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Short geodesics losing optimality in contact sub-Riemannian
manifolds and stability of the 5-dimensional caustic

Ludovic Sacchelli *

March 14, 2019

Abstract

We study the sub-Riemannian exponential for contact distributions on manifolds of dimension
greater or equal to 5. We compute an approximation of the sub-Riemannian Hamiltonian flow and
show that the conjugate time can have multiplicity 2 in this case. We obtain an approximation of the
first conjugate locus for small radii and introduce a geometric invariant to show that the metric for
contact distributions typically exhibits an original behavior, different from the classical 3-dimensional
case. We apply these methods to the case of 5-dimensional contact manifolds. We provide a stability
analysis of the sub-Riemannian caustic from the Lagrangian point of view and classify the singular
points of the exponential map.

1 Introduction

Let M be a smooth (C*°) manifold of dimension 2n + 1, with n > 1 integer. A contact distribution is a
2n-dimensional vector sub-bundle A C T'M that locally coincides with the kernel of a smooth 1-form w
on M such that w A (dw)™ # 0. The sub-Riemannian structure on M is given by a smooth scalar product
gon A, and we call (M, A, g) a contact sub-Riemannian manifold (see, for instance, [I} 2]).

The small scale geometry of general 3-dimensional contact sub-Riemannian manifolds is well under-
stood but not much can be said for dimension 5 and beyond, apart from the particular case of Carnot
groups. We are interested in giving a qualitative description of the local geometry of contact sub-
Riemannian manifolds by describing the family of short locally-length-minimizing curves (or geodesics)
originating from a given point. In the case of contact sub-Riemannian manifolds, all length-minimizing
curves are projections of integral curves of an intrinsic Hamiltonian vector field on T*M, and as such,
geodesics are characterized by their initial point and initial covector.

By analogy with the Riemannian case, for all ¢ € M, we denote by &, the sub-Riemannian exponential,
that maps a covector p € T M to the evaluation at time 1 of the geodesic curve starting at ¢ with initial
covector p. An essential observation on length minimizing curves in sub-Riemannian geometry is that
there exist locally-length-minimizing curves that lose local optimality arbitrarily close to their starting
point [I7, 20, 23]. Hence the geometry of sub-Riemannian balls of small radii is inherently linked with
the geometry of the conjugate locus, that is, at g, the set of points &;(p) such that p is a critical point of
p— Eq(p), [7v &, 9]'

The sub-Riemannian exponential has a natural structure of Lagrangian map, since it is the projection
of a Hamiltonian flow over T*M, and its conjugate locus is a Lagrangian caustic. In small dimension,
this observation allows the study of the stability of the caustic and the classification of singular points of
the exponential from the point of view of Lagrangian singularities (see, for instance, [6]).

In the 3-dimensional case, this analysis has been initially conducted with different approaches in
[4] and [I8]. These works describe asymptotics of the sub-Riemannian exponential, the conjugate and
cut loci near the starting point (see also [5] and rencently [I4] for later developments on the subject).
The aim of the present work is to extend this study to higher dimensional contact sub-Riemannian
manifolds, following the methodology developed in [I8] and [I6] (the latter focusing on a similar study
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of quasi-contact sub-Riemannian manifolds). More precisely, we use a perturbative approach to compute
approximations of the Hamiltonian flow. This is made possible by using a general well-suited normal
form for contact sub-Riemannian structures. The normal form we use has been obtained in [3]. (We
recall its properties in Appendix )

Finally, it can be noted that classical behaviors displayed by 3-dimensional contact sub-Riemannian
structures may not be typical in larger dimension. The 3-dimensional case is very rigid in the class of
sub-Riemannian manifolds and appears to be so even in regard of contact sub-Riemannian manifolds of
arbitrary dimension. Therefore, part of our focus is dedicated to highlighting the differences between this
classical case and those of larger dimension.

1.1 Approximation of short geodesics

Notation In the following, for any two integers m,n € N, m < n, we denote by [m,n] the set of
integers k € N such that m <k <n.
Let (M, A, g) be a contact sub-Riemannian manifold of dimension 2n 4+ 1, n > 1 integer.

Invariants of the nilpotent approximation Consider a 1-form w such that kerw = A and w A
(dw)™ # 0 (w is not unique, this property holds for any fw where f is a non-vanishing smooth function).
For all ¢ € M, there exists a linear map A(q) : A; — A, skew-symmetric with respect to g4, such that
for all X,Y € A, dw(X,Y)(q) = 94(A(¢)X(¢),Y (q)). Then the eigenvalues of A(q), {£ib,...,%ib,},
are invariants of the sub-Riemannian structure at ¢ (up to a multiplicative constant). In the following,
we will assume that the invariants {by,...,b,} € RT are rescaled so that by ---b, = %

These invariants are parameters of the metric tangent to the sub-Riemannian structure at ¢, or
nilpotent approximation at ¢ (see [12]), which admits a structure of Carnot group. Notice in particular
that the nilpotent approximations of a contact sub-Riemannian structure at two points q1,q2 € M may
not be isometric if the dimension 2n + 1 is larger than 3.

For a given ¢ € M, there always exists a set of coordinates (z1,...,T2,,2) : R2"T1 — R27*1 guch

that a frame ()A( Tyevns )A(gn) of the nilpotent approximation at g can be written in the normal form

Xoi1 = Opy;_, + %xmaz, Xoi = Oy, — %I'Qiflazv Vi € [1,n].
Geodesics of such contact Carnot groups can be computed explicitly, and their features have been ex-
tensively studied (see, for instance, [11J, 19 22]). The central idea we follow is that the sub-Riemannian
structure at a point ¢ € M can be expressed as a small perturbation of the nilpotent structure at g for
points ¢ close to gp. An important tool we use is the Agrachev—Gauthier normal form, introduced in [3],
which asserts, for any given gy € M, the existence of coordinates at qq, (71, ...%2,,2) : M — R?"T1 and
a frame of (4, g), (Xi,...,Xaon), such that

X;(x,2) = Xi(z,2) + O (|z]?) .

Asymptotics and covectors Let H(p,q) = % SUP,eA,\{0} % be the sub-Riemannian Hamiltonian.
For all ¢ € M, H(-,q) is a positive quadratic form on T M of rank 2n. Then for all r > 0, the set
{H(p,q) = r | p € T; M} is an unbounded subset of 77 M with the topology of the cylinder $*"~' x R
(see for instance [I} [2]). In the following, for all ¢ € M and r > 0, we denote this set by

Cy(r) ={H(p,q) =7 |peT; M}.

Abusing notations, for V' C RT, we denote C,(V) = U,cyCy(r). We choose coordinates p = (h, hg) on
Ty M where for a given r > 0, ho denotes the unbounded component of p € Cy(r).

An important observation is that in the nilpotent case, geodesics losing optimality near their starting
point correspond to initial covectors in Cq(r) such that |hg|/r is very large (see, for instance, [10]). The
expansions obtained in this paper rely on the same type of asymptotics.

Sectlon [2]is dedicated to the computation of an approximation of the flow of the Hamiltonian vector
field H as hy — oo. Since H is a quadratic Hamiltonian vector field, its integral curves satisfy the
symmetry

"™ (po, q0) = e (tpo, q0), Vqo € M,po € T, M,t € R.



Hence it is useful for us to consider the time-dependent exponential that maps the pair (¢, p) € RxCq(1/2)
to the geodesic of initial covector p evaluated at time ¢. Using the approximation of the Hamiltonian flow
as hg — 0o, Section [3|is dedicated to the computation of the conjugate time. For a given ¢ € M, the
conjugate time t.(p) is the smallest positive time such that &,(t.(p),-) is critical at p. The computation
of the conjugate locus follows once the conjugate time is known.

Notice in particular that for a given initial covector p € C,(1/2), t.(p) is then an upper bound of the
sub-Riemannian distance between g and &,(t.(p),p) (and we have equality if &,(¢.(p), p) is also in the cut
locus).

In the 3D case, it is proven in [4] [I8] that for an initial covector (cosf,sinf, hy) € C,(1/2), the
conjugate time at ¢ satisfies as hg — oo

) 2 TR 1
te(cosf,sinf, hg) = e +0 <|h0|4> (1)

and the first conjugate point satisfies (in well chosen adapted coordinates at ¢)

™

ho!?

Ey(tc(cosb,sinb, hy), (cosb,sinb, hy)) = £ (0,0,1) £ 21X (—sin® 0, cos®0,0) + O <|h1|4> .
0

|hol®

The analysis we carry in Sections [2[ and [3| aims at generalizing such expansions. (Notice that we
focus only on the case hg — 400 but the case hg — —oo is the same.) Our results, however, provide an
important distinction between the classical 3D contact case and higher dimensional ones. Indeed, a very
useful fact in the analysis of the geometry of the 3D case is that a 3D sub-Riemannian contact structure
is very well approximated by its nilpotent approximation (as exemplified in [7], for instance).

This can be illustrated by using the 3D version of the Agrachev—Gauthier normal form, as introduced
in [I8]. Let us denote by &, the exponential of the nilpotent approximation of the sub-Riemannian
structure at gg in normal form. Then as hg — 400, we have the expansion

gq(T/ho, (hl, ho, ho)) = gq(T/h(), (hl,hg,h(J)) +0 (hls) . (2)
0

As a result, one immediately obtains a rudimentary version of expansion ,

27

1
te(cosf,sin@, hg) = —+0 | —= | . 3
! 9=+ (up) ?

However, expansion is not true in general when we consider contact manifolds of dimension larger
than 3 (that is, the conjugate time is not a third order perturbation of the nilpotent conjugate time
27 /|hol). As an application of Theorem which gives a general second order approximation of the
conjugate time in dimension greater or equal to 5, we are able to prove that the expansion cannot be
generalized.

In the rest of this paper, statements refer to generic (d-dimensional) sub-Riemannian contact man-
ifolds in the following sense: such statements hold for contact sub-Riemannian metrics in a countable
intersection of open and dense sets of the space of smooth (d-dimensional) sub-Riemannian contact met-
rics endowed with the C3-Whitney topology. As an application of transversality theory, we then prove
statements holding on the complementary of stratified subsets of codimension d’ of the manifolds, locally
unions of finitely many submanifolds of codimension d’ at least.

Theorem 1.1. Let (M, A, g) be a generic contact sub-Riemannian manifold.
There exists a codimension 1 stratified subset & of M such that for all ¢ € M\ &, for all linearly adapted
coordinates at q and for all T > 0,

lim sup h% sup
ho—~+oo 7€(0,T)

gq (;};)7(h17--~7h2n7h0)> _é\q (;;7(h17"'7h2n7h0))'> > 0. (4)

This observation needs to be put in perspective with some already observed differences between 3D
contact sub-Riemannian manifolds and those of greater dimension. For a given 1-form w such that
kerw = A and w A (dw)™ # 0, the Reeb vector field is the unique vector field Xy such that w(Xy) =1



and tx, dw = 0. The contact form w is not unique (for any smooth non-vanishing function f, fw is also
a contact form), and neither is X¢. In 3D however, the conjugate locus lies tangent to a single line that
carries a Reeb vector field that is deemed canonical. In larger dimension, this uniqueness property is not
true in general. For this reason, we introduce a geometric invariant that plays a similar role in measuring
how the conjugate locus lies with respect to the nilpotent conjugate locus and use it to prove Theorem [4]

The main difference seems to be a lack of symmetry in greater dimensions. Indeed the existence of
a unique Reeb vector field (up to rescaling) points toward the idea of a natural SO(2n) symmetry of
the nilpotent structure. However the actual symmetry of a contact sub-Riemannian manifold (or rather
its nilpotent approximation) is SO(2)™ (on the subject, see, for instance, [3]). Of course, when n = 1,
SO(2)™ = SO(2n). More discussions on this issue can also be found in [I5].

1.2 Stability in the 5-dimensional case

We wish to apply these asymptotics to the study of stability of the caustic in the 5-dimensional case. This
study has been carried for 3-dimensional contact sub-Riemannian manifolds in [I8] and for 4-dimensional
quasi-contact sub-Riemannian manifolds in [I6]. To understand the interest of stability in the sense of
sub-Riemannian geometry in small dimension, we must first understand stability from the point of view
of Lagrangian manifolds. (See, for instance, [6, Chapters 18, 21] and also [I3], 21].)

Let (E,0) be a 2d-dimensional symplectic manifold. A smooth submanifold L of M is said to be a
Lagrangian submanifold if L is d-dimensional and o, = 0. The fiber bundle 7 : £ — N is said to be a
Lagrangian fibration if its fibers are Lagrangian submanifolds. For L a Lagrangian submanifold of E and
i : L — F an immersion of L into F such that i*c = 0, the map woi: L — N is called a Lagrangian
map.

Let (E,0), (E',0’') be two symplectic structures, let 7 : E — N, ' : B/ — N’ be two Lagrangian
fibrations. Two Lagrangian maps woi: L — N, 7’ oi’ : ' — N’ are said to be Lagrange equivalent if
there exists two diffeomorphisms ® : F — E’ and ¢ : N — N’ such that ®*¢’ = o, 7/ 0 ® = ¢ o 7 (the
two Lagrangian fibrations are Lagrange equivalent) and ® o i(L) = i'(L').

The caustic of a Lagrangian map is the set of its critical values. A consequence of the definition of
Lagrangian equivalence is that if two Lagrangian maps are Lagrange equivalent then their caustics are
diffeomorphic.

A Lagrangian map f : L — N is said to be (Lagrange-)stable at g € L if there exists a neighborhood
Vy of ¢ and a neighborhood V; of fy, for the Whitney C'*°-topology such that any Lagrangian map
g € Vy is Lagrange equivalent to f (see [16]). In the following we may refer to points of a caustic as
stable when they are critical values of a stable Lagrangian map.

For dimensions d < 5, there exists only a finite number of equivalence classes for stable singularities
of Lagrangian maps (for instance, one can find a summary in [9, Theorem 2]).

Theorem 1.2 (Lagrangian stability in dimension 5). A generic Lagrangian map f : R> — R5 has only
stable singularities of type As, ..., Asg, Df, D?f, ’Dét and 56i,

Sub-Riemannian exponential maps form a subclass of Lagrangian maps and we can define sub-
Riemannian stability as Lagrangian stability restricted to the class of sub-Riemannian exponential maps.
Notouriously, the point gy is an unstable critical value of the sub-Riemannian exponential &,,, as the
starting point of the geodesics defining &, .

We focus our study of the stability of the sub-Riemannian caustic on the first conjugate locus. This
work can be summarized in the following theorem (see also Figures .

Theorem 1.3 (Sub-Riemannian stability in dimension 5). Let (M,A,g) be a generic 5-dimensional
contact sub-Riemannian manifold. There exists a stratified set & C M of codimension 1 for which all
go € M\ & admit an open neighborhood V,, such that for all U open neighborhood of qo small enough,
the intersection of the interior of the first conjugate locus at qo with Vg, \ U is (sub-Riemannian) stable
and has only Lagrangian singularities of type As, Az, A4, Dj and As.

This result stands on two foundations. On the one hand, a careful study of the problem of conjugate
points in contact sub-Riemannian manifolds, and on the other hand, a stability analysis from the point
of view of Lagrangian singularities in small dimension.
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Figure 1: Section of the caustic of a 5-dimensional sub-Riemannian manifold, at a point of the manifold
chosen so that it exhibits A4 singularities. This representation is obtained after sectioning by the hyper-
planes {z = 2z}, {#3 = Rpcosw}, {z4 = Rysinw} (all in Agrachev—Gauthier normal form coordinates),
and plotting for all w € [0, 27), with fixed 29, Rz > 0.

Figure 2: Section of the caustic of a 5-dimensional sub-Riemannian manifold, at a point of the manifold
chosen so that it exhibits Dj singularities. This representation is obtained after sectioning by the
hyperplanes {z = z}, {3 = Racosw}, {4 = Rysinw}, and plotting for all zy € [0, Z], with fixed
Zo, Ro,w > 0.

1.3 Content

In Section we compute an approximation of the exponential map for small time and large hg (Propo-
sition . Using the Agrachev—Gauthier normal form (recalled in Supplementary Materials , the
exponential appears to be a small perturbation of the standard nilpotent exponential.

Section are dedicated to the approximation of the conjugate time (as summarized in Theorem,
from which an approximation of the conjugate locus can be obtained. A careful analysis of the conju-
gate time for the nilpotent approximation shows that, under some conditions, the second conjugate time
accumulates on the first (Section . We rely on this observation to compute a second order approxi-
mation of the conjugate time (Section E[) and treat the problem of a double conjugate time via blow-up
(Section . With the aim of proving stability of the caustic, we conclude the section by computing a
third order approximation of the conjugate time for a small subset of initial covectors (Section |4.4]).

Hence we have devised three domains of initial convectors where a stability analysis must be carried
(Section [5)). We show that we can tackle this analysis relying on a Lagrangian equivalence classification
(Section[.1)) and show that only stable Lagrangian singularities appear on the three domains (Section|5.3).



2 Normal extremals

2.1 Geodesic equation in perturbed form

In this section we establish the dynamical system satisfied by geodesics in terms of small perturbations
of the nilpotent case.

Let (M,A,g) be a (2n + 1)-dimensional contact sub-Riemannian manifold. Let V' be an open sub-
set of M and (X1,...,X5,) be a frame of (A,g) on V, that is, a family of vector fields such that
94(Xi(q), X;(q)) = &) for all i,j € [1,2n] and all ¢ € V (such a family always exists for V sufficiently
small). The sub-Riemannian Hamiltonian can be written

12n

H(p,q) =5 _(p. Xi(a))*.

i=1

In the case of contact distributions, locally-length-minimizing curves are projections of normal extremals,
the integral curves of the Hamiltonian vector field H on T*M (see for instance [I} 2]). In other words, a
normal extremal ¢ — (p(t), q(t)) satisfies in coordinates the Hamiltonian ordinary differential equation

S > (. Xu(@) Xil0)
dp a (5)
3 =~ K@) P D Xi(0).

For V sufficiently small, we can arbitrarily choose a non-vanishing vector field X, transverse to A
in order to complete (X1(q),...,X2,(q)) into a basis of T,M at any point ¢ of V. We use the family
(X1,...,Xon, Xo) to endow T*M with dual coordinates (hq, ..., han, ho) such that

hi(p,q) = (p. Xi(q)) Vi€ [0,2n],Vq € V,Vp € T/ M.

We also introduce the structural constants (c¥ " )ijkelo,2n] o0V, defined by the relations
(X, X;] ch VXi(q Vi,j € [0,2n],Vqg € V.

In terms of the coordinates (h;)ic[o,2n], along a normal extremal, Equation () yields (see [I, Chapter 4])

2n 2n

—{H hi} =3 ckihjh, Vie[0,2n].

7=0 k=0

We set J : V.= My, (R) to be the matrix such that J;; = 0
(R — R?") to be the map such that for all i € [1,2n],

for all 4,5 € [1,2n], and Q : V —

Ji

2n 2n

Qi(h1,... hay) = ZZC hihy.

j=1k=1

dh
By denoting h = (hq, ..., ha,) we then have i hoJh + Q(h).
As stated in Section [1] l we want an approximation of the geodesics for small time when hg(0) — +oo,
5 dhg

dt
We separate the terms containing hg in the derivative of w to obtain an equation similar to the one

of h. We set L : V. — Mjix2,(R) to be the line matrix such that L; = c$,, for all i € [1,2n], and
Qo:V — (R2” — R) to be the map such that

- d
thus we introduce w = ho—((?) and 7 = h(0) ! Then d—q: = —nuw

2n 2n

Qo(hh e hgn) = Z Z C?Ohjhk,

j=1k=1



so that ((11—1;] = —wLh — nw?Qo(h).

Finally, rescaling time with 7 = ¢/, we obtain

dq 2n
— = i X
=" ; hiXi(q)

dh 1 (6)
o = gt Q)
dw

5 = ~wLh =" wQo(h).

Hence to the solution of with initial condition (qo, (h(0),n71)) corresponds the solution of the
parameter depending differential equation @ of initial condition (go, h(0),w(0)) and parameter 7. Since
w(0) = 1, the flow of this ODE is well defined (at least for 7 small enough), and smooth with respect to
n € (—¢,¢), for some € > 0.

This warrants a power series study of its solutions as 7 — 0.

2.2 Approximation of the Hamiltonian flow

Let go € M. In the rest of the paper, except when explicitly stated otherwise, we assume that the
structure at gy has been put in the Agrachev—Gauthier normal form introduced in [3]. That is, we have
an open neighborhood V' C M of qq, linearly adapted coordinates at qo (21, ..Z2n,2) : V — R?"*1 and
a frame of (A, g), (X1, ..., Xan), satisfying many useful symmetries. (for instance, see Theorems
in . The family is locally completed as a basis of TM with Xy = &

Let us introduce a few notations. Let J = J(go). As a consequence of the choice of frame, (in
particular, see Equations and in, J is already in reduced form diag(.J, ..., J,), that is, block
diagonal with 2 x 2 blocks

= 0 b .
i=(5, %), viena

where (bi)ie[[l,n]], are the nilpotent invariants of the contact structure at gg. Then let h:R xR — R2,
2:R xR? — R?" and 2 : R x R?" — R?" be defined by

h(t,h) =eh,  a(t,h) = J (e — In)h,
i bit — Sin(bﬂf)

h2;
g -1 20; ’

for all t € R and all h € R?",
We also set J(I) : R?" — My, (R) such that

2n 2 ) 2 )
VAOEDS (8 Kooy 2 (XJ)Q"“) vk, Vioje[1,2n],

1 (%jaxk amaxk

where for any vector field Y, we denote by (Y);, 1 <i < 2n+ 1, the i-th coordinate of Y, written in the
basis (Opyy .-y Ougys Oz)-
Finally, let us denote B = {h € R?*" | 21221 h? < R}.

Proposition 2.1. For all T, R > 0, normal extremals with initial covector (h(0),
n~1) have the following order 2 expansion at time n7, as n — 0, uniformly with respect to T € [0,T)
and h(0) € Br. In normal form coordinates, we denote

e ((0,0), (h(0), 1Y) = (2(r), (7)) , (h(r), () 1)
Then
£(r) = nit(7, h(0 +n//e“WJ (#(p, 1(0))) h(p, h(0)) dp do + O(P),
dﬂ=2((D+O



and
h(r) = h(r, h(0)) + n/o el 7 (i(0, 1(0))) h(o, h(0)) do + O(1?),

w(r) = 1+ 00P).

Proof. This is a consequence of the integration of the time-rescaled system @ Since the system smoothly
depends on 7 near 0, we prove this result by successive integration of the terms of the power series in 7
of 2 =Y 7Fx® 2 =30k h =S nFr®) and w =3 nFw®.

Let T, R > 0. All asymptotic expressions are to be understood uniform with respect to 7 € [0, 7] and
h(0) € Bg. Solutions of (@ are integral curves of a Hamiltonian vector field H , hence H is preserved
along the trajectory, that is, for all 7 € [0, T],

2n 2n
> hi(r)? =Y hi(0).
=1 i=1

d d
Furthermore, we have by (6] d—x = O(n), d—z = O(n), and since z(0) = 0 and z(0) = 0, we have
T T
z(7) = O(n) and z(1) = O(n).
As a consequence of the choice of frame, (in particular conditions (21)—(22) in , cfj (go) # 0 if and
only if k£ =0 and there exists [ € [1,n] such that {7,j} = {2l — 1,2l}.

Hence for all j € [1,2n], &9(q(7)) = O(n) and Lh = O(n). Similarly, Q;(h) = O(n) for all i € [0, 2n],
and since w(0) = 1, we have that i—w = 0(n?) and w(r) = 1+ O(n?).
T

- - dh -
Since J(qo) = J, we have J(q) = J+ O(n) and thus 3= Jh—+O(n). Hence h is a small perturbation
T
of the solution of 4 = Jh with initial condition h(0), that is, h(7) = h(r, h(0)) + O(n).
Since X;(qo) = % for all i € [1,2n] (as a consequence of (19)),

1 1
L0 = i), S
and since x(0) = 0, 2(0) = 0, z(7) = n2(7, h(0)) + O(n?) and z(7) = O(n?).
The definition of J) implies J1) (z(V) = %ﬁ;ﬁ o Then, since Q(h) = O(n), h}) is solution of
dn®
dr

= JhW 4+ JO (zM) with initial condition A" (0) = 0. Hence

WO (r) = /0 " =97 V) (30 B(0))) h(o, h(0)) o

Since 8(;;:)”' =0 for all 4,5, k € [1,2n] (as stated in (20)),

. b
X2i-1(q(7)) = Oy, +nTai(T, h(o))§8Z +0(n?),

Xaia(r)) = ey, — 0211 (7 H(O) 202 +O07)

dz(® o dz@ b

Thus (1), W = Z?:l 5 (ﬁgi,ligi — ﬁgiigi,l). Hence the statement by integration. O
T

3 Conjugate time

3.1 Singularities of the sub-Riemannian exponential
Definition 3.1. Let gy € M. We call sub-Riemannian exponential at qy the map

£t RTXTEM — M

(t,po) > Eq(tipo) = moet(

p07q0)

where 7 : T*M — M is the canonical fiber projection.



Recall that the flow of the Hamiltonian vector field H satisfies the equality

etH(pOaQO) :eH(tp07q0)v VCIO €M7p0 GTq*oMateR'

We use this property to our advantage to compute the sub-Riemannian caustic. Indeed, the caustic at
qo is defined as the set of critical values of £, (1,-). But for any time ¢ > 0, the caustic is also the set of
critical values of £, (¢, -). Hence instead of classifying the covectors pg such that &, (1,-) is critical at po,
we compute for a given py the conjugate time t.(po) such that &, (¢.(po),-) is critical at po.

Definition 3.2. Let qo € M, and pg € Ty, M. A conjugate time for po is a positive time ¢ > 0 such that
the map &y (¢, -) is critical at po. The conjugate locus of qo is the subset of M

{&€4(t,po) | t is a conjugate time for py € T, M} .

The first conjugate time for pg, denoted t.(pg), is the minimum of conjugate times for pg. The first
congugate locus of qo is the subset of M

{&4 (t,po) | t is the first conjugate time for py € T, M} .
In the following, we restrict our study of the sub-Riemannian caustic to the first conjugate locus.

From now on, let us index the nilpotent invariants in descending order by > by > --- > b, > 0. Let
&1 C M be the set of points of M such that two invariants coincide, b; = b;, with i # j. Assuming
genericity of the sub-Riemannian manifold, &; is a stratified subset of M of codimension 3 (see [16] for
instance).

Remark 3.3. This is a consequence of Thom’s transversality theorem applied to the jets of the sub-
Riemannian structure, seen as a smooth map.

Furthermore, for a given gy € M, if the sub-Riemannian structure at ¢¢ is in Agrachev—Gauthier
normal form (see Appendix then the jets of order k at gy of the sub-Riemannian structure are given
by the jets at 0 of the vector fields X1, ..., Xa,.

As stated in the introduction, the study of the sub-Riemannian caustic near its starting point requires
considering initial covectors in C4(1/2) such that hg is near infinity. Recall that geodesics with initial
covectors in C,4(1/2) are parametrized by arclength, hence short conjugate time imply that the conjugate
point is close to the starting point of the caustic. Then one can check that a short conjugate time
corresponds only to covectors with large hg. From the point of view of the exponential at time 1, this
means that singular points close to the origin of the caustic must belong to a sufficiently narrow cone
containing Cy, (0) (again, because &, (t, p) = &£, (tp)).

This observation can be stated in the following way (a proof can be found in Appendix [A] see Propo-
sition as an application of the Agrachev—Gauthier normal form).

Proposition 3.4. Let (M,A,g) be a contact sub-Riemannian manifold and qo € M. For all ho > 0,
there exists € > 0 such that all p € C4(1/2) with t.(p) < € have |ho(p)| > ho.

In coordinates, conjugate points satisfy the following equality

o€ 08, OF
det 40 o 40 40
¢ (am " Doy aho)

=0. (7)
(t,po)
To use this equation in relation with the results of Proposition 2.1} we introduce
F(r,h,n) = &g, (n7; (hon ™)), V7 >0,h €R™, 1> 0.

Then

Ofwy, op iy _ [ OF . OF
8h0 (777—7 (ha 77 )) - 77 (77 67’] (T7 h7 77) T 87' (Tv hv 77))
and @ equates to
OF oF OF oF
det (ahl, .,7ah2n,’r}87n —7'87_) o) =0. (8)

We have shown in Proposition as 7 — 0, that the map F is a perturbation of the map (7, h,n) —
(2, 2), the nilpotent exponential map. Hence the conjugate time is expected to be a perturbation of the
conjugate time for (2, 2). To get an approximation of the conjugate time for a covector (h,n~t) asn — 0,
we use expansions from Proposition to derive equations on a power series expansion of the conjugate
time.




3.2 Nilpotent order and doubling of the conjugate time
Let us define

9)

(7, hyn) = det <8F OF OF 8F)

Ohy ahgn’”a? ~ "o

(7,h,m)

and its power series expansion ®(7, h,n) = Zk>0 n*®F) (1, h).

As a first application of Proposition notice that F; = O(n) for all i € [1,2n], while Fy,+1 = O(n?).
Hence, one gets ®%) = 0 for all k € [0,2n + 1], and @(2"”) is the first non-trivial term in the power
series.

To study ®(2"+2) let us introduce the set Z = {2k /b; | i € [1,n],k € N} and the map 1 : (R*\ Z) x
R™ — R defined by

ot =35 (or o SRIR - 2RT). v e @D xR
=1 7

We first need the following result on the zeros of ¢ (see, for instance, Appendix [C.2.1]).

Lemma 3.5. Assume by > by > -+ > b,. For all r € (RT)", let 71(r) be the first positive time in
R\ Z such that ¥(m1,7) = 0. Then 11(r1,...,7) > 27/by and there exists f(ra,...,r,) > 0 such that,
asr; — 0%,

T1(r1y ..y mn) = 27 /by + f(ra, ... rp)rT + o(r?). (10)

The zeros of @272 can be deduced from the zeros of 1, as shown in the following proposition.

Proposition 3.6. Assume by > by > -+ > b,. Let h € R?>"\ {0} and r € R™ be such that r; =
h3,_, + h3; for alli € [1,n]. Then ®2"*2)(7 h) =0 if and only if T € Z or (,7) = 0. In particular

(1 h) £0 Vr e (0,2n/by),Yh € R?™\ {0}.
Proof. By factorizing powers of 1 in ®, we obtain that ®(27+2) is given by the determinant of the matrix

o ( Dyi(r) | a(r) = Th(r) )

The Jacobian matrix Dp& = J~ (e — I,,) is invertible for 7 € R\ Z and of rank 2n — 2 for 7 € Z.
Hence, the matrix M is not invertible for 7 € RT \ Z if and only of we have the linear dependance of the

family . . 2
(o (B8 o () (=) )

This implies the existence of u € R?* such that both Dy2(t)u = &(r) — 7h(r) and Dp(T)u =
2(r) — 7L 2(r). That is

=

N>

Du(r) (D (7)™ () = mh(r)) = £(7) - 7%2(7).

(7’ cosb;T — %) and

w‘s 3,

We explicitly have 2(r) — 7%2(7) =",

Dy2(7) (Dyie(r)) ™" (fﬁ( —7h(r ) Z re (sinb; — b;7) b”COS(QZ’I::S/ii)(;iji;)(bﬂ/2),

Hence Dy,2 (D) ™" (ic - Tﬁ) — (2=7%) = ¢(r,r), and times 7 € RT such that <I>(2n+2) (r,h) =0

are either multiples of 2mb;, i € [1,n], or zeros of 1. Under the assumption that h € R?*" \ {0} and
€ (0,2b;7), we have ¢(7,7) > 0, hence the result. O

10



\(I)(2n+2) @(271,-&-2)

T T
27 T1 2m
b1 bl
(a) ®7+2) a5y = %2 (b) ®(2n+2) a5 1y = 0.

Figure 3: Representation of ®2"*+2) as a function of 7 in the case n = 2, as r; # 0 and 7, = 0 (with
bl = 2, b2 = 1/4 and Tro = 1)

We can draw some conclusions regarding our analysis of the conjugate locus via a perturbative ap-
proach. From Proposition we have that 27/b; is the first zero of ®2"+2)(. 1) for all h € R?™\ {0}.
From Lemma we also know that 27/b; is a simple zero if 1 > 0 and a double zero otherwise (see
Figure|3). Zeros of order larger than 1 can be unstable under perturbation and this case requires a sepa-
rate analysis, either by high order approximation or by blowup. We choose the latter for computational
reasons.

From Equation in Lemma the blowup r; < n®r; corresponds to

T (N1, re, ... mn) = 270 /by + 02 f(ra, ..., )72 4 o(n*®).
Since we have an approximation of the exponential that is a perturbation of order n of the nilpotent
exponential, we expect the conjugate time to be a perturbation of order 5 of the nilpotent conjugate
time. Hence it is natural to chose a = 1/2 in hope to capture a perturbation of comparable order in 7.
We separate the cases in the following way.

e We can compute the conjugate time assuming r; > ¢ for some arbitrary € (in Section {4.1));

e we use the blowup r < /771 to get the conjugate time near 1 = 0 (in Section [4.2)).

3.3 Statement of the conjugate time asymptotics

The focus of this paper is now devoted to the proof of the following asymptotic expansion theorem for
the conjugate time on M \ &1, that is, at points such that by > by > --- > b,. Let S; be the subspace of
Ty M defined by

S| = {(hl,...7h2n,h0) GT{Z)M\C(IO(O) | hi1 = ho :O,H#O},

and for all € > 0, let us denote by S} the subset of 7,7 M containing Si:

S ={(h1,... han,ho) € T M\ Cq,(0) | h + h3 < eH(ha,... han, ho)} .

Theorem 3.7. Let qo € M \ &;. There exist real valued invariants (sz)i,ke[[lﬂ]],; a, B, such that we
J€[3,2n]

have the following asymptotic behavior for initial covectors py € Ty M with hg — +oc.

(Away from Sy.) For all R > 0,e € (0,1), uniformly with respect to pog = (hi,..., hon,

ho) in Cqy ((0, R)) \ S5, we have as hg = +o0

2 1 1
te(hi,... hon, ho) = —t@(hy, ... hon) + O | =
(17 a270) b1h0+h%c<17 72)+ h%
where t,(;2) satisfies
(h? + h3)tP (h) = —2(ahy + Bha) (B + h3) + (y12 + 721)hiha — Ya2h? — Y11h3, (11)

11



denoting
2n
Yij = 3 _Ki"hk,  Vij € [1,2n].
k=3

(Near S1.) The asymptotic expansion

hl h2 2 1
(2 P2 o) = o 40—
(vho Vho 2 O> b1h0+ <h3)

holds if and only if the quadratic polynomial equation in X

2m
X°K - X {bl(h% +h3) = K (71 + 722)}
21

+b1

[(712 + 721)h1ho — y22hT — y11h3] + K (11722 — Y12721) = 0

n
admits a real solution, where K = >
i=2

If that is the case, denote by ££2)(h1, ...y hay) the smallest of its two (possibly double) solutions. Then,
for all R > 0,¢e € (0,1), uniformly with respect to py = (%, ;—%, h3, ..., hon, ho) € Cyo ((0, R)) N S5, we

have N ) ) , X
1 2 27 -2)
tc 7377h7"~ahn7h *7+7tg h,...,hn +O — .
(st eshant) = o4 o) +0 ()

(h3;_1 + h3;) (1 — o cot bbl’T) > 0.

4 Perturbations of the conjugate time

Thanks to the previous section, we have a sufficiently precise picture of the behavior of the conjugate
time for the nilpotent approximation. We now introduce small perturbations of the exponential map in
accordance with Proposition As stated previously, we treat separately the case of initial covectors
away from S; and near S; since S corresponds to the set of covectors such that 1 = \/h? + h3 = 0.
Recall also that we assumed gy € M \ &;.

However, rather than computing t., we compute 7. = t./7, the rescaled conjugate time, since we use
asymptotics in rescaled time from Proposition [2.1]

4.1 Asymptotics for covectors in T;OM \ 51

In this section we assume that (h1,h2) # (0,0). Recall that F(r,h,n) = E(nr; (h,n~ 1)), for all 7 > 0,
h € R?", > 0. The function F' admits a power series expansion

k>0

and for o7 € R, h € R?", evaluating F at the perturbed conjugate time %—717 + ndr yields

+0(n?). (12)

1)
+n° {F(Q) + &rag}

— 27
T7b1

In the previous section, we highlighted the role of the function ® defined by @ Observe that 7. must
annihilate every term in the Taylor expansion of ®(7.(-,7),+,7). This first non-trivial term is obtained by
straight forward algebraic computations (provided for instance in Appendix in particular Lemma|C.3]).

Proposition 4.1. Let 7.(h,n) = Z;ﬁ% nch(k)(h) be the formal power series expansion of 7., for all
(h,n~') € Tz M. Then 70 = 27 /by and 7 must satisfy

o(F® o (F® o (F® o (F®
(2 4+ h2)7V(h) = —h2 ( )2—h§ ( )1+h1h2< ( )1+ ( )2>. (13)

Ohs Ohy Ohs Ohy
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Proof. As discussed in the previous section, TC(O) = 27 /by is a consequence of Proposition m The first
non trivial term of the expansion of the determinant ® (27 /by + ndr, h,n), that is, the term of order 2n+3,

is obtained by algebraic computations. As a consequence of Proposition notice that (F (2))2n = Z,

05;1) = fl, and that Oy, 2 = 2why /b1, Op,2 = 2mha /b1. Hence we get the stated result by solving for 7

9 9
(2n+3) f’Tla(FQ))l +or 502 (F®), I
ha ha 0 T=2m/by
(Where we denote, for f,g: R™ — R, f o g if there exists h : R™ — R\ {0} such that f = gh.) O

Remark 4.2. Relation is degenerate at hy = ho = 0. This is another illustration of the behavior we
highlighted in the previous section, that is, Tc(l) can be a zero of order 2 at r; = 0.

As a consequence of Proposition it appears that for all £ € [1,2n] and all 7 > 0, each func-
tion h — $§€2)(T) can be seen as a quadratic form on (hq,...,hs,). Hence we introduce the invariants

Ky such that
i,5,k€[1,2n]

9 g
R () - X wensl
1 1<i<j<2n

These invariants satisfy some useful properties (of which a proof can be found in Appendix B} Lem-
mas through [B.4). We give the following summary.

Proposition 4.3. The invariants (/ﬁ?j) 4 depend linearly on the family
i,7,k€[1,2n]

0%(X;)2n+1
w00, |
LjOTk i.j,k€[1,2n]

There exist o, B € R such that we have the symmetries
1,1 2,2 1,2 1,1 2,2 1,2
Ky =3q, K=o, Ky =2aq, kym =8, Ky =38, Ky =20

and for all i € [2,n], (Ii%) kme[1,2] only depend on the family
le[2i—1,24]

{(W(QO)) | (k,1,m) € [2i —1,2] x [1,2]* U [1,2]* x [2i — 1,2i]]} .

Furthermore, the corresponding linear map ¢; : R'™® — R® such that

0%(Xi)an
Gi <<§k§)2+1(q0)> = ("i%) k,me{1,2}
L10Tm klme{1,2}U{2i—1,2i} 1€{2i—1,2i}

is of rank at least 7 (and of rank 8 on the complementary of a codimension 1 subset &3 of M ).

Remark 4.4. A consequence of the rank of (; being 7, for all 2 < i < n, is that a single condition of

codimension k > 2 on (k') 4 ,ef1,2) is then a condition of codimension at least k — 1 on the jets of
1€[2i—1,2i]
order 2 of the sub-Riemannian structure at gg.

Using this notation, we can give a first approximation of the conjugate locus.

Proposition 4.5. Let qo € M \ &,. As n — 0T, uniformly with respect to pg = (h1,...,hon,n"1) €
Cq((0,R)) \ S§ for all R > 0,e € (0,1), we have (in normal form coordinates)

2

(F(1e(h,m)), hyn))1 = ﬁ ((v1 = v22)h + 112h3 + (21 + 2712) R hae + 61) + O(n°)
1 2
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2

= h2Z— 72 (i2h$ = (111 — y22)h + (712 + 2921)ha B3 + 62) + O(n?)
1T

(F(1e(h,m)), hym))2
with

2n
Yij = 3 Ki"hk,  Vij € [1,2n],
k=3

2n 2n
61 = Oé(h? + h§)2 + Z Hijhihj, 52 = ﬂ(h% + h%)2 + Z Kjgjhihj.
3<i<j<2n 3<i<i<2n

If there exists a covector such that 17 — 22 = 12 = 721 = 0 then this first order approximation of
the conjugate locus is not sufficient to prove stability and more orders of approximation are necessary.
This occurs for instance when hg = - - = ho, = 0, and

(F(re(h,m)), hom)1 = nau(hf + h3) + O(n*),
(F(7e(h,m)), b))z = n°B(hT + h3) + O(n°).

Proposition 4.6. Let M be a generic contact sub-Riemannian manifold of dimension 2n +1 > 5. Let
Sy C M be the set of points at which the linear system in (hs,...hay)

) . .
Zgﬁg(“?l - Hg’l)hi =0,
St kiythy =0,
212:3 Ky'hi =0,
admits non-trivial solutions. If dimM > 7, then M = G5. However if dim M = 5, the set Gy is
codimension 1 stratified subset of M.

Proof. If we assume (rg,...,r,) # 0 then 11 — Y22 = 712 = ¥21 = 0 reduces to the existence of a non-zero
vector of R?”~2 in the intersection
E 1 E iR E 1
Span{ (k) — k3%, .. k2" — K32} N Span{(k3°, ..., k7P N Span{(ky®, ..., Ky ")}

This space is never reduced to a single point for n > 2, hence M = G5. However for n = 2, this requires
the three vectors

1,3 23 14 24 2,3 24 1,3 1,4

(k17 =Ry k" = Ry7), (KT R, (Ko™ Ry, (14)

to be co-linear, which is a constraint of codimension 2 on the family (/{f,f) kme{1,2} - By Remark
le{3,4}

this is a codimension 1 (at least) constraint on the jets of order 2 of the sub-Riemannian structure at qo,

hence the result. O

4.2 Asymptotics for covectors near 5;

We repeat the previous construction for a special class of initial covector in the vicinity of S; =
{(hl, ey hon, ho) S T;OM |
hi = ha = 0}, in accordance with the discussion of Section

Let h € R?™ be such that (hs,...,ha,) # (0,...,0). We blowup the singularity at hy = hy = 0 by
computing an approximation of the conjugate locus for

h(O) = (\/ﬁﬁl,\/ﬁhg,ﬁg,,...,ﬁgn). (]_5)

Let A be the square 2n x 2n matrix such that

1 ifi=j=lori=j=2
Ay — if 4 j ori=j , (16)
’ 0 otherwise,

so that h(0) = /JAh + (1o, — A)h.

Recall the power series notation f(n, h(0)) = 3. 0¥ f*) (1, h(0)). As a consequence of Proposition
we can give a new expansion of the Hamiltonian flow for the special class of initial covectors of type (|15))
in terms of coefficients of the power series of x,z, h,w. (Recall that for all R > 0, Br denotes the set

{h e R?" | 2" h? < R}.)
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Proposition 4.7. For all T, R > 0, normal extremals with initial covector
(\/ﬁAB + (I2n - A)Bv 77_1)
have the following order 3 expansion at time nt, as n — 07", uniformly with respect to T € [0,T] and
h € Bg:
2(r) = i (r. (= M) + 772 [& (7, AR)] + 0 [ (7, (Lo — A)B)]

172 [ (7, h) = 2@ (7, (Lo = MB) = 2 (r,AR)| + O(P),

2(07) = 1727, (oo = MB) + 7 [ 297, (I — MR) + 27, AR) | + O

Likewise, the associated covector has the expansion

B(rT) = h(, (Tan = WR) + 7] |7, AR)| + 1 [B (7, (Tan = A)P)]

+ 2[R (7, ) = KO (7, AR) = RO (7, (Lo = A)B)| + O(?),

w(nt) =1+ 01n?).

Proof. Let h,h/ € R? and let ¢ : R?® — R be a quadratic form, we have by polarization identity
¥ (h+ nl) = (h) + /i [b(h+ k') — (k) — (R')] + q(h'). Applying this identity with h = Ah and
h' = (I, — A)h, we get the statement since we proved in Proposition [2.1] that (M) (57, -), h(9(n7,-) are
linear and =) (n,-), KW (7, -), 2 (y7,-) are quadratic, coordinate-wise. The case of w comes from the
fact that w(® = 0. O

We set G(7,h,n) = F (7, /7Ah + (I, — A)h,n), for all 7 > 0, h € R?*" and n > 0. The function G

admits a power series expansion in ,/n

Glr.hyn) = S i 2GHD (7, ).

k>0
We prove the following proposition on the conjugate time for such initial covectors.

Proposition 4.8. Let us define the quadratic polynomial in o

o0 B aG(5/2) aG(5/2)
P(6r) = —6r°K + or <b7lr (h3 +13) - K < L+ 2

Ohy Ohs
om (3,067,065 s 0G5 | 9Gy""
by \'? Ohy b Ohy ohy Ohs
L (0687 0GP 0GP Gy
ol ohy oh,  ohy )

and let A(h) be its discriminant. We have the following cases:
o If A(h) >0, let &7* be the smallest of the (possibly equal) two roots of P. Then

Te(v/MAR + (Ia, — A)R) = 27 /by + ndt* + o(n).

o IfA(R) <0, i i
limsup |7e(v/7AR + (I, — A)h) — 27 /b1| > 0,
n—0

that is, the first conjugate time is not a perturbation of 2w /b;.
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Proof. We first have to check that the conjugate time is not a perturbation of order /7 of the nilpotent
conjugate time 27 /b;. We apply the same method as before to evaluate ® (27T/b1 + /01, /AL + (T2, — A)h, 77),
or € R, h € R?". Notice that

oF 1 0G oF  0G
= —— V 1,2 d = = V 3 2 .
o = gmomy elbaland = o, Vie Bl
With 67 € R, h € R?", we have
_ ()
G (iﬁ + /10, hm) =1 G(U‘ L.+ (G(3/2) + &r—aGT ) +0(1°?). (17)
1 T=%, =3

Hence ® (27r/b1 + /nor, \/ﬁAﬁ + Iz, — A)ﬁ,n) = O(n*"*3) (see, for instance, Appendix . By cap-
turing the first non trivial term in the expansion of ®, one has

SEM) (21 /by + /107, /AR + (Lo — Ay n) o 672

(see also Lemma in the appendix). Hence perturbations of the nilpotent conjugate time 27/b; must
be of order 1 in 7 at least for ® to vanish.

Computing the perturbation of the conjugate time is then a matter of computing ® at time 27 /by +ndr.
Regarding G, we have

1
G (2 s =n G(l)‘ + %2 GG/ +7? |GP + 5967
b i — s,
' 18
8G3/2)
+nP/? [GW?) +5T8T} _+oaP).

B
Thus @ (27 /by + nér, /AR + (Is, — A)h,n) = O(n*" 7). Again, computing the first nontrivial term in
the expansion yields (for instance, see Lemma [C.5)

&7 +5) (27 /by + nér, h, ) x P(67).
This implies the statement: either P admits real roots, of which the smallest is Tc(l), or the system does
not admit a perturbation of 27 /b, as a first conjugate time. O

Remark 4.9. Contrarily to , the equation P(67) = 0 not degenerate at hy = hy = 0.

4.3 Proof of Theorems [1.1] and

It appears now that proving Theorem is a matter of summarizing what we know about the conjugate
time from the previous results of Section

Proof of Theorem . In the previous section we computed the rescaled conjugate time 7.. We have for
all covector pg = (h1,...,hon,n" 1) € T, M,

te(hyn™") = nre(hyn™)

From Proposition we deduce that under the assumption (hy,hs) # (0,0), we have as n — 01 that

7o(h,n™1) = 27 /by + O(n). From Proposition we deduce the existence of £ = m-él) that satisfies
the given equation, using the invariants introduced in Proposition 4.3
On the other hand, by performing the blow up at (0,0, hs ..., ha,), we compute an approximation of

tc(\/’ﬁﬁla \/7»7}_127 77’37 ) EQna 7]71) = nTc(\/ﬁi_lla \/77]_127 77’37 ey }_12713 7]71)'

Again, from Proposition we deduce that under the assumption (h1,h2) # (0,0), a possible approxi-
mation is 7.(/7AR + (Ian, — A)h,n~") = 21/by + O(n). However from Lemma we now know that in
the nilpotent case, 27 /b; is a zero of order two at (hy, hs) = (0,0). Thus computing a perturbation of

the conjugate time, one gets the statement for t~£2) from Proposition and the expression in terms of
invariants from Proposition [4.7] O
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Having proved Theorem we can introduce a geometrical invariant that will help us prove Theo-
rem [1.1] For all g € M \ &1, let

Aq = {tc(p)p | H(p,q) = 1/2}.

By the usual property of the Hamiltonian flow, the first conjugate locus at ¢ is given by &,(1,A,).
Furthermore, the set A, is an immersed hypersurface of T; M and .A;NCy(0) is reduced to the two points
pt =1(0,...,0,21/b1), p~ = (0,...,0,—27/b1). Then let A be the tangent cone to A, at p*.

Observe that Aq+ is a geometrical invariant independent of the choice of coordinates on M. It can be
computed once the asymptotics of the conjugate time are known.

Proof of Theorem[I.1. We prove the theorem by contradiction. Assume there exists a set of coordinates
for which (@) does not hold, i.e.

li 2 g T (hys... o —& (T (hy,... hon — 0.
ho_lg'}oo (horeb(%l?’]’) gq (hoa(hla ahQ 7h0)> gq (hov(h’h 7h2 7h0))‘> 0

Then we have that uniformly with respect to 7 € (0,7,

&, (777, (hi,..., Bzmnil)) = Eq (TIT, (hi,-.., an,n’l)) + o(n?).

That is, the exponential is a second order perturbation of the nilpotent exponential. If that is the case, as
a consequence of Section |4, and in particular Proposition we have that for pg = (hy,...,hon,n7 1) €
T, M,
27
te(po) = 71+ 0(r").
1
Then

27 2 27
tc(po)po = Oa"'aoa +77 h17'-'7 h2n70 +O(77)
b1 by b1

and the cone A} is the affine plane {ho = 27 /b; }.
However, as a consequence of Theorem the cone Al can be computed using the Agrachev-
Gauthier frame, where we have for py = (h1,..., hon,n™") € TX M\ S,

27 21 2w
tc(po)po = 07"'7077 +77 7h17"'77h2n7t£2)(h13"'ah2n) +0(77>
b1 b1 b1

For A,j to be planar, the following symmetry for 2 is needed (with 7 = h2 + h3):

lim 2 (hy,ha, hs,... hon) = — lim 2 (—hy, —ho, hs, ..., hop)

T1 —0+ 71 —0+

for all (hs, ..., ha,) € R?"~2. Given the expression , we have rather

lim ¢ (hy, ho,hs, ... hop) = lim t@ (=hy, —ho, hs, ... hop),

7"1—)0+ 71 —0+
which is not everywhere zero unless v11 = Y22 = y12 + Y21 = 0 for all (hs, ..., hs,) € R2"72. That is
kil = K3 = k2" 4+ k3 = 0 for all i € [3,2n], which is not generic with respect to the sub-Riemannian

structure at ¢ € M \ (&, U &3) (see Proposition [{.3] and Appendix [B]).

In consequence, we have proven that generically with respect to the sub-Riemannian structure at
q € M\ &, there does not exist a set of privileged coordinates at ¢ and 7" > 0 such that the limit
holds. O

Remark 4.10. Regarding the non-genericity of k1! = k3! = k2 + ki’ = 0, notice that it constitutes 6(n—1)

independent conditions on the family (mzj ) i ke[1,2], and thus a codimension 5(n —1) condition (at least)
j€l3,2n]
on the 2-jets of the sub-Riemannian structure at q.
Notice that 5n —5 > 2n+ 1 if n > 2 and 5n — 5 = 2n + 1 when n = 2. Hence in the n = 2 case,
assuming g € M \ &3 (see Proposition {4.3)), we ensure the codimension of the condition on the 2-jets of
the sub-Riemannian structure to be 6.
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4.4 Next order perturbations

As observed in Section there exists a subset of initial covectors in T \ S; for which our approximation
of the conjugate locus is degenerate (this makes the second order approximation unstable as a Lagrangian
map). In particular, for all o € M, this set contains Sy = {(h1,h2,0,...,0,n7") € T M}. As proved
in Proposition [£:6] this set is reduced to Sy at points g in the complement of a startified codimension 1
subset Gy of M if n = 2.

Hence in preparation of the stability analysis of Section [5] we compute here a third order approxima-
tion of the conjugate time in the case of covectors near S;. When n = 2, we get a complete description
of the sub-Riemannian caustic at points of M \ & as a result.

We use a blowup technique similar to the one of Section Let h € R?" be such that (hy, ha) # (0,0).
We blowup the singularity at (h1, ho,0,...,0) by computing an approximation of the conjugate locus with

h(O) = (}_Ll, }_Lg,ﬂf_lg, e ,ﬂﬁgn).

With A the square 2n x 2n matrix defined in (16]), 2(0) = Ah + (I, — A)h.
We give an equivalent of Proposition [£.7] for this case.

Proposition 4.11. For all T,R > 0, normal extremals with initial covector (Ah + n(I2, — A)h,n71)
have the following order 8 expansion at time n7, as n — 0T, uniformly with respect to T € [0,T] and
h(O) € Bpg:

27, A+ (T — AR) = ni(r, AR) + 2 [¢2) (7,AB) + & (7, (T — A)B)]

{ @) (7, AR) + 2@ (1,h) — 2 (1, AR) — 2@ (7, (L, — A)B)} +0(n"),

2(n7) = n?2(r, AR) + 123 (1, AR) + O(n*).

Likewise, the associated covector has the following expansion:

B, b+ (T — A)B) = h(r, AR) + 1 [0 (7, AR) + (7, (o — AR

2 [h@) (7, AR) + kO (7, ) — RV (7, AR) — kD (7, (Inn — A)R)| + O(®),

w(nr) =1+ n*w®(r,AR) + O(n*).
Proof. The proof relies on the same arguments as that of Proposition O

~We aim to obtain a second order approximation of 7. in the case of an initial covector of the form
(AR + n(Iay, — A)h,n~1), for h € R?™. The previous section, together with Proposition applies to
give us

V(AR +n(Ia, — Ah) = 7V(AR),  Vh e R™.

Similarly to Section for all 7 > 0, h € R?" and n > 0, we denote F (7, h,n) = E(n7; (h,n')), and we
set
G(r,h,n) = F (1, Ah + (s, — A)h,n), V7 >0,h € R*",n>0.

The function GG admits a formal power series expansion in 7: G(t,h,m) =
> k>0 MPG® (1, h). Techniques similar to those introduced in Sections and yield the following
statement on second order approximations of the conjugate time 7.

Proposition 4.12. The second order perturbation of . with initial covector
R(0) = Ah + n(Is, — A)h satisfies the equation

9 (G(3)>2 BQ 9 (G(B))l + Blﬁg <a (G(B))l 9 (G(3))2>

(13 + h3)72 (h(0)) = —h}

2 an, oy ok

+ (B% + B%)(aﬁg — ﬁhl) <§;(ﬁh1 — QBQ) + 4[)1(04711 + ﬁhz)) + Zdi,
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where a and 8 are the second order invariants introduced in Proposition[{.3 and
de = 2 e (“hatn, (GD) + mon, (G Yk € [3,2
k—ﬁek(_2hk< )1+ lhk( )2) € [3,2n],

with e € R2"=2 the vector such that Ae = (hgahlG(Q) — h18h2G<2>)3 s where A € Moy _o(R) is the
matriz introduced in Lemma and where we denote (v); 5, = (vs,...,V2,) € R?"=2 for allv € R?"H1,

Proof. With 67y, 0m5 € R, h € R?", we have

2 - 1)
G (W + o 4 1267, h,n) =nGW . P (G(2) + 67_186‘)
b1 T=%7 or F—2m
oG 52 92°GMY oG?)
3 (3) oy 3
+7 {G o+ 5 F ] T:%ﬂ+0(n)-

To evaluate ® (27/b1 + ndry + n20ra, Ah + 1(Ion, — A)h,n), 611,02 € R, h € R?", notice that

OF G OF 190G

_ 9@ _19G s oml.
oh; — ohy oh non,y B2

Vie[1,2] and

Hence with o = 7-51)(A7L)7 one has ® (27r/b1 +nér1 + n?ora, Ah + 01z, — A)ﬁ,n) = O(n**+2). The
result is again obtained by computing the first nontrivial term in the expansion of the determinant &
(see Lemma [C.6]). We obtain the stated result by refining this evaluation thanks to Lemma O

Up to the computation of G, which is carried out in Appendix we have enough information to
compute the conjugate time, similarly to Proposition

Remark 4.13. By definition of the invariants x11, x12, X22 introduced in Appendix[B] the third dimensional
case would correspond to the case k) = 01if 3 <4,j,k < 2n, a = 8 =0. Under these conditions, one has

7 (h) = 0, 7 (h) = —3(x11 + x22) (B2 + h3) and

[Emme; (hyn™ )], =1° (2h3 (x22 — x11) + 3hThax1z + h3x12) + O(n),
[5(77%; (h, 77_1))]2 = 773 (271%()(11 - X22) + 35175)(12 + B‘;’Xm) + 0(774)-

This expression corresponds to the classical astroidal caustic expansion observed in the 3-dimensional
contact case.

5 Stability of the sub-Riemannian caustic

5.1 Sub-Riemannian to Lagrangian stability

The aim of the whole classification is to prove Theorem Recall we denote by 5;0 : Ty M — M the
sub-Riemannian exponential at time 1, that is E;O = &4 (1,-). We first observe the following immediate

fact.

Proposition 5.1. Let (M, A, g) be a sub-Riemannian manifold and let g9 € M. If the exponential map
at time 1, 5;0 : Ty M — M, is Lagrange stable at p € Ty, M, then quo is sub-Riemannian stable at p.

As a consequence of Proposition [3.4] classifying Lagrangian stable singularities of the sub-Riemannian
exponential near the starting point g requires considering inital covectors in C,(1/2) such that hg is very
large. As stated in the previous sections, some restrictions on the starting point are necessary to prove
stability. Hence we consider points on the complementary of a codimension 1 stratified subset & of M,
containing &1, G, and &3, introduced in Section [3.1} Proposition 4.6] and Proposition |4.3| respectively.
In Section we prove the following theorem, of which Theorem is a corollary.

Theorem 5.2. Let (M, A, g) be a generic 5-dimensional contact sub-Riemannian manifold and let qo €
MN\&. There exist 7 > 0 such that for all (h1,he, hs, ha, ho) € Cq(1/2)N{|ho| > 771}, the first conjugate
point of &y, with initial covector (hi, he, hs,

ha, ho) is a Lagrange stable singular point of type Az, Az, A4, D or As.
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Assuming Theorem holds, we can now Theorem [L.3

Proof of Theorem[I.3 As a consequence of Proposition[5.1] we prove the Lagrange stability of the singu-
lar points of 5(}0' For allt > 0, po € Ts M, 5;0 (tpo) = gy (t, po). Hence for a given covector py € {H # 0},
te(po)po is a critical point of £, .

Recall that for all ¢ € M, we have set Ag, = {t.(po)po | H(po,q0) = 1/2}, and the caustic is the set
Eqo (Ago).

Since £ (C4(0)) = qo, to prove the statement it is sufficient to show the existence of V,, neighborhood
of qo such that £} is Lagrange stable at every point of Ag, N (quo)_l (Vgo) N {H > 0} (and satisfies the
stated classification). As a result of Theorem [5.2] what remains to prove is that there exists R > 0 such
that for all covectors p € Ay, NCy, ((0, R)),

N
2H (p, qo)

with 77 > 0 as in the statement of Theorem [5.2] but this is Proposition [3:4] O

€ Cq(1/2) N{lhol > 77"}

5.2 Classification methodology
We first recall normal forms for the stable singularities that appear in Theorem [5.2

Definition 5.3. Let f : R® — R® be a smooth map singular at ¢ € R®. Assume there exist variables x
centered at g and and variables centered at f(g) such that

o f(x1,...,X5) = (X3, X2, X3, X4, X5), then the singularity is of type Aj;

X1,...,X5 X3 + X1Xo, X2, X3, X4, X5), then the singularity is of type As;

x} + X3x9 + X3X3 + X1X4, X2, X3, X4, X5), then the singularity is of type As;

) =(
) =(
X1,...,X5) = (x} + xx2 + X1X3, X2, X3, X4, X5), then the singularity is of type Ag;
X1,...,%X5) = (
) =(

o f(
o f(
o f(
o f(

x? 4+ x2 + x1X3, X1X2, X3, X4, X5), then the singularity is of type DZ.

X1y.-.9X5

We use these normal forms to characterize the singularities in terms of jets. Let M be a 5-dimensional
manifold, let go € M and let g : T; M — M be a Lagrangian map. Let py be a critical point of g. We
transpose the normal form definition of stable singularities to condition on the jets of g. Given a set of
coordinates x on Ty M, let us introduce the functions (depending on whether the kernel of the Jacobian
matrix of g is of dimension 1 or 2)

b1, .50 (Do) = det (&ql B, 9. Vo,V Vi, Vg,> . if dimker Jacy,g = 1,

Oy, (00) = det (0, .. O, 9.06,00,0, Vi VI VE) i O g = D9 = 0.

(Where we denote by Vs, Vi, Vg, Vs, linearly independent vectors, depending smoothly on pg, generating
imJac,, ¢ if dimker Jac,,g = 1 and likewise V3, V}/, V¥, linearly independent vectors, depending smoothly
on po, generating imJac,,, g if dimker Jac,,g = 2.)

In terms of ¢;,,. s, , we have the following characterization of Lagrangian equivalence classes.

Proposition 5.4. Let M be a 5-dimensional manifold, let g : Ty M — M be a Lagrangian map and let
po € Ty, M. Assume ker Jacy,g is 1-dimensional, if there exists coordinates (X1, X2,X3,X4,X5) Such that
Ox,9(po) = 0 and the following holds at py

o ¢11 # 0, then po is a singular point of type As;
e p11 =0, P111 - P12 # 0, then po is a singular point of type As;
® 11 =111 = P12 =0, Y1111 - Y112 - P13 # 0, then po is a singular point of type Ay;

® V11 = P111 = P12 = d1111 = 112 = P13 = 0, d11111 - P1112 - Y113 P14 # 0, then po is a singular point
of type As.
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Assume ker Jacy, g is 2-dimensional, if there exists coordinates (X1,X2,X3,X4,X5) such that Oy, g = Ox,g9 =
0 and ¢}y - Phe(po) > 0, ¢3(po) # 0 then po is a singular point of type Dy .

Proof. This is a matter of proving that g has the same k-jets as the normal form for Aj singularities,
k € [2,5], and 2-jet for DJ. For each of the stated cases, the existence of changes of coordinates at pg
and g(po) such that it is the case is then warranted by the stated conditions. O

Remark 5.5. The condition ¢} - ¢hy(po) > 0 corresponds to the distinction between D and D) singu-
larities, the latter corresponding to the opposite sign.

Recall that we are considering points go € M \ (61 U &3), where &; (introduced at the beginning of
Section |3) and & (introduced in Proposition are both stratified subsets of M of codimension 1 at
most.

Let (M, A, g) be a contact sub-Riemannian manifold of dimension 5 and let ¢o € M. To study the
sub-Riemannian caustic at gy, we study for a given py the stability at py € C,(1/2) of &y, (te(po),-)-
To apply Proposition we first compute an approximation the linear spaces ker Jacp, &g, (tc(po)) and
imJac,, &y, (tc(po)). Then we compute approximations of the functions ¢;, ;, with by approximating the
map

k

v — det (v, imJac,, &y, (t(p0))) ,
for a well-chosen representation of imJac,,&,, (t.(po))-
Let S = {p €Ty M| hy=hy= O} and Sy = {p €Ty M| hs=hy= 0}. As a consequence of
Section [} this stability analysis is carried independently on the three domains of initial covectors,
Ty M\ (S1U S2), near Sy and near Sy, after blowup of the exponential map.

Remark 5.6. Let 7 € RT and (h,n) € R®. The map &, (n7) is critical at (h,n~"') if there exists v € R®
such that Jacp,&Eq, (n7) - v =0.

With F(r,h,n) = &4 (n7; (hy,n™1)), for all 7 > 0, h € R, 5 > 0, we denote 9; = Oy,, for all i € [1,4],
and 05 = O, = —77287, + n70,, we have

JaCPUEQO (’77) = (alFﬂ 82Fa 83Fa 84F7 85F) .

Higher order derivations of the map F' are then computed using the chain rule.

Remark 5.7. Precisely checking the conditions of Proposition [5.4] requires explicit computations executed
in the computer algebra system Mathematica.

5.3 Classification of singular points of the caustic

Let pg € T;OM and let (x1,x2,X3,X4,X5) be arbitrary coordinates on a neighborhood of py € T;DM such
that Oy, &, (te(po)) = 0. Apart from singularities of type D on the second domain, only singularities
of corank 1 are expected. Hence gauging the degree of the singularities is sufficient to classify them,
provided that singularities of degree k effectively correspond to singularities of type Aj.

5.3.1 First domain

Consider initial covectors of the form (hy, ha, hs, hy,n~t). Algebraic computations, similar to those of
the previous sections and left as appendix, lead to the following proposition on the ¢ functions. (See

Appendix )
(With n = 2, recall that for all R > 0, Bg denotes the set {h € R* | 2?21 h? < R}.)

Proposition 5.8. Let us denote pg = (hy, ha, hs, hy, 77_1). There exist a family of vectors (Va, Vs, Vy, Vs),
smoothly depending on po, generating imJac,, &y, (tc(po)) for which we have the following. For all R > 0,
uniformly with respect to h € Br, asn — 0

$11(po) = O(n®), d111(po) = O(n®), $1111(p0) = O(n®).

Furthermore, there exists a function ¥ : R* x R® — R such that for all V € R, WU(h,V) # 0 implies
V ¢ imJacy,Eq, (te(po)) and with

Wi(h) = W (h, 0 £, (te(p0))) ™. k€ [2,4],

we have s ® ®)
Uo(h) = ¢iV(h),  Ws(h) = o0 (h),  Wa(h) =1 (h).
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As a consequence of this proposition we obtain that for 7 small enough
Wa(h) # 0= d11(po) #0,  W3(h) # 0= ¢111(po) # O,
Wy(h) # 0= ¢1111(po) # 0.

We can further numerically check as an application of Proposition that

e if U5 #£ 0 then the singularity is of type As;

e if U3 #£ 0 and the singularity is not of type A, then the singularity is of type As;

e if Uy # 0 and the singularity is not of type As, A3z then the singularity is of type Ay.
Then we have the following conclusion.

Proposition 5.9. Let (M,A,g) be a generic sub-Riemannian structure and let qo € M \ &. There
exists 7] > 0 such that for all covectors py in (C4(1/2) N {ho > 771}) \ (S1 U S2), the singularity at po of
Eqo(te(po)) is a Lagrange stable singular point of type Aa, Az or Ay.

Proof. As a consequence of our discussion, what remains to be proved is that generically with respect to
the sub-Riemannian structure, there are no points (hq, ha,
h3,hy) € (R%\ {0}) x (R?\ {0}) such that

Wa(h1, ha, hs, ha) = W3(h, ha, hs, ha) = Wa(ha, ha, hs, hy) = 0.
However, one can check that this equation admits solutions in (R?\ {0}) x (R?\ {0}) only if gy € &5. By

assumption Gy C &, hence the statement. O

5.3.2 Second domain

Consider initial covectors of the form (y/nh1,/nha, hs,
h4,n~1). Again, algebraic computations left as appendix lead to the following proposition on the ¢
functions. (See Appendix[D.2])

Proposition 5.10. Let us denote po = (\/nh1,/Nhe, h3, ha,n™"). Let ST be the subset of Ty M where
dimker Jac,,, &y, (te(po)) = 2.

For py ¢ ST, dimker Jacy, &y, (tc(po)) = 1, there exist a family of vectors (Va, Vs, Vy, Vi), smoothly
depending on pg, generating imJac,,Eq, (tc(po)) for which we have the following. For all R > 0, uniformly
with respect to h € Br, asn — 0

$11(po) = O(M'°),  d111(po) = O'?),  1111(po) = O™,  P11111(po) = O(n'°).

Furthermore, there exists a function ® : R* x R® — R such that for all V € R?, ®&(h,V) # 0 implies
V ¢ imJacy,Eq, (te(po)) and with

Bp(h) = @ (h, OF £, (te(po) ™™, Wk e [2,4],

we have (10) (10) (10) (10)
11 (h) = CI)2(]1)7 111 (h) = <I>3(h), 1111(h) = ‘1)4(h)7 ¢11111(h) = ‘I)S(h)-

As a consequence of Remark we can check that the singularity is of type DJ if py € S* and that
that singular points of the exponential of the such that (hy, ha) = (0,0) are of type As.
As an application of Proposition we obtain that for n small enough, if pg & ST,

Py (h) # 0= ¢d11(po) # 0, ®3(h) # 0= ¢111(po) # 0,

Py(h) #0= ¢d1111(po) #0  P5(h) # 0 = ¢11111(po) # 0,
We can further numerically check as an application of Proposition that

e if &5 £ 0 then the singularity is of type As;
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e if &3 # 0 and the singularity is not of type A then the singularity is of type As;

e if &, # 0 and the singularity is not of type Az, A3 then the singularity is of type Ay;

e if &5 # Oand the singularity is not of type As, As, A4 then the singularity is of type As.
Then we have the following conclusion.

Proposition 5.11. Let (M, A, g) be a generic sub-Riemannian structure and let qo € M \ &. There
exists 7 > 0 such that for all covectors pg in Cy4(1/2) N {ho > 771} N{h3 + h3 < 71}, the singularity at po
of €4 (te(po)) is a Lagrange stable singular point of type As, Az, A4, As or Df.

Proof. As a consequence of our discussion and Proposition what remains to be proved is that there
are no element (hy, ha, h3, hy) € (R?\ {0}) x (R?\ {0}) such that ®5(h) = ®3(h) = ®4(h) = ®5(h) = 0.
Similarly to the proof of Proposition [5.9} this is excluded on the complementary of &. O

Remark 5.12. An intuition can be given on the reason Aj singularities can appear on the second (and
third) domain but not the first one. In the first domain, our approximation of the exponential presents
symmetries that do not appear in the other domains. For instance these symmetries appear in the
computations of the approximations of the ¢ functions of Proposition [5.4]

Indeed, we have on the first domain a two-parameter symmetry: for all A, u > 0, h € R*,

\Pi()\hh )‘hQu ,Lth, ,LLh4) = )\2N\Iji(h17 h27 h37 h4)7 S [[27 4]]
On the second domain on the other hand, we only have a one-parameter symmetry:
®;(N2h1, A3ho, N2hg, Nha) = X @;(hy, ha, hs, hy), i€[2,5].

In other words, the exponential map reduces to a 3-dimensional Lagrangian map on the first domain
and only singularities of type Ay to A4 should appear. Conversely, the symmetry on the second domain
implies that the exponential reduces to a 4-dimensional Lagrangian map and As singularities can be
expected.

A similar argument can be made in the 3-dimensional contact case for the presence of A; and Aj
singularities (see [I] for instance).

5.3.3 Third domain

Consider initial covectors of the form (hy, ha,nhs, nha,
n~1). Algebraic computations left as appendix lead to the following proposition on the ¢ functions. (See

Appendix )

Proposition 5.13. Let us denote pg = (hy, ha,nhz,nhy,n~1). There exist a family of vectors (Va, V3, Vy, Vs),
smoothly depending on po, generating imJac,, &y, (tc(po)) for which we have the following. For all R > 0,
uniformly with respect to h € Bgr, asn — 0,

P11(po) = O(™),  d111(po) = O(*),  1111(po) = O*),  11111(po) = O(n™).

Furthermore, there exists a function T : R* x R — R such that for all V € R5, T'(h,V) # 0 implies
V' ¢ imJacy,Eq, (te(po)) and with

Tw(h) =T (b, 0¥ &0 (temo)) . Wk e [2,5],

» ¥Xq

we have (11) (11) 11) (11)
11 (h) = F2(h)v 111 (h) = FS(h)v §111(h) = F4(h), 11111(h) = F5(h)-

As a consequence of this proposition we obtain that for 7 small enough
La(h) # 0= ¢11(po) #0,  T's(h) # 0= d111(po) # 0,

Ly4(h) # 0= ¢1111(po) # 0, [s5(h) # 0 = ¢11111(po) # 0.
We can further numerically check as an application of Proposition that
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e if I'y # 0 then the singularity is of type Asg;

e if '3 ## 0 and the singularity is not of type Az then the singularity is of type As;

e if I'y # 0 and the singularity is not of type Az, A3 then the singularity is of type Ay;

e if I'5 ## 0 and the singularity is not of type Az, A3, A4 then the singularity is of type As.
Then we have the following conclusion.

Proposition 5.14. Let (M,A,g) be a generic sub-Riemannian structure and let qo € M \ &. There
exists 1 > 0 such that for all covectors py in Cq(1/2) N{ho > i1} N{h% + h3 < 72}, the singularity at po
of €4, (tc(po)) is a Lagrange stable singular point of type Az, As, A4 or As.

Proof. The argument is the same as in the other two cases, that is, as a consequence of our discussion,
there are no points h € (R?\ {0}) x (R?) such that I'y(h) = I's(h) = T'4(h) = T'5(h) = 0. Again, this is
excluded on the complementary of &. O
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A Agrachev-Gauthier normal form

Let (M, A, g) be a contact sub-Riemannian manifold of dimension 2n + 1. In [3], the authors prove the
existence at any qo € M of a set of coordinates and vector fields for which the contact sub-Riemannian
structure satisfies interesting symmetries. Here we recall the properties of this normal form, that we call
Agrachev—Gauthier normal form.

On a contact manifold, there exists a 1-form w such that w A (dw)™ never vanishes and kerw = A.
Notice that for any smooth non-vanishing function f : M — R, ker fw = A. Hence w can be chosen so
that

(dw)ja = vol,

where vol, is the volume form induced by g on A. Then there exists a unique vector field Xy, the Reeb
vector field, such that
w(Xo)=1 and ix,dw=0.

In the following, for any vector field Y, for all ¢ € [1,2n + 1], we denote by (Y'); the i-th coordinate
of Y written in the basis (0y,, ..., O,,,0:).

Theorem A.1 ([3| Section 6]). Let (M, A, g) be a contact sub-Riemannian manifold of dimension 2n+1
and qo € M. There exist privileged coordinates at qo, (z1,...%an,2) : M — R?"*1 and a frame of (A, g),
(X1,...,Xon), that satisfy the following properties on a small neighborhood of q¢o = (0,...,0).

(1) The horizontal components of the vector fields X, ..., Xoy, satisfy the following two symmetries:
for all 1 <i,j < 2n, we have

and

(2) The vertical components of X1,. .., Xo, satisfy the symmetry
2n
Z (Xj)2n+1 Ty = 0.
j=1

(3) Xo=4&, w(Xo) =1 and tx,dw =0.

This is further detailed by evaluating the elements (X;) ; at some well chosen points. Let us denote
by Vi,...,V, the 3-dimensional subspaces of M defined by

Vi = ﬁ#i {ibgjfl = 0} N {1'2]' = 0} Vi e [[1,nﬂ

Theorem A.2 ([3, Theorem 6.6]). Let (M,A,g) be a contact sub-Riemannian manifold of dimension
2n+1 and qo € M. Let (z1,...%T2n,2) : M — R2"T1 be privileged coordinates at qo, and (X1, ..., Xop)
be a frame of (A, g), both as in statement of Theorem , Then

(i) For alli,j € [1,2n],

1ifi=j,
X,), (0,2) = 19
( Z)J 0.2) {O otherwise (19)
and for all k € [1,2n]
Furthermore, there exist By, ..., By : R® — R such that for all i € [1,n], 3:(0,0,z) =0 and
{ (X2i—1)2i_1|vi =1+ 23,Bi(w2i—1,2:, 2),
X2i—1)9;lv = — T2 172 5i(T2i—1, T2, 2),
( 1)2 V; ( ) (21)
(X2i)2i_1 vi T T2i122iBi(T2i—1, T2, 2),
(X2i)2i|w =1+ 23, 1 Bi(®2i-1,2i, 2).
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(ii) There exist oy, ...,y : R® — R such that for all i € [1,n],
(XQi—1)2n+1|m = $2iai($2i—1;x2ivz)/2a
(XQi)2n+1|V;; = —Z2i—104(T2i—1, T2, 2) /2.
(iii) We have
- 1
H az(07 07 Z) = aa
i=1
and for all i € [1,n], we denote

7 O(X2i)2n+1  O(Xai—1)2n+1
’ 0x9;—1 Oxo; ’

Then for all i € [1,n],

L

= oy, Vi € [1,n],

k3

and
n

> 0 Li(0,2) [[ (0. 2) = 00y L;(0,2) [ ] (0, 2) = 0.
j=1

=1 i i#i
Remark A.3. A few observations on Theorem [A2]
e Notice that points are respectively consequences of points[(1)} [(2)] of Theorem

e The nilpotent invariants by, ..., b, at o satisfy (up to reordering)

bi:ai(0,0,0), Vi € [[l,nﬂ.

e In the Agrachev—Gauthier normal form, the frame (X, ..., Xa,) naturally appears as a perturba-
tion of the frame of a nilpotent contact structure over R?"+1, ()A( 1yee- ,)?Qn), written in the normal
form

~ bi S bz .
Xoj—1 = Opyy, + 59621‘52:, Xoj = Oy, — 55621'718@ Vi € [1,n].

e We can deduce from |(i)| the following equalities. For all r,s € N,

2 (ani—l)r (aﬂvm)s ﬁl(oa Z) = (89321'71)7- (812i)s+2 (X2i*1)2i71 (O’ Z)
= (8I2i71)r+2 (aIQi)S (X2i)21' (07 Z)

=2 (89627,—1)”r1 (a$2i)s+l (X2i-1),, (0, 2) =
=2 (8$2i71)r+1 (8wzi)s+1 (X2i)2;-1 (0,2).
In particular,
0= 5i(0,0,2) = (0rs,)* (Xai-1)5, (0, 2)
= (9rais)” (Xi)y; (0,2) (24

= -2 (89:21-71) (6I2'i) (X2i—1)2¢ (07 Z)
=2 (63321‘—1) (83321) ( 2i)2i—1 (07 Z)

As an application of these results, we give a proof of the following classical observation. Using
notations of Section [3l

Proposition A.4. Let (M,A,g) be a contact sub-Riemannian manifold and go € M. For all a > 0,
there exists R > 0 such that the set of singular points of the exponential at time 1 in Cq ((0,R)) is a
subset of {h% > aH}.

Equivalently, for all hg > 0, there exists ¢ > 0 such that all p € Cy(1/2) with t.(p) < & have
lho(p)| > ho.
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Proof. Notice that both statements are equivalent since any p € C,(1/2) satisfies t.(p) = /2H (t.(p)p, qo)-

We prove this statement by contradiction. Assume there exist & > 0 and a sequence of singular points
for 8;0, (pr)ken € {H > 0}, such that H(pg, qo) = ﬁ and ho(px)? < oH (pk, qo)-
Then kpy, = # € Cy(1/2) N {hZ < a/2}. The sequence (kpy)ren converges up to extraction
Pks4q0

and there exist (k,)nen € N, ply € Cy(1/2) N {h3 < o/2} such that k,pr, — ple.

Hence there exists a converging sequence (pi, Jnen € Cq(1/2) N {|ho| < &'} that admits as conjugate
time t.(pg, ) = 1/kn. Let us prove that this is contradictory with the assumptions on the contact sub-
Riemannian structure.

Since the sequence (pg, )nen converges towards pl_, we can chose an arbitrarily small neighborhood
of pl, V C T, M, and assume the sequence (Pk, Jnen stays in V. Then we use the expansion of
q(t) = Eqy (t, P, ..., han, ho), uniform with respect to p € V,

3,40
> qklg?) + o(1/k*).
I=1 '

We use the Agrachev—Gauthier normal form to prove that this map cannot be singular for p € V and k
large enough.

Indeed, notice first that the Jacobian of ¢(0) = 2?21 hi(0)X;(qo) is just the diagonal matrix diag(1,...,1,0).
Furthermore, for all i € [1,n], as a consequence of —,

hai—1Dgy X2i-14(0) = (0,...,0,2b;ho:hai—1)
h2iDgy X2iG(0) = (0,...,0,—2b;hgihai—1),

q(1/k)

hence the last line of the Jacobian of §(0) is empty. Thus the Jacobian matrix has the form

* e *k
1 .. 1 : w - 1
Jacpq(l/k):Edlag(l,...,l,())—kﬁ * * +0 )
0 --- 0

Hence if the (2n + 1, 2n + 1)-coefficient is not a o(1/k%), the Jacobian matrix has a non-zero determinant
for k large enough.
Then for i € [1,2n],
Ono 07 (hi(£) Xi(a(1)) j1=0 = Onohi(0) Dgy X - h(0) = (JA(0)), (2Th(0)),

and the (2n + 1,2n + 1)-coefficient is 2|Jh(0)|3 > 0, hence the result. O

B Computation of invariants

B.1 Second order invariants
For all I € [1,2n], let J; € M2, (R) be the matrix such that

0*(X1)2n+1 (q0) — 0*(Xk)an+1
0xL0T 0 0x10T,,

so that for all z,y € R?™, the vector JM)(z)y satisfies (JM (2) y); = Jiz - y.
Let V; ;(c) € R®™ be the vector such that

(Vij(o), = ((e_"j — Ign) JLtg, e"j)

Lemma B.1. For alli,j, k € [1,2n]

y o7 .
K = e(i, ) / 1 / V(o) doar,
0o Jo k

o 1 ifi# 9§,
5(”){ 12 ifi=j.

(Jl)k,m = (qo), Vk,l,m € [[I,QTL]],

7‘7

Jrt

+ ((e—aj _ I%) Jity, eaj)
j

where
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Proof. From Proposition we have to compute for all i, 7, k € [1, 2n],

. 82 (2) 2 i
(4, J )8h on,; < h> =Ky

Observe that for all 4, j € [1,2n],

g,j o, < > / / =T (S0 (a0, e0)) Rl e5) + TV (#(0,¢5)) o e:) ) dodr,

where, for all m € [1,2n], e,, € R®" is the vector such that (e,,); = 1 if I = m and (e,,); = 0 otherwise.
Using the fact that (JM)(x)y); = (J;z) - y, we have

10 (o) hioe)] = (27 (7~ Ba) ) -7,

Hence the result. O

To compute mij we use the following lemma.

Lemma B.2. For all r,s € [1,n], for all M € Ma,(R), let us define the (r,s) 2 x 2 sub-block of M,
B,s [M] € M3(R) b
Mar—125s-1 Moy as—1
Brs [M ' .
[ ] ( A@r 1,2s A@rﬂs )
For all 8 € R, let
R(0) = <c959 —sm0> S(0) = ( sin 0 1 —.cosﬂ> .

sinf  cos6 cosf — 1 sin 6

Then
Bra [(V(0))) = - S(b:0)Brs [*] Rlbs0) + 1-S(bs0)Bur [S] Rlb0).

T S

Proof. Since the matrices J and e/ are block-diagonal,
Bro [(77 = L) T e = By [ (T2 = e777) T By [11] Bus o]

Hence the result since

B, {(12,1 - e*‘ff) jfl] - biS(bra), B,, [(e"j) jfl] = R(bo), Vre[l,n].

Some interesting computational properties can be deduced from this result.

Lemma B.3. Let 52 o2
X n X n
b3 ( (X2)2 +1( o) — (X1)2 +1(q0)) ,

8I18$2 8x§

7 [ 0*(X2)2n+1 0?(X1)2n+1
p=gp (PR - W),
Then
Ll::3aa Rélzzﬂa
H%Q a, 272_?)5’
:2ﬂ, ,%;2—205.
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Lemma B.4. For alli € [2,n], (/{’frf) kmef1,2y only depend on the family
le{2i—1,24}

{(%(%)) | (k,1,m) € {2i —1,2i} x {1,2}2 U {1,2}* x {2 — 1,2i}} )

Let ¢ : R — R8 be the linear map such that

0%(Xi)an
Gi <(§8)2+1(QO>> = (Kfrf) k,me{1,2}
L10Tm klme{1,2Y0{2i—1,2i} 1€{2i—1,2i}

is of rank 8 on the complementary of codimension 1 subset S35 C M, and rank 7 on S.
Proof. The first part of the result is a direct application of Lemma Let ¢; be the restriction of ¢; to

62(Xk)2n+1( )
01,0z, ) kieq2)

me{2i—1,2i}
Explicit computation of ¢; yields that the rank of (; is 8, except for when
0 =2n2p% 4+ 2m2p* — 272p® — 27%p? — 2p+ 1
+ (747rp3 + 10mp® + 2mp) sin(2mp) + (27rp3 — 6mp? + 47p) sin(4mp) (25)
+ (—47r2p5 + 872 pt + 4n?p® — 87%p? + 3p — 3) cos(2mp) + (2 — p) cos(4mp)

where p = b;/b; < 1. Furthermore, if p satisfies , then the rank of (; is 7. Hence the existence of
G3 C M, by the existence of a codimension 1 constraint on the 1-jet of the sub-Riemannian structure at
q0- O

B.2 Third order invariants

In this section we compute a more precise approximation of the exponential map in the case of initial
covectors of the form (hi,hy,0,...,0,n7") € Ty M.

Lemma B.5. For all T, R > 0, normal extremals with initial covector (Ah,n~') have the following order
3 terms at time n7, uniformly with respect to h(0) € Bg and 7 € [0,T], asn — 0%

@) (7, Ah) = / h? (g, Ah) do,
0

2(3)(7.’ Ah) = / (hél):h _ hgl)o%2 Ty (X1(2)> + by (X2(2))2 1) (o, AR) do,
0 n+

2n+1
with .
WO (7, AR) = /0 =7 [ 10 @) 40 (2) D + T (3)h+ . (2)
+ QW (i‘,il) - w(z)jﬁ} (o, Ah) do
and )
Q(l)(:v, h) = Zn %;h)xi,
i=1 ¢
2n 2n 2n
JD () = ; %xi J® (z) = ;; (%ajé]%ximj, J.(z) = g—iz
Proof. We have
dg® SN @ A D a7 x D (sl AR 4 5@ ATy 5
o :Zhi(T,Ah)Xi (&(m, AR)) + h; (7, AR)X; 7 (&(7, AR)) + h;” (T, AR) X, .
i=1
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Since 2(7, Ah); = 0 and h(r, Ah) = 0 for 3 < i < 2n, the horizontal part of
n (r, AR)X [ (& (7, AR))

vanishes in the Agrachev—Gauthier frame. The same goes for the horizontal part of Xi(l), 1 <7< 2n.

Thus
dz®)

dr
4= —inj a0 (x®) b (xP) | (AR
dr — b ) ong1 P R '

Regarding h(®), we get the result by computing the order 2 in 7 of %. We have

= h®(r,AR)

dh n
= QM)

with )
—=(1+7w® +00") 7 =1-7u® +0x’),
Q(h) = QW (=M, n ) + 0(n?),
J=J+nJW (3:(1)> +n? (J(l)(x(2)) + JD (W) 4 JZ(Z(Q))) +O(n?).
Then evaluated at (7, Ah), we have

2
—dhi) =Jh® 4 O x(2)) h+JW () n®)
+JD (@) h+ T, () h+ QW (33 B) h—w® Jh.
Hence the result. O

We can immediately apply this result to give an expression of z(), using only the second order
invariants introduced in the previous sections.

Lemma B.6. Using the prior notations, we have

.® (?f A7L> = 1 (R4 B2) (ah + Bho).
1

Proof. As stated before, it is a matter of evaluating the terms for the Agrachev—Gauthier frame. We

have )
dz® ) () o (@) -
dT - ; |:h11 (Xll )21’7,—‘,—1 + hi (XZ )2n+1:| <T7 Ah)

2n+1
) by . ) b1 .
(X(l))2n+1 (x (7', Ah)) = 51952 and (X(l))2n+1 (x (7', Ah)) = —51371
We have .
B0 (7, AR) :/ =7 JO) (&(0, AR)) h(o, AR) do,
0
with

R _ ) o 0 ) o 0
|:J(1) (.T(T, Ah)):| 12 = I1% i) (92‘221 .
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Since %021 = 16, and 221 = —?a, with h(0) = Ah,

8:62

Similarly, we have

(X(Z)) = ﬂ(—ﬁiﬁlf«”z + ad3/2)
Y Jong1 2T 202k

@) b3 oo -
(X2 )2n+1 = %(53}1/2 — af1ds).
We then obtain obtain the result by integration. O

Since we are only interested in the first two coordinates of the exponential map, we state the following
result.

Lemma B.7. For all 7, for all h € R*",
QY (#(r. AR), (7, AR)) = Q" (a(r, AR), h(r, AR)) =

Proof. Recall that @ : R?® — R?" is the map such that

2n 2n

Qi(h1,. . han) =D > chihihe, i€ [1,2n].

j=1 k=1

Since h(r) = h(r, Ah) + O(n) and z(7) = ni(r, Ah) + O(n?),

Q1(h) = ¢y (#)hiha + ¢, (2)h3 + O(n),
Q2(h) = cia(#)hF + ¢ty(&)hahs + O(n?)
Recall that for all 4, j € [1,2n] _
36{2 _ a(XQ)j _ a(Xl)j
85@ axif)wl a%zaa?g ’
and thus in the Agrachev—Gauthier frame, evaluated at qq,
dcly B dcly B c2y B ac3, —0

8,1131 (9$2 61‘1 833‘2

Hence

QW (#(r, AR, (7, AR)) = Q" (&(r, AR), (7, AR)) = 0

Let us introduce the invariant £ € R, given in the Agrachev—Gauthier frame by the formula

™ 62X1

f - % 82812 <QO)

This invariant, which is 0 in the 3-dimensional contact case, naturally appears in some terms of the third
order expansion of the exponential map.

Lemma B.8. We have

f

w® (1, Ah) = 2(, AR)

and
b2§
T

J.(5(r, AR)) (7, AR) = (7, AR) JAR(7).
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d
Proof. As seen in the proof of Proposition , d—w = —nwLh — n*w?Qo(h) = O(n?). Then
T

dw®
dr

= —wWLORO O LM RO) _ (O[O (1) _ QO (h<0>) .

In the Agrachev—Gauthier frame, c{o(qo) = —0,(X;);, for all ¢,j € [1,2n]. Hence c{o(qo) = 0, which
implies Q") = 0. Likewise, cfy(qo) = —0:(X;)2n+1 for all i € [1,2n], hence cfy(qo) = 0 and LO = .
With h(7) = h(r,Ah) + O(n) and z(7) = n@(r, Ah) + O(n?), we then have

dw® oY, oY, - e acY -
— 7 3 h 20 -, 20 4, h .
dr (81‘1 T1+ 0xo IZ) 1t (8361 Tt 0xo T2 )

Again in the Agrachev—Gauthier frame, at qq,

acy, _ acY, oYy _8080 10b; _big

=0, and = - -1

dr1  Ozs Oxo oxy 20z o«
As a result @ e ) )
hence the result by recognizing % and w®(0) = 0.
The same reasoning applies for J,, where (J;)12 = —aggl = —@f. O

We now know enough to compute ) (27/by, Ah) (or at least its first two coordinates). By direct
integration we have the following expression for the terms of the expansion that depend on &.

Lemma B.9. Let 2 /b
us 1 T _ N _
Lo (2) :/ / elr=a)/ [—w(Q)Jh} (o, Ah)dodr
0 0
and

2w /b1 pT B R 3
Ty, = / / el7=)J [Jz (%) h} (o, AR)do dr.
0 0

Then T2 = —Tj,.

z

We use the same method to compute the other terms of the expansion. Let

B bl 93X, B 20 0°X, B bi 03X,
X = 7 0x203y’ X1z = 7w Ox10x3’ X22 = T Ox3

Lemma B.10. Let 2 /b
Z ) :/ / e(r=o)t [J(z) (%) il} (o, Ah)do dr.
0 0

We have - -, - .
(Ty@); = (X11 + Bx22) by + 3x12h2h] + 3 (X11 + X22) hahi + x12h3,

(22)s = (5x11 + X22) I3 + 3x12h3h1 + 3 (x11 + X22) hiho + Xx12h3.
Proof. First notice that

J® (i(r,AR)),, = —J@ (#(7,AR)), | = b14 (—x11 22 + X12 8182 — Ya2 £2) (7, AR).
1

The stated result is obtained by direct integration. O

Lemma B.11. Let

2w /by T _ . B
Ty = / / el7=)J [J(l) (x@)) h4JO (2) Y| (o, AR) do dr.
0 0
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We have

(zy0 (T, AR)), = 11)2 [—h? (150° 4 38%) + hihy (4ma® — 18a3)
—hyh? (9042 — 8maf + 952) + h3 (47rﬁ2 - 6046)] ,
(a;Ju)(T, Aifl))2 2b2 [h3 (47ra + 6046) + h2hsy (9a + 8raf + 952)

+ hyhi (475 +18a3) + hj (30” 4+ 156%)] .

Proof. Let 7 € R, h € R?", Evaluated at (7, Ah), we have
(J(l) (x(m) ,;)1 — ho(B2? — az?), (Jm (x@)) ,;)2 = i (B — ae®)

and

(70 @ hD) = (B —adz), TV @) 0D = —h(Ba1 - ada).
Both 2" and z(®) have been computed before and we have the stated result by integration. O
Summing up, we have proven the following.

Proposition B.12. We have {x@) (%—",AB)} = [z 0) + T j2], 5. Eaplicitly, this yields
1 1.2 b 3

)

a2 - _. 3
{m(j) <;,Ah>} :h% <2l)2 ( 2t 52) + X1+ 5X22)
1 1 1
o7 o
+ hiho b—2(2ﬂ'oz —98) + 3x12
1
+ hih3 ( BT] (902 — 8maB + 98%) + 3(x11 + X22)>
1

+ B3 < b (278 — 3a) + X12>

b
(3) 2 - 73
x I Ah =h3 (27ra +38) + x12
1 2
+ h2hy 2—()2 (902 + 8maB + 98%) + 3(x11 + X22)>
1

+ Elﬁg ( bﬂQ (27Tﬂ + 90&) + 3X12)
1

- 3
+ h3 < 22 (o +5B%) + 5x11 + X22>
1

C Computational lemmas

C.1 Determinant formulas

In this section we prove some computational results useful in multiple proofs. Let n € N, n > 1, and
b1,...,b, € R be such that 0 < b; < by for all i € [2,n].
Let A € Ma,_2(R) be the block-diagonal square matrix

1 ( sm(%w) 1— cos(gll’f”)> (0)

by cos(%”) —1  sin(22T)

(0) bi ( sin(mgll”) 1-— cos(mgll”))

cos(QZ;) Ty ] sin(2eT)
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Lemma C.1. We have

| 7b;
det(A) = 2272 — sin? ( 1) > 0.
) I35,

i=2 ¢
Proof. This is a consequence of

sin(QZ—i”) 1-— cos(QlI;—'il”)

cos(ﬂg—i”) -1 sin(QIl;—i”)

= 4sin> (”b) Vi € [2,n].

by
Since 0 < b; < by for all ¢ € [2,n], we have the stated sign. O
Lemma C.2. Let V,W € Mixan—2(R), v € R. Then

1
det(A)

AW |_
tV‘v N

1 < b;
vt > b <V2i1W2i — VaiWai1 — (Va1 Wai—1 + VaiWay) cot b7r) . (26)
=2 !

Proof. To prove this result, we develop along the last column the determinant of

()

We get
1 AW |_ ot
det(A) | 'V [ v |
n b? (ng_l cos(3T) — 1 sin(3T)|  Wai [sin(2T) 1 — cos(2pT) ) .
= 4sin? (%) b; Vaioa Vai bi | Vai—a Vai
Hence the result by trigonometric identification. O

C.2 Conjugate time equations
C.2.1 Proof of Lemma [3.5]

Proof of Lemma[3.5 Let T = min(27 /by, 47/by1), so that (27 /by, T) is a connected component of R\ Z.
For all i € [1,n], let

Y0 R\ Upen{2kn/b;} — R

T — 37 — byr? SRR sinbiT),

For all ¢ € [[1,n], ¢; is smooth and has a positive derivative over R\ Ugen{2k7/b;}. Moreover ,;(0) = 0,
and for all k e N, £ > 0,

lim  ¢;(f) = —o0 and lim  ¢;(t) = +o0.
t—2kmw/b; T t—2km /b~

This immediately implies that 71 () > 27 /b;. Furthermore, since

n

1;[}(7_7 T) = erdji(T)v Vr € (R+)n7

i=1

both lim ¢(7,7) = —co and lim ¢ (7,7) = 400, and ¥ (-,7) vanishes exactly once on (27/b1,T), at
t—27 /byt t—T-

time 71(r). Since for all ¢ € [2,n], ¥; > 0 on (27/b1,T), we have that

B(n () =~ D rt(n () <0
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This equality implies that ry ~— 71(7) is an increasing function. Indeed let r,7’ € (R*)" be such that
r1 <rj and r; =7} for all i € [2,n], then for all 7 € (27/b1,T),

1 n n
2 Z 2 Z
"5 " i=2
Since 7+ — 1z 31, ri¢ and T —Ti% SO, ri%4p; are both decreasing functions over (27 /by, T), since
1 is an increasing function over (27/by,T'), this implies 71 (r) < 71 (1).

In particular, 71 being continuous, it converges towards a limit I(rg,...7,) € [2m/b1,T) as 1 — 07,
and

lim Zrl Ui (1 (r Zrl Yi(l(ra,...r)) > 0.

’!“1*)0+
Hence lim,., o+ ¥1(71(r1,...,7)) = —o0, and by inverting ¢ we obtain
lim 71(r1,...,7rn) = 27/by.
71 —0+

Notice in particular that as 6t — 0%, 1) (27 /by + 6t) ~ bggt Hence we get by inverting 1

-1 <_7}%ZT$W(TI(T)))> — 27 /by ~ B2y, 87;1(277/61)) i

hence expansion . O

C.2.2 On the first domain

Lemma C.3. We have
b (27T/b1 -+ 77515’ h7 77) — n2n+3K/d + 0(772n—i-4)7

where

“ol
K’ = 92n— 2Hb28 (b1>>0

and

_ 9 oFM F) aF oF )
d= |50 (FO 461252 - 52 (F® 4 6128 - (2% )2
9 2 o 2
Bhy (F( ))2n+1 Ohs (F( )>2n+1 0 T=2m /by

Proof. From Proposition we have that F(1) (%—T, h) = (a% (%—T,h) ,O), with 2 (%—’f,h) = 19 (%—7;, h) =

0. Furthermore, observe that
Z3(27 /b1, h) hs
z =4
Fon (27 /b1, h) hon
where A € Ma,,_5(R) is the block-diagonal matrix diag(As, ..., A,) of 2 x 2 blocks

A — 1 (sin(%i”) 1 —cos( 211

T COS(QZ”) bln( )

)> ) Vi € [2,n].
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Thus Equation entails, by factorizing n,

O (27 /by + ndt, h,n) =

o oF® o) aF® x (9F®
A (F2)+6tF )1 %(F(2)+5tL>l 0---0 7%1(;; )1
) (2 aF<1> o) 2 oFrW 27 (9F D
B—(F ) 4 torY )2 8—2<F()+5t )2 0---0 H(BT )2
772n+3 0 0 0 + O(T’2n+4)'
: : A :
0 0 0
)
hl (F(2))2n+1 ho (F(z))2n+1 0---0 0
From Lemma in Appendix [C] det(A) = K’ and we have the stated result. O
C.2.3 On the second domain
To evaluate - -
‘I) (27T/b1 + \/775t, \/ﬁAh + (Ign — A)h, ’I]) ,
with §t € R, h € R?", notice that
oF 1 0G oF 0G
=——, Viel[1,2], d —=— Vie]3,2n].
oh: i oh (12l and o =g Vi€ 32
oG 8G G
Then for all i € [1,2n], we set C; = o and Cop 11 = n— an , evaluated at time 7 = 27 /by + /nét.

For all i € [1,2n + 1], the vector C; € R2+. also admits a power series expansion in /7,
S (k/2)
Ci= an/QCZ-k 2,
k=0

Notice that by definition of (C;);c1,2n4+1] We have C 0(1/2) = C’Z.(l) =0 for all i € [1,2n]. As a
consequence we can obtain an equation satisfied by a potentlal perturbation of order 1/2 of the nilpotent
conjugate time.

Lemma C.4. Recall

b;
K th 1+h ( bl

™) >0,

2
_ —b—§n2”+4KK’6t2 + o(n?n ).
1

by
tb1>>0,

- A)Ea 77)

n
22n H 72 (
=2 ’L
We have
® (27 /by + /06, /nAR + (I2n
Proof. From Proposition we get that neither G nor G(® depend on (hy,hs), hence from expres-
sion we deduce
Ci = 772&1/28;1137(;(3/2) + 0(775/2)a Cy = 5t1/23B237G(3/2) + 0(775/2)~

Hence, evaluating ® at (27 /by + \/76t, /AR + (I2, — A)h,n) and eliminating higher order terms, there
exist VW € Miyo,_2(R), v € R such that

ot 0 |0---0| O
0 ot [0---0] 0
P 2n+4 0 0 2n+4
N 4w +o(" ™).
0 0
0 0 V [ v |
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Recall that det(A) = K’ (see Lemma [C.1)). To get the statement, let us show that

= bTKK/

AW
ty
From Lemma in Appendix [C] we have

1
det(A)

AW
tv‘

1 ~ biﬂ'
=v+ 2> b (VaisaWay — VaiWaiy — (Vaisa Waim + VaiWai) :
2 by

In our case, for all i € [2,n], (Vai_3, Vai_2) = (hai_1, hai) (— — bi sin (22—1“>> and

W2i—3 B bl sin 2;)1'17 %7; c 2mb; % _ %ﬂ' sin 2£rb _ bi 27Tb h2z 1
Wai_s i” sin 2”1" + b cos 22117 L bi sin 2rbi _ 27 g 22” hai

b; b1 b1
Finally, v = 31", (h3,_, + h3,) ( 2 zb bl 2b ) hence the result by summation. O
Lemma C.5. We have
2
© (27 /by +ndt, hyn) = n*" K (d - b;rKd’> +o(n*"*?),
where (3/2) (3/2) (3/2)
5/2 aG 5/2 aG oG
(97}711 (G( /2) + 0te=—— )1 377742 (G( /2) +6t7 L —T o L
d= % G(5/2) iy 6G<~"/2>) G(5/2 n 5tac<d/2> . (acgim )2
3 3
Bhl ( ( ))2n+1 8];2 (G( ))2n+1 O T:Qﬂ/bl
and
9 86‘(” 8 (@ aG<1>
o | (6@ +at262) 2 (6@ + o250 )
(¢ + 6t3G(“) 2 (6 + 6t3G(1))
3h 2 2lr=27/b,

Proof. The proof is similar to that of Lemma From Proposition and expression we deduce
Cy =020y, (GO 4 610,642 + 00r"),
Cy = /%0, (G<5/2> + 5taTG<3/2>) +OmP).

Again, similarly to Lemma evaluating ® at (27/by + ndt, /7Ah + (I2, — A)h,n) and eliminating

higher order terms, there exist VW € Miyo,_2(R), v € R such that at 7 = 27/b;, the term of order
2n 4+ 5 is given by

= (G<5/2> n 5tM) 1 o (G(s/z> +5toe ) Jo-of o
) 5/2) 6G(3/2) ) 5/2 BG“/Q)
BTI(G(/ Ty el )2 W(G(/Mét )2 0---0| 0
0 0 I
: : AW
0 0
0 0 y v
(G(5/2> T 5taG<3/2>> 0 <G<5/2> T 5tM) 0--.0| -7 (86‘““”)
1 6h2 or 1 oT 1
5/2 dG<3/2> 9 5/2 G 3/ 2GB/»
2 (G</>+5t )2 %(GUM&T)Q 0---0 —T( - )2
0 0 0
: : A :
0 0 0
I3l 3 J 3
Ohy (G( ))2n+1 Oho (G( ))2n+1 0---0 0
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Hence the result since det(A) = K’ and >

A
% I/Z ’ = —Q—gKK’ (as showed in the proof of Lemma .
L]

C.2.4 On the third domain

Then for all i € [1,2n], let C; and Ca,41 be the respective evaluations at time 7 = 27 /by + ndt; + n?6to

of the vectors Z—BG and naa—G T For all i € [1,2n + 1], the vector C; € R?2"*! also admits a formal
n T

%

power series in 7, C; = > "2, nkCi(k). Notice that by definition of (C;)iec[1,2n41] We have
c=c® =0 vie[1,2n].

Hence we have a priori ® (27/by, Ah + n(I2, — A)h,n) = O(n*"*'). We can use these elements to give
the following refinement on Lemma

Lemma C.6. For all h € R*", 5ty = 7{")(Ah) is the only solution to
® (27 /by + nét1 + n°0ta, Ah + n(Iay — A)hyn) = O(n*"2).

Furthermore

2n+1
o (27T/b1 + 07D (AR) + 775ta, Ah + n(Tan — AR, n) ="K ( > di) +O0(n"™"*?),
1=1

! _ o2n—2 n 1 :..2 ( wb;
where K' = 2 | 7 sin ( b

o), (e), ()
dy = (C{S)L (02(3))2 (Cé’ll’L)Jrl) ;
()0 (@), O
(), (), (enh)
dp = <C£2)>2 <02(2))2 (C&)Jrl)z ’
() () 0
(), (), (e
dont1 = (CEQ))Q (Céz))z (CQ(?H)
(A7) s (€9, (G2),.,
d
h dy, = 2;;% (—hz&hk (G(3)>1 + h1 O, (G(3))2) vk € [3,2n],

where e € R*=2 s the vector such that Ae is given by the components 3 through 2n of the vector
(th’{Q) — hlc§2)), with A € Ma,_2(R) the matrixz introduced in Lemma .

Proof. The first part of the statement is an application of Lemma [C3 in the case of an initial covector
of the form h(0) = Ah + (12, — A)h. Indeed

o (27T/b1 + TITél) + 7726t27 AB + n(IQn - A)Ba 77) = 774n+1 det (01(2)7 DI CQ(i)’ Cé'}z)—i-l) + 0(774n+2)-

The equation satisfied by Tél) comes down to

T=2m/by +777'c(1>

)

det (C§2)a ) 02(31)7 CQ(’}L)-"-l)
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hence
@ (27/by + 070 + 0ta, A+ ) (Ian — MR,y ) =

4n—+2

2 2 2 2 3 2 2 1
n det (C( ) én)+1> Zdet ( ( )7~ . 'acli_)laclg );Cz(ng)p s 702(n)acén)+1)

+O(n*"+3).

Setting dj, = det (C?), cey C’,iQ_)p Cy (3) C,(j_l, . Czn+1) for all k € [3,2n], we first prove dj, = K'dy,
for all k € [3,2n].

We proceed to the following transformation on the columns (C;)ic[1,2n41] Of the Jacobian matrix.
First, C7 < hoC7 — h1Cs and Cy < h1Ci + hoCy, then we transpose C) <+ C; and finally we cycle
Ci+1 «— C;forie [[3, 2%]] and C3 <+ 02n+1. This yields

(h% + h%) ;6 = det (C](c?’)a hlc£2) + h20§2)’ Cé?ll)—&-lv O§2)7 ) C](CQ_)lv h20§2) - h102(2)7 Olgf‘zl’ LR CQ(§L)> .

—_

Using Proposition 4.1

K2 ?

(C’@)l = (C’Z-(Q))z = <C(2))2n+1 =0, i € [3,2n]. All columns of this new

matrix have zero 2n + 1 component except for thl(z) + th’g), and zero 1 and 2 component except for
C,(cg), thfz) + hQCZ(Q) and 02(711)+1' One can apply the Cramer rule for computing the k-th coefficient of
e= A*I(thf) — th§2)) when computing the determinant of the square submatrix of lines and columns

3 through 2n.

Hence we have
K/

d/
k h2 I h2

det (CF7, M + maCP, C4), )

with C; = ((Ci)1,(Ci)g, (Ci)gp 1), and we get the value of dj, by computing the remaining determinant.
Similarly, we obtain the stated relation for d;, dy and ds,, 1 by noticing that Céi)_ﬂ = 0 and isolating
the three 3 x 3 matrices given by lines and columns 1, 2 and 2n + 1. O

The value of determinants d; through da,1 can be explicitly stated in terms of second order invariants
thanks to the computations in Appendix [B2]

Lemma C.7. We have doy+1 =0, dy = f%—’f(i_ﬁ + h2)(Bhy — ahy)? and

dl 4;; (h2 + h2) ((5t2 + 4b1 (ﬂ}_ll — ai_zg)(aﬁl —+ 5%2))

ir? (,@(a% R E), <a<G<3>>1 a(a%)) |

P2 o o, ohe ol

Furthermore, for all i € [2,n], we have

27T2b i— i— i— 1—
dgi_l b2 (hl(h 2’2 + h Hg 28 1) hg(hlﬁij ! + h Iﬁ? 2 1))
7Tbi
{COt ( by ) ( Kyt 1 (h3 — h3) + 2haha(kyt | — K32 1))
- (@%2(’12 W) + 2hiho(ry;! Hgf))] :
272b;
do; :L ( (h1/€2 —|— hok 2, 21) hg(hlli + hak 2, 21))

(G

* (”21 1 (h3 —hY) +2}11}12(’%%1—1 ”312 1)>} .

) k32 (B2 = B2) + 2hyhy (kb — I{S%z))
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Proof. First, recall that

217 (2n /b1, AR) = (3R + B3) + 267 Pa,

28 (21 /by, AR) = 2ahy by + B(RZ + 3h2)
and Tél)(AiL) = —2(ahy + Bhs). Using Lemma from the Appendix, we have the value of z(3) (%—T, Aﬁ)
and we can compute the 3 x 3 determinant do. (Remark that F2(2)+1 =20 4 7’6(1)872(2)(27'(/1)1) and that

0,2 (27 /by) = 0.) Similarly we can compute da, 1 by noticing, for i € [1,2], at 7 = 27 /by + 777'0(1)

(0 F; — 70, Fy) = 22? (?Ah) - ii (hf;l) (?Ah) + Té”(Ah)(Jh)z) :
1 1 1

Regarding dy., k € [3,2n], we obtain the result by explicitly computing the vector e € R>"~2, First, since
9,23 =0

~ ~ ~ ~ 42
det (CF, mCE + hoC, GG, ) = =5 (b 4+ 1) [haha (k] — 3% + h3ed* — hdny™)|
1
On the other hand, we have Ae = hyC\®) — hyC{? and for all 3 <i < 2n

(hQC{Q) - théQ)) = ’11172(}% - h%) + 2h1h2(/€1’1 — n?’Z).

. i
g

We then get the stated result since A~! is block diagonal with blocks in position 4 — 1 being, for all

i € [2,n],
@ COthi/bl -1
2 1 COt’]Tbi/bl ’

D Singularity classification

On each domain, the first step of the classification is to properly describe the Jacobian matrix of the
exponential. Recall that the rank is lower semi-continuous as a map from Ms(R) to N. This implies that
the Jacobian matrix can have a kernel of dimension at most 2 at times near 27 /by, as it is the case for
the first order approximation E.

We decompose the matrix Jacp, &, into the following sub matrices:

with Ay, Ay, Az, Ay € Mayx2(R), L1, Ly € Mix2(R), C1,Cy € May1(R) and E € My (R).
A vector v in the kernel of Jacy, &, must the satisfy the equations

Ay (Ul) + Aq <1)3> + Cyvs =0, (27)
(%) V4

A3 <’U1) + A4 <US> + 02'05 = 0, (28)
(%) V4

L (”1> + L, (”3) + Fuvs = 0. (29)
(%) V4

In the following three sections, we compute approximations of elements of the kernel with initial covectors
of the form

(h1,ho, ha, hasn™t), (vihi,v/mhe, hs,ha,n™)  and  (hy, he,nhs,nha,n™") .

All expansions as 7 — 0 are assumed uniform under the condition h? + h3 + hj + h]j < R for some
arbitrary R > 0.
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Remark D.1. The following computations make abundant use of explicit expressions of the approxima-
tions of the exponential map obtained in Section[3] Readers wishing to precisely follow the computations
are referred to Propositions [47 and for a general expression of the approximation of the expo-
nential map, and the results of Section [3] and Appendix [B] for expressions in terms of invariants.

D.1 First domain: initial covectors in T M \ (S; U Sy)

D.1.1 Jacobian matrix

From computations of the conjugate time, we know that ker Jac,,&,, # {0} at ¢t = t.(po). Let us
compute a first approximation of the set of solutions of the equation Jacy,Eq, (te(po)) - v = 0 (thanks to
our approximation of F(7) = &(nT)).

Proposition D.2. The kernel of Jac,, &y, (tc(po)) is 1-dimensional and there exists v(ha, he, hs, ha) such
that it is generated by the vector
(_h27 hlv 07 Oa l/) + 0(77)

Proof. According to the computations carried in Section [4.1, we have
A= 0(772)7 Ay 7é 0(772)a (S [[1a3]]a

Ci=0("), Li=0(?), E=0("), ic[1,2].

Regarding Cy, C, E, this is in particular a consequence of 95F = —n?0, F + n70.F. Then implies
vz = O(n) and vy = O(n) since Afll) is invertible, and from we obtain

Ly (U1> = 0(773)~
V2
That is hjvy + hovy = O(n), hence there exists A € R such that v; = —Ahs + O(n), v2 = Ahy + O(n).

Similarly, (27)) yields
(0)
2) (v 2) (0
e <j0>> £ OO o,
2

hl B b1 h2

M—ha, h1), véo) is uniquely defined, linearly dependent on A. Similarly, we compute

(1) -1 (0)
Us ) (A) T [p@0@ L@ (v ) )
(1}4(11)> ( 4 > (5 2 3 véo)

Hence the statement. The kernel of Jac,, &, (t-(po)) is in particular 1-dimensional as a consequence of
the lower semi-continuity of the rank. O

- 2
Since 7tV corresponds to the fact that Agz) ( h2> is colinear to sz) =z <h1>, with (v%o),véo)) =

Regarding the image space, we have can give a description as a consequence of Lemma,

Lemma D.3. Let po € T; M \ (S1 U Sa). The image of the Jacobian at py of the exponential at the
conjugate time admits the representation

imJacy, &y, (tc(po)) = Span {h101F + hoOoF, 03 F, 04 F, 05 F} .

Proof. Let vy be such that ker Jacy,, &, (tc(po)) = Span(vy). For any 4 vectors vg, vs,v4,vs such that
rk(vy,v2,v3,v4,v5) = 5, we have the property that

k=1

5
imJacp, &y, (te(po)) = Span <Z (vi)kﬁkF> .
i€[2,5]

One possible choice is then vo = (hy,h2,0,0,0), vs = (0,0,1,0,0), v4 = (0,0,0,1,0), and vs =
(0,0,0,0,1). O
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D.1.2 Classification
We first introduce a computational lemma approximate the ¢ functions from Proposition [5.10)
Lemma D.4. For alli € [1,5], let U; : R* — R and let

2

\P(U1,U27U5) = —Us <t691A52)6T1> + bl

(h% + hg) (hl’U,Q — hgul) .
Then we have for po = (h,n™1), uniformly with respect to h € Br as n — 0,
8 b
det (U (h), O F + hada F, 05 F, 04 F, 05 F) = 1= sin’ (7;2) (U1 (1), Ua(h), Us(h)) + o(n®).
1Y9 1

Proof. We compute the dominant term of det(h101 F +hoOoF, 03 F, 04 F, 05 F, U (h)). Using notations from
Section and a similar reasoning to what can be found in Section [4] we obtain

0 0 ” Ui(h
A en | g o |7'Een U;Ehg
det(h161F+h282F, 83F, 84F, 65F,U(h)) = 0 A(l) 0 0 +O(776).
0 T 0 0
i) [ 0 0 [ 0 [ Us(h)
We have the result once observed that det Afll) = l;% sin? (%) and
2
2) U
WU, Us,Us) =det | A1 6 || 1,

Z(hi+h3)| 0 | Us
2w
=-Us (teglAgQ)erl) + E(h% + h%) (h1U2 — hQUl) .

O

Let po € T, M\ (S1US2) and v be as in the statement of Propositionso that ker Jacy, Eq, (tc(po)) =
Span(v). As explained in Remark we choose the first coordinate x; : M — R such that Oy, =
Z?Zl v;0;. Since v3,vy = O(n), we have that 9% F = O(n?) for all integer k > 2.

If we denote V' : R* — R’ such that 97 F = n*V’(h) 4+ o(n?) then let Wy(h) = W(V{, V5, VJ).
Similarly, define V” : R* — R5 such that 82 F = n?V”(h) + o(n?) and V' : R* — R’ such that
93 F =n?V""(h) 4+ o(n?); and define W3(h) = W (V" VJ', V'), Uy(h) = O (V" V3" VI").

Since the length of expressions is still manageable in this case, we can give the explicit form of ¥,
U3 and Wy (up to multiplication by 27(h? + h3)/by):

Wy (ha, ho, ha, ha) = — (ha(ky® + 267°) + ha(ky™® + 267)) 13
+3(hs(ry® — 53 + ha(rsy Yhihs
+ (ha(265° + K77) + ha (265" + K71)R3,
N _ 1,3 23 L4 24\\;2
3(h1, hg, hg, h4) =+ (h3(/€1 — Koy ) + h4(,‘£1 — kKo ))hl
+2(hg(ky® 4+ K7°) + ha(ky™ — £71))hahy
= (ha(ky® = k57) + ha(ry ™ — w3 ™))h3,
Wy(hy, ho, hs, ha) = — (hs(3ky> + 462%) + ha(3ky™ + 4k31))A2
) ) ) 2 1 4 2 1 1
+T(ha(ky® = £5%) + ha(ry® = w53 4)hihe

+ (ha(4ky® + 363%) + ha(4rd™ + 362))A2.

A4 2,4
—ky")
4

%)
%)

As an application of Lemma and the analysis of the Jacobian matrix of &y, (t.(po)) of Sec-
tion [D-1.1] we immediately obtain that for 1 small enough

Uy(h) #0= ¢11(po) # 0, U3(h) # 0= ¢d111(po) #0, Va(h) # 0= d1111(po) # 0.
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D.2 Second domain: initial covectors near S

D.2.1 Jacobian matrix

The idea is the same as before, now we consider initial covectors of the form
po = (v/nh1, ihe, hs, ha,n™") .

Proposition D.5. If there exist a time near 27n /by that is conjugate for py then the kernel of Jac,,Eq, (te(po))
is either 1 or 2-dimensional. If (h1,h2) # (0,0) then there exist two vectors

h2 + h2
vg, = (—h2,h1,0,0,0) +O(n) and v, = (hl,h2,0,0,<1;;,2)> + O(n)

such that the kernel of Jac, &y, (tc(po)) is either Span (A, ve, + Ar vy, ) or Span (ve, , Ury ).
Proof. From the computations in Section we have
Ai=00"), Ag#0(?), ie[L3],
Ct=00"?), Li=0(), C:=0(), L=0(7), E=0@).

As previously, implies v3 = O(n) and vy = O(n) and similarly to Section [D.1.1 (vgl),v§1)> can be

computed as
v§! © (4O " @
(1) = _U5 <A4 ) 02 .
Vs

Hence the smallest non-vanishing order of the system -— reduces to the 3 x 3 system

)

v

AP (U%m) + PP =, (30)
2

U

0) -1
(Y
L ( %0)> + <E<3> — 18 (a) 02(2)> o =0. (31)

-1
Now observe that E) — L;2) Ail) 02(2) = —i—’:K, where K is the constant introduced in Lemma
and we know that the first conjugate time is a perturbation of

5/2 5/2
w (A "
1 b1
When that is the case, the set of solutions of — is at least 1-dimensional, otherwise it is reduced

to {0}.

{Aisume holds and that (hy, hs) # (0,0). Let us denote e,, = (hy, ha) and eg, = (—ha, hy1). There
exist unique A, Ag, € R such that (Ugo)’ véo)> = Ap,€r, + Ag, €0,. Since (athg‘”’), 8h2F5(3)) € Span(e,, ),
we have from that

Furthermore from Propositions
27T77/b1 if

W0y Ve
5 M oK

and from we get

(5/2) biLVe,, (5/2) _
Arl Al €r, — WC& + )\GlAl €g, = 0.

(3) 2 2
Recall that L(13) = %—f (h1 hz), thus blg; Ke L= hl;ghQ . Elements of the kernel must be linear combination
of the vectors

Vg, = (_hQa hla 07070) =+ 0(77) and Ury = (h17 h270707 _(h% =+ hg)/K) + 0(77)

Assuming holds, there are two cases:
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2 2
1. Either Ag‘r’/z)er1 + %Cl %0 or A§5/2)€91 # 0, and the kernel is a 1-dimensional space generated
by a linear combination of vs, and v,,.

2. Both A§5/2)e,«1 + h?LKh;C’l = 0 and A§5/2)691 = 0, and the kernel is the 2-dimensional space
Span(vg, , vp, ).

If hy = he = 0, assuming holds implies that véo) = 0 and the kernel is of the dimension of ker A§5/2).
O

Remark D.6. Notice that a 2-dimensional kernel implies that the conjugate time is a zero of order 2, that
is, A = 0. (The converse may not be true however.) Indeed, if (hq, ha) # (0,0), A(15/2)691 = 0 implies we

must have for some a,b € R
46/2) _ (ahl ahg)
1= .

bhi bho
Then A55/2)67»1 = —%Cl implies a = _hlb%o b= —hgbf—}r(. Under these conditions, one can check
that the zero is of order 2.
If (hy,h2) = (0,0) however, having a 2-dimensional kernel corresponds to A§5/ ? = 0. However,

in that case, using notations from Theorem this implies that v12 = 721 = Y11 — Y22 = 0. From
Proposition this is exactly stating that gy € G2, hence the kernel of Jac,, &, (t.(po)) for an initial
covector pp in Sp is of dimension at most 1 at points of M \ Ga.

Finally, let us give a useful description of the image set of the Jacobian matrix of £, (t.(po)) in the
case of 1D kernel with initial covector such that (hq, he) # (0,0).

Let A, Ag, be such that Span(A,, vy, + A, vg, ) = ker Jac, &y, (tc(po)), and let V, W be two vectors in
the image set of Jac,, &y, (tc(po)) such that

_ _ _ -1
W = 0sF — nw30sF — nw,04F, with <w3> =— (Ail)> 02(2)
wy
and

(h3 + h3)
K

V=, <h181F + hydsF + W) A (—hodiF + s F).

They have been chosen to simplify low order terms in their expansions as n — 0. Indeed

Wi = 1°/221 Jbihy 4 o(n®/?),  Wa = 0°/227 /bRy + o(n®/?),

2
(W3, Wy) = 0(7]5/2) and Wy = —UBEK + 0(773).

Likewise, (V1,V2) # o(n°/?) but Vi, V4 = O(n°/2) and Vs = o(n®). (This observation is useful for the next
section in particular.)

Lemma D.7. Assume py = (\Mh17ﬁh2,h3,h4,n’1) is an initial covector such that (hy,hs) # (0,0)
and the kernel of Jacy,Eq, (te(po)) is of dimension 1. Then

imJacy, &g, (te(po)) = Span{V, W, 05 F, 04 F'} .

Proof. The proof is analogous to the proof of Lemma [D.3] The kernel is spanned by g, vg, + Ar, vy, .
Let v3 = (0,0,1,0,0), v4 = (0,0,0,1,0), w = (0,0, —nws, —nwy, 1) and

v = =g, (Up, — NW3V3 — NW4V,) + Ay Vo, -

By construction,
rk(Ag, Vg, + Apy Upy, 0, W, 03, 04) = 5,

Hence the result since V' = Jac,, &y, (tc(po)) - v and W = Jacy, Eq, (te(po)) - w. O
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D.2.2 Classification
Again, we introduce a lemma to help us approximate the ¢ functions.

Lemma D.8. Let V,W be as in the statement of Lemma . For all i € [1,5], let U; : R* — R and let
O (uy, uz, us) = us (1/1(5/2)112 _ V2(5/2)hl> LK (V2 5/2), _ 1/1(5/2)u2> .

Let also 0, : R — R® be such that 0,(u) = (1°/?u1, 0% 2ug, 1> 2uz, n° ?uy, nius).
With pg = (\/ﬁhl, /Mha, hs, h4717_1), uniformly with respect to h € Bg as n — 0, we have at pg

det (2, (U(R)),V,W,03F,0,F) = —7; sin? <> ®(Uy(h),Us(h), Us(h)) + o (n*°).

Proof. We compute the dominant term of det (9,,(U(h)),V, W, 03F,04F). Similarly to what is done in
the proof of Lemma[D.4] we get from the assumptions and the construction of V and W in Section

775/2U1 775/2‘/1(5/2) 775/2 %rhl 00
n°/2U, n5/2v2(5/2) n°/2 i—fhz 0 0

det (0,(U(h)),V,W,03F,04F) = 0 0 0 40 | F o(n'™).
0 0 0 144
n3Us 0 773%1( 0 0
Ur Vi hy
Hence the statement since ®(Uy,Us, Us) = | Us Vs hs | and det AS) - % sin? (WTblz), O
Us 0 K :

Let go € M\ S and py = (\/ﬁhl, VMha, hs, hy, 77_1) € T, M. We can separate cases depending on the
dimension of ker Jac,,&,, (t(po))-

Let us first treat the case of a 2-dimensional kernel. Let ST be the subset of T, M on which
dimker Jacy,, &y, (te(po)) = 2. Following the analysis in Remark singular points with dimension
2 kernel on M \ & correspond to covectors such that (hy, he) # (0,0) and

o 72’]Th1h2 o 727Th1h2 _ _ 27 (h% — h%)
Y12 = by , Y21 = K y Y22 — 11 = 7171[(

Furthermore, ker Jac,, &, (t.(po)) is generated by ve, , vy, , hence we choose the coordinates x,x2 such
that Span(dy,id, dx,id) = Span(vy,,v,, ), and we can check that the singularity is always of type D} at
covectors of ST.

Assume now that the kernel of JacEy, (t.(po)) is 1-dimensional. As a consequence of Proposition
assuming (hi, he) # (0,0), the kernel is generatedby v = Ag,vg, + Ar,vr,. We choose the first coordinate
x; : M — R such that 0k, = Z?Zl v;0;. Since vz,vs = O(n), we have that 0F F = O(n*/?) and
OF Fs = O(n?) for all integer k > 2.

If we denote V' : R* — R® such that (coordinate-wise) 92 F = 0, (V'(h)) + 0(9,(1)) then let 5(h) =
®(V{,Vy,V{). Similarly, define V" : R* — R® such that 82 F = 0,(V"(h)) 4+ 0(d,(1)), V" : R* - R®
such that 97 F = 0,(V"(h)) 4+ 0(d,(1)) and V" : R* — R such that 05 F = 0,(V""(h)) + 0(9,(1));
and define ®3(h) = (I)(Vll/a VQ//a ‘/:5”)’ Py (h) = (I)(Vlm, 2”/3 5///)7 ®5(h) = (I)(Vllma VQHH’ VSWI)'

We numerically check that singular values of the exponential corresponding to covectors pg such that
(h1,h2) = (0,0) are of type Aj; (it is immediate by passing to the limit if the conjugate time at pq is
not double) As an application of Lemma and the analysis of the Jacobian matrix of &, (t.(po)) of
Section [D-2.1] we obtain that for  small enough

Oy (h) # 0= ¢11(po) # 0, ®3(h) # 0= ¢111(po) # 0,

®y(h) # 0= ¢1111(po) # 0, ®5(h) # 0= ¢11111(po) # 0.
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D.3 Third domain: initial covectors near S,
D.3.1 Jacobian matrix

We now consider initial covectors of the form

bo = (h’lvh'2777h3777h4777_1) :

The approach here is similar to Section however we need two orders of approximation. For two
matrices A, B € M, (R), and two vectors u,v € R", having (A4 + nB)(u + nv) = 0 yields Au = 0 and
Av 4+ Bu = 0. This relates to the computation of the conjugate time in Section but we only proved
det(A + nB) = o(n), hence the existence a priori of u € R™ such that Au = 0 but not of v € R™ such
that Av 4+ Bu = 0.

Lemma D.9. Let A,B € M,(R). Ifrank(A) = n — 1 and det(A + nB) = o(n) as n — 0 then
B -ker A C imA.

Proof. Since rank(A) = n — 1, there exists P,@Q € GL,(R) such that A = PA'Q, with A’ the diagonal
matrix with diagonal (0,1,...,1). Let u € ker A\ {0}. Then Qu is colinear to e; = (1,0,...,0). Without
loss of generality, we can assume Qu = e;. Then, denoting B’ = P~'BQ~!, Bu € imA is equivalent to
B'e; € imA’, that is Bj; = 0.

On the other hand det(A +nB) = o(n) implies det(A’ +nB’) = o(n), and developing the determinant
with respect to 7 yields det(A’ +nB’) = nB{; + o(n). Hence the result. O

Proposition D.10. The kernel of Jacp,Eq,(te(po)) ts 1-dimensional and there exists v(hi,he) € R,
w(ha, ha, hs, hy) € R, such that ker Jacy,Eq, (tc(po)) is generated by the vector

-5
(—ha, hy, %, %, V) + 1 TV (h1, ha,*,%,0) + 1 (—l/hg,uhl, *, %, — (h% + h%)) + 0(772).

Proof. From computations in Section [4.4] we have
Al = 0(772)7 A3 = 0(772)7 A4 = 0(772)7 and A3 = 0(773)7
Ci=0%), Li=0(), Co=0@%), Ly=0("), E=O0(’).
Equation then implies
Ly (v1> = O(n’).
vy

Hence, as previously, there exists A € R such that (vi,v2) = A(—hg, h1) + O(n). Now however, since

Ay =0(n?) and Ay = O(n?),
U1 U3\ _ 3

and

Hence we have

(0) ~(2) @ (v vy e\t e (v
v O = =4, L | and | G :—(A4 ) A RONE
2 4 2

The lower semi-continuity of the rank implies that the kernel is indeed 1-dimensional. We can apply

Lemma and compute v(!) € ker A+ such that (focusing on vil), vél), vél))

(1) 1 (0)
2 v 3 3 2 2 v 0 3 1 2
AP (ﬁ”) + (A§ DA (AP A >> <u%0>> +000® 1 uiVoP =0 (33)
2 2
@ [vf” @ (v L0
Uy Vo
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We can assume (hq, ha) # (0,0), since we are considering covectors near Sy but not S;. Still focusing

%1),7);1),1);1) and looking for solutions in ker A+, we use a more suited basis of R3. We have v

hh2>, so that with f; = (—he, hy,v), (v§0),v§0>,v§°)) = Afi. Then we set
1

fo = (h1,h2,0) and f3 = (~vha,vhi, —(hf + h3)), and <U§1)7U§1)7Ué1)) = pafa2 + psfs.
Then Equations — yield

on v

such that VCP) = —Af) <

-1
AP er, + psvAP eg, + A (A§3> -~ 49 (A49) Ag2>) eo, + WC — g (h3 + h3)0? =0,
ungmen + )\ng)egl + \WE® = 0.

-
Li )eTl

Then ug = A (ng)egl + I/E(B)) = —5Ar/4 (see the proof of Lemma to find an explicit expres-
sion of Lg3) and E®) and

5 —1
A vAPe, + (Aﬁ‘” - AP (4) A?)) co, + WO = py(h? + b3 + 1) O,

Hence the result with p = ps/A\. O

Again, we end the section with a handy description of the image of Jac,, &, (tc(po)). Let

_ _ _ _ —1 h
V/ = h181F+ h262F — ”LU383F — w484F, where (:ﬁi) = (A§2)> Aéz) <h;> s

so that (V4,V)) = O(n?).

Lemma D.11. Let pg = (hl, hg,nhg,nh4,77_1) € T, M. The image of the Jacobian matriz at po of the
exponential at the conjugate time admits the representation

imJacy, &y, (te(po)) = Span{V', O3 F, 04 F, 05 F } .

Proof. The proof is again straightforward. With v generating ker Jac,,&,, (t.(po)), as given by Proposi-
tion [D.10} v" = (h1, he, w3, w4, 0), v3 = (0,0,1,0,0), vs = (0,0,0,1,0), v5 = (0,0,0,0,1), it is immediate
that

rk(v, v, v3,v4,v5) = 5.

Hence the result, similarly to Lemma O

D.3.2 Classification
We repeat the process one last time, except we now need two orders of approximation.

Lemma D.12. Let V' be as in the statement of Lemmal|D.11 For alli € [1,5], let U,U’ : R* — R® and
for u,u’ € R, let

‘Il’(u) = b1U5 (Ozhg — ﬂhl) + (hlUQ — hgul)
and

27by

F(’LL, ’U,/) :\If/(u') —+ T(Oéhl —+ ﬁhg)(hg’ul — h1UQ)

b1 us /(3) /(3)
ECENE) (h2v1 Vs )

DL (s + Bha) ¥ ()

_ 1
T
b2 1 3 4 3 4
+ E‘I’ (u) |h1(K74 — K13) + ha(kyy — Kag)+
cot (7;62> (27'5(1)(]1) + hy(K35 4+ K14) + ha(k3s + H§4)):|
1

b b
+ 52 (U4 — Uz cot (T)) (né"ghf — K&2%hE + (k3P — /@%’S)hlh2>
1

b b
+ 52 (Ug + Uy cot <7;)2>> (nf’4h§ — ry o+ (5t — m§’4)h1h2> .
1
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With pg = (hl, ha, nhg,nh4,n*1), uniformly with respect to h € Br as n — 0, we have at pg

det (U(h) + UU’(h), V,03F, O4F, 85F) =

IR s (T2 ) /() + 00 (0,00 + o0
bib3 b1
Proof. We compute the first two non-zero terms in the expansion of
det (U(h) +nU’(h),V,03F,0,F,05F) .
Observe that

V=’V £ v Lon®) and F = n?0,FP + 20, F® 4+ o(n®) Vi e [3,5].

Notice that det (U(h), V®,05F (), 0,F ), 0 F®) = 2, (52 1 n3)y! (U (k) (recall K’ = det (Aff)) -
4 sin? (%)) Then

b3

det (U(h), V, 85 F, 0, F, 95 F) =n® det (U(h), V® 0, F® 9,k 85F(2))
+n?K'(dy + dy + d3 + dy + ds) + o(n"),
with .
K'dy = det (U’(h),v<2>,83F<2>,84F<2>,35F<2>) — K g; APVer, | O
U, [ZGZ+03) | 0

Uh 3 4@ (@) 4@ (2)
K'dy = det (U(h),V(S),agF@),84F(2),85F(2)) — k'l U, AV er, — Ay (A4 ) A7er, | C)
Us | LPe,, 0

Ui @) (3)

: Ae, C

K'ds = det (U(h), V(z),83F(2),84F(2),85F(3)) —K'| U 1°6m 1
Us | Z(hi+h3) | E®

and
K'de = d (U V@ (3) (2) @) _ 2T 2 2
3 = et (h), ,83F 784F‘ ,85F ) = b]_ (hl + hQ)

(U3 (A2 | (1), (), ] awn | (A7), (Ai”)l,z)

v (a2),, | (a9),, (), |7 n | (a®), (),

2
K'dy = det (U(h), V), 05F®, 0,7, 955 ) = —2Z(h} 4 13)
1

(U3 (), [645%), 0 ()] apn | (A7), (487), )

o (4), [|(4),, ()] (a0),, (a),,

Hence the statement by summation. O

Let go € M\ S and py = (hl, ho, nhg,nh4,n’1) € Ty M. Let pg € Ty M and v be as in the statement
of Proposition so that ker Jacy, &y, (tc(po)) = Span(v). As explained in Remark we choose the
first coordinate x; : M — R such that 0y, = Z?Zl v;0; and we have that 9 F = O(n?) for all integer
k> 2.

If we denote V', W’ : R* — R® such that 92 F = n*V’(h) +n*W'(h) + o(n®) then let W) (h) = W' (V")
and Iy (h) = T(V/,W’). Similarly, define V", W” : R* — R® such that 82 F = n>V" (h)+n*W" (h)+o0(n?),
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V" W R* — R® such that 93 F = n?V""(h) + n>W" (h) + o(n?) and V", W"” : R* — R® such that
02 F =n2V""(h)+n*W""(h)+o(n?); and define W4 (h) = W' (V"), T3(h) = T(V",W"), W) (h) = ¥’ (V""),
F4(h) — F(V”I7 VI////)7 and \Ilg(h) — \I]/(V////)’ Fs(h) — F(V////, W/I//).

We would like to replicate what has been done in the previous two sections in regard of the functions
U, However we can check that ¥} = 0 for ¢ € [2, 5] and we should instead focus on the functions I';. As
an application of Lemma and the analysis of the Jacobian matrix of &g (t.(po)) of Section
we immediately obtain that for n small enough

La(h) #0= ¢11(po) #0,  I's(h) # 0= d111(po) # 0,

TL4(h) # 0= ¢1111(po) # O, I's(h) # 0= ¢11111(po) # 0.
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