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Abstract

Modeling and simulation play an important role in transportation net-
works analysis. With the widespread use of personalized real-time informa-
tion sources, the behavior of the simulation depends heavily on individual
travelers reactions to the received information. As a consequence, it is rel-
evant for the simulation model to be individual-centered, and multiagent
simulation is the most promising paradigm in this context. However, rep-
resenting the movements of realistic numbers of travelers within reasonable
execution times requires significant computational resources. It also requires
relevant methods, architectures and algorithms that respect the character-
istics of transportation networks. In this paper, we define two multiagent
simulation models representing the existing sequential multiagent traffic sim-
ulations. The first model is fundamental diagram-based model, in which trav-
elers do not interact directly and use a fundamental diagram of traffic flow to
continuously compute their speeds. The second model is car-following based,
in which travelers interact with their neighbors to adapt their speeds to their
surrounding environment. Then we define patterns to distribute these sim-
ulations in a high-performance environment. The first is agent-based and
distributes agents equally between available computation units. The second
pattern is environment-based and partitions the environment over the differ-
ent units. The results show that agent-based distribution is more efficient
with fundamental diagram-based model simulations while environment-based
distribution is more efficient with car following-based simulations.

Keywords: Multiagent Systems, Traffic, Simulation, High Performance
Computing
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1. Introduction

Mobility policies makers need decision support systems to decide which
transportation policies they should implement. In this context, simulation is
one of the important tools that allow to test strategies and multiple scenarios
without impacting the real traffic (Abadi et al., 2015). However, transport
systems are becoming progressively more complex since they are increas-
ingly composed of connected entities (mobile devices, connected vehicles,
etc). It becomes critical that simulation tools take into account this fact. In-
deed, with the generalization of real-time traveler information, the behavior
of modern transport networks becomes harder to analyze and to predict.

For these reasons, multiagent simulation, which adopts an individual-
centered approach, is one of the most relevant paradigms to design and im-
plement such applications. The design and development of multiagent traffic
simulations are relevant in several contexts and in pursuit of various ob-
jectives. The simulation can be used to validate the impact of the use of
cooperative systems (Guériau et al., 2017), to test changes in behavior after
the introduction of new mobility services, such as carpooling. A multiagent
traffic simulation platform simulates the behavior of travelers interacting in a
complex, dynamic and open environment, on which they have a partial per-
ception (Badeig et al., 2008). Each agent tries to find the most efficient route
to reach its destination in a network evolving dynamically. In some applica-
tions (e.g. Zargayouna et al. (2013)), an agent can potentially be informed
of the status of the network and use this information to modify its route.
In this kind of simulations, it is important to model and simulate a realistic
number of travelers to correctly observe the effects of individual decisions.
In the European project Instant Mobility1 for instance, the objective was to
supply a multimodal platform with individual and multimodal travel queries
and dynamic positions of travelers and vehicles. To allow the platform to
demonstrate its efficiency in an operational context, we implemented a sim-
ulator (called SM4T (Zargayouna et al., 2018)), which had to be executed
with an actual volume of travelers. Other examples where simulations must
be scalable concern the testing of new mobility services such as carpooling,

1http://www.instant-mobility.com/
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car sharing, dial a ride, evacuation modeling, the exchange of information
between connected vehicles, etc.

However, the simulation of an actual number of passengers in a big city
(several millions of travelers) comes with a high cost. If the same comput-
ing infrastructure is maintained, the cost is a loss in accuracy. Otherwise,
the cost is a considerable computing power and an architecture allowing the
distribution of computations on many computation units. We desire to keep
the same simulation quality and choose the latter approach. However, the
majority of current multiagent traffic simulators do not allow such distribu-
tion. This induces limitations on the number of simulated travelers, means
of transport and the size of the considered networks. Our main objective in
this paper is to provide reproducible distribution patterns that could be used
by existing and future implementations of multiagent traffic simulations.

In this paper, we propose to study distribution methods for multiagent
traffic simulations. We define two multiagent simulation models, representing
the main types of multiagent simulations of the literature. The first model is
called fundamental diagram-based model, in the sense that travelers do not
interact directly but use a fundamental diagram of traffic flow to continuously
compute their speeds. This is the choice performed for instance by Zargay-
ouna et al. (2014); Meignan et al. (2007); Mahmassani (2001) and Cajias
et al. (2011). The second model is called car following-based, in which trav-
elers interact with their neighbors to adapt their speeds to their surrounding
environment. This is the most common choice performed in the literature
for multiagent simulations (e.g. Zhang and El Kamel (2018); Kühnela et al.
(2018)). These two models correspond partially to microscopic and meso-
scopic traffic simulations. Microscopic models simulate the interactions be-
tween individual vehicles, while mesoscopic models simulate small groups of
traffic entities, whose interactions are described in a medium level of detail.
This paper studies two distribution patterns (agent-based and environment-
based) applied to these two simulation models. The objective is to discover
the most suitable distribution pattern, provided a chosen multiagent traffic
model. The results show that agent-based distribution is more efficient with
fundamental diagram-based simulations while environment-based distribu-
tion is more efficient with car following-based simulations.

The remainder of this paper is structured as follows. In section 2, we
present the previous proposals for multiagent traffic simulation and the ex-
isting distributed multiagent platforms. Section 3 presents a simulator for
the execution of both fundamental diagram-based and car following-based
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multiagent traffic simulations. Section 4 presents the two distribution pat-
terns (agent-based and environment-based) and their application to the two
simulation models. Section 5 explains our experimental setup and the results
of our simulations. Section 6 concludes this paper.

2. Related work

2.1. The problem

The problem tackled in this paper is to distribute n agents on k connected
computation units. The interactions between agents on the same units are
less costly then inter-units interactions, which generates messages using the
communication network. Let wi the workload of agent ai. Let p(ai, aj) the
interaction costs between agents ai and aj. If they are on the same unit, this
cost is zero. The workload of a unit Ui is:

W (Ui) =
∑
aj∈Ui

wj (1)

The communication cost between two units Ui and Uj is:

P (Ui, Uj) =
∑
ak∈Ui

∑
al∈Uj

p(ak, al) (2)

An ideal distribution of the n agents on the k units is a multi-objective
optimization which has to:

• distribute best the workload between units,

• limit to the maximum the communications between units.

Formally, find the distribution minimizing:∑
1≤i≤j≤k

P (Ui, Uj) with W (Ui) =

∑
1≤h≤kW (Uh)

k
+ ε (3)

Miyata and Ishida (2007) perform an integer programming optimization
of the problem. Even if this approach allows to find an optimal solution to the
distribution problem, the computational complexity increases exponentially
with the number of agents, which makes it unusable for large-scale traffic
simulations.
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Two approaches exist for distributing simulations (Vigueras et al., 2010;
Rihawi et al., 2014). The first ignores communication costs and focuses on
workload, distributing the agents the most equitably possible between units.
The second approach is environment-based: il assumes that agents that are
physically close would probably interact more. The environment is then split
and each unit is responsible of a subpart of the environment and the agents
in it.

2.2. State of the art

In this section, we position our work with the previous works in the
literature. In the next paragraph, we present the existent multiagent traffic
simulators. Then we focus on the existing proposals for distributing these
platfoms. We finally describe the parallel multiagent platforms.

2.2.1. Multiagent traffic simulation

There exist several multiagent traffic simulations in the literature. Most
of them are car following-based models, in the sense that they rely on lo-
cal interactions between traveler agents to define agents speeds. For in-
stance, Transims (Nagel and Rickert, 2001), MATSim (Kühnela et al., 2018),
Sumo (Zhang and El Kamel, 2018) and Vissim (Ehlert et al., 2017) are widely
used car following-based simulators of this type. AgentPolis (Čertickỳ et al.,
2014), Polaris (Auld et al., 2016) and Archisim (Doniec et al., 2008) are also
multiagent traffic simulation platforms describing precisely the behaviors of
each traveler at a microscopic scale. Some existing multiagent simulations
are fundamental diagram-based model, in the sense that they compute the
agents speeds based on a function mapping the number of agents traveling
on an edge with their speeds. This model is generally used when an individ-
ual representation of travelers is needed but there are no reliable data about
their local behavior. Zargayouna et al. (2014); Meignan et al. (2007); Cajias
et al. (2011); Mahmassani (2001) have made this choice.

2.2.2. Distributing traffic simulation

The problem of distributing multiagent traffic simulations has attracted
many studies recently. Some previous works have addressed the specific prob-
lem of distributing multiagent traffic simulations. Bragard et al. (2016) pro-
pose dSumo, a distribution platform applied to the Sumo microscopic sim-
ulation platform. Lee and Chandrasekar (2002) propose a parallel version
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of Paramics (Chen et al., 2016). However, they present small clusters and
networks (grid-like).

Some proposals in the literature propose parallel but non-distributed so-
lutions. These simulations are potentially faster but can only work with
multi-threaded environment but not with distributed environments. Nagel
and Rickert (2001) present a parallelization of the Transims platform. They
use a master-slave model for synchronizing the different units. Qu and Zhou
(2017) present parallel-computing framework for mesoscopic transportation
simulation. Aimsun (Barcelo et al., 1998) also proposes such a parallel but
not distributed simulation setup.

All these interesting proposals focus on distributing specific simulation
platforms. In the present work, our objective is to propose distributed mech-
anisms that are independent from specific traffic platforms. In addition, to
the best of our knowledge, our work is the only one dealing with the dis-
tribution of simulations using the two different interaction models (viz. car
following-based model and fundamental diagram-based model).

Some general-purpose multiagent platforms have been specifically devel-
oped for large scale simulation in the last years. Mace3j (Gasser and Kaku-
gawa, 2002), James (Himmelspach and Uhrmacher, 2007) and Swages (Scheutz
et al., 2006) are distributed multiagent platforms, but that have no avail-
able source or executable code. Jade (Bellifemine et al., 2007) simplifies the
implementation of distributed multiagent models across a FIPA compliant
middleware. The platform can be distributed across multiple units and its
configuration can be controlled from a remote GUI. Agents are implemented
in Java while the communications relay on the RMI library. D-Mason2 (Cor-
dasco et al.) is the distributed version of the Mason multiagent platform. It
does not require users to rewrite their already developed simulations while
overcoming the limitations on maximum number of agents. RepastHPC (Col-
lier and North, 2011), a distributed version of Repast Simphony, uses the
Repast’s concepts of projections and contexts and adapts them for distributed
environments. Pandora (Angelotti et al., 2001) is close to RepastHPC and
automatically generates the code required for inter-server communications.
GridABM (Gulyas et al., 2009) is based on Repast Simphony but takes an-
other approach and proposes to the programmer general templates to be
adapted to the communication topology of her simulation. Flame (Coakley

2Distributed Mason
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et al., 2012) allows the programmer to generate HPC simulations from finite
state machines. It has also been suggested to use graphical units (GPGPU) to
scale up the multiagent simulations. The TurtleKit 3 platform has been used
in GPGPU (Michel, 2014) and Strippgen and Nagel (2009) propose to use
it in parallelizing multiagent traffic simulations. However, these distributed
platforms do not offer fine controls on how the communications between
units are performed. Indeed, the communication layer is transparent for the
programmer, which makes it easier for him to implement distributed simu-
lations, but prevents him from optimizing the distribution. The best way
to manage the communications depends on the application and using such
general platforms for a traffic simulator would not produce optimal results.
Rihawi et al. (2014) discuss the issues related to multiagent simulation in a
distributed virtual environment. The authors describe methods to split the
virtual environment in several zones to parallelize the simulation execution.
This work proposes an efficient splitting of a continuous space in two dimen-
sions. In the present paper, we use among others an adaptation of this work
for a graph structure, adapted to distribute traffic-based simulations.

3. Multiagent traffic simulations

In the following, we present two multiagent traffic simulations. They are
designed with the objective of representing the existing multiagent traffic sim-
ulations. They contain the main features of these types of simulation, namely
the network and agents individual representation and the agents movements
on this network. This section presents the common components of these
simulations. The following sections present the differences between the two
simulations, mainly concerning the travelers speed computation.

3.1. The multiagent system

The multiagent system, which is common to both simulations, is com-
posed of a dynamic set of agents representing travelers, interacting with a
transportation network environment. We model the transportation network
in which the travelers use a graph G(V,E), where E = {e1, ..., en} is a set
of edges representing the roads and V = {v1, ..., vn} is a set of vertices rep-
resenting the intersections. The agents, representing the travelers, move on
this network from their origins to their destinations, trying to minimize their
travel costs. A traffic simulation usually adheres to the following steps. First,
the simulation platform loads the parameters (simulation duration, number
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of generated agents, etc.) and the description of the network. Then, it cre-
ates the logical graph from the network representation, to enable shortest
paths calculation and agents movements. The agents then execute one step
of simulation. During a step of simulation, each agent either computes a
shortest path or moves from one position to another. When an agent reaches
its destination, it leaves the simulation. When the simulation duration is
reached, the simulation stops and the results are collected.

When created, an agent has an origin node o and a destination node d.
The first action that it executes when created and activated is to compute
an A? shortest path algorithm between o and d. The shortest path is per-
formed on the graph G, which edges costs are dynamic, depending on the
current traffic. When it has a current path, the agent moves according to
it. At each activation, it moves the allowed distance following its current
speed. The speed of the agent is computed following the simulation model
(car following-based or fundamental diagram-based model), described in the
following sections. Each time it reaches a node, the agent recomputes a
shortest path, to check if the current traffic conditions have evolved and if a
new shortest path has become available3.

These are the main components of the model that are common to both
types of simulations. In the following sections, we present the specific meth-
ods for the two simulations, namely fundamental diagram-based and car
following-based.

3.2. Fundamental diagram-based simulation model

In the fundamental diagram-based simulation model, the speed of an
agent on an edge is computed following the number of other agents travel-
ing on the same edge. To this end, a fundamental diagram of traffic flow
is used (Daganzo, 1994). The diagram defines a relation between the flow
(vehicles/hour) and the density (vehicles/km) (cf. Figure 1) on an edge or
a part of an edge to calculate the speed of the agents at each time. The
fundamental diagram suggests that if we exceed a critical density of vehicles
kc, the more vehicles are on a road, the slower they move (Figure 2).

With the distribution objective that we have, the locations of the agents
and their interaction patterns are the most important. In the fundamental

3The graph being directed, turnarounds are only possible at nodes and there is no need
for the agent to execute a shortest path while traveling on an edge.
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Figure 1: Fundamental diagram

Figure 2: Speed in function of density

diagram-based model, the agents do not interact directly. The speed of the
agent is computed with an interaction between the agent and the edge. The
edge knows the number of agents currently using it, and based on the speed
function providing the right speed to be used by the agent, based on the
fundamental diagram (cf. Figure 2).

Zargayouna et al. (2014); Meignan et al. (2007); Cajias et al. (2011);
Mahmassani (2001) for instance adhere to this fundamental diagram-based
model.
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3.3. Car following-based simulation model

In the car following-based simulation model, the speed of an agent on an
edge is computed following the position and speed of the vehicles surrounding
him. In this model, the information available to each agent is only local. The
agents perceive a part of their environment and calculate their next move
given the perceived information. This implies many local communications
between the agents, because their actions are conditioned by the actions of
the other agents present in their surroundings. This model is generally based
on a car-following model described in the following.

At each activation, each agent i computes its speed based on the speed
and position of the agent i− 1 before him:

speedi(t+ T ) = αspeedi(t) + βsi,i−1(t)
with T the reaction time and si,i−1(t) the relative speed of i.

Figure 3: The car-following model

If there is no vehicle preceding the agent, it accelerates until it reaches
the speed limit of its edge.

In this model, we cannot rely on the fundamental diagram of traffic to
continuously have the current travel times on the edges. Instead, each agent
registers its experienced travel time when it reaches the end of the edge (as
proposed by Wahle et al. (2002)). The shortest path calculation is based on
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the graph where the travel times costs are fed by the agents following this
procedure.

In contrast with the fundamental diagram-based model, the agents in the
car-following model do interact directly. The speed of the agent is computed
with a direct interaction between the considered agent and the agents be-
fore him. This difference between the two models conditions the choice of
the relevant distribution pattern for the considered simulation type. The
distribution patterns are described in the following section.

Behrisch et al. (2011); Maciejewski and Nagel (2012); Doniec et al. (2008);
Cameron and Duncan (1996) for instance adhere to this car following-based
model.

4. The Distribution Methods

We define two patterns to distribute traffic simulations. The patterns are
the same than those identified by Rihawi et al. (2014) for general-purpose
situated multiagent simulations, and we believe that they present two repre-
sentative distribution patterns for this kind of simulations. The first pattern
(called agent-based distribution) is the distribution model used by Barceló
et al. (1998). It consists in the duplication of the transport environment on
all processing units, and the equal dispatching of the agents on each one.
As a consequence, agents stay on the same unit during all the simulation.
The second pattern is the mostly used pattern in the literature. It consists
in partitioning the transportation environment and the dispatching of each
subpart of the environment - and all the agents in it - on each processing
unit. In this pattern, agents might have to move from one unit to another if
their itinerary crosses several subparts of the transport environment.

4.1. Agent-based distribution

The first distribution pattern is agent-based, since it clusters the set of
agents in k equal parts (with k the number of available processing units), and
distributes each subset on a unit and executes the simulation (cf. Figure 4).
The transportation network is duplicated on each unit. This method ensures
that each unit has the same amount of work at any time of the simulation. In
the following, we describe the use of this pattern for both simulation models
that we have defined.
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4.1.1. Fundamental diagram-based simulation with agent-based distribution

In a fundamental diagram-based simulation, when it is distributed follow-
ing the agent-based distribution pattern, every unit continuously informs the
other units of its network state. Indeed, every unit does not have a complete
view of the network state, since only a part of the agents evolve in the unit.
Thus, every unit sends the list of edges together with the number of agents
currently on them. Each unit is then capable of computing the relevant speed
for each agent (using the fundamental diagram of traffic) and to compute the
shortest paths for the agents.

4.1.2. Car following-based simulation with agent-based distribution

When distributed following the agent-based distribution pattern, the agents
in a car following-based simulation do not use a fundamental diagram of traf-
fic to compute their speeds. Instead, they need to know the state of the agents
preceding them. To do so, they interrogate the edges in the other units to
know if there are agents preceding them, and if it is the case, to know their
states. Moreover, the units exchange the current travel times (provided by
the agents as explained in the car following-based model), in order to compute
the shortest paths for the agents.

4.2. Environment-based distribution

The second approach to distribute traffic simulations is environment-
based. Its main idea is that it tries to keep on the same unit the agents
who are geographically close in the transport network (cf. Figure 5). To this
end, the network is partitioned in k parts (with k the number of available
processing units), and distribute it between the different units. Each unit is
only aware of what is happening on the part of the graph that it is managing,
and the agents that are in the same area are now likely to be on the same
unit. If an agent reaches a part of the network that is not managed by its
current unit, it moves to the proper unit. In order for the environment dis-
tribution method to be effective, each unit has to manage approximately the
same number of agents and the number of edges connecting the partitions
has also to be minimized (to reduce the number of agents being transferred
between units).

The problem of graph partitioning has been widely studied in the scien-
tific literature. We propose a method derived from the Differential Greedy
algorithm by Fiduccia and Mattheyses (1982) that allows us to use the al-
gorithm with weighted vertices while producing more connected partitions
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Figure 4: Agents distribution

(Algorithm 1). For edges partitioning, we make the same choice as Cetin
et al. (2003) by not cutting edges in the middle. We associate each edge with
the partition of its origin node.

The algorithm starts by creating a minimal partition with only one node
each (instructions (1) to (5)). Then, while there are nodes to be associated
to partitions, the algorithm:

• chooses the lightest partition Pp, in terms of agents present in it (in-
struction (6))

• finds the nodes that are the most connected with the nodes already in
Pp and that are the least connected with the nodes that are not in Pp.
The parameter ε gives more or less importance to the nodes that are
close to the partition (instruction 7).

• chooses one of these nodes, adds it to the partition and removes it from
the nodes to process (instructions 8 to 10).

Our modification of the original differential greedy algorithm concerns
the choice of the current partition to treat. The “lightest” partition in the
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Algorithm 1 Differential Greedy algorithm

Require:Graph G = (V,E), number k of partition
Ensure:Partition P
(1) P ← P0, ..., Pk−1
(2) V ′ ← V
for p ∈ [0, k − 1] do

(3) v ← random vertex of V ′

(4) Pp ← {v}
(5) V ′ ← V ′ \ {v}

end for
while |V ′| > 0 do

(6) p← index of the lightest partition
(7) m = minv∈V ′(1 + ε)(number of v’s neighbors ∈ Pp)− (number of v’s
neighbors /∈ Pp)
(8) mv = random vertex of v ∈ V ′|(1 + ε)(number v’s neighbors ∈
Pp)− (number of v’s neighbors/∈ Pp) = m
(9) Pp ← Pp ∪ {mv}
(10) V ′ ← V ′ \ {mv}

end while
(11) Return P
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Figure 5: Environment distribution

original algorithm concerns the number of nodes in the partition, while in
our algorithm, it concerns the number of agents in the partition. The second
difference concerns the use of ε, which encourages the connectivity of the
sub-partitions. Indeed, having sub-partitions that are not connected could
lead to agents going back and forth to the same unit while staying in the
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same neighborhood.

4.2.1. Fundamental diagram-based simulation with environment-based distri-
bution

When used with an environment-based distribution, the computation
units in the fundamental diagram-based simulation exchange the current
travel times on the transport edges, to be able to compute the shortest paths
for the agents. However, since all the agents on an edge are present on the
same unit, they do not need to exchange the number of agents per edge. The
fundamental diagram of traffic and the speeds of the agents can indeed be
defined locally.

4.2.2. Car following-based simulation with environment-based distribution

When distributed following the environment-based distribution pattern,
the agents in a car following-based simulation need to know the state of the
agents preceding them. In contrast with the agent-based distribution model,
the agents preceding them are by definition present on the same computation
unit. The interrogation of the edges is then local to the concerned computa-
tion unit. The units keep on exchanging the current travel times (provided
by the agents) to compute the shortest paths for the agents.

5. Experiments and Results

5.1. Implementation

A way to execute a distributed simulation is to define a distributed pro-
gram where each computation unit, while executing the same program, owns
only a part of the program data in its private memory, and all the processors
are connected by a network. The advantage of this approach is its high scal-
ability. Indeed, it can be implemented on most parallel architectures and we
can deploy the same simulation on larger systems if we need more computing
power and memory. We use Python to develop our simulator for its efficiency
in quick prototyping. Python is a mature portable language with many well
tested scientific libraries and is along with C and Fortran one of the most
used languages for high performance computing (Shivashankar and Natara-
jan, 2015). Here, we do not seek absolute performance, but we aim to study
the relative efficiency of different distribution methods. Thus we believe that
Python is a relevant choice. The inter-process communications are managed
by MPI, which is the standard language for parallel computing with a huge
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community of users. MPI offers a simple communication model between the
different processes in a program and has many efficient implementations that
run on a variety of machines4.

We use the igraph tools for the modeling of the traffic network in the
form of a directed graph. Three python classes are defined. The Simulation
class loads the parameters, the graphs and creates the agents. The Context
class manage the agents, while the Agent class manages the agents behaviors,
including their movements and shortest paths calculations.

We have executed the distributed simulations on an experimental cluster
that we have set up. For our tests, we used two units under Linux Mint 17.2
Rafaela (kernel version 3.16.0-38-generic) each with an Intel Xeon processor
CPU E7-4820 (32 cores at 2Ghz) with 250GB of memory. A ssh server
is installed on each machine. The ssh protocol is used by MPICH 3.0.4, to
encapsulate the MPI messages. We ran the simulations on six configurations:
the first is a sequential version of the program on a single core and the five
others are distributed versions with 4, 8, 16, 32 and 64 cores. The behaviors in
terms of traffic of the sequential and all the distributed versions are rigorously
the same.

We have considered two networks. The first is a real network concern-
ing the Paris-Saclay region, France, with 1895 nodes and 3831 edges. The
number of daily travelers using this network is around 110,000. The origins-
destinations of the travelers are based on real data travel patterns. We con-
sider from 10,000 travelers to 500,000 travelers in our simulations. That
means that we represent from around 10% to around 500% of the real vol-
umes of travelers in our simulations. The second is a virtual network of
200 nodes power-law graph generated with the Barabasi and Albert (1999)
model with random origins and destinations. We have executed each simula-
tion 10 times and provide the average results 5 We consider no lane-changing
behaviors in the implemented car-following model.

5.2. Results

5.2.1. Distribution Method × Simulation Model

In this section, we compare the two methods of distribution (agent-based
and environment-based distributions) with the different simulation models

4MPI4PY is an efficient interface that allows to use MPI with Python.
5The standard deviation is less than 5% in all the simulations.
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(car following-based model and fundamental diagram-based model) with in-
creasing the number of agents (from 10,000 to 500,000).

Figure 6: Speedup for the agent-based distribution (Paris-Saclay Network)

The speedup measures how many times the distributed simulation is faster
compared to the corresponding sequential execution. The speedups for the
two distributions methods applied on the different paradigms are plotted
in Figure 6 and Figure 7. As we can see, the agent distribution is effi-
cient for a fundamental diagram-based model (more than 5 times faster with
500,000 agents). There is no local interactions in this type of simulations and
therefore this method allows to get a perfectly balanced load all along the
simulation, while keeping the amount of inter-servers communications at the
minimum.

However, this method is particularly ineffective in the case of a car following-
based simulation. Indeed, the agents interact continuously with the other
agents that are not situated in the same unit. This generates many commu-
nications between the servers, and the gain of the parallelization is annihi-
lated by the time required by these communications. This method is even
less efficient than the sequential execution for the car following-based model
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Figure 7: Speedup for the environment-based distribution (Paris-Saclay Network)

Figure 8: Preferred pairs (Paris-Saclay Network)

(speedup < 1).
For a fundamental diagram-based simulation, the environment-based dis-

tribution is less efficient than agent-based distribution. It is well adapted for
a car following-based model simulation though. This method is up to 14 times
faster than a sequential execution applied in a car following-based simulation.
The explanation of the poor results of the fundamental diagram-based sim-
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ulations with environment-based distribution is that the communication of
edges costs between units, necessary for the computation of vehicles speeds,
takes too much time and penalizes these simulations.

Figure 8 shows the preferred pairs (fundamental diagram with agent-
based distribution and car-following with environment-based distribution).
The curves show that the pair environment-based distribution with car-
following model is more effective than the pair agent-based distribution with
fundamental diagram based.

5.2.2. Impact of Network type

To assess the impact of network type and size on the distribution, we
have executed the same methods on a virtual network of 200 nodes power-law
graph generated with the Barabasi-Albert model Barabasi and Albert (1999).
Origins and destinations are this time generated randomly. The Figure 9 pro-
vides the results for the agent-based distribution and Figure 10 provides the
results for the environment-based distribution. For agent-based distribution,
the findings are the same: the fundamental diagram-based simulations behave
way better than car following-based simulations. However, for environment-
based distribution, the findings are different: the two simulations types profit
of the distribution at the same level (fundamental diagram-based simulations
perform even slightly better). We explain this difference by the network size.
Indeed, Paris-Saclay network is ten times bigger than the considered virtual
network. The communication of edges costs between units, necessary for the
computation of vehicles speeds, is a lot less costly with the virtual network
and does not penalize the fundamental diagram-based simulations anymore.

5.2.3. Increasing units Numbers

To better assess the scalability of the different distribution methods, we
execute the different simulations on the Paris-Saclay network with increasing
number of available units: 4, 8, 16, 32 and 64. We consider 100,000 travelers
in these simulations, which correspond to the real number of daily travelers.
The results are reported in Figure 11 for agent-based distribution and Fig-
ure 12 for environment-based distribution. The results show that the speedup
is increasing fast for environment-based distribution with car following-based
simulation and for agent-based distribution with fundamental diagram-based
simulation. The speedup is stable or increasing slowly for agent-based dis-
tribution with car following-based simulation and for environment-based dis-
tribution with fundamental diagram-based simulation. These results confirm
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Figure 9: Speedup for the agent-based distribution (Barabasi network)

Figure 10: Speedup for the environment-based distribution (Barabasi network)

the findings of section 5.2.1: environment-based distribution is efficient with
car following-based simulation and agent-based distribution is efficient with
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fundamental diagram-based simulation.

Figure 11: Impact of the number of units (agent-based distribution)

6. Conclusions and perspectives

The work presented in this paper is motivated by the scalability limita-
tions of existing simulation platforms, and specifically of our simulation plat-
form SM4T (Zargayouna et al., 2014). We applied two distribution methods
on two types of multiagent traffic simulators. The results show that agent-
based distribution is well suited for fundamental diagram-based simulators
while environment-based distribution is well suited for car following-based
simulations. To use the distribution methods presented in this paper, we
have to first classify the simulation platform at hand. For SM4T, the sim-
ulation is fundamental diagram-based because agent’s speeds are computed
with a function associated with the edges that they are using. As a con-
sequence, distributing SM4T should be performed following an agent-based
distribution model. Of course, the actual implementation of the distributed
version of the simulation platform has to be done. But now we know which
distribution pattern would me more relevant. This process could be applied
with other simulation platforms to be distributed.
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Figure 12: Impact of the number of units (environment-based distribution)

In the near future, we will propose a load balancing algorithm that is
able to dynamically balance the loads of a traffic simulation. We will also
test this method on a cloud-like environment (single core units, linked by a
network). We also plan to consider multimodal multiagent traffic simulators.
The presence of different transport modes and networks could encourage to
mix the patterns presented in this paper with a distribution per transport
mode. We are also working on the integration of information networks (such
as social networks or intervehicular interaction (Zargayouna et al., 2016)) and
their impact on the distribution performance. Indeed, if travelers interact
often, they should be preferably executed on the same units, or else they
would generate too many communication and deteriorate the performance of
the system. Finally, other aspects than simulation models might impact the
distribution, such as the presence of a multi-threading or message-passing
environments, and we will consider investigating them. The experiments in
this paper were performed on a research simulator, and we look forward to
confirming them with other models from the literature.
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