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Editors’ Suggestion

Kink-limited Orowan strengthening explains the brittle to ductile transition
of irradiated and unirradiated bcc metals

T. D. Swinburne” and S. L. Dudarev
UKAEA, CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom

® (Received 15 May 2018; published 23 July 2018)

The line tension model of obstacle hardening is modified to account for the thermally activated, kink-limited
glide of 1/2(111) screw dislocations, allowing application to the plastic flow of bcc metals. Using atomistically
informed dislocation mobility laws, Frenkel-Kontorova simulations, and a simplified dislocation-obstacle model,
we identify a size effect for intermediate obstacle densities, where the activation energy for screw dislocation
motion halves once the obstacle density falls below a critical value. Our model shows striking agreement with
fracture experiments across a wide range of unirradiated and irradiated bec metals. In particular, we demonstrate
that the presence of defects in the crystal lattice can at most double the brittle to ductile transition temperature.

DOI: 10.1103/PhysRevMaterials.2.073608

The motion of a dislocation line through a random field of
static obstacles is a classic problem of theoretical metallurgy
[1-7]. Whilst obstructions to dislocation motion in real ma-
terials are diverse, including forest dislocations, point defect
clusters, solute atoms, precipitates, voids, and gas bubbles
amongst others [8], many models do not focus on specifics of
the dislocation-obstacle interaction mechanism [9—-12], instead
assigning a threshold obstacle bypass stress and then gauging
the effect of the obstacle distribution on the flow stress [4]. The
model is further simplified by treating the elastic self-energy
of the dislocation, which is in principle given by a sum of
an orientation-dependent line energy and its second derivative
[13], by an isotropic line tension pb?/2, where 1 is the shear
modulus and b is the Burgers vector of the dislocation [1].
The resultant model has a powerful generality which has been
widely studied in materials science and statistical physics
[14,15].

The prototypical configuration of such models is shown in
Fig. 1(a). An applied shear stress, o, exerts a total force, bo L,
on a dislocation pinned between two obstacles spaced by L,
resulting in the dislocation forming a circular arc with a radius
of curvature ub/2o0. Obstacle bypass occurs once the total
force on the obstacle pinning the dislocation line exceeds some
defined threshold, fy,, allowing the dislocation to shear through
the obstacle, or the total force causes the radius of curvature
for two neighboring segments to fall below L /2, whereupon
the segments combine and “pinch off” [1,8]. The threshold
condition fi, = bogL thus yields o = fin/(bL) for a single
segment. Applying this relation to an obstacle distribution,
theoretical hardening laws and line tension simulations all
predict that the flow stress op obeys the famous Friedel
relationship [3-7] op = aub/{L), where (L) is the average
obstacle spacing and « is a dimensionless constant dependent
on the obstacle distribution.
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Models of obstacle hardening are of clear relevance to
irradiation-induced embrittlement, where under irradiation
a relatively clean initial microstructure is populated with
an increasing density of nanoscale defects, which impede
dislocation motion [8]. The ability to predict the conditions
under which irradiation induced embrittlement occurs remains
a critical objective for nuclear materials science [16], in
particular for body-centered-cubic (bcc) materials such as
ferritic steels [17] and tungsten [18], where the brittle to
ductile transition is known to be controlled by dislocation
mobility [19,20]. Accurate modeling of obstacle hardening
in bcec metals is also essential to understand the ductility
of oxide-dispersion-strengthened steels [21], which exhibit a
large and unexplained brittleness and strength variability under
current manufacturing techniques.

Plastic flow in bcc metals is famously controlled by the
thermally activated, kink-limited, motion of (111) screw dis-
locations [22-26]. Due to the large kink pair formation free
energy 2Fy(o,T), the flow stress of bcc metals is highly
temperature dependent even in the absence of obstacles, i.e.,
OF — U}Q(T) as (L) — oo. The plasticity of bcc metals is
thus controlled by an intrinsic lattice resistance even before
the introduction of obstacles, complicating reconciliation with
the phenomenology of line tension models, which assume
that dislocation are free elastic lines before interaction with
obstacles. In studies of bcc crystal plasticity [8,9,25-28],
the Friedel stress aub/(L) is typically subtracted from the
resolved shear stress to yield an effective shear stress which
acts against the intrinsic lattice resistance. Using thermally
activated dislocation mobility laws [8,24,26,27,29] the flow
stress o instead emerges as that required to maintain a realistic
strain rate.

In this paper, we revisit the classic line tension model
of obstacle hardening, adding a lattice resistance to allow
application to modeling bce plasticity. The inclusion of a
kink mechanism induces a qualitative change in dislocation-
obstacle interaction, as illustrated in Fig. 1(b). For realistic
applied stresses (well below the Peierls stress [1]), dislocations
do not bow out, as the lattice resistance counteracts the

©2018 American Physical Society
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FIG. 1. (a) A simple elastic dislocation line pinned to obstacles
under an applied stress. Obstacle bypass occurs once the applied
stress exceeds a certain threshold value inversely proportional to the
distance between obstacles. (b) The same model with a kink-mediated
dislocation mobility mechanism. Obstacle bypass occurs once the
stress on the kink pile-up exceeds a threshold that is independent of
the obstacle separation, provided that the two pile-ups do not meet
(see Fig. 2).

applied stress. Dislocation migration instead occurs through
the thermal nucleation and propagation of kink pairs [25,26],
which form pile-ups at segment pinning points under an applied
stress.

Previous studies of the influence of obstacles on kink-
limited screw dislocation motion [8,30-32] have identified a
size effect in the limit of densely distributed strong obstacles,
where kink pile-ups forming on either side of pinned segments
meet, as illustrated in Fig. 2(c). In this case, a segment of length
L can support up to L/(2wy) kink pairs, where wy, is the kink
width. The total force exerted by the kink pile-ups forming
on either side of a dislocation segment is o bhy L /wy, where
hy is the kink height. Equating the pile-up force to a defined
threshold fi,, we find o = wy fu/(bhi L), thus recovering the
classical Friedel flow stress relationship o o< 1/(L). This has
been demonstrated in dislocation dynamics simulations [30].

Our main result is the identification of a regime con-
trolled by a well-known size effect in the kink nucleation
rate [1,27,33,34] operative on longer-length scales, where the
activation energy for kink-limited dislocation motion halves
from 2F; to F; once the average dislocation segment length
L becomes greater than a stress and temperature-dependent
critical length:

L*(0,T) = bexp [BF(o,T)]. €))

(a) (b) (c)
o~1/L

VoD LB v-Loxpl-28F

FIG. 2. Three regimes of kink-limited motion through obstacles.
(a) The key regime identified in this work. When the available segment
length L > L*, Eq. (1), the screw dislocation velocity is length
independent and has an activation energy equal to the formation
energy of a single kink. (b) When L < L*, the activation energy
doubles and the velocity is linearly dependent on the segment length.
In both cases, obstacle bypass occurs independently of the obstacle
spacing. (c¢) When obstacles are sufficiently strong or closely spaced,
the kink pile-ups meet before bypass and the dislocation cannot
propagate. The critical stress in this regime [30] obeys the classical
Friedel relationship o o 1/L, where L is the obstacle spacing.

In this regime, obstacle bypass still occurs once the total force
obhyny exerted by a pile-up of n; kinks exceeds some defined
threshold fi, but the obstacle spacing is now sufficiently
large, so that the obstacle bypass occurs before the opposing
pile-ups meet, as shown in Fig. 2 (a). As a result, in the limit
of dilute obstacles the flow behavior is almost independent
of the obstacle spacing. For higher obstacle densities the
effective dislocation length for kink nucleation is restricted,
causing a doubling of the kink nucleation energy and a length-
dependent dislocation velocity, restricting the rate of plastic
flow, as shown in Fig. 2(b). Through multiscale simulations
and comparison to a wide range of experimental data, we
show that this provides a powerful model for understanding
irradiation-induced embrittlement.

Using the Frenkel-Kontorova model [33] and kink-limited
dislocation-obstacle simulations, we evidence a modified
Orowan flow law [25,27,35]:

¢ {Pb(L)wo exp [—2BFi(0.T)]
pb*wo exp [—BFi(0,T)]

where p is the dislocation density. Employing dislocation
mobility laws for unirradiated materials parametrized from
atomistic simulations [25,27,36], we show that under tem-
peratures and applied stresses appropriate for the brittle to
ductile transition (BDT), the critical length L* falls to values
of order 10~! um, well within the range of typical obstacle
spacings (L). As illustrated in Fig. 2, the effective activation
energy for dislocation motion thus doubles once the density
of obstacles increases and the characteristic obstacle spacing
(L) falls below L*, a phenomenon which signifies the onset of
embrittlement.

We find compelling agreement with our model through
comparison with experimental measurements of the brittle
to ductile transition temperature (BDTT) in a wide range
of high-purity bcc metals [37] and neutron-irradiated low-
activation steels [17]. In particular, the single-kink-activation
energy flow law is in very good agreement with experimental
data on pure materials. This signature is entirely compatible
with low-temperature bce plasticity studies [28], which find a
double-kink activation energy as a characteristic parameter in
the dislocation mobility law, as in the low-temperature regime
explored in Ref. [28] the critical length L* is very large,
of order 10°~10* m, and thus the activation-energy-related
BDT transition remains outside the range of parameter space
spanned by observations. Applying our model to irradiated
materials we find that the BDTT can at most double due to
the presence of obstacles, a powerful qualitative relationship
which is clearly obeyed in fracture experiments on neutron-
irradiated low-activation steels of widely varying composition.

The paper is structured as follows. In Sec. I we explore
Frenkel-Kontorova simulations of pinned screw dislocation
segments, where the transition in the activation energy for
dislocation motion as a function of dislocation segment size
is confirmed. In Sec. II we review dislocation mobility laws
for unirradiated materials, parametrized from atomistic simu-
lations [25,27,36] and produce quantitative estimates for the
stress- and temperature-dependent critical length L*(o,T).
In Sec. III we condense the observed phenomenology into
a simplified dislocation-obstacle interaction model to obtain
robust statistical data on the transition in screw dislocation

(L) < L*(0.T),
(L) > L*o.7), P
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velocity. Finally, in Sec. IV we compare the predictions
of our model to temperature-controlled fracture experiments
performed on a wide range of unirradiated and irradiated bcc
metals.

I. FRENKEL-KONTOROVA SIMULATIONS OF PINNED
SCREW DISLOCATIONS

The phenomenology of kink-limited dislocation motion has
been extensively studied [28,36,38] using the stress-driven
Frenkel-Kontorova (FK) model [33], which for a line of N
nodes with slip plane positions (x,,y,) = (bn,h&,) has the
potential energy

/’12
E = Z ;?(5114—1 - Sn)2 +V Sinz(né_n) - b2ha$n, 3

where « is the line energy of the FK model, V the Peierls
barrier, and o the applied stress. Without loss of generality,
we choose energy units of V and length units of b. With
h = b this system has a Peierls stressof o, = 7 V/ b?; setting
k =200V gives a kink energy of U; = 40V /7 and a kink
width parameter of 10b/m, yielding the highly mobile kinks
appropriate for (111) screw dislocations in bcc metals [36]. For
the Frenkel-Kontorova model, the kink free energy is given
by Fi(o,T) ~ Ui(1 —o/0,) for small stresses [24]. In the
kink-limited regime, the line velocity v is simply related to
the net kink nucleation rate in the direction of the applied
stressT' = I'(0) — I'(—0o) through v = bT" [25]. Dynamics are
generated using the overdamped Langevin equation with either
periodic boundary conditions &y = &, or pinned boundary
conditions &y = &) = 0, taking ensemble averages to produce
robust statistical data [39].

A typical individual simulation configuration is illustrated
in Fig. 3(a). For migration distances up to around 25% of the
line length, we find the velocity of a pinned line is comparable
to that of a periodically repeated dislocation segment of the
same length, confirming that the only effect of the pinned
boundary conditions is to create two kink pile-ups, with no
effect on the bulk of the line. Figure 3(b) demonstrates that
for short lines T o< L, but above a certain length threshold
L*(o,T),itbecomes length independent. By comparing similar
simulations at a range of temperatures, one can extract an
activation energy from the slope of an Arrhenius plot (8, InT")
[40]. Combining these simulations, we confirm that for short
segments ['(o) ~ (L/b)exp[—2B F;(o)], whilst for longer
segments I'(o) ~ exp[—pB Fix(o)], the activation energy thus
halving for longer lines [Fig. 3(c)]. It is also possible to
observe the crossover at a fixed line length simply by varying
the temperature and applied stress, as shown in Fig. 3(d).
In agreement with literature data [1,27,34], we find that the
crossover length L*(0,T) is well approximated by Eq. (1),
L*(0,T) = bexp [BFi(o,T)]. We provide a derivation of the
crossover length in Appendix A.

The dislocation segment size effect on the kink nucleation
rate found in our simulations is well known [1,27,33,34]. Here,
the dependence of the kink nucleation rate T' on the segment
length L forms the central hardening mechanism in our model,
with the crossover length (1) being the critical length scale
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FIG. 3. Frenkel-Kontorova model simulations showing size ef-
fects in the kink nucleation rate. (a) A pinned and unpinned Frenkel-
Kontorova dislocation under applied stress. (b) Arrhenius plot of the
average velocity. The activation energy halves at high temperature.
(c) The activation energy halves for segments longer than the critical
length L*(o,T). (d) The velocity is proportional to the segment length
L below L*(o,T) and is independent of length above L*(o,T).

when comparing to experiment, to a large degree independent
of the details of dislocation-obstacle interaction.

II. KINK-FORMATION FREE ENERGY

Whilst our Frenkel-Kontorova simulations can capture the
statistics of the kink nucleation rate as a function of segment
length and kink-formation energy over a wide parameter
range, the intrinsic simplicity of the model clearly cannot
reproduce the complex stress and temperature dependence
found in fully atomistic simulations [25,41-43]. In particular,
the kink-formation free energy and flow stress are known
to vanish at both the so-called “athermal” temperature T,y
[24,29] and a temperature-dependent flow stress [8,24,26,27].
Accommodation of these features is known to be essential to
accurately model high-temperature screw dislocation motion
and thus capture experimental data. Recent calculations of
the zero-stress double-kink-formation free energy in tungsten
confirms the large contribution of vibrational entropic terms,
which are not predicted in harmonic approximations using
static curvatures [43]. Following previous studies, a general
approximate form of the kink-formation free energy reads
[8,24,26,27,29]

Fi( T)—U(l T el ) )
RO =0T T 1=T/Tu )

In Fig. 4(a) we plot Eq. (4) for values appropriate for bee iron.
It is clear that for realistic applied stresses (o < 200 MPa), an
Arrhenius plot of (—Fy /kgT,1/kgT) yields a slope that varies
by less than 10% from the zero-stress, zero-temperature kink-
formation energy Uy for realistic resolved shear stresses (150
MPa) present under typical experimental strain rates ¢ < 10~
s~!, demonstrating that the stress and temperature dependence
of Eq. (4) predominantly affects the entropy (i.e., prefactor) of
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FIG. 4. (a) Arrhenius plot (—F;/kgT,1/kgT). (b) Crossover
length L* (1), computed using the approximate kink-formation
free energy (4), with values of U, = 0.33 eV, 0, = 900 MPa, and
T.n = 700 K appropriate for a screw dislocation in Fe [29]. Applied
stress and temperature have dramatic effects on L*, but the effective
activation energy changes by less than 10%.

kink nucleation. The consequences of this entropic boost can be
clearly seen, however, when using Eq. (4) in our expression (1)
for the crossover length L*, being the characteristic length scale
where the effective activation energy for plastic flow halves.
As illustrated in Fig. 4(b) for bce iron, under realistic stresses
and temperatures the crossover length can be as low as 1072
um, whilst pure materials typically have dislocation mean
free paths of the order of micrometers [8]. The fact that the
crossover length L* is comparable to typical microstructural
length scales is a key factor in the stress, temperature, and
obstacle density dependence of the brittle to ductile transition
and is a key conclusion of this paper.

III. DISLOCATION-OBSTACLE MODEL

To probe the effect of a random obstacle array on screw
dislocation mobility we have used a simplified dislocation-
obstacle model which captures the phenomenology of our
Frenkel-Kontorova simulations. An initially straight disloca-
tion propagates into an array of obstacles, where it is pinned
and split into multiple segments of lengths {L;}. As has been
noted in previous studies [30-32], when a dislocation segment
propagates a distance d, the finite kink width w reduces
the effective segment length for further kink nucleation to
L; = L; — 2wd/h, meaning that no segment can propagate
further than 2 L; /2w, as illustrated in Fig. 2. Using the results
above, we assign to each segment a velocity

NS

v(L,0,T) = a)ob2|: ! ]min(L*,L)

L*(o) L*(—o)| L*o)

where Fy (o, T)is taken from Eq. (4). Without loss of generality,
we set 0 > 0. In the rare event limit, the 1/L*(—o’) term has a
negligible contribution to Eq. (5), upon which pbv({L),o,T)
is precisely the Orowan flow law (2).

In each realization of our simulations, a simulation cell of
width W and height H is populated with a uniformly random
array of N obstacles with an initially straight dislocation
line lying at the bottom of the cell. The dislocation line is
propagated forward a distance dj until an obstacle is met, and
then the global clock time is updated to tg = dy/v(W,o,T) and
the dislocation line is divided into segments.

A pinned segment of length L will propagate a distance
v(L;)At in a time At, creating an additional v(I:i)At/hk kink

Fixed (L), variable L*(o,T)
=&~ Average velocity over 800 obstacle fields
= Theoretical velocity v(<L),0,T), egns. (5), (7)

(L)>L*(<7,r)

Drift velocity (arb.)

p
Critical Length L*(o,T) (L)

FIG. 5. Predicted and calculated ensemble average velocity with
varying critical length at fixed obstacle density, equivalent to varying
density at a fixed critical length. Inset: Sample configurations from
coarse-grained model of screw dislocation-obstacle interactions. Kink
pile-ups are approximated by angled lines rather than steps for
computational efficiency.

pairs, which pile up at the segment ends. As discussed above,
the total force exerted by a kink pile-up of height nh; on an
obstacle is given by no bhy. With the threshold obstacle force
fin, the segment will bypass the obstacle once the number of
kinks in the pile-up exceeds

_ Ja
" obhy

N (6)
In practice, there will be two kink pile-ups of size n> (n¥)
on each side of a dislocation segment. When any pile-up
exceeds ny,, the two segments on either side of the obstacle are
combined, with the remaining kinks propagated to the ends
of the new joined segment. The maximum number of kink
pairs that the segment can support [as illustrated in Fig. 2(c)]
is given by L;/(2wy). If the corresponding pile-up height
L;hy/Quwy) is less than ny,, the segment will remain pinned
until a neighboring segment breaks free. If all the segments
are pinned in this manner, the applied stress is not sufficient to
induce plastic flow; i.e., we are below the Friedel flow stress,
which we ensured did not occur in the simulations used here.

The simulation algorithm is therefore as follows. For each
segment i of available nucleation length L;, the distance
d; to the nearest obstacle is calculated, giving a segment
collision time of 7; = d; /v(L;). The expression for the collision
time, accounting for the length-dependent mobility, is given
in Appendix B. The smallest collision time fy;, = min{7;}
updates the global clock time tG — fg + fmin; €ach segment
migrates a distance V(L;)tmin, With one segment thus bisected
by an obstacle. If the total migration distance past the obstacle
on the left or right of a segment is greater than ny /1, then the
neighboring segments are combined and the remaining kinks
move to the segment ends. Typical simulation snapshots are
shown in the inset of Fig. 5.

Using this simulation procedure, we can extract the average
dislocation velocity and effective activation energy, charac-
terizing plastic flow across a wide range of applied stresses,
temperatures, obstacle densities, and obstacle strengths. The
results of these simulations are shown in Fig. 5. For low
obstacle densities, such that the obstacle spacing is greater
than L*, the dislocation velocity is initially unchanged from
the obstacle-free lattice case, with an activation energy being
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equal to the single-kink-formation energy. However, above a
threshold obstacle density (see below), the dislocation velocity
drops rapidly and the characteristic activation energy doubles.

To recover the same dislocation velocity, the temperature
of the system has to effectively double. In the next section
we see that all of this phenomenology is exhibited in fracture
experiments on unirradiated and irradiated bcc metals.

To predict the dependence of dislocation motion on the
density of obstacles, we require an analytical expression for
the expected pinned segment length (L). Dislocation glide
is modeled as planar in a given slip system in our simula-
tions, meaning that a random point obstacle distribution in
three-dimensional space with an average density pops has an
average density of ¢ = popss on the glide plane, where s is
the characteristic obstacle size, typically from 4b to 10b. As a
dislocation segment will depin from an obstacle once the kink
pile-up height exceeds ny, iy, we thus ask for the length (L) of
a pinned dislocation with n,;, kinks whose swept area contains
a single obstacle. In Appendix C we show this is given by

W _ /el 240,
ANEYES ¢

Wi o 2

where erf(x) = (2//7) [y exp(—y*)dy is the error function.
This expression takes simple forms in the limits where the kink
width wy (~+/k/V for a line tension « and Peierls barrier V
[36]) is much larger or smaller than the obstacle spacing. In
the limit of a large kink width, the swept area is approximately
a triangle, yielding (L) = /mngnwy/(4+/chy), whilst for a
small kink width the swept area is approximately a rectangle,
yielding (L) = 1/(cnnhy).

In Fig. 5, we plot the results of simulations using a fixed
obstacle density of popss =~ 1/(1500bwy), and thus a fixed
(L), capturing the effect of variable temperature and stress by
varying L* by around an order of magnitude above and below
(L). Whilst this phenomenological model has no inherent
length scale, using values appropriate for bcc iron shown
in Fig. 4(b), we see that the simulation supercell has the
dimensions of 10-1000 pm.

For each value of L* the average drift velocity was obtained
across the same set of 800 independently generated obstacle
distributions, uniformly distributed across a discrete grid to
avoid very close obstacles (simulating athermal annealing in a
real material [44,45]). As can be seen, the theoretical prediction
(5) using Eq. (7) for (L) gives excellent agreement with our
simulations, showing that the length-dependent mobility of
individual pinned dislocation segments clearly transfers to
directly determine the average velocity of dislocation lines
moving with kink-limited mobility through a field of obstacles.
In particular, for low obstacle densities, where (L) < L*,
we see that the dislocation velocity is unaffected by the
obstacle field, giving a clear single-kink activation energy. This
behavior is confirmed in the next section, where we compare
our model to experimental data.

}¢=m@wm,(n

IV. COMPARISON TO EXPERIMENTS ON PURE AND
IRRADIATED BCC METALS

In this section we compare predictions derived from our
model to strain- and temperature-dependent measurements of
the BDT temperature Tppr in a wide range of high-purity

single-crystal bcc metals [37] and irradiated low-activation
ferritic-martensitic steels of great practical importance to the
fission and fusion applications [17]. In the experiments, small
bars of the candidate material are subject to either bending [37]
or impact [17] tests at a controlled temperature until the sample
fractures; in the bending tests the strain rate can also be con-
trolled. The degree of ductility in impact tests is determined by
the amount of absorbed energy before fracture. It is well known
[19] that in the bending experiments the character of failure
mode undergoes a step change as a function of temperature,
varying from brittle cleavage at low temperature to semibrittle
fracture to ductile bending over a narrow temperature range
termed the brittle to ductile transition, with the center of the
transition region giving the BDT temperature Tgpr.

As embrittlement is known to be controlled by dislocation
mobility in bcc metals [19,20], the strain rate é and the
temperature Tgpr at which ductile fracture occurs are often
interpreted using the Orowan flow law [25,27,35] € = pbzv.
This is equivalent to the statement that ductile fracture occurs
at the brittle to ductile transition temperature Tgpr once
dislocation motion can relax the externally applied stresses
sufficiently rapidly to avoid failure. Using expression (2) for the
Orowan flow law appropriate for unirradiated materials, where
the dislocation mean free pathislarge and (L) > L*, our model
predicts the simple Arrhenius relation for the unirradiated
brittle to ductile transition:

Uk

IOg |éunirr(TBDT)| = -
TepT

+ Si +1n|pb*wol.  (8)

Equation (8) is a main result of this paper, predicting that the
characteristic activation energy for ductile fracture in the low
obstacle density materials is the single-kink-formation energy
Ur = F + T S;. As discussed above and illustrated in Fig. 4,
the large kink-formation entropy S; significantly reduces the
crossover length L* to submicron values, i.e., well within
the (L) > L* criterion, but due to a fairly weak temperature
dependence we find that the observed activation energy should
still be the single-kink-formation energy Uy.

We find remarkable agreement with the prediction of Eq. (8)
across a range of high-purity unirradiated bcc metals. Figure 6
plots the experimentally determined activation energy for
ductile fracture against the calculated single-kink-formation
energy using atomistic simulations [36,38], showing extremely
tight correlation. The similar fracture behavior for single and
polycrystalline tungsten and iron confirms that the dominant
fracture mode is transgranular and thus controlled by dislo-
cation mobility. We emphasize that the clear evidence for a
single-kink-formation energy strongly supports a fundamental
underlying mechanism of our model, that the characteristic
activation energy for kink nucleation halves for long screw
dislocation segments.

Having verified the predictions of our model on the BDT of
unirradiated bcc metals, we now apply it to the interpretation
of experiments studying irradiation-induced shifts in the brittle
to ductile transition temperature Tgpr in low-activation steels.
Due to the greater range of factors involved in the sample
preparation, experimental data sets for irradiated materials
invariably consider an output parameter space smaller than
that of those for unirradiated materials, complicating detailed
interpretation. In particular, changes in the BDTT are typically
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FIG. 6. Plotshowing the agreement between characteristic activa-
tion energies for the BDT temperature Tgpr of high-purity bec metals,
derived from an Arrhenius plot of Tgpr versus strain rate [37], with
the single-kink-formation energy predicted by atomistic simulations
[36,38]. This relationship is predicted by Eq. (8) of our model, strongly
supporting our conclusion that the characteristic activation energy for
kink nucleation halves for long screw dislocation segments.

determined through Charpy impact tests, where the absorbed
energy is measured as a function of sample temperature,
meaning the imposed strain rate cannot be resolved.

In the experimental data considered here [17], samples
of low-activation ferritic-martensitic steels were subjected to
neutron irradiation to a fixed dose under a fixed irradiation
temperature T, before Charpy impact tests were performed
at a range of temperatures. The absorbed energy measured
in a Charpy impact test is well known to sharply increase
with increasing sample temperature, which is associated with
a ductile response [19]; fitting a smooth step function to these
data then determines the BDTT. The fracture was observed
to be transgranular, confirming that dislocation mobility, as
opposed to grain boundary strength, controlled the mechanical
response. As defect recombination and annealing rates increase
with Ti; [46], positive shifts in the BDTT associated with the
accumulation of radiation defect clusters should be suppressed
by increasing T, as the obstacle density decreases, and the
characteristic scale of the microstructure becomes larger due
to defect cluster coarsening.

Figure 7 shows the resultant BDTT data from these experi-
ments [17]. A dramatic manifestation of the qualitative behav-
ior described above is clearly observed. The BDTT (expressed
in Kelvin units) approximately doubles if the steel samples are
exposed to irradiation at relatively low temperature, generating
a high density of irradiation defect clusters impeding the
motion of dislocations, but sharply returns to approximately
the unirradiated value over a narrow window of around 50 K
in Ty,.

Importantly, this behavior is seen across a range of steels
with a variety of impurity compositions, indicating that the
underlying physics of a sharp doubling of Tgpr with irradiation
dose if steels are exposed to irradiation at low temperatures is
an intrinsic fundamental property of the crystal microstructure
rather than the specifics of a particular impurity-defect inter-
action.

The observed behavior can be simply understood in our
model. It is clear that a ductile response to the Charpy impact

BDT of Irradiated Low Activation Steels
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FIG. 7. Observed values of Tgpt in various irradiated reduced-
activation ferritic-martensitic steels [17], which contain a diverse
range of alloying elements. In agreement with the inequality relation
predicted by our model, Eq. (9), Tgpr at most doubles under high
obstacle density (low-irradiation temperature), but then returns back
to the value characteristic of unirradiated steel as the obstacle density
decreases (high-irradiation temperature). Importantly, this behavior
is largely independent of the presence of alloying elements.

test requires similar dislocation velocities for irradiated and
unirradiated materials, meaning we can equate the strain rate
at the BDTT. In the unirradiated case, the temperature required
for ductile flow is 738 ~ 173 K. Using the modified Orowan
law (2) validated in our simulations, the temperature of the
brittle to ductile transition in an irradiated material 7% . can
be expressed as

2F,

it _ 2Tunirr, (9)
BDT Fk/TélBl"ll:r + ln | /wkl BDT

where the upper bound corresponds to the limit of high obstacle
density and thus small values of (L). Equation (9) is a central
result of this paper, an upper bound for irradiation induced
shifts in the brittle to ductile transition temperature, determined
largely by geometric properties of the obstacle distribution.

Using values appropriate for bee iron and thus ferretic steels,
we find that T]%T > 1.8T§Bi{r for (L) < 100b, showing that the
upper limit is valid for a wide range of obstacle densities. This
provides a clear rationalization of the available experimental
data, which also shows that the 7% is bounded from above by
2Tnir . We also note that the return of the BDT temperature to
its value characteristic of unirradiated steels in the limit where
samples were exposed to irradiation at high temperature does
not imply the absence of obstacles; all that is required for the
recovery of the BDT temperature to its original low value is
the decrease of the volume density of obstacles, resulting, for
example, from coarsening of the microstructure.

V. CONCLUSIONS

In this paper we have introduced a theory of obstacle
hardening for bcc metals, which accounts for the thermally
activated flow of 1/2(111) screw dislocations. Via multiscale
simulation and theoretical analysis of thermally activated
plastic flow through a random obstacle array, we show that
the characteristic activation energy for plastic flow halves
when the average obstacle spacing is above a well-defined
threshold value, which depends only weakly on the specifics of
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dislocation-obstacle interaction and is dominated by the kink
formation energy.

Our model predicts that the characteristic activation energy
for ductile fracture is the single-kink-formation energy, in
excellent agreement with fracture experiments across multiple
bce metals. We also predict that the brittle to ductile transition
temperature (BDTT) increase following irradiation amounts
to at most doubling the BDTT of an unirradiated material,
which is also in agreement with fracture experiments on
low-activation ferritic-martensitic steels. The powerful rela-
tionships revealed by our analysis should aid the design of
radiation-resistant materials; the use of the above model to
give quantitative predictions of irradiation-induced shifts in
the BDTT, or quantitative predictions of hardening of oxide-
dispersion-strengthened steels, requires separate estimates of
characteristic obstacle distribution, which will be the topic of
future work.
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APPENDIX A: DERIVATION OF THE CROSSOVER
LENGTH

In steady-state dislocation glide, where kink nucleation is
a rare event, the kink population is in thermal equilibrium and
the drift velocity is proportional to the number of kinks [1]. As
kinks can only be produced in pairs, the kink contribution to
the partition function for a line of length L = Nb reads

2\ Nlexp (—=2rBFy)

Z = =
(N —nr)'r!

r=0
1 v o1 y
= S[1+exppR)" + S[1 —exp(-pF0]". (AD)

where the last equality uses the binomial expansion. The
expected number of kinks in thermal equilibrium is given by

d
-1
=— —logZ
(nk) p oF, 08

e PR 4 e PN PR (1 — e PPN

=N N N
(1+ePR)" 4+ (1 — e PF)

(A2)

which has two limiting cases of interest, namely the thermo-
dynamic limit N — oo and the low-temperature limit 8 —
oo. As both appear as powers (A2), these limits will be
competing; the thermodynamic limit will be harder to reach

at low temperature and vice versa. In the thermodynamic limit
N — oo we find that

(1— e pr)Y
lim ——— =0, (A3)
N—oo (1 +e—ﬁFk)N
giving an expected kink population of
N -
(ng) > ————— ~ Nexp(—BFp), (A4)

exp(BF) +1

which is the expected Fermi distribution for single kinks.
However, in the rare event limit of interest in this work,
the Boltzmann factor exp(—pBFy) is small (~10~% for room
temperature Fe). To the fourth order in the Boltzmann factor
we can make the expansion

(ny) = N(N — 1) exp(=2BF)), (AS5)

which has the double-kink energy. To see where the thermody-
namic limit is expected to compete with the low-temperature
limit, we look for the system size for which (n;) ~ 1-2
and solve for N. Approximating N(N — 1) ~ N? we find an
approximate crossover length L* given by

L* ~ bexp(BF). (A6)

Whilst the precise value of the multiplicative factor in front of
the exponential will depend on the definition of the crossover
kink population, the key feature is that the crossover kink
population will be independent of the kink-formation energy,
yielding a crossover length that scales as exp(8 F}), which is
central to the phenomenon that we study.

APPENDIX B: DERIVATION OF THE SEGMENT
COLLISION TIME

Consider a dislocation segment with an available kink
nucleation length L;, as illustrated in Fig. 8. Under an applied
stress the line will nucleate and accumulate kinks, eventually
(in the absence of obstacles or detachment) forming a triangle
of height L; /a, where o = wy / hy is the ratio of kink width to
kink height. A finite collision time is therefore only possible
if an obstacle lies inside this triangle; we consider such a case,
with the obstacle lying a glide distance d away from the line
segment. Using the rare event limit of the velocity law (5) and
defining vy = wob exp [—B Fx(0)] we have three cases for the

FIG. 8. Illustration of segment collision time calculation. The
maximum propagation state is shown as a transparent line. The
diamond obstacle has an infinite collision time as it lies outside the
propagation state.
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collision time:
_ L IOg [1 _ Zad],

2avg L*

Atd) = 2L L jog [1 — 2(d —

2avg  2avg

d /vy,

L<Ly,
L), L* < L < L* +2ad, (B1)
L>L*+2ad.

APPENDIX C: AVERAGE SEGMENT LENGTH IN AN OBSTACLE FIELD

Consider obstacles uniformly randomly distributed across a space discretized into voxels of volume §V, with an average
density p. The probability of finding an obstacle in a given voxel is simply péV; the probability of finding no obstacles in N

voxels and then one obstacle in a given further voxel reads

p8V (1 — psV)N. (CD)

Let the N voxels fill a closed surface of volume W = N§V. Taking the continuum limit §V — dV at constant W, we find
p8V(1 — psV)N — pdV exp(—pW), (C2)

We now let the volume be a right trapezoid of thickness s, with a fixed angle arctan(/; /wy ), maximum height ng Ay, and width

L, giving a volume function (easily found geometrically) of

W(L) _ {sthk/wk,

2
sngwihy + nnghp(L — npwy), L 2 ngwy.

L < nqwyg, (©3)

The probability of finding such a volume of width L empty and then exactly one obstacle when extending by d L is given by
Plobs. € (L,L +dL)] = p[dW(L)/dL]exp[—pW(L)], (C4)

which clearly integrates to one, as eventually at least one obstacle will be found. The average width (L) is thus given by

(L) = ,0/ pldW(L)/dL]exp[—pW(L)IdL, (C5)
0

whose evaluation is in the main text.
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