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[1] The Turkish Pontide fold‐and‐thrust belt formed
since the Paleozoic and is an important element in the
Africa‐Eurasia convergence and the resulting closure
of the Neo‐Tethys ocean. It has a peculiar arc‐shaped
geometry in its central part, along the Black Sea coast,
which may have resulted from oroclinal bending. We
have determined the vertical‐axis rotation history of this
area using paleomagnetism on Cretaceous to Eocene
rocks from 47 sites and critically analyzed previously
published data. We applied the same reliability criteria
to all data. Our results show that late Cretaceous sites
have clockwise and counterclockwise rotations perpen-
dicular to the structural trend in the central Pontides. In
the eastern Pontides, they show only local rotations.
Paleocene to Eocene rocks in the central and eastern
Pontides show no rotation. We conclude that the central
Pontide northward arc‐shaped geometry results from
oroclinal bending in latest Cretaceous to earliest Paleo-
cene times. The timing and scale of geological pro-
cesses that occurred in the region make it likely that
orocline formation resulted from Neo‐Tethys closure
between the Pontides and the metamorphic promontory
of the Anatolide‐Tauride Block. Earlier studies on the
southerly located Çankırı Basin reveal that clockwise
and counterclockwise rotations occurred in Eocene‐
Oligocene times. This implies that the entire region
underwent continuous deformation from late Creta-
ceous to Eocene, caused by convergence of the Pontides
and the Anatolide‐Tauride Block, with a southward
moving deformation front. Deformation was first local-
ized in the northern part of the central Pontides until the
Paleocene, resulting in oroclinal bending, and from at

least Eocene times it shifted toward the Çankırı Basin
region. Citation: Meijers, M. J. M., N. Kaymakci, D. J. J. van
Hinsbergen, C. G. Langereis, R. A. Stephenson, and J.‐C.
Hippolyte (2010), Late Cretaceous to Paleocene oroclinal bending
in the central Pontides (Turkey), Tectonics, 29, TC4016,
doi:10.1029/2009TC002620.

1. Introduction
[2] The Turkish Pontides constitute a fold‐and‐thrust belt

formed since the Paleozoic as a result of subduction and
accretion processes during the closure of the Paleo‐Tethys
and Neo‐Tethys oceans at the southern Eurasian margin
[Okay et al., 2006; Şengör and Yilmaz, 1981]. The Pontides
were separated from Eurasia by the opening of the Black
Sea basin during Cretaceous‐Eocene times (Figure 1a)
[Görür, 1988; Hippolyte et al., 2010; Okay et al., 1994;
Robinson et al., 1996; Tüysüz, 1999]. To the south, the
Pontides are separated from the Pan‐African Anatolide‐
Tauride Block by the İzmir‐Ankara‐Erzincan (IAE) suture
zone, which represents the location of closure of the Neo‐
Tethys [Şengör and Yilmaz, 1981]. Collision between the
Pontides and the Anatolide‐Tauride Block took place in the
late Cretaceous to Paleocene, with a final phase in the Eocene
[Görür et al., 1984; Kaymakci et al., 2009; Rice et al., 2006;
Şengör and Yilmaz, 1981].
[3] The general east‐west trend of the Pontide fold‐and‐

thrust belt is disrupted in its central part by a peculiar north-
ward convex geometry along the central Black Sea coast
(Figure 1b). This central Pontides geometry could be original,
having developed during initial nappe stacking or may rep-
resent a younger phase of oroclinal bending [Carey, 1958].
Oroclinal bending would require major, regional deformation
of the pre‐existing east‐west striking fold‐and‐thrust belt.
Such a distinct deformation event after a long‐lasting pro-
cess of subduction‐accretion along the southern Eurasian
margin may help identifying major changes in the geo-
dynamic evolution of the closure of the Neo‐Tethys, and
roles of continent‐continent collision, and the opening of
the Black Sea.
[4] In this study we first test whether the northward convex

geometry in the Pontides can be defined as an orocline. To do
this, we have collected paleomagnetic samples from 47 sites
in the central and eastern Pontides from lower Cretaceous to
Eocene rocks to determine the vertical‐axis rotation history of
the region. In addition, we constrain the timing of rotations to
enable correlation to large‐scale geodynamic processes, by
determining vertical‐axis rotations in rocks taken from a
sufficiently large time span (Cretaceous‐Eocene). We have
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also examined paleolatitude data from two of our sites and
corrected them for inclination error using the E/I method of
Tauxe and Kent [2004] to assess the paleolatitude of the
Pontides in the late Cretaceous with respect to the pre-
dicted paleolatitude of the southern Eurasian margin from
the apparent polar wander (APW) path of Eurasia [Torsvik
et al., 2008].

2. Geological Setting
[5] The Pontides in northern Turkey are a late Cretaceous

to Paleogene fold‐and‐thrust belt between the Black Sea in

the north and the Izmir‐Ankara‐Erzincan (IAE) suture zone
in the south (Figure 1a) [Okay and Tüysüz, 1999]. The IAE
suture zone separates the Pontides from the continental
Anatolide‐Tauride platform, andmarks the former position of
the subduction zone of a branch of the Neo‐Tethys ocean. The
Pontides comprise, from west to east, the Strandja Zone,
İstanbul Zone and Sakarya Zone (Figure 1a).
[6] The Variscan basement of the Strandja Zone is covered

by Triassic‐Jurassic sedimentary rocks and the Strandja Zone
underwent a second phase of deformation and metamorphism
during the latest Jurassic to earliest Cretaceous. [Gerdjikov,
2005; Okay et al., 2001a].

Figure 1. (a) Map showing the location of the Pontides in relation to the Black Sea, the Izmir‐Ankara‐
Erzincan (IAE) suture, the Kırşehir Block and the Anatolide‐Tauride Block. MO indicates the position
of the Moesian Platform. (b) Zoom of the map in Figure 1a, showing the main stratigraphic ages and major
structures and basins in the central Pontides. The trend of the faults/basins is roughly NE/SW in the western
part of the convex geometry, and NW/SE in the eastern part. In the south the Çankırı Basin and the Kırşehir
Block are displayed. The results of the AMS measurements of sites TA2 and BG7 (Figure 8) are also in-
dicated. KM indicates the location of the KargıMassif. (c) Stratigraphic column following Hippolyte et al.
[2010] showing the main formations that were sampled in this study. In the Cenomanian‐Turonian there is a
depositional gap.
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[7] The Sakarya Zone is structurally the lowest of these
zones and underthrusts the Strandja and İstanbul Zones [Okay
et al., 2001a]. Unlike the İstanbul Zone, it includes a strongly
deformed Variscan basement and the locally metamorphosed
pre‐Jurassic Karakaya Complex, which is described either as
a mid‐late Triassic subduction‐accretion complex, or as an
inverted rift basin [e.g., Genç and Yilmaz, 1995; Pickett and
Robertson, 2004; Okay and Göncüoğlu, 2004].
[8] The İstanbul Zone is structurally the highest zone and is

separated from the Strandja Zone by a right‐lateral strike‐slip
fault [Okay et al., 2001a]. It comprises non‐metamorphic
Ordovician to Carboniferous sedimentary sequences that
were deformed during the Permo‐Carboniferous, and are
overlain by Triassic sediments [Okay et al., 1994]. Based on
its stratigraphy it is assumed that it is a detached block of
the Moesian Platform that displaced southward during the
opening of the western Black Sea basin [Okay et al., 1994]
(Figure 1a).
[9] The Sakarya and İstanbul Zones share a post‐mid

Jurassic volcano‐sedimentary cover, while the post‐Triassic
cover of Sakarya is composed of lower Jurassic continental to
shallow marine clastic rocks, with several ammonitico‐rosso
levels [Altıner et al., 1991] which is either lacking in the
İstanbul zone or poorly developed. In the eastern part of
the Sakarya Zone (in general called the eastern Pontides), the
lower and middle Jurassic units comprise volcanic and vol-
canoclastic sequences [Yılmaz and Kandemir, 2006; Yılmaz
et al., 2003], which are largely missing in the central and
western Pontides. Platform carbonates of the İnaltı Formation
of mid‐Jurassic (Callovian) to early Cretaceous age cover
the entire Pontides, except for the Strandja Zone. The entire
cover of the Pontides consists of Cenomanian‐Maastrichtian
volcano‐sedimentary sequences collectively named as
Yemişliçay Formation in Turkey and Srednogorie Zone in the
Balkans [Okay et al., 1994; Sinclair et al., 1997; Zimmerman
et al., 2008]. The Paleozoic basement of the Pontides suggests
a Eurasian origin [Bozkurt et al., 2008; Okay et al., 2008], as
opposed to the Pan‐African origin of the Anatolide‐Tauride
belt [Hetzel and Reischmann, 1996; Kröner and Şengör,
1990; Satır and Friedrichsen, 1986; Şengör et al., 1988].
[10] The Pontides have been separated from Europe by

the Black Sea since the early Cretaceous [Görür, 1988;
Hippolyte et al., 2010; Okay et al., 1994; Tüysüz, 1999],
which comprises two major (western and eastern) sub‐
basins. Opening of the western Black Sea basin is generally
considered to be early middle Cretaceous (Barremian‐
Albian) in age [Görür, 1997; Robinson et al., 1996]. Timing
of opening of the eastern Black Sea is still controversial,
because of poor exposure of its stratigraphy. Early Cretaceous
[Kriachtchevskaia et al., 2010; Nikishin et al., 2003] to early
Cenozoic ages [Robinson et al., 1995a] and even Eocene ages
[Vincent et al., 2005] are proposed, mainly based on incom-
patible and independent data sets and geophysical, strati-
graphical, structural and tectonic modeling studies. It is
generally accepted that the Cretaceous to Tertiary units in the
Pontides are related to the opening of the Black Sea basins.
Therefore, precise dating of these units is crucial in terms of
understanding the ages of these basins. In this study we fol-
lowed the stratigraphic classification scheme of Hippolyte
et al. [2010], which is the most up‐to‐date and precise

classification, based on 165 nannoplankton ages (Figure 1c)
belonging to every lithostratigraphical unit in the Pontides.
The most important difference with respect to former studies
[i.e.,Görür, 1997; Tüysüz, 1999] is related to the stratigraphic
positions and ages of the Kapanboğazı/Yemişliçay and
Akveren formations. The Kapanboğazı/Yemişliçay forma-
tions are stratigraphically transitional and now ascribed to
the Coniacian to Santonian. The Akveren Formation is now
considered to be of Campanian to Maastrichtian age.
[11] The syn‐rift deposits of Görür [1997] of the western

Black Sea basin in the Pontides comprise the Hauterivian‐
Albian Cağlayan/Ulus Group [Hippolyte et al., 2010].
The Cenomanian‐Turonian interval is marked by a hiatus:
deposition resumed during the Coniacian and gave way to
the deposition of red pelagic limestones (Kapanboğazı
Formation) that gradually pass upwards into volcanics
and volcanoclastic turbidites (Yemişliçay Formation) of
Coniacian‐Santonian age [Hippolyte et al., 2010]. In
Campanian‐Maastrichtian times the Akveren/Alaplı lime-
stones and siliciclastic turbidites of the Gürsökü Formation
were deposited. This sedimentation was followed by depo-
sition of limestones and marls of the Atbaşı Formation in the
Paleocene. The turbiditic Kusuri Formation was deposited
during the Eocene along the present‐day Black Sea coast
[Özcan et al., 2007; Robinson et al., 1995b], as well as
volcano‐sedimentary units of Eocene age that were deposited
along a narrow band along the IAE suture zone [Keskin et al.,
2008]. Nummulitic limestones were deposited further away
from the Black Sea coast in shallow water basins, developing
over compressional structures [Kaymakci et al., 2009; Özcan
et al., 2007; Robinson et al., 1995b].
[12] The continental Anatolide‐Tauride Block is located

south of the IAE suture zone. The promontory of the
Anatolide‐Tauride Block in the central part of the bend in
the Pontides and IAE suture zone that forms the present
study area is the metamorphosed Kırşehir Block [Görür
et al., 1984]. At the contact between the Pontides and the
Anatolide‐Tauride Block, the Çankırı Basin developed as
a late Cretaceous forearc and Paleogene foreland basin,
straddling the IAE suture zone at the northernmost tip of the
Kırşehir Block (Figure 1b). Metamorphism of the Kırşehir
Block followed northward intraoceanic subduction and
southward ophiolite emplacement over the Kırşehir Block
during the Cenomanian to Turonian [Kaymakci et al., 2009;
Whitney et al., 2001; Yalınız et al., 2000]. This was followed
by late Cretaceous to Paleocene northward oceanic sub-
duction below the Pontides, as evidenced by the develop-
ment of an upper Cretaceous volcanic arc on the Pontides
[Kaymakci et al., 2009; Okay et al., 2001b, 2006; Rice et al.,
2006; Tüysüz and Tekin, 2007] and the development of a
forearc basin in the Çankırı region [Kaymakci et al., 2009].
Exhumation of the Kırşehir Block started at the end of the
Cretaceous [Boztuğ and Jonckheere, 2007; Görür et al.,
1984] and continued during the Paleogene [Boztuğ et al.,
2009a, 2009b; Gautier et al., 2002; Isik, 2009]. This implies
that the Kırşehir Block may have formed a rigid indenter in
the Paleogene, between the Anatolide‐Tauride Block and
the Pontides, which led to the development of a foreland
basin in the Çankırı region [Kaymakci, 2000; Kaymakci
et al., 2009].
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[13] The Pontides were underthrusted during Cenomanian‐
Turonian times (~100–89 Ma) by the Kargı Massif
(Figure 1b), which was interpreted by Okay et al. [2006] as
a microcontinental sliver of Neo‐Tethyan origin, north of
the Anatolide‐Tauride Block.

3. Paleomagnetic Sampling, Analysis,
and Results

3.1. Paleomagnetic Sampling

[14] In total, 1301 cores from 47 sites were sampled in the
central and eastern Pontides, in lower Cretaceous to Eocene
deposits, with a minimum of 7 up to as much as 149 cores per
site; a single core often provided multiple specimens for
paleomagnetic analysis (see Table 1). Samples were collected
using a gasoline powered motor drill or an electric drill with
generator, depending on the rock type. Sample orientations
were measured with a magnetic compass, and sample orien-
tations as well as bedding tilt were corrected for present‐day
declination, ranging from 4 to 5°W. Ages were assigned
to formations according to Hippolyte et al. [2010] and those
for the trachyandesites of site BD4 according to Eyüboğlu
[2010].

3.2. Paleomagnetic Analysis

[15] Out of 1301 cores, 1064 specimens were demagne-
tized. The samples were demagnetized using alternating field
(AF) and thermal (TH) progressive stepwise demagnetization
methods. Approximately half of the samples that were AF
demagnetized were heated until 150°C before AF demagne-
tization to remove possible stress in magnetite grains caused
by surface oxidation at low temperatures [Van Velzen and
Zijderveld, 1995; see also Gong et al., 2008]. The largest
part of the samples was demagnetized by AF demagnetiza-
tion, and TH demagnetization was applied to test reproduc-
ibility of the AF results.
[16] Orthogonal vector diagrams [Zijderveld, 1967] were

used to display demagnetization of the NRM (Figure 2).
Sample ChRM directions were determined using principal
component analysis [Kirschvink, 1980] on approximately five
to seven successive AF or temperature steps in the majority
of the samples. Samples that yielded NRM directions that
were intermediate between two overlapping coercivity or
temperature components, were analyzed using the great
circle approach [McFadden and McElhinny, 1988]. With this
method, the direction that lies closest on the great circle to
the average direction from well‐determined NRM directions
can be determined (e.g., TA5.10B, Figure 2). Usage of the
great circle approach is indicated in Table 1 and Figure 3.
[17] The majority of the samples has a characteristic

remanent magnetization (ChRM) carried by magnetite, as is
evidenced by typical maximum unblocking temperatures
below 600°C or maximum unblocking fields of 60–100 mT.
Occasionally, lower temperatures are sufficient to determine
the ChRM, typically in the range 360–480°C which suggests
that the remanence is mainly carried by greigite [Roberts,
1995; Rowan et al., 2009; Vasiliev et al., 2008]. In a num-
ber of cases there is also clear evidence for (additional)
hematite as a carrier of the NRM (see below).

[18] Examples of comparable results of AF and thermal
demagnetization can be found in Figure 2 (EK19.A/EK.19B,
K8.6/K8.11 and TA2.40A/TA2.137A). In the pink/red
pelagic limestones of the Kapanboğazı Formation (sites TA2
and EK), the magnetic carrier is magnetite, because the
samples reach the origin between ~570°C–600°C, enabling
AF demagnetization (see Figure 2). Examples of rocks
wherein the main magnetic carrier is hematite are sites BG5
and BG7 (Figure 2, BG5.72B and BG7.37A). Thermal
demagnetization on these samples was carried out until
630°C to reach the origin. Therefore, AF demagnetization
until 90 mT after heating until 150°C resulted in a relatively
small decrease of the NRM (Figure 2, BG5.29A). Since both
sites BG5 andBG7 and sites TA2 and EKwere taken from the
red pelagic limestones of the Kapanboğazı Formation, we
conclude that the magnetic carrier within this formation
ranges from magnetite to hematite dominated rocks.
[19] From the ChRM directions, site means as well as

virtual geomagnetic poles (VGP) and their means were cal-
culated. A variable cut‐off [Vandamme, 1994] was applied on
the VGPs per site and we calculated the error in declination
(DDx) and the error in inclination (DIx) separately, following
Butler [1992]. We favor this approach because it more real-
istically describes the directional distributions that become
increasingly ellipsoidal (elongated) with lower latitudes
[Creer et al., 1959]. To determine whether two distributions
share a common true mean direction (CTMD), we use the test
developed by [McFadden and McElhinny, 1990] and their
classification (A, B, C, indeterminate) based on the critical
angle gc and the angle g between the means. We use their test
with simulation, which effectively is equivalent to using the
Watson [1983] Vw parameter. Sites K5 and K7 were com-
bined, as they shared a CTMD (Table 1).
[20] Data from two sites were corrected for inclination

shallowing in sediments, using the elongation/inclination (E/I)
method of Tauxe and Kent [2004]. Since a large number of
individual directions is required to apply the model (prefer-
ably N > 100), we only applied this method to our sites TA2
and TA5.
[21] On samples from sites TA2 and BG7, measurements to

determine the anisotropy of magnetic susceptibility (AMS)
were performed to determine the magnetic fabric of the
sediments and to assess whether they have a mainly sedi-
mentary or tectonic fabric. This may be indicative of the
amount of strain the rocks underwent after deposition
[Hrouda, 1982], since the maximum axis of the AMS tensor
(kmax) will start aligning with the direction of maximum
extension (i.e., perpendicular to the direction of maximum
compression). Jelinek statistics [Jelinek, 1981, 1984] were
used for these calculations.

3.3. Reliability Criteria

[22] The new data we present in this study, as well as
previously published data, collected from Cretaceous,
Paleocene and Eocene rocks, are obviously subject to
many sources of error. Therefore we have chosen the fol-
lowing reliability criteria, applied to both our own and pub-
lished data sets.
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[23] Data(sets) with the following characteristics were
excluded from further analyses: (1) Data sets sampled close
to/in a major fault zone, (2) samples from data sets that were
demagnetized using bulk demagnetization, (3) data sets that
do not have a minimum number (N ≥ 5) of samples (sedi-
ments) or sites (magmatic rocks), (4) data sets with suspect
directions (i.e., N/down or S/up directions) that may result
from a (partial) overprint (e.g., K1, see Figure 2, specimen
K1.7) or large measuring errors caused by very low NRM
intensities (Figure 2, specimens D1.12, KE1.6 and KE 8.20),
(5) data sets that carry a direction which in geographic
coordinates are not distinguishable from the present‐day
geocentric axial dipole field direction, (6) data sets with an
inclination that is lower than can reasonably be expected from
flattening. The flattening factor (f) relates the ratio of the
observed inclination to the inclination of the (applied) field
[King, 1955]. In natural sediments the flattening factor may
range between zero (fully flattened) and unity (no flattening).
However, typical values of f are 0.4–0.6 in sediments, but can
be as low as 0.3 in red beds [Tauxe and Kent, 1984]. For all
data, we use a lower boundary cut‐off of f ≥ 0.3. Finally, we
rejected two sites (F3, F4) with an inclination more than 10°
higher than suggested by the APW path [Torsvik et al., 2008].
[24] An overview of previous paleomagnetic studies on 29

sites/localities in Cretaceous, Paleocene and Eocene rocks in
the Pontides, north of the North Anatolian Fault Zone
(NAFZ) is listed in Table 2. Most studies were carried out on
Cretaceous rocks (18 studies), and data from nine Eocene
localities were published (9), especially from the eastern
Pontides (Figure 4). Only one study on Paleocene rocks was
published. One site from a study by Van der Voo [1968] was
previously assigned a Cretaceous age, but the most recent
Turkish geological map (1:500,000 scale) [Şenel et al., 2001]
assigns a lower‐middle Cretaceous age to those rocks. Two
other sites from the study by Van der Voo [1968] were also
given a new age according to the geological map (Table 2).
Overall, the study carried out by Channell et al. [1996] and
data from several sites analyzed by Sarıbudak [1989] and
Kissel et al. [2003] were included for further analysis. In
Table 2 we have indicated which sites were excluded from
further discussion as well as the reason for exclusion.

4. Paleomagnetic Results
[25] Examples of orthogonal vector diagrams [Zijderveld,

1967] and equal area projections of the ChRM directions of
all sites are given in Figures 2 and 3. After critical analysis of
all measured sites, we have excluded 15 out of the sampled
47 sites (~32%) from further analysis (Figures 5a–5d).
[26] On the basis of this study, combined with literature

data, we define four distinct areas in the Pontides – the
western limb, the central zone, the eastern limb, and the
eastern Pontide area – that have distinct rotation patterns
(Figure 5e). From the rotation patterns in upper Cretaceous
rocks, we can conclude that these were rotated counter-

clockwise (until ~40°) in the western limb and clockwise
(until ~40°) in the eastern limb, whereas no or only local
rotations were found in the central zone and eastern Pontides
(Figures 5e and 5f). Rocks from the four accepted Paleocene
sites contain no significant rotation in all four segments.
Furthermore, none of the eight accepted Eocene sites show a
significant rotation. This means that we can demonstrate little
or no vertical axis rotations in the Paleocene and the Eocene
in the northern parts of the Pontides.
[27] To allow comparison of the paleolatitudinal position

from the Pontides with the APW path, we corrected two of
our sample sets (sites TA2 and TA5) for inclination error with
the E/I method [Tauxe and Kent, 2004] (Figure 6). Correction
is allowed because of the high quality of the data sets and the
large number of analyzed samples. Site TA2 was sampled in
red pelagic limestones of Coniacian‐Santonian age, while the
turbiditic volcanoclastics of site TA5 have a Santonian age
according to Hippolyte et al. [2010]. Because of the normal
paleomagnetic signal in site TA2 and the reversed paleo-
magnetic signal of TA5, the latter must be younger and late
Santonian in age, since the magnetization has to be post‐
Cretaceous Normal Superchron. The original paleolatitude
for site TA2 is 29.7°N, and for TA5 it is 25.7°N. Correction
for both sites is small. For TA2 the TK03 corrected paleo-
latitude is 40.2° > 31.3° > 29.2°N, for site TA5 this is 35.0° >
26.6° > 25.5°N, which is insignificant (within the 95%
bootstrap errors) in both cases (Figure 6). Within error, these
TK03.GAD corrected inclinations are not significantly dif-
ferent than the inclination expected from the APW path.
[28] In Figure 7, the paleolatitudes with their error (calcu-

lated from DIx) are displayed. Figure 7 (left) shows the data
from the literature review, Figure 7 (right) shows the data
from our study. We also show the expected paleolatitudes
when a flattening factor (f = 0.3–0.9) is applied to sediments
[King, 1955]. The data distribution clearly shows the effect of
inclination shallowing in sediments: the majority of the data
yield lower values than the expected values from the APW
path.
[29] On samples of sites TA2 and BG7, AMS mea-

surements were performed (Figure 8). The alignment of the
maximum axis is parallel to the structural trend in the area
(Figure 1b), and perpendicular to the declination measured
in the samples (Figure 4). When back‐rotating the anisot-
ropy axes according to the paleomagnetic declination, the
maximum axis (lineation) aligns in an east‐west direction,
implying EW extension or NS compression.

5. Discussion
[30] On the basis of this paleomagnetic study we show that

the convex northward shape of the Pontides is reflected in
declinations of upper Cretaceous rocks (~90–83 Ma, in one
case in rocks of ~83–65 Ma (K5–7). The sampled Paleocene
and Eocene rocks do not show significant variations across
the region. Hence, we conclude that the Pontides is an oro-

Figure 2. Orthogonal vector diagrams [Zijderveld, 1967], showing characteristic demagnetization diagrams for all sampled
sites. Solid (open) circles indicate the projection on the horizontal (vertical) plane. An equal area plot of a demagnetization
diagram that was interpreted using great‐circle analysis is shown for TA5.10B: dashed (solid) line denotes projection on lower
(upper) hemisphere. af= alternating field demagnetization, th= thermal demagnetization, tc= tilt corrected.
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Figure 2
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Figure 2. (continued)
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Figure 3. Equal area projections of the ChRM directions of all sites (Table 1). Open (solid) symbols
denote projection on upper (lower) hemisphere. Large symbols indicate respectively the mean directions
and their cone of confidence (a95). Red (small) circles indicate the individual directions rejected by the
Vandamme cut‐off angle [Vandamme, 1994]. Black lines indicate the great circles that were used to cal-
culate the best fitting ChRM directions [McFadden and McElhinny, 1988].
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cline that formed between latest Cretaceous (~83 Ma) and
Paleocene (65 Ma). We suggest that the AMS directions are
inherited from an early north‐south compressional event and
were rotated during orocline formation, because the magnetic
lineations are nearly parallel when their present orientation is
corrected for the paleomagnetically determined vertical‐axis
rotations at both sites. This is in contrast to the conclusions of
Scheepers and Langereis [1994] who argued that the end
phase of tectonic rotations (in the southern Apennines, Italy)

probably corresponds to a blocking of the system. They
concluded that the alignment of the magnetic lineation must
have taken place (just) after tectonic rotations. On the con-
trary, in the Gran Sasso range (northern Apennines, Italy)
Sagnotti et al. [1998] found magnetic lineations assuming a
nearly parallel trend when their orientation is corrected for
the vertical axis rotations. Moreover, their pattern of the
magnetic lineation trends does not appear affected by recent
extensional tectonics or by the development of late out‐of‐

Figure 3. (continued)
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sequence thrusts. Their observations strengthen our inter-
pretation that the magnetic lineation in the sedimentary
sequences of the central Pontides was induced at an early
stage of tectonic deformation, during an early pre‐rotational
compressional phase. It seems that neither orocline forma-
tion or post‐Cretaceous compression re‐aligned the AMS
directions (Figure 8).
[31] It is important to note that the magnitude of Coniacian

to Campanian rotations is longitude‐dependent (Figure 5f)
and there is no rotation detected in the Paleocene units. This
implies that the orocline formation in the Pontides took place
approximately during the Maastrichtian to earliest Paleocene
(70–65 Ma). However, Kaymakci et al. [2003] and İşseven
and Tüysüz [2006] have reported that clockwise and coun-
terclockwise rotations occurred during the Eocene‐Oligocene
interval in respectively the eastern and western side of the
Çankırı Basin located to the south of the center of the oro-
cline. In addition, there is general consensus that the con-
vergence and related compressional deformation between the
Anatolide‐Tauride Block and the Pontides was continuous
during the late Cretaceous to Eocene [Kaymakci et al., 2003,
2009; Okay et al., 1994; Okay and Tüysüz, 1999; Robinson,
1997; Robinson et al., 1996; Şengör and Yilmaz, 1981;
Tüysüz, 1999; Tüysüz and Tekin, 2007].
[32] The rocks from Eocene sites in the northern part of the

Pontides contain no rotation while there are strong clockwise
and counterclockwise rotations in the southern part of the
Pontides, within the Çankırı Basin [Kaymakci et al., 2003],
and clockwise rotations east of the Çankırı Basin and IAE
suture zone [İşseven and Tüysüz, 2006]. This implies south-
wards migration of the deformation front and shortening
within the heart of the orocline between Maastrichtian to
Oligocene. Deformation caused by ongoing convergence
between Africa and Eurasia was more or less evenly dis-
tributed in the region while the shortening was taken up in the
south along the Izmir‐Ankara‐Erzincan suture zone between
the Maastrichtian and the Oligocene.
[33] The time constraints on orocline formation now allow

us to assess which geodynamic processes may have caused it.
There are several possible candidates that may explain
oroclinal bending in the Pontides. These include (1) opening
of the Black Sea basins, (2) collision of a continental sliver or
seamount/oceanic plateau that was located south of the Eur-
asian margin within the Neo‐Tethys Ocean and north of the
Anatolide‐Tauride Block, or (3) collision with the Anatolide‐
Tauride Block. Orocline formation in the Pontides occurred
in latest Cretaceous‐early Paleocene times and, therefore,
timing of the above mentioned three options plays an impor-
tant role.
[34] There are two main scenarios for the opening of the

western Black Sea basin. According to Görür [1988] the
opening of the western Black Sea basin is early Cretaceous
(Albian to Cenomanian). According to Tüysüz [1999], how-
ever, the main opening of the western Black Sea basin took
place later, during the Turonian to Maastrichtian interval.
This discrepancy in timing is mainly caused by imprecise
dating and the fact that a major unconformity between the
lower and upper Cretaceous sequences was underestimated
and regarded as a local event. The updated stratigraphy pro-
vided by Hippolyte et al. [2010] (Figure 1c) suggests that

opening of the western Black Sea basin might have taken
place in two different phases. The first phase took place from
the Hauterivian to Albian while the main opening took place
from the Coniacian to Santonian. These phases were sepa-
rated by mid‐Cretaceous (Albian to Turonian) uplift and
erosion that lasted approximately 10 Myrs. Opening of the
eastern Black Sea basin probably took place in a sense
oblique to the margin of the (eastern) Pontides [Robinson
et al., 1996], and opening ages vary from early Cenozoic to
Eocene [Robinson et al., 1995a; Shillington et al., 2008;
Vincent et al., 2005]. We conclude that the timing of opening
of the Black Sea basins does not coincide with oroclinal
bending, because rotation of the limbs certainly occurred after
the pre‐Santonian opening of the western Black Sea basin.
[35] The second possible candidate for orocline formation

is the accretion of the Kargı microcontinent. Accretion of
Kargı took place in Cenomanian‐Turonian times [Okay et al.,
2006], which pre‐dates oroclinal bending. The scale of the
Kargı complex in comparison to the scale of the orocline
(Figure 1b) also raises questions about the feasibility of this
mechanism, and although collision might be responsible for
the mid‐Cretaceous unconformity in the central Pontides, the
scale and the early timing of collision do not make this event a
likely candidate to explain the orocline.
[36] The collision of the Pontides and the Anatolide‐

Tauride Block is the third possible mechanism. The meta-
morphosed promontory of the Anatolide‐Tauride Block, the
Kırşehir Block, is located just south of the hinge point of the
Pontides orocline (Figure 1b). Part of the collisional history
can be reconstructed from the Çankırı Basin that straddles the
IAE suture zone. The evolution of the Çankırı Basin can be
clearly subdivided into two phases: a late Cretaceous to
middle Paleocene forearc evolution, and a late Paleocene‐
early Miocene foreland evolution phase [Kaymakci et al.,
2009]. The first phase marks a northward jump of subduc-
tion to the southern margin of the Pontides in the Santonian,
leading to the deposition of arc volcanics and volcanoclas-
tics of the Yemişliçay Formation [Kaymakci et al., 2009;
Okay et al., 2001b]. This period coincides with extension in
the Kırşehir Block [Boztuğ et al., 2009b; Gautier et al.,
2008; Isik, 2009], that continued until the Maastrichtian
and possibly early Paleocene. Although this may (partly)
overlap with the formation of the orocline, a direct rela-
tionship between extension in the Kırşehir Block and
oroclinal bending seems unlikely, since the Çankırı forearc
basin suggests free subduction of the northern Neo‐Tethys
below the Pontides. By the late Paleocene the northern Neo‐
Tethys separating the Pontides and the Anatolide‐Tauride
Block was entirely consumed and collision between the
Anatolide‐Tauride Block and the Pontides occurred [Okay
et al., 2001b]. This was recorded by flysch deposition, uncon-
formable on top of the CACC [Kaymakci et al., 2009]. The
age of collision of the Kırşehır Block and Anatolide‐Tauride
Block with the Pontides seems not to be in conflict with the
proposed age of orocline formation, and therefore is the
most plausible mechanism to explain the northward convex
geometry of the Pontides.
[37] A study on the rotational history of the Çankırı Basin

was performed by Kaymakci et al. [2003]. The formation of
the striking omega shape of the Çankırı Basin was examined

MEIJERS ET AL.: CENTRAL PONTIDES OROCLINAL BENDING TC4016TC4016

12 of 21



by performing paleomagnetic, AMS and paleostress mea-
surements. Those data suggest that the omega shape of the
Çankırı Basin was caused by ongoing indentation of the
Kırşehir Block and Anatolide‐Tauride Block until the Oli-
gocene, not affecting the central Pontides orocline (Figure 9).
Several paleomagnetic data sets from Eocene rocks in the
study by İşseven and Tüysüz [2006] are in agreement with this
scenario. The absence of studies on pre‐Eocene rocks does
not enable constraining initiation of rotation in the Çankırı
Basin. Therefore, we cannot speculate on the possibility of
simultaneous rotation in the Çankırı Basin and the Pontides
orocline in the latest Cretaceous to earliest Paleocene times.
However, the absence of rotation in the northern parts of the
Pontides during the Paleocene to Oligocene in contrast with
the presence of strong rotations in its southern parts may
imply that the shortening and deformation front migrated
southwards after the Paleocene (Figure 9). This scenario also
implies that the Eocene‐Oligocene rotations in the southern
parts of the Pontides are related to thin‐skinned thrusting
within the suture zone.
[38] To assess the position of the Pontides in the late Cre-

taceous with respect to the Eurasian pole path, we corrected
two of our sites for an inclination error, from which we have
sufficient individual directions, using the E/I method of
Tauxe and Kent [2004]. Figure 6 shows that inclination cor-
rection for Coniacian‐Santonian site TA2 and Santonian site
TA5 is limited to a few degrees. After correction for incli-
nation error, the original inclination is within the 95% boot-
strap error margin, meaning that the correction is not
significant. Figure 7 shows that both sites plot 3 to 7 degrees
in latitude lower than the expected paleolatitude from the
Eurasian pole path (~34°N). We note however, that the A95
error envelope of the pole path (2–3°), overlaps with the error
margins of the TK03 corrected values. Indeed, small differ-

ences of only a few degrees are close to the practical reso-
lution limit (5°) of paleomagnetic studies.
[39] Nearly all reported paleolatitudes, from us as well as

other authors, are lower than predicted by the APW path of
Torsvik et al. [2008]. This may either represent inclination
shallowing resulting from sediment compaction, or uncer-
tainties in the APW path. The Eurasian APW path for the
period after Pangea break‐up is based on paleomagnetic data
from all continents, rotated into Eurasian coordinates using
rotation parameters derived from ocean floor anomalies and
fracture zones. The paleomagnetic APW path is based on a
rather limited and old data set, as in the last two decades most
paleomagnetic research has focused on mobile belts rather
than on stable continents. In recent years, several studies,
especially from Asia, have shown paleolatitudinal dis-
crepancies of up to ~10° between the APW path predictions
and newly measured poles [Cogné et al., 1999;Dupont‐Nivet
et al., 2010; Hankard et al., 2007a, 2007b], and have ques-
tioned the accuracy of the APW path. This debated APW
resolution uncertainty may contribute to an explanation
for our lower paleolatitudes. However, it is conceivable that
inclination shallowing plays a significant role in the Pontides.
The errors of many paleomagnetic localities from the Pontides
are large enough to overlap with the APW path. Moreover, we
showed above that the two sites that were successfully cor-
rected for inclination shallowing, overlap within error with the
APW path. Hence, at this stage it is not possible to make a
conclusive distinction between the relative contribution of the
two mechanisms, although we argue that using sediment‐
derived paleomagnetic data can in principle not be used to
assess paleolatitude, unless tested and corrected for inclination
shallowing. We calculated expected flattened latitudes from
f‐factors as low as 0.3 (Figure 7) that can explain the observed
low paleolatitudes. Paleolatitudes were earlier assessed in a

Figure 4. Paleomagnetic data from previous paleomagnetic studies. (a) Rotation vectors measured from
Jurassic (in blue) and Cretaceous (in green) rocks of all previous paleomagnetic studies. (b) Rotation vectors
measured from Paleocene (in red) and Eocene (in yellow) rocks of all previous paleomagnetic studies.DDx

envelopes of the rotation vectors shown in gray. Numbers correspond to the numbers in Table 2.
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Figure 5. Paleomagnetic data from our study. DDx errors of the rotation vectors are shown in gray.
Numbers correspond to those in Table 2. Diagrams shown in red indicate rejected sites. Rotations mea-
sured from (a) early Cretaceous rocks, (b) late Cretaceous rocks, (c) Paleocene rocks and (d) Eocene rocks.
(e) Map showing a compilation of all data from our study and from literature data from late Cretaceous rocks
that pass our quality criteria. (f) Longitude versus rotation (declination) plot with all accepted data sets
included. A clear trend from CCW rotation to zero rotation to CW rotation can be observed in the central
Pontides.
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Figure 6. Equal‐area projections of the individual VGP directions (a and e) before E/I correction and
equal‐area projections of the individual ChRM directions (b and f) before and (c and g) after E/I correction
(symbols as in Figure 5) [Tauxe and Kent, 2004] with (d and h) corresponding (left) elongation versus
inclination and (right) fraction (of 5000 bootstraps) versus inclination plots for TA5 (Figures 6a–6d) and
TA2 (Figures 6e–6h). In Figure 6d and 6h (left) the E/I for the TK03.GAD model (green line) and for the
data sets (red barbed line) for different degrees of flattening are plotted. The red barbs indicate the direction
of elongation (horizontal is E–Wand vertical is N–S). Also shown are examples (yellow lines) from 20 (out
of 5000) bootstrapped data sets. The crossing points (if the data set intersects the model) represent the
inclination/elongation pair most consistent with the TK03.GAD model, given as incEI (in green) at the top;
incorg = original inclination, Eorg = original elongation of the data set, EEI and incEI are the elongation and
inclination, respectively. In Figures 6d and 6h (right), a histogram of intersecting points from 5000 boot-
strapped data sets is shown. The most frequent inclination (solid red vertical line; dashed red vertical lines
denote the 95% bootstrap error) is given as value (and error range) on top; the inclinations of the original
distribution (blue vertical line) or the intersection with the model (green vertical line) are indicated; E = the
elongation resulting from the bootstrapped data sets.
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study by Channell et al. [1996], suggesting a gap in the APW
path between Eurasia and Pontides of approximately 10° in
paleolatitude (Figure 7), when compared to the pole path of
Torsvik et al. [2008]. However, those data were all taken from
sediments and not corrected for inclination error. Correction
for inclination error on those data would probably result in a
smaller gap between the Eurasian APW path and the location
of the Pontides.

6. Conclusions
[40] Analysis of a large number (47 sites, more than 1000

cores) of paleomagnetic data, supplemented with published
data, from rocks ranging in age from early Cretaceous to

Eocene reveals that the northward convex shape of the central
Pontides fold‐and‐thrust belt can be defined as an orocline
that formed in latest Cretaceous to earliest Paleocene times.
Orocline formation requires a deformation event such that the
pre‐existing structures are bent.
[41] Collision and indentation of the Anatolide‐Tauride

Block and its metamorphic promontory, the CACC, with the
Pontides in late Paleocene times seems to be the most likely
mechanism for orocline formation, considering the timing of
oroclinal bending and the timing of collision between the
Kırşehir Block and the Anatolide‐Tauride Block with the
Pontides. Paleomagnetic data from Eocene to Miocene rocks
from the more southward located Çankırı Basin [İşseven and

Figure 7. Paleolatitude versus age diagrams showing the expected paleolatitude for Eurasia with its
Dl error envelope (in gray) calculated from the DIx according to Torsvik et al. [2008]. Blue dotted
lines show latitude versus age curve when a flattening of 0.9–0.3 was applied to the values calculated by
the APW path [King, 1955]. (left) Large green diamonds (accepted) and small green circles (rejected)
indicate paleolatitude with the Dl calculated from the DIx that was obtained from A95 using the Creer
transformation [Creer, 1962] on a95, usually given in literature (Table 2). (right) Large red diamonds
(accepted) and small red circles (rejected) indicate paleolatitude with the Dl calculated from the DIx
(using A95) from this study. Blue diamonds (green circles) showing the paleolatitude of site TA2 (TA5)
before and after correction with the E/I method of Tauxe and Kent [2004] with their error bars (Dl
calculated from the DIx for uncorrected data sets, 95% bootstrap error range for the TK03.GAD corrected
data sets).
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Figure 8. Equal‐area projections of the AMS (anisotropy of the magnetic susceptibility) for sites (left)
TA2 and (right) BG7. Yellow, large symbols indicate the mean of the tensor mean axes (kmin, kint, kmax)
and their error ellipses [Jelinek, 1981]. Arrows represent inferred extension/compression directions. Red
star indicates the ChRM direction of the rocks from sites TA2 and BG7.

Figure 9. Conceptual model explaining the rotational history of the central Pontide orocline and the
Çankırı Basin. (a) Campanian‐Maastrichtian: Anatolide‐Tauride Block (ATB) approaches the Pontides,
(b) latest Cretaceous: collision of ATB with the Pontides causes orocline formation in the central Pon-
tides, and (c) Eocene‐Oligocene: thin‐skinned thrusting propagates southwards, rotation in the central
Pontides stops and concentrates in the Çankırı Basin.
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Tüysüz, 2006; Kaymakci et al., 2003], show strong rotations
from Eocene to Oligocene times in this area, suggesting that
the shortening and deformation front migrated southward.
[42] Furthermore, the majority of the paleolatitude data

from the sampled sites and literature data show a (much)
lower paleolatitude than predicted by the Eurasian APWpath.
Inclination error correction with the E/I‐method of two of our
sites that allow correction (N = ~100), predicts paleolatitudes
that are within error identical to the Eurasian APW path. This,

once more, shows that paleolatitude data from sediments
should be interpreted with care.
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