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Abstract

Iridescent colours are colours that change with viewing or illumination geometry. While they are widespread
in many living organisms, most evolutionary studies on iridescence do not take into account their full complexity.
Few studies try to precisely characterise what makes iridescent colours special: their angular dependency. Yet, it
is likely that this angular dependency has biological functions and is therefore submitted to evolutionary pressures.
For this reason, evolutionary biologists need a repeatable method to measure iridescent colours as well as variables
to precisely quantify the angular dependency. In this study, we use a theoretical approach to propose five variables
that allow to fully describe iridescent colours at every angle combination. Based on the results, we propose a
new measurement protocol and statistical method to reliably characterise iridescence while minimising the required
number of time-consuming measurements. We use hummingbird iridescent feathers and butterfly iridescent wings
as test cases to demonstrate the strengths of this new method. We show that our method is precise enough to be
potentially used at intraspecific level while being also time-efficient enough to encompass large taxonomic scales.
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Most interactions between organisms, whether
between different species (interspecific) or different indi-
viduals of the same species (intraspecific), involve com-
munication. Communication can have different pur-
poses (e.g. warning, camouflage, display) and use differ-
ent channels (e.g. olfactory, acoustic, visual) [1]. In par-
ticular, colour is a specific kind of communication chan-
nel that can be produced through two non-mutually ex-
clusive mechanisms: pigmentary colours are generated
by the selective absorption of some wavelengths by spe-
cial molecules called pigments while structural colours
are generated by the physical interaction of light with
matter, causing dispersion, diffraction or interferences
[2].

Among structural colours, iridescent colours change
depending on the illumination or observation angle.
They can be produced by interferences of light after
reflection by a thin-film or multilayer structure, or dif-
fraction on a grating. Iridescent colours are present in
many taxa, and particularly widespread among bony
fishes (Actinopterygii), insects, as well as some birds
(see detailed review in table 3 for studies on each one
of these taxa). Iridescent colours seem to be involved
in many important biological processes [3] and their an-
gular dependency is likely under selection to produce
complex visual signals [4–7]. In some cases, however,
angular dependency may be selected against [8]. In all
those cases, the study of the evolution of iridescent col-

ours requires a precise quantification of the angular de-
pendency. However, the inherent physical complexity
of iridescent colours has hampered the development of
quantitative methods to fully describe them in the angle
space.

We reviewed all studies that performed reflectance
measurements of biological samples with iridescent col-
ours produced by a multilayer or a thin-film structure
in table 3. We notice two main trends: (i) many stud-
ies measure iridescence at a single fixed angle (first row
in table 3). In these studies, authors generally remain
cautious and warn they are not attempting to measure
angle dependency. However, the multilayer or thin film
producing iridescent colours may not be parallel to the
sample surface [9–13], and the angle between them and
the sample surface may vary between species or even
between individuals of the same species [14]. Hence,
even though the angle of the measuring optical fibres re-
lative to the macroscopic is constant, the angle relative
to the structures is not. This jeopardises any biological
interpretation of differences between samples because
the effects of many different parameters are intertwined.
(ii) Other studies take measurements at multiple angles
but few attempt to precisely quantify angle dependency
(’Literature review’ folder in ESM). Even when angle
dependency is quantified, variables never stem from a
theoretical approach, which leads to a large diversity of
custom variables for each author. This heterogeneity
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in the methods, variable naming, and sign conventions
have likely hindered the spread of new concepts and res-
ults among researchers working on iridescence in living
organisms.

Osorio and Ham [15] and Meadows et al. [16] started
to address this heterogeneity in measurement methods
and advocated for the use of a goniometer to reliably
measure colour in a controlled angle configuration. How-
ever, they did not propose a detailed protocol or statist-
ical tools to study angular dependency. Here, we use the
optical laws that govern iridescence to propose a set of
parameters to characterise angle dependency of bright-
ness, hue and saturation of iridescent colours. Next, we
confirm the validity of these equations for complex bio-
logical structures using two highly different groups of or-
ganisms well-known for their iridescent colours: Trochil-
idae (hummingbirds) and Lepidoptera (i. e., butterflies
and moths), including the iconic Morpho butterflies that
harbour large wings with bright iridescent blue colours.
The standard framework we propose here makes irides-
cent colours comparable across taxa and across studies,
opening up new perspectives in the study of their biolo-
gical functions.

Model
Choice of colour variables
Since we want to produce a general method that does
not depend on any specific vision system, we use vari-
ables directly derived from spectra, without computing
vision models. We define brightness B as the average re-
flectance over a range between the minimal (λmin) and
maximal (λmax) wavelengths (B2 in Montgomerie [17]),
saturation S as the full width at half maximum reflect-
ance and hue H as the wavelength at which reflectance
was maximal (H1 in Montgomerie [17]). These three
variables are represented in fig. 1 and are the most com-
mon measures of brightness, hue and saturation in stud-
ies about iridescence (see literature review in ESM).
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Figure 1. Graphical representation of the variables we
used for hue H (wavelength at peak reflectance Rmax;
called H1 in Montgomerie [17]), brightness B (average
of reflectance over the wavelength range of interest; B2 in
[17]) and saturation S (full width at half maximum: no
equivalent in [17]).

Assumptions and equations
Our method relies on three assumptions that greatly
simplify the equations for brightness, hue and satura-
tion in the angle space. See Appendix 1 for mathemat-
ical proofs of the equations and the role of each one of
these assumptions:

1. Small angles (≤ 30°). Outside of this range, the sig-
nal due to iridescence is often very low and all that re-
mains is the effect of the underlying pigments, which
can be measured through traditional methods. For
all thin films, and in some multilayers (depending
on chemical composition), it is possible to consider
angles up to 45°, as illustrated in ESM. This may
help producing more repeatable parameter estimates.
For instance, a 45° angle can correspond to a viewer
standing next to the viewed iridescent patch illumin-
ated from above. Many previous studies have in this
way mimicked the position of the bird relative to the
sun in their measurements [7, 14, 16, 18–20].

2. The orientation of the layers within the multilayer
structure is affected by Gaussian noise. Many devel-
opmental processes are controlled by a large array of
independent factors of small effect each, causing sub-
sequent errors to often be Gaussian (due to the cent-
ral limit theorem). This assumption is also empiric-
ally supported by the results of Gur et al. [21] who
looked at the orientation of guanine crystals in neon
tetra fishes (Paracheirodon innesi) using wide-angle
X-ray scattering (WAXS). Fitting a Cauchy distribu-
tion (fatter tail distribution) instead of a Gaussian
distribution yields similar values of parameter estim-
ates. For simplicity, we here only present the results
with Gaussian noise.

3. Multilayers are ideal, i. e. the optical thickness (layer
thickness times optical index) of each layer is con-
stant: n1e1 = n2e2. This is a common assumption [9,
22–29] which is thought to be valid for most animal
reflectors [30] because it produces the brightest and
most saturated signals with a minimal number of lay-
ers (but see Schultz and Rankin [31] and Parker et al.
[32] for beetles, Kinoshita et al. [33] for neon tetra).

This set of assumptions allows us to formally derive
simple analytic expressions of brightness B, hue H and
saturation S (fig. 1) in the angle space (Φinc,Φcol). All
variables used in this study with their notations and
their possible values are listed in table 1 and illustrated
whenever possible on fig. 2.

B(Φinc,Φcol) = Bmax exp−
(
Φinc−Φcol

2 − t
)2

2γ2
B

(8 bis)

H(Φinc,Φcol) = Hmax cos(γH
Φinc +Φcol

2
) (18 bis)

S(Φinc,Φcol) = Smax (1)
Hereafter, we focus on brightness B and hue H be-

cause saturation S is constant no matter the angle con-
figuration. The brightness B(Φinc,Φcol) in the angle
space is entirely defined by three parameters: Bmax,
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t and γB . The tilt t is the angle between the mul-
tilayer structure and the sample surface (as illustrated
in fig. 2). Bmax is the maximum reflectance produced by
the multilayer of thin-film structure, reached when the
fibres are placed in a symmetrical configuration relative
to the normal of the multilayer. γB is the parameter
quantifying the disorder in the alignment of the mul-
tilayer structure. This disorder in the structure results
in a reflected signal that is not purely specular but in-
stead contains a diffuse component, meaning it can be
seen at multiple angle configurations. For this reason,
from a macroscopic point of view, γB is correlated with
the angular dependency of brightness. Earlier studies
used a binary classification of iridescent colours depend-
ing on the angle range at which the colour was vis-
ible (‘diffuse/directional’ in Osorio and Ham [15], ‘wide-
angle/flashing’ in Huxley [34], ‘limited view’ of Vukusic
et al. [35]). This classification is positively correlated
with 1

γB
. The hue H(Φinc,Φcol) in the angle space is

defined by two parameters: Hmax which is the hue at
coincident geometry (when using a bifurcated probe for
example) and γH is the angular dependency of hue.

n1 n2 n1

Macroscopic
sample surface

Normal to
the multilayer

Illumination
light ray

Collection
light ray

θi θr t

Normal to
the sample surface

Φinc

Φcol

e1 e2

Figure 2. Schematic representation of a tilted multilayer
(angle between the multilayer and the sample surface or
tilt t = 40°) and incoming and reflected light rays relative
to the multilayer structure (with angles θi and θr respect-
ively) and relative to the sample surface (with angle Φinc
and Φcol respectively). There is a relationship involving
the tilt t between angles relative to the multilayer struc-
ture (θi and θr) and angles relative to the sample surface
(Φinc and Φcol): θi = Φinc − t and θr = Φcol + t. The pos-
itive direction for each angle is figured by an arrowhead.
The multilayer is composed of an alternance of two layers
characterised by the optical indices n1 and n2 and their
thicknesses e1 and e2. A schematic representation at a
different scale, focusing on the goniometer is available in
ESM.

The variations of brightness and hue in the angle
space, according to eq. (8) and eq. (18) respectively are
represented in fig. 3.

Angle and notation conventions

In the rest of this study, we measure the incoming light
ray angles (θi and Φinc) counter-clockwise and the out-
going light ray angles (θr and Φcol) clockwise. For both
incoming and outgoing angles, the origin is the normal
to the structures (θi and θr) or the normal to the sample
(Φinc and Φcol). These conventions are represented on
fig. 2 where the direction of the arrows on angles rep-
resent the positive direction. The tilt t corresponds to
the angle between the multilayer and the surface of the
sample and is defined as t = Φinc − θi = θr − Φcol (see
Appendix 1 for more details about t). In other words,
t is positive when the multilayer is tilted towards the
illumination and negative otherwise (i.e. t is measured
clockwise).

Methods

Study system: hummingbirds and butter-
flies

We used hummingbirds and butterflies (more precisely
some Morpho and Papilio species) as study systems.
Hummingbirds make an ideal example to test our frame-
work for numerous reasons. First, they belong to a spe-
ciose family where all species are iridescent [36], which
allows us to work on a large number of species that
diverged fairly recently [37]. Upon visual examination,
they display highly different types of iridescent colours,
with either ‘diffuse’ (usually on dorsal patches) ‘direc-
tional’ (usually on facial or ventral patches) iridescence
(sensu Osorio and Ham [15]). In addition, many species
have highly tilted multilayers, providing a good test case
to estimate the tilt t [15, 16]. Finally, most species are
available in large numbers in museum collections. We
obtained the authorisation from the Muséum National
d’Histoire Naturelle to carefully cut feathers using sur-
gical scissors. We selected one male from 36 species,
evenly distributed across the phylogeny, from which we
took feathers on two patches, one diffuse and one direc-
tional (sensu Osorio and Ham [15]).

Because the exclusive use of hummingbirds as a test
taxon for a new method has been criticised in previous
studies [38], we also test our method on a very differ-
ent group: butterflies. Butterflies are phylogenetically
distant from birds and have different structures produ-
cing iridescence. For these reasons, the fact our method
works in both taxa is a compelling argument for its uni-
versality. We used 17 butterfly species known to have
multilayer structures [39, 40]. The full list of species we
used for our measurements is available in ESM, for both
hummingbirds and butterflies.

The method presented is also valid for whole spe-
cimens (whole birds instead of plucked feathers for ex-
ample). We nonetheless opted for the use of single feath-
ers to maximise repeatability. Indeed, the precision of
the goniometer measurements relies on the fact that the
sample is precisely located at the centre of rotation of
both fibres, which is more difficult to ensure for whole
specimens.
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Figure 3. Colour variables ((a): brightness; (b): hue; (c) and (d): hue & brightness) of an iridescent multilayer (with tilt
t ̸= 0) in the angle space relative to the sample surface (Φinc,Φcol). The colour lines in (d) indicate alternative bases: the
angle space relative to the multilayer structure (θi, θr) in blue and (Φinc +Φcol = 0,Φinc −Φcol = t) in orange and illustrates
the terms ‘constant illumination’, ‘constant collection’, ‘constant angle bisector’ and ‘constant span’ used in table 3 and
throughout this article.
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Symbol Range Meaning
θi

[
−π

2 ;
π
2

]
Incident light angle relative to the multilayer

θr
[
−π

2 ;
π
2

]
Reflected light angle relative to the multilayer

θ1
[
0; π

2

]
Angle between the incident ray and the interface between layers 1 and 2

θ2
[
0; π

2

] Angle between the transmitted ray and the interface between layers 1 and 2
Angle between the incident ray and the interface between layers 2 and 1

m N Interference order/rank
B R+ Brightness at a given configuration
H [λmin;λmax] Hue at a given angle configuration
S R+ Saturation at a given angle configuration

Bmax R+ Maximal brightness value (achieved for specular position)
t

[
−π

2 ;
π
2

]
Angle between the multilayer surface and the sample surface (=tilt)

γB R+ Disorder of the layer alignment in the multilayer/Angular dependency of brightness
Hmax [λmin;λmax] Maximal hue value (achieved at normal incidence geometry)
γH R+ Angular dependency of hue
n C Optical index of the material
e R+ Thickness of the layer(s)

Φinc
[
−π

2 ;
π
2

]
Angle between incidence fibre and sample surface (measured counterclockwise)

Φcol
[
−π

2 ;
π
2

]
Angle between collection fibre and sample surface (measured clockwise)

cst R Used to denote a constant whose value is not important for the calculations

Table 1. List of parameters used in this study, with their domains of definition and their meanings.

Reflectance measurements
We measured reflectance at various angles using a
purpose-built goniometer, following the recommenda-
tions of Meadows et al. [16]. The light emitted by a
Xenon lamp (300 W) over the 300 nm to 700 nm range of
wavelengths to which birds are sensitive [41] was brought
to the sample through an illuminating UV-VIS optical
fibre collimated to get a 1 mm light spot at normal il-
lumination. Light reflected by the sample was then col-
lected by a second identical collimated optical fibre and
conducted toward an Oceanoptics USB4000 spectropho-
tometer. This setup allows for a precise independent
rotation of the illumination and the collection fibres, ne-
cessary for the measurements of iridescent colours.

Our previous mathematical exploration revealed
that hue is constant along the Φinc+Φcol = cst line (‘con-
stant span’) and brightness along the Φinc − Φcol = cst
line (‘constant angle bisector’), as illustrated in fig. 3.
We thus only need to take measurements in two ortho-
gonal directions: in the direction Φinc − Φcol = cst to
quantify hue variation and in the direction Φinc+Φcol =
cst to quantify brightness variations. This will allow us
to infer all parameters controlling hue and brightness,
and therefore to potentially compute all values of hue
and brightness in the entire angle space (Φinc,Φcol).

The shape and size of the light spot on the sample
depends on the position of the illuminating fibre relat-
ively to the sample. As the angle of illumination θi
increases, the light spot becomes more and more elong-
ated, according to a θi cosine function. This means the
amount of light received by the spectrometer decreases
when θi increases, independently of sample character-
istics. This can also be empirically observed by taking
measurements of the white reference (which is a Lam-
bertian surface, i. e., reflectance does not depend on
the angle) at different angles. To control for this, we
took white reference measurements at several angle con-
figurations (detailed in the protocol below). The white

standard for this study was an Avantes reference tile WS-
2. Because this is a diffuse (Lambertian) white reference
and because some iridescent colours are very directional
(i.e., all reflected light is focused in a single direction),
it is expected to sometimes get values of brightness that
can be over 100 %.

The detailed protocol we used for our measurements
is similar to Waldron et al. [20] and inspired from Osorio
and Ham [15] and Meadows et al. [16]. A detailed walk-
through of the measurement protocol is presented in
box 1.

We repeated each measurement twice, on different
days, by two different experimenters for hummingbirds
and butterflies. We performed statistical analyses after
the completion of the measurement session to prevent
experimenter bias.

Statistical analyses
As explained in the previous section, the angle configur-
ation changes the shape of the light spot and thus the
total possible amount of light collected by the collec-
tion fibre. To address this issue, we first pre-processed
spectra to normalise count data using the appropriate
reference white spectrum. Resulting csv files were then
imported in pavo R package [42]. Hue values were dis-
carded (i.e. converted to NA) when brightness was lower
than 8.5 % because hue is not defined for black colours.

Iridescence parameters can be estimated using vari-
ous methods, including least squares optimisation and
Bayesian non linear regression. We used a least squares
optimisation as it is more common in biological sciences.
We tested the Bayesian approach as well but it returned
similar results and it is therefore not presented here.

We used two indices to estimate the variability of
the parameters resulting from our method: (i) Relative
standard deviation (RSD, also called coefficient of vari-
ation or CV) as the standard deviation divided by the
absolute value of the mean. (Absolute) standard devi-
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Box 1: Measurement protocol

1. Move one of the two fibres of the goniometer to find the position where you get a signal of maximal
intensity. This position depends on the tilt t of the multilayer and is therefore different for every sample.
Once this is done, this means the angle bisector of the two fibres is close to the normal to the multilayer
structure (red line in fig. 2).

2. While keeping the same angle bisector, take measurements at different angular spans (orange line
Φinc − Φcol = t in fig. 3d). These measurements will be used to estimate hue parameters. To have a
sample size large enough for reliable estimation and to stay at small angles, we recommend measure-
ments at (Φinc, Φcol) ∈ {(t + 5°, t + 5°), (t + 10°, t + 10°), (t + 15°, t + 15°), (t + 20°, t + 20°), (t + 25°,
t + 25°)}.

3. Take measurements while keeping the angular span between the two fibres constant (for example
Φcol − Φinc = 20°) and moving the angle bisector (if you cannot do this, because for example, one of
your fibres is not mobile, see ?? ). This will be used to estimate parameters related to brightness. We
recommend 3 measurements on each side of the supposed normal to the multilayer structure (7 measure-
ments in total) and a span of 20°: (Φinc, Φcol) ∈ {(t − 5°, t + 25°), (t°, t + 20°), (t + 5°, t + 15°), (t + 10°,
t + 10°), (t + 15°, t + 5°), (t + 20°, t + 0°), (t + 25°, t − 5°)}. Depending on how directional your sample
is, it may be needed to increase the resolution of the measurement grid and only move the angle bisector
of 2.5° or 5° at each step.

4. Take white reference measurements with the same angular spans as before but using the normal to the
goniometer as angle bisector (same measurements as in 2 but with t = 0°). If you have followed our
advice for measurements, you should now take white measurements at (Φinc,Φcol) ∈ {(5°, 5°), (10°, 10°),
(15°, 15°), (20°, 20°), (25°, 25°), (30°, 30°)}.

5. Take white reference measurements with a constant span but various angle bisectors (same measurements
as in 3 but with t = 0°). If you have followed our advice of 3 measurements on each side to the supposed
normal to the multilayer structure and a span of 20°, you should now take white measurement at (Φinc,
Φcol) ∈ {(−5°, 25°), (0°, 20°), (5°, 15°), (10°, 10°), (15°, 5°), (20°, 0°), (25°,−5°)}

ation SD is a common measure of the noise in a data-
set. RSD is a way to quantify the signal-to-noise ratio.
Because it is normalised by the mean value of the para-
meter, it is dimensionless and can be compared between
parameters. It represents the precision of the experi-
mental and statistical framework and does not depend
on the sample population.(ii) Repeatability as the intra-
class coefficient (ICC) computed with the rptR package
[43]. ICC assesses whether the method allows to dis-
criminate individual samples among the population by
comparing intra- and inter-samples standard deviation.
ICC is therefore highly dependent on the sample popu-
lation and on the biological question.

RSD and ICC complement each other. A very pre-
cise method can still lead to non-repeatable measure-
ments is there is no variability in the population. Con-
versely, a coarse method can work well enough to dis-
criminate between samples and be repeatable if the vari-
ability between samples is high.

Results and discussion
Spectra from measurement along the ‘constant span’
(Φinc +Φcol = 20°) and ‘constant angle bisector’ (Φinc −
Φcol = cst) lines after correction by the appropriate
white reference are displayed in fig. 4 for the iridescent
blue of the breast of the hummingbird Heliomaster furci-
fer. We also show values of hue H and brightness B
along these two measurement lines as well as the result
from parameters estimation.

Relative error and repeatability

Variability and repeatability results are summarised in
table 2. We find low values of RSD for hue-related
variables for both hummingbirds and butterflies, indic-
ating that our framework provides precise estimations of
parameters. For brightness-related parameters, RSD is
higher, as it is usually the case, even for non-iridescent
colours [44–46]. Despite relatively high RSD, all val-
ues for brightness remain repeatable, expected tilt t for
butterflies because of a low inter-species variability, as
demonstrated by the low value of standard deviation
SD.

Correlation between parameters

Correlation between Bmax and γB

Madsen et al. [14] noticed a negative relationship
between brightness angular dependency and maximum
brightness. From an evolutionary point of view, this
means there is a trade-off between the signal brightness
at a given angle and the range of angle at which it is not
black (i.e. directionality sensu Osorio and Ham [15]).

This correlation can also be proved theoretically. In-
deed, the total energy of light that is reflected by the
sample cannot exceed the received light energy. In other
words, if absorption is similar across samples, the total
brightness reflected in all directions is constant across
samples:
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Figure 4. Spectra (top row) and corresponding values of brightness (middle row) and hue (bottom row) at different angle
configurations for the breast patch of the hummingbird Heliomaster furcifer along the Φinc − Φcol = cst (left column; data
points with round shape) and Φinc + Φcol = cst (right column; data point with square shape) lines. Colours correspond
to the conversion of the spectra in human vision using the CIE10 visual system. As expected, brightness is constant when
Φinc−Φcol = cst and has a Gaussian shape when Φinc+Φcol = cst. Conversely, hue has a cosine shape wen Φinc−Φcol = cst
and is constant when Φinc + Φcol = cst. The red lines correspond to the fit of the functions after parameters estimation,
with the values of the parameters. The R script to produce this figure is available in ESM.
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Taxon Variable Param. mean SD RSD (%) ICC p (likel.) p (perm.)

Hummingbirds
Brightness

Bmax 36.60 47.54 14.79 0.947 <0.0001 0.001
t 14.61 18.21 7.428 0.968 <0.0001 0.001
γB 13.67 7.85 11.19 0.875 0.0009 0.002

Hue Hmax 556.80 65.66 0.3004 0.997 <0.0001 0.001
γH 0.64 0.18 2.281 0.689 0.028 0.098

Butterflies
Brightness

Bmax 148.80 99.78 6.91 0.936 <0.0001 0.001
t 2.94 4.83 32.96 0.268 0.18 0.098
γB 5.35 5.12 4.76 0.769 <0.0001 0.004

Hue Hmax 492.69 27.87 0.2484 0.993 <0.0001 0.001
γH 0.73 0.14 2.993 0.853 <0.0001 0.001

Table 2. Repeatability (intra-class coefficient ICC with likelihood ratio and permutation p-values) and standard deviations
(standard deviation SD and relative standard deviation RSD) of iridescence parameters for hummingbird and butterflies.

∫∫
B(Φinc,Φcol) dΦinc dΦcol = cst (2)

The value of this double integral is known
(B(Φinc,Φcol) is a bivariate Gaussian function) and
when we compute it, we find:

Bmax

√
2πγ2

B = cst (3)

Bmax ∝ 1

γB
(4)

We indeed find a positive correlation between Bmax
and 1

γB
(F = 147.0742, df = 1, p < 0.0001), illustrated

in fig. 5. We also notice an effect of the taxon (but-
terflies or hummingbirds) on the slope of the correla-
tion (F (1) = 8.3198, p = 0.0057). Because the link
between Bmax and 1

γB
was proven when ignoring ab-

sorption (eq. (4)), this may suggest that absorption is
higher in hummingbirds than in butterflies.

0.1

0.2

0.3

0.4

0.5

0 100 200 300
Bmax

1
γ B

taxon Butterflies Hummingbirds

Figure 5. Correlation between Bmax and directionality
1/γB . The dots are the data points. The lines show the
result of the linear model.

Correlation between angular dependency for hue
γH and and other parameters

Osorio and Ham [15] found that γH and γB are neg-
atively correlated among 15 bird species from differ-

ent families. We do not find support for such correl-
ation for either the hummingbirds or the butterflies
(F (1) = 3.1994, p = 0.074, figure in ESM). Additionally,
as discussed later in ?? , many studies use variables that
are correlated to Hmax to quantify hue angular depend-
ence. On the contrary, we find that the parameters
used in our method, Hmax and γH are not correlated
(F (1) = 0.5167, p = 0.47, figure in ESM).

Conclusion
Using both a theoretical and an experimental approach
we find that hue and brightness can be easily character-
ised for all angle configurations using a set of 5 paramet-
ers (Hmax and γH for hue; Bmax, t and γB for bright-
ness). Additionally, we show that a relatively small
number of measurements is sufficient to reliably estim-
ate these parameter values. This is made possible by
the fact that hue is constant when the angular span
between the two fibres remains constant (Φinc − Φcol =
cst), and that brightness is constant for small angles as
long as the angle bisector remains in the same position
(Φinc + Φcol = cst) (as illustrated in fig. 3 and fig. 4).
These properties have been previously noticed empiric-
ally for hue H1 by Osorio and Ham [15] on 15 bird spe-
cies sampled from different families and Meadows et al.
[16] on Calypte anna. Without being formalized, it had
been illustrated for brightness in Eliason and Shawkey
[47] and Stavenga et al. [48] on B3, Stavenga et al. [49]
for B1.

Our contribution unlocks new perspectives for stud-
ies on iridescent colours, such as the evolution of com-
plex visual signals leveraging angular dependency prop-
erties of iridescent colours.

The proofs for the equation in this article are based
on the multilayer theory. However, it is possible that
parts of it may work for iridescence from diffraction
gratings. Future studies should aim at integrating irides-
cence from diffraction into our framework. This would
allow for a standard set of variables to describe irides-
cence, no matter its physical origin. Further investiga-
tion is also required to assess whether it is possible to
relax some of the assumptions made in the manuscript
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Appendix 1: mathematical proof
of the equations
Brightness B in the angle space (Φinc,Φcol)

For a perfectly regular multilayer, all the reflected sig-
nal is focused in the specular direction, at an angle θr
equal to the incident angle θi. The brightness B is pro-
portional to the reflected signal intensity, meaning:

B(θi, θr) =

{
B(θi) if θi = θr

0 if θi ̸= θr
(5)

where B(θi) is defined by the Fresnel factor in the
case of a thin-film structure (equation and R code to
compute the Fresnel factor available in ESM). However,
because we are dealing with small angles (hypothesis
1), we can approximate B(θi) to a constant Bmax (as
illustrated in ESM):

B(θi, θr) ≈

{
Bmax if θi = θr

0 if θi ̸= θr
(6)

But because biological structures are not entirely
flat, and because the different layers of the multilayer
structure are not perfectly aligned, there is also some
amount of light reflected outside of the specular reflec-
tion (often referred as diffuse reflection). We thus as-
sume a Gaussian decay of the brightness B around the
specular position θi = θr (assumption 2), controlled by
a parameter γB related to the disorder of the multilayer:

B(θi, θr) ≈ Bmax exp−
(
θi−θr

2

)2
2γ2

B

(7)

In the case of an perfectly regular multilayer with
no disorder, we have γB = 0 and we find eq. (6). Con-
versely, if γB = +∞, brightness is constant whatever
the angles, which means we are dealing with a Lamber-
tian surface.

Additionally, the multilayer structure is not always
parallel to the sample surface. It is the case for example
for hummingbirds included in this study, as well as for
Morpho butterflies Berthier et al. [9],for the rainbow stag
beetle, Phalacrognathus muelleri, structures described
in Edo et al. [10], 6 pierid butterflies in Pirih et al. [11],
10 species of butterflies in Wickham et al. [12], and for
6 species of Heliconius butterflies in Parnell et al. [13]).
So the illuminating angle Φinc and the collection Φcol at
the macroscopic scale do not necessarily match θi and θr
(as illustrated in fig. 2). If we denote t the angle between
the multilayer surface and the macroscopic sample sur-
face (called tilt hereafter, as in Madsen et al. [14] and
Osorio and Ham [15]), we get:

B(Φinc,Φcol) ≈ Bmax exp−
(
Φinc−Φcol

2 − t
)2

2γ2
B

(8)

Using eq. (8), we only have 3 parameters (Bmax, t
and γB) to estimate to be able to reconstruct all values
of brightness B in the angle space defined by (Φinc,Φcol).
The resulting brightness in this space in plotted in fig. 3.

Hue H in the angle space (Φinc,Φcol)

We defined the hue H as the wavelength for which re-
flectance is maximal. In the context of interferences,
it is therefore the wavelength for which reflected light
interferes constructively. For a regular multilayer, this
happens when:

mH(θ1, θ2) = 2(n1e1 cos θ1 + n2e2 cos θ2) (9)

where m is an integer (interference order), θ1 is the
angle between the incident light ray and the multilayer
structure at the interface between layer 1 and 2, θ2 is the
angle between the transmitted ray after going through
the first interface between layers 1 and 2 and the mul-
tilayer structure, n1 and n2 are the optical indices of the
layers, and e1 and e2 the thickness of the layers. The
product n1e1 and n2e2 is often called optical thickness
of the layers 1 and 2 (respectively).

The relationship between θ1 and θ2 is given by Snell’s
law:

n1 sin θ1 = n2 sin θ2 (10)

Because θ1 ∈ [0; π
2 ], hue H increases when angle θ1

decreases according to eq. (9). This means a maximum
value for hue Hmax is achieved when θ1 = 0 (in this case
θ2 = 0 as well because of Snell’s law; eq. (10)):

mHmax = 2(n1e1 + n2e2) (11)

9
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We can replace n1e1 and n2e2 in eq. (9) using
eq. (11):

mH(θ1, θ2) = mHmax(cos θ1 + cos θ2)
− 2(n1e1 cos θ2 + n2e2 cos θ1) (12)

By adding eq. (12) and eq. (9), we get:

2mH(θ1, θ2) = mHmax(cos θ1 + cos θ2)
+ 2(cos θ1 − cos θ2)(n1e1 − n2e2) (13)

We consider here the case of an ideal multilayer,
meaning that n1e1 = n2e2 (assumption 3). This allows
us to simplify eq. (13) into:

H(θ1, θ2) = Hmax
cos θ1 + cos θ2

2
(14)

Because we are working with small angles (assump-
tion 1), Snell’s law (eq. (10)) can be approximated by:

θ2 ≈ n1

n2
θ1 (15)

H(θ1, θ2) ≈ Hmax
cos θ1 + cos n1

n2
θ1

2
(16)

For small angles (assumption 1), this sum of cosine
functions can be approximated by a single cosine func-
tion with twice the amplitude (numerical proof in ESM):

H(θ1, θ2) ≈ Hmax cos γHθ1 (17)

where γH ≈

√
1+

(
n1
n2

)2

2 (after identification of the
coefficients of the second-order Taylor series expansions
in eq. (16) and eq. (17)).

This reasoning is valid for ideal thin film structures
and multilayers and tells what happens at the specular
position. But as explained in the previous section, biolo-
gical structures are noisy and there is signal outside the
specular position. As previously, if there is signal, this
means that there is a multilayer for which the position
of the fibres is specular. And in this case, we can apply
eq. (17) as well.

H(Φinc,Φcol) = Hmax cos
(
γH

Φinc +Φcol
2

)
(18)

We only need two parameters (Hmax and γH) to plot
all hue values in the angle space (Φinc,Φcol) as in fig. 3.
In the case of non-iridescent colours, we have γH = 0.

Saturation S in the angle space (Φinc,Φcol)

Along the ’constant span’ direction (Φinc +Φcol =
cst)

We know that along the Φinc+Φcol = cst direction (con-
stant span), hue is constant (as shown in eq. (18) and
fig. 3b). Using a similar reasoning as in ?? , we find
that the reflectance R for a wavelength λ at a given
angle configuration (Φinc,Φcol) is given by:

R(Φinc,Φcol, λ) = Rbisector(λ) exp−
(
Φinc−Φcol

2 − t
)2

2γ2
B

(19)

This means that reflectance spectra at all angle con-
figurations along the ‘constant span’ axis (Φinc +Φcol =
cst) can be derived by scaling of the spectrum at another
angle configuration.

The saturation S(Φinc,Φcol) is defined as the full
width at half maximum of the reflectance spectrum
R(Φinc,Φcol, λ). Let us call R the reflectance spectrum
at a given angle configuration (Φpos1

inc ,Φpos1
col ). Then the

saturation S at this configuration is:


S = λ1 − λ2

R(λ1) = R(λ2) =
Rmax

2

λ1 > λ2

(20)

If the reflectance spectrum R′ at (Φpos2
inc ,Φpos2

col ) is
equal to R scaled by a factor s. Then the saturation S′

is:


S′ = λ′

1 − λ′
2

R′(λ′
1) = R′(λ′

2) =
R′

max
2

λ′
1 > λ′

2

(21)

where


R′(λ′

1) =
R(λ′

1)
s

R′(λ′
2) =

R(λ′
2)

s

R′
max = Rmax

s

(22)

From this, we find that:

R(λ′
2)

s
=

R(λ′
1)

s
=

Rmax
2s

(23)

R(λ′
2) = R(λ′

1) =
Rmax
2

(24)

This means that λ′
1 = λ1 and λ′

2 = λ2. In other
words, the full width at half max is stable by scaling,
which results in the saturation S remaining constant
along the Φinc +Φcol = cst axis (constant span).

Along the ’constant angle bisector’ direction
(Φinc − Φcol = cst)

Additionally, along the Φinc − Φcol = cst axis (con-
stant angle bisector), brightness is constant and only
hue changes. This means spectra are translations of one
another. The full width at half max is also stable by
translation so the saturation S remains constant along
Φinc − Φcol = cst axis (constant angle bisector).

In the general case

All points in the (Φinc,Φcol) space can be reached by
a combination of moves along the orthogonal ‘constant
span’ (Φinc + Φcol = cst) and ‘constant angle bisector’
(Φinc − Φcol = cst) axes. We just showed the satura-
tion S is constant along these two axes so it is actually
constant in the whole (Φinc,Φcol) space.
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Appendix 2: Comparison with
other methods
Measurements at fixed angle configura-
tion
The angle t between the multilayer structure and the
normal to the surface of the feather (tilt) is highly vari-
able between species of the same family (sd = 19.36° in
hummingbirds, as reported in table 2). This is in agree-
ment with Osorio and Ham [15] who found tilt values t
ranging from −20° to 40°. Even if the angle configura-
tion (Φinc,Φcol) is constant at the macroscopic scale, the
configuration relative to the multilayer structure (θi, θr)
may not be constant because of the variation in the tilt
t between samples. This means measurements at fixed
geometry cannot be compared between samples. For
this reason, we warn against measurements of iridescent
colours at a fixed angle, even when angular dependency
is not studied.

Parameters estimation using constant il-
lumination
Some goniometers only allow for the rotation of the col-
lection fibre while the illumination fibre stays at a fixed
position. Measurements realised with a such protocol
can still be used with our method but this leads to a
loss of statistical power.

If illumination is provided at a fixed angle Φinc = α:

B(Φcol) = Bmax exp−
(
α−Φcol

2 − t
)2

2γ2
B

= Bmax exp− (Φcol + 2t− α)
2

8γ2
B

(25)

So, B(Φcol) is still a normal function of Φcol with
the same maximum value Bmax but with parameters
t∗ = 2t− α and γ∗

B = 2γB for mean and standard devi-
ation respectively.

Because the estimation of the parameters of a normal
through a regression is more reliable is the standard de-
viation is low, using anything else than a fixed normal as
measurement line, such as a fixed illumination, to study
brightness parameters will result in a loss of statistical
power.

Additionally, depending on the exact value of α, it
may not be possible to have a fibre configuration where
α+Φcol

2 = t but the span between the fibres is still less
than 90° (small angles assumption). In this case, data
points never reach the maximum Bmax, which makes
parameters estimation very unreliable.

Finally, the new value of the mean t∗ does not have a
direct biological and physical interpretation, as opposed
to t which is the tilt of the multilayer of thin-film struc-
ture.

For hue, if illumination is at fixed angle α:

H(Φcol) = Hmax cos(γH
α

2
+

γH
2

Φcol) (26)

The equation for hue at fixed illumination has a shape
different from its general form depending on the span

between the fibres, Φinc+Φcol
2 . There is a constant term

in the cosine function and the new term for hue angu-
lar dependency is γ∗

H = γH

2 . As we explained previously,
the estimation of the parameters is more reliable for high
values of γH . For this reason, the parameters estimation
at fixed illumination may not be as precise as along the
Φinc +Φcol = cst line.

Link with other variables of angular de-
pendency for hue
Linear regression

Linear regression instead of cosine regression to estim-
ate Hmax and γH is common [15, 50–52]. Because the
curvature of the cosine function in eq. (18), defining hue
depending on the angular span, is often small, we obtain
congruent results using either cosine or linear regression.
However, this creates a systematic bias where Hmax is
more overestimated for samples with larger angle de-
pendency γH . Indeed, a linear regression overestimates
more the intercept value as the curvature of the function
increases.

Difference between two angle configurations with
the same angle bisector

The difference in hue between two angle configurations
is sometimes used as a proxy for iridescence [53]. How-
ever, it is problematic because it leads to a very high
correlation between hue and iridescence, as reported in
Dakin and Montgomerie [18] (R2 > 0.95).

We can prove mathematically this linear correlation.
Let us focus on the difference between hue Hpos1 at a
given angle configuration (Φ1

inc,Φ
1
col) and hue Hmax at

coincident geometry (i.e. Φinc + Φcol = θi + θr = 0). It
follows from eq. (18) that defines the hue at any angle
configuration that:

Hpos1 −Hmax = Hmax

[
cos

(
γH

Φ1
inc +Φ1

col
2

)
− 1

]
(27)

From this equation, we see that if γH is constant or
display low variability between samples, Hpos1 − Hmax
is proportional to Hmax:

Hpos1 −Hmax ∝ Hmax (28)

We can apply the same reasoning and prove the dif-
ference Hpos2 −Hmax between hue Hpos2 at (Φ2

inc,Φ
2
col)

and Hmax is proportional to Hmax:

Hpos2 −Hmax ∝ Hmax (29)

Thus (doing eq. (28) – eq. (29)) the difference in hue
between any two angle configurations (Φ1

inc,Φ
1
col) and

(Φ2
inc,Φ

2
col) is proportional to Hmax

Hpos1 −Hpos2 ∝ Hmax (30)

This correlation between the two variables charac-
terising hue in the angle space can lead to errors in
subsequent statistical inferences. On the opposite and
we showed previously, the parameters proposed in this
study (Hmax and γH) do not have the same issue.
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Link with other variables of angular de-
pendency for brightness
We are providing the following comparison with vari-
ables that have previously used in the literature to de-
scribe brightness angular dependency. This means that
values from previous studies using these variables can
still be used in a meta-analysis or a discussion using
our new variables Bmax, t and γB . We however explain
why they are less precise, less versatile and/or more time
consuming than those measured under our unified frame-
work.

FWHM and angular breadth

We have shown brightness is a Gaussian function of
standard deviation γB along the line of ‘constant span’
(Φinc + Φcol = cst direction). Many studies previously
characterised angular dependency in this direction using
the full width at half max (hereafter FWHM) [11, 12, 15,
27, 54]. For a Gaussian function, there is an easy link
between standard deviation and FWHM:

FWHM = 2γ∗
B

√
2 ln 2

= 4γB
√
2 ln 2

≈ 4.71γB

(31)

Similarly, some studies use what they call angular
breadth [38, 55–61], which they define as the range of
angle where brightness is higher than 3 % of its max-
imum (threshold at 10 % for White et al. [60]):

ang. breadth = 2γ∗
B

√
4 ln 10− 2 ln 3

= 4γB
√
4 ln 10− 2 ln 3

≈ 10.59γB

(32)

We see that these variables are proportional to γB in
theory. However because they are computed from raw
data, without any pre-processing or curve fitting, they
are more sensitive to noise.

Hunter’s specular gloss and integrating sphere

Multiple studies [52, 62, 63] use Hunter’s gloss [64],
defined by the ratio of specular to diffuse reflectance.
This method is convenient because it can easily be
achieved using an integrating sphere to capture the
needed spectra in two measurements only (one at specu-
lar position without the sphere and one with the sphere
to capture diffuse and specular reflectance).

This is equivalent of keeping the illumination at a
fixed angle and measuring reflectance at all collection
angles. We already know the brightness at the specu-
lar position is Bmax. The diffuse reflection is the integ-
ral on all angle configurations of the brightness. Hence
Hunter’s specular gloss G using the notation defined in
this study is :

G =
Bmax∫∫

B(Φinc,Φcol) dΦinc dΦcol
(33)

The integral of brightness for every angle configura-
tions is Bmaxγ

∗
B

√
2π (integral of the normal with max-

imum Bmax and standard deviation γ∗
B), which gives:

G =
1

γ∗
B

√
2π

=
1

2γB
√
2π

(34)

However, this is assuming the measurement of Bmax
was actually done at the normal to the multilayer
Φinc+Φcol

2 = t. But there is no way to know whether
it is the case without doing several goniometer meas-
urements with different normal positions. Once this is
done, γB can be estimated without doing additional in-
tegrating sphere measurements.

Difference/Quotient between max and another
position with the same span

Some studies [38, 65, 66] use the difference or the quo-
tient between the brightness at the fibre position where
it is maximum and another position. With this ap-
proach, they find t and Bmax.

The difference or the quotient between these two po-
sitions can easily be linked to γB because we know that
B(Φinc,Φcol) is a normal function of parameters t and
γB .

However, this is very sensitive to noise and measure-
ment error because Bmax and t are estimated with only
one data point and γB (or its equivalent variable) with
only two data points.

Appendix 3: structural colours
with pigmentary component
The framework we presented here focuses on purely
structural iridescent colours. However many colours in-
tegrate both pigmentary and structural components [67,
68]. If there is a pigmentary component, it adds constant
term Bpigment to brightness B:

B(Φinc,Φcol) = Birid +Bpigment (35)

B(Φinc,Φcol) = Bmax exp−
(
Φinc−Φcol

2 − t
)2

2γ2
B

+Bpigment

(36)

This can easily be investigated using our protocol
and statistical framework. The only difference is that
4 parameters (Bmax, t, γB and Bpigment) instead of 3
need to be estimated by running a non-linear regression
on eq. (36) instead of eq. (8).

There are cases where the structural and pigment-
ary components of colour act on very different regions of
the light spectrum. This happens for example in Colias
eurytheme [69], where iridescence is restricted to the UV
region while the visible region colour is caused by pig-
ments. In this case, our method can be applied directly
by restricting the studied wavelength range to the region
of interest (this option is available in the code provided
in ESM).
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