
= exp(—Cinrs(N — Np)l=ule),
Thus,
B (V= Npyraa (x 0, x Uty x )
“+o0
S 1+ C'sup NNI eXp(—CinfS(N — NI)l_u‘E>ds
1
N 1 Hoo s
< 1+ Cop {N ! exp(~Cur 5 (N — Nz)lulg)} / exp(—Clur 5 (N — N7) 1) ds
1

< 14 Cagple).
Indeed, the values N7 exp(—Cins (N — Ny)I=¥/¢ and f1+°° exp(—Cint 5 (N —
Np)l=%)ds go to 0 when N do +o0. Thus

E (d(X(_%,X(_ku,v(zvf)))‘X(jJ) < 1 +Csup(15) < Csulp(e) )
(N — Np)p=lei™  Np—ul "¢

That concludes the proof of Lemma O

Remark 18. For the estimators ‘7%]3[:‘, we choose only one nearest neighbour
different from X&l) mn \7“71,pp, which is Xq(tk(z)). Thus, in the previous compu-
tation, we do not have the NNT. Thus, we can choose € = 0 up to Proposition
. Remark that this is also true for E, ypc taking Ni = 2 (because we always
have k(1,1) = | under the assumptions of Theorem @)

Proposition 12. For all € > 0, there ezists Csup(€) such that

Csup(e)

B (B) - B <
No=Ta—¢
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and for almost all x(,li,

Coup(e) (38)
N7=r1—¢

—’LL

‘E (E‘u71|X(_113 = x(_li) —Var(Y|X_, = (1))

Proof. For almost all (z (n ))n, using the definition of the random variable Z (in
the proof of Proposition E[) and using Lemma @,

E (@ ((X(_kuN(i)[(X@)"D)igN,, (XikNu)[(X“;B)n]))iSNI) ‘ (x™), = (m(_"i)n>

B (2(2)|x% =)

_ ( ( (DI ]))1<NI>(X1(¢i))i<NI>
( ( ("0 ( 5’))@%)’(3((_%)@1\71(x(_li)igm)‘

(n)
< Osupd( (bn (ND[(@)n })796(1))7

i En ([,
(X))ien, = (58(75( =0 ]))i<NI>

thanks to Lemma [TI] Thus, using Lemma [T3] for all £ > 0,

‘E (BualX®) = 20)) = Var(v| X, = x(}i)‘ < Cupl (d (x1), xUr¥e) ‘ XU =a)

< Csup Csulp(g) *
p=Tu] ¢
O
In the following, to simplify notation, we could write ”X(_lf) (1 2)” for

”XEII)L = x(fll)t and XE 23,

7’&

Lemma 14. For almost all (ac(_l) (2)) and for all a > 0, we have

—u

]P) (d( (1) X(kN(NI))) 2 a‘ X(_11;2) — x(_qu)) S ]P) (d(l‘(—lq)tyX(_kqu_l(NI))) 2 a‘ X(_lg — xgi) ,

_u7

and thus, integrating a on R,

E (d(XE’““NI”,XQg) a2 _ 0. 2)) < E(d(X(k” (VD) x € )’X(l —x(}i).

u

Proof. Let gy (i) be the index of the i-th nearest neighbour of X(jg in (X(:L) Inel1:N\{2}-
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1) (2))

—uw Ty

P (dz0), XY) 3 o] XD = 10

- p(d( M xv(ND)y ‘X(_lf) Bl TR PO X(gN(N,)))>

For almost all (z we have

—u’ —u? —u?

P (d(a),2C)) > (), x| x 0 = 502)

_u’
7’[14 7’U47

P (d( (1) (2)) d(x(_li’X(_géV(NI)))‘ X(_lzf) _ x(_lf)) )

—'U.’

4P (d( (1) X( (NI) > G‘X 12) (1 2) d( 1 ) (2)) < d( (1) X(QN(NI))))

(1 2) _ .(1,2) if d(z (1) (2)) > d(z (1) X(QN(NI)))

—u ? —'u.7 —u?

Moreover, conditionally to X
then the Nj-nearest nelghbours of XU ) do not change if we do not take into
account X(ﬂz Thus

P (e, x 0 >a‘X<1 2 =242 @), 2%) > @, X))

—u) —u? —u)

= P (da), x9N > o X0 =202, a2 %) > (), X0

—’U.’

_ P(d( (1) X(qN(NI za‘X(_lg e d(x 1) (2)) > d(z (1) X(qN(N,)))).

—u’ —u’ —u7 —u’

Similarly, conditionally to X% = 202 i q(z1) 2@y < q(z") xov D),

(2)

then 7, is one of the Ny-nearest neighbours of X ( ) Thus

7’[1,’

o XU =202, ), 2 %) < d(@), X0y

P (d( QZ7X(kN(NI))> X(,lf) (1 2) d( (1) (2)) < d( EQ)HX(QN(NI))))

Y

S P(d( (1) X(!IN(NI)))

—’U.’

1 N 1 1 1) (2 1 N
— p(d( W yavV)y 5 ol x O o0 g0 @)y ¢ g0 ylan 1)))).
Finally,
(d 1) X(kN Nf))) al x&2 — x(m))
< P ) 2 o 1= ) > e X )
(d a > d(z! (1) X(QN(NI)))‘ X(J) _ x(j))
-l—]P(d( (1) X(.‘]N(NI))) ‘X(l) (1) d( (1) (2)) <d( (1) X(.‘]N(NI))))
(d a ) < d(2" (1) X&QN(NI)))‘ X(_l) _ 1,(_1))
= (d (ju,X(gN(NI ) > a‘ ng = ac(ji)

—’U.’

= P, xb ) > 6 X0 =20,

and we proved Lemma O
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Proposition 13. For all € > 0, there ezists Csup(€) such that

- o ‘ Csup (¢)

CO’U(EuJ, Eu72) S T . (39)
Nop=Tul €

Proof. We use the law of total covariance,

cov(Ey, Ey) =E [cov (El,f?g‘ Xﬂlg,X(2))}—|—cov [E (Eu,1|X(,111,X(,212) , ( o| X2, ) X(z))} .
(40)

Part 1: First, we will bound the second term of . Thanks to Lemma we

have

’E (Eu,llXi o), x@) = (f,{) Var (Y|X <1>)))
= E{‘E [ ( X i< )‘X(l) - (—IBL’X(Q) (—271» (X(n))n>3} Var (Y|X—u = x(l)))‘}
< CapE (d (X(l X(mm))) ‘ XW 0 x@ x(_g))
< CsupE ( (Xglu,X(kN 1(N1)) )‘X(}g = xgi) using Lemma@
< buP(gl) using Lemma
(N —1)p-Te "¢
< Csulip(g).
No=l ¢
Similarly,
B (BuslXC) = 2, X = 22)) —Var (V1 = a2))| < )
Nr=Tul ¢

Thus, using that ® is bounded,
o (B8 =) (Bl =8, 1)

2 21 S
—Var (Y|X_, = 21)) Var (Y] X_, = :c(i{))‘ < ch

N p—Tlul

Moreover, using Proposition [I2, we have

’E< u1|X (1)> (Au,le(_%ﬂ Zx(_zq)L)

—Var (YIX = 2)) Var (VX = 2%)))| < ——

Thus,
‘E ( |X(1) 20 X(2) (_BL) E (Eu2|X(_3 20 X(2) 2 11)

v )

_E( " |X(1 _ ())E(Eug < Csup(2) .

> 1
———c
N p—Tlul
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Finally,

cov [E (Eu71|X(_13,X( )) E (EM\X“) X(2)>H

—ur

’E[E(E IXgi,XS%Z) (E“’2|X(*112aX£23)}—E{E(EWIX(,B)E(EU |X(2))”
E[|B (Burlx ) X2) B (Buolx X)) — B (BalX0) B (E2lx2)]

_Csup(€)

N~

IN

Remark 19. In this Part 1, we can choose € = 0 for the estimators ?u’pp or
for Ey mc if we take Ny = 2.

Part 2: Let ¢ > 0. We will bound the first term of ([{d0): E [cov (El, E‘g‘ X(_lg, X(_Zg)} .
We want to prove that

/ 1E 2|X12) (12))
E2 u u u

= 2 C B(Bual XOY =2l (al),a)] <

7’Ul’ u

—E(Ey,

Let us write

G I — (d( M) 4@y 1 )
—ur Ly T _as Nﬁ_é

where 6 = ¢/(4] — ul), and

o)

—U’ —u —’U,?

’ 2
d(z (2) x(kN(NI)[( _u)ngN])) <z (1) (2))}.

Part 2.A: We prove the following lemmas.
Lemma 15. There exists Csyp(e) such that

k N 1 1) (2 Csup(€)
[, 2 (X )  aaa) 2] 0 = ) ap? (0% < S
(41)

Proof. We divide E2, in Fy := {(= @ (2)> € B2

Ty —u

dz"), %) < (N = N; —

7u;
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d(z), %) = (N = Ny — 1) T ).

—'ll,?

1) } and Fy = {(z2),2®) € B2

—'ll,? —u’

—’U.7 —7J,7 u

/ ]p(d(X(l) X(kN 1(N1))) > d(x (1) (2) /2‘X(1) (1))d]P’§2_ (@ (1) (2))
Fy

< Csup)‘\ u|(F1)

< Csup/ A|7u| (B—u |:x—u7 (N - N — 1)ﬁ:|) dx_y
E_,

< Osup/ (N = Ny — )Tt =¥l gg_,

S CYsup(-N' - NI - 1)71+€

< C’sup )

- Nl-e

Furthermore, using Lemma we have

/P(d(X(_lﬁ,X(_’?‘l(N”))zd(x‘” @) /2‘X(1) #0) ap2 (@), 2 %)
>

—u? u

X

S/ Coup(N = DN (1 = Cined (', 2 Z) T YN NGRS (@) )
Fy

E_)*Coup(N = )N (1 = Cin(N = Ny — 1) T |74 )N=1-0:
<Coup(N — DN (1 = Ciyg(N — Ny — 1))V ==

<Csup(N = 1)Nexp [(N =1 — Ny)In (1 — Cing(N — Ny — 1)~ 1+9)]
<Clup(N — )N exp [~ Cing(N — Ny — 1) 4+ o((N — Ny — 1)%)]

A
>

|
£
—

O

Remark 20. In Lemmal[l3, we need e > 0 even for the Pick-and-Freeze estima-
tors. That explains the rate of convergence when |u| = 1 for the Pick-and-Freeze
estimators.

Lemma 16. There exists Csyp(e) such that

/ PG, 22)) PP (1), 22) < Csup(€) (42)
E2

—u? —u? u N1l-¢

—u

Proof. Using Lemma [T2] we have

P (d0rU 0 ) = NP HXC) £ G (N1 11

SO

P (d(X(kN 1(N1)) (711)) > N_‘*1“‘+6|X(71J) < C;%*E) (43)
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Thus, we have

IN

/EQ PG, 2 %))dpY (o), 2%)

—u’ u

P (a(x ), xU ) > d(@) /2’ XU = o02) P22 (o,

Ezu — u 7’U. — —Uu u
@ XN > o), 22| X0 = 42) B (2,2

+/EQ P (da(x®) x> @) 2@y /2 ) a2, (@), 2 %)

—,Juﬁ‘;‘X(lf) _ x(ff)) dIP’?}%, (:c(j (2))

- —_ u? 7u

—u’ —Uu

(
+/ P (d(x), X&)
(

d(X(Q) X(kﬁv(m))) > N_|*1’“\+6‘X(11’L2) _ 12)) dP%? ($(1) x(z))

—u’ —Uu

/Q‘Xu) (1))dp®z (D @)

—’LL’ —’LL’ u

_|_

[, B (ax®x 0 ) >
E2

—uﬂ —u’ u

+/ P<d(X(_237X(_ku}v_1(NI))) > d(z (1) (2) /Q‘X(Q) (—21)1) dP?}z_ (@ (1) (2))
E2

—u’ u

Jr/EQ P<d(X(_137X(kN )y S - —HIM‘X(D (1)) P22 (o), £2)

7’[1.7 u

+/ P (a(x @), XU ) > NTEE | X =2 C)) ap (01,0 )),
EZ

and we conclude the proof of Lemmausing Lemma and Equation . O

For ¢ = 1,2, let B; be the ball of center 2

», and of rayon l( 7u, (2)) let

p; be the probability of B; and N; be the number of observations (X" (n ))n< N in
the ball B;. Remark that

C’sup
— Nl Ol—ul "
We have the two following lemmas.
Lemma 17. Conditionally to X(_lf) a 2) , the random wvariable N; is bino-

mial B(N, p;).

Conditionally to X(JU’Q) = x(f;f),Nj = nj, the random wvariable N; is binomial

B(N —nj,pi(1—p;)~1).

Proof. For the first assertion, we use that the (X(n)) are i.i.d. For the sec-
ond assertion, we compute P(N; = nZ|X(1 2 = (_luz),N = n;) with Bayes’
Theorem. O
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Lemma 18. If N; = n;, let X(M) be the random wvector composed of the n;
observations in B'. We have:

£ (X(Ml)aX(M2)|X(}122 P Ny =ny, No = ”2)
- r (X(M1)|X£1112) _ (1 2 N, = n1) &L (X(M2)|X(1 2) _ 02 N nz) .

—u )

Proof. For any bounded Borell functions ¢1, ¢2, we have
E (01(XM)oa(X M) x07 = 202 Ny = i, No = o)

B (61 (XO0) 6y (X)L, Ty, [ X = 202)
]P(Nl = nl,NQ = n2|X£1122) = .I(fl,f)) .

Then, decomposing the cases and using Lemma we have,

B (61 (X)) 6 (X OB Ly, oy Ly X052 = 202)
P(Nl =n1,Ng = n2|X£11L2) = $972))

u

1 . 1
N Lffl £ <¢1((X( ))iﬁ"l)]lXi"LEBl,vmmﬂ L?”QE

2

That concludes the proof of Lemma O

Part 2.B: We aim at proving that

[ p(asre )
E

e C1su
X0 = 2 UNE(B, o x5 = 20 )aPg2 (1), 2%)] < »(€)

—E(Ey1 —w )| S e

To simplify notation, let X #*~) .= (X*~x (D)), and X *n) .= (XEN@)),
We have

B (@(xXE)a(x ) x P = 212)

N
- Y E (<I>(X BOYNy = ny, X052 = Qf)) ((I)(X(kN )Na = ng, X1 =

ni,ne=0
xP(Ny = ny, Ny = na| X152 = 202,
On the other hand, we have
E(o(x®E)xE = 202 B (a(x ) x P = 21D)
N

= Y B(eXEDING =, X0 = 2O B (S(X )N, = o, X2 =

ni,nz =0

xP(Ny = | XY = 2P P(N, = na X2 = 22,

u u
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22

22
—Uu
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Thus, using that ® is bounded and using Lemma it suffices to show that

PO |P(Ny = n1, Ny = o) X0 = 22)

ni,ne=Ny

Csup(€)
Nl—e °

—P(Nl = ’I’Ll‘X(il&Q) = LL'(},’UIQ))P(NQ = n2|X£1112) = 1'(1’2))’ §

—Uu
Let K := |[N%|, where a = ¢/3. We divide the previous sum into two sums:

A( @ .2?(2)) = EKN |IP N1 = nl,NQ = RQ‘X(I 2) .13(_1,2142))

Ty Ty ny,ne=Ny
—P(Ny = g |X2 = 2CVP(N, = g XD = 202))

)

N
B, 2%) = Z |P(Ny =n1, Ny = o X 0P = 212

7’[,147 —Uu —Uu

ni,ne=Nry,
n1>Kpn or no>Kn

PNy = m| X5 = 2UPOP(N, = no| XY = 212,

Let us bound these two terms.
First, we have

A, 2By = v PN = | XY = eUD)P(N, = no Ny = ny, XD = 22
P(Ny = ng|x ;Y = 22
]P)(NQ = n2|N1 = nl,X(_lf) = (1 2))

—Uu

X |1 —

Thus, it suffices to bound

P(NQ = n2|X 1.2) _ .’I}(lf))

IP(NQ = TL2|N1 = 7L1,X(_17L2) = .I‘(_l,f))

Coup(€)

11— - Nl-e °

Thus, it suffices to show

oo (PN =lX0P =a0P) | Cule)
IP)(N2 _ n2|N1 — n17X(1,2) (1,2)) - Nl*E

u

T_y

49



Thanks to Lemma [I7] we have,

P(Ny = no| X% = 27)
log X2 _ ()
]P)(N2 = n2|N1 = nl, SL‘?& )

~ log < N(N —1)... (N —nq +1) (1= pr)N—m(1 - pz)an)
(N—n2)(N—ng—1)..(N—ng—ny+1) (1—p; —po)N-m—n2
ng +1

_ log(l(l—;])...( "1N1))_1og<(1_N)(1_ - )...(1—”217\1[11))

(N —nq)log(l —p1) + (N —n2)log(l —p2) — (N —ny — na)log(l — p1 — p2)
o nl(nl — 1) % nl(nl + 2?’L2 — 1) (Tll -+ n2)2
= oy tmOG) + SN +mO(—75)

—(N —n2)p2 + (N — n2)O(p3) — (N — n1)p1 + (N — n1)O(p7)

+(N = n1 —n2)(p1 +p2) + (N —n1 —n2)O((p1 + p2)?)

nin9 n% ni(ny no 2
= v + O(ﬁ) + O((Nit)

+(N —n2)0(p?) + (N — n1)O(p3) + (N — n1 — n2)O0((p1 + p2)?).

) — nap1 — nipe

Yet, we have
C’sup < Csup
N1-d|-ul-a — Nl-¢’

Kyp; <
So,

P(N = nQ‘X(l 2 (luz)) < Csup(g) )
HD(NQ = n2|N1 = nl,X(_luz) - (1 2)) N N176

Thus, we have shown that we have

Csup
Nl e’

Az (1) (2))

_u7

Now, let us bound B(x @) (2)) Remark that

{(n1,n2) € [Nr : N]|n1 > Ky orng > Kn} C ([Kn +1: N] x [Ny: N))U([N;: NJU[Ky +1:NJ).
Thus, it suffices to bound

Zgl:KNH EnNQ:N, |P N1 =ni, Ny = nle(l '2) .13(1 2))
“P(N; = m| XU = UD)P(Ny = o XU = 202

—Uu

N
- S POV = XD =)
ni=Ky+1
N
ST PNy = na|Ny =0y, XD = 20P) PN = no XD = 2102,
no=Ny
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Thus, it suffices to bound

N
S PV = X0 =2 0),
ni=Kny+1

We know that N; has a binomial distribution with parameters N and p;. Thus,
E(Nl) = plN S Cstle6‘7u| S CsupN%-

Thus, there exists N such that for N > N,, we have that, E(N;) < Ky + 1.

Thus, for N large enough and for all n; > Ky and , we have that

P(N;, = m | X5 = 202) <PV, = Ky + 11X 52 = 202,

—Uu —Uu

Thus, for N > N,

N
Z P(N;, = ng|X 52 = 202y
ni=Kn+1
< (N—EKn)P(N, = Ky + x5 = 2(12)
N! K
= (N-K ML = py) N
( N)(N—KN—l)!(KN+1)!p1 =m)
N! K
< (N-K v
s W) Ry iRy i
N Kny+1
. (N — Kn)v2rN ()Y ()
= sup _ _
27T(KN+1) (%)(KN“FI) \/27T(N—KN — 1) (W)(N Kn—1)
< (N — Ky)Y/NNNCEy+1

Csu
PV (KN +D)(N =Ky — 1)(Ky 4+ 1)Ev+1(N — Ky — 1)N-Kn—1 N(1=8|—u)Kn+1
< Coup(N — KN)K”J’%‘N(KN + 1)—KN—%NN—%+6\—u|(KN+1)—KNCszﬁgﬂ_

Using the taylor expansion of z — log(1l — z) in 0, we can see that

(N — Kn) VNN < Cuypexp(Ky) < CKy.
Moreover, we have

(KN + 1)N1—5\—u| > NgNl—i _ N1+1%7

and so

A

_ K (1—6]—u N-K
(N — KEn)5~(Ky + 1) Fv N ExO=8lmul ol < exp (KNlog [CSUPMD

IN

Csup(s)e’KN.

o1



Thus, we have

N
S PN =X 5P =)

ni=Ky+1
< Csup(e)eiKN(N*KN)%(KN+1)%N7%+6|*“‘
< M'
- N

Finally, we have

1 @y o Csuwp 1) (@), o Csup(€)
Az, z2) < Ni=e’ and B(zl,,z2)) < N
thus
Sy BNy = ny, Ny = o XO2 = 22
Csup (&
BNy = | X2 = U P)B(N, = ol X0 = 22| < GanS)
So, we have proved Proposition O

We conclude by the proof of Theorem

Proof.
o)

< P(|B-BE)|>3) +P(|EE - B

]P’(‘Eu—Eu

>2)

5)"
Then, we use the proof of Proposition If (s(1))i<n, is an sample uniform
on [1: N| with replacement, then for all € > 0,

> g) é (‘cov (Eu,laE’U«;Q)‘ + Var (Eul) <Jif + ]\/%o)>
i ( Csup(é"l) + Csup)

1
e2 \ N7=m1—¢ No

~

P (‘Eu _E(E,)

for all & > 0, thanks to Proposition If (s(1))i<no is an sample uniform on
[1 : N] without replacement, then for all € > 0,

€ 4 (No—1 ~ ~ 1 ~
> 5) < = < o cov (Eu717Eu,2) + NfOVar (Eul))
= ( Coup(e) | C) ,
No=ra ¢ No

~

P (‘Eu —E(E,)

2

for all ¢’ > 0, thanks to Proposition Moreover, for all € > 0,

~ 2 ~
P(‘EU—EU >§) < E‘E(Eu)—Eu
/
< 7CSU?(E),,
N 7=~

92



for all €/ > 0, thanks to Proposition Finally, for all € > 0, ¢’ > 0, we have

. 1 [ Con(e)  C.
P - < = sup sup )
( >5)—52(Nm—e'+N0>

That concludes the proof. O

Appendix B Other proofs

Proof of Proposition [1| This computation is not new, but we write it to
be self-consistent.

Proof. We know that |[{m € Sp, P;i(m) =u}| = |ull(p — 1 — |u])!, so

Lp-1\" 1
P( |u ) (VuH_V“):H Z (Vp,(x)+i = Vei(m)-

" mES,
Pi(m)=u
Then, we have

s m 2 (p|u|1)_1(v'“+i‘vu)

—1i

= 'Var Z Z (Vp,(m)+i = Vpi(m)

uC i 7T€Sp,
P;(m)=u
) 2 (Ve Vo)
= ] Pi(m)+i — VPi(m)):
p!Var(Y) i,

Proof of Proposition

Proof. Let us write V := Var(/V[ZEI)) that does not depend on u by assumption.
We find the relaxed problem

1 pu
(rl{fu?u Var(n:) = Var Z < Nu_,_i) Var Z \

C[1:p] N

subject to >, N, = QMNO Let U = (R%)%*. Let f be the C! function on

U defined by f(z) = >, z=s g be the C! function on U defined by g(z) =

(>, %u) —2MNp. Finally, let A = g~*({0}). Using the methof of Lagrange
multipliers, if f|4 has a local minimum in a, there exists ¢ such that Df(a) =

]



c¢Dg(a), i.e. Vf(a)=Vg(a) ie. Vu, Py e, ay = c'py. To sum up, if fia

az,
has a local minimum, it is in a defined by

a, = NoMp,.

Moreover, note that f is strictly convex and the set A is convex, thus fi4 is
strictly convex. Thus a is the strict global minimum point of f|4. O

Proof of Proposition [3| This proof totally arises from the appendix of [I§].
The computations are the same.

Proof. Under Assumption [T} we have

Var(;) = m (Var (Wpi(o-l)_i_i) + Var (Wpi(a-l)>)
1

= ]WTW (Var(E(Wpi(al)+i|0'1)) + E(Var(Wpi(gl)H\al))

Var(E(W o lo1)) + E(Var(Wp o) |al>>)

1
= W <NOVar(Wpi(01)+i) + NOVar(Wp%(al))

Tt >0
+E(Var(W1(3izgl)+i|01)) + E(Var(Wéi)olﬂgl))).
Thus, the minimum is with Np = 1. O

Proof of Proposition

Proof. We only prove the second item. The first one is easier and uses the same

idea. Recall that (see Section [3.1.2)

= ey 2, () ()

uC—1

with
7o (pP—1\ P 7 . (p—1) P W .
v () W, 2 e Wi () v, 2 e
Thus, for all u,

~ Nu’M

W Wl i= 5 Wi,
k=1

where ]\NZ%M = NuH,M ~ B(M, W) First, remark that M goes to
+oo when Nior goes to 400 (recall that N,y = M(p — 1)). It suffices to show

o4



that for all w C [1 : p], the estimator w — /V[ZiV“'M(M) (w) is consistent and we
could conclude saying that for all 7,

~ - 1 p— 1 -1 ~ ~
m B pVar(Y) ; ( [ul ) (Wuu{i} _Wu)

uC—1

P 1 -1 -t
Noteo  pVar(Y) u;( Jul ) (Waogiy = Wa)
= i

Let ¢ > 0 and § > 0. Using the assumptions and Chebyshev’s inequality, we
have that (Wév ©)No,N is consistent, thus there exists No; and N such that for
all No > Npj and all N > Ny,

P ("W;VO —W,

>5><g.

Moreover,

~ Noi M
P(Nym < Noi) = Z (/{3 > pﬁ,i(l _pufi)M_k M—>_+><>o 0.
k=0

Thus, there exists M; such that for all M > My,
~ €
P(Nym < Np) < 3

Thus, there exists Nyy;1 such that for all Nyoe > Nyot1,

P(Nuyr < Ny) <

| ™

Finally, for all Ny, > Nyor1 and N > N7, we have

i ("W;V - Wu‘ > 5) P (]ﬁv\jw —Wa| >0, Ny > Nl) +P(Nyar < Vi)

<
< e

O
Proof of Proposition
Proof. Let

Under Assumption [2, we have
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Var(Y)ZVar(ﬁi) = Z Z A2 o Var(W, )
i=1

1=1 0GuG[1:p]
>
= > Var(W.))_ A7,
PGuG[l:p] i=1
Var(WiV) & o
-y WD,
0GuG[1:p] “ i=1
Moreover,
P -2 2
1 -1 1 -1
2 2 (P — (P
Sa = X () ZE()
i=1 €E—u €U
1
e ((p = [ul)lu](p — [ul = 1) + |ul(ju] = 1) (p — |u])!?)
p— |u)!|ul!
= DR g — )8t = 10+ 1l
_ (= JuMul! (p — Ju| = D)!(Jul - 1)!
p! (p—1)!
= C(ul,p).

Thus, we want to minimize

5 Var(WY)

C(lul, p)
OCuG[1:p] “
subject to
Z Nu = Ntot-
0GuG[1:p]

As in the proof of Proposition 2] we use the method of Lagrange multiplier. Let
P . ar A(l)
U = (R%)* 2. Let f be the C' function on U defined by f(z) = Z@gug[lzp} Olp.u)Var(Wy )

e

let g be the C* function on U defined by (Cocugp) Tu) — Ntot and let A =

g~ *({0}). As in the proof of Proposition l fia has a strict global minimum in
a defined by

a= Niot ( C(p, u)Var(Wél) ))

Sogogiin VOl v)Var(iWL))

u

Proof of Proposition [7]
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Proof.

=
=

X)f(X*))
= EE(X)F(X")|X.))

/2 f(Xu; {E,u)f(Xu, xLu)dPX—ulxu ® IP)Xfu‘Xu (xu’xlu)>
E

(L.
(

| e e [ f(Xu,a:'_u>dPXuxu<z/_u)>

—u

= E

— E(B(/(X)X.)?).
That concludes the proof of Proposition O

Proof of Corollaries [1l and [2
We do the proof for Corollary The proof of Corollary [2| uses the same
idea.

Proof. Let 6 > 0. Thanks to Theorem [2| with € = §, we have

20
Coup(6/4)N o

1 sl
p(wa\uU 5‘Eu’MC—Eu —
52Np7|u\ N—+o00

>€) <

That concludes the proof of Corollary [I} O
Proof of Proposition

Proof. If we use the subset W-aggregation procedure, we just have to use the
consistency of ﬁ/\u from Theorems |1 and |3| and use Proposition

If we use the subset W-aggregation procedure, the consistency of the esti-
mators of the Shapley effects comes from the second part of Proposition 4 We
just have to verify the assumptions. Let /V[ZEi) of Proposition be Eu’s(i)’ MC
or Vu,s(i), pr defined in Section Then, following the end of the proof of
Theorems [1] and [3] we obtain

| Mo
3 W AW@)) ;

Ng < 1001}( wor N,No—>+ooo’
i,j=

and, by Proposition [9, we have
E (W,ﬁ”) W
N —+4oc0

All the assumptions of Proposition [d are verified. O

o7
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