
HAL Id: hal-01961496
https://hal.science/hal-01961496v1

Submitted on 20 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A benchmark library for parametric timed model
checking

Étienne André

To cite this version:
Étienne André. A benchmark library for parametric timed model checking. Sixth International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2018), Cyrille Artho and Peter
Csaba Ölveczky, Nov 2018, Gold Coast, Australia. �hal-01961496�

https://hal.science/hal-01961496v1
https://hal.archives-ouvertes.fr

A benchmark library for parametric timed
model checking?

Étienne André1,2,3[0000−0001−8473−9555]

1 Université Paris 13, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France
2 JFLI, CNRS, Tokyo, Japan

3 National Institute of Informatics, Japan

Abstract. Verification of real-time systems involving hard timing con-
straints and concurrency is of utmost importance. Parametric timed
model checking allows for formal verification in the presence of unknown
timing constants or uncertainty (e. g., imprecision for periods). With the
recent development of several techniques and tools to improve the effi-
ciency of parametric timed model checking, there is a growing need for
proper benchmarks to test and compare fairly these tools. We present
here a benchmark library for parametric timed model checking made of
benchmarks accumulated over the years. Our benchmarks include aca-
demic benchmarks, industrial case studies and examples unsolvable using
existing techniques.

Keywords: case studies · model checking · parameter synthesis · para-
metric timed automata

1 Introduction

Verification of real-time systems involving hard timing constraints and concur-
rency is of utmost importance, and is now recognized in standards such as the
DO-178C, that allows formal methods without addressing specific process re-
quirements. Model checking is a popular model-based technique that formally
verifies whether a model satisfies a property. Parametric timed model checking
significantly enhances model checking by allowing its application earlier in the
design phase, when timing constants may not be known yet. In addition, it is
possible to verify systems in the presence of uncertainty, e. g., when some peri-
ods are known with some limited precision. This is the case of Thales’ FMTV1

challenge 2014 where the system was characterized with uncertain but constant
periods, that rules out the use of non-parametric timed model checking.

? This is the author version of the manuscript of the same name published in the
proceedings of the Sixth International Workshop on Formal Techniques for Safety-
Critical Systems (FTSCS 2018). This work is partially supported by the ANR na-
tional research program PACS (ANR-14-CE28-0002) and by ERATO HASUO Meta-
mathematics for Systems Design Project (No. JPMJER1603), JST.

1 “Formal Methods for Timing Verification Challenge”, in the WATERS workshop:
http://waters2015.inria.fr/

1

http://waters2015.inria.fr/

Popular formalism for parametric timed model checking include parametric
timed automata (PTAs) [AHV93] and parametric time Petri nets [TLR09].

Several tools support parameters, such as HyTech [HHWT95] (paramet-
ric hybrid automata), Romeo [LRST09] (parametric time Petri nets), IMITA-
TOR [AFKS12] (parametric timed automata), PSyHCoS [ALS+13] (paramet-
ric stateful timed CSP), or Symrob (robustness for timed automata) [San15].
In addition, several tools support the larger class of hybrid automata, such as
PHAVer [Fre08] or SpaceEx [FLGD+11] and, while not explicitly supporting pa-
rameters, can encode them.2 Recently, a growing number of analyses and tech-
niques were proposed to analyze parametric timed models (mainly PTAs) such
as SMT-based techniques [KP12], integer hull abstractions [JLR15], corner-point
abstractions [BBLS15], distributed verification [ACN15], NDFS-based synthe-
sis [NPvdP18], machine learning [AL17,LSGA17], etc. However, despite some
case studies informally shared between these works, there is a lack of a common
basis to compare new tools and techniques in a fair manner. Without a stable
list of benchmarks publicly available, it is difficult to assess the efficiency of a
new algorithm.

Contribution. We present here a library of benchmarks containing academic and
industrial case studies collected in the past few years from academic papers and
industrial collaborations. In addition, a focus is made on (possibly toy) examples
known to be unsolvable using current state-of-the-art techniques, with the hope
to encourage the development of new techniques to solve them. Benchmarks are
available online in the IMITATOR input format, and distributed using the GNU
General Public License.

Related libraries. The library most related to ours is that by Chen et al., that
proposes a suite of benchmarks for hybrid systems [CSBM+15]. However, it aims
at analyzing hybrid systems, which are strictly more expressive than PTAs in
theory, and incomparable in practice, as most hybrid systems do not feature tim-
ing parameters. In addition, that benchmark suite focuses only on reachability
properties. Finally and most importantly, it does not focus on parameters, and
the benchmarks are non-parametric. In contrast, our library focuses on para-
metric timed benchmarks, with various types of properties.

Another interesting library is that by Hoxha, Abbas, and Fainekos [HAF14],
that offers Matlab/Simulink models of automotive systems. However, it does
not aim specifically at parametric timed model checking; two of our benchmarks
originally partially come from the aforementioned library [HAF14].

2 IMITATOR parametric timed automata

Parametric timed automata extend finite-state automata with clocks, i. e., real-
valued variables evolving at the same rate. Clocks can be reset along transitions,

2 In a hybrid automaton, a parameter is a variable that can evolve for an arbitrary
amount of time at rate 1, and is then “frozen” (rate 0).

2

l0 l1
x ≤ p

y = 1 ∧ x = 0

x = p
x := 0

(a) Reaching l1 if p ∈ { 1
n
| n ∈ N>0}

l0 l1
x ≤ 1

y = p ∧ x = 0
x = 1
x := 0

(b) Reaching l1 if p ∈ N

Fig. 1: Examples of PTAs

and can be compared to constants or parameters (integer- or rational-valued)
along transitions (“guards”) or in locations (“invariants”). IMITATOR paramet-
ric timed automata extend PTAs [AHV93] with some useful features such as
synchronization between components, stopwatches (i. e., the ability to stop the
elapsing of some clocks [CL00]), presence of parametric linear terms in guards,
invariants and resets, shared global rational-valued variables, etc.

Example 1. Consider the PTA in Fig. 1a, containing two locations l0 and l1, two
clocks x and y, and one parameter p. The self-loop on l0 can be taken whenever
x = p holds, and resets x, i. e., can be taken every p time units. In addition,
initially, as x = y = 0 and clocks evolve at the same rate, the transition guarded
by y = 1 ∧ x = 0 cannot be taken. Observe that, if p = 1, then the transition
to l1 can be taken after exactly one loop on l0. If p = 1

2 , then the transition to l1
can be taken after exactly two loops. In fact, the set of valuations for which l1
is reachable is exactly {i | i = 1

n , n > 0 ∧ n ∈ N}.

L/U-PTAs. Lower-bound/upper-bound parametric timed automata (L/U-
PTAs) [HRSV02] restrict the use of parameters: parameters must be par-
titioned between lower-bound parameters (always compared with clocks
as lower bounds, i. e., p ≤ x or p < x) and upper-bound parame-
ters. L/U-PTAs enjoy monotonicity properties and, while the full class of
PTAs is highly undecidable [And18], L/U-PTAs enjoy some decidability re-
sults [HRSV02,BL09,ALR18b]. U-PTAs [BL09,ALR18a] are L/U-PTAs with
only upper-bound parameters.

3 The benchmark library

3.1 Categories

Our benchmarks are classified into three main categories:

1. academic benchmarks, studied in a range of papers: a typical example is the
Fischer mutual exclusion protocol;

2. industrial case studies, which correspond to a concrete problem solved (or
not) in an industrial environment;

3

3. examples famous for being unsolvable using state-of-the-art techniques; for
some of them, a solution may be computed by hand, but existing automated
techniques are not capable of computing it. This is the case of the PTA
in Fig. 1a, as a human can very easily solve it, while (to the best of our
knowledge) no tool is able to compute this result automatically.

Remark 1. Our library contains a fourth category: education benchmarks, that
consist of generally simple case studies that can be used for teaching. This cate-
gory contains toy examples such as coffee machines. We omit this category from
this paper as these benchmarks generally have a limited interest performance
wise.

The domain of the benchmarks are hardware asynchronous circuits, commu-
nication or mutual exclusion protocols, real-time systems (“RTS”) and schedu-
lability problems, parametric timed pattern matching (“PTPM”), train-gate-
controllers models (“TGC”), etc.

In addition, we use the following classification criteria:

– number of variables: clocks, parameters, locations, automata;
– whether the benchmark (in the provided version) is easily scalable, i. e.,

whether one can generate a large number of instances; for example, pro-
tocols often depend on the number of participants, and can therefore be
scaled accordingly;

– presence of shared rational-valued variables;
– presence of stopwatches;
– presence of location invariants, as some works (e. g., [AHV93,ALR18a]) ex-

clude them;
– whether the benchmark meets the L/U assumption.

3.2 Properties

We consider the three following main properties:

reachability / safety: synthesize parameter valuations for which a given state
of the system (generally a location, but possibly a constraint on variables)
must be reachable / avoided (see e. g., [JLR15]).

optimal reachability: same as reachability, but with an optimization crite-
rion: some parameters (or the time) should be minimized or maximized.

unavoidability: synthesize parameter valuations for which all runs must always
eventually reach a given state (see e. g., [JLR15]).

robustness: synthesize parameter valuations preserving the discrete behavior
(untimed language) w.r.t. to a given valuation (see e. g., [ACEF09,San15]).

In addition, we include some recent case studies of parametric timed pattern
matching (“PTPM” hereafter), i. e., being able to decide for which part of a log
and for which values of parameters does a parametric property holds on that
log [AHW18]. Finally, a few more case studies have ad-hoc properties (liveness,
properties expressed using observers [ABBL98,And13], etc.), denoted “Misc.”
later on.

4

3.3 Presentation

The benchmark library comes in the form of a Web page that classifies models
and is available at https://www.imitator.fr/library.html.

The library is made of a list of a set of benchmarks. Each benchmark may
have different models: for example, Flip-flop comes with three models, one
with 2 parameters, one with 5, and one with 12 parameters. Similarly, some
Fischer benchmarks come with several models, each of them corresponding to
a different number of processes. Finally, each model comes with one or more
properties. For example, for Fischer, one can either run safety synthesis, or
evaluate the robustness of a given reference parameter valuation.

The first version of the library contains 34 benchmarks with 80 different
models and 122 properties.

3.4 Performance

We present a selection of the library in Table 1. Not all benchmarks are given;
in addition, most benchmarks come with several models and several properties,
omitted here for space concern. We give from left to right the number of au-
tomata, of clocks, of parameters, of discrete variables, whether the model is an
L/U-PTA, a U-PTA or a regular PTA, whether it features invariants and stop-
watches, the kind of property, and a computation time on an Intel i7-7500U CPU
@ 2.70GHz with 8 GiB running Linux Mint 18.

“T.O.” denotes time-out (after 300 s). “?” denotes unsolvable, because no
such algorithm is implemented in existing tools. “HS” denotes time-out but
human-solvable: e. g., for Fischer, one knows the correctness constraint indepen-
dently of the number of processes, but tools may fail to compute it. This is also
the case of the toy PTAs in Figs. 1a and 1b.

Despite time-out, some case studies come with a partial result: either because
IMITATOR is running reachability-synthesis (“EFsynth” [JLR15]) which can out-
put a partial result when interrupted before completion, or because some other
methods can output some valuations. For example, for ProdCons, IMITATOR is
unable to synthesize a constraint; however, in the original work [KP12], some
punctual valuations (non-symbolic) are given.

Robustness case studies are not part of Table 1, but are included in the online
library.

4 Perspectives

Syntax. So far, all benchmarks use the IMITATOR input format; in addition,
only if the benchmark comes from another model checker (e. g., a HyTech or
Uppaal model), it also comes with its native syntax. In a near future, we plan
to propose a translation to Uppaal timed automata; however, some information
will be lost as Uppaal does not allow parameters, and supports stopwatches in a
limited manner. A future work will be to propose other syntaxes, or a normalized
syntax for parametric timed model checking benchmarks.

5

https://www.imitator.fr/library.html

Table 1: A selection from the benchmark library
Benchmark Ref Domain Scal. |A| |X| |P| |V| L/U Inv SW Prop. Time

Academic

And-Or [CC05] Circuit × 4 4 12 0 −
√
× Misc. 3.01

CSMA/CD [KNSW07] Protocol
√

3 3 3 0 −
√
× Unavoid. ?

Fischer-AHV93 [AHV93] Protocol
√

3 2 4 0 L/U × × Safety 0.04

Fischer-HRSV02:3 [HRSV02] Protocol
√

3 3 4 1 L/U
√
× Safety HS

Flip-flop:2 [CC07] Circuit × 5 5 2 0 U
√
× Misc. 0.04

Flip-flop:12 [CC07] Circuit × 5 5 12 0 U
√
× Misc. 23.07

idle-time-sched:3 [LSAF14] RTS
√

8 13 2 3 U
√ √

Safety 1.49

idle-time-sched:5 [LSAF14] RTS
√

12 21 2 0 U
√ √

Safety 14.61

Jobshop:3-4 [AM01] Sched.
√

2 3 12 4 −
√
× Opt. reach. 5.58

Jobshop:4-4 [AM01] Sched.
√

4 4 16 4 −
√
× Opt. reach. T.O.

NP-FPS-3tasks:50-0 [JLR13] RTS × 4 6 2 0 −
√
× Safety 1.03

NP-FPS-3tasks:100-2 [JLR13] RTS × 4 6 2 0 −
√
× Safety 65.23

SSLAF14-1 [PGGH98,SSL+13] RTS × 7 16 2 2 −
√ √

Safety 0.33

SSLAF14-2 [WTVL06,SSL+13] RTS × 6 14 2 4 −
√ √

Safety T.O.

ProdCons:2-3 [KP12] Prod.-cons.
√

5 5 6 0 L/U
√
× Reach. T.O.

train-AHV93 [AHV93] TGC × 3 3 6 0 L/U × × Safety 0.01

WFAS [BBLS15] Protocol × 3 4 2 0 −
√
× Safety T.O.

Industrial

accel:1 [HAF14,AHW18] PTPM
√

2 2 3 0 −
√
× PTPM 1.25

accel:10 [HAF14,AHW18] PTPM
√

2 2 3 0 −
√
× PTPM 12.67

BRP [DKRT97] Protocol × 6 7 2 12 −
√
× Safety 248.35

FMTV:1A1 [SAL15] RTS × 3 3 3 5 −
√
× Opt. reach. 6.97

FMTV:1A3 [SAL15] RTS × 3 3 3 7 −
√
× Opt. reach. 87.39

FMTV:2 [SAL15] RTS × 6 9 2 0 −
√ √

Opt. reach. 1.61

gear:1 [HAF14,AHW18] PTPM
√

2 2 3 0 −
√
× PTPM 0.77

gear:10 [HAF14,AHW18] PTPM
√

2 2 3 0 −
√
× PTPM 7.42

RCP [CAS01] Protocol × 5 6 5 6 L/U
√
× Reach. 1.07

SIMOP:3 [ACD+09] Automation × 5 8 3 0 −
√
× Reach. T.O.

SPSMALL:2 [CEFX09] Circuit × 11 11 2 0 −
√
× Reach. 0.96

SPSMALL:26 [CEFX09] Circuit × 11 11 26 0 −
√
× Reach. T.O.

Toy

toy:n Fig. 1b Toy × 1 2 1 0 −
√
× Reach. HS

toy:1/n Fig. 1a Toy × 1 2 1 0 U
√
× Reach. HS

Contributions and versioning. The library is aimed at being enriched with future
benchmarks. Furthermore, it is collaborative, and is open to any willing contrib-
utor. A versioning system will be set up with the addition (or modification) of
benchmarks in the future.

References

ABBL98. Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim Guldstrand
Larsen. The power of reachability testing for timed automata. In Vikra-
man Arvind and Ramaswamy Ramanujam, editors, Proceedings of the 18th
Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 1998), volume 1530 of Lecture Notes in Computer
Science, pages 245–256. Springer, 1998.

6

ACD+09. Étienne André, Thomas Chatain, Olivier De Smet, Laurent Fribourg, and
Silvain Ruel. Synthèse de contraintes temporisées pour une architecture
d’automatisation en réseau. In Didier Lime and Olivier H. Roux, editors,
Actes du 7ème colloque sur la modélisation des systèmes réactifs (MSR
2009), volume 43 of Journal Européen des Systèmes Automatisés, pages
1049–1064. Hermès, November 2009.

ACEF09. Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent
Fribourg. An inverse method for parametric timed automata. Interna-
tional Journal of Foundations of Computer Science, 20(5):819–836, Octo-
ber 2009.

ACN15. Étienne André, Camille Coti, and Hoang Gia Nguyen. Enhanced dis-
tributed behavioral cartography of parametric timed automata. In Michael
Butler, Sylvain Conchon, and Fatiha Zäıdi, editors, Proceedings of the
17th International Conference on Formal Engineering Methods (ICFEM
2015), volume 9407 of Lecture Notes in Computer Science, pages 319–335.
Springer, November 2015.

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IM-
ITATOR 2.5: A tool for analyzing robustness in scheduling problems. In
Dimitra Giannakopoulou and Dominique Méry, editors, Proceedings of the
18th International Symposium on Formal Methods (FM 2012), volume
7436 of Lecture Notes in Computer Science, pages 33–36. Springer, Au-
gust 2012.

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal,
editors, Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing (STOC 1993), pages 592–601, New York, NY, USA, 1993.
ACM.

AHW18. Étienne André, Ichiro Hasuo, and Masaki Waga. Offline timed pattern
matching under uncertainty. In Anthony Widjaja Lin and Jun Sun, edi-
tors, Proceedings of the 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS 2018). IEEE, 2018. To appear.

AL17. Étienne André and Shang-Wei Lin. Learning-based compositional parame-
ter synthesis for event-recording automata. In Ahmed Bouajjani and Silva
Alexandra, editors, Proceedings of the 37th IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Objects, Components,
and Systems (FORTE 2017), volume 10321 of Lecture Notes in Computer
Science, pages 17–32. Springer, 2017.

ALR18a. Étienne André, Didier Lime, and Mathias Ramparison. TCTL model
checking lower/upper-bound parametric timed automata without invari-
ants. In David N. Jansen and Pavithra Prabhakar, editors, Proceedings
of the 16th International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS 2018), volume 11022 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2018.

ALR18b. Étienne André, Didier Lime, and Mathias Ramparison. Timed automata
with parametric updates. In Gabriel Juhás, Thomas Chatain, and Radu
Grosu, editors, Proceedings of the 18th International Conference on Ap-
plication of Concurrency to System Design (ACSD 2018), pages 21–29.
IEEE, 2018. To appear.

ALS+13. Étienne André, Yang Liu, Jun Sun, Jin Song Dong, and Shang-Wei Lin.
PSyHCoS: Parameter synthesis for hierarchical concurrent real-time sys-

7

tems. In Natasha Sharygina and Helmut Veith, editors, Proceedings of
the 25th International Conference on Computer Aided Verification (CAV
2013), volume 8044 of Lecture Notes in Computer Science, pages 984–989,
Heidelberg, Germany, July 2013. Springer.

AM01. Yasmina Abdeddäım and Oded Maler. Job-shop scheduling using timed
automata. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Proceedings of the 13th International Conference on Computer Aided Ver-
ification (CAV 2001), volume 2102 of Lecture Notes in Computer Science,
pages 478–492. Springer, 2001.

And13. Étienne André. Observer patterns for real-time systems. In Yang Liu
and Andrew Martin, editors, 18th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS 2013), pages 125–134.
IEEE Computer Society, July 2013.

And18. Étienne André. What’s decidable about parametric timed automata? In-
ternational Journal on Software Tools for Technology Transfer, 2018. To
appear.

BBLS15. Nikola Beneš, Peter Bezděk, Kim Gulstrand Larsen, and Jǐŕı Srba. Lan-
guage emptiness of continuous-time parametric timed automata. In
Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann, editors, Proceedings of the 42nd International Colloquium on
Automata, Languages, and Programming (ICALP 2015), Part II, volume
9135 of Lecture Notes in Computer Science, pages 69–81. Springer, July
2015.

BL09. Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper
bound parametric timed automata. Formal Methods in System Design,
35(2):121–151, 2009.

CAS01. Aurore Collomb-Annichini and Mihaela Sighireanu. Parameterized reach-
ability analysis of the IEEE 1394 root contention protocol using TReX. In
Proceedings of the Real-Time Tools Workshop (RT-TOOLS 2001), 2001.

CC05. Robert Clarisó and Jordi Cortadella. Verification of concurrent systems
with parametric delays using octahedra. In Proceedings of the Fifth In-
ternational Conference on Application of Concurrency to System Design
(ACSD 2005), pages 122–131. IEEE Computer Society, 2005.

CC07. Robert Clarisó and Jordi Cortadella. The octahedron abstract domain.
Science of Computer Programming, 64(1):115–139, 2007.

CEFX09. Rémy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fribourg, and
Weiwen Xu. Timed verification of the generic architecture of a memory cir-
cuit using parametric timed automata. Formal Methods in System Design,
34(1):59–81, February 2009.

CL00. Franck Cassez and Kim Guldstrand Larsen. The impressive power of stop-
watches. In Catuscia Palamidessi, editor, Proceedings of the 11th Interna-
tional Conference on Concurrency Theory (CONCUR 2000), volume 1877
of Lecture Notes in Computer Science, pages 138–152. Springer, 2000.

CSBM+15. Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Ábrahám, Goran
Frehse, and Stefan Kowalewski. A benchmark suite for hybrid systems
reachability analysis. In Klaus Havelund, Gerard J. Holzmann, and Ra-
jeev Joshi, editors, Proceedings of the 7th International Symposium NASA
Formal Methods (NFM 2015), volume 9058 of Lecture Notes in Computer
Science, pages 408–414. Springer, 2015.

8

DKRT97. Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan Tret-
mans. The bounded retransmission protocol must be on time! In
Ed Brinksma, editor, Proceedings of the Third International Workshop on
Tools and Algorithms for Construction and Analysis of Systems (TACAS
1997), volume 1217 of Lecture Notes in Computer Science, pages 416–431.
Springer, 1997.

FLGD+11. Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. SpaceEx: Scalable verification of hybrid systems. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification (CAV 2011), volume
6806 of Lecture Notes in Computer Science, pages 379–395. Springer, 2011.

Fre08. Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past
HyTech. International Journal on Software Tools for Technology Transfer,
10(3):263–279, May 2008.

HAF14. Bardh Hoxha, Houssam Abbas, and Georgios E. Fainekos. Benchmarks for
temporal logic requirements for automotive systems. In Goran Frehse and
Matthias Althoff, editors, Proceedings of the 1st and 2nd International
Workshops on Applied veRification for Continuous and Hybrid Systems
(ARCH@CPSWeek 2014 / ARCH@CPSWeek 2015), volume 34 of EPiC
Series in Computing, pages 25–30. EasyChair, 2014.

HHWT95. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A user guide
to HyTech. In Ed Brinksma, Rance Cleaveland, Kim Guldstrand Larsen,
Tiziana Margaria, and Bernhard Steffen, editors, Proceedings of the First
International Workshop on Tools and Algorithms for Construction and
Analysis of Systems (TACAS 1995), volume 1019 of Lecture Notes in Com-
puter Science, pages 41–71. Springer, 1995.

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic
and Algebraic Programming, 52-53:183–220, 2002.

JLR13. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer param-
eter synthesis for timed automata. In Nir Piterman and Scott A. Smolka,
editors, Proceedings of the 19th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2013), vol-
ume 7795 of Lecture Notes in Computer Science, pages 401–415. Springer,
2013.

JLR15. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer pa-
rameter synthesis for timed automata. IEEE Transactions on Software
Engineering, 41(5):445–461, 2015.

KNSW07. Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi
Wang. Symbolic model checking for probabilistic timed automata. In-
formation and Computation, 205(7):1027–1077, 2007.

KP12. Micha l Knapik and Wojciech Penczek. Bounded model checking for para-
metric timed automata. Transactions on Petri Nets and Other Models of
Concurrency V, 6900:141–159, 2012.

LRST09. Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for Petri nets with stop-
watches. In Stefan Kowalewski and Anna Philippou, editors, Proceedings
of the 15th International Conference on Tools and Algorithms for the Con-

9

struction and Analysis of Systems (TACAS 2009), volume 5505 of LNCS,
pages 54–57. Springer, March 2009.

LSAF14. Giuseppe Lipari, Youcheng Sun, Étienne André, and Laurent Fribourg.
Toward parametric timed interfaces for real-time components. In Étienne
Andre and Goran Frehse, editors, 1st International Workshop on Synthe-
sis of Continuous Parameters (SynCoP 2014), volume 145 of Electronic
Proceedings in Theoretical Computer Science, pages 49–64, April 2014.

LSGA17. Jiaying Li, Jun Sun, Bo Gao, and Étienne André. Classification based
parameter synthesis for parametric timed automata. In Zhenhua Duan
and Luke Ong, editors, Proceedings of the 19th International Conference
on Formal Engineering Methods (ICFEM 2017), volume 10610 of Lecture
Notes in Computer Science, pages 243–261. Springer, 2017.

NPvdP18. Hoang Gia Nguyen, Laure Petrucci, and Jaco van de Pol. Layered and
collecting NDFS with subsumption for parametric timed automata. In An-
thony Widjaja Lin and Jun Sun, editors, Proceedings of the 23rd Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS
2018). IEEE, December 2018. To appear.

PGGH98. José C. Palencia Gutiérrez and Michael González Harbour. Schedulability
analysis for tasks with static and dynamic offsets. In Proceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS 1998), pages 26–37. IEEE
Computer Society, 1998.

SAL15. Youcheng Sun, Étienne André, and Giuseppe Lipari. Verification of two
real-time systems using parametric timed automata. In Sophie Quinton
and Tullio Vardanega, editors, Proceedings of the 6th International Work-
shop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2015), July 2015.

San15. Ocan Sankur. Symbolic quantitative robustness analysis of timed au-
tomata. In Christel Baier and Cesare Tinelli, editors, Proceedings of the
21st International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2015), volume 9035 of Lecture Notes
in Computer Science, pages 484–498. Springer, 2015.

SSL+13. Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne André, and Lau-
rent Fribourg. Parametric schedulability analysis of fixed priority real-
time distributed systems. In Cyrille Artho and Peter Ölveczky, editors,
Proceedings of the Second International Workshop on Formal Techniques
for Safety-Critical Systems (FTSCS 2013), volume 419 of Communications
in Computer and Information Science, pages 212–228. Springer, October
2013.

TLR09. Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. Parametric
model-checking of stopwatch Petri nets. Journal of Universal Computer
Science, 15(17):3273–3304, 2009.

WTVL06. Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. Sys-
tem architecture evaluation using modular performance analysis: a case
study. International Journal on Software Tools for Technology Transfer,
8(6):649–667, 2006.

10

	A benchmark library for parametric timed model checking

