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Abstract: This paper investigates a due date quoting problem for a project with stochastic 

duration taking the decision maker’s risk attitude into consideration. The project profit is defined 

as the difference between the price and the cost that is comprised of production cost, and penalty 

on earliness and tardiness. Conditional risk at value (CVaR) is employed to describe the decision 

maker’s risk aversion. In fixed price contract, when the unit production cost is not smaller than 

the unit penalty on earliness, the optimal due date increases with the increase of the decision 

maker’s risk aversion and the unit penalty on delay, as well as the decrease of the unit penalty on 

earliness. Furthermore, when the price is proportional to the due date and the slope is not greater 

than the unit penalty on tardiness, the optimal due date is smaller than that in fixed price keeping 

other parameters constant. We then compare the optimal due date in different parameter setting, 

where the penalty coefficient of earliness is negative or zero respectively. Finally, a case study is 

conducted to validate the proposed model.  

 

Keywords: Due date quoting; CVaR; Stochastic duration; Just in time  
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1 Introduction 

Meeting delivery date(due date) has always been one of the most important objectives in 

scheduling, supply chain management, and project management in today’s fiercely competitive 

society(Shabtay et al. 2010). In general, jobs completed after due date always incur tardiness 

penalties which may consist of compensation of customers, overtime work, delayed delivery costs, 

etc. For example, the delay of B787 has made Boeing company suffer from extra costs, lost and 

delayed revenues, loss of customers’ and investors’ confidence, and top management’ 

reshuffle(Elahi, Sheikhzadeh and Lamba 2014).While jobs that completed prior to the due date 

may bring about earliness costs including storage costs, spoilage and depreciation and so on. The 

earliness penalty is prevalent in just in time (JIT) production system. In general, an early due date 

always stimulates customers to place more orders but may be easy to incur tardiness penalties. In 

contrast, a late due date may have adverse effect on orders (Guhlich, Fleischmann and Stolletz 

2015) but reduce tardiness penalties. Therefore, setting an appropriate due date relates to the 

success of a project (Park et al. 2010). Specially, trade-off should be took into account when 

setting due date. 

There are two stream of literature on due date settings: due date assignment in machine 

scheduling and due date quoting in supply chains. A growing body of literature exists in the area 

of due date assignment in machine scheduling. The main idea is to set due date for every job and 

then determine an optimal sequence in order to minimize cost(Elimam and Dodin 2013), the 

weighted number of tardy jobs(Rasti-Barzoki and Hejazi 2013) or to fulfill other objectives( for 

more details, we refer to Lauff and Werner 2004, Keskinocak and Tayur 2004). With regard to the 

due date rule, the simplest one is common due date (CON) rule(Panwalkar, Smith and Seidmann 

1982)  where all jobs are assigned the same due date. Moreover, when job content (e.g. the 

processing time or the number of operations) affects the due dates, some researchers proposed 

Slack due date (SLK), total-work-content (TWK), Number of operation (NOP), different due 

date with no restriction (usually referred to as DIF), etc. Taking special conditions (such as 

position-dependent deteriorating jobs (Yin et al. 2014), learning effect (Lu et al. 2014), 

controllable process time (Shabtay, Steiner G and Zhang 2016) into consider, there occur lots of 

new models in recent years. For example, different from most existing literature assuming 

independent jobs and constant job duration, Gordon, Strusevich and Dolgui (2012) imposed 

precedence constraints and controllable processing time on job set. Gordon and Strusevich 

(2009) addressed a due date assignment (DDA) problem in which the duration of a job hinges 

on the position in processing sequence. Shabtay D (2016) advanced DDA model by 

considering the restricted due date, namely the due date cannot exceed a predefined value, and 

proposed a pseudo-polynomial algorithm to solve this problem. 

The other strand of literature relating to due date is due date quoting in supply chain or 

project management. Dumond and Mabert(1988) are the first to address the problem of due 

date setting for new projects that arrived randomly over time. They compared four due date 

setting rules, i.e. mean flow due date, number of activities due date rule, critical path time 
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due date rule and scheduled finish time due date rule with project mean completion time, 

mean lateness, standard deviation of mean lateness and total tardiness as performance 

measure, respectively. But in their experiment design, the duration of the project is constant. 

In addition to some common factors, such as shop status and the size of order, considered 

during the process of making lead-time promising, Slotnick(2014) incorporated reputation 

effects that depend on the firm’s delivery performance in lead-time optimization model to 

balance the attractiveness of short lead time with the possible degradation of reputation 

resulting from the increased likelihood of tardiness. Guhlich et.al (2015) constructed an 

integrating model for due date quoting and schedule in an assemble-to-order system under 

limited assembly capacity and intermediate material. The goal of the integrated model is to 

answer whether to accept an order and to choose the quoted due date for an accepted order, 

and to schedule the accepted orders so as to meet the due date. However, all lead time in this 

paper are constant, neglecting to consider the uncertainty of the lead time, which may arise 

in practical. Pan and Choi (2013) presented a agent based negotiation and decision making 

approach to address price and delivery time issue in a three-echelon MTO fashion supply 

chain. They modeled the negotiation process as optimization model so as to minimize the 

total cost. The delivery time was determined by cooperation game while the price was 

attained by competitive negotiation. Pekgün and Griffin (2008) studied the price and due 

date decision of a firm facing customers who were sensitive to price and due date. They 

modeled this issue as Stackelberg game and compared the performance of decentralized 

setting (price being made by market while lead-time by production department) and 

centralized setting. However, the cost of holding or lateness penalty is neglected in this 

model. Nguyen and Wright (2015) established a model to address lead-time quoting problem 

of service enterprises or make to order system with time-varying and lead-time sensitive 

demand, facilitating the understanding of the interrelationships among lead time, capacity, 

demand and the total profit. For a comprehensive review concerning order promising (due 

date assignment) , we refer to Mansouri and Gallear(2012).  

Aforementioned literature reviews reveals that the risk attitude of decision makers has 

received less attentions in due date assignment, because they often suppose a risk-neutral 

project manager. This is not sufficient for a project with stochastic duration. Besides, most of 

the previous research assumes that price and due date are interactive, neglecting to consider 

production cost. In reality, production cost, price, duration and due date always interplay 

simultaneously. Moreover, taking unproven technology, human performance variability, and 

natural disruptions into consideration(Zhu, Bard and Yu 2007), the duration of a project is 

stochastic, instead of the deterministic assumption in previous literature concerning due date 

quoting. In these regards, the contributions of this paper are concluded in threefold aspect. Firstly, 

we construct a due date setting model for a project (job) with stochastic duration taking both 

tardiness and earliness into account. Secondly, the decision maker’s risk attitude is incorporated 

by means of Conditional value at risk (CVaR). Thirdly, we analyze the influence of construct 
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type (fixed price or variable price in terms of due date), penalty coefficient of earliness (negative, 

zero or positive) on due date.  

The study is motivated by the industrial circumstance in which a risk-averse decision maker 

should set due date for a project with stochastic duration facing penalty on earliness and tardiness 

while the price depends on the due date. We formulate this problem as an optimization equation 

to maximize CVaR that is the performance measure. As an alternative measure of risk, 

CVaR(Rockafellar and Uryasev 2000) is known to have better properties than Value at Risk (VaR) 

and thus widely applied in addressing stochastic optimization arising from stochastic scheduling 

problem(Sarin ,Sherali and Liao 2014), inventory management(Luo ,Wang and Chen 2015), breast 

cancer therapy(Chan ,Mahmoudzadeh and Purdie 2014), etc. In this paper, we employ CVaR to 

incorporate decision maker’s risk attitude into the due date setting problem. First we assume the 

price is independent of the due date, three theorems are given to present the optimal due date and 

to reveal the effects of different kinds of parameters, such as penalty coefficient, the risk averse 

degree of decision maker, on due date. After that, we study the scenario where the price is 

sensitive to the due date. This phenomenon is common in realty, for example faster deliveries can 

be promised at higher cost (Mansouri and Gallear 2012). Finally, we compare the optimal due 

date in different parameter setting, where the penalty coefficient of earliness is negative or zero, 

which means there is reward or no penalty on earliness, respectively.   

The rest of the paper is organized as follows. Section 2 presents the due date promising 

model with CVaR maximized under the circumstance where the price is fixed. Conversely, when 

the price hinges on the due date, the optimization model is given in Section 3, followed by the 

analysis of the effect of penalty coefficient of earliness on due date in Section 4. Section 5 is a 

case study, followed by some conclusions and research prospects in Section 6. 

2、The due date optimization model with CVaR maximized under fixed price contract 

2.1 Problem description  

Due date is one of the most important decisions that the project manager should take into 

consideration during the planning stage of the development process when a firm should bid a 

project (Hsiau and Lin 2009). The problem addressed here is that a project manager have to set 

due date for a project with stochastic duration considering penalty, production cost and price 

simultaneously. Specially, the penalty consists of penalty on both earliness and tardiness, as just in 

time has been a prevalent production strategy in recent decades, which requires that jobs should be 

completed as close to their due dates as possible(Gordon, Strusevich and Dolgui 2012). Otherwise, 

the early completion results in storage cost while late completion incurs penalty. Hence the 

penalty on both earliness and tardiness will be induced in this model. Additionally, the due date 

decision is also associated with the duration. It is difficult to meet an early due date if the duration 

is long. To sum up, the due date optimization model need to balance the cost, the penalty, and the 

duration.  

The problem studied here is summarized as: a risk-averse decision maker quotes a due date 

for a project with stochastic duration. The objective is to maximize performance, measured by 
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CVaR while taking production cost, penalty and the duration into account. The notation is shown 

as follows: 

Notion 

B  The fixed contract price 

  The random duration of a project, whose cumulative distribution function (CDF) is 

( )F  that is differentiable on support (0, ∞) 

u
 The mean completion time of a project, i.e. ( )u E  , where E is the expectation 

operator. 


 The constant pertaining to the unit cost of the project 

1  
The penalty cost coefficient of the early completion 

2  
The penalty cost coefficient of the late completion 

dx
 

The due date which is the decision variable 

( , )dx 
 

The revenue of the project 

* *,f v

d dx x
 

The subscript ,f v denote the optimal due date under fixed price and variable price, 

respectively 

2.2 The profit of the project 

The cost considered here could be catalogued as production cost and penalty. With respect to 

production cost, the cost associated with the development of the project is supposed to be 

determined by the completion time (duration). A small mean completion time always needs more 

labor, crashing, machines, leading to high cost per time unit. Conversely, a late mean time always 

makes the unit cost less. The unit cost regarding completion time is defined as
u


, consequently, 

the production cost is defined as:  

dC
u


 .

                                

 (1) 

The larger the mean of completion time is, the smaller the production cost coefficient is. This 

definition is conforming to the law of the diminishing marginal returns, similar to the assumption 

of Shabtay, Steiner and Zhang (2016), where the resource consumption function is defined as 

( ) ( )kd b
b


 ,                                (2) 

where d is the processing time, b is the assigned resource,  is the workload, and k are positive 

parameters. Without loss of generality, we let 1k  .  

As mentioned above, the JIT manufacturing pattern is prevailing in recent decades, so both 

the early completion and the late completion will be charged. The penalties for the early 

completion and the late completion are constructed as 1 2( ) , ( )e d l dC x C x        , 

respectively. 

When the due date is dx , combining the production cost, the penalties and the fixed contract 

price, we obtain the profit of the project ( , )dx  , which is a function of dx  and the random 

completion time : 

 

1 2

2 2 1 2

( , ) ( ) ( )

( )( )

d d d

d d

x B x x

B x x


      



      



 



     

      
      (3)   
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   where { ,0}z max z  . 

2.3  Performance measure: CVaR 

   From (3), we know ( , )dx   is also a random variable, CVaR is thus employed to 

measure the performance. According to the work of Rockafellar and Uryasev
 
2000, the CVaR for 

the decision problem pertaining to the due date is  

1
{ [ ( ( , ) ,0)]}d

v R
CVaR max v E min x v  


   ,         (4) 

where (0,1]  represents the risk aversion degree of risk for the project managers. The 

smaller is, the more risk averse the decision maker is (see Chen, Xu and Zhang 2009). 

The decision problem is to optimize the due date to obtain maximum CVaR. The optimal due 

date is 

P1  0arg { ( , )}
dd x v dx max max g x v , 

Where  

2 2 1 2
0

1 2
0

1 1 2 2
0

1
( , ) [ ( )( ) ] ( )

1 1
[ ( )] ( ) [ ( )] ( )

1 1
[ ( ) )] ( ) [ ( ) ] ( )

d

d

d

d

d d d

x

d d
x

x

d d
x

g x v v v B x x dF
u

v v B x dF v B x dF
u u

v v B x dF v B x dF
u u


       


 
       

 
 

       
 


 


 


 

        

          

          



 

 

    

The solution of P1 differs in different scenarios where the relationship between 
u


and 1  

is different.  The first condition is the case where the unit cost is the same as the unit penalty on 

early completion, i.e 
1

u


 . The optimal due date and CVaR is given in Theorem 1. 

Theorem 1 When 
1

u


 , the optimal due date under fixed price contract and CVaR are 

* 1 * *1
1

1 2

(1 ),f f

d dx F v B x
 


 

   


, respectively. 

The proof is given in Appendix. From Theorem 1, we can find that  

(1) The due date is increasing with the increasing of risk aversion degree, i.e. the 

decreasing of  . In other words, a risk aversion manager prefers a late due date. For 

example, if  approach 0, i.e the decision maker is most risk averse, the optimal due 

date is close to
1(1)F 

 where 
1( )F    is the inverse cumulative distribution 

function of the project’s duration.  

(2) A bigger penalty cost coefficient on delay ( 2 ) brings a later due date since it is 

better to avoid delay due to high penalty. Setting a later due date is a good choice to 

reduce delay.  
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(3) Additionally, the bigger the penalty coefficient of early completion ( 1 ) is, the 

smaller the due date is. This is because that an early completion will suffer high 

penalty and a tight due date makes it hard to complete a project before the due date.  

(4) With respect to the optimal CVaR, CVaR decreases as the risk aversion degree of 

decision maker increases. On the contrary, a big penalty cost coefficient on early 

completion 1 results in bad CVaR performance.  

If the unit production cost is bigger than penalty cost coefficient of early completion, the 

following result holds, shown in Theorem2 with proof in Appendix. 

Theorem 2 When 
1

u


 , the optimal due date and CVaR under fix contract price are 

* 1 * * 11
1 1

1 2

(1 ), ( ) ( )f f

d dx F v B x F
u

  
  

 

      


, respectively. 

If let
1

u


 , we find that the optimal due date and CVaR is the same as the one in Theorem 

1. The optimal CVaR is smaller comparing to the one of Theorem1. Moreover CVaR increases as 

u


 decrease. This is easy to understand because low production cost always lead to high revenue.  

When
1

u


  , we derive new results shown in Theorem 3, which are more complicate.  

Theorem 3 When
1

u


 , the optimal due date and CVaR under fixed contract price are 

1 11 2
2 1

* 1 2 1 2

1 2

( ) (1 ) ( ) ( )

,f

d

F F
u u

x

   
 

   

 

    
 




 

*
* 1 12 1 2 1

1 2

1 2 1 2

( ) 1 1
( ) ( ) ( ) (1 )

2 2 2

f

dx
v B F F

u u

      
 

   

 
      

 
, 

respectively. 

When we set
1

u


 , we find that the optimal due date and CVaR in Theorem 3 are the same 

as the one in Theorem 1.Compared to the results in theorem 1 and 2, we find that the due date in 

this case is smaller due to high penalty on early completion(
1 ). Consequently, setting a early due 

date lower the possibility of finishing ahead of schedule, thus leading to low penalty on early 

completion. In sum, the optimal due date is sensitive to unit production cost
u


, unit penalty cost

1 2,  , the risk aversion   and the cdf of completion time
1( )F 

. 

3．The optimal due date model with CVaR goal under due date-sensitive price  
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In reality, the price is always sensitive to the due date. Generally, a project manager will 

charge high price for a project with a short due date, since manufactures may have to recruit more 

employers, conduct more investment and pay more overtime salary aiming to shorten the due date. 

Since many customers are reluctant to buy a product with long due date, a long due date often 

weaken the manufactures’ competition, leading to the broken up with the customer in the 

competitive market. Thus, a trade-off between price and due date should be taken into account in 

the due date optimization problem. This section incorporates the customers’ due date-price 

trade-off to extend the model in Section 2, which is more realistic and applicable. First, we present 

the trade off curve proposed by Moodie(1999), shown in Figure1. The customers’ maximum 

accepted price for the early due date (denoted as EDD) is PEDD, while the maximum accepted 

price for the late due date (denoted as LDD) is PLDD. The segment between EDD and LDD 

shows that the price decreases with the increase of due date. 

Insert Figure 1 about here 

From Figure1, we deduce the formula of the trade-off curve as following: 

1

2

0

* ,

0,

d

d d

d

B x EDD

B B k x EDD x LDD

x LDD

 


   
 

 

where 
PEDD PLDD

k
LDD EDD





, 

2 1 *B B k EDD  ,
1B PEDD . 

When dx EDD , the situation is the same as the one in section 2 with fixed price contract.  

When dx FDD , the firm prefer to not produce anything, since the due date exceeds the 

customers’ maximum accepted due date and the price is 0. 

3.1 The optimal due date under linearly variable contract price 

First we only consider the circumstance where 2 * , 0d dB B k x x   , neglecting to 

consider the constraint dEDD x LDD   ,which will be analyzed in the following. In this 

situation, the relation between price and due date is linear, thus we call this linearly variable 

contract price. The optimal due date and CVaR are conforming to the following three theorems, 

whose proofs are listed in the Appendix. 

Theorem 4 When 
1

u


 , the optimal due date and CVaR under  due date-sensitive 

price( is also referred to variable price contract) are 

(1) If 2 k  ,
* 1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


,

* 1 1
2 1

1 2

( )
( ) [1 ]

k
v B k F

 


 

 
   


, respectively. 

(2) If 2 k  ,
* 0dx  ,

* 1

2 1 2( ) (1 )v B F      , respectively. 
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From Theorem 4, when we find that the optimal due date is decreasing in the increasing of k . 

In other words, the more the price is sensitive to the due date, the earlier the due date is quoted 

when 2 k   . Moreover, the minimal due date is 
1[1 ]F    when 

2 =k . 

Theorem 5 When 
1

u


 , the optimal due date and CVaR under variable price contract are 

(1) If 2 k  ,
* 1 1

1 2

( )
[1 ]d

v k
x F

 

 

 
 


,

** 1

2 1 1( ) ( ) (1 )
d

vv B k x F
u


        , 

respectively. 

(2) If 2 k  ,
* 0dx  ,

* 1

2 2( ) (1 )v B F
u


     , respectively. 

If let
1

u


  in theorem 5, we find that the optimal due date and CVaR in theorem 5 are the 

same as those in theorem 4, which means that theorem 4 is a special case of theorem 5. Compared 

to the results in fixed price contract in Section 2, the optima due date in variable price contract is 

smaller when 2 k   (i.e.
* *1 11 1

1 2 1 2

( )
[1 ] [1 ]d d

v fk
x F x F

  

   

 
    

 
). This is because 

the customer pays more for short due date, encouraging the firm to quote a short due date, in the 

circumstance where unit delay cost ( 2 ) is bigger than the price increased by unit shorten 

due-date, namely the slope of the trade-off curve ( k ). 

When 2 k   , which means unit delay cost is smaller than the price’s increment incurred by 

the unit decrement of due date, the optimal due date is 0. In this situation, the firm would like to 

set a minimum due date, since the penalty for delay will be complemented by the increment of 

price. This phenomenon implies the customer have to increase the unit penalty cost for delay.  

If the penalty on early completion is bigger than the unit production cost, the results are given 

in theorem 6. 

Theorem 6 When 
1

u


 , the optimal due date and CVaR under variable price contract are 

(1) If 2 k  ,
*

1 11 2
2 1

1 2 1 2

1 2

)
( ) (1 ) ( ) ( )

d

v

k k
F F

u u
x

     
 

   

 

  
   

 



,

* 1 12 1 2 1
1 2

1 2 1 2

( ) 1 1
( ) ( ) ( ) (1 )

2 2 2

dx k k
v B F F

u u

        
 

   

   
      

 
 , 

respectively. 
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(2) If 2 k  there is no meaning due to the meaningless of
1 2

1 2

)
( )

k
F

 

 

 


. 

Compared to the results in Theorem 3, we find that the optimal due date in variable price 

contract is smaller than the one in fixed price when 2 k  ,because 

1 1 1 11 1 2 2

1 2 1 2 1 2 1 2

) )
(1 ) (1 ), ( (

k k
F F F F

       

       

    
   

   
. Furthermore, if let 

=0k , the results in theorem 6 is the same as theorem 3. 

3.2 The optimal due date under piecewise variable price contract 

Next, taking the constraint dEDD x LDD   into account, the relation between price 

and due date is piecewise, we then need to explore this problem in the following three scenarios.  

(1) Scenario 1: 
1

u




 

In this scenario where the unit production cost is equal to the unit penalty on early 

completion, the optimal due date is sensitive to different parameters comprising
1(1 )F   ,

1 1

1 2

( )
[1 ]

k
F

 

 

 



, 2 ,k .etc. Specially, the results vary in three different cases, which are 

classified by the relation among
1(1 )F   , EDD and LDD. The concrete analysis on the three 

different cases is given in the Appendix.  

Combined the results of three different cases in the Appendix, the optimal due date and CVaR 

corresponding to Scenario 1（
1

u


  ）is  given in the Table 1. 

Insert Table 1 about here 

When 2 k  , we always have a smaller due date compared to the optimal due date when

2 k   if the other parameters remain constant. The reason is that the added price incurred by unit 

decreased due date is bigger than the penalty on the unit delay. In this case, the firm is inclined to 

quote a early due date so as to obtain high contract price, while the CVaR decreases as the due 

date increases. 

The decision on due date is more complex when 2 k  , which is depending on many 

scenarios which are comprised by different relation among 1(1 ),F EDD   and other parameters. 

Generally, the larger the value of 1(1 )F    is , the bigger the due date is quoted. Because a 

bigger value of 1(1 )F    always indicates that the project’s duration is too long, the firm prefers 



11 
 

to select a bigger due date to avoid high delay penalty. Regarding the revenue, the optimal CVaR 

decreases as the value of 1(1 )F    sees an increase.  

(2) Scenario 2: 
1

u


   

The optimal due date is depending on different parameters, including 
1(1 )F   ,

1 1

1 2

( )
[1 ]

k
F

 

 

 



, 2 ,k .etc. Specially, the results vary in three different cases, which are 

classified by the relation among
1(1 )F   , EDD and LDD. The concrete analysis on the three 

different cases is given in the Appendix.  

Based on the results of three different cases in the Appendix, the optimal due date and CVaR 

in scenario2 is shown in Table 2.  

Insert Table 2 about here 

   We try to draw some conclusion from table 8. In generally, if we let 



 be equal to  , we find 

that the results of Scenario 2 is the same as the one in Scenario 1. Compared to the case when

2 k   , the quoted due date is smaller in the case when
2 k   and the other parameters are the 

same. As for revenue, the CVaR when 
1

u


  is smaller than the one when

1
u


  when all 

other parameters remain the same, since the increase of unit production cost (



) resultes in high 

production cost.  

 (3)Scenario 3: 
1

u


  

When the unit production cost is smaller than the unit penalty on early completion, the 

optimal due date is depending on different parameters, including 

2

1

1 2

(1 )F







 








, 

1 11 2
2 1

1 2 1 2

1 2

( ) (1 ) ( ) ( )F F
u u

   
 

   

 

    
 


(denoted as 

3dx ), 2 ,k .etc. Specially, the results vary in 

three different cases, which are classified by the relation among

2

1

1 2

(1 )F







 








, EDD and LDD. 

Case 1 

2
1

1 2

(1 )F EDD
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When 0 dx EDD   , 1B B .From the proof of theorem 3 in Appendix, we know the 

optimal due date is: 

(1) If
3dx EDD ,then the optimal due date and the CVaR are 

* *

* * 1 2 1 1 1 1

1

2 1

, | ( ) ( ) 1d

d dB x v B x v
x EDD V v F F

u u

 


 
 

 
    

     
  
 

, respectively. 

(2) If 
3dx EDD , then the optimal due date and the CVaR are 

* * 1 1
3 2 2 2

1 2

, ( ) (1 )d d dx x v B x F
u


 

 

     


, respectively. 

When dEDD x LDD   , 2 dB B kx  .From the proof of theorem 6 in Appendix, we 

know the optimal due date is shown in Table 3. 

Insert Table 3 about here 

When dx LDD  , 0B  .The firm decides to produce nothing. The optimal due date 

depends on the relationship between the value of CVaR associated with the due date 
dx  falling 

in the interval (0, EDD) and the value of CVaR when dEDD x LDD  . Specially, the firm 

will quote the due date with largest CVaR. For example, if 
2 3v v ,

 
the due date will be set as 

3dx .
 

Case 2 

2
1

1 2

(1 )EDD F LDD







 





  


 

In this situation, the optimal due date and CVaR are given in Table 4, according to the proof 

3and 6 in Appendix. 

Insert Table 4 about here 

The optimal due date is set at the point whose CVaR is bigger. For example, if 
6 7v v , the 

optimal due date is EDD. Otherwise, the firm has to quote LDD as the due date. 

Case 3 

2
1

1 2

(1 )F LDD







 





 


 

In this situation, the optimal due date and CVaR are given in Table 5, according to the proof 

3and 6 in Appendix. 
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Insert Table 5 about here 

Since 

1 1

2 2 2 1 2 2

1 2 1 2

2

( ) ( ) (1 ) [ ( ) ( ) (1 )]

( ) [ ( ) ]

( )( ) 0

B k LDD F B kEDD k EDD F
u u

B kEDD k LDD B kEDD k EDD

k LDD EDD

 
     

 



            

       

   
, 

the optimal due date is LDD in this case where
1(1 )F   is bigger than LDD. If the project 

manager quotes a due date, which is bigger than LDD, the firm will not get order. On the other 

hand, if the firm selects a tight due date, which is smaller than LDD, it will suffer a high delay 

cost. Although a small due date will bring high contract price, the penalty on delay is bigger than 

the increase in price due to
2 k  . Moreover, the firm is vulnerable to delay, because 

1(1 )F  

is so big that it is difficult to finish the project before a small due date. LDD is thus an optimal due 

date. 

 

 

4．The influence of penalty coefficient for early completion 
1  

4.1 Fixed contract price 

If there is no penalty on the early completion (
1 0  ), the firm’s decision on due date 

absolutely is different from the case presented above. According to the theorem 2, the firm will 

quote
1(1)F 

 that is the maximum duration as the due date. Because the contract price is 

independent on the due date, meanwhile the firm will not be charged for early completion, the 

firm prefers to set the due date as late as better to decrease the possibility of overdue, leading to 

zero penalty cost on delay. Obviously, this case is scarce in practical. Furthermore, we consider an 

extreme scenario where
1 0  , namely the customer encourages the firm to delivery earlier. The 

optimal due date is given as follows: 

 When 
1 2 0,   according to the proof of theorem 2, the optimal due date is

1(1)F 
, 

that means the firm will complete the project before
1(1)F 

, while the CVaR is

1 1

1 1 1(1) ( ) (1 )B F F


  


      ;  

 When 1 2 0,   according to the proof of theorem 2, the optimal due date is

1 1

1 2

(1 )F


 

 


, while the CVaR is 1 11
1 1 1

1 2

(1 ) ( ) (1 )B F F
 

  
  

     


.  

2 1    implies that the penalty on delay is bigger than the award on early completion, thus 

the firm tends to set the due date as late as possible, whereas 2 1   , the firm is apt to select a 

early due date and obtain a bigger CVaR. 

4.2 Linear variable contract price  
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When the contract price is dependent on the due date, specially, the function is suggested as

12 * , 0 (1)d dB B k x x F     . We identify the optimal due date in various scenarios according to 

the proof of theorem 5 since the conditions of the theorem 4 and theorem 6 do not exist when

1 0  . 

 When 
1 20, k   according to the proof of theorem 5, the optimal due date is

1

2

(1 )
k

F




  , which is bigger than 1 1

1 2

( )
(1 )

k
F

 

 

 



 due to the non-existing penalty 

on early completion. Meanwhile
1

2

(1 )
k

F




  is smaller than
1(1)F 

 , because a 

small due date can get a bigger contract price. The CVaR is 

1 1

2 1

2

( ) (1 ) (1 )
k

B k F F
 

 
 

       ;  

 When 1 20, k   according to the proof of theorem 5, the optimal due date is 0 , 

while the CVaR is 1

2 2( ) (1 )B F
u


    . In this case, the smaller the degree of risk 

aversion is, the bigger the CVaR is . This is due to the small penalty on delay 

compared to the award on early due date(
2 k  ). 

 When
1 0  , according to the proof of theorem 5, the optimal due date is given in the 

following table. 

Insert Table 6 about here 

From Table 6, we can conclude some interesting insights. For example, when 1 0k   , 

indicating that the award on early completion is bigger than the award on small due date, the firm 

mostly tend to quote big due date so as to purse the award on early completion, excepting the 

situation where 1 2 0   .Furthermore, 1 1

1 2

( )
(1 )

k
F

 

 

 



in Table 6 is bigger than the one in theorem 5 

as 1

1

'

1 1 1 11

'

2 2 1 2

( ) ( )
(1 ) (1 ) (1 ) (1 )

k kk
F F F F

   


    

   
 

      
 

,where
1

' represents a negative 1 . Quoting a 

bigger due date aims to gain the reward on early completion. 

4.3 Piecewise variable price contract  

The case studied above neglect to consider the customer’s accepted due date, including EDD 

and LDD. If the function between contract price and due date is given as Figure 1, we have to 

study the optimal due date in the scenario where there are a negative
1 or 

1 with zero value. The 

specific results are given in Table 7,8,9 respectively.  

Insert Table 7 about here 

Insert Table 8 about here 

Insert Table 9 about here 

5. Case study 

Taizhou Jindeli Furniture Co.Ltd, located in Zhejiang Province, China, has specialized in 

design and production of European and American classical furniture since 1995. There are 
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widespread exclusive shops of this company in most Chinese large and medium-sized cities, such 

as Beijing, Shanghai. The production system is the mixture of Make to Order and Make to Stock. 

For some products with fluctuate demand and high inventory costs, make to order is a good choice. 

This paper takes a type of sofa (coded as 908-50) as an example to demonstrate the application of 

this proposed model. Product 908-50 is a typical “make to order” product because it is difficult to 

forecast the demand and the holding cost is high. The history data reveals that the duration of 

Product 908-50 is normal distribution. The mean and standard deviation is 36 days and 4, 

respectively, i.e. ~ (36,4)N .  

5.1 CVaR in fixed price 

We consider a situation under which one exclusive shop decides the price with the customer 

in the first stage. After that, the manufacture deselects the due date. We assume the price is 45,000 

CNY( We disguised the amount in this paper for confidentiality),namely 45,000B  . The other 

parameters are set as 1 2/ 800, 750, 1000, 0.95u       . 

Since
1/ u  , according to theorem 2, we derive the optimal due date and CVaR is

* 1 11

1 2

750*0.95
(1 ) (1 ) 36.5, 15,660

750 1000

f

dx F F CVaR
 

 

      
 

. 36.5 days is therefore 

the optimal due date in this case.  

To validate the result, we also employ Crystal Ball software to simulate the duration. First, 

we simulate 100,000 times to get 100,000 random profits. Then according to the following 

formula, we can calculate the CVaR in different conditions where the due date is different based 

on the simulated data. 

0arg { ( , )},
dd x v dx max max g x v

 

where
1

1
( , ) [ ]

*

q

d i

i

g x v v v
q








   , 100,000q  is the simulation times and 
i  is 

the profit of the ith simulation. The relation between CVaR and due date is shown in Figure 2 

which shows that 36.5 days is the optimal due date while the optima CVaR is 14824. The error of 

optimal CVaR between simulation method and the theorem 2 is 5.7 %, i.e.
 

15660 14768
5.7%

15660


 .  

Insert Figure 2 about here 

5.2 CVaR under linearly variable price  

Contrary to the situation in section 5.1, the price is not always fixed. In this section, taking 

the effect of the due date on the price into consideration, we assume the price is

45,000 200* , 0d dB x x   .  According to theorem 4, we obtain the optimal due date and 

CVaR: 

* 1 11

1 2

( ) 0.95(750 200)
[1 ] [1 ] 36.0, 10875

750 800
d

k
x F F CVaR

 

 

  
     

 
. 
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As mentioned above, the optimal due date decreases as the slope k increases, which is shown 

in Figure 3. 

Insert Figure 3 about here 

5.3 CVaR under stepwise variable price  

In this section, we study the optimal due date decision problem when the price is given as the 

following formula. The other parameters are the same as the one above. 

45,000 0 35

45,000 200* , 40

0,

d

d d

d

x EDD

B x EDD x LDD

x LDD

  


    
 

 

     Because 1 1(1 ) (1 0.95) 32.7 35F F EDD       , according to scenario 2, we derive the 

optimal due date and CVaR is * 1 1

1 2

min{ , [1 ]} min{35,36.5} 35dx EDD F


 

   


,

* 1

1 1 1( ) (1 ) 14114dCVaR B x F


  


      . 

Furthermore, if the customer encourages early finish, namely
1 0  , referring to the results 

in Section 4, we can obtain the optimal due date: 

1

*

1

1

35, 0 200

40, 200 1000

(1 0.95) 32.7, 1000

dx

F







   


    


   

 

 

6. Conclusion 

This paper aims to establish an optimization model concerning due date quoting for a project 

with stochastic duration taking decision maker’s risk aversion into consideration. In detail, the 

paper defines a project’s profit as the interval between contract price and the costs comprising 

production cost, penalty on earliness and tardiness. Since the duration is stochastic, the profit 

associated with the due date and the duration is also random. CVaR is thus employed to describe 

the decision maker’s risk attitude and regarded as the objective of the due date determining model. 

More specifically, we explore the due date decision problem in two scenarios: the first one is fixed 

price contract where the price is independent on the due date and the other is variable price 

contract(including linear function and piecewise function) which is sensitive to due date. 

Generally, one can charge more for an early due date.  

 In the first case where price is fixed, we derive the optimal due date in three different cases. 

When 
1

u


 , i.e. the unit production cost is no smaller than the unit penalty on earliness, the 

optimal due date is 
* 1 1

1 2

(1 )f

dx F
 

 

 


, implying that (1) when the decision maker is most 

risk averse ( approach 0), the optimal due date is close to
1(1)F 

; (2) High penalty on unit 
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delay, i.e. 
2 is large, always leads to a later due date; (3) The optimal due date decreases as the 

unit penalty on earliness early completion increases. When
1

u


 , the optimal due date is 

1 11 2
2 1

* 1 2 1 2

1 2

( ) (1 ) ( ) ( )
f

d

F F
u u

x

   
 

   

 

    
 




. In the second case the relation between due date and 

price is piecewise, shown in Figure 1. The optimal due date is depending on different parameters 

including
1(1 )F   ,

1 1

1 2

( )
[1 ]

k
F

 

 

 



, 2 ,k .etc. At last, we analyze the influence of penalty 

coefficient of earliness (negative, zero) on due date.  

There are some rooms for improving. In this paper, we do not consider the resource 

constraint. However, the resource is limited in reality, therefore we should incorporate resources 

constraint in the model. Besides, we only formulate the due date decision problem in state 

environment ignoring the interaction between the new project and the existing project. If the 

project(order) arrives over time, we need to answer whether to accept the new order, what is the 

optimal due date and how to schedule the orders accordingly.  
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Appendixes 

P1  
0arg { ( , )}

dd x v dx max max g x v , 

Where  

1 2 2
0

1 1
( , ) [ )] ( ) [ ( ) ] ( )

d

d

x

d d d
x

g x v v v B x dF v B x dF
u


     

 


            

1．The proof of Theorem 1 

Proof:  

In this situation, 1
u


 , so  

1 2 2
0

1 1
( , ) [ )] ( ) [ ( ) ] ( )

d

d

x

d d d
x

g x v v v B x dF v B x dF
u


     

 


            

Case 1. 1 dv B x  . In this case, 

1 2 2
0

1 1
( , ) ( ) ( ) [ ( ) ] ( )

d

d

x

d d d
x

g x v v v B x dF v B x dF
u


     

 



           

Thus 
( , ) 1

1 0dg x v

v 


  


 

Case 2. 1 dv B x  . We can derive that 

2

2

2 2

1
( , ) [ ( ) ] ( )

dB x vd d

u

g x v v v B x dF
u







   





 



       

Then 

2

2

2

2

( , ) ( , )1
1 [1 ( )], 0d d dg x v B x v g x v

F and
v v

u



 

   
   

 


.  

Let 
( , ')

0dg x v

v





hold, we have

' 1

2 1 2( ) ( ) (1 )d dv x B x F        . Furthermore, 

( , )dg x v  is increasing with the increase of v when 'v v , while ( , )dg x v decreases in the 

interval between 
'v  and 

1 dB x . 

Let 
*( )dv x be the optimal CVaR of P1 for fixed dx . Combining Case 1and Case 2, we 

observe that
*

1( )d dv x B x  .  

(1) If 
1(1 )dx F   , we derive 

'

2 1 2 1( ) ( )d d d dv x B x x B x         , 

then we have  
( , ) ( , )

0, '( ); 0, '( )d d
d d

g x v g x v
if v v x if v v x

v v

 
   

 
. 
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Thus , 
* 1

2 1 2( ) '( ) ( ) (1 )d d dv x v x B x F         ,  

From case 2 we get, 

1

* 1 1

2 1 2 1 2 1 2
(1 )

1
( , ( )) ( ) (1 ) [ ( ) (1 ) ( ) ] ( )d d d

F
g x v x B x F F dF


          





 


          

 thus

*

2

( , ( ))
0d d

d

g x v x

x



 


.  

(2) If 
1(1 )dx F   , 2 1 2 1'( ) ( )d d d dv x B x x B x         , furthermore 

1 1

( , ) ( , )
0, ; 0,d d

d d

g x v g x v
if v B x if v B x

v v
 

 
     

 
 

Thus
*

1( )d dv x B x  , and then we have

*

1 1 2 2

1
( , ( )) [ ( ) ( ) ] ( )

d
d d d d

x
g x v x B x x dF

u


     





       , and  

*

1 1 2

( , ( )) 1
( )(1 ( ))d d

d

d

g x v x
F x

x
  




    


 

Combining (1) and (2), we know that 
*

dx  satisfies 
1 1 2

1
( )(1 ( )) 0dF x  


     , 

therefore the optimal due date and the optimal CVaR is 
* 1 1

1 2

(1 )dx F


 

 


, and 

* *

1 dv B x  , respectively. 

End 

2．The proof of Theorem 2 

Proof:  

The results of ( , )dg x v varies in two different cases, namely dv B x
u


   and 

dv B x
u


  . 

Case 1.
dv B x

u


  . Since 2 2( ) 0dv B x

u


        when dx  , we have

1

1

1 1 2 2

1 1
( , ) [ ( ) ] ( ) [ ( ) ] ( )

d

d
d

x

B v xd d d
x

u

g x v v v B x dF v B x dF
u u






 
       

 



 



           

, and 1

1

( , ) 1
1 (1 ( ))d dg x v B v x

F
v

u



 

  
  




.  

Let 
( , )

0dg x v

v





, then 

1

1 1 1( ) ( ) (1 )d dv x B x F
u


       . 
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Case 2. 
dv B x

u


  . In this case, we derive that 

2

2

2 2

1
( , ) [ ( ) ] ( )

dB x vd d

u

g x v v v B x dF
u







   





 



       

Thus 2

2

( , ) 1
1 [1 ( )]d dg x v B x v

F
v

u



 

  
  




.  

Let 
( , )

0dg x v

v





, then 

1

2 2 2( ) ( ) (1 )d dv x B x F
u


       . 

Now fix the due date
dx , we discuss the optimization problem in the following different 

conditions. 

(1) 
1(1 )dx F   , we have 

1( )d dv x B x
u


  , and

2 ( )d dv x B x
u


   . Based on 

the analysis in Case 1 and Case 2, we know that the optimal due date to maximize ( , )dg x v  

is
1

2 2 2( ) ( ) (1 )d dv x B x F
u


       .From case 2, we have

1

* 1 1

2 2 2 2
(1 )

1
( , ) ( ) (1 ) [ ( ) (1 ) ( ) ] ( )d d

F
g x v B x F F dF

u u u

  
       





 


            

and

*

2

( , )
0d

d

g x v

x



 


. 

(2) 
1(1 )dx F   , we derive 

1( )d dv x B x
u


  and 2 ( )d dv x B x

u


   implying 

that 
( , )

0dg x v

v





 in Case 2. Since in both case 1 and case 2, 

2

2

( , )
0dg x v

v





, the optimal 

due date is
1( )dv x . From Case 1, we have  

1

* 1 1

1 1 1 1
(1 )

1

1 2 1 2

1
( , ) ( ) (1 ) [ ( ) (1 ) ( ) ] ( )

1
[( ) (1 ) ( ) ( ) ] ( )

d

d

x

d d
F

d
x

g x v B x F F dF
u u u

F x dF
u u



  
       



 
      





 






          

      





 Thus, 

*

1 1 2

( , ) 1
( )(1 ( ))d

d

d

g x v
F x

x
  




    


 

Combining (1) and (2), we know that the optimal due date is 
* 1 1

1 2

(1 )dx F


 

 


, and 

the CVaR is 
* * 1

1 1( ) (1 )dv B x F
u


       . 

End  
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3．The proof of Theorem 3 

Proof:  

Since 1
u


  in this situation, we distinguish this problem in the following case. 

Case 1. 1 dv B x  . We have
2

2

2 2

1
( , ) [ ( ) ] ( )

dB x vd d

u

g x v v v B x dF
u







   





 



      , 

thus
1

2 1 2

2 2

( , ) ( , )1 1
1 [1 ( )], | 1 [1 ( )]

d

d d d d d

v B x

g x v B x v g x v x x
F F

v v

u u



  

  
 

 

    
     

 
 

 .  

Let 
( , )

0dg x v

v





, then we derive 

1

3 2 2( ) ( ) (1 )d dv x B x F
u


       . 

Case 2. 
1 d dB x v B x

u


    . We get 

1

1

2

2

1 1 2 2
0

1 1
( , ) [ ( ) ] ( ) [ ( ) ] ( )

d

d

B v x

u
B x vd d d

u

g x v v v B x dF v B x dF
u u











 
       

 

 



 



           

 

Thus 1 2

1 2

( , ) 1 1
1 ( ) [1 ( )]d d dg x v B x v B x v

F F
v

u u

 

   

    
   


 

. 

Case 3. 
dv B x

u


  . We have 

1 1 2 2
0

1 1
( , ) [ ( ) ] ( ) [ ( ) ] ( )

d

d

x

d d d
x

g x v v v B x dF v B x dF
u u

 
       

 



            and 

( , ) 1
1 0dg x v

v 


  


. 

 Hence, ( , )dg x v is monotone decreasing function with respect to v . Based on the analysis 

above, for any fixed due date, we can find that the optimal CVaR (denoted by
*( )dv x ) will be 

attained at the interval between (0, dB x
u


 ]. We distinguish between two different cases: 

(1) If 

2
1

1 2

(1 )dx F







 





 


, then 
1

3 2 2 1( ) ( ) (1 )d d dv x B x F B x
u


          , 

From case 1, we know that 
3

3 1

( , )
0, ( );

( , )
0, ( )

d
d

d
d d

g x v
when v v x

v
g x v

when v x v B x
v




 




   


.  

From case 3, we know that 
( , )

0,d
d

g x v
when v B x

v u
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   From case 2, we know that 
1

2 1

2

( , ) 1
| 1 [1 ( )] 0

d

d d d
v B x

g x v x x
F

v

u



 

 
 

 
   




, and 

1 2

1 2

( , ) 1 1
1 ( ) [1 ( )]d d dg x v B x v B x v

F F
v

u u

 

   

    
   


 

is decreasing in v , and so 

( , )
0dg x v

v





, when 

1 d dB x v B x
u


    . 

Thus the optimal CVaR 
* 1

3 2 2( ) ( ) (1 )d dv v x B x F
u


        , from case 1, 

we have 
1

* 1 1

2 2 2 2
(1 )

1
( , ) ( ) (1 ) [ ( ) (1 ) ( ) ] ( )d d

F
g x v B x F F dF

u u u

  
       





 


           , 

thus

*

2

( , )
0d

d

g x v

x



 


.  

 (2) If 

2
1

1 2

(1 )dx F







 





 


, then 
1

1 2 2 1( ) (1 )d dv B x F B x
u


           

From case 1, we know that 
1

( , )
0,d

d

g x v
when v B x

v



  


.  

From case 3, we know that 
( , )

0,d
d

g x v
when v B x

v u


  


 

From case 2, we know that 

1

12 1

2

( , ) 1 1
| 1 [1 ( )] 1 [1 (1 )] 0

d

d d d

v B x

g x v x x
F FF

v

u



 


 




 

 
       




and

( , ) 1
| 1 0

d

d

v B x
u

g x v

v


 


  


.Therefore, there exists optimal 

*

1( ) ( , )d d dv x B x B x





   , 

satisfying 

*( , ( ))
0d dg x v x

v





, which leads to 

* *

2 1

2 1

( ) ( ) 1d dB x v B x v
F F

u u

 


 
 

   
  

 

.  

From case 2, we have

*
1

1

*
2

2

* * * *

1 1 2 2
0

1 1
( , ) [ ( ) ] ( ) [ ( ) ] ( )

d

d

B v x

u
B x vd d d

u

g x v v v B x dF v B x dF
u u











 
       

 

 



 



           

.Thus

 

* * *

1 2
1 2 2

1 2

( , ) 1
( ( ) ( ) )d d d

d

g x v B x v B x v
F F

x

u u

 
  

   

    
   


 

. Moreover
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*( , )d

d

g x v

x




 is decreasing in dx 1

. So the optimal due date 
*

dx  satisfies 

* * * *

1 2
1 2 2

1 2

( ) ( ) 0d dB x v B x v
F F

u u

 
  

 
 

   
  

 

 

                                                             
1 Let

* *

2 1

2 1

( , ) ( ) ( ) 1d d
d

B x v B x v
G x v F F

u u

 


 
 

   
   

 

 ,we have

* *

2 12 1

* 2 2 1 1

* *

2 1

2 2 1 1

( ) ( )

1 1
( ) ( )

d

d d

x

d dd v

B x v B x v
f f

Gv u u u u

B x v B x vx G
f f

u u u u

  

   
   

 

   
   

   


   


  
   



   

 

Besides,

* * *

1 1
1 2 2

1 1

( , ) 1
[ ( ) (1 ( )) ]d d d

d

g x v B x v B x v
F F

x

u u

 
   

   

    
     


 

 

*

1
1 2 2

1

1
[( ) ( ) ]dB x v

F

u


  

 

 
   


 

 

Since * *

2 12 1

* 2 2 1 1

1 1 * *

2 1

2 2 1 1

*

2 1 2

2 2

* *

2 1

2 2 1 1

( ) ( )

1 1
( ) ( )

( )

0
1 1

( ) ( )

d d

d dd

d

d d

B x v B x v
f f

v u u u u

B x v B x vx
f f

u u u u

B x v
f

u u

B x v B x v
f f

u u u u

  

   
   

 
 

   
   

  

 
 

 

   
   

   


   


  
   



   

  

 

 
   



   

 

,we get

*

12 * *

1
1 22

1 1

( , ) 1
[( ) ( ) ] 0d d d

d

v

g x v B x v x
f

x

u u




 
   




   
   


 

, therefore 

*( , )d

d

g x v

x




 is 

decreasing in dx .   
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Recall that

* *

2 1

2 1

( ) ( ) 1d dB x v B x v
F F

u u

 


 
 

   
  

 

, 

So 

* * 1 1
2 2

1 2

* * 1 2
1 1

1 2

( ) (1 )

( ) ( )

d

d

B x v F
u

B x v F
u


 

 


 
 






     


    



 

Solving the simultaneous equation above, we derive the optimal due data and CVaR is  

1 11 2
2 1

* 1 2 1 2

1 2

( ) (1 ) ( ) ( )

,d

F F
u u

x

   
 

   

 

    
 




* * 1 1
2 2

1 2

( ) (1 )dv B x F
u


 

 

    


, 

respectively. 

End  

 4．The proof of Theorem 4 

Proof:  

In this situation, the price is sensitive to the due date. Furthermore we define the linear 

relation between price and due date as 2 * , 0d dB B k x x   . Therefore, we have

2 1 1 2 2 2
0

1 1
( , ) [ ( ) ( ) )] ( ) [ ( ) ( ) ] ( )

d

d

x

d d d
x

g x v v v B k x dF v B k x dF
u u

 
       

 


               . 

Since 1
u


 , we investigate the optimal due date in two different cases as follows. 

Case 1. 2 2 1( ) ( )d dv B k x B k x
u


      . We have 

2 1 2 2 2
0

1 1
( , ) ( ( ) ) ( ) [ ( ) ( ) ] ( )

d

d

x

d d d
x

g x v v v B k x dF v B k x dF
u


     

 



           

 

Thus
( , ) 1

1 0dg x v

v 


  


, implying that ( , )dg x v is decreasing in v . 

Case 2. 2 1( ) dv B k x   . In this condition, we can derive  

2 2

2

2 2 2

1
( , ) [ ( ) ( ) ] ( )

d dB x kx vd d

u

g x v v v B k x dF
u







   





  



        

Thus, we have 2 2

2

( , ) 1
1 [1 ( )]d d dg x v B x kx v

F
v

u



 

   
  




.  

If 4( , )
0dg x v

v





, then we get 4

1

2 2 1 2( ) ( ) (1 )d d dv x B x kx F         .  
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Let 
*v be optimal CVaR of P1. Combining Case 1and Case 2, we observe

 
*

2 1( ) dv B k x   . 

(1) If 
1(1 )dx F   ,

4

2 1( ) ( )d dv x B k x   , and 

2

2

( , )
0dg x v

v





,then we know 

the optimal CVaR for fixed due date is 
* 4 1

2 2 1 2( ) ( ) (1 )d d dv x v B x kx F          . 

Then from case 2 we get

1

* 1 1

2 2 1 2 1 2 1 2
(1 )

1
( , ) ( ) (1 ) [ ( ) (1 ) ( ) ] ( )d d d

F
g x v B x kx F F dF


          





 


           

 and

*

2

( , )d

d

g x v
k

x



 


. The sign symbol of 

*( , )d

d

g x v

x




 depends on the relation between 2  

and k . 

(2) If
1(1 )dx F   , then 

4

2 1( ) ( )d dv x B k x   , so ( , )dg x v is increasing in v when 

2 1( ) dv B k x   . Thus
*

2 1( ) dv B k x   , and from case 2 we have 

*

2 1 1 2 1 2

1
( , ) ( ) [ ( ) ( ) ] ( )

d
d d d

x
g x v B k x x dF      





        . 

So, 

*

1 1 2

( , ) 1
( )(1 ( ))d

d

d

g x v
k F x

x
  




     


 and 

2 *

2

( , )
0d

d

g x v

x





 

If 

*

1 1 2

( , ) 1
( )(1 ( )) 0d

d

d

g x v
k F x

x
  




      


, then 

1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

Considering the sign symbol of 

*

2

( , )d

d

g x v
k

x



 


, we have to distinguish from two 

different Scenarios: 

Scenario 1 2 k   

Combining (1) and (2), we know that  

dx  
*( , )d

d

g x v

x




 

1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

*( , )
0d

d

g x v

x





 

1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

*( , )
0d

d

g x v

x
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1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

*( , )
0d

d

g x v

x





 

Thus, the optimal due date and CVaR is 
* 1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


and

* 1 1
2 1

1 2

( )
( ) [1 ]

k
v B k F

 


 

 
   


, respectively. 

Scenario 2 2 k   

In this scenario, we have

 

1 11

1 2

( )
[1 ] [1 ]

k
F F

 


 

 
  


.Combining (1) and (2), we know 

that: 

dx  
*( , )d

d

g x v

x




 

1 1(0) [1 ]dF x F      
*

2

( , )
0d

d

g x v
k

x



  


 

1[1 ]dx F    
*( , )

0d

d

g x v

x





 

Thus, the optimal due date and CVaR is
* 1(0)dx F  ,and * 1 1

2 2 1 2( ) (0) ( ) (1 )v B k F F          , 

respectively, where 
1( )F   is the inverse distribution function of the project’s duration. 

5．The proof of Theorem 5 

When
1

u


 , we distinguish from the following two cases: 

Case 1.
2 ( ) dv B k x

u


   . We have 

1

1

2 1 1 2 2 2

1 1
( , ) [ ( ) ] ( ) [ ( ) ] ( )

d

d d
d

x

B v x kxd d d d d
x

u

g x v v v B kx x dF v B kx x dF
u u






 
       

 



  



             

. Thus we derive 2 1

1

( , ) 1
1 (1 ( ))d d dg x v B v x kx

F
v

u



 

   
  




, and

2

2

( , )
0dg x v

v





.  

Let 5( , )
0dg x v

v





, then we have

1

5 2 1 1( ) ( ) (1 )d d dv x B x kx F
u


        . 

Case 2. 
2 ( ) dv B k x

u


   .In this case, the ( , )dg x v is  
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2

2

2 2 2

1
( , ) [ ( ) ] ( )

d dB x kx vd d d

u

g x v v v B kx x dF
u







   





  



        

Then we get 

2

2 2

2

2

( , ) ( , )1
1 [1 ( )], 0d d d dg x v B x kx v g x v

F and
v v

u



 

    
   

 


 

Let 6( , )
0dg x v

v





, then we derive

1

6 2 2 2( ) ( ) (1 )d d dv x B x kx F
u


        . 

Now fix the due date, we analyze the question from the following conditions. 

(1) If
1(1 )dx F   , then we have 5 2 1( ) dv B x

u


   , and 6 2 ( ) dv B k x

u


   . 

Combining case 1 and case 2, we know that
( , )

0dg x v

v





, when 6v v , while 

( , )
0dg x v

v






when 6v v .Thus the optimal CVaR is 
* 1

6 2 2 2( ) (1 )d dv v B x kx F
u


         , from 

case 2, we have 1

* 1 1

2 2 2 2 2
(1 )

1
( , ) ( ) (1 ) [ ( ) (1 ) ( ) ] ( )d d d

F
g x v B x kx F F dF

u u u

  
       





 


            , 

and

*

2

( , )d

d

g x v
k

x



 


. 

(2)If 
1(1 )dx F   , then we have 5 2 1( ) dv B x

u


   , and 6 2 ( ) dv B k x

u


   . 

Combining case 1 and case 2, we have 
( , )

0dg x v

v





, when 5v v , while 

( , )
0dg x v

v





when

5v v .Thus the optimal CVaR is 
* 1

5 2 1 1( ) (1 )d dv v B x kx F
u


         , from case 1, 

we have  

1

* 1 1

2 1 1 1 1
(1 )

1

1 2 1 2

1
( , ) ( ) (1 ) [ ( ) (1 ) ( ) ] ( )

1
[( ) (1 ) ( ) ( ) ] ( )

d

d

x

d d d
F

d
x

g x v B x kx F F dF
u u u

F x dF
u u



  
       



 
      





 






           

      





Furthermore, we derive

*

1 1 2

( , ) 1
( )(1 ( ))d

d

d

g x v
k F x

x
  




     


,and 

2 *

2

( , )
0d

d

g x v

x





.  

Let 

*( , )
0,d

d

g x v

x





then we have 

1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


. Since the sign symbol of 

*

2

( , )d

d

g x v
k

x



 


 depends the relation between 2  and k , we distinguish between two 

different cases, i.e 2 k   and 2 k  . 
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Scenario 1 2 k  . Combining (1) and (2), we know that  

dx  
*( , )d

d

g x v

x




 

1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

*( , )
0d

d

g x v

x





 

1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

*( , )
0d

d

g x v

x





 

1 1

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

*( , )
0d

d

g x v

x





 

Thus, the optimal due date and optimal CVaR is
* 1 1

1 2

( )
[1 ]d

v k
x F

 

 

 
 


,and

 

** 1

2 1 1( ) ( ) (1 )
d

vv B k x F
u


        ,respectively. 

Scenario 2 2 k  . In this scenario, we have 
1 11

1 2

( )
[1 ] [1 ]

k
F F

 


 

 
  


.Combining (1) 

and (2), we know that: 

dx  
*( , )d

d

g x v

x




 

1 1(0) [1 ]dF x F      
*

2

( , )
0d

d

g x v
k

x



  


 

1[1 ]dx F    
*( , )

0d

d

g x v

x





 

Thus, the optimal due date and CVaR is
* 1(0)dx F  ,and

* * 1

2 2 2( ) ( ) (1 )dv B k x F
u


        , respectively, where 

1( )F   is the inverse 

distribution function of the project’s duration. 

End  
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6．The proof of Theorem 6 

Proof:  

Because 1
u


 , we have the following three inequalities:  

2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( )d d d dv B k x v B k x x v B k x
u u u

  
                  

,when dx  ;

 

2 1 1 2 1 1 2( ) ( ) ( ) ( ) ( )d d dv B k x v B k x x v B k
u u u

  
                   , 

when dx  ; 

2 1 1 2 1( ) ( ) ( )d dv B k x v B k x
u


              

Based on the three inequalities above, we study the optimal due date in three cases as 

follows. 

Case 1. 2 1( ) dv B k x   . We have  

2

2

( ) 2 2 2

1
( , ) [ ( ) ( ) ] ( )

dB k x vd d

u

g x v v v B k x dF
u







   





  



       , 

Thus 2 2

2

( , ) ( )1
1 [1 ( )]d dg x v B k x v

F
v

u



 

   
  




 

Let 7( , )
0dg x v

v





, then we obtain

1

7 2 2 2( ) ( ) ( ) (1 )d dv x B k x F
u


        . 

Case 2. 
2 1 2( ) ( )d dB k x v B k x

u


      . We have  

2 1

1

2 2

2

( )

( )2 1 1 2 2 2
0

1 1
( , ) [ ( ) ( ) ] ( ) [ ( ) ( ) ] ( )

d

d

B v k x

u
B k x vd d d

u

g x v v v B k x dF v B k x dF
u u











 
       

 

  

 

  



             

 

Then 2 1 2 2

1 2

( , ) ( ) ( )1 1
1 ( ) [1 ( )]d d dg x v B k x v B k x v

F F
v

u u

 

   

      
   


 

, 
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Case 3. 
2 dv B x

u


  . In this case, we obtain

2 1 1 2 2 2
0

1 1
( , ) [ ( ) ( ) ] ( ) [ ( ) ( ) ] ( )

d

d

x

d d d
x

g x v v v B k x dF v B k x dF
u u

 
       

 



             

, thus
( , ) 1

1 0dg x v

v 


  


, implying that ( , )dg x v  is non-increasing in v . 

Based on the analysis above, for any fixed due date, we can find that the optimal CVaR 

(denoted by
*( )dv x ) will be attained at the interval between (0, 2 dB x

u


 ]. We distinguish 

between two different cases: 

(1) If 

2
1

1 2

(1 )dx F







 





 


, then we have 

1

7 2 2 2 2 1( ) ( ) ( ) (1 ) ( )d d dv x B k x F B k x
u


            , 

From case 1, we know that 
7

1 7 2 1

( , )
0, ( );

( , )
0, ( ) ( )

d
d

d
d d

g x v
when v v x

v
g x v

when v v x B k x
v




 




    


.  

From case 3, we know that 
2

( , )
0, ( )d

d

g x v
when v B k x

v u


   


 

   From case 2, we know that 
2 1

2 1
( )

2

( , ) 1
| 1 [1 ( )] 0

d

d d d
v B k x

g x v x x
F

v

u



 

 
  

 
   




, and 

since

2

2

( , )
0dg x v

v





, and 

2 1 2 2

1 2

( , ) ( ) ( )1 1
1 ( ) [1 ( )]d d dg x v B k x v B k x v

F F
v

u u

 

   

      
   


 

is decreasing in v , 

we have 
( , )

0dg x v

v





, when 

2 1 2( ) ( )d dB k x v B k x
u


      . 

So the optimal 
* 1

7 2 2 2( ) ( ) ( ) (1 )d dv v x B k x F
u


         , from case 1, we 

have

1

* 1 1

2 2 2 2 2
(1 )

1
( , ) ( ) ( ) (1 ) [ ( ) (1 ) ( ) ] ( )d d

F
g x v B k x F F dF

u u u

  
       





 


           

 and

*

2

( , )d

d

g x v
k

x



 


. 
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 (2) If 

2
1

1 2

(1 )dx F







 





 


, then we have

1

7 2 2 2 2 1( ) ( ) ( ) (1 ) ( )d d dv x B k x F B k x
u


            .  

From case 1, we know that 
2 1

( , )
0,d

d

g x v
when v B x

v



  


.  

From case 3, we know that 
2

( , )
0,d

d

g x v
when v B x

v u


  


 

    From case 2, we know that 

1

12 1
( )

2

( , ) 1 1
| 1 [1 ( )] 1 [1 (1 )] 0

d

d d d
v B k x

g x v x x
F FF

v

u



 


 



  

 
       




( )

( , ) 1
| 1 0

d

d

v B k x
u

g x v

v


  


  


 

Since 2 1 2 2

1 2

( , ) 1 1
1 ( ) [1 ( )]d d dg x v B x v B x v

F F
v

u u

 

   

    
   


 

is decreasing in v , 

\there exists optimal 
*

2 1 2( ( ) , ( ) )d dv B k x B k x





     , satisfying 
( , )

0dg x v

v





, 

furthermore when 
( , )

0dg x v

v





, then 

* *

2 2 2 1

2 1

( ) ( )
( ) ( ) 1d dB k x v B k x v

F F

u u

 


 
 

     
  

 

 

From case 2, we have
*

2 1

1

*
2 2

2

( )

* * * *
( )2 1 1 2 2 2

0

1 1
( , ) [ ( ) ( ) ] ( ) [ ( ) ( ) ] ( )

d

d

B v k x

u
B k x vd d d

u

g x v v v B k x dF v B k x dF
u u











 
       

 

  

 

  



             

and
* * *

2 1 2 2

1 2 2

1 2

( , ) ( ) ( )1
[( ) ( ) ( ) ( ) ]d d d

d

g x v B k x v B k x v
k F k F k

x

u u

 
  

 
 

      
      


 

. 
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Becasue 

*( , )d

d

g x v

x




 is decreasing in dx 2

, the optimal due date satisfies 

* * * *

2 1 2 2
1 2 2

1 2

( ) ( )
( ) ( ) ( ) ( ) ( ) 0d dB k x v B k x v

k F k F k

u u

 
  

 
 

     
     

 

 

                                                             
2 Let 

* *

2 2 2 1

2 1

( , ) ( ) ( ) 1d d
d

B x v B x v
G x v F F

u u

 


 
 

   
   

 

,

* *

2 2 2 12 1

* 2 2 1 1

* *

2 2 2 1

2 2 1 1

( ) ( )
( ) ( )

( ) 1 1
( ) ( )

d

d d

x

d dd v

B k x v B k x vk k
f f

Gv u u u u

B k x v B x vx G
f f

u u u u

  

   
   

 

   
   

      


   


  
    



   



Since
* *

2 2 2 1

2 1

( ) ( )
( ) ( ) 1d dB k x v B k x v

F F

u u

 


 
 

     
  

 

, we obtain

* * *

2 1 2 1
1 2 2

1 1

( , ) ( ) ( )1
[( ) ( ) ( )(1 ( )) ]d d d

d

g x v B k x v B k x v
k F k F k

x

u u

 
   

   

      
        


 

 
*

2 1
1 2 2

1

( )1
[( ) ( ) ( )]dB k x v

F k

u


   

 

  
    



. 

 *

12 * *

2 1
1 22

1 1

( , ) ( )1
[( ) ( ) ]d d d

d

v
k

g x v B k x v x
f

x

u u




 
   


 

    
  


 



Since 
* *

2 2 2 12 1

* 2 2 1 1

1 1 * *

2 2 2 1

2 2 1 1

*

2 2 1 2

2 2

*

2 2 2

2 2

( ) ( )
( ) ( )

( ) 1 1
( ) ( )

( )
( )

( ) (1
( ) (

d d

d dd

d

d

B k x v B k x vk k
f f

v u u u uk k
B k x v B x vx

f f

u u u u

B k x v
f

u u

B k v B
f f

u u

  

   
   

 
 

   
   

  

 
 



 
 

      


   


    
    



   

   

 


   



 

*

1

1 1

0
) 1

)dk x v

u u



 
 


 

 

 



35 
 

Recall that

* *

2 2 2 1

2 1

( ) ( )
( ) ( ) 1d dB k x v B k x v

F F

u u

 


 
 

     
  

 

. So we have  

* * 1 1
2 2 2

1 2

* * 1 2
2 1 1

1 2

( )
( ) ( ) (1 )

( )
( ) ( ) ( )

d

d

k
B k x v F

u
k

B k x v F
u

 
 

 
 

 
 






      

 
     



 

Therefore, we have 

1 11 2
2 1

* 1 2 1 2

1 2

)
( ) (1 ) ( ) ( )

,d

k k
F F

u u
x

     
 

   

 

  
   

 



 

* * 1 1
2 2 2

1 2

( )
( ) ( ) (1 )d

k
v B k x F

u

 
 

 

 
     


 

Considering the sign symbol of 

*

2

( , )d

d

g x v
k

x



 


, we have to distinguish from two 

different Scenarios: 

Scenarios 1 2 k   

Combining (1) and (2), we know that  

dx  
*( , )d

d

g x v

x




 

2
1

1 2

(1 )dx F







 





 


 

*( , )
0d

d

g x v

x





 

2
* 1

1 2

(1 )d dx x F







 





  


 

*( , )
0d

d

g x v

x





 

*

dx

 
0 

*

d dx x  
*( , )

0d

d

g x v

x





 

                                                                                                                                                                               

,we get 

2 *

2

( , )
0d

d

g x v

x





, therefore 

*( , )d

d

g x v

x




 is decreasing in dx .   
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Thus we have
*

1 11 2
2 1

1 2 1 2

1 2

)
( ) (1 ) ( ) ( )

d

v

k k
F F

u u
x

     
 

   

 

  
   

 



,and

* * 1 1
2 2 2

1 2

( )
( ) ( ) (1 )d

k
v B k x F

u

 
 

 

 
     


. 

Scenarios 2 2 k   

1 2

1 2

)
( )

k
F

 

 

 


 has no significance.  

End  

7 The analysis of the optimal due date in Scenario 1 of Section 3.2 

We derive the optimal due date from the following three cases. After that, we combined the 

three cases to derive the results in Table 1. 

Case 1 
1(1 )F EDD    

When 0 dx EDD   , 1B B .From the proof of theorem 1 in Appendix, we know the 

optimal due date is: 

(3) If
1 1

1 2

[1 ]F EDD


 

  


,then the optimal due date and the CVaR are 

* *

1 1, *dx EDD V B EDD   , respectively. 

(4) If 
1 1

1 2

[1 ]F EDD


 

  


, then the optimal due date and the CVaR are 

* 1 * 11 1
1 1

1 2 1 2

[1 ], * [1 ]dx F V B F
 


   

     
 

, respectively. 

When dEDD x LDD   , 2 dB B kx  .From the proof of theorem 4 in Appendix, we 

know the optimal due date is shown in Table A.1. 
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Table A.1 the optimal due date and CVaR when dEDD x LDD   in Scenario 1 

 
2 k   

2 k 
 

*
dx  *V  

*
dx  *V  

1 1

1 2

( )
[1 ]

k
F EDD

 

 

 
 


 EDD 

*

2 1( ) dB k x   

EDD 
*

2 1( ) dB k x   
1 1

1 2

( )
[1 ]

k
EDD F LDD

 

 

 
  


 

1 1

1 2

( )
[1 ]

k
F

 

 

 




 

*

2 1( ) dB k x   

1 1

1 2

( )
[1 ]

k
F LDD

 

 

 
 


 LDD 

*

2 1( ) dB k x   

When dx LDD  , 0B  .The firm prefer to produce nothing. 

Case 2 
1(1 )EDD F LDD    

In this situation, the optimal due date and CVaR are given in Table A.2, according to the 

proof 1and 4 . 

Table A.2 the optimal due date and CVaR when
1(1 )EDD F LDD    in Scenario 1 

 
*
dx  *V  

0 dx EDD   EDD 
* 1

1 2 1 2( ) (1 )dB x F        

dEDD x LDD 
 

2 k 
 

2dx LDD  LDD *

2 1( ) dB k x 
 

2dx LDD  
2dx  

*

2 1( ) dB k x   

2 k    EDD 
* 1

2 2 1 2( ) ( ) (1 )dB k x F         

dx LDD  -- -- 

Note: 
1 1

2

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

Case 3 
1(1 )F LDD    

In this situation, the optimal due date and CVaR are given in Table A.3, according to the 

proof 1and 4. 

Table A.3 the optimal due date and CVaR when
1(1 )F LDD    in Scenario 1 

 
*
dx  *V  

0 dx EDD   EDD 
* 1

1 2 1 2( ) (1 )dB x F        

dEDD x LDD   
2 k   LDD 

* 1

2 2 1 2( ) ( ) (1 )dB k x F       

 

2 k   EDD 
* 1

2 2 1 2( ) ( ) (1 )dB k x F       

 

dx LDD  -- -- 
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8 The analysis of the optimal due date in Scenario 2 in Section 3.2 

We derive the optimal due date from the following three cases. After that, we combined the 

three cases to derive the results in Table 2. 

Case 1 
1(1 )F EDD    

When 0 dx EDD   , 1B B .From the proof of theorem 2 in Appendix, we know the 

optimal due date is: 

(1) If
1 1

1 2

[1 ]F EDD


 

  


,then the optimal due date and the CVaR are 

* * 1

1 1 1, * ( ) (1 )dx EDD V B EDD F
u


        , respectively. 

(2) If 
1 1

1 2

[1 ]F EDD


 

  


, then the optimal due date and the CVaR are 

* 1 * * 11
1 1 1

1 2

[1 ], * ( ) (1 )d dx F V B x F
u

 
  

 

       


, respectively. 

When dEDD x LDD   , 2 dB B kx  .From the proof of theorem 4, we know the 

optimal due date is shown in Table A.4. 

Table A.4 the optimal due date and CVaR when dEDD x LDD   in Scenario 2 

 

2 k   
2 k 

 

*
dx  *V  

*
dx  *V  

2dx EDD  EDD 1V  

EDD 1V  2dEDD x LDD   
2dx  

1V  

2dx LDD  LDD 1V  

Note: * 1

1 2 1 1( ) ( ) (1 )dV B k x F
u


        ; 

1 1
2

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

When dx LDD  , 0B  .The firm prefer to produce nothing. 

Case 2 
1(1 )EDD F LDD    

In this situation, the optimal due date and CVaR are given in Table A.5, according to the 

proof 1and 4 in Appendix. 
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Table A.5 the optimal due date and CVaR when
1(1 )EDD F LDD    in Scenario 2 

 
*
dx  *V  

0 dx EDD   EDD 
* 1

1 2 2( ) (1 )dB x F


  


     

dEDD x LDD 

 

2 k 
 

2dx LDD  LDD 
* 1

2 1 1( ) ( ) (1 )dB k x F


  


    
 

2dx LDD  
2dx  

* 1

2 1 1( ) ( ) (1 )dB k x F


  


      

2 k    EDD 
* 1

2 2 2( ) ( ) (1 )dB k x F
u


        

dx LDD  -- -- 

Note: 
1 1

2

1 2

( )
[1 ]d

k
x F

 

 

 
 


 

Case 3 
1(1 )F LDD    

In this situation, the optimal due date and CVaR are given in Table A.6, according to the 

proof 1and 4 in Appendix. 

TableA.6 the optimal due date and CVaR when
1(1 )F LDD    in Scenario 2 

 
*
dx  *V  

0 dx EDD   EDD 
* 1

1 2 2( ) (1 )dB x F


  


     

dEDD x LDD   
2 k   LDD 

* 1

2 2 2( ) ( ) (1 )dB k x F


  


      

2 k   EDD 
* 1

2 2 2( ) ( ) (1 )dB k x F


  


      

dx LDD  -- -- 
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