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Abstract. Verification of real-time systems involving hard timing con-
straints and concurrency is of utmost importance. Parametric timed
model checking allows for formal verification in the presence of unknown
timing constants or uncertainty (e. g., imprecision for periods). With the
recent development of several techniques and tools to improve the effi-
ciency of parametric timed model checking, there is a growing need for
proper benchmarks to test and compare fairly these tools. We present
here a benchmark library for parametric timed model checking made of
benchmarks accumulated over the years. Our benchmarks include aca-
demic benchmarks, industrial case studies and examples unsolvable using
existing techniques.

Keywords: case studies · model checking · parameter synthesis · para-
metric timed automata

1 Introduction

Verification of real-time systems involving hard timing constraints and concur-
rency is of utmost importance, and is now recognized in standards such as the
DO-178C, that allows formal methods without addressing specific process re-
quirements. Model checking is a popular model-based technique that formally
verifies whether a model satisfies a property. Parametric timed model checking
significantly enhances model checking by allowing its application earlier in the
design phase, when timing constants may not be known yet. In addition, it is
possible to verify systems in the presence of uncertainty, e. g., when some peri-
ods are known with some limited precision. This is the case of Thales’ FMTV1

challenge 2014 where the system was characterized with uncertain but constant
periods, that rules out the use of non-parametric timed model checking.

? This is the author version of the manuscript of the same name published in the
proceedings of the Sixth International Workshop on Formal Techniques for Safety-
Critical Systems (FTSCS 2018). This work is partially supported by the ANR na-
tional research program PACS (ANR-14-CE28-0002) and by ERATO HASUO Meta-
mathematics for Systems Design Project (No. JPMJER1603), JST.

1 “Formal Methods for Timing Verification Challenge”, in the WATERS workshop:
http://waters2015.inria.fr/
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Popular formalism for parametric timed model checking include parametric
timed automata (PTAs) [AHV93] and parametric time Petri nets [TLR09].

Several tools support parameters, such as HyTech [HHWT95] (paramet-
ric hybrid automata), Romeo [LRST09] (parametric time Petri nets), IMITA-
TOR [AFKS12] (parametric timed automata), PSyHCoS [ALS+13] (paramet-
ric stateful timed CSP), or Symrob (robustness for timed automata) [San15].
In addition, several tools support the larger class of hybrid automata, such as
PHAVer [Fre08] or SpaceEx [FLGD+11] and, while not explicitly supporting pa-
rameters, can encode them.2 Recently, a growing number of analyses and tech-
niques were proposed to analyze parametric timed models (mainly PTAs) such
as SMT-based techniques [KP12], integer hull abstractions [JLR15], corner-point
abstractions [BBLS15], distributed verification [ACN15], NDFS-based synthe-
sis [NPvdP18], machine learning [AL17,LSGA17], etc. However, despite some
case studies informally shared between these works, there is a lack of a common
basis to compare new tools and techniques in a fair manner. Without a stable
list of benchmarks publicly available, it is difficult to assess the efficiency of a
new algorithm.

Contribution. We present here a library of benchmarks containing academic and
industrial case studies collected in the past few years from academic papers and
industrial collaborations. In addition, a focus is made on (possibly toy) examples
known to be unsolvable using current state-of-the-art techniques, with the hope
to encourage the development of new techniques to solve them. Benchmarks are
available online in the IMITATOR input format, and distributed using the GNU
General Public License.

Related libraries. The library most related to ours is that by Chen et al., that
proposes a suite of benchmarks for hybrid systems [CSBM+15]. However, it aims
at analyzing hybrid systems, which are strictly more expressive than PTAs in
theory, and incomparable in practice, as most hybrid systems do not feature tim-
ing parameters. In addition, that benchmark suite focuses only on reachability
properties. Finally and most importantly, it does not focus on parameters, and
the benchmarks are non-parametric. In contrast, our library focuses on para-
metric timed benchmarks, with various types of properties.

Another interesting library is that by Hoxha, Abbas, and Fainekos [HAF14],
that offers Matlab/Simulink models of automotive systems. However, it does
not aim specifically at parametric timed model checking; two of our benchmarks
originally partially come from the aforementioned library [HAF14].

2 IMITATOR parametric timed automata

Parametric timed automata extend finite-state automata with clocks, i. e., real-
valued variables evolving at the same rate. Clocks can be reset along transitions,

2 In a hybrid automaton, a parameter is a variable that can evolve for an arbitrary
amount of time at rate 1, and is then “frozen” (rate 0).
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(b) Reaching l1 if p ∈ N

Fig. 1: Examples of PTAs

and can be compared to constants or parameters (integer- or rational-valued)
along transitions (“guards”) or in locations (“invariants”). IMITATOR paramet-
ric timed automata extend PTAs [AHV93] with some useful features such as
synchronization between components, stopwatches (i. e., the ability to stop the
elapsing of some clocks [CL00]), presence of parametric linear terms in guards,
invariants and resets, shared global rational-valued variables, etc.

Example 1. Consider the PTA in Fig. 1a, containing two locations l0 and l1, two
clocks x and y, and one parameter p. The self-loop on l0 can be taken whenever
x = p holds, and resets x, i. e., can be taken every p time units. In addition,
initially, as x = y = 0 and clocks evolve at the same rate, the transition guarded
by y = 1 ∧ x = 0 cannot be taken. Observe that, if p = 1, then the transition
to l1 can be taken after exactly one loop on l0. If p = 1

2 , then the transition to l1
can be taken after exactly two loops. In fact, the set of valuations for which l1
is reachable is exactly {i | i = 1

n , n > 0 ∧ n ∈ N}.

L/U-PTAs. Lower-bound/upper-bound parametric timed automata (L/U-
PTAs) [HRSV02] restrict the use of parameters: parameters must be par-
titioned between lower-bound parameters (always compared with clocks
as lower bounds, i. e., p ≤ x or p < x) and upper-bound parame-
ters. L/U-PTAs enjoy monotonicity properties and, while the full class of
PTAs is highly undecidable [And18], L/U-PTAs enjoy some decidability re-
sults [HRSV02,BL09,ALR18b]. U-PTAs [BL09,ALR18a] are L/U-PTAs with
only upper-bound parameters.

3 The benchmark library

3.1 Categories

Our benchmarks are classified into three main categories:

1. academic benchmarks, studied in a range of papers: a typical example is the
Fischer mutual exclusion protocol;

2. industrial case studies, which correspond to a concrete problem solved (or
not) in an industrial environment;
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3. examples famous for being unsolvable using state-of-the-art techniques; for
some of them, a solution may be computed by hand, but existing automated
techniques are not capable of computing it. This is the case of the PTA
in Fig. 1a, as a human can very easily solve it, while (to the best of our
knowledge) no tool is able to compute this result automatically.

Remark 1. Our library contains a fourth category: education benchmarks, that
consist of generally simple case studies that can be used for teaching. This cate-
gory contains toy examples such as coffee machines. We omit this category from
this paper as these benchmarks generally have a limited interest performance
wise.

The domain of the benchmarks are hardware asynchronous circuits, commu-
nication or mutual exclusion protocols, real-time systems (“RTS”) and schedu-
lability problems, parametric timed pattern matching (“PTPM”), train-gate-
controllers models (“TGC”), etc.

In addition, we use the following classification criteria:

– number of variables: clocks, parameters, locations, automata;
– whether the benchmark (in the provided version) is easily scalable, i. e.,

whether one can generate a large number of instances; for example, pro-
tocols often depend on the number of participants, and can therefore be
scaled accordingly;

– presence of shared rational-valued variables;
– presence of stopwatches;
– presence of location invariants, as some works (e. g., [AHV93,ALR18a]) ex-

clude them;
– whether the benchmark meets the L/U assumption.

3.2 Properties

We consider the three following main properties:

reachability / safety: synthesize parameter valuations for which a given state
of the system (generally a location, but possibly a constraint on variables)
must be reachable / avoided (see e. g., [JLR15]).

optimal reachability: same as reachability, but with an optimization crite-
rion: some parameters (or the time) should be minimized or maximized.

unavoidability: synthesize parameter valuations for which all runs must always
eventually reach a given state (see e. g., [JLR15]).

robustness: synthesize parameter valuations preserving the discrete behavior
(untimed language) w.r.t. to a given valuation (see e. g., [ACEF09,San15]).

In addition, we include some recent case studies of parametric timed pattern
matching (“PTPM” hereafter), i. e., being able to decide for which part of a log
and for which values of parameters does a parametric property holds on that
log [AHW18]. Finally, a few more case studies have ad-hoc properties (liveness,
properties expressed using observers [ABBL98,And13], etc.), denoted “Misc.”
later on.
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3.3 Presentation

The benchmark library comes in the form of a Web page that classifies models
and is available at https://www.imitator.fr/library.html.

The library is made of a list of a set of benchmarks. Each benchmark may
have different models: for example, Flip-flop comes with three models, one
with 2 parameters, one with 5, and one with 12 parameters. Similarly, some
Fischer benchmarks come with several models, each of them corresponding to
a different number of processes. Finally, each model comes with one or more
properties. For example, for Fischer, one can either run safety synthesis, or
evaluate the robustness of a given reference parameter valuation.

The first version of the library contains 34 benchmarks with 80 different
models and 122 properties.

3.4 Performance

We present a selection of the library in Table 1. Not all benchmarks are given;
in addition, most benchmarks come with several models and several properties,
omitted here for space concern. We give from left to right the number of au-
tomata, of clocks, of parameters, of discrete variables, whether the model is an
L/U-PTA, a U-PTA or a regular PTA, whether it features invariants and stop-
watches, the kind of property, and a computation time on an Intel i7-7500U CPU
@ 2.70GHz with 8 GiB running Linux Mint 18.

“T.O.” denotes time-out (after 300 s). “?” denotes unsolvable, because no
such algorithm is implemented in existing tools. “HS” denotes time-out but
human-solvable: e. g., for Fischer, one knows the correctness constraint indepen-
dently of the number of processes, but tools may fail to compute it. This is also
the case of the toy PTAs in Figs. 1a and 1b.

Despite time-out, some case studies come with a partial result: either because
IMITATOR is running reachability-synthesis (“EFsynth” [JLR15]) which can out-
put a partial result when interrupted before completion, or because some other
methods can output some valuations. For example, for ProdCons, IMITATOR is
unable to synthesize a constraint; however, in the original work [KP12], some
punctual valuations (non-symbolic) are given.

Robustness case studies are not part of Table 1, but are included in the online
library.

4 Perspectives

Syntax. So far, all benchmarks use the IMITATOR input format; in addition,
only if the benchmark comes from another model checker (e. g., a HyTech or
Uppaal model), it also comes with its native syntax. In a near future, we plan
to propose a translation to Uppaal timed automata; however, some information
will be lost as Uppaal does not allow parameters, and supports stopwatches in a
limited manner. A future work will be to propose other syntaxes, or a normalized
syntax for parametric timed model checking benchmarks.
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Table 1: A selection from the benchmark library
Benchmark Ref Domain Scal. |A| |X| |P| |V| L/U Inv SW Prop. Time

Academic

And-Or [CC05] Circuit × 4 4 12 0 −
√
× Misc. 3.01

CSMA/CD [KNSW07] Protocol
√

3 3 3 0 −
√
× Unavoid. ?

Fischer-AHV93 [AHV93] Protocol
√

3 2 4 0 L/U × × Safety 0.04

Fischer-HRSV02:3 [HRSV02] Protocol
√

3 3 4 1 L/U
√
× Safety HS

Flip-flop:2 [CC07] Circuit × 5 5 2 0 U
√
× Misc. 0.04

Flip-flop:12 [CC07] Circuit × 5 5 12 0 U
√
× Misc. 23.07

idle-time-sched:3 [LSAF14] RTS
√

8 13 2 3 U
√ √

Safety 1.49

idle-time-sched:5 [LSAF14] RTS
√

12 21 2 0 U
√ √

Safety 14.61

Jobshop:3-4 [AM01] Sched.
√

2 3 12 4 −
√
× Opt. reach. 5.58

Jobshop:4-4 [AM01] Sched.
√

4 4 16 4 −
√
× Opt. reach. T.O.

NP-FPS-3tasks:50-0 [JLR13] RTS × 4 6 2 0 −
√
× Safety 1.03

NP-FPS-3tasks:100-2 [JLR13] RTS × 4 6 2 0 −
√
× Safety 65.23

SSLAF14-1 [PGGH98,SSL+13] RTS × 7 16 2 2 −
√ √

Safety 0.33

SSLAF14-2 [WTVL06,SSL+13] RTS × 6 14 2 4 −
√ √

Safety T.O.

ProdCons:2-3 [KP12] Prod.-cons.
√

5 5 6 0 L/U
√
× Reach. T.O.

train-AHV93 [AHV93] TGC × 3 3 6 0 L/U × × Safety 0.01

WFAS [BBLS15] Protocol × 3 4 2 0 −
√
× Safety T.O.

Industrial

accel:1 [HAF14,AHW18] PTPM
√

2 2 3 0 −
√
× PTPM 1.25

accel:10 [HAF14,AHW18] PTPM
√

2 2 3 0 −
√
× PTPM 12.67

BRP [DKRT97] Protocol × 6 7 2 12 −
√
× Safety 248.35

FMTV:1A1 [SAL15] RTS × 3 3 3 5 −
√
× Opt. reach. 6.97

FMTV:1A3 [SAL15] RTS × 3 3 3 7 −
√
× Opt. reach. 87.39

FMTV:2 [SAL15] RTS × 6 9 2 0 −
√ √

Opt. reach. 1.61

gear:1 [HAF14,AHW18] PTPM
√

2 2 3 0 −
√
× PTPM 0.77

gear:10 [HAF14,AHW18] PTPM
√

2 2 3 0 −
√
× PTPM 7.42

RCP [CAS01] Protocol × 5 6 5 6 L/U
√
× Reach. 1.07

SIMOP:3 [ACD+09] Automation × 5 8 3 0 −
√
× Reach. T.O.

SPSMALL:2 [CEFX09] Circuit × 11 11 2 0 −
√
× Reach. 0.96

SPSMALL:26 [CEFX09] Circuit × 11 11 26 0 −
√
× Reach. T.O.

Toy

toy:n Fig. 1b Toy × 1 2 1 0 −
√
× Reach. HS

toy:1/n Fig. 1a Toy × 1 2 1 0 U
√
× Reach. HS

Contributions and versioning. The library is aimed at being enriched with future
benchmarks. Furthermore, it is collaborative, and is open to any willing contrib-
utor. A versioning system will be set up with the addition (or modification) of
benchmarks in the future.
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Silvain Ruel. Synthèse de contraintes temporisées pour une architecture
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HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic
and Algebraic Programming, 52-53:183–220, 2002.
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