UNIVERSITE HAUTE-ALSACE

Find the Chromatic Number by Counting k-colorings with a Randomized Heuristic Alexandre Gondran 1 and Laurent Moalic 2

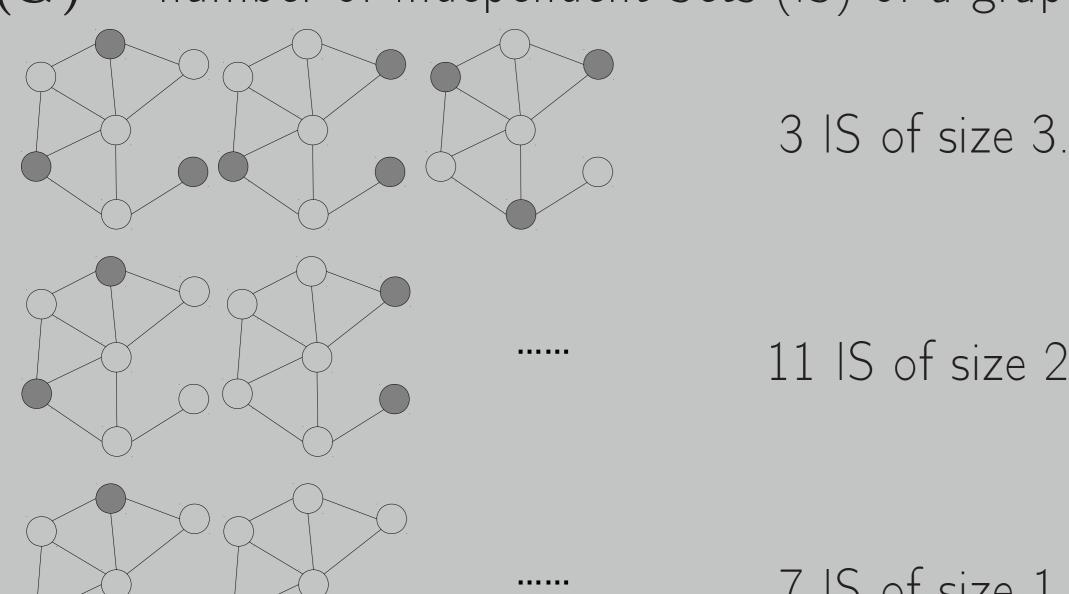
ECOLE NATIONALE DE L'AVIATION CIVILE

¹École Nationale de l'Aviation Civile, Toulouse, France ²University of Haute-Alsace, Mulhouse, France

Prove optimality with a heuristic? Do you want to bet? Case study on Graph Coloring Problem

Find the chromatic number $\chi(G)$: the smallest number of colors needed to color a graph G

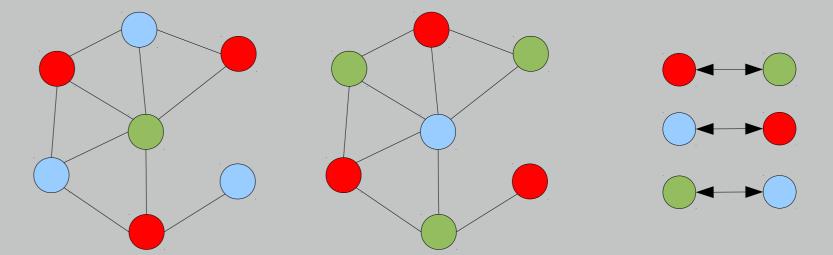
Theorem: optimality by counting solutions


Let k > 0 and G a graph, $\mathcal{N}(G,k)$: the number of different k-colorings of G, i(G): the number of independent sets (or stables) of G, if $i(G) > \mathcal{N}(G,k) > 0$, then $\chi(G) = k$.

Demonstration / Application

Counting all Independent Sets (IS) of a graph

Counting number of different *k*-colorings


11 IS of size 2.

7 IS of size 1.

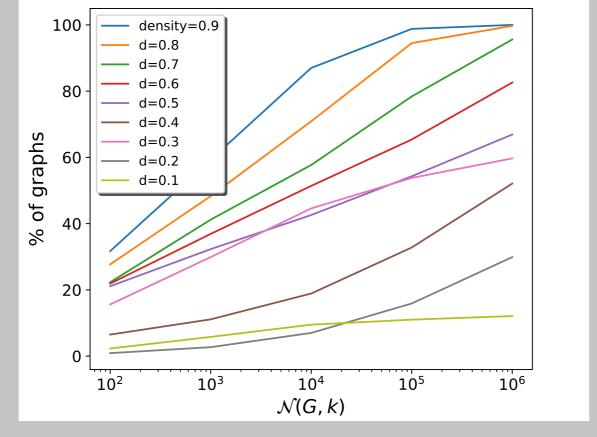
i(G)=21 IS

- ► NP-hard problem
- Need only a lower bound (simple problem)
- Counting all maximal IS
 - Efficient exact method CLIQUER on complementary graph

Same *k*-colorings if permutation of colors:

These two 3-colorings are identical \triangleright $\mathcal{N}(G,k)$: the number of different k-colorings of G

Two 3-colorings, $\mathcal{N}(G,3)=2$

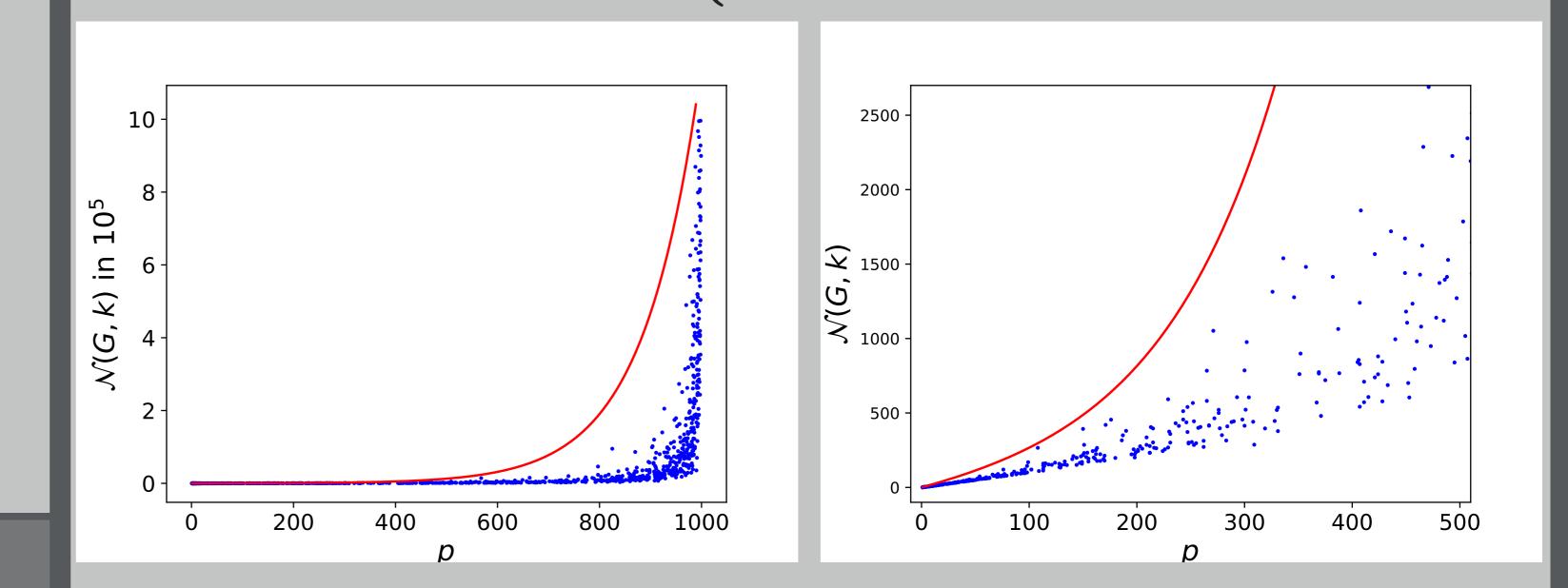

#P-complete problem (#SAT / #CSP problems) \blacktriangleright Need only an upper bound \Rightarrow difficult problem ▶ Use a modified version of DSATUR for small graphs Use an estimation based on multi-run of HEAD (one of the best **k**-coloring algorithm: memetic algorithm=evolutionary algorithm+tabu search) [Journal of Heuristics, 2018]

Conclusion

If it exists at least one 2-coloring \Longrightarrow it exists at least 21 3-colorings. As it is not the case: $i(G) > \mathcal{N}(G,3) > 0 \Longrightarrow \chi(G) = 3$

Theorem applicable on graphs with low $\mathcal{N}(G,k)$

- Generate 1000 random graphs with 40/50/60/70 vertices and density 0.1-0.9
- Count the number of optimal colorings $\mathcal{N}(G,k)$
- ▶ 50% of graphs (50 vertices, density > 0.3) have less than 10^5 optimal colorings



Optimality Clue: let G a graph and k > 0

1. Build a sample of $t = 1000 \ k$ -colorings of G: multi-run of HEAD [github.com/graphcoloring/HEAD] 2. Count the number of different k-colorings inside the sample = p3. Estimate an upper bound of the $\mathcal{N}(G,k)$ as UB(p,t)

Find, UB(p,t), an upper bound of $\mathcal{N}(G,k)$

Experimental tests on more than 2000 graphs (RCBII / DIMACS) Random graphs / Size: 40 to 100 vertices / Density: 0.1 to 0.9 For each graph, generate a sample of k-colorings with $k=\chi(G)$ \triangleright t: size of the sample of k-colorings (t = 1000) ▷ **p**: number of different **k**-colorings in the sample Estimate an upper bound of the $\mathcal{N}(G,k)$ as UB(p,t) (red line): $UB(p,t) = egin{cases} p+p^{lpharac{t+p}{t}} ext{ if } p < t imes 0.99 \ +\infty & ext{otherwise} \end{cases}$

4. Compute i(G), the number of IS, or at least a lower bound 5. If i(G) > UB(p,t), then conclude to Optimality Clue: Chances are that k is equal to $\chi(G)$

Some Results on challenging DIMACS graphs

Instances	V	d	$\chi(G)$	${m k}$	i(G)	$\mathcal{N}(G,k)$	t	p	UB(p,t)	Opt. Clue
DSJC125.5	125	0.5	17	17	537 508	?	1000	784	164 879	True
DSJC500.5	500	0.5	?	47	>1000000	?	341	281	32731	True
DSJC500.9	500	0.9	?	126	35 165	?	1000	949	726 585	False
flat1000_50_0	1000	0.49	?	50	>1000000	?	1000	1	2	True
flat1000_60_0	1000	0.49	?	60	>1000000	?	1000	1	2	True
le450_15c	450	0.17	15	15	>1000000	?	1000	919	554 866	True
le450_15d	450	0.17	15	15	>1000000	?	1000	579	26 041	True
queen7_7	49	0.4	7	7	1 862	4	1000	4	8	True

Who wants to win her weight in bottles of wine?

The first one to find a counterexample of the **Optimality Clue**

Find a graph G that has the Optimality Clue with k Find a legal coloring of **G** with less than **k** colors

CPAIOR, Delft, The Netherlands, June 26-29, 2018 alexandre.gondran@enac.fr - laurent.moalic@uha.fr - github.com/graphcoloring/HEAD