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The calculation of free energy differences for thermally activated mechanisms in the solid state are
routinely hindered by the inability to define a set of collective variable functions that accurately describe the
mechanism under study. Even when possible, the requirement of descriptors for each mechanism under
study prevents implementation of free energy calculations in the growing range of automated material
simulation schemes. We provide a solution, deriving a path-based, exact expression for free energy
differences in the solid state which does not require a converged reaction pathway, collective variable
functions, Gram matrix evaluations, or probability flux-based estimators. The generality and efficiency of
our method is demonstrated on a complex transformation of C15 interstitial defects in iron and double kink
nucleation on a screw dislocation in tungsten, the latter system consisting of more than 120 000 atoms.
Both cases exhibit significant anharmonicity under experimentally relevant temperatures.
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Thermally activated mechanisms play a crucial role in all
materials science phenomena, e.g., body-centered cubic
(bcc) plasticity [1], creep [2], postirradiation annealing [3],
and numerous others [4]. Thermally activated mechanisms
are in large part described by the free energy profile F ðξÞ
defined with respect to some reaction coordinate ξ ∈ ½0; 1�
between the initial and final states [5]. As is well known,
the free energy barrier ΔF ≡max½F ðξÞ� −min½F ðξÞ� is
widely used in the transition state theory [6] rate
k ¼ ω0 expð−βΔF Þ, while the total free energy difference
F ð1Þ − F ð0Þ gives the ratio of equilibrium populations
n1=n0 ¼ expf−β½F ð1Þ − F ð0Þ�g. Both quantities require
accurate calculation of F ðξÞ and are of critical importance
to materials simulation [4,7,8]. However, materials science
applications are typically forced to use approximate
harmonic methods in the absence of any systematic tool
to probe anharmonicity, an issue which this Letter aims to
address.
The free energy profile is defined as a conditional

average through [9]

F ðξÞ ¼−β−1 ln
����
Z

dXexp(− βVðXÞ)δ(ξ− ξ̃ðXÞ)
����; ð1Þ

where VðXÞ is the system potential energy and ξ̃∶R3N →
½0; 1� takes a given set of N atomic positions X ∈ R3N and
returns a reaction coordinate ξ ∈ ½0; 1�. Determining a
suitable ξ̃ is a crucial component of all free energy
calculation techniques and is a central topic of this Letter.
A powerful array of methods have been developed to

calculate F ðξÞ when ξ can be determined through one or
more collective variable functionswhich accurately describe

the transformation under study. The collective variable
function(s) either return ξ directly [10–13] or a reaction
pathway is found in the collective variable space [14–18],
with ξ defined as an affine parameter along the reaction path.
Collective variable-based methods have found enormous
successes in studies of molecular systems as the reduced
dimensionality permits rapid exploration while accommo-
dating the typically very large entropic effects [14].
However, the application of these methods to materials
science problems such as dislocation migration [1] or point
defect cluster transformations [19] is hindered by the general
inability to define a suitable set of collective variable
functions outside of a few simple cases [20]. This is well
recognized as a critical problem for the implementation of
free energy methods to go beyond harmonic approximation
in automated, unsupervised, simulation schemes such as
adaptive kinetic Monte Carlo calculations [8,21–23], accel-
erated molecular dynamics [24,25], and a rapidly growing
number of statistical learning approaches [26–28] that
represent an active forefront of materials simulation.
In this Letter, we detail a new path-based free energy

calculation technique, which permits calculation of anhar-
monic free energy profiles for complex materials science
problems without the requirement to define any collective
variable functions or converge a true minimum free energy
pathway. Our method allows a temperature dependent
pathway and fully anharmonic thermal vibrations with a
OðNÞ computational demand and ideal parallel scalability
in the ensemble average sampling [9]. We only require a
reference pathway which is suitably local to the true path,
here chosen initially to be the minimum energy path
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(MEP), which is ideally suited to automated, unsupervised
implementation in a wide class of simulation schemes. A
new expression for the free energy gradient is derived that
defines ξ with respect to the MEP but nevertheless is
valid for a temperature dependent reaction pathway under
locality conditions appropriate for solid state systems. Our
approach provides a clear signature of when this locality
condition is violated, and an iterative scheme is described
to accommodate such cases. Our main result also greatly
simplifies a Jacobian term that has plagued previous
path-based techniques [9,29,30].
A popular path-based approach is the finite temperature

string method [16,31–33], which is typically applied in
collective variable space though in some notable cases has
been applied in the full configuration space [34,35]. The
method converges a discretized reaction pathway at finite
temperature through the use of reflective Voronoi cells
around each discretization point, before calculating the
change in free energy across each cell through a population
flux-based estimator. This is a powerful and successful
method for finding free energy paths in molecular systems
which have a poorly defined reference structure at finite
temperature; however, to accommodate these large fluctu-
ations, the user must determine an application specific
parametrization, including a smoothing parameter for the
reaction pathway which may obscure important features of
the free energy landscape in materials systems. By using
the MEP, we can accurately compute pathway tangents
that are very challenging to obtain from time averaged
structures, offering significant advantages for automated
application in solid state systems.
We demonstrate our method on two examples of great

practical importance in materials science—for which tens
to thousands of atoms participate in the diffusion process
and are impossible to address using standard free energy
calculation techniques—a complex transformation of inter-
stitial clusters in iron and the migration of h111i screw
dislocations in tungsten, the latter example requiring a
system size of around 120 000 atoms. In both cases, our
method does not require any ad hoc parametrization, and
because of the OðNÞ efficiency, the full anharmonic free
energy can be evaluated for an equivalent cost to an OðNÞ
harmonic approximation [36], significantly improving on
the standard OðN3Þ implementation.
Method.—The central goal of our method is to evaluate

the free energy gradient (or mean force) ∂ξF ðξÞ, which
can be integrated to give the free energy difference
F ðξÞ − F ð0Þ ¼ R ξ

0 ∂ξF ðξ0Þdξ0. We treat a system of N
atoms with a vector of atomic positionsX ∈ R3N subject to
a gradient force −∇VðXÞ. Having identified the desired
initial and final states, a nudged elastic band (NEB) [37]
calculation produces an MEP X0ðξÞ at a discrete set of
points fξig, with intermediate configurations produced
through spline interpolation for each atomic coordinate.
By taking the derivative of the spline interpolation, we can

also introduce the pathway tangent vector ∂ξX0ðξÞ. With
these quantities, we can now construct a reaction coordinate
function ξ̃ðXÞ, defined to return the value of ξ which
corresponds to the closest point on X0ðξÞ to X.

By minimizing the distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX −X0ðξÞj2

p
with respect

to ξ, the reaction coordinate ξ satisfies the zero derivative
condition

∂ξX0ðξÞ · ½X −X0ðξÞ� ¼ 0: ð2Þ

Equation (2) defines a subspace of configurations lying on
a 3N − 1 dimensional hyperplane normal to the pathway
tangent ∂ξX0ðξÞ. At a finite temperature, the reaction
pathway may change. However, providing the new finite
temperature pathway remains in a “tube” surrounding the
MEP, and this definition of the reaction coordinate remains
valid at a finite temperature. This locality condition is
common with all path-based methods [16]; though in the
following, we derive a more precise formulation of this
condition and a general strategy to account for very large
pathway deviations.
Under this locality condition, the function ξ̃ðXÞ, defined

implicitly as the solution of (2), can now be used in the
formally exact free energy gradient at a finite temperature
T [12]

∂ξF ðξ;TÞ ¼
�
w · ∇V
w · ∇ξ̃

þ β−1∇ ·
w

w · ∇ξ̃

�
ξ

; ð3Þ

where the average is over all configurations satisfying (2)
such that ξ̃ðXÞ ¼ ξ and w is an arbitrary vector function
[38] that satisfies w · ∇ξ̃ > 0, which here is set to the zero
temperature pathway tangent, i.e., w ¼ ∂ξX0. The con-
dition ∂ξX0 · ∇ξ̃ > 0 is a mathematical restatement of the
locality condition, namely, that the finite temperature
pathway tangent has a positive projection along the
MEP tangent [9,18].
The second term in (3) derives from the Jacobian of the

nonlinear transformation that mapsX → ξ and requires the
OðN2Þ evaluation of the 3N × 3N Gram matrix ∇ ⊗ ∇ξ̃.
Evaluating this matrix at each time step has been a critical
issue in applying constrained path-based methods to large
systems [9].
A tractable form for ∂ξF can be derived by first noting

that ∇ξ̃ must be proportional to ∂ξX0, as all displacements
perpendicular to ∂ξX0 leave ξ unchanged by definition in
Eq. (2). By considering small displacements δX and δξ
which maintain (2), we obtain

∇ξ̃ ¼ ∂ξX0

ψðX; ξÞj∂ξX0j2
; ð4Þ

where j � � � j is the Euclidean norm, and the scalar function
ψðX; ξÞ writes as
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ψðX; ξÞ ¼
�
1 −

∂2
ξX0

j∂ξX0j2
· ½X −X0�

�
: ð5Þ

Crucially, this expression for ∇ξ̃ only requires derivatives
of the MEP X0ðξÞ with respect to ξ, an OðNÞ operation
which can be calculated once, to arbitrary accuracy, before
any simulation run. The locality condition ∂ξX0 · ∇ξ̃ > 0 is
now equivalent to

ψðX; ξÞ > 0: ð6Þ
Through use of (2), one finds

hψiξ ¼
∂ξXT · ∂ξX0

j∂ξX0j2
; ð7Þ

where XTðξÞ ¼ hX;Tiξ is the finite temperature minimum
free energy path (MFEP), thus demonstrating that the
locality condition (6) requires that the MFEP tangent has
a positive projection on the MEP tangent. Under conditions
where (6) is satisfied, the exact free energy gradient takes
the simple form

∂ξF ðξÞ ¼
�
ψðX; ξÞ∂ξX0 · ∇V þ β−1∂ξ ln

jψðX; ξÞj
j∂ξX0j

�
ξ

:

ð8Þ
Equation (8) is our main result, an expression for the free
energy gradient along a finite temperature reaction pathway
XTðξÞ using only some candidate pathway [here, the MEP
X0ðξÞ], under the locality assumption (6). A key advantage
is that, irrespective of the candidate pathway, the free
energy landscape will be strictly parabolic around the
MFEP, where it can be shown [9] that sampling with
overdamped Langevin dynamics is optimal. The finite
temperature pathway is still calculated in our simulations,
as is hψiξ, allowing us to verify the validity of our key
approximation (6), which should be checked systematically
for the system of interest. We have found (6) to be satisfied
for all cases presented below, even when the pathway
undergoes nontrivial changes at finite temperature, as can
be seen in Fig. 2.
If at some high temperature TH, the locality condition

ψðX; ξÞ > 0 when using the MEP is regularly violated, and
a new candidate pathway X̃0ðξÞ should be used instead of
the MEP such that (8) is satisfied with X0ðξÞ → X̃0ðξÞ.
Crucially, while the new candidate path X̃0ðξÞ should have
better locality to the MFEP, we do not have to produce a
converged calculation of the MFEPXTH

ðξÞ. This provides a
powerful strategy to avoid the well-known numerical
difficulties in evaluating tangents of XTH

ðξÞ ¼ hX;THiξ,
allowing the use of a smoothed interpolation [39] without
sacrificing accuracy in the projected free energy gradient.
We stress that the change of candidate pathway at high
temperature is to satisfy the locality condition (6), not to

enhance sampling at low temperature as in replica
exchange strategies [9]. While a detailed exposition of
adaptively updating the candidate pathway will be the topic
of a future publication, a central advantage of the method
presented here is that for a large class of solid state systems
this complication does not arise; the MEP locality condition
(6) is satisfied when the convexity of the energy landscape
is robust under a finite temperature. In the vast majority of
solid state systems, the convexity of the energy landscape is
determined by the local structural environment around
each atom, which in turn is typically robust below the
melting temperature aside from the transition of interest.
Importantly, if the convexity of the energy landscape
changes sufficiently to violate (6), our method will clearly
indicate that a converged result cannot be found, and the
concept of a free energy difference between the proposed
end states becomes ill defined. In general, for systems
where a converged minimum energy pathway can be found,
our main result (8) can typically be used to extract the exact
free energy difference below the melting temperature.
Using a modified version of the LAMMPS simulation
package [40], an initial pathway was sampled using over-
damped Brownian dynamics, integrating the stochastic
equation of motion

γ _XðtÞ ¼ −Q · ∇V½XðtÞ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γkBT

p
Q · ηðtÞ; ð9Þ

where γ is a friction coefficient chosen for numerical
stability, ηðtÞ ∈ R3N is white noise with autocorrelation
hηðtÞ ⊗ ηðt0Þi ¼ δðt − t0ÞI, and Q≡ I − n̂ ⊗ n̂ ∈ R3N×3N

keeps the system on a hyperplane defined by the unit
normal vector n̂ ¼ n=jnj, with additional constraints used
to stop the center of mass drift through a Gram-Schmidt
process. The initial reaction pathway X0ðξÞ is produced by
a spline interpolation of images from a NEB calculation.
An ensemble of typically 100–1000 independent trajecto-
ries are generated in parallel according to (9), with
n ¼ ∂ξX0ðξÞ for initially 10 values of ξ in [0, 1]; though
if the calculated mean force was large, additional samples at
intermediate ξ values were taken. We note that this
quadrature issue is readily automated. Each system trajec-
tory consists of a thermalization stage of 1000–4000
integration steps, with the system temperature monitored
through the equipartition relation kBT ¼ hVðXÞ −
VðX0Þi=1.5N and the simulation box rescaled to account
for thermal expansion. Once thermalized, the free energy
gradient (8) is recorded along with the path deviation
δXðξÞ ¼ XTðξÞ −X0ðξÞ over trajectories of typically
2000–5000 steps, producing a calculation of the free energy
gradient and the minimum free energy path. We have
verified that the sampling error of both quantities scales
as the inverse square root of the number of force samples
and is largely independent of system size, showing ideal
sampling statistics. An ensemble size of 100–500
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independent simulations typically gave an acceptable
sampling error in (8).
Application to interstitial cluster transformation α

iron.—The first application is a complex transformation
pathway in α iron that links disjoint basins of C15 clusters
[41] and traditional clusters of h110i dumbbells [42]. The
transformation of C15 clusters to h110i dumbbell clusters
are of great interest in studies of radiation damage as they
have been postulated to play a key role in controlling the
relative population of h111i and h100i interstitial loops
[43–46].
The initial pathway was prepared using the activation

relaxation technique [19,22,23,41] to find the pathway
saddle point, before running a NEB calculation to find the
minimum energy pathway. The full transformation pathway
is complex and nonintuitive, involving the coordinated
displacements of multiple atoms, for which designing a set
of collective variable functions is either impossible or
impractically challenging. In the current approach, we
simply use the MEP X0ðξÞ to determine the reaction
coordinate as described above, using an ensemble of
1000 independent simulations to produce a free energy
profile at 10 temperatures up to 900 K.
The results of our calculation are shown in Fig. 1, where

we also plot the harmonic free energy difference computed
from diagonalization of Hessian matrices along the path
[6]. While it can be seen that the true free energy barrier
ΔF ¼ maxF ðξÞ − F ð0Þ and total free energy difference
F ð1Þ − F ð0Þ agree with the harmonic approximation
below 200 K, above this modest temperature a strong
anharmonic component is seen in both cases. In particular,

from the population ratio n1=n0, we see that the harmonic
approximation predicts that the C15 cluster has relative
stability to the h110i dumbbell clusters above 450 K, while
the full anharmonic calculation completely reverses this
picture, transforming the expected population of C15
clusters under experimentally relevant conditions. These
unsupervised simulations open the possibility of investi-
gation of the complex transformation of multiple intersti-
tials clusters and can answer important questions related to
the formation of C15 in the regime of room temperature,
observed by Arakawa [47], as well as the well-known open
question of the interstitial loop character at high temper-
ature [43]. Finally, access to the free energy migration
barriers for general defects significantly improves agree-
ment with resistivity recovery experiments of irradiated
materials [48,49], for which a detailed study is outside the
scope of this Letter and will be presented elsewhere.
Application to double kink nucleation on a h111i screw

dislocation in tungsten.—The dislocation plasticity of bcc
metals is known to be controlled in large part by the kink-
limited motion of h111i screw dislocations [1,50–53], with
kink nucleation considered to be the central mechanism of
bcc plasticity [54]. Direct molecular dynamics studies of
the kink nucleation process must apply unrealistically large
stresses of OðGPaÞ to generate sufficient dislocation
motion within the few nanoseconds of trajectory; however,
this is known to significantly affect the nature of the
migration potential [55] and has an unclear relationship
with the high temperature, Oð10 MPaÞ stress regime of
experimental relevance. The harmonic free energy barrier
for screw dislocation motion has recently been evaluated
for α iron [1], and a free energy calculation for a short,
straight, screw dislocation segment has been evaluated
using the Bennet acceptance ratio method, with the goal
to extract the Peierls free energy barrier [56] for rigid
dislocation motion.
We have exploited the efficiencies of the method to

evaluate the free energy barrier for the full double kink
nucleation process in an embedded atom model (EAM) of
tungsten [57]. As illustrated in Fig. 2, the system has an
initially straight screw dislocation lying along [111] in a
monoclinic simulation cell with bounding (101) planes
[58]. The glide process proceeds along ½121�, with initial
NEB calculations giving a double kink formation energy of
1.67 eV. As the total system contains around 120 000
atoms, these calculations represent a genuine advance in the
size of systems which can be treated with free energy
calculation methods. As in the previous example, it can be
seen that the harmonic approximation breaks down by
200 K, with the sign of the entropy changing. This
anharmonicity has a significant effect on the expected
double kink velocity experimentally relevant temperatures,
which is approximately proportional to expð−βΔF Þ at low
applied stresses [7]. In Fig. 2, we plot the ratio of expected
screw dislocation velocities using the harmonic and
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anharmonic double kink formation free energies, namely,
expð−β½ΔF − ΔF harm�Þ, where it can be seen that the
anharmonic reduction in ΔF causes the predicted velocity
to be over ×103 greater at 800 K. These results already
demonstrate that anharmonic effects must be considered
even at low homologous temperatures to correctly capture
important plasticity processes, including understanding the
flow regimes of bcc metals [7,59]. We note that the
anharmonic corrections to the kink formation free energy
increase from around 200 K, where experiments have
shown a clear change in the flow stress temperature
dependence [59]; the extension of our method to stress
controlled simulations will greatly aid in this investigation
and is a topic for future study.
Conclusion.—This Letter presents a parametrization-free

path-based method to calculate anharmonic free energy
differences of thermally activated mechanisms in the solid
state. By removing the need to define ad hoc collective
variable functions, our method allows the automated
investigation of anharmonicity in arbitrarily complex mul-
tiatom diffusion processes that were previously impossible
or impractical to evaluate. The method was demonstrated
on two systems of great importance, where the clear
influence of anharmonicity was shown to be present even
at low homologous temperatures. The possible applications
to materials science are very broad; future work will focus

on integrating these methods into automated simulation
schemes [25], exploiting the optimality [9] of our approach
in ab initio sampling strategies [60], and incorporating
nonequilibrium boundary conditions, in particular, the
application of external stresses.
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