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Short geodesics losing optimality in contact sub-Riemannian

manifolds and stability of the 5-dimensional caustic

Ludovic Sacchelli ∗

March 14, 2019

Abstract

We study the sub-Riemannian exponential for contact distributions on manifolds of dimension
greater or equal to 5. We compute an approximation of the sub-Riemannian Hamiltonian flow and
show that the conjugate time can have multiplicity 2 in this case. We obtain an approximation of the
first conjugate locus for small radii and introduce a geometric invariant to show that the metric for
contact distributions typically exhibits an original behavior, different from the classical 3-dimensional
case. We apply these methods to the case of 5-dimensional contact manifolds. We provide a stability
analysis of the sub-Riemannian caustic from the Lagrangian point of view and classify the singular
points of the exponential map.

1 Introduction

Let M be a smooth (C∞) manifold of dimension 2n+ 1, with n ≥ 1 integer. A contact distribution is a
2n-dimensional vector sub-bundle ∆ ⊂ TM that locally coincides with the kernel of a smooth 1-form ω
on M such that ω∧ (dω)n 6= 0. The sub-Riemannian structure on M is given by a smooth scalar product
g on ∆, and we call (M,∆, g) a contact sub-Riemannian manifold (see, for instance, [1, 2]).

The small scale geometry of general 3-dimensional contact sub-Riemannian manifolds is well under-
stood but not much can be said for dimension 5 and beyond, apart from the particular case of Carnot
groups. We are interested in giving a qualitative description of the local geometry of contact sub-
Riemannian manifolds by describing the family of short locally-length-minimizing curves (or geodesics)
originating from a given point. In the case of contact sub-Riemannian manifolds, all length-minimizing
curves are projections of integral curves of an intrinsic Hamiltonian vector field on T ∗M , and as such,
geodesics are characterized by their initial point and initial covector.

By analogy with the Riemannian case, for all q ∈M , we denote by Eq the sub-Riemannian exponential,
that maps a covector p ∈ T ∗qM to the evaluation at time 1 of the geodesic curve starting at q with initial
covector p. An essential observation on length minimizing curves in sub-Riemannian geometry is that
there exist locally-length-minimizing curves that lose local optimality arbitrarily close to their starting
point [17, 20, 23]. Hence the geometry of sub-Riemannian balls of small radii is inherently linked with
the geometry of the conjugate locus, that is, at q, the set of points Eq(p) such that p is a critical point of
p 7→ Eq(p), [7, 8, 9].

The sub-Riemannian exponential has a natural structure of Lagrangian map, since it is the projection
of a Hamiltonian flow over T ∗M , and its conjugate locus is a Lagrangian caustic. In small dimension,
this observation allows the study of the stability of the caustic and the classification of singular points of
the exponential from the point of view of Lagrangian singularities (see, for instance, [6]).

In the 3-dimensional case, this analysis has been initially conducted with different approaches in
[4] and [18]. These works describe asymptotics of the sub-Riemannian exponential, the conjugate and
cut loci near the starting point (see also [5] and rencently [14] for later developments on the subject).
The aim of the present work is to extend this study to higher dimensional contact sub-Riemannian
manifolds, following the methodology developed in [18] and [16] (the latter focusing on a similar study
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of quasi-contact sub-Riemannian manifolds). More precisely, we use a perturbative approach to compute
approximations of the Hamiltonian flow. This is made possible by using a general well-suited normal
form for contact sub-Riemannian structures. The normal form we use has been obtained in [3]. (We
recall its properties in Appendix A.)

Finally, it can be noted that classical behaviors displayed by 3-dimensional contact sub-Riemannian
structures may not be typical in larger dimension. The 3-dimensional case is very rigid in the class of
sub-Riemannian manifolds and appears to be so even in regard of contact sub-Riemannian manifolds of
arbitrary dimension. Therefore, part of our focus is dedicated to highlighting the differences between this
classical case and those of larger dimension.

1.1 Approximation of short geodesics

Notation In the following, for any two integers m,n ∈ N, m ≤ n, we denote by Jm,nK the set of
integers k ∈ N such that m ≤ k ≤ n.

Let (M,∆, g) be a contact sub-Riemannian manifold of dimension 2n+ 1, n ≥ 1 integer.

Invariants of the nilpotent approximation Consider a 1-form ω such that kerω = ∆ and ω ∧
(dω)n 6= 0 (ω is not unique, this property holds for any fω where f is a non-vanishing smooth function).
For all q ∈ M , there exists a linear map A(q) : ∆q → ∆q, skew-symmetric with respect to gq, such that
for all X,Y ∈ ∆, dω(X,Y )(q) = gq(A(q)X(q), Y (q)). Then the eigenvalues of A(q), {±ib1, . . . ,±ibn},
are invariants of the sub-Riemannian structure at q (up to a multiplicative constant). In the following,
we will assume that the invariants {b1, . . . , bn} ∈ R+ are rescaled so that b1 · · · bn = 1

n! .
These invariants are parameters of the metric tangent to the sub-Riemannian structure at q, or

nilpotent approximation at q (see [12]), which admits a structure of Carnot group. Notice in particular
that the nilpotent approximations of a contact sub-Riemannian structure at two points q1, q2 ∈ M may
not be isometric if the dimension 2n+ 1 is larger than 3.

For a given q ∈ M , there always exists a set of coordinates (x1, . . . , x2n, z) : R2n+1 → R2n+1 such

that a frame
(
X̂1, . . . , X̂2n

)
of the nilpotent approximation at q can be written in the normal form

X̂2i−1 = ∂x2i−1
+
bi
2
x2i∂z, X̂2i = ∂x2i

− bi
2
x2i−1∂z, ∀i ∈ J1, nK.

Geodesics of such contact Carnot groups can be computed explicitly, and their features have been ex-
tensively studied (see, for instance, [11, 19, 22]). The central idea we follow is that the sub-Riemannian
structure at a point q ∈M can be expressed as a small perturbation of the nilpotent structure at q0 for
points q close to q0. An important tool we use is the Agrachev–Gauthier normal form, introduced in [3],
which asserts, for any given q0 ∈M , the existence of coordinates at q0, (x1, . . . x2n, z) : M → R2n+1, and
a frame of (∆, g), (X1, . . . , X2n), such that

Xi(x, z) = X̂i(x, z) +O
(
|x|2
)
.

Asymptotics and covectors Let H(p, q) = 1
2 supv∈∆q\{0}

〈p,v〉2
gq(v,v) be the sub-Riemannian Hamiltonian.

For all q ∈ M , H(·, q) is a positive quadratic form on T ∗qM of rank 2n. Then for all r > 0, the set
{H(p, q) = r | p ∈ T ∗qM} is an unbounded subset of T ∗qM with the topology of the cylinder S2n−1 × R
(see for instance [1, 2]). In the following, for all q ∈M and r ≥ 0, we denote this set by

Cq(r) = {H(p, q) = r | p ∈ T ∗qM}.

Abusing notations, for V ⊂ R+, we denote Cq(V ) = ∪r∈V Cq(r). We choose coordinates p = (h, h0) on
T ∗qM where for a given r > 0, h0 denotes the unbounded component of p ∈ Cq(r).

An important observation is that in the nilpotent case, geodesics losing optimality near their starting
point correspond to initial covectors in Cq(r) such that |h0|/r is very large (see, for instance, [10]). The
expansions obtained in this paper rely on the same type of asymptotics.

Section 2 is dedicated to the computation of an approximation of the flow of the Hamiltonian vector
field ~H as h0 → ∞. Since ~H is a quadratic Hamiltonian vector field, its integral curves satisfy the
symmetry

et
~H(p0, q0) = e

~H(tp0, q0), ∀q0 ∈M,p0 ∈ T ∗q0M, t ∈ R.
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Hence it is useful for us to consider the time-dependent exponential that maps the pair (t, p) ∈ R×Cq(1/2)
to the geodesic of initial covector p evaluated at time t. Using the approximation of the Hamiltonian flow
as h0 → ∞, Section 3 is dedicated to the computation of the conjugate time. For a given q ∈ M , the
conjugate time tc(p) is the smallest positive time such that Eq(tc(p), ·) is critical at p. The computation
of the conjugate locus follows once the conjugate time is known.

Notice in particular that for a given initial covector p ∈ Cq(1/2), tc(p) is then an upper bound of the
sub-Riemannian distance between q and Eq(tc(p), p) (and we have equality if Eq(tc(p), p) is also in the cut
locus).

In the 3D case, it is proven in [4, 18] that for an initial covector (cos θ, sin θ, h0) ∈ Cq(1/2), the
conjugate time at q satisfies as h0 → ±∞

tc(cos θ, sin θ, h0) =
2π

|h0|
− πκ

|h0|3
+O

(
1

|h0|4

)
(1)

and the first conjugate point satisfies (in well chosen adapted coordinates at q)

Eq(tc(cos θ, sin θ, h0), (cos θ, sin θ, h0)) = ± π

|h0|2
(0, 0, 1)± 2πχ

|h0|3
(− sin3 θ, cos3 θ, 0) +O

(
1

|h0|4

)
.

The analysis we carry in Sections 2 and 3 aims at generalizing such expansions. (Notice that we
focus only on the case h0 → +∞ but the case h0 → −∞ is the same.) Our results, however, provide an
important distinction between the classical 3D contact case and higher dimensional ones. Indeed, a very
useful fact in the analysis of the geometry of the 3D case is that a 3D sub-Riemannian contact structure
is very well approximated by its nilpotent approximation (as exemplified in [7], for instance).

This can be illustrated by using the 3D version of the Agrachev–Gauthier normal form, as introduced
in [18]. Let us denote by Êq the exponential of the nilpotent approximation of the sub-Riemannian
structure at q0 in normal form. Then as h0 → +∞, we have the expansion

Eq(τ/h0, (h1, h2, h0)) = Êq(τ/h0, (h1, h2, h0)) +O

(
1

h3
0

)
. (2)

As a result, one immediately obtains a rudimentary version of expansion (1),

tc(cos θ, sin θ, h0) =
2π

|h0|
+O

(
1

|h0|3

)
. (3)

However, expansion (3) is not true in general when we consider contact manifolds of dimension larger
than 3 (that is, the conjugate time is not a third order perturbation of the nilpotent conjugate time
2π/|h0|). As an application of Theorem 3.7, which gives a general second order approximation of the
conjugate time in dimension greater or equal to 5, we are able to prove that the expansion (2) cannot be
generalized.

In the rest of this paper, statements refer to generic (d-dimensional) sub-Riemannian contact man-
ifolds in the following sense: such statements hold for contact sub-Riemannian metrics in a countable
intersection of open and dense sets of the space of smooth (d-dimensional) sub-Riemannian contact met-
rics endowed with the C3-Whitney topology. As an application of transversality theory, we then prove
statements holding on the complementary of stratified subsets of codimension d′ of the manifolds, locally
unions of finitely many submanifolds of codimension d′ at least.

Theorem 1.1. Let (M,∆, g) be a generic contact sub-Riemannian manifold.
There exists a codimension 1 stratified subset S of M such that for all q ∈M \S, for all linearly adapted
coordinates at q and for all T > 0,

lim sup
h0→+∞

(
h2

0 sup
τ∈(0,T )

∣∣∣∣Eq ( τ

h0
, (h1, . . . , h2n, h0)

)
− Êq

(
τ

h0
, (h1, . . . , h2n, h0)

)∣∣∣∣
)
> 0. (4)

This observation needs to be put in perspective with some already observed differences between 3D
contact sub-Riemannian manifolds and those of greater dimension. For a given 1-form ω such that
kerω = ∆ and ω ∧ (dω)n 6= 0, the Reeb vector field is the unique vector field X0 such that ω(X0) = 1
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and ιX0
dω = 0. The contact form ω is not unique (for any smooth non-vanishing function f , fω is also

a contact form), and neither is X0. In 3D however, the conjugate locus lies tangent to a single line that
carries a Reeb vector field that is deemed canonical. In larger dimension, this uniqueness property is not
true in general. For this reason, we introduce a geometric invariant that plays a similar role in measuring
how the conjugate locus lies with respect to the nilpotent conjugate locus and use it to prove Theorem 4.

The main difference seems to be a lack of symmetry in greater dimensions. Indeed the existence of
a unique Reeb vector field (up to rescaling) points toward the idea of a natural SO(2n) symmetry of
the nilpotent structure. However the actual symmetry of a contact sub-Riemannian manifold (or rather
its nilpotent approximation) is SO(2)n (on the subject, see, for instance, [3]). Of course, when n = 1,
SO(2)n = SO(2n). More discussions on this issue can also be found in [15].

1.2 Stability in the 5-dimensional case

We wish to apply these asymptotics to the study of stability of the caustic in the 5-dimensional case. This
study has been carried for 3-dimensional contact sub-Riemannian manifolds in [18] and for 4-dimensional
quasi-contact sub-Riemannian manifolds in [16]. To understand the interest of stability in the sense of
sub-Riemannian geometry in small dimension, we must first understand stability from the point of view
of Lagrangian manifolds. (See, for instance, [6, Chapters 18, 21] and also [13, 21].)

Let (E, σ) be a 2d-dimensional symplectic manifold. A smooth submanifold L of M is said to be a
Lagrangian submanifold if L is d-dimensional and σ|L = 0. The fiber bundle π : E → N is said to be a
Lagrangian fibration if its fibers are Lagrangian submanifolds. For L a Lagrangian submanifold of E and
i : L → E an immersion of L into E such that i∗σ = 0, the map π ◦ i : L → N is called a Lagrangian
map.

Let (E, σ), (E′, σ′) be two symplectic structures, let π : E → N , π′ : E′ → N ′ be two Lagrangian
fibrations. Two Lagrangian maps π ◦ i : L → N , π′ ◦ i′ : L′ → N ′ are said to be Lagrange equivalent if
there exists two diffeomorphisms Φ : E → E′ and φ : N → N ′ such that Φ∗σ′ = σ, π′ ◦ Φ = φ ◦ π (the
two Lagrangian fibrations are Lagrange equivalent) and Φ ◦ i(L) = i′(L′).

The caustic of a Lagrangian map is the set of its critical values. A consequence of the definition of
Lagrangian equivalence is that if two Lagrangian maps are Lagrange equivalent then their caustics are
diffeomorphic.

A Lagrangian map f : L→ N is said to be (Lagrange-)stable at q ∈ L if there exists a neighborhood
Vq of q and a neighborhood Vf of f|Vq for the Whitney C∞-topology such that any Lagrangian map
g ∈ Vf is Lagrange equivalent to f (see [16]). In the following we may refer to points of a caustic as
stable when they are critical values of a stable Lagrangian map.

For dimensions d ≤ 5, there exists only a finite number of equivalence classes for stable singularities
of Lagrangian maps (for instance, one can find a summary in [9, Theorem 2]).

Theorem 1.2 (Lagrangian stability in dimension 5). A generic Lagrangian map f : R5 → R5 has only
stable singularities of type A2, . . . ,A6, D±4 ,D

±
5 ,D

±
6 and E±6 .

Sub-Riemannian exponential maps form a subclass of Lagrangian maps and we can define sub-
Riemannian stability as Lagrangian stability restricted to the class of sub-Riemannian exponential maps.
Notouriously, the point q0 is an unstable critical value of the sub-Riemannian exponential Eq0 , as the
starting point of the geodesics defining Eq0 .

We focus our study of the stability of the sub-Riemannian caustic on the first conjugate locus. This
work can be summarized in the following theorem (see also Figures 1, 2).

Theorem 1.3 (Sub-Riemannian stability in dimension 5). Let (M,∆, g) be a generic 5-dimensional
contact sub-Riemannian manifold. There exists a stratified set S ⊂ M of codimension 1 for which all
q0 ∈ M \S admit an open neighborhood Vq0 such that for all U open neighborhood of q0 small enough,
the intersection of the interior of the first conjugate locus at q0 with Vq0 \ U is (sub-Riemannian) stable
and has only Lagrangian singularities of type A2, A3, A4, D+

4 and A5.

This result stands on two foundations. On the one hand, a careful study of the problem of conjugate
points in contact sub-Riemannian manifolds, and on the other hand, a stability analysis from the point
of view of Lagrangian singularities in small dimension.
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Figure 1: Section of the caustic of a 5-dimensional sub-Riemannian manifold, at a point of the manifold
chosen so that it exhibits A4 singularities. This representation is obtained after sectioning by the hyper-
planes {z = z0}, {x3 = R2 cosω}, {x4 = R2 sinω} (all in Agrachev–Gauthier normal form coordinates),
and plotting for all ω ∈ [0, 2π), with fixed z0, R2 > 0.

Figure 2: Section of the caustic of a 5-dimensional sub-Riemannian manifold, at a point of the manifold
chosen so that it exhibits D+

4 singularities. This representation is obtained after sectioning by the
hyperplanes {z = z0}, {x3 = R2 cosω}, {x4 = R2 sinω}, and plotting for all z0 ∈ [0, z̄0], with fixed
z̄0, R2, ω > 0.

1.3 Content

In Section 2, we compute an approximation of the exponential map for small time and large h0 (Propo-
sition 2.1). Using the Agrachev–Gauthier normal form (recalled in Supplementary Materials A), the
exponential appears to be a small perturbation of the standard nilpotent exponential.

Section 3-4 are dedicated to the approximation of the conjugate time (as summarized in Theorem 3.7),
from which an approximation of the conjugate locus can be obtained. A careful analysis of the conju-
gate time for the nilpotent approximation shows that, under some conditions, the second conjugate time
accumulates on the first (Section 3.2). We rely on this observation to compute a second order approxi-
mation of the conjugate time (Section 4) and treat the problem of a double conjugate time via blow-up
(Section 4.2). With the aim of proving stability of the caustic, we conclude the section by computing a
third order approximation of the conjugate time for a small subset of initial covectors (Section 4.4).

Hence we have devised three domains of initial convectors where a stability analysis must be carried
(Section 5). We show that we can tackle this analysis relying on a Lagrangian equivalence classification
(Section 5.1) and show that only stable Lagrangian singularities appear on the three domains (Section 5.3).
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2 Normal extremals

2.1 Geodesic equation in perturbed form

In this section we establish the dynamical system satisfied by geodesics in terms of small perturbations
of the nilpotent case.

Let (M,∆, g) be a (2n + 1)-dimensional contact sub-Riemannian manifold. Let V be an open sub-
set of M and (X1, . . . , X2n) be a frame of (∆, g) on V , that is, a family of vector fields such that
gq(Xi(q), Xj(q)) = δji for all i, j ∈ J1, 2nK and all q ∈ V (such a family always exists for V sufficiently
small). The sub-Riemannian Hamiltonian can be written

H(p, q) =
1

2

2n∑
i=1

〈p,Xi(q)〉2.

In the case of contact distributions, locally-length-minimizing curves are projections of normal extremals,
the integral curves of the Hamiltonian vector field ~H on T ∗M (see for instance [1, 2]). In other words, a
normal extremal t 7→ (p(t), q(t)) satisfies in coordinates the Hamiltonian ordinary differential equation

dq

dt
=

2n∑
i=1

〈p,Xi(q)〉Xi(q),

dp

dt
= −

2n∑
i=1

〈p,Xi(q)〉 tpDqXi(q).

(5)

For V sufficiently small, we can arbitrarily choose a non-vanishing vector field X0 transverse to ∆
in order to complete (X1(q), . . . , X2n(q)) into a basis of TqM at any point q of V . We use the family
(X1, . . . , X2n, X0) to endow T ∗M with dual coordinates (h1, . . . , h2n, h0) such that

hi(p, q) = 〈p,Xi(q)〉 ∀i ∈ J0, 2nK,∀q ∈ V,∀p ∈ T ∗qM.

We also introduce the structural constants (ckij)i,j,k∈J0,2nK on V , defined by the relations

[Xi, Xj ] (q) =

2n∑
k=0

ckij(q)Xk(q), ∀i, j ∈ J0, 2nK,∀q ∈ V.

In terms of the coordinates (hi)i∈J0,2nK, along a normal extremal, Equation (5) yields (see [1, Chapter 4])

dhi
dt

= {H,hi} =

2n∑
j=0

2n∑
k=0

ckjihjhk, ∀i ∈ J0, 2nK.

We set J : V → M2n(R) to be the matrix such that Jij = c0ji, for all i, j ∈ J1, 2nK, and Q : V −→(
R2n → R2n

)
to be the map such that for all i ∈ J1, 2nK,

Qi(h1, . . . h2n) =

2n∑
j=1

2n∑
k=1

ckjihjhk.

By denoting h = (h1, . . . , h2n) we then have
dh

dt
= h0Jh+Q(h).

As stated in Section 1, we want an approximation of the geodesics for small time when h0(0)→ +∞,

thus we introduce w = h0(0)
h0

and η = h0(0)
−1

. Then
dw

dt
= −ηw2 dh0

dt
.

We separate the terms containing h0 in the derivative of w to obtain an equation similar to the one
of h. We set L : V → M1×2n(R) to be the line matrix such that Li = c0i0, for all i ∈ J1, 2nK, and
Q0 : V →

(
R2n → R

)
to be the map such that

Q0(h1, . . . h2n) =

2n∑
j=1

2n∑
k=1

ckj0hjhk,
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so that
dw

dt
= −wLh− ηw2Q0(h).

Finally, rescaling time with τ = t/η, we obtain

dq

dτ
= η

2n∑
i=1

hiXi(q),

dh

dτ
=

1

w
Jh+ η Q(h),

dw

dτ
= −ηwLh− η2w2Q0(h).

(6)

Hence to the solution of (5) with initial condition (q0, (h(0), η−1)) corresponds the solution of the
parameter depending differential equation (6) of initial condition (q0, h(0), w(0)) and parameter η. Since
w(0) = 1, the flow of this ODE is well defined (at least for τ small enough), and smooth with respect to
η ∈ (−ε, ε), for some ε > 0.

This warrants a power series study of its solutions as η → 0.

2.2 Approximation of the Hamiltonian flow

Let q0 ∈ M . In the rest of the paper, except when explicitly stated otherwise, we assume that the
structure at q0 has been put in the Agrachev–Gauthier normal form introduced in [3]. That is, we have
an open neighborhood V ⊂ M of q0, linearly adapted coordinates at q0 (x1, . . . x2n, z) : V → R2n+1 and
a frame of (∆, g), (X1, . . . , X2n), satisfying many useful symmetries. (for instance, see Theorems A.1-A.2
in A). The family is locally completed as a basis of TM with X0 = ∂

∂z .
Let us introduce a few notations. Let J̄ = J(q0). As a consequence of the choice of frame, (in

particular, see Equations (21) and (22) in A), J̄ is already in reduced form diag(J̄1, . . . , J̄n), that is, block
diagonal with 2× 2 blocks

J̄i =

(
0 bi
−bi 0

)
, ∀i ∈ J1, nK,

where (bi)i∈J1,nK, are the nilpotent invariants of the contact structure at q0. Then let ĥ : R×R2n → R2n,
x̂ : R× R2n → R2n and ẑ : R× R2n → R2n be defined by

ĥ(t, h) = etJ̄h, x̂(t, h) = J̄−1(etJ̄ − I2n)h,

ẑ(t, h) =

n∑
i=1

(
h2

2i−1 + h2
2i

) bit− sin(bit)

2bi
,

for all t ∈ R and all h ∈ R2n.
We also set J (1) : R2n →M2n(R) such that

J
(1)
i,j (y) =

2n∑
k=1

(
∂2(Xi)2n+1

∂xj∂xk
− ∂2(Xj)2n+1

∂xi∂xk

)
yk, ∀i, j ∈ J1, 2nK,

where for any vector field Y , we denote by (Y )i, 1 ≤ i ≤ 2n+ 1, the i-th coordinate of Y , written in the
basis (∂x1

, . . . , ∂x2n
, ∂z).

Finally, let us denote BR = {h ∈ R2n |
∑2n
i=1 h

2
i ≤ R}.

Proposition 2.1. For all T,R > 0, normal extremals with initial covector (h(0),
η−1) have the following order 2 expansion at time ητ , as η → 0+, uniformly with respect to τ ∈ [0, T ]
and h(0) ∈ BR. In normal form coordinates, we denote

eητ
~H
(
(0, 0) ,

(
h(0), η−1

))
=
(
(x(τ), z(τ)) ,

(
h(τ), ηw(τ)−1

))
.

Then

x(τ) = ηx̂(τ, h(0)) + η2

∫ τ

0

∫ σ

0

e(σ−ρ)J̄J (1) (x̂(ρ, h(0))) ĥ(ρ, h(0)) dρ dσ +O(η3),

z(τ) = η2ẑ(τ, h(0)) +O(η3),

7



and

h(τ) = ĥ(τ, h(0)) + η

∫ τ

0

e(τ−σ)J̄J (1) (x̂(σ, h(0))) ĥ(σ, h(0)) dσ +O(η2),

w(τ) = 1 +O(η2).

Proof. This is a consequence of the integration of the time-rescaled system (6). Since the system smoothly
depends on η near 0, we prove this result by successive integration of the terms of the power series in η
of x =

∑
ηkx(k), z =

∑
ηkz(k), h =

∑
ηkh(k), and w =

∑
ηkw(k).

Let T,R > 0. All asymptotic expressions are to be understood uniform with respect to τ ∈ [0, T ] and

h(0) ∈ BR. Solutions of (6) are integral curves of a Hamiltonian vector field ~H, hence H is preserved
along the trajectory, that is, for all τ ∈ [0, T ],

2n∑
i=1

hi(τ)
2

=

2n∑
i=1

hi(0)
2
.

Furthermore, we have by (6)
dx

dτ
= O(η),

dz

dτ
= O(η), and since x(0) = 0 and z(0) = 0, we have

x(τ) = O(η) and z(τ) = O(η).
As a consequence of the choice of frame, (in particular conditions (21)–(22) in A), ckij(q0) 6= 0 if and

only if k = 0 and there exists l ∈ J1, nK such that {i, j} = {2l − 1, 2l}.
Hence for all j ∈ J1, 2nK, c0j0(q(τ)) = O(η) and Lh = O(η). Similarly, Qi(h) = O(η) for all i ∈ J0, 2nK,

and since w(0) = 1, we have that
dw

dτ
= O(η2) and w(τ) = 1 +O(η2).

Since J(q0) = J̄ , we have J(q) = J̄ +O(η) and thus
dh

dτ
= J̄h+O(η). Hence h is a small perturbation

of the solution of dh
dτ = J̄h with initial condition h(0), that is, h(τ) = ĥ(τ, h(0)) +O(η).

Since Xi(q0) = ∂
∂xi

for all i ∈ J1, 2nK (as a consequence of (19)),

dx(1)

dτ
= h(0)(τ) = ĥ(τ, h(0)),

dz(1)

dτ
= 0,

and since x(0) = 0, z(0) = 0, x(τ) = ηx̂(τ, h(0)) +O(η2) and z(τ) = O(η2).

The definition of J (1) implies J (1)
(
x(1)

)
= ∂J(q)

∂η

∣∣∣
η=0

. Then, since Q(h) = O(η), h(1) is solution of

dh(1)

dτ
= J̄h(1) + J (1)

(
x(1)

)
with initial condition h(1)(0) = 0. Hence

h(1)(τ) =

∫ τ

0

e(τ−σ)J̄J (1) (x̂(σ, h(0))) ĥ(σ, h(0)) dσ.

Since
∂(Xi)j
∂xk

= 0 for all i, j, k ∈ J1, 2nK (as stated in (20)),

X2i−1(q(τ)) = ∂x2i−1
+ η x̂2i(τ, h(0))

bi
2
∂z +O(η2),

X2i(q(τ)) = ∂x2i
− η x̂2i−1(τ, h(0))

bi
2
∂z +O(η2).

Thus
dx(2)

dτ
= h(1),

dz(2)

dτ
=
∑n
i=1

bi
2

(
ĥ2i−1x̂2i − ĥ2ix̂2i−1

)
. Hence the statement by integration.

3 Conjugate time

3.1 Singularities of the sub-Riemannian exponential

Definition 3.1. Let q0 ∈M . We call sub-Riemannian exponential at q0 the map

Eq0 : R+ × T ∗q0M −→ M

(t, p0) 7−→ Eq0(t, p0) = π ◦ et
~H(p0, q0)

where π : T ∗M →M is the canonical fiber projection.
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Recall that the flow of the Hamiltonian vector field ~H satisfies the equality

et
~H(p0, q0) = e

~H(tp0, q0), ∀q0 ∈M,p0 ∈ T ∗q0M, t ∈ R.

We use this property to our advantage to compute the sub-Riemannian caustic. Indeed, the caustic at
q0 is defined as the set of critical values of Eq0(1, ·). But for any time t > 0, the caustic is also the set of
critical values of Eq0(t, ·). Hence instead of classifying the covectors p0 such that Eq0(1, ·) is critical at p0,
we compute for a given p0 the conjugate time tc(p0) such that Eq0(tc(p0), ·) is critical at p0.

Definition 3.2. Let q0 ∈M , and p0 ∈ T ∗q0M . A conjugate time for p0 is a positive time t > 0 such that
the map Eq0(t, ·) is critical at p0. The conjugate locus of q0 is the subset of M

{Eq0(t, p0) | t is a conjugate time for p0 ∈ Tq0M} .

The first conjugate time for p0, denoted tc(p0), is the minimum of conjugate times for p0. The first
conjugate locus of q0 is the subset of M

{Eq0(t, p0) | t is the first conjugate time for p0 ∈ Tq0M} .

In the following, we restrict our study of the sub-Riemannian caustic to the first conjugate locus.

From now on, let us index the nilpotent invariants in descending order b1 ≥ b2 ≥ · · · ≥ bn > 0. Let
S1 ⊂ M be the set of points of M such that two invariants coincide, bi = bj , with i 6= j. Assuming
genericity of the sub-Riemannian manifold, S1 is a stratified subset of M of codimension 3 (see [16] for
instance).

Remark 3.3. This is a consequence of Thom’s transversality theorem applied to the jets of the sub-
Riemannian structure, seen as a smooth map.

Furthermore, for a given q0 ∈ M , if the sub-Riemannian structure at q0 is in Agrachev–Gauthier
normal form (see Appendix A) then the jets of order k at q0 of the sub-Riemannian structure are given
by the jets at 0 of the vector fields X1, . . . , X2n.

As stated in the introduction, the study of the sub-Riemannian caustic near its starting point requires
considering initial covectors in Cq(1/2) such that h0 is near infinity. Recall that geodesics with initial
covectors in Cq(1/2) are parametrized by arclength, hence short conjugate time imply that the conjugate
point is close to the starting point of the caustic. Then one can check that a short conjugate time
corresponds only to covectors with large h0. From the point of view of the exponential at time 1, this
means that singular points close to the origin of the caustic must belong to a sufficiently narrow cone
containing Cq0(0) (again, because Eq0(t, p) = E1

q0(tp)).
This observation can be stated in the following way (a proof can be found in Appendix A, see Propo-

sition A.4, as an application of the Agrachev–Gauthier normal form).

Proposition 3.4. Let (M,∆, g) be a contact sub-Riemannian manifold and q0 ∈ M . For all h̄0 > 0,
there exists ε > 0 such that all p ∈ Cq(1/2) with tc(p) < ε have |h0(p)| > h̄0.

In coordinates, conjugate points satisfy the following equality

det

(
∂Eq0
∂h1

, . . . ,
∂Eq0
∂h2n

,
∂Eq0
∂h0

)∣∣∣∣
(t,p0)

= 0. (7)

To use this equation in relation with the results of Proposition 2.1, we introduce

F (τ, h, η) = Eq0(ητ ; (h, η−1)), ∀τ > 0, h ∈ R2n, η > 0.

Then
∂Eq0
∂h0

(ητ ; (h, η−1)) = −η
(
η
∂F

∂η
(τ, h, η)− τ ∂F

∂τ
(τ, h, η)

)
and (7) equates to

det

(
∂F

∂h1
, . . . ,

∂F

∂h2n
, η
∂F

∂η
− τ ∂F

∂τ

)∣∣∣∣
(τ,h,η)

= 0. (8)

We have shown in Proposition 2.1, as η → 0, that the map F is a perturbation of the map (τ, h, η) 7→
(x̂, ẑ), the nilpotent exponential map. Hence the conjugate time is expected to be a perturbation of the
conjugate time for (x̂, ẑ). To get an approximation of the conjugate time for a covector (h, η−1) as η → 0,
we use expansions from Proposition 2.1 to derive equations on a power series expansion of the conjugate
time.
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3.2 Nilpotent order and doubling of the conjugate time

Let us define

Φ(τ, h, η) = det

(
∂F

∂h1
, . . . ,

∂F

∂h2n
, η
∂F

∂η
− τ ∂F

∂τ

)∣∣∣∣
(τ,h,η)

(9)

and its power series expansion Φ(τ, h, η) =
∑
k≥0 η

kΦ(k)(τ, h).

As a first application of Proposition 2.1, notice that Fi = O(η) for all i ∈ J1, 2nK, while F2n+1 = O(η2).
Hence, one gets Φ(k) = 0 for all k ∈ J0, 2n + 1K, and Φ(2n+2) is the first non-trivial term in the power
series.

To study Φ(2n+2), let us introduce the set Z = {2kπ/bi | i ∈ J1, nK, k ∈ N} and the map ψ : (R+ \Z)×
Rn → R defined by

ψ(τ, r) =

n∑
i=1

r2
i

2

(
3τ − biτ2 cos(biτ/2)

sin(biτ/2)
− sin(biτ)

bi

)
, ∀(τ, r) ∈ (R+ \ Z)× Rn.

We first need the following result on the zeros of ψ (see, for instance, Appendix C.2.1).

Lemma 3.5. Assume b1 > b2 ≥ · · · ≥ bn. For all r ∈ (R+)
n

, let τ1(r) be the first positive time in
R+ \ Z such that ψ(τ1, r) = 0. Then τ1(r1, . . . , rn) > 2π/b1 and there exists f(r2, . . . , rn) > 0 such that,
as r1 → 0+,

τ1(r1, . . . , rn) = 2π/b1 + f(r2, . . . , rn)r2
1 + o(r2

1). (10)

The zeros of Φ(2n+2) can be deduced from the zeros of ψ, as shown in the following proposition.

Proposition 3.6. Assume b1 > b2 > · · · > bn. Let h ∈ R2n \ {0} and r ∈ Rn be such that ri =√
h2

2i−1 + h2
2i for all i ∈ J1, nK. Then Φ(2n+2)(τ, h) = 0 if and only if τ ∈ Z or ψ(τ, r) = 0. In particular

Φ(2n+2)(τ, h) 6= 0 ∀τ ∈ (0, 2π/b1),∀h ∈ R2n \ {0}.

Proof. By factorizing powers of η in Φ, we obtain that Φ(2n+2) is given by the determinant of the matrix

M =

(
Dhx̂(τ) x̂(τ)− τ ĥ(τ)

Dhẑ(τ) ẑ(τ)− τ d
dτ ẑ(τ)

)
.

The Jacobian matrix Dhx̂ = J̄−1(eτJ̄ − I2n) is invertible for τ ∈ R+ \ Z and of rank 2n − 2 for τ ∈ Z.
Hence, the matrix M is not invertible for τ ∈ R+ \Z if and only of we have the linear dependance of the
family {

∂

∂h1

(
x̂(τ)
ẑ(τ)

)
, . . . ,

∂

∂h2n

(
x̂(τ)
ẑ(τ)

)
,

(
x̂(τ)− τ ĥ(τ)

ẑ(τ)− τ d
dτ ẑ(τ)

)}
.

This implies the existence of µ ∈ R2n such that both Dhx̂(τ)µ = x̂(τ) − τ ĥ(τ) and Dhẑ(τ)µ =
ẑ(τ)− τ d

dτ ẑ(τ). That is

Dhẑ(τ) (Dhx̂(τ))
−1
(
x̂(τ)− τ ĥ(τ)

)
= ẑ(τ)− τ d

dτ
ẑ(τ).

We explicitly have ẑ(τ)− τ d
dτ ẑ(τ) =

∑n
i=1

r2i
2

(
τ cos biτ − sin biτ

bi

)
and

Dhẑ(τ) (Dhx̂(τ))
−1
(
x̂(τ)− τ ĥ(τ)

)
=

n∑
i=1

r2
i (sin biτ − biτ) biτ cos(biτ/2)−2 sin(biτ/2)

2bi sin(biτ/2) .

Hence Dhẑ (Dhx̂)
−1
(
x̂− τ ĥ

)
−
(
ẑ − τ dẑ

dτ

)
= ψ(τ, r), and times τ ∈ R+ such that Φ

(2n+2)
k (τ, h) = 0

are either multiples of 2πbi, i ∈ J1, nK, or zeros of ψ. Under the assumption that h ∈ R2n \ {0} and
τ ∈ (0, 2biπ), we have ψ(τ, r) > 0, hence the result.
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2π
b1

τ1

Φ(2n+2)

τ

(a) Φ(2n+2) as r1 =
r2

4
.

2π
b1

Φ(2n+2)

τ

(b) Φ(2n+2) as r1 = 0.

Figure 3: Representation of Φ(2n+2) as a function of τ in the case n = 2, as r1 6= 0 and r1 = 0 (with
b1 = 2, b2 = 1/4 and r2 = 1).

We can draw some conclusions regarding our analysis of the conjugate locus via a perturbative ap-
proach. From Proposition 3.6, we have that 2π/b1 is the first zero of Φ(2n+2)(·, h) for all h ∈ R2n \ {0}.
From Lemma 3.5 we also know that 2π/b1 is a simple zero if r1 > 0 and a double zero otherwise (see
Figure 3). Zeros of order larger than 1 can be unstable under perturbation and this case requires a sepa-
rate analysis, either by high order approximation or by blowup. We choose the latter for computational
reasons.

From Equation (10) in Lemma 3.5, the blowup r1 ← ηαr1 corresponds to

τ1(ηαr1, r2, . . . , rn) = 2π/b1 + η2αf(r2, . . . , rn)r2
1 + o(η2α).

Since we have an approximation of the exponential that is a perturbation of order η of the nilpotent
exponential, we expect the conjugate time to be a perturbation of order η of the nilpotent conjugate
time. Hence it is natural to chose α = 1/2 in hope to capture a perturbation of comparable order in η.

We separate the cases in the following way.

• We can compute the conjugate time assuming r1 > ε for some arbitrary ε (in Section 4.1);

• we use the blowup r1 ←
√
ηr1 to get the conjugate time near r1 = 0 (in Section 4.2).

3.3 Statement of the conjugate time asymptotics

The focus of this paper is now devoted to the proof of the following asymptotic expansion theorem for
the conjugate time on M \S1, that is, at points such that b1 > b2 > · · · > bn. Let S1 be the subspace of
T ∗q0M defined by

S1 =
{

(h1, . . . , h2n, h0) ∈ T ∗q0M \ Cq0(0) | h1 = h2 = 0, H 6= 0
}
,

and for all ε > 0, let us denote by Sε1 the subset of T ∗q0M containing S1:

Sε1 =
{

(h1, . . . , h2n, h0) ∈ T ∗q0M \ Cq0(0) | h2
1 + h2

2 < εH(h1, . . . , h2n, h0)
}
.

Theorem 3.7. Let q0 ∈ M \ S1. There exist real valued invariants (κijk ) i,k∈J1,2K,
j∈J3,2nK

, α, β, such that we

have the following asymptotic behavior for initial covectors p0 ∈ T ∗q0M with h0 → +∞.

(Away from S1.) For all R > 0, ε ∈ (0, 1), uniformly with respect to p0 = (h1, . . . , h2n,
h0) in Cq0((0, R)) \ Sε1, we have as h0 → +∞

tc (h1, . . . , h2n, h0) =
2π

b1h0
+

1

h2
0

t(2)
c (h1, . . . , h2n) +O

(
1

h3
0

)
where t

(2)
c satisfies

(h2
1 + h2

2)t(2)
c (h) = −2(αh1 + βh2)

(
h2

1 + h2
2

)
+ (γ12 + γ21)h1h2 − γ22h

2
1 − γ11h

2
2, (11)
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denoting

γij =

2n∑
k=3

κjki hk, ∀i, j ∈ J1, 2nK.

(Near S1.) The asymptotic expansion

tc

(
h1√
h0

,
h2√
h0

, h3, . . . , h2n, h0

)
=

2π

b1h0
+O

(
1

h2
0

)
holds if and only if the quadratic polynomial equation in X

X2K −X
[

2π

b1
(h2

1 + h2
2)−K (γ11 + γ22)

]
+

2π

b1

[
(γ12 + γ21)h1h2 − γ22h

2
1 − γ11h

2
2

]
+K (γ11γ22 − γ12γ21) = 0

admits a real solution, where K =
n∑
i=2

(h2
2i−1 + h2

2i)
(

1− bi
b1
π cot biπb1

)
> 0.

If that is the case, denote by t̃
(2)
c (h1, . . . , h2n) the smallest of its two (possibly double) solutions. Then,

for all R > 0, ε ∈ (0, 1), uniformly with respect to p0 =
(
h1√
h0
, h2√

h0
, h3, . . . , h2n, h0

)
∈ Cq0((0, R))∩Sε1, we

have

tc

(
h1√
h0

,
h2√
h0

, h3, . . . , h2n, h0

)
=

2π

b1h0
+

1

h2
0

t̃(2)
c (h1, . . . , h2n) +O

(
1

h3
0

)
.

4 Perturbations of the conjugate time

Thanks to the previous section, we have a sufficiently precise picture of the behavior of the conjugate
time for the nilpotent approximation. We now introduce small perturbations of the exponential map in
accordance with Proposition 2.1. As stated previously, we treat separately the case of initial covectors
away from S1 and near S1 since S1 corresponds to the set of covectors such that r1 =

√
h2

1 + h2
2 = 0.

Recall also that we assumed q0 ∈M \S1.
However, rather than computing tc, we compute τc = tc/η, the rescaled conjugate time, since we use

asymptotics in rescaled time from Proposition 2.1.

4.1 Asymptotics for covectors in T ∗
q0
M \ S1

In this section we assume that (h1, h2) 6= (0, 0). Recall that F (τ, h, η) = E(ητ ; (h, η−1)), for all τ > 0,
h ∈ R2n, η > 0. The function F admits a power series expansion

F (τ, h, η) =
∑
k≥0

ηkF (k)(τ, h),

and for δτ ∈ R, h ∈ R2n, evaluating F at the perturbed conjugate time 2π
b1

+ ηδτ yields

F

(
2π

b1
+ ηδτ, h, η

)
= η F (1)

∣∣∣
τ= 2π

b1

+ η2

[
F (2) + δτ

∂F (1)

∂τ

]∣∣∣∣
τ= 2π

b1

+O(η3). (12)

In the previous section, we highlighted the role of the function Φ defined by (9). Observe that τc must
annihilate every term in the Taylor expansion of Φ(τc(·, η), ·, η). This first non-trivial term is obtained by
straight forward algebraic computations (provided for instance in Appendix C, in particular Lemma C.3).

Proposition 4.1. Let τc(h, η) =
∑+∞
k=0 η

kτ
(k)
c (h) be the formal power series expansion of τc, for all

(h, η−1) ∈ T ∗q0M . Then τ
(0)
c = 2π/b1 and τ

(1)
c must satisfy

(h2
1 + h2

2)τ (1)
c (h) = −h2

1

∂
(
F (2)

)
2

∂h2
− h2

2

∂
(
F (2)

)
1

∂h1
+ h1h2

(
∂
(
F (2)

)
1

∂h2
+
∂
(
F (2)

)
2

∂h1

)
. (13)
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Proof. As discussed in the previous section, τ
(0)
c = 2π/b1 is a consequence of Proposition 3.6. The first

non trivial term of the expansion of the determinant Φ (2π/b1 + ηδτ, h, η), that is, the term of order 2n+3,
is obtained by algebraic computations. As a consequence of Proposition 2.1, notice that

(
F (2)

)
2n+1

= ẑ,

∂F (1)

∂τ = ĥ, and that ∂h1
ẑ = 2πh1/b1, ∂h2

ẑ = 2πh2/b1. Hence we get the stated result by solving for δτ

Φ(2n+3) (2π/b1 + ηδτ, h, η) ∝

∣∣∣∣∣∣
∂
∂h1

(
F (2)

)
1

+ δτ ∂
∂h2

(
F (2)

)
1

h1
∂
∂h1

(
F (2)

)
2

∂
∂h2

(
F (2)

)
2

+ δτ h2

h1 h2 0

∣∣∣∣∣∣
τ=2π/b1

= 0.

(Where we denote, for f, g : Rn → R, f ∝ g if there exists h : Rn → R \ {0} such that f = gh.)

Remark 4.2. Relation (13) is degenerate at h1 = h2 = 0. This is another illustration of the behavior we

highlighted in the previous section, that is, τ
(1)
c can be a zero of order 2 at r1 = 0.

As a consequence of Proposition 2.1, it appears that for all k ∈ J1, 2nK and all τ > 0, each func-

tion h 7→ x
(2)
k (τ) can be seen as a quadratic form on (h1, . . . , h2n). Hence we introduce the invariants(

κijk

)
i,j,k∈J1,2nK

such that

F
(2)
k

(
2π

b1
, h

)
=

∑
1≤i≤j≤2n

κijk hihj ∀k ∈ J1, 2nK.

These invariants satisfy some useful properties (of which a proof can be found in Appendix B, Lem-
mas B.1 through B.4). We give the following summary.

Proposition 4.3. The invariants
(
κijk

)
i,j,k∈J1,2nK

depend linearly on the family

(
∂2(Xi)2n+1

∂xj∂xk
(q0)

)
i,j,k∈J1,2nK

.

There exist α, β ∈ R such that we have the symmetries

κ1,1
1 = 3α, κ2,2

1 = α, κ1,2
2 = 2α, κ1,1

2 = β, κ2,2
2 = 3β, κ1,2

1 = 2β

and for all i ∈ J2, nK,
(
κklm
)
k,m∈J1,2K
l∈J2i−1,2iK

only depend on the family

{(
∂2(Xk)2n+1

∂xl∂xm
(q0)

)
| (k, l,m) ∈ J2i− 1, 2iK× J1, 2K2 ∪ J1, 2K2 × J2i− 1, 2iK

}
.

Furthermore, the corresponding linear map ζi : R15 → R8 such that

ζi

((
∂2(Xk)2n+1

∂xl∂xm
(q0)

)
k,l,m∈{1,2}∪{2i−1,2i}

)
=
(
κklm
)
k,m∈{1,2}
l∈{2i−1,2i}

is of rank at least 7 (and of rank 8 on the complementary of a codimension 1 subset S3 of M).

Remark 4.4. A consequence of the rank of ζi being 7, for all 2 ≤ i ≤ n, is that a single condition of
codimension k ≥ 2 on

(
κklm
)
k,m∈J1,2K
l∈J2i−1,2iK

is then a condition of codimension at least k − 1 on the jets of

order 2 of the sub-Riemannian structure at q0.

Using this notation, we can give a first approximation of the conjugate locus.

Proposition 4.5. Let q0 ∈ M \ S1. As η → 0+, uniformly with respect to p0 = (h1, . . . , h2n, η
−1) ∈

Cq((0, R)) \ Sε1 for all R > 0, ε ∈ (0, 1), we have (in normal form coordinates)

(F (τc(h, η)), h, η))1 =
η2

h2
1 + h2

2

(
(γ11 − γ22)h3

1 + γ12h
3
2 + (γ21 + 2γ12)h2

1h2 + δ1
)

+O(η3)
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(F (τc(h, η)), h, η))2 =
η2

h2
1 + h2

2

(
γ12h

3
1 − (γ11 − γ22)h3

2 + (γ12 + 2γ21)h1h
2
2 + δ2

)
+O(η3)

with

γij =

2n∑
k=3

κjki hk, ∀i, j ∈ J1, 2nK,

δ1 = α(h2
1 + h2

2)2 +

2n∑
3≤i<j≤2n

κij1 hihj , δ2 = β(h2
1 + h2

2)2 +

2n∑
3≤i<j≤2n

κij2 hihj .

If there exists a covector such that γ11 − γ22 = γ12 = γ21 = 0 then this first order approximation of
the conjugate locus is not sufficient to prove stability and more orders of approximation are necessary.
This occurs for instance when h3 = · · · = h2n = 0, and

(F (τc(h, η)), h, η))1 = η2α(h2
1 + h2

2) +O(η3),

(F (τc(h, η)), h, η))2 = η2β(h2
1 + h2

2) +O(η3).

Proposition 4.6. Let M be a generic contact sub-Riemannian manifold of dimension 2n + 1 ≥ 5. Let
S2 ⊂M be the set of points at which the linear system in (h3, . . . h2n)

∑2n
i=3(κ1,i

1 − κ
2,i
2 )hi = 0,∑2n

i=3 κ
1,i
2 hi = 0,∑2n

i=3 κ
2,i
1 hi = 0,

admits non-trivial solutions. If dimM ≥ 7, then M = S2. However if dimM = 5, the set S2 is
codimension 1 stratified subset of M .

Proof. If we assume (r2, . . . , rn) 6= 0 then γ11−γ22 = γ12 = γ21 = 0 reduces to the existence of a non-zero
vector of R2n−2 in the intersection

Span{(κ1,3
1 − κ2,3

2 , . . . , κ1,2n
1 − κ2,2n

2 )}
⊥
∩ Span{(κ2,3

1 , . . . , κ2,2n
1 )}

⊥
∩ Span{(κ1,3

2 , . . . , κ1,2n
2 )}

⊥
.

This space is never reduced to a single point for n > 2, hence M = S2. However for n = 2, this requires
the three vectors

(κ1,3
1 − κ2,3

2 , κ1,4
1 − κ2,4

2 ), (κ2,3
1 , κ2,4

1 ), (κ1,3
2 , κ1,4

2 ), (14)

to be co-linear, which is a constraint of codimension 2 on the family
(
κklm
)
k,m∈{1,2}
l∈{3,4}

. By Remark 4.4,

this is a codimension 1 (at least) constraint on the jets of order 2 of the sub-Riemannian structure at q0,
hence the result.

4.2 Asymptotics for covectors near S1

We repeat the previous construction for a special class of initial covector in the vicinity of S1 =
{(h1, . . . , h2n, h0) ∈ T ∗q0M |
h1 = h2 = 0}, in accordance with the discussion of Section 3.2.

Let h̄ ∈ R2n be such that (h̄3, . . . , h̄2n) 6= (0, . . . , 0). We blowup the singularity at h1 = h2 = 0 by
computing an approximation of the conjugate locus for

h(0) = (
√
ηh̄1,

√
ηh̄2, h̄3, . . . , h̄2n). (15)

Let Λ be the square 2n× 2n matrix such that

Λi,j =

{
1 if i = j = 1 or i = j = 2,

0 otherwise,
(16)

so that h(0) =
√
ηΛh̄+ (I2n − Λ)h̄.

Recall the power series notation f(ητ, h(0)) =
∑
ηkf (k)(τ, h(0)). As a consequence of Proposition 2.1,

we can give a new expansion of the Hamiltonian flow for the special class of initial covectors of type (15)
in terms of coefficients of the power series of x, z, h, w. (Recall that for all R > 0, BR denotes the set

{h ∈ R2n |
∑2n
i=1 h

2
i ≤ R}.)
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Proposition 4.7. For all T,R > 0, normal extremals with initial covector

(
√
ηΛh̄+ (I2n − Λ)h̄, η−1)

have the following order 3 expansion at time ητ , as η → 0+, uniformly with respect to τ ∈ [0, T ] and
h̄ ∈ BR:

x(ητ) = ηx̂(τ, (I2n − Λ)h̄) + η3/2
[
x̂
(
τ,Λh̄

)]
+ η2

[
x(2)

(
τ, (I2n − Λ)h̄

)]
+ η5/2

[
x(2)

(
τ, h̄
)
− x(2)

(
τ, (I2n − Λ)h̄

)
− x(2)

(
τ,Λh̄

)]
+O(η3),

z(ητ) = η2ẑ(τ, (I2n − Λ)h̄) + η3
[
z(3)(τ, (I2n − Λ)h̄) + ẑ(τ,Λh̄)

]
+O(η4).

Likewise, the associated covector has the expansion

h(ητ) = ĥ(τ, (I2n − Λ)h̄) +
√
η
[
ĥ(τ,Λh̄)

]
+ η

[
h(1)(τ, (I2n − Λ)h̄)

]
+ η3/2

[
h(1)(τ, h̄)− h(1)(τ,Λh̄)− h(1)(τ, (I2n − Λ)h̄)

]
+O(η2),

w(ητ) = 1 +O(η2).

Proof. Let h, h′ ∈ R2n and let ψ : R2n → R be a quadratic form, we have by polarization identity
ψ
(
h+
√
ηh′
)

= ψ(h) +
√
η [ψ(h+ h′)− ψ(h)− ψ(h′)] + ηψ(h′). Applying this identity with h = Λh̄ and

h′ = (I2n − Λ)h̄, we get the statement since we proved in Proposition 2.1 that x(1)(ητ, ·), h(0)(ητ, ·) are
linear and x(2)(ητ, ·), h(1)(ητ, ·), z(2)(ητ, ·) are quadratic, coordinate-wise. The case of w comes from the
fact that w(1) = 0.

We set G(τ, h̄, η) = F
(
τ,
√
ηΛh̄+ (I2n − Λ)h̄, η

)
, for all τ > 0, h̄ ∈ R2n and η > 0. The function G

admits a power series expansion in
√
η

G(τ, h̄, η) =
∑
k≥0

ηk/2G(k/2)(τ, h̄).

We prove the following proposition on the conjugate time for such initial covectors.

Proposition 4.8. Let us define the quadratic polynomial in δτ

P (δτ) = −δτ2K + δτ

(
2π

b1

(
h̄2

1 + h̄2
2

)
−K

(
∂G

(5/2)
1

∂h̄1
+
∂G

(5/2)
2

∂h̄2

))

+
2π

b1

(
h̄2

2

∂G
(5/2)
1

∂h̄1
+ h̄2

1

∂G
(5/2)
2

∂h̄2
− h̄1h̄2

(
∂G

(5/2)
2

∂h̄1
+
∂G

(5/2)
1

∂h̄2

))

+K

(
∂G

(5/2)
2

∂h̄1

∂G
(5/2)
1

∂h̄2
− ∂G

(5/2)
1

∂h̄1

∂G
(5/2)
2

∂h̄2

)
,

and let ∆(h̄) be its discriminant. We have the following cases:

• If ∆(h̄) ≥ 0, let δτ∗ be the smallest of the (possibly equal) two roots of P . Then

τc(
√
ηΛh̄+ (I2n − Λ)h̄) = 2π/b1 + ηδt∗ + o(η).

• If ∆(h̄) < 0,
lim sup
η→0

∣∣τc(√ηΛh̄+ (I2n − Λ)h̄)− 2π/b1
∣∣ > 0,

that is, the first conjugate time is not a perturbation of 2π/b1.
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Proof. We first have to check that the conjugate time is not a perturbation of order
√
η of the nilpotent

conjugate time 2π/b1. We apply the same method as before to evaluate Φ
(
2π/b1 +

√
ηδτ,
√
ηΛh̄+ (I2n − Λ)h̄, η

)
,

δτ ∈ R, h̄ ∈ R2n. Notice that

∂F

∂hi
=

1
√
η

∂G

∂h̄i
, ∀i ∈ J1, 2K, and

∂F

∂hi
=
∂G

∂h̄i
∀i ∈ J3, 2nK.

With δτ ∈ R, h̄ ∈ R2n, we have

G

(
2π

b1
+
√
ηδτ, h̄, η

)
= η G(1)

∣∣∣
τ= 2π

b1

+ η3/2

(
G(3/2) + δτ

∂G(1)

∂τ

)∣∣∣∣
τ= 2π

b1

+O(η5/2). (17)

Hence Φ
(
2π/b1 +

√
ηδτ,
√
ηΛh̄+ (I2n − Λ)h̄, η

)
= O(η2n+3) (see, for instance, Appendix C.2). By cap-

turing the first non trivial term in the expansion of Φ, one has

Φ(2n+3)
(
2π/b1 +

√
ηδτ,
√
ηΛh̄+ (I2n − Λ)h̄, η

)
∝ δτ2

(see also Lemma C.4 in the appendix). Hence perturbations of the nilpotent conjugate time 2π/b1 must
be of order 1 in η at least for Φ to vanish.

Computing the perturbation of the conjugate time is then a matter of computing Φ at time 2π/b1+ηδτ .
Regarding G, we have

G

(
2π

b1
+ ηδτ, h̄, η

)
=η G(1)

∣∣∣
τ= 2π

b1

+ η3/2 G(3/2)
∣∣∣
τ= 2π

b1

+ η2

[
G(2) + δτ

∂G(1)

∂τ

]∣∣∣∣
τ= 2π

b1

+ η5/2

[
G(5/2) + δτ

∂G(3/2)

∂τ

]∣∣∣∣
τ= 2π

b1

+O(η3).

(18)

Thus Φ
(
2π/b1 + ηδτ,

√
ηΛh̄+ (I2n − Λ)h̄, η

)
= O(η2n+5). Again, computing the first nontrivial term in

the expansion yields (for instance, see Lemma C.5)

Φ(2n+5) (2π/b1 + ηδτ, h, η) ∝ P (δτ).

This implies the statement: either P admits real roots, of which the smallest is τ
(1)
c , or the system does

not admit a perturbation of 2π/b1 as a first conjugate time.

Remark 4.9. Contrarily to (13), the equation P (δτ) = 0 not degenerate at h̄1 = h̄2 = 0.

4.3 Proof of Theorems 1.1 and 3.7

It appears now that proving Theorem 3.7 is a matter of summarizing what we know about the conjugate
time from the previous results of Section 4.

Proof of Theorem 3.7. In the previous section we computed the rescaled conjugate time τc. We have for
all covector p0 = (h̄1, . . . , h̄2n, η

−1) ∈ T ∗q0M ,

tc(h̄, η
−1) = ητc(h̄, η

−1)

From Proposition 3.6, we deduce that under the assumption (h̄1, h̄2) 6= (0, 0), we have as η → 0+ that

τc(h̄, η
−1) = 2π/b1 + O(η). From Proposition 4.1, we deduce the existence of t

(2)
c = ητ

(1)
c that satisfies

the given equation, using the invariants introduced in Proposition 4.3.
On the other hand, by performing the blow up at (0, 0, h̄3 . . . , h̄2n), we compute an approximation of

tc(
√
ηh̄1,

√
ηh̄2, h̄3, . . . , h̄2n, η

−1) = ητc(
√
ηh̄1,

√
ηh̄2, h̄3, . . . , h̄2n, η

−1).

Again, from Proposition 3.6, we deduce that under the assumption (h̄1, h̄2) 6= (0, 0), a possible approxi-
mation is τc(

√
ηΛh̄+ (I2n − Λ)h̄, η−1) = 2π/b1 +O(η). However from Lemma 3.5, we now know that in

the nilpotent case, 2π/b1 is a zero of order two at (h̄1, h̄2) = (0, 0). Thus computing a perturbation of

the conjugate time, one gets the statement for t̃
(2)
c from Proposition 4.8 and the expression in terms of

invariants from Proposition 4.7.
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Having proved Theorem 3.7, we can introduce a geometrical invariant that will help us prove Theo-
rem 1.1. For all q ∈M \S1, let

Aq = {tc(p)p | H(p, q) = 1/2}.

By the usual property of the Hamiltonian flow, the first conjugate locus at q is given by Eq(1,Aq).
Furthermore, the set Aq is an immersed hypersurface of T ∗qM and Aq ∩Cq(0) is reduced to the two points
p+ = (0, . . . , 0, 2π/b1), p− = (0, . . . , 0,−2π/b1). Then let A+

q be the tangent cone to Aq at p+.
Observe that A+

q is a geometrical invariant independent of the choice of coordinates on M . It can be
computed once the asymptotics of the conjugate time are known.

Proof of Theorem 1.1. We prove the theorem by contradiction. Assume there exists a set of coordinates
for which (4) does not hold, i.e.

lim
h0→+∞

(
h2

0 sup
τ∈(0,T )

∣∣∣∣Eq ( τ

h0
, (h1, . . . , h2n, h0)

)
− Êq

(
τ

h0
, (h1, . . . , h2n, h0)

)∣∣∣∣
)

= 0.

Then we have that uniformly with respect to τ ∈ (0, T ),

Eq
(
ητ, (h1, . . . , h̄2n, η

−1)
)

= Êq
(
ητ, (h1, . . . , h̄2n, η

−1)
)

+ o(η2).

That is, the exponential is a second order perturbation of the nilpotent exponential. If that is the case, as
a consequence of Section 4, and in particular Proposition 4.1, we have that for p0 = (h1, . . . , h2n, η

−1) ∈
T ∗qM ,

tc(p0) =
2π

b1
η + o(η2).

Then

tc(p0)p0 =

(
0, . . . , 0,

2π

b1

)
+ η

(
2π

b1
h1, . . . ,

2π

b1
h2n, 0

)
+ o(η)

and the cone A+
q is the affine plane {h0 = 2π/b1}.

However, as a consequence of Theorem 3.7, the cone A+
q can be computed using the Agrachev–

Gauthier frame, where we have for p0 = (h1, . . . , h2n, η
−1) ∈ T ∗qM \ S,

tc(p0)p0 =

(
0, . . . , 0,

2π

b1

)
+ η

(
2π

b1
h1, . . . ,

2π

b1
h2n, t

(2)
c (h1, . . . , h2n)

)
+ o(η).

For A+
q to be planar, the following symmetry for t

(2)
c is needed (with r2

1 = h2
1 + h2

2):

lim
r1→0+

t(2)
c (h1, h2, h3, . . . , h2n) = − lim

r1→0+
t(2)
c (−h1,−h2, h3, . . . , h2n)

for all (h3, . . . , h2n) ∈ R2n−2. Given the expression (11), we have rather

lim
r1→0+

t(2)
c (h1, h2, h3, . . . , h2n) = lim

r1→0+
t(2)
c (−h1,−h2, h3, . . . , h2n),

which is not everywhere zero unless γ11 = γ22 = γ12 + γ21 = 0 for all (h3, . . . , h2n) ∈ R2n−2. That is
κ1i

1 = κ2i
2 = κ2i

1 + κ1i
2 = 0 for all i ∈ J3, 2nK, which is not generic with respect to the sub-Riemannian

structure at q ∈M \ (S1 ∪S3) (see Proposition 4.3 and Appendix B).
In consequence, we have proven that generically with respect to the sub-Riemannian structure at

q ∈ M \ S, there does not exist a set of privileged coordinates at q and T > 0 such that the limit (4)
holds.

Remark 4.10. Regarding the non-genericity of κ1i
1 = κ2i

2 = κ2i
1 +κ1i

2 = 0, notice that it constitutes 6(n−1)

independent conditions on the family
(
κijk

)
i,k∈J1,2K,
j∈J3,2nK

and thus a codimension 5(n−1) condition (at least)

on the 2-jets of the sub-Riemannian structure at q.
Notice that 5n − 5 > 2n + 1 if n > 2 and 5n − 5 = 2n + 1 when n = 2. Hence in the n = 2 case,

assuming q ∈ M \S3 (see Proposition 4.3), we ensure the codimension of the condition on the 2-jets of
the sub-Riemannian structure to be 6.
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4.4 Next order perturbations

As observed in Section 4.1, there exists a subset of initial covectors in T ∗q0 \S1 for which our approximation
of the conjugate locus is degenerate (this makes the second order approximation unstable as a Lagrangian
map). In particular, for all q0 ∈ M , this set contains S2 = {(h1, h2, 0, . . . , 0, η

−1) ∈ T ∗q0M}. As proved
in Proposition 4.6, this set is reduced to S2 at points q0 in the complement of a startified codimension 1
subset S2 of M if n = 2.

Hence in preparation of the stability analysis of Section 5, we compute here a third order approxima-
tion of the conjugate time in the case of covectors near S2. When n = 2, we get a complete description
of the sub-Riemannian caustic at points of M \S2 as a result.

We use a blowup technique similar to the one of Section 4.2. Let h̄ ∈ R2n be such that (h̄1, h̄2) 6= (0, 0).
We blowup the singularity at (h̄1, h̄2, 0, . . . , 0) by computing an approximation of the conjugate locus with

h(0) = (h̄1, h̄2, ηh̄3, . . . , ηh̄2n).

With Λ the square 2n× 2n matrix defined in (16), h(0) = Λh̄+ η(I2n − Λ)h̄.
We give an equivalent of Proposition 4.7 for this case.

Proposition 4.11. For all T,R > 0, normal extremals with initial covector (Λh̄ + η(I2n − Λ)h̄, η−1)
have the following order 3 expansion at time ητ , as η → 0+, uniformly with respect to τ ∈ [0, T ] and
h(0) ∈ BR:

x(ητ,Λh̄+ η(I2n − Λ)h̄) = ηx̂(τ,Λh̄) + η2
[
x(2)

(
τ,Λh̄

)
+ x̂

(
τ, (I2n − Λ)h̄

)]
+ η3

[
x(3)

(
τ,Λh̄

)
+ x(2)

(
τ, h̄
)
− x(2)

(
τ,Λh̄

)
− x(2)

(
τ, (I2n − Λ)h̄

)]
+O(η4),

z(ητ) = η2ẑ(τ,Λh̄) + η3z(3)(τ,Λh̄) +O(η4).

Likewise, the associated covector has the following expansion:

h(ητ,Λh̄+ η(I2n − Λ)h̄) = ĥ(τ,Λh̄) + η
[
h(1)(τ,Λh̄) + ĥ(τ, (I2n − Λ)h̄)

]
+ η2

[
h(2)(τ,Λh̄) + h(1)(τ, h̄)− h(1)(τ,Λh̄)− h(1)(τ, (I2n − Λ)h̄)

]
+O(η3),

w(ητ) = 1 + η2w(2)(τ,Λh̄) +O(η4).

Proof. The proof relies on the same arguments as that of Proposition 4.7.

We aim to obtain a second order approximation of τc in the case of an initial covector of the form
(Λh̄ + η(I2n − Λ)h̄, η−1), for h̄ ∈ R2n. The previous section, together with Proposition 4.11, applies to
give us

τ (1)
c (Λh̄+ η(I2n − Λ)h̄) = τ (1)

c (Λh̄), ∀h̄ ∈ R2n.

Similarly to Section 4.2, for all τ > 0, h ∈ R2n and η > 0, we denote F (τ, h, η) = E(ητ ; (h, η−1)), and we
set

G(τ, h̄, η) = F
(
τ,Λh̄+ η(I2n − Λ)h̄, η

)
, ∀τ > 0, h̄ ∈ R2n, η > 0.

The function G admits a formal power series expansion in η: G(τ, h̄, η) =∑
k≥0 η

kG(k)(τ, h̄). Techniques similar to those introduced in Sections 4.1 and 4.2 yield the following
statement on second order approximations of the conjugate time τc.

Proposition 4.12. The second order perturbation of τc with initial covector
h(0) = Λh̄+ η(I2n − Λ)h̄ satisfies the equation

(h̄2
1 + h̄2

2)τ (2)
c (h(0)) = −h̄2

1

∂
(
G(3)

)
2

∂h̄2
− h̄2

2

∂
(
G(3)

)
1

∂h̄1
+ h̄1h̄2

(
∂
(
G(3)

)
1

∂h̄2
+
∂
(
G(3)

)
2

∂h̄1

)

+ (h̄2
1 + h̄2

2)(αh̄2 − βh̄1)

(
b1
2π

(βh̄1 − αh̄2) + 4b1(αh̄1 + βh̄2)

)
+

2n∑
i=3

di,

18



where α and β are the second order invariants introduced in Proposition 4.3 and

dk =
2π2

b21
ek

(
−h2∂hk

(
G(3)

)
1

+ h1∂hk

(
G(3)

)
2

)
∀k ∈ J3, 2nK,

with e ∈ R2n−2 the vector such that Ae =
(
h2∂h1

G(2) − h1∂h2
G(2)

)
3,...,2n

, where A ∈ M2n−2(R) is the

matrix introduced in Lemma C.3 and where we denote (v)3,...,2n = (v3, . . . , v2n) ∈ R2n−2 for all v ∈ R2n+1.

Proof. With δτ1, δτ2 ∈ R, h̄ ∈ R2n, we have

G

(
2π

b1
+ ηδτ1 + η2δτ2, h̄, η

)
= η G(1)

∣∣∣
τ= 2π

b1

+ η2

(
G(2) + δτ1

∂G(1)

∂τ

)∣∣∣∣
τ= 2π

b1

+ η3

[
G(3) + δτ2

∂G(1)

∂τ
+
δτ2

1

2

∂2G(1)

∂τ2
+ δτ1

∂G(2)

∂τ

]∣∣∣∣
τ= 2π

b1

+O(η3).

To evaluate Φ
(
2π/b1 + ηδτ1 + η2δτ2,Λh̄+ η(I2n − Λ)h̄, η

)
, δτ1, δτ2 ∈ R, h̄ ∈ R2n, notice that

∂F

∂hi
=
∂G

∂h̄i
, ∀i ∈ J1, 2K and

∂F

∂hi
=

1

η

∂G

∂h̄i
, ∀i ∈ J3, 2nK.

Hence with δτ1 = τ
(1)
c (Λh̄), one has Φ

(
2π/b1 + ηδτ1 + η2δτ2,Λh̄+ η(I2n − Λ)h̄, η

)
= O(η4n+2). The

result is again obtained by computing the first nontrivial term in the expansion of the determinant Φ
(see Lemma C.6). We obtain the stated result by refining this evaluation thanks to Lemma C.7.

Up to the computation of G(3), which is carried out in Appendix B.2, we have enough information to
compute the conjugate time, similarly to Proposition 4.1.

Remark 4.13. By definition of the invariants χ11, χ12, χ22 introduced in Appendix B, the third dimensional
case would correspond to the case κijk = 0 if 3 ≤ i, j, k ≤ 2n, α = β = 0. Under these conditions, one has

τ
(1)
c (h̄) = 0, τ

(2)
c (h̄) = −3(χ11 + χ22)(h̄2

1 + h̄2
2) and[

E(ητc; (h, η−1))
]
1

= η3
(
2h̄3

1(χ22 − χ11) + 3h̄2
1h̄2χ12 + h̄3

2χ12

)
+O(η4),[

E(ητc; (h, η−1))
]
2

= η3
(
2h̄3

2(χ11 − χ22) + 3h̄1h̄
2
2χ12 + h̄3

1χ12

)
+O(η4).

This expression corresponds to the classical astroidal caustic expansion observed in the 3-dimensional
contact case.

5 Stability of the sub-Riemannian caustic

5.1 Sub-Riemannian to Lagrangian stability

The aim of the whole classification is to prove Theorem 1.3. Recall we denote by E1
q0 : T ∗q0M → M the

sub-Riemannian exponential at time 1, that is E1
q0 = Eq0(1, ·). We first observe the following immediate

fact.

Proposition 5.1. Let (M,∆, g) be a sub-Riemannian manifold and let q0 ∈M . If the exponential map
at time 1, E1

q0 : T ∗q0M →M , is Lagrange stable at p ∈ Tq0M , then E1
q0 is sub-Riemannian stable at p.

As a consequence of Proposition 3.4, classifying Lagrangian stable singularities of the sub-Riemannian
exponential near the starting point q0 requires considering inital covectors in Cq(1/2) such that h0 is very
large. As stated in the previous sections, some restrictions on the starting point are necessary to prove
stability. Hence we consider points on the complementary of a codimension 1 stratified subset S of M ,
containing S1, S2 and S3, introduced in Section 3.1, Proposition 4.6 and Proposition 4.3 respectively.
In Section 5.3, we prove the following theorem, of which Theorem 1.3 is a corollary.

Theorem 5.2. Let (M,∆, g) be a generic 5-dimensional contact sub-Riemannian manifold and let q0 ∈
M \S. There exist η̄ > 0 such that for all (h1, h2, h3, h4, h0) ∈ Cq(1/2)∩{|h0| > η̄−1}, the first conjugate
point of Eq0 with initial covector (h1, h2, h3,
h4, h0) is a Lagrange stable singular point of type A2, A3, A4, D+

4 or A5.
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Assuming Theorem 5.2 holds, we can now Theorem 1.3.

Proof of Theorem 1.3. As a consequence of Proposition 5.1, we prove the Lagrange stability of the singu-
lar points of E1

q0 . For all t > 0, p0 ∈ T ∗q0M , E1
q0(tp0) = Eq0(t, p0). Hence for a given covector p0 ∈ {H 6= 0},

tc(p0)p0 is a critical point of E1
q0 .

Recall that for all q ∈ M , we have set Aq0 = {tc(p0)p0 | H(p0, q0) = 1/2}, and the caustic is the set
E1
q0 (Aq0).

Since E1
q0 (Cq(0)) = q0, to prove the statement it is sufficient to show the existence of Vq0 neighborhood

of q0 such that E1
q0 is Lagrange stable at every point of Aq0 ∩

(
E1
q0

)−1
(Vq0) ∩ {H > 0} (and satisfies the

stated classification). As a result of Theorem 5.2, what remains to prove is that there exists R > 0 such
that for all covectors p ∈ Aq0 ∩ Cq0((0, R)),

p√
2H(p, q0)

∈ Cq(1/2) ∩ {|h0| > η̄−1}

with η̄ > 0 as in the statement of Theorem 5.2, but this is Proposition 3.4.

5.2 Classification methodology

We first recall normal forms for the stable singularities that appear in Theorem 5.2.

Definition 5.3. Let f : R5 → R5 be a smooth map singular at q ∈ R5. Assume there exist variables x
centered at q and and variables centered at f(q) such that

• f(x1, . . . , x5) = (x2
1, x2, x3, x4, x5), then the singularity is of type A2;

• f(x1, . . . , x5) = (x3
1 + x1x2, x2, x3, x4, x5), then the singularity is of type A3;

• f(x1, . . . , x5) = (x4
1 + x2

1x2 + x1x3, x2, x3, x4, x5), then the singularity is of type A4;

• f(x1, . . . , x5) = (x5
1 + x3

1x2 + x2
1x3 + x1x4, x2, x3, x4, x5), then the singularity is of type A5;

• f(x1, . . . , x5) = (x2
1 + x2

2 + x1x3, x1x2, x3, x4, x5), then the singularity is of type D+
4 .

We use these normal forms to characterize the singularities in terms of jets. Let M be a 5-dimensional
manifold, let q0 ∈ M and let g : T ∗q0M → M be a Lagrangian map. Let p0 be a critical point of g. We
transpose the normal form definition of stable singularities to condition on the jets of g. Given a set of
coordinates x on T ∗q0M , let us introduce the functions (depending on whether the kernel of the Jacobian
matrix of g is of dimension 1 or 2)

φi1...ik(p0) = det
(
∂xi1

. . . ∂xik
g, V2, V3, V4, V5

)
, if dim ker Jacp0g = 1,

φ′i1...ik(p0) = det
(
∂xi1

. . . ∂xik
g, ∂x1

∂x2
g, V ′3 , V

′
4 , V

′
5

)
, if ∂x1

g = ∂x2
g = 0.

(Where we denote by V2, V3, V4, V5, linearly independent vectors, depending smoothly on p0, generating
imJacp0g if dim ker Jacp0g = 1 and likewise V ′3 , V

′
4 , V

′
5 , linearly independent vectors, depending smoothly

on p0, generating imJacp0g if dim ker Jacp0g = 2.)
In terms of φi1,...ik , we have the following characterization of Lagrangian equivalence classes.

Proposition 5.4. Let M be a 5-dimensional manifold, let g : T ∗q0M → M be a Lagrangian map and let
p0 ∈ T ∗q0M . Assume ker Jacp0g is 1-dimensional, if there exists coordinates (x1, x2, x3, x4, x5) such that
∂x1

g(p0) = 0 and the following holds at p0

• φ11 6= 0, then p0 is a singular point of type A2;

• φ11 = 0, φ111 · φ12 6= 0, then p0 is a singular point of type A3;

• φ11 = φ111 = φ12 = 0, φ1111 · φ112 · φ13 6= 0, then p0 is a singular point of type A4;

• φ11 = φ111 = φ12 = φ1111 = φ112 = φ13 = 0, φ11111 ·φ1112 ·φ113 ·φ14 6= 0, then p0 is a singular point
of type A5.
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Assume ker Jacp0g is 2-dimensional, if there exists coordinates (x1, x2, x3, x4, x5) such that ∂x1
g = ∂x2

g =
0 and φ′11 · φ′22(p0) > 0, φ′13(p0) 6= 0 then p0 is a singular point of type D+

4 .

Proof. This is a matter of proving that g has the same k-jets as the normal form for Ak singularities,
k ∈ J2, 5K, and 2-jet for D+

4 . For each of the stated cases, the existence of changes of coordinates at p0

and g(p0) such that it is the case is then warranted by the stated conditions.

Remark 5.5. The condition φ′11 · φ′22(p0) > 0 corresponds to the distinction between D+
4 and D−4 singu-

larities, the latter corresponding to the opposite sign.

Recall that we are considering points q0 ∈M \ (S1 ∪S2), where S1 (introduced at the beginning of
Section 3) and S2 (introduced in Proposition 4.6) are both stratified subsets of M of codimension 1 at
most.

Let (M,∆, g) be a contact sub-Riemannian manifold of dimension 5 and let q0 ∈ M . To study the
sub-Riemannian caustic at q0, we study for a given p0 the stability at p0 ∈ Cq(1/2) of Eq0(tc(p0), ·).
To apply Proposition 5.4, we first compute an approximation the linear spaces ker Jacp0Eq0(tc(p0)) and
imJacp0Eq0(tc(p0)). Then we compute approximations of the functions φi1...ik with by approximating the
map

v 7→ det (v, imJacp0Eq0(tc(p0))) ,

for a well-chosen representation of imJacp0Eq0(tc(p0)).
Let S1 =

{
p ∈ T ∗q0M | h1 = h2 = 0

}
and S2 =

{
p ∈ T ∗q0M | h3 = h4 = 0

}
. As a consequence of

Section 3, this stability analysis is carried independently on the three domains of initial covectors,
T ∗q0M \ (S1 ∪ S2), near S1 and near S2, after blowup of the exponential map.

Remark 5.6. Let τ ∈ R+ and (h, η) ∈ R5. The map Eq0(ητ) is critical at (h, η−1) if there exists v ∈ R5

such that Jacp0Eq0(ητ) · v = 0.
With F (τ, h, η) = Eq0(ητ ; (h, η−1)), for all τ > 0, h ∈ R4, η > 0, we denote ∂i = ∂hi , for all i ∈ J1, 4K,

and ∂5 = ∂h0
= −η2∂η + ητ∂τ , we have

Jacp0Eq0(ητ) = (∂1F, ∂2F, ∂3F, ∂4F, ∂5F ) .

Higher order derivations of the map F are then computed using the chain rule.

Remark 5.7. Precisely checking the conditions of Proposition 5.4 requires explicit computations executed
in the computer algebra system Mathematica.

5.3 Classification of singular points of the caustic

Let p0 ∈ T ∗q0M and let (x1, x2, x3, x4, x5) be arbitrary coordinates on a neighborhood of p0 ∈ T ∗q0M such

that ∂x1
Eq0(tc(p0)) = 0. Apart from singularities of type D+

4 on the second domain, only singularities
of corank 1 are expected. Hence gauging the degree of the singularities is sufficient to classify them,
provided that singularities of degree k effectively correspond to singularities of type Ak.

5.3.1 First domain

Consider initial covectors of the form (h1, h2, h3, h4, η
−1). Algebraic computations, similar to those of

the previous sections and left as appendix, lead to the following proposition on the φ functions. (See
Appendix D.1.)

(With n = 2, recall that for all R > 0, BR denotes the set {h ∈ R4 |
∑4
i=1 h

2
i ≤ R}.)

Proposition 5.8. Let us denote p0 = (h1, h2, h3, h4, η
−1). There exist a family of vectors (V2, V3, V4, V5),

smoothly depending on p0, generating imJacp0Eq0(tc(p0)) for which we have the following. For all R > 0,
uniformly with respect to h ∈ BR, as η → 0

φ11(p0) = O(η8), φ111(p0) = O(η8), φ1111(p0) = O(η8).

Furthermore, there exists a function Ψ : R4 × R5 → R such that for all V ∈ R5, Ψ(h, V ) 6= 0 implies
V /∈ imJacp0Eq0(tc(p0)) and with

Ψk(h) = Ψ
(
h, ∂kx1

Eq0(tc(p0))
)(2)

, ∀k ∈ J2, 4K,

we have
Ψ2(h) = φ

(8)
11 (h), Ψ3(h) = φ

(8)
111(h), Ψ4(h) = φ

(8)
1111(h).
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As a consequence of this proposition we obtain that for η small enough

Ψ2(h) 6= 0⇒ φ11(p0) 6= 0, Ψ3(h) 6= 0⇒ φ111(p0) 6= 0,

Ψ4(h) 6= 0⇒ φ1111(p0) 6= 0.

We can further numerically check as an application of Proposition 5.4 that

• if Ψ2 6= 0 then the singularity is of type A2;

• if Ψ3 6= 0 and the singularity is not of type A2 then the singularity is of type A3;

• if Ψ4 6= 0 and the singularity is not of type A2,A3 then the singularity is of type A4.

Then we have the following conclusion.

Proposition 5.9. Let (M,∆, g) be a generic sub-Riemannian structure and let q0 ∈ M \ S. There
exists η̄ > 0 such that for all covectors p0 in (Cq(1/2) ∩ {h0 > η̄−1}) \ (S1 ∪ S2), the singularity at p0 of
Eq0(tc(p0)) is a Lagrange stable singular point of type A2, A3 or A4.

Proof. As a consequence of our discussion, what remains to be proved is that generically with respect to
the sub-Riemannian structure, there are no points (h1, h2,
h3, h4) ∈ (R2 \ {0})× (R2 \ {0}) such that

Ψ2(h1, h2, h3, h4) = Ψ3(h1, h2, h3, h4) = Ψ4(h1, h2, h3, h4) = 0.

However, one can check that this equation admits solutions in (R2 \ {0})× (R2 \ {0}) only if q0 ∈ S2. By
assumption S2 ⊂ S, hence the statement.

5.3.2 Second domain

Consider initial covectors of the form (
√
ηh1,

√
ηh2, h3,

h4, η
−1). Again, algebraic computations left as appendix lead to the following proposition on the φ

functions. (See Appendix D.2.)

Proposition 5.10. Let us denote p0 = (
√
ηh1,

√
ηh2, h3, h4, η

−1). Let S+ be the subset of T ∗q0M where
dim ker Jacp0Eq0(tc(p0)) = 2.

For p0 /∈ S+, dim ker Jacp0Eq0(tc(p0)) = 1, there exist a family of vectors (V2, V3, V4, V5), smoothly
depending on p0, generating imJacp0Eq0(tc(p0)) for which we have the following. For all R > 0, uniformly
with respect to h ∈ BR, as η → 0

φ11(p0) = O(η10), φ111(p0) = O(η10), φ1111(p0) = O(η10), φ11111(p0) = O(η10).

Furthermore, there exists a function Φ : R4 × R5 → R such that for all V ∈ R5, Φ(h, V ) 6= 0 implies
V /∈ imJacp0Eq0(tc(p0)) and with

Φk(h) = Φ
(
h, ∂kx1

Eq0(tc(p0))
)(5/2)

, ∀k ∈ J2, 4K,

we have
φ

(10)
11 (h) = Φ2(h), φ

(10)
111 (h) = Φ3(h), φ

(10)
1111(h) = Φ4(h), φ

(10)
11111(h) = Φ5(h).

As a consequence of Remark D.6, we can check that the singularity is of type D+
4 if p0 ∈ S+ and that

that singular points of the exponential of the such that (h1, h2) = (0, 0) are of type A3.
As an application of Proposition 5.10, we obtain that for η small enough, if p0 /∈ S+,

Φ2(h) 6= 0⇒ φ11(p0) 6= 0, Φ3(h) 6= 0⇒ φ111(p0) 6= 0,

Φ4(h) 6= 0⇒ φ1111(p0) 6= 0 Φ5(h) 6= 0⇒ φ11111(p0) 6= 0,

We can further numerically check as an application of Proposition 5.4 that

• if Φ2 6= 0 then the singularity is of type A2;
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• if Φ3 6= 0 and the singularity is not of type A2 then the singularity is of type A3;

• if Φ4 6= 0 and the singularity is not of type A2,A3 then the singularity is of type A4;

• if Φ5 6= 0and the singularity is not of type A2,A3,A4 then the singularity is of type A5.

Then we have the following conclusion.

Proposition 5.11. Let (M,∆, g) be a generic sub-Riemannian structure and let q0 ∈ M \ S. There
exists η̄ > 0 such that for all covectors p0 in Cq(1/2) ∩ {h0 > η̄−1} ∩ {h2

1 + h2
2 < η̄}, the singularity at p0

of Eq0(tc(p0)) is a Lagrange stable singular point of type A2, A3, A4, A5 or D+
4 .

Proof. As a consequence of our discussion and Proposition 5.10, what remains to be proved is that there
are no element (h1, h2, h3, h4) ∈ (R2 \ {0})× (R2 \ {0}) such that Φ2(h) = Φ3(h) = Φ4(h) = Φ5(h) = 0.

Similarly to the proof of Proposition 5.9, this is excluded on the complementary of S.

Remark 5.12. An intuition can be given on the reason A5 singularities can appear on the second (and
third) domain but not the first one. In the first domain, our approximation of the exponential presents
symmetries that do not appear in the other domains. For instance these symmetries appear in the
computations of the approximations of the φ functions of Proposition 5.4.

Indeed, we have on the first domain a two-parameter symmetry: for all λ, µ > 0, h ∈ R4,

Ψi(λh1, λh2, µh3, µh4) = λ2µΨi(h1, h2, h3, h4), i ∈ J2, 4K.

On the second domain on the other hand, we only have a one-parameter symmetry:

Φi(λ
3h1, λ

3h2, λ
2h3, λ

2h4) = λ14Φi(h1, h2, h3, h4), i ∈ J2, 5K.

In other words, the exponential map reduces to a 3-dimensional Lagrangian map on the first domain
and only singularities of type A2 to A4 should appear. Conversely, the symmetry on the second domain
implies that the exponential reduces to a 4-dimensional Lagrangian map and A5 singularities can be
expected.

A similar argument can be made in the 3-dimensional contact case for the presence of A2 and A3

singularities (see [1] for instance).

5.3.3 Third domain

Consider initial covectors of the form (h1, h2, ηh3, ηh4,
η−1). Algebraic computations left as appendix lead to the following proposition on the φ functions. (See
Appendix D.3.)

Proposition 5.13. Let us denote p0 = (h1, h2, ηh3, ηh4, η
−1). There exist a family of vectors (V2, V3, V4, V5),

smoothly depending on p0, generating imJacp0Eq0(tc(p0)) for which we have the following. For all R > 0,
uniformly with respect to h ∈ BR, as η → 0,

φ11(p0) = O(η11), φ111(p0) = O(η11), φ1111(p0) = O(η11), φ11111(p0) = O(η11).

Furthermore, there exists a function Γ : R4 × R5 → R such that for all V ∈ R5, Γ(h, V ) 6= 0 implies
V /∈ imJacp0Eq0(tc(p0)) and with

Γk(h) = Γ
(
h, ∂kx1

Eq0(tc(p0))
)(3)

, ∀k ∈ J2, 5K,

we have
φ

(11)
11 (h) = Γ2(h), φ

(11)
111 (h) = Γ3(h), φ

(11)
1111(h) = Γ4(h), φ

(11)
11111(h) = Γ5(h).

As a consequence of this proposition we obtain that for η small enough

Γ2(h) 6= 0⇒ φ11(p0) 6= 0, Γ3(h) 6= 0⇒ φ111(p0) 6= 0,

Γ4(h) 6= 0⇒ φ1111(p0) 6= 0, Γ5(h) 6= 0⇒ φ11111(p0) 6= 0.

We can further numerically check as an application of Proposition 5.4 that
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• if Γ2 6= 0 then the singularity is of type A2;

• if Γ3 6= 0 and the singularity is not of type A2 then the singularity is of type A3;

• if Γ4 6= 0 and the singularity is not of type A2,A3 then the singularity is of type A4;

• if Γ5 6= 0 and the singularity is not of type A2,A3,A4 then the singularity is of type A5.

Then we have the following conclusion.

Proposition 5.14. Let (M,∆, g) be a generic sub-Riemannian structure and let q0 ∈ M \ S. There
exists η̄ > 0 such that for all covectors p0 in Cq(1/2)∩ {h0 > η̄−1} ∩ {h2

3 + h2
4 < η̄2}, the singularity at p0

of Eq0(tc(p0)) is a Lagrange stable singular point of type A2, A3, A4 or A5.

Proof. The argument is the same as in the other two cases, that is, as a consequence of our discussion,
there are no points h ∈ (R2 \ {0}) × (R2) such that Γ2(h) = Γ3(h) = Γ4(h) = Γ5(h) = 0. Again, this is
excluded on the complementary of S.
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A Agrachev–Gauthier normal form

Let (M,∆, g) be a contact sub-Riemannian manifold of dimension 2n + 1. In [3], the authors prove the
existence at any q0 ∈ M of a set of coordinates and vector fields for which the contact sub-Riemannian
structure satisfies interesting symmetries. Here we recall the properties of this normal form, that we call
Agrachev–Gauthier normal form.

On a contact manifold, there exists a 1-form ω such that ω ∧ (dω)n never vanishes and kerω = ∆.
Notice that for any smooth non-vanishing function f : M → R, ker fω = ∆. Hence ω can be chosen so
that

(dω)
n
|∆ = volg

where volg is the volume form induced by g on ∆. Then there exists a unique vector field X0, the Reeb
vector field, such that

ω(X0) = 1 and ιX0
dω = 0.

In the following, for any vector field Y , for all i ∈ J1, 2n+ 1K, we denote by (Y )i the i-th coordinate
of Y written in the basis (∂x1 , . . . , ∂x2n , ∂z).

Theorem A.1 ([3, Section 6]). Let (M,∆, g) be a contact sub-Riemannian manifold of dimension 2n+1
and q0 ∈M . There exist privileged coordinates at q0, (x1, . . . x2n, z) : M → R2n+1, and a frame of (∆, g),
(X1, . . . , X2n), that satisfy the following properties on a small neighborhood of q0 = (0, . . . , 0).

(1) The horizontal components of the vector fields X1, . . . , X2n satisfy the following two symmetries:
for all 1 ≤ i, j ≤ 2n, we have

(Xi)j = (Xj)i

and
2n∑
j=1

(Xj)i xj = xi.

(2) The vertical components of X1, . . . , X2n satisfy the symmetry

2n∑
j=1

(Xj)2n+1 xj = 0.

(3) X0 = ∂
∂z , ω(X0) = 1 and ιX0

dω = 0.

This is further detailed by evaluating the elements (Xi)j at some well chosen points. Let us denote
by V1, . . . , Vn the 3-dimensional subspaces of M defined by

Vi = ∩j 6=i {x2j−1 = 0} ∩ {x2j = 0} ∀i ∈ J1, nK.

Theorem A.2 ([3, Theorem 6.6]). Let (M,∆, g) be a contact sub-Riemannian manifold of dimension
2n + 1 and q0 ∈ M . Let (x1, . . . x2n, z) : M → R2n+1 be privileged coordinates at q0, and (X1, . . . , X2n)
be a frame of (∆, g), both as in statement of Theorem A.1. Then

(i) For all i, j ∈ J1, 2nK,

(Xi)j (0, z) =

{
1 if i = j,

0 otherwise
(19)

and for all k ∈ J1, 2nK
∂xk (Xi)j (0, z) = 0. (20)

Furthermore, there exist β1, . . . , βn : R3 → R such that for all i ∈ J1, nK, βi(0, 0, z) = 0 and{
(X2i−1)2i−1

∣∣
Vi

=1 + x2
2iβi(x2i−1, x2i, z),

(X2i−1)2i|Vi =− x2i−1x2iβi(x2i−1, x2i, z),{
(X2i)2i−1

∣∣
Vi

=− x2i−1x2iβi(x2i−1, x2i, z),

(X2i)2i|Vi =1 + x2
2i−1βi(x2i−1, x2i, z).

(21)
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(ii) There exist α1, . . . , αn : R3 → R such that for all i ∈ J1, nK,

(X2i−1)2n+1

∣∣
Vi

= x2iαi(x2i−1, x2i, z)/2,

(X2i)2n+1

∣∣
Vi

= −x2i−1αi(x2i−1, x2i, z)/2.
(22)

(iii) We have
n∏
i=1

αi(0, 0, z) =
1

n!
,

and for all i ∈ J1, nK, we denote

L̃i =
∂(X2i)2n+1

∂x2i−1
− ∂(X2i−1)2n+1

∂x2i
.

Then for all i ∈ J1, nK,

L̃i

∣∣∣
Vi

= αi, ∀i ∈ J1, nK,

and
n∑
j=1

∂x2k−1
L̃j(0, z)

∏
i6=j

αi(0, z) =

n∑
j=1

∂x2k
L̃j(0, z)

∏
i6=j

αi(0, z) = 0.

Remark A.3. A few observations on Theorem A.2.

• Notice that points (i), (ii), (iii) are respectively consequences of points (1), (2), (3) of Theorem A.1.

• The nilpotent invariants b1, . . . , bn at q0 satisfy (up to reordering)

bi = αi(0, 0, 0), ∀i ∈ J1, nK.

• In the Agrachev–Gauthier normal form, the frame (X1, . . . , X2n) naturally appears as a perturba-

tion of the frame of a nilpotent contact structure over R2n+1,
(
X̂1, . . . , X̂2n

)
, written in the normal

form

X̂2i−1 = ∂x2i−1 +
bi
2
x2i∂z, X̂2i = ∂x2i −

bi
2
x2i−1∂z, ∀i ∈ J1, nK.

• We can deduce from (i) the following equalities. For all r, s ∈ N,

2
(
∂x2i−1

)r
(∂x2i)

s
βi(0, z) =

(
∂x2i−1

)r
(∂x2i)

s+2
(X2i−1)2i−1 (0, z)

=
(
∂x2i−1

)r+2
(∂x2i

)
s

(X2i)2i (0, z)

= −2
(
∂x2i−1

)r+1
(∂x2i)

s+1
(X2i−1)2i (0, z)

= −2
(
∂x2i−1

)r+1
(∂x2i)

s+1
(X2i)2i−1 (0, z).

(23)

In particular,
0 = βi(0, 0, z) = (∂x2i

)
2

(X2i−1)2i−1 (0, z)

=
(
∂x2i−1

)2
(X2i)2i (0, z)

= −2
(
∂x2i−1

)
(∂x2i) (X2i−1)2i (0, z)

= −2
(
∂x2i−1

)
(∂x2i) (X2i)2i−1 (0, z).

(24)

As an application of these results, we give a proof of the following classical observation. Using
notations of Section 3.

Proposition A.4. Let (M,∆, g) be a contact sub-Riemannian manifold and q0 ∈ M . For all α > 0,
there exists R > 0 such that the set of singular points of the exponential at time 1 in Cq0((0, R)) is a
subset of {h2

0 > αH}.
Equivalently, for all h̄0 > 0, there exists ε > 0 such that all p ∈ Cq(1/2) with tc(p) < ε have

|h0(p)| > h̄0.
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Proof. Notice that both statements are equivalent since any p ∈ Cq(1/2) satisfies tc(p) =
√

2H(tc(p)p, q0).
We prove this statement by contradiction. Assume there exist α > 0 and a sequence of singular points

for E1
q0 , (pk)k∈N ∈ {H > 0}, such that H(pk, q0) = 1

2k2 and h0(pk)2 ≤ αH(pk, q0).
Then kpk = pk√

2H(pk,q0)
∈ Cq(1/2) ∩ {h2

0 ≤ α/2}. The sequence (kpk)k∈N converges up to extraction

and there exist (kn)n∈N ∈ N, p′∞ ∈ Cq(1/2) ∩ {h2
0 ≤ α/2} such that knpkn → p′∞.

Hence there exists a converging sequence (pkn)n∈N ∈ Cq(1/2) ∩ {|h0| ≤ α′} that admits as conjugate
time tc(pkn) = 1/kn. Let us prove that this is contradictory with the assumptions on the contact sub-
Riemannian structure.

Since the sequence (pkn)n∈N converges towards p′∞, we can chose an arbitrarily small neighborhood
of p′∞, V ⊂ T ∗q0M , and assume the sequence (pkn)n∈N stays in V . Then we use the expansion of
q(t) = Eq0(t, h1, . . . , h2n, h0), uniform with respect to p ∈ V ,

q(1/k) =

3∑
l=1

q(l)(0)

kll!
+ o(1/k4).

We use the Agrachev–Gauthier normal form to prove that this map cannot be singular for p ∈ V and k
large enough.

Indeed, notice first that the Jacobian of q̇(0) =
∑2n
i=1 hi(0)Xi(q0) is just the diagonal matrix diag(1, . . . , 1, 0).

Furthermore, for all i ∈ J1, nK, as a consequence of (19)-(22),

h2i−1Dq0X2i−1q̇(0) = (0, . . . , 0, 2bih2ih2i−1)

h2iDq0X2iq̇(0) = (0, . . . , 0,−2bih2ih2i−1),

hence the last line of the Jacobian of q̈(0) is empty. Thus the Jacobian matrix has the form

Jacpq(1/k) =
1

k
diag(1, . . . , 1, 0) +

1

k2


∗ · · · ∗
... ∗

...
∗ · · · ∗
0 · · · 0

+O

(
1

k3

)
.

Hence if the (2n+ 1, 2n+ 1)-coefficient is not a o(1/k3), the Jacobian matrix has a non-zero determinant
for k large enough.

Then for i ∈ J1, 2nK,

∂h0
∂2
t (hi(t)Xi(q(t))|t=0 = ∂h0

ḣi(0)Dq0Xi · h(0) =
(
J̄h(0)

)
i

(
2J̄h(0)

)
i

and the (2n+ 1, 2n+ 1)-coefficient is 2|Jh(0)|22 > 0, hence the result.

B Computation of invariants

B.1 Second order invariants

For all l ∈ J1, 2nK, let Jl ∈M2n(R) be the matrix such that

(Jl)k,m =
∂2(Xl)2n+1

∂xk∂xm
(q0)− ∂2(Xk)2n+1

∂xl∂xm
(q0), ∀k, l,m ∈ J1, 2nK,

so that for all x, y ∈ R2n, the vector J (1)(x) y satisfies (J (1)(x) y)l = Jlx · y.
Let Vi,j(σ) ∈ R2n be the vector such that

(Vi,j(σ))l =
((

e−σJ̄ − I2n
)
J̄−1 tJl e

σJ̄
)
i,j

+
((

e−σJ̄ − I2n
)
J̄−1 tJl e

σJ̄
)
j,i
.

Lemma B.1. For all i, j, k ∈ J1, 2nK

κijk = ε(i, j)

∫ 2π
b1

0

∫ τ

0

[
e(τ−σ)J̄Vi,j(σ)

]
k

dσ dτ,

where

ε(i, j) =

{
1 if i 6= j,
1/2 if i = j.
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Proof. From Proposition 2.1, we have to compute for all i, j, k ∈ J1, 2nK,

ε(i, j)
∂2x

(2)
k

∂hi∂hj

(
2π

b1
, h

)
= κijk

Observe that for all i, j ∈ J1, 2nK,

∂2x(2)

∂hi∂hj

(
2π

b1
, h

)
=

∫ 2π
b1

0

∫ τ

0

e(τ−σ)J̄
(
J (1) (x̂(σ, ei)) ĥ(σ, ej) + J (1) (x̂(σ, ej)) ĥ(σ, ei)

)
dσ dτ,

where, for all m ∈ J1, 2nK, em ∈ R2n is the vector such that (em)l = 1 if l = m and (em)l = 0 otherwise.
Using the fact that (J (1)(x)y)l = (Jlx) · y, we have[

J (1) (x̂(σ, ei)) ĥ(σ, ej)
]
l

=
(
JlJ̄
−1
(

eσJ̄ − I2n
)
ei

)
· eσJ̄ej

= ei ·
(
t
(

eσJ̄ − I2n
)
tJ̄−1 tJl

)
eσJ̄ej

= ei ·
(
I2n − e−σJ̄

)
J̄−1 tJl e

σJ̄ej

=
((
I2n − e−σJ̄

)
J̄−1 tJl e

σJ̄
)
i,j
.

Hence the result.

To compute κijk we use the following lemma.

Lemma B.2. For all r, s ∈ J1, nK, for all M ∈ M2n(R), let us define the (r, s) 2 × 2 sub-block of M ,
Brs [M ] ∈M2(R) by

Brs [M ] =

(
M2r−1,2s−1 M2r,2s−1

M2r−1,2s M2r,2s

)
.

For all θ ∈ R, let

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
S(θ) =

(
sin θ 1− cos θ

cos θ − 1 sin θ

)
.

Then

Brs [(V (σ))l] =
1

br
S(brσ)Brs

[
tJl
]
R(bsσ) +

1

bs
S(bsσ)Bsr

[
tJl
]
R(brσ).

Proof. Since the matrices J̄ and eσJ̄ are block-diagonal,

Brs
[(

e−σJ̄ − I2n
)
J̄−1 tJl e

σJ̄
]

= Brr
[(
I2n − e−σJ̄

)
J̄−1

]
Brs

[
tJl
]
Bss

[
eσJ̄
]
.

Hence the result since

Brr
[(
I2n − e−σJ̄

)
J̄−1

]
=

1

br
S(brσ), Brr

[(
eσJ̄
)
J̄−1

]
= R(brσ), ∀r ∈ J1, nK.

Some interesting computational properties can be deduced from this result.

Lemma B.3. Let

α =
π

b31

(
∂2(X2)2n+1

∂x1∂x2
(q0)− ∂2(X1)2n+1

∂x2
2

(q0)

)
,

β = − π
b31

(
∂2(X2)2n+1

∂x2
1

(q0)− ∂2(X1)2n+1

∂x1∂x2
(q0)

)
.

Then
κ1,1

1 = 3α, κ1,1
2 = β,

κ2,2
1 = α, κ2,2

2 = 3β,

κ1,2
1 = 2β, κ1,2

2 = 2α.
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Lemma B.4. For all i ∈ J2, nK,
(
κklm
)
k,m∈{1,2}
l∈{2i−1,2i}

only depend on the family

{(
∂2(Xk)2n+1

∂xl∂xm
(q0)

)
| (k, l,m) ∈ {2i− 1, 2i} × {1, 2}2 ∪ {1, 2}2 × {2i− 1, 2i}

}
.

Let ζi : R15 → R8 be the linear map such that

ζi

((
∂2(Xk)2n+1

∂xl∂xm
(q0)

)
k,l,m∈{1,2}∪{2i−1,2i}

)
=
(
κklm
)
k,m∈{1,2}
l∈{2i−1,2i}

is of rank 8 on the complementary of codimension 1 subset S3 ⊂M , and rank 7 on S.

Proof. The first part of the result is a direct application of Lemma B.2. Let ζ̄i be the restriction of ζi to(
∂2(Xk)2n+1

∂xl∂xm
(q0)

)
k,l∈{1,2}

m∈{2i−1,2i}

.

Explicit computation of ζi yields that the rank of ζ̄i is 8, except for when

0 =2π2ρ5 + 2π2ρ4 − 2π2ρ3 − 2π2ρ2 − 2ρ+ 1

+
(
−4πρ3 + 10πρ2 + 2πρ

)
sin(2πρ) +

(
2πρ3 − 6πρ2 + 4πρ

)
sin(4πρ)

+
(
−4π2ρ5 + 8π2ρ4 + 4π2ρ3 − 8π2ρ2 + 3ρ− 3

)
cos(2πρ) + (2− ρ) cos(4πρ)

(25)

where ρ = bi/b1 < 1. Furthermore, if ρ satisfies (25), then the rank of ζ̄i is 7. Hence the existence of
S3 ⊂M , by the existence of a codimension 1 constraint on the 1-jet of the sub-Riemannian structure at
q0.

B.2 Third order invariants

In this section we compute a more precise approximation of the exponential map in the case of initial
covectors of the form (h1, h2, 0, . . . , 0, η

−1) ∈ T ∗q0M .

Lemma B.5. For all T,R > 0, normal extremals with initial covector (Λh̄, η−1) have the following order
3 terms at time ητ , uniformly with respect to h(0) ∈ BR and τ ∈ [0, T ], as η → 0+:

x(3)(τ,Λh̄) =

∫ τ

0

h(2)(σ,Λh̄) dσ,

z(3)(τ,Λh̄) =

∫ τ

0

(
h

(1)
2 x̂1 − h(1)

1 x̂2 + ĥ1

(
X

(2)
1

)
2n+1

+ ĥ2

(
X

(2)
2

)
2n+1

)
(σ,Λh̄) dσ,

with

h(2)(τ,Λh̄) =

∫ τ

0

e(τ−σ)J̄
[
J (1)(x(2))ĥ+ J (1) (x̂)h(1) + J (2) (x̂) ĥ+ Jz (ẑ) ĥ

+Q(1)
(
x̂, ĥ

)
− w(2)J̄ ĥ

]
(σ,Λh̄) dσ

and

Q(1)(x, h) =

2n∑
i=1

∂Q(h)

∂xi
xi,

J (1)(x) =

2n∑
i=1

∂J

∂xi
xi J (2)(x) =

2n∑
i=1

2n∑
j=1

∂2J

∂xi∂xj
xixj , Jz(z) =

∂J

∂z
z.

Proof. We have

dq(3)

dτ
=

2n∑
i=1

ĥi(τ,Λh̄)X
(2)
i (x̂(τ,Λh̄)) + h

(1)
i (τ,Λh̄)X

(1)
i (x̂(τ,Λh̄)) + h

(2)
i (τ,Λh̄)X

(0)
i .
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Since x̂(τ,Λh̄)i = 0 and ĥ(τ,Λh̄) = 0 for 3 ≤ i ≤ 2n, the horizontal part of

h
(0)
i (τ,Λh̄)X

(2)
i (x̂(τ,Λh̄))

vanishes in the Agrachev–Gauthier frame. The same goes for the horizontal part of X
(1)
i , 1 ≤ i ≤ 2n.

Thus
dx(3)

dτ
= h(2)(τ,Λh̄)

dz(3)

dτ
=

2n∑
i=1

[
h(1)

(
X

(1)
i

)
2n+1

+ ĥ
(
X

(2)
i

)
2n+1

]
(τ,Λh̄).

Regarding h(2), we get the result by computing the order 2 in η of dh
dτ . We have

dh

dτ
=
η

w
Jh+ ηQ(h)

with
1

w
= (1 + η2w(2) +O(η3))−1 = 1− η2w(2) +O(η3),

Q(h) = ηQ(1)(x(1), h(0)) +O(η2),

J = J̄ + ηJ (1)
(
x(1)

)
+ η2

(
J (1)(x(2)) + J (2)(x(1)) + Jz(z

(2))
)

+O(η3).

Then evaluated at (τ,Λh̄), we have

dh(2)

dτ
=J̄h(2) + J (1)

(
x(2)

)
ĥ+ J (1) (x̂)h(1)

+ J (2) (x̂) ĥ+ Jz (ẑ) ĥ+Q(1)
(
x̂, ĥ

)
ĥ− w(2)J̄ ĥ.

Hence the result.

We can immediately apply this result to give an expression of z(3), using only the second order
invariants introduced in the previous sections.

Lemma B.6. Using the prior notations, we have

z(3)

(
2π

b1
,Λh̄

)
=

1

2

(
h̄2

1 + h̄2
2

)
(αh̄1 + βh̄2).

Proof. As stated before, it is a matter of evaluating the terms for the Agrachev–Gauthier frame. We
have

dz(3)

dτ
=

2n∑
i=1

[
h

(1)
i

(
X

(1)
i

)
2n+1

+ ĥi

(
X

(2)
i

)
2n+1

]
(τ,Λh̄).

For 3 ≤ i ≤ 2n,
(
X

(1)
i

)
2n+1

(
x̂
(
τ,Λh̄

))
= 0,

(
X

(1)
1

)
2n+1

(
x̂
(
τ,Λh̄

))
=
b1
2
x̂2 and

(
X

(1)
2

)
2n+1

(
x̂
(
τ,Λh̄

))
= −b1

2
x̂1.

We have

h(1)(τ,Λh̄) =

∫ τ

0

e(τ−σ)J̄J (1)
(
x̂(σ,Λh̄)

)
ĥ(σ,Λh̄) dσ,

with [
J (1)

(
x̂(τ,Λh̄)

)]
12

= x̂1
∂c021

∂x1
+ x̂2

∂c021

∂x2
.
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Since
∂c021
∂x1

=
b31
π β, and

∂c021
∂x2

= − b
3
1

π α, with h(0) = Λh̄,

J (1) (x̂) ĥ =
b31
π


ĥ2(βx̂1 − αx̂2)

−ĥ1(βx̂1 − αx̂2)
0
...
0

 .

Similarly, we have (
X

(2)
1

)
2n+1

=
b31
2π

(−βx̂1x̂2 + αx̂2
2/2),(

X
(2)
2

)
2n+1

=
b31
2π

(βx̂2
1/2− αx̂1x̂2).

We then obtain obtain the result by integration.

Since we are only interested in the first two coordinates of the exponential map, we state the following
result.

Lemma B.7. For all τ , for all h̄ ∈ R2n,

Q
(1)
1

(
x̂(τ,Λh̄), ĥ(τ,Λh̄)

)
= Q

(1)
2

(
x̂(τ,Λh̄), ĥ(τ,Λh̄)

)
= 0.

Proof. Recall that Q : R2n → R2n is the map such that

Qi(h1, . . . h2n) =

2n∑
j=1

2n∑
k=1

ckjihjhk, i ∈ J1, 2nK.

Since h(τ) = ĥ(τ,Λh̄) +O(η) and x(τ) = ηx̂(τ,Λh̄) +O(η2),

Q1(h) = c121(x̂)ĥ1ĥ2 + c221(x̂)ĥ2
2 +O(η2),

Q2(h) = c112(x̂)ĥ2
1 + c212(x̂)ĥ1ĥ2 +O(η2).

Recall that for all i, j ∈ J1, 2nK
∂cj12

∂xi
=
∂(X2)j
∂xi∂x1

−
∂(X1)j
∂xi∂x2

,

and thus in the Agrachev–Gauthier frame, evaluated at q0,

∂c112

∂x1
=
∂c112

∂x2
=
∂c212

∂x1
=
∂c212

∂x2
= 0.

Hence
Q

(1)
1

(
x̂(τ,Λh̄), ĥ(τ,Λh̄)

)
= Q

(1)
2

(
x̂(τ,Λh̄), ĥ(τ,Λh̄)

)
= 0.

Let us introduce the invariant ξ ∈ R, given in the Agrachev–Gauthier frame by the formula

ξ =
π

b31

∂2X1

∂z∂x2
(q0).

This invariant, which is 0 in the 3-dimensional contact case, naturally appears in some terms of the third
order expansion of the exponential map.

Lemma B.8. We have

w(2)(τ,Λh̄) = −2b21ξ

π
ẑ(τ,Λh̄)

and

Jz(ẑ(τ,Λh̄))ĥ(τ,Λh̄) = −2b21ξ

π
ẑ(τ,Λh̄)J̄Λĥ(τ).
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Proof. As seen in the proof of Proposition 2.1,
dw

dτ
= −ηwLh− η2w2Q0(h) = O(η2). Then

dw(2)

dτ
= −w(1)L(0)h(0) − w(0)L(1)h(0) − w(0)L(0)h(1) −Q(0)

0

(
h(0)

)
.

In the Agrachev–Gauthier frame, cji0(q0) = −∂z(Xi)j , for all i, j ∈ J1, 2nK. Hence cji0(q0) = 0, which

implies Q
(0)
0 = 0. Likewise, c0i0(q0) = −∂z(Xi)2n+1 for all i ∈ J1, 2nK, hence c0i0(q0) = 0 and L(0) = 0.

With h(τ) = ĥ(τ,Λh̄) +O(η) and x(τ) = ηx̂(τ,Λh) +O(η2), we then have

dw(2)

dτ
=

(
∂c010

∂x1
x̂1 +

∂c010

∂x2
x̂2

)
ĥ1 +

(
∂c020

∂x1
x̂1 +

∂c020

∂x2
x̂2

)
ĥ2.

Again in the Agrachev–Gauthier frame, at q0,

∂c010

∂x1
=
∂c020

∂x2
= 0, and

∂c010

∂x2
= −∂c

0
20

∂x1
= −1

2

∂b1
∂z

= −b
3
1ξ

π
.

As a result
dw(2)

dτ
= −b

3
1ξ

π

(
x̂2ĥ1 − x̂1ĥ2

)
,

hence the result by recognizing dẑ
dτ and w(2)(0) = 0.

The same reasoning applies for Jz, where (Jz)1,2 = −∂c
0
21

∂z = − 2b31
π ξ.

We now know enough to compute x(3)(2π/b1,Λh̄) (or at least its first two coordinates). By direct
integration we have the following expression for the terms of the expansion that depend on ξ.

Lemma B.9. Let

xw(2) =

∫ 2π/b1

0

∫ τ

0

e(τ−σ)J̄
[
−w(2)J̄ ĥ

]
(σ,Λh̄) dσ dτ

and

xJz =

∫ 2π/b1

0

∫ τ

0

e(τ−σ)J̄
[
Jz (ẑ) ĥ

]
(σ,Λh̄) dσ dτ.

Then xw(2) = −xJz .

We use the same method to compute the other terms of the expansion. Let

χ11 = −b
4
1

π

∂3X1

∂x2
1∂x2

, χ12 =
2b41
π

∂3X1

∂x1∂x2
2

, χ22 = −b
4
1

π

∂3X1

∂x3
2

.

Lemma B.10. Let

xJ(2) =

∫ 2π/b1

0

∫ τ

0

e(τ−σ)J̄
[
J (2) (x̂) ĥ

]
(σ,Λh̄) dσ dτ.

We have
(xJ(2))1 = (χ11 + 5χ22) h̄3

1 + 3χ12h̄2h̄
2
1 + 3 (χ11 + χ22) h̄2

2h̄1 + χ12h̄
3
2,

(xJ(2))2 = (5χ11 + χ22) h̄3
2 + 3χ12h̄

2
2h̄1 + 3 (χ11 + χ22) h̄2

1h̄2 + χ12h̄
3
1.

Proof. First notice that

J (2)
(
x̂(τ,Λh̄)

)
1,2

= −J (2)
(
x̂(τ,Λh̄)

)
2,1

=
π

b41

(
−χ11 x̂

2
1 + χ12 x̂1x̂2 − χ22 x̂

2
2

)
(τ,Λh̄).

The stated result is obtained by direct integration.

Lemma B.11. Let

xJ(1) =

∫ 2π/b1

0

∫ τ

0

e(τ−σ)J̄
[
J (1)

(
x(2)

)
ĥ+ J (1) (x̂)h(1)

]
(σ,Λh̄) dσ dτ.
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We have (
xJ(1)(τ,Λh̄)

)
1

=
1

2b21

[
−h̄3

1

(
15α2 + 3β2

)
+ h̄2

1h̄2

(
4πα2 − 18αβ

)
−h̄1h̄

2
2

(
9α2 − 8παβ + 9β2

)
+ h̄3

2

(
4πβ2 − 6αβ

)]
,(

xJ(1)(τ,Λh̄)
)

2
=− 1

2b21

[
h̄3

1

(
4πα2 + 6αβ

)
+ h̄2

1h̄2

(
9α2 + 8παβ + 9β2

)
+ h̄1h̄

2
2

(
4πβ2 + 18αβ

)
+ h̄3

2

(
3α2 + 15β2

)]
.

Proof. Let τ ∈ R, h ∈ R2n. Evaluated at (τ,Λh̄), we have(
J (1)

(
x(2)

)
ĥ
)

1
= ĥ2(βx

(2)
1 − αx

(2)
2 ),

(
J (1)

(
x(2)

)
ĥ
)

2
= −ĥ1(βx

(2)
1 − αx

(2)
2 )

and (
J (1) (x̂)h(1)

)
1

= h
(1)
2 (βx̂1 − αx̂2),

(
J (1) (x̂)h(1)

)
2

= −h(1)
1 (βx̂1 − αx̂2).

Both h(1) and x(2) have been computed before and we have the stated result by integration.

Summing up, we have proven the following.

Proposition B.12. We have
[
x(3)

(
2π
b1
,Λh̄

)]
1,2

= [xJ(1) + xJ(2) ]1,2. Explicitly, this yields

[
x(3)

(
2π

b1
,Λh̄

)]
1

=h̄3
1

(
3

2b21

(
5α2 + β2

)
+ χ11 + 5χ22

)
+ h̄2

1h̄2

(
α

b21
(2πα− 9β) + 3χ12

)
+ h̄1h̄

2
2

(
− 1

2b21

(
9α2 − 8παβ + 9β2

)
+ 3(χ11 + χ22)

)
+ h̄3

2

(
− β
b21

(2πβ − 3α) + χ12

)
,

[
x(3)

(
2π

b1
,Λh̄

)]
2

=h̄3
1

(
− α
b21

(2πα+ 3β) + χ12

)
+ h̄2

1h̄2

(
− 1

2b21

(
9α2 + 8παβ + 9β2

)
+ 3(χ11 + χ22)

)
+ h̄1h̄

2
2

(
− β
b21

(2πβ + 9α) + 3χ12

)
+ h̄3

2

(
− 3

2b21

(
α2 + 5β2

)
+ 5χ11 + χ22

)
.

C Computational lemmas

C.1 Determinant formulas

In this section we prove some computational results useful in multiple proofs. Let n ∈ N, n > 1, and
b1, . . . , bn ∈ R be such that 0 < bi < b1 for all i ∈ J2, nK.

Let A ∈M2n−2(R) be the block-diagonal square matrix

1

b2

(
sin( 2b2π

b1
) 1− cos( 2b2π

b1
)

cos( 2b2π
b1

)− 1 sin( 2b2π
b1

)

)
(0)

. . .

(0)
1

bn

(
sin( 2bnπ

b1
) 1− cos( 2bnπ

b1
)

cos( 2bnπ
b1

)− 1 sin( 2bnπ
b1

)

)


.
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Lemma C.1. We have

det(A) = 22n−2
n∏
i=2

1

b2i
sin2

(
πbi
b1

)
> 0.

Proof. This is a consequence of∣∣∣∣∣ sin( 2biπ
b1

) 1− cos( 2biπ
b1

)

cos( 2biπ
b1

)− 1 sin( 2biπ
b1

)

∣∣∣∣∣ = 4 sin2

(
πbi
b1

)
∀i ∈ J2, nK.

Since 0 < bi < b1 for all i ∈ J2, nK, we have the stated sign.

Lemma C.2. Let V,W ∈M1×2n−2(R), v ∈ R. Then

1

det(A)

∣∣∣∣ A W
tV v

∣∣∣∣ =

v +
1

2

n∑
i=2

bi

(
V2i−1W2i − V2iW2i−1 − (V2i−1W2i−1 + V2iW2i) cot

biπ

b1

)
. (26)

Proof. To prove this result, we develop along the last column the determinant of(
A W
tV v

)
.

We get

1

det(A)

∣∣∣∣ A W
tV v

∣∣∣∣ = v+

n∑
i=2

b2i

4 sin2
(
πbi
b1

) (W2i−1

bi

∣∣∣∣cos( 2biπ
b1

)− 1 sin( 2biπ
b1

)

V2i−1 V2i

∣∣∣∣− W2i

bi

∣∣∣∣sin( 2biπ
b1

) 1− cos( 2biπ
b1

)

V2i−1 V2i

∣∣∣∣) .
Hence the result by trigonometric identification.

C.2 Conjugate time equations

C.2.1 Proof of Lemma 3.5

Proof of Lemma 3.5. Let T = min(2π/b2, 4π/b1), so that (2π/b1, T ) is a connected component of R+ \Z.
For all i ∈ J1, nK, let

ψi : R \ ∪k∈N{2kπ/bi} −→ R
τ 7−→ 3τ − biτ2 cos(biτ/2)

sin(biτ/2) −
sin(biτ)
bi

.

For all i ∈ J1, nK, ψi is smooth and has a positive derivative over R \ ∪k∈N{2kπ/bi}. Moreover ψi(0) = 0,
and for all k ∈ N, k > 0,

lim
t→2kπ/bi

+
ψi(t) = −∞ and lim

t→2kπ/bi
−
ψi(t) = +∞.

This immediately implies that τ1(r) > 2π/b1. Furthermore, since

ψ(τ, r) =

n∑
i=1

r2
iψi(τ), ∀r ∈ (R+)

n
,

both lim
t→2π/b1

+
ψ(τ, r) = −∞ and lim

t→T−
ψ(τ, r) = +∞, and ψ(·, r) vanishes exactly once on (2π/b1, T ), at

time τ1(r). Since for all i ∈ J2, nK, ψi > 0 on (2π/b1, T ), we have that

ψ1(τ1(r)) = − 1

r2
1

n∑
i=2

r2
iψi(τ1(r)) < 0.
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This equality implies that r1 7→ τ1(r) is an increasing function. Indeed let r, r′ ∈ (R+)
n

be such that
r1 < r′1 and ri = r′i for all i ∈ J2, nK, then for all τ ∈ (2π/b1, T ),

− 1

r2
1

n∑
i=2

r2
iψi(τ) < − 1

r′1
2

n∑
i=2

r′i
2
ψi(τ) < 0.

Since τ 7→ − 1
r21

∑n
i=2 r

2
iψi and τ 7→ − 1

r′1
2

∑n
i=2 r

′
i
2
ψi are both decreasing functions over (2π/b1, T ), since

ψ1 is an increasing function over (2π/b1, T ), this implies τ1(r) < τ1(r′).
In particular, τ1 being continuous, it converges towards a limit l(r2, . . . rn) ∈ [2π/b1, T ) as r1 → 0+,

and

lim
r1→0+

n∑
i=2

ri
2ψi(τ1(r)) =

n∑
i=2

ri
2ψi(l(r2, . . . rn)) > 0.

Hence limr1→0+ ψ1(τ1(r1, . . . , rn)) = −∞, and by inverting ψ1 we obtain

lim
r1→0+

τ1(r1, . . . , rn) = 2π/b1.

Notice in particular that as δt→ 0+, ψ1(2π/b1 + δt) ∼ − 8π2

b21δt
. Hence we get by inverting ψ1

ψ−1
1

(
− 1

r2
1

n∑
i=2

r2
iψi(τ1(r)))

)
− 2π/b1 ∼

8π2

b21
∑n
i=2 r

2
iψi(2π/b1))

r2
1,

hence expansion (10).

C.2.2 On the first domain

Lemma C.3. We have
Φ (2π/b1 + ηδt, h, η) = η2n+3K ′d+O(η2n+4),

where

K ′ = 22n−2
n∏
i=2

1

b2i
sin2

(
πbi
b1

)
> 0

and

d =

∣∣∣∣∣∣∣∣
∂
∂h1

(
F (2) + δt∂F

(1)

∂τ

)
1

∂
∂h2

(
F (2) + δt∂F

(1)

∂τ

)
1
−τ
(
∂F (1)

∂τ

)
1

∂
∂h1

(
F (2) + δt∂F

(1)

∂τ

)
2

∂
∂h2

(
F (2) + δt∂F

(1)

∂τ

)
2
−τ
(
∂F (1)

∂τ

)
2

∂
∂h1

(
F (2)

)
2n+1

∂
∂h2

(
F (2)

)
2n+1

0

∣∣∣∣∣∣∣∣
τ=2π/b1

.

Proof. From Proposition 2.1, we have that F (1)
(

2π
b1
, h
)

=
(
x̂
(

2π
b1
, h
)
, 0
)

, with x̂1

(
2π
b1
, h
)

= x̂2

(
2π
b1
, h
)

=

0. Furthermore, observe that  x̂3(2π/b1, h)
...

x̂2n(2π/b1, h)

 = A

 h3

...
h2n


where A ∈M2n−2(R) is the block-diagonal matrix diag(A2, . . . , An) of 2× 2 blocks

Ai =
1

bi

(
sin( 2biπ

b1
) 1− cos( 2biπ

b1
)

cos( 2biπ
b1

)− sin( 2biπ
b1

)

)
, ∀i ∈ J2, nK.
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Thus Equation (12) entails, by factorizing η,

Φ (2π/b1 + ηδt, h, η) =

η2n+3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂h1

(
F (2) + δt∂F

(1)

∂τ

)
1

∂
∂h2

(
F (2) + δt∂F

(1)

∂τ

)
1

0 · · · 0 − 2π
b1

(
∂F (1)

∂τ

)
1

∂
∂h1

(
F (2) + δt∂F

(1)

∂τ

)
2

∂
∂h2

(
F (2) + δt∂F

(1)

∂τ

)
2

0 · · · 0 − 2π
b1

(
∂F (1)

∂τ

)
2

0
...
0

0
...
0

A

0
...
0

∂
∂h1

(
F (2)

)
2n+1

∂
∂h2

(
F (2)

)
2n+1

0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+O(η2n+4).

From Lemma C.1 in Appendix C, det(A) = K ′ and we have the stated result.

C.2.3 On the second domain

To evaluate
Φ
(
2π/b1 +

√
ηδt,
√
ηΛh̄+ (I2n − Λ)h̄, η

)
,

with δt ∈ R, h̄ ∈ R2n, notice that

∂F

∂hi
=

1
√
η

∂G

∂h̄i
, ∀i ∈ J1, 2K, and

∂F

∂hi
=
∂G

∂h̄i
∀i ∈ J3, 2nK.

Then for all i ∈ J1, 2nK, we set Ci =
∂G

∂h̄i
and C2n+1 = η

∂G

∂η
− τ ∂G

∂τ
, evaluated at time τ = 2π/b1 +

√
ηδt.

For all i ∈ J1, 2n+ 1K, the vector Ci ∈ R2n+1 also admits a power series expansion in
√
η,

Ci =

∞∑
k=0

ηk/2C
(k/2)
i .

Notice that by definition of (Ci)i∈J1,2n+1K we have C
(0)
i = C

(1/2)
i = C

(1)
i = 0 for all i ∈ J1, 2nK. As a

consequence we can obtain an equation satisfied by a potential perturbation of order 1/2 of the nilpotent
conjugate time.

Lemma C.4. Recall

K =

n∑
i=2

(h2
2i−1 + h2

2i)

(
1− bi

b1
π cot

biπ

b1

)
> 0, K ′ = 22n−2

n∏
i=2

1

b2i
sin2

(
biπ

b1

)
> 0.

We have

Φ
(
2π/b1 +

√
ηδt,
√
ηΛh̄+ (I2n − Λ)h̄, η

)
= −2π

b21
η2n+4KK ′δt2 + o(η2n+4).

Proof. From Proposition 4.7, we get that neither G(1) nor G(2) depend on (h1, h2), hence from expres-
sion (17) we deduce

C1 = η2δt1/2∂h̄1
∂τG

(3/2) +O(η5/2), C2 = δt1/2∂h̄2
∂τG

(3/2) +O(η5/2).

Hence, evaluating Φ at
(
2π/b1 +

√
ηδt,
√
ηΛh̄+ (I2n − Λ)h̄, η

)
and eliminating higher order terms, there

exist V,W ∈M1×2n−2(R), v ∈ R such that

Φ = η2n+4

∣∣∣∣∣∣∣∣∣∣∣∣∣

δt 0 0 · · · 0 0
0 δt 0 · · · 0 0
0
...
0

0
...
0

A W

0 0 tV v

∣∣∣∣∣∣∣∣∣∣∣∣∣
τ=2π/b1

+ o(η2n+4).
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Recall that det(A) = K ′ (see Lemma C.1). To get the statement, let us show that∣∣∣∣ A W
tV v

∣∣∣∣ = −2π

b21
KK ′.

From Lemma C.2 in Appendix C, we have

1

det(A)

∣∣∣∣ A W
tV v

∣∣∣∣ = v +
1

2

n∑
i=2

bi

(
V2i−1W2i − V2iW2i−1 − (V2i−1W2i−1 + V2iW2i) cot

biπ

b1

)
.

In our case, for all i ∈ J2, nK, (V2i−3, V2i−2) = (h̄2i−1, h̄2i)
(

2π
b1
− 1

bi
sin
(

2biπ
b1

))
and(

W2i−3

W2i−2

)
=

(
1
bi

sin 2πbi
b1
− 2π

b1
cos 2πbi

b1
1
bi
− 2π

b1
sin 2πbi

b1
− 1

bi
cos 2πbi

b1
2π
b1

sin 2πbi
b1

+ 1
bi

cos 2πbi
b1
− 1

bi
1
bi

sin 2πbi
b1
− 2π

b1
cos 2πbi

b1

)(
h̄2i−1

h̄2i

)
.

Finally, v =
∑n
i=2

(
h̄2

2i−1 + h̄2
2i

) (
2π
b1

cos2 πbi
b1
− 1

bi
sin 2πbi

b1

)
, hence the result by summation.

Lemma C.5. We have

Φ (2π/b1 + ηδt, h, η) = η2n+5K ′
(
d− 2π

b21
Kd′

)
+ o(η2n+5),

where

d =

∣∣∣∣∣∣∣∣
∂
∂h̄1

(
G(5/2) + δt∂G

(3/2)

∂τ

)
1

∂
∂h̄2

(
G(5/2) + δt∂G

(3/2)

∂τ

)
1
−τ
(
∂G(3/2)

∂τ

)
1

∂
∂h̄1

(
G(5/2) + δt∂G

(3/2)

∂τ

)
2

∂
∂h̄2

(
G(5/2) + δt∂G

(3/2)

∂τ

)
2
−τ
(
∂G(3/2)

∂τ

)
2

∂
∂h̄1

(
G(3)

)
2n+1

∂
∂h̄2

(
G(3)

)
2n+1

0

∣∣∣∣∣∣∣∣
τ=2π/b1

and

d′ =

∣∣∣∣∣∣
∂
∂h̄1

(
G(2) + δt∂G

(1)

∂τ

)
1

∂
∂h̄2

(
G(2) + δt∂G

(1)

∂τ

)
1

∂
∂h̄1

(
G(2) + δt∂G

(1)

∂τ

)
2

∂
∂h̄2

(
G(2) + δt∂G

(1)

∂τ

)
2

∣∣∣∣∣∣
τ=2π/b1

.

Proof. The proof is similar to that of Lemma C.4. From Proposition 4.7 and expression (18) we deduce

C1 = η5/2∂h̄1

(
G(5/2) + δt∂τG

(3/2)
)

+O(η3),

C2 = η5/2∂h̄2

(
G(5/2) + δt∂τG

(3/2)
)

+O(η3).

Again, similarly to Lemma C.4, evaluating Φ at
(
2π/b1 + ηδt,

√
ηΛh̄+ (I2n − Λ)h̄, η

)
and eliminating

higher order terms, there exist V,W ∈ M1×2n−2(R), v ∈ R such that at τ = 2π/b1, the term of order
2n+ 5 is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂h̄1

(
G(5/2) + δt∂G

(3/2)

∂τ

)
1

∂
∂h̄2

(
G(5/2) + δt∂G

(3/2)

∂τ

)
1

0 · · · 0 0

∂
∂h̄1

(
G(5/2) + δt∂G

(3/2)

∂τ

)
2

∂
∂h̄2

(
G(5/2) + δt∂G

(3/2)

∂τ

)
2

0 · · · 0 0

0
...
0

0
...
0

A W

0 0 tV v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂h̄1

(
G(5/2) + δt∂G

(3/2)

∂τ

)
1

∂
∂h̄2

(
G(5/2) + δt∂G

(3/2)

∂τ

)
1

0 · · · 0 −τ
(
∂G(3/2)

∂τ

)
1

∂
∂h̄1

(
G(5/2) + δt∂G

(3/2)

∂τ

)
2

∂
∂h̄2

(
G(5/2) + δt∂G

(3/2)

∂τ

)
2

0 · · · 0 −τ
(
∂G(3/2)

∂τ

)
2

0
...
0

0
...
0

A

0
...
0

∂
∂h̄1

(
G(3)

)
2n+1

∂
∂h̄2

(
G(3)

)
2n+1

0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Hence the result since det(A) = K ′ and

∣∣∣∣ A W
tV v

∣∣∣∣ = − 2π
b21
KK ′ (as showed in the proof of Lemma C.4).

C.2.4 On the third domain

Then for all i ∈ J1, 2nK, let Ci and C2n+1 be the respective evaluations at time τ = 2π/b1 + ηδt1 + η2δt2

of the vectors
∂G

∂h̄i
and η

∂G

∂η
− τ ∂G

∂τ
. For all i ∈ J1, 2n+ 1K, the vector Ci ∈ R2n+1 also admits a formal

power series in η, Ci =
∑∞
k=1 η

kC
(k)
i . Notice that by definition of (Ci)i∈J1,2n+1K we have

C
(0)
i = C

(1)
i = 0 ∀i ∈ J1, 2nK.

Hence we have a priori Φ
(
2π/b1,Λh̄+ η(I2n − Λ)h̄, η

)
= O(η4n+1). We can use these elements to give

the following refinement on Lemma C.3.

Lemma C.6. For all h̄ ∈ R2n, δt1 = τ
(1)
c (Λh̄) is the only solution to

Φ
(
2π/b1 + ηδt1 + η2δt2,Λh̄+ η(I2n − Λ)h̄, η

)
= O(η4n+2).

Furthermore

Φ
(

2π/b1 + ητ (1)
c (Λh̄) + η2δt2,Λh̄+ η(I2n − Λ)h̄, η

)
= η4n+2K ′

(
2n+1∑
i=1

di

)
+O(η4n+3),

where K ′ = 22n−2
∏n
i=2

1
b2i

sin2
(
πbi
b1

)
> 0 and

d1 =

∣∣∣∣∣∣∣∣∣

(
C

(3)
1

)
1

(
C

(3)
2

)
1

(
C

(1)
2n+1

)
1(

C
(3)
1

)
2

(
C

(3)
2

)
2

(
C

(1)
2n+1

)
2(

C
(2)
1

)
2n+1

(
C

(2)
2

)
2n+1

0

∣∣∣∣∣∣∣∣∣ ,

d2 =

∣∣∣∣∣∣∣∣∣

(
C

(2)
1

)
1

(
C

(2)
2

)
1

(
C

(1)
2n+1

)
1(

C
(2)
1

)
2

(
C

(2)
2

)
2

(
C

(1)
2n+1

)
2(

C
(3)
1

)
2n+1

(
C

(3)
2

)
2n+1

0

∣∣∣∣∣∣∣∣∣ ,

d2n+1 =

∣∣∣∣∣∣∣∣∣

(
C

(2)
1

)
1

(
C

(2)
2

)
1

(
C

(2)
2n+1

)
1(

C
(2)
1

)
2

(
C

(2)
2

)
2

(
C

(2)
2n+1

)
2(

C
(2)
1

)
2n+1

(
C

(2)
2

)
2n+1

(
C

(2)
2n+1

)
2n+1

∣∣∣∣∣∣∣∣∣
and

dk =
2π2

b21
ek

(
−h2∂hk

(
G(3)

)
1

+ h1∂hk

(
G(3)

)
2

)
∀k ∈ J3, 2nK,

where e ∈ R2n−2 is the vector such that Ae is given by the components 3 through 2n of the vector(
h2C

(2)
1 − h1C

(2)
2

)
, with A ∈M2n−2(R) the matrix introduced in Lemma C.3.

Proof. The first part of the statement is an application of Lemma C.3 in the case of an initial covector
of the form h(0) = Λh̄+ η(I2n − Λ)h̄. Indeed

Φ
(

2π/b1 + ητ (1)
c + η2δt2,Λh̄+ η(I2n − Λ)h̄, η

)
= η4n+1 det

(
C

(2)
1 , . . . , C

(2)
2n , C

(1)
2n+1

)
+O(η4n+2).

The equation satisfied by τ
(1)
c comes down to

det
(
C

(2)
1 , . . . , C

(2)
2n , C

(1)
2n+1

)∣∣∣
τ=2π/b1+ητ(1)

c

= 0,

38



hence

Φ
(

2π/b1 + ητ (1)
c + η2δt2,Λh̄+ η(I2n − Λ)h̄, η

)
=

η4n+2

[
det
(
C

(2)
1 , . . . , C

(2)
2n+1

)
+

2n∑
k=1

det
(
C

(2)
1 , . . . , C

(2)
k−1, C

(3)
k , C

(2)
k+1, . . . , C

(2)
2n , C

(1)
2n+1

)]
+O(η4n+3).

Setting d′k = det
(
C

(2)
1 , . . . , C

(2)
k−1, C

(3)
k , C

(2)
k+1, . . . , C

(2)
2n+1

)
, for all k ∈ J3, 2nK, we first prove d′k = K ′dk,

for all k ∈ J3, 2nK.
We proceed to the following transformation on the columns (Ci)i∈J1,2n+1K of the Jacobian matrix.

First, C1 ← h2C1 − h1C2 and C2 ← h1C1 + h2C2, then we transpose Ck ↔ C1 and finally we cycle
Ci+1 ← Ci for i ∈ J3, 2nK and C3 ← C2n+1. This yields

(h2
1 + h2

2)d′k = det
(
C

(3)
k , h1C

(2)
1 + h2C

(2)
2 , C

(1)
2n+1, C

(2)
3 , . . . , C

(2)
k−1, h2C

(2)
1 − h1C

(2)
2 , C

(2)
k+1, . . . , C

(2)
2n

)
.

Using Proposition 4.11,
(
C

(2)
i

)
1

=
(
C

(2)
i

)
2

=
(
C

(2)
i

)
2n+1

= 0, i ∈ J3, 2nK. All columns of this new

matrix have zero 2n+ 1 component except for h1C
(2)
1 + h2C

(2)
2 , and zero 1 and 2 component except for

C
(3)
k , h1C

(2)
1 + h2C

(2)
2 and C

(1)
2n+1. One can apply the Cramer rule for computing the k-th coefficient of

e = A−1(h2C
(2)
1 −h1C

(2)
2 ) when computing the determinant of the square submatrix of lines and columns

3 through 2n.
Hence we have

d′k =
K ′ek
h2

1 + h2
2

det
(
C̃

(3)
k , h1C̃

(2)
1 + h2C̃

(2)
2 , C̃

(1)
2n+1

)
with C̃i =

(
(Ci)1, (Ci)2, (Ci)2n+1

)
, and we get the value of dk by computing the remaining determinant.

Similarly, we obtain the stated relation for d1, d2 and d2n+1 by noticing that C
(1)
2n+1 = 0 and isolating

the three 3× 3 matrices given by lines and columns 1, 2 and 2n+ 1.

The value of determinants d1 through d2n+1 can be explicitly stated in terms of second order invariants
thanks to the computations in Appendix B.2.

Lemma C.7. We have d2n+1 = 0, d2 = − 2π
b1

(h̄2
1 + h̄2

2)(βh̄1 − αh̄2)2 and

d1 =
4π2

b21
(h̄2

1 + h̄2
2)
(
δt2 + 4b1(βh̄1 − αh̄2)(αh̄1 + βh̄2)

)
4π2

b21

(
h̄2

1

∂
(
G(3)

)
2

∂h̄2
+ h̄2

2

∂
(
G(3)

)
1

∂h̄1
− h̄1h̄2

(
∂
(
G(3)

)
1

∂h̄2
+
∂
(
G(3)

)
2

∂h̄1

))
.

Furthermore, for all i ∈ J2, nK, we have

d2i−1 =
2π2bi
b21

(
h1(h1κ

1,2i−1
2 + h2κ

2,2i−1
2 )− h2(h1κ

1,2i−1
1 + h2κ

2,2i−1
1 )

)
[
cot

(
πbi
b1

)(
κ1,2

2i−1(h2
2 − h2

1) + 2h1h2(κ1,1
2i−1 − κ

2,2
2i−1)

)
−
(
κ1,2

2i (h2
2 − h2

1) + 2h1h2(κ1,1
2i − κ

2,2
2i )
)]
,

d2i =
2π2bi
b21

(
h1(h1κ

1,2i
2 + h2κ

2,2i
2 )− h2(h1κ

1,2i
1 + h2κ

2,2i
1 )

)
[
cot

(
πbi
b1

)(
κ1,2

2i (h2
2 − h2

1) + 2h1h2(κ1,1
2i − κ

2,2
2i )
)

+
(
κ1,2

2i−1(h2
2 − h2

1) + 2h1h2(κ1,1
2i−1 − κ

2,2
2i−1)

)]
.
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Proof. First, recall that

x
(2)
1 (2π/b1,Λh̄) = α(3h̄2

1 + h̄2
2) + 2βh̄1h̄2,

x
(2)
2 (2π/b1,Λh̄) = 2αh̄1h̄2 + β(h̄2

1 + 3h̄2
2)

and τ
(1)
c (Λh̄) = −2(αh̄1 +βh̄2). Using Lemma B.6 from the Appendix, we have the value of z(3)

(
2π
b1
,Λh̄

)
and we can compute the 3× 3 determinant d2. (Remark that F

(3)
2n+1 = z(3) + τ

(1)
c ∂τz

(2)(2π/b1) and that

∂τz
(2)(2π/b1) = 0.) Similarly we can compute d2n+1 by noticing, for i ∈ J1, 2K, at τ = 2π/b1 + ητ

(1)
c

(η∂ηFi − τ∂τFi) = 2x
(2)
i

(
2π

b1
,Λh̄

)
− 2π

b1

(
h

(1)
i

(
2π

b1
,Λh̄

)
+ τ (1)

c (Λh̄)(J̄ h̄)i

)
.

Regarding dk, k ∈ J3, 2nK, we obtain the result by explicitly computing the vector e ∈ R2n−2. First, since
∂h̄kz

(3) = 0

det
(
C̃

(3)
k , h1C̃

(2)
1 + h2C̃

(2)
1 , C̃

(1)
2n+1

)
= −4π2

b21
(h2

1 + h2
2)
[
h1h2(κ1,k

1 − κ2,k
2 ) + h2

2κ
2,k
1 − h2

1κ
1,k
2 )
]
.

On the other hand, we have Ae = h2C
(2)
1 − h1C

(2)
2 and for all 3 ≤ i ≤ 2n(

h2C
(2)
1 − h1C

(2)
2

)
i

= κ1,2
i (h2

2 − h2
1) + 2h1h2(κ1,1

i − κ
2,2
i ).

We then get the stated result since A−1 is block diagonal with blocks in position i − 1 being, for all
i ∈ J2, nK,

bi
2

(
cotπbi/b1 −1

1 cotπbi/b1

)
.

D Singularity classification

On each domain, the first step of the classification is to properly describe the Jacobian matrix of the
exponential. Recall that the rank is lower semi-continuous as a map fromM5(R) to N. This implies that
the Jacobian matrix can have a kernel of dimension at most 2 at times near 2π/b1, as it is the case for

the first order approximation Ê .
We decompose the matrix Jacp0Eq0 into the following sub matrices: A1 A2 C1

A3 A4 C2

L1 L2 E


with A1, A2, A3, A4 ∈M2×2(R), L1, L2 ∈M1×2(R), C1, C2 ∈M2×1(R) and E ∈M1×1(R).

A vector v in the kernel of Jacp0Eq0 must the satisfy the equations

A1

(
v1

v2

)
+A2

(
v3

v4

)
+ C1v5 = 0, (27)

A3

(
v1

v2

)
+A4

(
v3

v4

)
+ C2v5 = 0, (28)

L1

(
v1

v2

)
+ L2

(
v3

v4

)
+ Ev5 = 0. (29)

In the following three sections, we compute approximations of elements of the kernel with initial covectors
of the form(

h1, h2, h3, h4, η
−1
)
,

(√
ηh1,

√
ηh2, h3, h4, η

−1
)

and
(
h1, h2, ηh3, ηh4, η

−1
)
.

All expansions as η → 0 are assumed uniform under the condition h2
1 + h2

2 + h3
3 + h4

4 < R for some
arbitrary R > 0.
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Remark D.1. The following computations make abundant use of explicit expressions of the approxima-
tions of the exponential map obtained in Section 3. Readers wishing to precisely follow the computations
are referred to Propositions 2.1, 4.7 and 4.11 for a general expression of the approximation of the expo-
nential map, and the results of Section 3 and Appendix B for expressions in terms of invariants.

D.1 First domain: initial covectors in T ∗
q0
M \ (S1 ∪ S2)

D.1.1 Jacobian matrix

From computations of the conjugate time, we know that ker Jacp0Eq0 6= {0} at t = tc(p0). Let us
compute a first approximation of the set of solutions of the equation Jacp0Eq0(tc(p0)) · v = 0 (thanks to
our approximation of F (τ) = E(ητ)).

Proposition D.2. The kernel of Jacp0Eq0(tc(p0)) is 1-dimensional and there exists ν(h1, h2, h3, h4) such
that it is generated by the vector

(−h2, h1, 0, 0, ν) +O(η).

Proof. According to the computations carried in Section 4.1, we have

Ai = O(η2), A4 6= O(η2), i ∈ J1, 3K,

Ci = O(η2), Li = O(η2), E = O(η3), i ∈ J1, 2K.

Regarding C1, C2, E, this is in particular a consequence of ∂5F = −η2∂ηF + ητ∂τF . Then (28) implies

v3 = O(η) and v4 = O(η) since A
(1)
4 is invertible, and from (29) we obtain

L1

(
v1

v2

)
= O(η3).

That is h1v1 + h2v2 = O(η), hence there exists λ ∈ R such that v1 = −λh2 + O(η), v2 = λh1 + O(η).
Similarly, (27) yields

A
(2)
1

(
v

(0)
1

v
(0)
2

)
+ C

(2)
1 v

(0)
5 = 0.

Since τ
(1)
c corresponds to the fact that A

(2)
1

(
−h2

h1

)
is colinear to C

(2)
1 =

2π

b1

(
h1

h2

)
, with (v

(0)
1 , v

(0)
2 ) =

λ(−h2, h1), v
(0)
5 is uniquely defined, linearly dependent on λ. Similarly, we compute(

v
(1)
3

v
(1)
4

)
= −

(
A

(1)
4

)−1
(
v

(0)
5 C

(2)
2 +A

(2)
3

(
v

(0)
1

v
(0)
2

))
.

Hence the statement. The kernel of Jacp0Eq0(tc(p0)) is in particular 1-dimensional as a consequence of
the lower semi-continuity of the rank.

Regarding the image space, we have can give a description as a consequence of Lemma D.2.

Lemma D.3. Let p0 ∈ T ∗q0M \ (S1 ∪ S2). The image of the Jacobian at p0 of the exponential at the
conjugate time admits the representation

imJacp0Eq0(tc(p0)) = Span {h1∂1F + h2∂2F, ∂3F, ∂4F, ∂5F} .

Proof. Let v1 be such that ker Jacp0Eq0(tc(p0)) = Span(v1). For any 4 vectors v2, v3, v4, v5 such that
rk(v1, v2, v3, v4, v5) = 5, we have the property that

imJacp0Eq0(tc(p0)) = Span

(
5∑
k=1

(vi)k∂kF

)
i∈J2,5K

.

One possible choice is then v2 = (h1, h2, 0, 0, 0), v3 = (0, 0, 1, 0, 0), v4 = (0, 0, 0, 1, 0), and v5 =
(0, 0, 0, 0, 1).
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D.1.2 Classification

We first introduce a computational lemma approximate the φ functions from Proposition 5.10.

Lemma D.4. For all i ∈ J1, 5K, let Ui : R4 → R and let

Ψ(u1, u2, u5) = −u5

(
teθ1A

(2)
1 er1

)
+

2π

b1
(h2

1 + h2
2) (h1u2 − h2u1) .

Then we have for p0 = (h, η−1), uniformly with respect to h ∈ BR as η → 0,

det (U(h), h1∂1F + h2∂2F, ∂3F, ∂4F, ∂5F ) = η6 8π

b1b22
sin2

(
πb2
b1

)
Ψ(U1(h), U2(h), U5(h)) + o(η6).

Proof. We compute the dominant term of det(h1∂1F+h2∂2F, ∂3F, ∂4F, ∂5F,U(h)). Using notations from
Section D.1.1 and a similar reasoning to what can be found in Section 4, we obtain

det(h1∂1F + h2∂2F, ∂3F, ∂4F, ∂5F,U(h)) =

∣∣∣∣∣∣∣∣∣∣
η2A

(2)
1 er1

0 0
0 0

η2 2π
b1
er1

U1(h)
U2(h)

0
0

ηA
(1)
4

0
0

0
0

η2 2π
b1

(h2
1 + h2

2) 0 0 0 U5(h)

∣∣∣∣∣∣∣∣∣∣
+ o(η6).

We have the result once observed that detA
(1)
4 = 4

b22
sin2

(
πb2
b1

)
and

Ψ(U1, U2, U5) = det

 A
(2)
1 er1 er1

U1

U2
2π
b1

(h2
1 + h2

2) 0 U5


= −U5

(
teθ1A

(2)
1 er1

)
+

2π

b1
(h2

1 + h2
2) (h1U2 − h2U1) .

Let p0 ∈ T ∗q0M \(S1∪S2) and v be as in the statement of Proposition D.2 so that ker Jacp0Eq0(tc(p0)) =
Span(v). As explained in Remark 5.6, we choose the first coordinate x1 : M → R such that ∂x1

=∑5
i=1 vi∂i. Since v3, v4 = O(η), we have that ∂kx1

F = O(η2) for all integer k ≥ 2.
If we denote V ′ : R4 → R5 such that ∂2

x1
F = η2V ′(h) + o(η2) then let Ψ2(h) = Ψ(V ′1 , V

′
2 , V

′
5).

Similarly, define V ′′ : R4 → R5 such that ∂3
x1
F = η2V ′′(h) + o(η2) and V ′′′ : R4 → R5 such that

∂4
x1
F = η2V ′′′(h) + o(η2); and define Ψ3(h) = Ψ(V ′′1 , V

′′
2 , V

′′
5 ), Ψ4(h) = Ψ(V ′′′1 , V ′′′2 , V ′′′5 ).

Since the length of expressions is still manageable in this case, we can give the explicit form of Ψ2,
Ψ3 and Ψ4 (up to multiplication by 2π(h2

1 + h2
2)/b1):

Ψ2(h1, h2, h3, h4) =− (h3(κ1,3
2 + 2κ2,3

1 ) + h4(κ1,4
2 + 2κ2,4

1 ))h2
1

+ 3(h3(κ1,3
1 − κ2,3

2 ) + h4(κ1,4
1 − κ2,4

2 ))h1h2

+ (h3(2κ1,3
2 + κ2,3

1 ) + h4(2κ1,4
2 + κ2,4

1 ))h2
2,

Ψ3(h1, h2, h3, h4) = + (h3(κ1,3
1 − κ2,3

2 ) + h4(κ1,4
1 − κ2,4

2 ))h2
1

+ 2(h3(κ1,3
2 + κ2,3

1 ) + h4(κ1,4
2 − κ2,4

1 ))h1h2

− (h3(κ1,3
1 − κ2,3

2 ) + h4(κ1,4
1 − κ2,4

2 ))h2
2,

Ψ4(h1, h2, h3, h4) =− (h3(3κ1,3
2 + 4κ2,3

1 ) + h4(3κ1,4
2 + 4κ2,4

1 ))h2
1

+ 7(h3(κ1,3
1 − κ2,3

2 ) + h4(κ1,4
1 − κ2,4

2 ))h1h2

+ (h3(4κ1,3
2 + 3κ2,3

1 ) + h4(4κ1,4
2 + 3κ2,4

1 ))h2
2.

As an application of Lemma D.4, and the analysis of the Jacobian matrix of Eq0(tc(p0)) of Sec-
tion D.1.1, we immediately obtain that for η small enough

Ψ2(h) 6= 0⇒ φ11(p0) 6= 0, Ψ3(h) 6= 0⇒ φ111(p0) 6= 0, Ψ4(h) 6= 0⇒ φ1111(p0) 6= 0.
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D.2 Second domain: initial covectors near S1

D.2.1 Jacobian matrix

The idea is the same as before, now we consider initial covectors of the form

p0 =
(√
ηh1,

√
ηh2, h3, h4, η

−1
)
.

Proposition D.5. If there exist a time near 2πη/b1 that is conjugate for p0 then the kernel of Jacp0Eq0(tc(p0))
is either 1 or 2-dimensional. If (h1, h2) 6= (0, 0) then there exist two vectors

vθ1 = (−h2, h1, 0, 0, 0) +O(η) and vr1 =

(
h1, h2, 0, 0,−

(h2
1 + h2

2)

K

)
+O(η)

such that the kernel of Jacp0Eq0(tc(p0)) is either Span (λθ1vθ1 + λr1vr1) or Span (vθ1 , vr1).

Proof. From the computations in Section 4.2, we have

Ai = O(η5/2), A4 6= O(η2), i ∈ J1, 3K,

C1 = O(η5/2), L1 = O(η3), C2 = O(η2), L2 = O(η2), E = O(η3).

As previously, (28) implies v3 = O(η) and v4 = O(η) and similarly to Section D.1.1,
(
v

(1)
3 , v

(1)
4

)
can be

computed as (
v

(1)
3

v
(1)
4

)
= −v(0)

5

(
A

(1)
4

)−1

C
(2)
2 .

Hence the smallest non-vanishing order of the system (27)-(28)-(29) reduces to the 3× 3 system

A
(5/2)
1

(
v

(0)
1

v
(0)
2

)
+ C

(5/2)
1 v

(0)
5 = 0, (30)

L
(3)
1

(
v

(0)
1

v
(0)
2

)
+

(
E(3) − L(2)

2

(
A

(1)
4

)−1

C
(2)
2

)
v

(0)
5 = 0. (31)

Now observe that E(3)−L(2)
2

(
A

(1)
4

)−1

C
(2)
2 = − 2π

b1
K, where K is the constant introduced in Lemma C.4.

Furthermore from Propositions C.5 and 4.8, we know that the first conjugate time is a perturbation of
2πη/b1 if

det

(
A

(5/2)
1 C

(5/2)
1

L
(3)
1

2π
b1
K

)
= 0. (32)

When that is the case, the set of solutions of (30)-(31) is at least 1-dimensional, otherwise it is reduced
to {0}.

Assume (32) holds and that (h1, h2) 6= (0, 0). Let us denote er1 = (h1, h2) and eθ1 = (−h2, h1). There

exist unique λr1 , λθ1 ∈ R such that
(
v

(0)
1 , v

(0)
2

)
= λr1er1 + λθ1eθ1 . Since

(
∂h1

F
(3)
5 , ∂h2

F
(3)
5

)
∈ Span(er1),

we have from (31) that

v
(0)
5 = −λr1

b1L
(3)
1 er1

2πK
,

and from (30) we get

λr1

(
A

(5/2)
1 er1 −

b1L
(3)
1 er1

2πK
C1

)
+ λθ1A

(5/2)
1 eθ1 = 0.

Recall that L
(3)
1 = 2π

b1

(
h1 h2

)
, thus

b1L
(3)
1 er1

2πK =
h2
1+h2

2

K . Elements of the kernel must be linear combination
of the vectors

vθ1 = (−h2, h1, 0, 0, 0) +O(η) and vr1 = (h1, h2, 0, 0,−(h2
1 + h2

2)/K) +O(η).

Assuming (32) holds, there are two cases:
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1. Either A
(5/2)
1 er1 +

h2
1+h2

2

K C1 6= 0 or A
(5/2)
1 eθ1 6= 0, and the kernel is a 1-dimensional space generated

by a linear combination of vθ1 and vr1 .

2. Both A
(5/2)
1 er1 +

h2
1+h2

2

K C1 = 0 and A
(5/2)
1 eθ1 = 0, and the kernel is the 2-dimensional space

Span(vθ1 , vr1).

If h1 = h2 = 0, assuming (32) holds implies that v
(0)
5 = 0 and the kernel is of the dimension of kerA

(5/2)
1 .

Remark D.6. Notice that a 2-dimensional kernel implies that the conjugate time is a zero of order 2, that

is, ∆ = 0. (The converse may not be true however.) Indeed, if (h1, h2) 6= (0, 0), A
(5/2)
1 eθ1 = 0 implies we

must have for some a, b ∈ R

A
(5/2)
1 =

(
ah1 ah2

bh1 bh2

)
.

Then A
(5/2)
1 er1 = −h

2
1+h2

2

K C1 implies a = −h1
2π
b1K

, b = −h2
2π
b1K

. Under these conditions, one can check
that the zero is of order 2.

If (h1, h2) = (0, 0) however, having a 2-dimensional kernel corresponds to A
(5/2)
1 = 0. However,

in that case, using notations from Theorem 3.7, this implies that γ12 = γ21 = γ11 − γ22 = 0. From
Proposition 4.6, this is exactly stating that q0 ∈ S2, hence the kernel of Jacp0Eq0(tc(p0)) for an initial
covector p0 in S1 is of dimension at most 1 at points of M \S2.

Finally, let us give a useful description of the image set of the Jacobian matrix of Eq0(tc(p0)) in the
case of 1D kernel with initial covector such that (h1, h2) 6= (0, 0).

Let λr1 , λθ1 be such that Span(λr1vr1 +λθ1vθ1) = ker Jacp0Eq0(tc(p0)), and let V,W be two vectors in
the image set of Jacp0Eq0(tc(p0)) such that

W = ∂5F̄ − ηw3∂3F̄ − ηw4∂4F̄ , with

(
w3

w4

)
= −

(
A

(1)
4

)−1

C
(2)
2

and

V = −λθ1
(
h1∂1F̄ + h2∂2F̄ +

(h2
1 + h2

2)

K
W

)
+ λr

(
−h2∂1F̄ + h1∂2F̄

)
.

They have been chosen to simplify low order terms in their expansions as η → 0. Indeed

W1 = η5/22π/b1h1 + o(η5/2), W2 = η5/22π/b1h2 + o(η5/2),

(W3,W4) = o(η5/2) and W5 = −η3 2π

b1
K + o(η3).

Likewise, (V1, V2) 6= o(η5/2) but V3, V4 = O(η5/2) and V5 = o(η3). (This observation is useful for the next
section in particular.)

Lemma D.7. Assume p0 =
(√
ηh1,

√
ηh2, h3, h4, η

−1
)

is an initial covector such that (h1, h2) 6= (0, 0)
and the kernel of Jacp0Eq0(tc(p0)) is of dimension 1. Then

imJacp0Eq0(tc(p0)) = Span {V,W, ∂3F, ∂4F} .

Proof. The proof is analogous to the proof of Lemma D.3. The kernel is spanned by λθ1vθ1 + λr1vr1 .
Let v3 = (0, 0, 1, 0, 0), v4 = (0, 0, 0, 1, 0), w = (0, 0,−ηw3,−ηw4, 1) and

v = −λθ1(vr1 − ηw3v3 − ηw4v4) + λr1vθ1 .

By construction,
rk(λθ1vθ1 + λr1vr1 , v, w, v3, v4) = 5,

Hence the result since V = Jacp0Eq0(tc(p0)) · v and W = Jacp0Eq0(tc(p0)) · w.
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D.2.2 Classification

Again, we introduce a lemma to help us approximate the φ functions.

Lemma D.8. Let V,W be as in the statement of Lemma D.7. For all i ∈ J1, 5K, let Ui : R4 → R and let

Φ(u1, u2, u5) = u5

(
V

(5/2)
1 h2 − V (5/2)

2 h1

)
+K

(
V

(5/2)
2 u1 − V (5/2)

1 u2

)
.

Let also dη : R5 → R5 be such that dη(u) = (η5/2u1, η
5/2u2, η

5/2u3, η
5/2u4, η

3u5).
With p0 =

(√
ηh1,

√
ηh2, h3, h4, η

−1
)
, uniformly with respect to h ∈ BR as η → 0, we have at p0

det (dη(U(h)), V,W, ∂3F, ∂4F ) = η10 8π

b1b22
sin2

(
πb2
b1

)
Φ(U1(h), U2(h), U5(h)) + o

(
η10
)
.

Proof. We compute the dominant term of det (dη(U(h)), V,W, ∂3F, ∂4F ). Similarly to what is done in
the proof of Lemma D.4, we get from the assumptions and the construction of V and W in Section D.2.1

det (dη(U(h)), V,W, ∂3F, ∂4F ) =

∣∣∣∣∣∣∣∣∣∣∣

η5/2U1

η5/2U2

η5/2V
(5/2)
1

η5/2V
(5/2)
2

η5/2 2π
b1
h1

η5/2 2π
b1
h2

0 0
0 0

0
0

0
0

0
0

ηA
(1)
4

η3U5 0 η3 2π
b1
K 0 0

∣∣∣∣∣∣∣∣∣∣∣
+ o(η10).

Hence the statement since Φ(U1, U2, U5) =

∣∣∣∣∣∣
U1

U2

V1

V2

h1

h2

U5 0 K

∣∣∣∣∣∣ and detA
(1)
4 = 4

b22
sin2

(
πb2
b1

)
.

Let q0 ∈M \S and p0 =
(√
ηh1,

√
ηh2, h3, h4, η

−1
)
∈ T ∗q0M . We can separate cases depending on the

dimension of ker Jacp0Eq0(tc(p0)).
Let us first treat the case of a 2-dimensional kernel. Let S+ be the subset of T ∗q0M on which

dim ker Jacp0Eq0(tc(p0)) = 2. Following the analysis in Remark D.6, singular points with dimension
2 kernel on M \S correspond to covectors such that (h1, h2) 6= (0, 0) and

γ12 = −2πh1h2

b1
, γ21 = −2πh1h2

b1K
, γ22 − γ11 =

2π
(
h2

1 − h2
2

)
b1K

.

Furthermore, ker Jacp0Eq0(tc(p0)) is generated by vθ1 , vr1 , hence we choose the coordinates x1, x2 such
that Span(∂x1

id, ∂x2
id) = Span(vθ1 , vr1), and we can check that the singularity is always of type D+

4 at
covectors of S+.

Assume now that the kernel of JacEq0(tc(p0)) is 1-dimensional. As a consequence of Proposition D.2,
assuming (h1, h2) 6= (0, 0), the kernel is generatedby v = λθ1vθ1 + λr1vr1 . We choose the first coordinate

x1 : M → R such that ∂x1
=
∑5
i=1 vi∂i. Since v3, v4 = O(η), we have that ∂kx1

F = O(η5/2) and
∂kx1

F5 = O(η3) for all integer k ≥ 2.
If we denote V ′ : R4 → R5 such that (coordinate-wise) ∂2

x1
F = dη(V ′(h)) + o(dη(1)) then let Φ2(h) =

Φ(V ′1 , V
′
2 , V

′
5). Similarly, define V ′′ : R4 → R5 such that ∂3

x1
F = dη(V ′′(h)) + o(dη(1)), V ′′′ : R4 → R5

such that ∂4
x1
F = dη(V ′′′(h)) + o(dη(1)) and V ′′′′ : R4 → R5 such that ∂5

x1
F = dη(V ′′′′(h)) + o(dη(1));

and define Φ3(h) = Φ(V ′′1 , V
′′
2 , V

′′
5 ), Φ4(h) = Φ(V ′′′1 , V ′′′2 , V ′′′5 ), Φ5(h) = Φ(V ′′′′1 , V ′′′′2 , V ′′′′5 ).

We numerically check that singular values of the exponential corresponding to covectors p0 such that
(h1, h2) = (0, 0) are of type A3 (it is immediate by passing to the limit if the conjugate time at p0 is
not double) As an application of Lemma D.8, and the analysis of the Jacobian matrix of Eq0(tc(p0)) of
Section D.2.1, we obtain that for η small enough

Φ2(h) 6= 0⇒ φ11(p0) 6= 0, Φ3(h) 6= 0⇒ φ111(p0) 6= 0,

Φ4(h) 6= 0⇒ φ1111(p0) 6= 0, Φ5(h) 6= 0⇒ φ11111(p0) 6= 0.
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D.3 Third domain: initial covectors near S2

D.3.1 Jacobian matrix

We now consider initial covectors of the form

p0 =
(
h1, h2, ηh3, ηh4, η

−1
)
.

The approach here is similar to Section D.1.1, however we need two orders of approximation. For two
matrices A,B ∈ Mn(R), and two vectors u, v ∈ Rn, having (A + ηB)(u + ηv) = 0 yields Au = 0 and
Av + Bu = 0. This relates to the computation of the conjugate time in Section 4.4, but we only proved
det(A + ηB) = o(η), hence the existence a priori of u ∈ Rn such that Au = 0 but not of v ∈ Rn such
that Av +Bu = 0.

Lemma D.9. Let A,B ∈ Mn(R). If rank(A) = n − 1 and det(A + ηB) = o(η) as η → 0 then
B · kerA ⊂ imA.

Proof. Since rank(A) = n − 1, there exists P,Q ∈ GLn(R) such that A = PA′Q, with A′ the diagonal
matrix with diagonal (0, 1, . . . , 1). Let u ∈ kerA\{0}. Then Qu is colinear to e1 = (1, 0, . . . , 0). Without
loss of generality, we can assume Qu = e1. Then, denoting B′ = P−1BQ−1, Bu ∈ imA is equivalent to
B′e1 ∈ imA′, that is B′11 = 0.

On the other hand det(A+ ηB) = o(η) implies det(A′+ ηB′) = o(η), and developing the determinant
with respect to η yields det(A′ + ηB′) = ηB′11 + o(η). Hence the result.

Proposition D.10. The kernel of Jacp0Eq0(tc(p0)) is 1-dimensional and there exists ν(h1, h2) ∈ R,
µ(h1, h2, h3, h4) ∈ R, such that ker Jacp0Eq0(tc(p0)) is generated by the vector

(−h2, h1, ∗, ∗, ν) + η

[
−5ν

4
(h1, h2, ∗, ∗, 0) + µ

(
−νh2, νh1, ∗, ∗,−

(
h2

1 + h2
2

))]
+O(η2).

Proof. From computations in Section 4.4, we have

A1 = O(η2), A3 = O(η2), A4 = O(η2), and A3 = O(η3),

C1 = O(η2), L1 = O(η2), C2 = O(η3), L2 = O(η3), E = O(η3).

Equation (29) then implies

L1

(
v1

v2

)
= O(η3).

Hence, as previously, there exists λ ∈ R such that (v1, v2) = λ(−h2, h1) + O(η). Now however, since
A4 = O(η2) and A2 = O(η3),

A3

(
v1

v2

)
+A4

(
v3

v4

)
= O(η3)

and

A1

(
v1

v2

)
+ C1v5 = O(η3).

Hence we have

v
(0)
5 C

(2)
1 = −A(2)

1

(
v

(0)
1

v
(0)
2

)
, and

(
v

(0)
3

v
(0)
4

)
= −

(
A

(2)
4

)−1

A
(2)
3

(
v

(0)
1

v
(0)
2

)
.

The lower semi-continuity of the rank implies that the kernel is indeed 1-dimensional. We can apply

Lemma D.9 and compute v(1) ∈ kerA⊥ such that (focusing on v
(1)
1 , v

(1)
2 , v

(1)
5 )

A
(2)
1

(
v

(1)
1

v
(1)
2

)
+

(
A

(3)
1 −A

(3)
2

(
A

(2)
4

)−1

A
(2)
3

)(
v

(0)
1

v
(0)
2

)
+ v

(0)
5 C

(3)
1 + v

(1)
5 C

(2)
1 = 0 (33)

L
(2)
1

(
v

(1)
1

v
(1)
2

)
+ L

(3)
1

(
v

(0)
1

v
(0)
2

)
+ v

(0)
5 E(3) = 0. (34)
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We can assume (h1, h2) 6= (0, 0), since we are considering covectors near S2 but not S1. Still focusing

on v
(1)
1 , v

(1)
2 , v

(1)
5 and looking for solutions in kerA⊥, we use a more suited basis of R3. We have ν

such that νC
(2)
1 = −A(2)

1

(
−h2

h1

)
, so that with f1 = (−h2, h1, ν),

(
v

(0)
1 , v

(0)
2 , v

(0)
5

)
= λf1. Then we set

f2 = (h1, h2, 0) and f3 = (−νh2, νh1,−(h2
1 + h2

2)), and
(
v

(1)
1 , v

(1)
2 , v

(1)
5

)
= µ2f2 + µ3f3.

Then Equations (33)-(34) yield

µ2A
(2)
1 er1 + µ3νA

(2)
1 eθ1 + λ

(
A

(3)
1 −A

(3)
2

(
A

(2)
4

)−1

A
(2)
3

)
eθ1 + λνC

(3)
1 − µ3(h2

1 + h2
2)C

(2)
1 = 0,

µ2L
(2)
1 er1 + λL

(3)
1 eθ1 + λνE(3) = 0.

Then µ2 = − λ

L
(2)
1 er1

(
L

(3)
1 eθ1 + νE(3)

)
= −5λν/4 (see the proof of Lemma C.7 to find an explicit expres-

sion of L
(3)
1 and E(3)) and

−λ5

4
νA

(2)
1 er1 + λ

(
A

(3)
1 −A

(3)
2

(
A

(2)
4

)−1

A
(2)
3

)
eθ1 + λνC

(3)
1 = µ3(h2

1 + h2
2 + ν2)C

(2)
1 .

Hence the result with µ = µ3/λ.

Again, we end the section with a handy description of the image of Jacp0Eq0(tc(p0)). Let

V ′ = h1∂1F̄ + h2∂2F̄ − w3∂3F̄ − w4∂4F̄ , where

(
w3

w4

)
=
(
A

(2)
4

)−1

A
(2)
3

(
h1

h2

)
,

so that (V ′3 , V
′
4) = O(η3).

Lemma D.11. Let p0 =
(
h1, h2, ηh3, ηh4, η

−1
)
∈ T ∗q0M . The image of the Jacobian matrix at p0 of the

exponential at the conjugate time admits the representation

imJacp0Eq0(tc(p0)) = Span {V ′, ∂3F, ∂4F, ∂5F} .

Proof. The proof is again straightforward. With v generating ker Jacp0Eq0(tc(p0)), as given by Proposi-
tion D.10, v′ = (h1, h2, w3, w4, 0), v3 = (0, 0, 1, 0, 0), v4 = (0, 0, 0, 1, 0), v5 = (0, 0, 0, 0, 1), it is immediate
that

rk(v, v′, v3, v4, v5) = 5.

Hence the result, similarly to Lemma D.3.

D.3.2 Classification

We repeat the process one last time, except we now need two orders of approximation.

Lemma D.12. Let V ′ be as in the statement of Lemma D.11. For all i ∈ J1, 5K, let U,U ′ : R4 → R5 and
for u, u′ ∈ R5, let

Ψ′(u) = b1u5 (αh2 − βh1) + π (h1u2 − h2u1)

and

Γ(u, u′) =Ψ′(u′) +
27b1

4
(αh1 + βh2)(h2u1 − h1u2)− b1

π
(αh1 + βh2)Ψ′(u)

+
b1 u5

2(h2
1 + h2

2)

(
h2V

′
1

(3) − h1V
′
2

(3)
)

+
b2
2

Ψ′(u)

[
h1(κ3

14 − κ4
13) + h2(κ3

24 − κ4
23)+

cot

(
πb2
b1

)(
2τ (1)
c (h) + h1(κ3

13 + κ4
14) + h2(κ3

23 + κ4
24)
)]

+
b2
2

(
U4 − U3 cot

(
πb2
b1

))(
κ1,3

2 h2
1 − κ

2,3
1 h2

2 + (κ2,3
2 − κ1,3

1 )h1h2

)
+
b2
2

(
U3 + U4 cot

(
πb2
b1

))(
κ2,4

1 h2
2 − κ

1,4
2 h2

1 + (κ1,4
1 − κ2,4

2 )h1h2

)
.
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With p0 =
(
h1, h2, ηh3, ηh4, η

−1
)
, uniformly with respect to h ∈ BR as η → 0, we have at p0

det (U(h) + ηU ′(h), V, ∂3F, ∂4F, ∂5F ) =

η8 16π(h2
1 + h2

2)

b21b
2
2

sin2

(
πb2
b1

)[
Ψ′(U(h)) + ηΓ(U(h), U ′(h))

]
+ o(η9).

Proof. We compute the first two non-zero terms in the expansion of

det (U(h) + ηU ′(h), V, ∂3F, ∂4F, ∂5F ) .

Observe that

V = η2V (2) + η3V (3) + o(η3) and ∂iF = η2∂iF
(2) + η3∂iF

(3) + o(η3) ∀i ∈ J3, 5K.

Notice that det
(
U(h), V (2), ∂3F

(2), ∂4F
(2), ∂5F

(2)
)

= 4πK′

b21
(h2

1 + h2
2)ψ′(U(h)) (recall K ′ = det

(
A

(2)
4

)
=

4
b22

sin2
(
πb2
b1

)
). Then

det (U(h), V, ∂3F, ∂4F, ∂5F ) =η8 det
(
U(h), V (2), ∂3F

(2), ∂4F
(2), ∂5F

(2)
)

+ η9K ′(d1 + d2 + d3 + d4 + d5) + o(η9),

with

K ′d1 = det
(
U ′(h), V (2), ∂3F

(2), ∂4F
(2), ∂5F

(2)
)

= K ′

∣∣∣∣∣∣
U ′1
U ′2

A
(2)
1 er1 C

(2)
1

U ′5
2π
b1

(h2
1 + h2

2) 0

∣∣∣∣∣∣
K ′d2 = det

(
U(h), V (3), ∂3F

(2), ∂4F
(2), ∂5F

(2)
)

= K ′

∣∣∣∣∣∣
U1

U2
A

(3)
1 er1 −A

(3)
2

(
A

(2)
4

)−1

A
(2)
3 er1 C

(2)
1

U5 L
(3)
1 er1 0

∣∣∣∣∣∣
K ′d5 = det

(
U(h), V (2), ∂3F

(2), ∂4F
(2), ∂5F

(3)
)

= K ′

∣∣∣∣∣∣
U1

U2
A

(2)
1 er1 C

(3)
1

U5
2π
b1

(h2
1 + h2

2) E(3)

∣∣∣∣∣∣
and

K ′d3 = det
(
U(h), V (2), ∂3F

(3), ∂4F
(2), ∂5F

(2)
)

=
2π

b1
(h2

1 + h2
2)∣∣∣∣∣∣

U3

(
A

(2)
4

)
1,2

U4

(
A

(2)
4

)
2,2

∣∣∣∣∣∣
∣∣∣∣∣∣
(
A

(3)
2

)
1,1

(
C

(2)
1

)
1(

A
(3)
2

)
2,1

(
C

(2)
1

)
2

∣∣∣∣∣∣ +
2ψ′(U)

b1

∣∣∣∣∣∣
(
A

(3)
4

)
1,1

(
A

(2)
4

)
1,2(

A
(3)
4

)
2,1

(
A

(2)
4

)
2,2

∣∣∣∣∣∣
 ,

K ′d4 = det
(
U(h), V (2), ∂3F

(2), ∂4F
(3), ∂5F

(2)
)

= −2π

b1
(h2

1 + h2
2)∣∣∣∣∣∣

U3

(
A

(2)
4

)
1,1

U4

(
A

(2)
4

)
2,1

∣∣∣∣∣∣
∣∣∣∣∣∣
(
A

(3)
2

)
1,2

(
C

(2)
1

)
1(

A
(3)
2

)
2,2

(
C

(2)
1

)
2

∣∣∣∣∣∣ +
2ψ′(U)

b1

∣∣∣∣∣∣
(
A

(3)
4

)
1,2

(
A

(2)
4

)
1,1(

A
(3)
4

)
2,2

(
A

(2)
4

)
2,1

∣∣∣∣∣∣
 .

Hence the statement by summation.

Let q0 ∈M \S and p0 =
(
h1, h2, ηh3, ηh4, η

−1
)
∈ T ∗q0M . Let p0 ∈ T ∗q0M and v be as in the statement

of Proposition D.10 so that ker Jacp0Eq0(tc(p0)) = Span(v). As explained in Remark 5.6, we choose the

first coordinate x1 : M → R such that ∂x1
=
∑5
i=1 vi∂i and we have that ∂kx1

F = O(η2) for all integer
k ≥ 2.

If we denote V ′,W ′ : R4 → R5 such that ∂2
x1
F = η2V ′(h) + η3W ′(h) + o(η3) then let Ψ′2(h) = Ψ′(V ′)

and Γ2(h) = Γ(V ′,W ′). Similarly, define V ′′,W ′′ : R4 → R5 such that ∂3
x1
F = η2V ′′(h)+η3W ′′(h)+o(η2),
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V ′′′,W ′′′ : R4 → R5 such that ∂4
x1
F = η2V ′′′(h) + η3W ′′′(h) + o(η2) and V ′′′′,W ′′′′ : R4 → R5 such that

∂5
x1
F = η2V ′′′′(h)+η3W ′′′′(h)+o(η2); and define Ψ′3(h) = Ψ′(V ′′), Γ3(h) = Γ(V ′′,W ′′), Ψ′4(h) = Ψ′(V ′′′),

Γ4(h) = Γ(V ′′′,W ′′′), and Ψ′5(h) = Ψ′(V ′′′′), Γ5(h) = Γ(V ′′′′,W ′′′′).
We would like to replicate what has been done in the previous two sections in regard of the functions

Ψ′i. However we can check that Ψ′i = 0 for i ∈ J2, 5K and we should instead focus on the functions Γi. As
an application of Lemma D.12, and the analysis of the Jacobian matrix of Eq0(tc(p0)) of Section D.3.1,
we immediately obtain that for η small enough

Γ2(h) 6= 0⇒ φ11(p0) 6= 0, Γ3(h) 6= 0⇒ φ111(p0) 6= 0,

Γ4(h) 6= 0⇒ φ1111(p0) 6= 0, Γ5(h) 6= 0⇒ φ11111(p0) 6= 0.
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