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Abstract

The simultaneous grouping of rows and columns is an important technique that is increas-
ingly used in large-scale data analysis. In this paper, we present a novel co-clustering method
using co-variables in its construction. It is based on a latent block model taking into account
the problem of grouping variables and clustering individuals by integrating information given
by sets of co-variables. Numerical experiments on simulated data sets and an application on
real genetic data highlight the interest of this approach.

1 Introduction
Classification is a method of data analysis that aims to group together a set of observations into
homogeneous classes. It plays an increasingly important role in many scientific and technical fields.
Its aim is the automatic resolution of problems by decision-making based on the observations and
to define the rules for classifying objects depending on qualitative or quantitative variables.

Clustering is the most popular technique for data analysis in many disciplines. In recent years,
co-clustering has been increasingly used. Unlike classical clustering, which groups similar objects
from a single collection of objects, co-clustering or bi-clustering [1] aims at simultaneously grouping
objects from two disjoint sets, thus revealing interactions between elements of two sets.

It is most often used with bipartite spectral graphing partitioning methods in the field of
extracting text data [2] by simultaneously grouping documents and content (words) and analyzing
huge corpora unlabeled documents [3] to simultaneously understand aggregates of subsets of web
users sessions and information from the page views. Co-clustering algorithms have also been
developed for computer vision applications. It is used for grouping images simultaneously with
their low-level visual characteristics and for content-based search [4].

In this paper we extend co-clustering methods allowing simultaneous detection of associations
between variables and individuals by taking into account co-variables. These co-variables can
be additional measures of interest. Consideration of a co-variable is expected to provide better
separation of groups of variables and especially groups of individuals. Classification quality is
determined by general validation measures specific to the co-clustering method. This approach can
be useful when co-clustering a set X of variables and individuals in coherence with an independent
Y variable measured on these same individuals. For example, in the co-clustering of several
SNP (Single-Nucleotide Polymorphism) variables on different patients with respect to a measured
phenotype (see application in section 3).

The paper is organized as follows. In the first part, we explain the principle of block mixture
models through section 2. The latent block model for binary variable takes into account co-variables
and the model parameters estimation is proposed in Section 2.2. The parameter estimation method
is described in section 2.3. The choice of the optimal number of blocks and the measure of influence
of each variable on the co-variable Y is presented in the second part (section 2.5 and 2.6). The
method is illustrated on simulated and real genetic data in the last part (section 3).
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2 Block mixture models

2.1 Classical latent block model
Let x be a data set doubly indexed by a set I with n elements (individuals) and a set J with
m elements (variables). We represent a partition of I into g clusters by z = (z11, . . . , zng) with
zik = 1 if i belongs to cluster k and zik = 0 otherwise, zi = k if zik = 1 and we denote by
z.k =

∑
i zik the cardinality of row cluster k. Similarly, we represent a partition of J into d clusters

by w = (w11, . . . , wmd) with wj` = 1 if j belongs to cluster ` and wj` = 0 otherwise, wj = ` if
wj` = 1 and we denote w.` =

∑
j wj` the cardinality of column cluster `.

The block mixture model formulation is defined in [5] and [6] (among others) by the following
probability density function

f(x;θ) =
∑
u∈U

p(u;θ)f(x|u;θ)

where U denotes the set of all possible labels of I × J and θ contains all the unknown parameters
of this model. By restricting this model to a set of labels of I × J defined by a product of labels
of I and J , and further assuming that the labels of I and J are independent of each other, one
obtain the decomposition

f(x;θ) =
∑

(z,w)∈Z×W

p(z;θ)p(w;θ)f(x|z,w;θ) (1)

where Z and W denote the sets of all possible labellings z of I and w of J . Equation (1) define a
Latent Block Model (LBM).

2.2 LBM for binary variables with co-variables: General formulation
From now, we assume that x is a binary data set. Let y represents a data-set (co-variables) of
Rp indexed by I. In order to take into account this set of co-variables the classical block model
formulation is extended to propose a block mixture model defined by the following probability
density function

f(x,y;θ) =
∑

(z,w)∈Z×W

p(z;θ)p(w;θ)f(x|y, z,w;θ)f(y|z;θ). (2)

By extending the latent class principle of local independence to our block model, each data pair
(xij ,yi) will be independent once zi and wj are fixed. Hence we have

f(x,y|z,w;θ) =
∏
i,j

f(xij ,yi|zi,wj ;θ).

We choose to model the dependency between xij and yi using the canonical link for binary response
data

f(xij |yi,βziwj
) = logis(β0,ziwj

+ βTziwj
yi)

xij

(
1− logis(β0,ziwj

+ βTziwj
yi)
)1−xij

(3)

with (β0,βk,l) ∈ Rp+1 and logis(x) = ex/(1 + ex). Each data point yi will be independent once zi
are fixed. In the examples presented in section 3, we choose

f(y|z;θ) =
∏
i

φ(yi;µzi ,Σzi)

with φ denoting the multivariate Gaussian density in Rp.
In order to simplify the notation, we add a constant coordinate 1 to vectors yi and write βk,l

in the latter rather than (β0,k,l,βk,l).
The parameters are thus θ = (π,ρ,β,µ,Σ), where π = (π1, . . . , πg), ρ = (ρ1, . . . , ρd) are the

vectors of probabilities πk and ρ` that a row and a column belong to the kth row component and
to the `th column component respectively, β = (βkl) are the coefficients of the logistic function,
µ and Σ are the means and variances of the Gaussian density. In summary, we obtain the latent
block mixture model with pdf

f(x,y|θ) =
∑

(z,w)∈Z×W

∏
i,j

πziρwj
logis(yTi βziwj

)xij

(
1− logis(yTi βziwj

)
)1−xij

φ(yi;µzi ,Σzi). (4)
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Using the above expression, the randomized data generation process can be described by the
four steps row labellings (R), column labellings (C), co-variable data generation (Y) and data
generation (X) as follows:

(R) Generate the labellings z = (z1, . . . , zn) according to the distribution π = (π1, . . . , πg).

(C) Generate the labellings w = (w1, . . . , wm) according to the distribution ρ = (ρ1, . . . , ρd).

(Y) Generate for i = 1, ..., n vector yi according to the Gaussian distribution Np(µzi ,Σzi).

(X) Generate for i = 1, ..., n and j = 1, ...,m a value xij according to the Bernoulli distribution
f(xij |yi;βziwj

) given in (3).

2.3 Model Parameters Estimation
The complete data is represented as a vector (x,y, z,w) where unobservable vectors z and w are
the labels. The log-likelihood to maximize is

l(θ) = log f(x,y;θ) (5)

and the double missing data structure, namely z and w, makes statistical inference more difficult
than usual. More precisely, if we try to use an EM algorithm as in standard mixture model [7] the
complete data log-likelihood is found to be

LC(z,w,θ) =
∑
k

z.k log πk +
∑
`

w.` log ρ` +
∑
i,j,k,`

zikwj` log f(xij ,yi;θk`). (6)

The EM algorithm maximizes the log-likelihood l(θ) iteratively by maximizing the conditional
expectation Q(θ,θ(c)) of the complete data log-likelihood given a previous current estimate θ(c)

and (x,y):

Q(θ,θ(c)) = E
[
LC(z,w, θ)

∣∣∣x,y,θ(c)
]
=
∑
i,k

t
(c)
ik log πk+

∑
j,`

r
(c)
j` log ρ`+

∑
i,j,k,`

e
(c)
ikj` log f(xij ,yi;θk`)

where

t
(c)
ik = P (zik = 1|x,y,θ(c)), r

(c)
jl = P (wj` = 1|x,y,θ(c)), e

(c)
ikj` = P (zikwj` = 1|x,y,θ(c))

Unfortunately, difficulties arise due to the dependence structure in the model, in particular to
determine e(c)ikj`. The assumed independence of z and w in (1) is not conserved by the posterior
probability.

To solve this problem an approximate solution is proposed in [5] using the [8] and [9] interpre-
tation of the VEM algorithm. Consider a family of probability distribution q(zik, wj`) verifying
q(zik, wj`) > 0 and the relation q(zik, wj`) = q(zik)q(wj`), for all i, j, k, l. Set tik = q(zik) and
rjl = q(wj`), t = (tik)ik for i = 1, . . . , n, k = 1, . . . , g and r = (rjl)jl for j = 1, . . . ,m and
l = 1, . . . , d. One shows easily that

l(θ) = F̃C(t, r;θ) +KL(q(z,w) ‖ p(z,w|x,y,θ)) (7)

with KL(q ‖ p) denoting the Kullback-Liebler divergence of distribution p and q,

F̃C(t, r;θ) =
∑
k

t.k log πk +
∑
`

r.` log ρl +
∑
i,j,k,`

tikrj` log f(xij ,yi;θk`) +H(t) +H(r) (8)

and H(t), H(r) denoting the entropy of t and r, i.e.

H(t) =
∑
ik

tik log tik, H(r) =
∑
jl

rjl log rjl.

F̃C is called the free energy or the fuzzy criterion. As the Kullback-Liebler divergence is always
positive, the fuzzy criterion is a lower bound of the log-likelihood and is used as a replacement for
it. Doing that, the maximization of the likelihood l(θ) is replaced by the following problem

argmax
t,r,θ

F̃C(t, r,θ).

This maximization can be achieved using the BEM algorithm detailed hereafter.
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2.4 Block expectation maximization (BEM) Algorithm
The fuzzy clustering criterion given in (8) can be maximized using a variational EM algorithm
(VEM). We here outline the various expressions evaluated during E and M steps.

E-Step: we compute either the values of t (respectively r) with r (respectively t) and θ fixed
(formulas (12), (13) hereafter). Details are given in appendix A.

M-Step: we calculate row proportions π and column proportions ρ. The maximization of F̃C
w.r.t. π, and w.r.t ρ, is obtained by maximizing

∑
k t.k log πk, and

∑
` r.` log ρ` respectively, which

leads to
πk =

t.k
n

and ρ` =
r.`
m
. (9)

Also, for t, r fixed, the estimate of model parameters β will be obtained by maximizing

βkl = argmax
β

∑
ij

tikrjl log f(xij |yi;β), k = 1, . . . , g, l = 1, . . . , d. (10)

Detail are given in appendix B. Finally parameters of the Gaussian density are given by the usual
formulas

µk =
1

t.k

∑
i

tikyi and Σk =
1

t.k

∑
i

tik(yi − µk)(yi − µk)
T . (11)

Putting everything together, we obtain the BEM algorithm.

BEM algorithm: Using the E and M steps defined above, BEM algorithm can be enumerated
as follows:

Initialization Set t(0), r(0) and θ(0) = (π(0),ρ(0),β(0),µ(0), Σ(0)).

(a) Row-EStep Compute t(c+1) using formula

t
(c+1)
ik =

π
(c)
k

∏
jl

(
f(xij |yi;β(c)

kl )φ(yi;µ
(c)
k ,Σ

(c)
k )
)r(c)jl

∑
k π

(c)
k

∏
jl

(
f(xij |yi;β(c)

kl )φ(yi;µ
(c)
k ,Σ

(c)
k )
)r(c)jl

. (12)

(b) Row-MStep Compute π(c+1), µ(c+1), Σ(c+1) using equations (9) and (11) and estimate
β(c+1/2) by solving maximization problem (10).

(c) Col-EStep Compute r(c+1) using formula

r
(c+1)
jl =

ρ
(c)
l

∏
ik

f(xij |yi;β(c+1/2)
kl )t

(c+1)
ik

∑
l ρ

(c)
l

∏
ik

f(xij |yi;β(c+1/2)
kl )t

(c+1)
ik

. (13)

Observe that rjl does not depend of the density of y.

(d) Col-MStep Compute ρ(c+1) using equations (9) and estimate β(c+1) by solving maximization
problem (10).

Iterate Iterate (a)-(b)-(c)-(d) until convergence.
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2.5 Selecting the number of blocks
BIC is an information criterion defined as an asymptotic approximation of the logarithm of the
integrated likelihood ([10]). The standard case leads to write BIC as a penalised maximum likeli-
hood:

BIC = −2max
θ

l(θ) +D log(N)

where N is the number of statistical units and D the number of free parameters and l(θ) defined in
(5). Unfortunately, this approximation cannot be used for LBM, due to the dependency structure
of the observations (x,y). However, a heuristic have been stated to define BIC in [11] and [12].
BIC-like approximations ICL lead to the following approximation as n and m tend to infinity

BIC(g, d) = −2max
θ

log f(x,y;θ)+ (g− 1) log n+λ log n+(d− 1) logm+ gd(p+1) log(mn) (14)

with λ the number of parameters of the y distribution. For LBM, the intractable likelihood
f(x,y;θ) is replaced by the maximized free energy F̃C in (8) obtained by the BEM algorithm.

2.6 Measuring Influence of a Variable
Let j be fixed (a column of the matrix x). We would like to measure the effect of the variable
xj = (xij)

n
i=1 on y. It is possible to obtain a measure of this effect by looking to the posterior

probability of y.

Lemma 1 Let (x, z,w) fixed. For l = 1, . . . , d let ml denotes the number of columns with label l,
i.e ml = #{wjl = 1, j = 1, . . .m} and for a row i fixed let mil denotes the number of elements
such that wjl = 1 and xij = 1, i.e. mil = #{wjlxij = 1, j = 1, . . . n}. The posterior probability of
the co-variable y is

f(y|x, z,w,θ) ∝
n∏
i=1

d∏
l=1

πziρ
nl

l logis(yTi βzil)
nil
(
1− logis(yTi βzil)

)ml−mil
φ(yi;µzi ,Σzi)

∝
n∏
i=1

πziφ(yi;µzi ,Σzi)

d∏
l=1

ρnl

l

enily
T
i βzil(

1 + ey
T
i βzil

)ml
(15)

Alternatively, for k = 1, . . . , g, let nk denotes the number of rows with label k, i.e. nk = #{zik =
1, i = 1, . . . ,m}. The posterior probability of the co-variable y is

f(y|x, z,w,θ) ∝
m∏
j=1

ρwj

g∏
k=1

π
mj

k

∏
i:zi=k

logis(yTi βkwj
)xij

(
1− logis(yTi βkwj

)
)1−xij

φ(yi;µk,Σk).

(16)

The proof of this lemma is straightforward and therefore omitted.
Assuming z and w known, we measure the influence of a variable using its contribution to the

posterior probability. Fixing j, taking the logarithm and eliminating terms independent of xj , we
obtain the influence measure criteria

I(j) = log ρwj +

n∑
i=1

xij log logis(y
T
i βziwj

) +

n∑
i=1

(1− xij) log
(
1− logis(yTi βziwj

)
)

= log ρwj
+

n∑
i=1

(
xijy

T
i βziwj

− log(1 + exp(yTi .βziwj
))
)

(17)

which is interpreted as the log-contribution to the posterior distribution (16) of the variable xj .
Replacing the unknown labels wj and zi by their MAP estimators ŵj and ẑi, we are able to sort
the variables from the most to the less influential.
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3 Examples

3.1 Simulated data
3.1.1 Computational time

We compute 80 times the elapsed time of the model for various configurations of the parameter
on a HP Zbook G3. The (averaged) computing time as a function of m when g = 2 for different
values of m (the number of columns) and when d (the number of cluster in columns) take values
2 and 6 is plotted in figure 1 below

Figure 1: computational elapsed time for n = 2000, 6000, 10000, 14000 and 18000 (in minutes)
and for various values of m.

We can observe that as n grows the elapsed time grows linearly, but that the slope increases as
d (the number of class in columns) is increased.

3.1.2 Error rate

Next we simulate 80 times the number of columns well classified when g = 2 and for various
configurations of m and d. The cluster of a column is estimated using the maximum a posterior
(MAP) estimator

ŵj = arg
d

max
l=1

rjl.

From these partial results, we see that the number of bad classified columns labels increases as
d increases while it remains relatively constant with m. An other salient feature is that when the
number of individuals (n) is greater, this error rate is lower. The number of well classified rows is
stable near 0.9 for all tested configurations of the parameters and is not displayed.

3.2 Real Data Analysis
Here, we study data from an epidemiological and genetic survey of malaria disease in Senegal.
Data were collected between 1990 to 2008. We worked on a dataset including n = 885 individuals
with measured malaria risk score (phenotype) and genotype available on several candidate genes
for susceptibility/resistance to the disease. A total of m = 45 Single Nucleotide Polymorphisms
(SNPs) was considered across these genes and was used as genetic variables. The malaria risk
score was a quantitative measure normally distributed and was considered as a co-variable for this
co-clustering method. The SNPs are coded in dominant effect on the disease risk. Using the BIC
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Figure 2: Rates of well classified columns when the number of rows is 400 and 800. The number
of columns is between 40 and 80. The number of cluster is between 6 and 12. There is only two
groups of rows.

criteria (see graph 3), we choose to focus on the model d = 2 groups of individuals and g = 11
groups of SNPs.

Figure 3: BIC computation for different values of d and g. We observe that it is minimal for g = 2
and d = 11 among tested d values (1, . . . , 4) and g values (2, 34) .

3.2.1 Analysis for phenotype data

The choice of a mixture model or not depends on the application context. In the case of genetic
data, we are often interested in the comparison of the susceptible and the resistant to a given
phenotype. In this application, we look for genes to explain the difference between susceptible and
resistant which justifies the use of a mixture model on the target variable. After block-clustering,
we find that the individuals are divided in two groups: the susceptibility category composed of
a group of individuals with a value of phenotype essentially greater than zero and the resistant
category composed of a group of individuals with a value of phenotype essentially less than zero
(see figure 4).
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(a) (b)

Figure 4: (a) - Empirical Distribution of the phenotype (histogram) - Distribution of the susceptible
(red) - distribution of the resistant (green) - mixing distribution (grey). (b) Array with the
presence/absence of mutations before and after block-clustering

Observe how the marginal distribution of the phenotype, which is uni-modal, becomes multi-
modal when conditioned by (x, z).

3.2.2 Analysis for genotypes data

We looked at the SNPs to determine which ones would potentially be involved in malaria suscep-
tibility / resistance.

Figure 5: Representation of each block variable according to the influence measure

The proposed methodology allowed the selection of the most significant SNPs according to the
influence measure proposed in section 2.6. The most frequent SNPs are grouped into the following
classes: class 1 and 9. It is noted that the SNPs of these classes have been shown in the literature
to have a high significance effect on malaria. Most G6P and hemoglobin SNPs are grouped into
these 2 classes. Reviews from exiting literature gives us: Glucose-6-phosphate dehydrogenase
(G6PD) deficiency is prevalent in sub-Saharan African populations and has been associated with
protection against severe malaria [13, 14, 15, 16]. Studies above haplotype analysis reveal that
the G6PD locus is an under-balanced selection, suggesting a malaria protection mechanism based
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on modest frequency alleles and avoiding parasite attachment [14]. Hemoglobins S and C (HbS
and HbC respectively) are known to be two structurally variant forms of normal adult hemoglobin
(HbA) resulting from distinct mutations in the β-globin gene. The protective effect of HbS against
Plasmodium falciparum malaria has been shown by several authors [17, 18, 19]. In the case of HbC,
the protection is highest in homozygous individuals with HbCC. The proposed model confirmed
the strong link between sickle cell polymorphism (HBS), blood group ABO (HBC) and falciparum
malaria in the West African population.

3.2.3 Association between phenotype and genotypes

The most common approach used in genetic data is the GWAS method (Genome Wide Association
Studies). This method makes a linear regression of the quantitative phenotype on each genotype
variable. By applying co-clustering with the phenotype as co-variable, we could obtain a dichotomy
of the phenotype. This dichotomy allows us to divide individuals into two categories: susceptible
and resistant. In this part, we compare the results of GWAS studies between the quantitative
phenotype, the binary phenotype (1yi≤0) and the (co-)clustered phenotype. Figure 6 shows that
there are more signals at the 5% threshold for the clustered phenotype compared to the two
other phenotypes. In summary the proposed methodology allows to detect more significant SNPs
compared to the quantitative and binary phenotype.

Figure 6: Number of significant P-values for each method

4 Conclusion
In this article, our main contribution has been to develop a co-clustering model taking into account
a (mixture of) Gaussian co-variable. Applications have been made on simulated and real data sets.
Our preliminary results are confirmed in previous studies in Africa. The method offers good
classification performance on complex data sets (large number of variables and classes). This
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method can be useful in a wide variety of classification problems with Gaussian predictors and will
allow us to discover new patterns of genes allowing to understand and evaluate the mechanism
existing between genetics and malaria in an African population particularly in a Senegalese rural
area. Further analysis could be done with more SNPs in another paper in preparation. Estimation
is performed using a R package (with computational part in C++) that will be soon be available
on the CRAN website https://cran.r-project.org/. Meanwhile the package is available on
demand to the authors.
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A Computing the (rows and columns) E-Step
For the E-Step tik value maximize the fuzzy criterion given in equation (8). Derivative with respect
to tik gives

∂F̃C(t, r;θ)

∂tik
= log πk +

∑
j,`

rj` log fk`(xij ,yi;θ)− log tik − 1.

Equating this equation to zero, taking exponential and recalling that
∑
k tik = 1, we obtain that

tik is updated as

t
(c+1)
ik =

π
(c)
k

∏
j,l

[
f(xij ,yi;θ

(c))
]r(c)jl

∑
k

∏
j,l

[
f(xij ,yi;θ

(c))
]r(c)jl

.

For numerical reason, we prefer to compute the logarithm of this expression which is

log(t
(c+1)
ik ) ∝ log(π

(c)
k ) +

∑
j,l

r
(c)
jl log f(xij ,yi;θ

(c)).

Recall that (see equation 3)

log f(xij |yi;β(c)
kl ) = xij log(logis(y

T
i β

(c)
kl )) + (1− xij) log(1− logis(yTi β

(c)
kl ))

= log(1− logis(yTi β
(c)
kl )) + xij log

(
logis(yTi β

(c)
kl )

1− logis(yTi .βkl)

)
= log(1 + exp(yTi β

(c)
kl )) + xijy

T
i β

(c)
kl

giving

log t
(c+1)
ik ∝ log π

(c)
k +

∑
j,l

r
(c)
jl xijy

T
i .β

(c)
kl −

∑
l

r
(c)
.l log(1 + ey

T
i .β

(c)
kl ) +m log φ(yi;µ

(c)
k ,Σ

(c)
k ).

Similar computation gives for rjl

log(r
(c+1)
jl ) ∝ log

(
ρ
(c)
l

)
+
∑
i,k

t
(c+1)
ik

(
xijy

T
i β

(c+1/2)
kl − log

(
1 + ey

T
i .β

(c+1/2)
kl

))
.

Observe that the Gaussian distribution does not depend of j nor l. This term become constant
when summing over i and k and disappears when rjl values are normalized.
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B Computing the M-Step
For the M-Step, we use a Newton-Raphson algorithm in order to solve the equation (10). For each
pair (k, l) the function to maximize can be written

`k,l(β) =
∑
i,j

(
rjltikxijy

T
i β − rjltik log(1 + exp(yTi .β))

)
The first derivative with respect to the d-th coordinate βd is

∂`k,l(β)

∂βd
=
∑
i,j

(
rjltikxijyi,d − rjltikyi,d

exp(yTi β)

1 + exp(yTi β)

)
giving the following expression for the gradient

∇β`k,l(β) = Y TD(X − µ)

with Y = [yi]
N
i=1, X =

[∑
j rjlxij

]N
i=1

, µ =
[
r.l

exp(yT
i .β)

1+exp(yT
i β)

]N
i=1

, D = diag(tik)
N
i=1 The second

derivative with respect to βd and βd′ is

∂2`k,l(β)

∂βd∂βd′
= −

∑
i,j

(
rjltikyi,dyi,d′

exp(yTi β)

(1 + exp(yTi β))
2

)
giving the following expression for the hessian

Hβ = −Y tDWY with W = diag

(
r.l exp(y

T
i .β)

(1 + exp(yTi β))
2

)
= diag (r.l µi(1− µi))
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