
ASPiC: an Acting system based on Skill Petri net Composition

Charles Lesire1 and Franck Pommereau2

Abstract— While developing automated planning algorithms
helps in making robots more autonomous, the development of
acting systems is also of major concerns. Acting systems aim
at refining high-level actions into executable commands, while
managing access to resources, possible failures, or any other
kind of unpredictable situation from the planner point of view.
Improving the trust on autonomous robots also requires to have
a formal model of acting, and the capability to perform some
analysis on this model. In this paper, we present ASPiC, an
acting system based on the modeling of robot’s skills using
a specific control-flow Petri net model. The skills can then
be combined using well-defined operators to build a complete
plan that refines a high-level action. Some good properties are
guaranteed by construction, while others can be verified on the
resulting plan model. This paper also presents the application of
ASPiC to an area protection mission by an autonomous surface
vehicle.

I. INTRODUCTION

Autonomous robotics researches bubble up. Recent works
on making robots autonomous integrate advanced AI tech-
niques, such as learning, decision theory, or automated
planning. These techniques allow the robots to reason about
their states and goals in order to choose the appropriate
actions to execute.

However, few works deal with the way to execute correctly
these actions. Managing action execution calls for refining
symbolic actions into executable commands, monitoring their
execution, and reacting to failures and hazards. All these
features are brought together under the term Acting [1], [2].
While acting systems were an active field a couple of decades
ago (especially for space exploration systems [3]), they have
been a bit abandoned in favor of pure AI. Nevertheless,
autonomous robots make it necessary to demonstrate the
safety and reliability of autonomous acting behaviors.

In this paper, we present ASPiC, an acting system that
is based on the Petri net formalism. Petri nets are a natural
choice to model concurrent systems as they allow to pre-
cisely represent the management of shared resources among
concurrent processes, with a natural expression of conflicts,
independence, causality, etc. Moreover, Petri nets form a
very flexible family of formalisms which is easy to adapt
to our exact needs, and they come with a wide range of
analysis techniques as well as numerous tools already avail-
able. In particular, model-checking allows to formally assess
dynamic properties of Petri net models in an automated
way. ASPiC is based on composition of elementary Petri
nets, representing the basic skills of the system. Using such

1Charles Lesire is with ONERA – The French Aerospace Lab, Toulouse,
France. charles.lesire@onera.fr

2 IBISC laboratory, university of Évry / Paris-Saclay, Évry, France.
franck.pommereau@univ-evry.fr

compositions allows first to build an executable model of a
plan in a hierarchical way, and second to ensure some sound
construction of the acting model.

Section II presents some works related to acting in
robotics. Petri net skill models and their composition to build
an action plan is presented in Sect. III. The implementation
of ASPiC and its application to a marine area protection is
presented in Sect. IV.

II. RELATED WORKS

According to [1], Acting is the component of a deliberative
architecture that has to manage: plan refinement (i.e., how
to decompose a plan action down to executable commands),
reaction to events (that may require plan adaptation or plan
refinement adaptation), time management (when planned
actions consider deadlines, durations, or time constraints),
non-determinism (i.e., partial or noisy observations during
the mission execution), and plan repair (when, why, how to
trigger the planning component).

Historical researches on acting systems have essentially
dealt with execution control, i.e., the way to refine plans
into commands. Several execution frameworks used in space
robotics are described in [3]. Their analysis has led to
Plexil [4], a language and an executive that aggregates the
features of a lot of former execution control systems. Plexil
provides constructs to describe hierarchical decomposition of
plans into a tree of nodes. Leaf nodes are commands sent
to the physical system or read-access to system variables.
The Plexil language allows to describe sequences of nodes,
concurrent execution, branches and loops. However, it does
not rely on a formal mathematical model, and does not sup-
port advanced features to change the refinement according
to events, nor provides analysis tools.

Among the architectures for autonomy that integrate plan-
ning and acting, T-REX [5] made a step towards the formal-
ization of the refinement process, by specifying exchanges
between reactors through the manipulation of timelines. The
hierarchical (and temporal) decomposition of the decision
is then clearly specified through access to timelines (one
timeline is writable only by one reactor). However, the imple-
mentation of the reactors is not formalized, then preventing
to make some safety analysis of the overall system.

Safety and reliability analysis in acting systems requires
formal models of acting. The ROS ecosystem provides some
ways of specifying action refinements, through hierarchical
state-machines [6], [7]. In these tools, the basic elements
correspond to ROS primitives (e.g., topic listening or service
calls), and the design process is very permissive. Even if
some analysis may be possible on these models, it would

be interesting to restrain the possible constructs to define
some patterns that preserve some properties by construction.
Moreover, basic concepts are ROS-specific, that would make
difficult to reuse the models and analyses in another context.

Other works used Petri nets as a formal model of robot ac-
tions. [8] models elementary actions by generalized stochas-
tic Petri nets, with one place representing the action instance,
and one place for each predicate used as a precondition or
an effect of the action. The Petri net model corresponds
to a PDDL-like description of actions, and predicate places
are then used to causally link actions, as a task planning
algorithm would do. These Petri net models are not made
to describe operational behaviors: there is no specification
of how to execute commands, nor composition operators
allowing to describe branches, loops, or other operational
constructs. Petri Net Plans [9] formalize elementary actions
in term of phases: an initial place, an execution place, and a
termination place. They distinguish ordinary (deterministic)
actions and sensing (Boolean) actions. They also define
operators to combine actions: sequences, conditions, itera-
tions and interruptions. However, they do not discuss formal
properties or analysis of the resulting Petri net plan, and they
do not manage failures as a possible action outcome.

While [9] makes an ad-hoc description of elementary
actions, some common Petri net frameworks exist to model
such processes, for instance workflow nets [10] (to model
business processes and operations), and M-nets [11]. In
this paper we use an algebra of colored Petri nets inspired
from [12], [13]: on the one hand they form a variant of
co-loured Petri nets [14] whose tokens carry values on
which arbitrary computation can be performed; on the other
hand they have an explicit control-flow that enables for
composition operations like it is usual with process algebras.
We borrow the classical operators of sequential composition,
choice, and parallel composition as found in [13], and we
adapt them to handle errors (exceptions) as in [12] but in
a simpler way that is more suited to our context. We also
define new operators that were not considered in the past.

III. ASPIC

ASPiC is an acting system based on Petri net composi-
tions. Compositions allow to assemble elementary actions
into more complex plans through consistent operators. Ele-
mentary actions are often called skills [2], as they correspond
to the several capacities or behaviors that are available at the
platform level. For instance, skills was the term used for the
elementary behaviors of the first behavior-based architectures
for autonomous navigation [15], [16].

ASPiC formalizes skills through specific models of Petri
nets using control-flow semantics. These skills can then be
composed to form an action plan, through operators that
manage nominal execution (sequences, concurrence), obser-
vations (through conditions evaluated at execution time), or
failures (using exception management).

A. Background and basic definitions

To start with, let us recall that a multiset is a collection
of unordered elements allowing repetitions. For instance
{a, a, b} is the multiset with two a’s, one b and no other
values. Multisets may be added, subtracted, compared, or
multiplied by non negative integers. For instance, we have
{a, b}+ {a} − {b} = 2× {a} ≤ {a, a, a, b}. Curly brackets
around multisets my be omitted for brevity. We note by X?

the set of multisets over X .
We consider a variant of Petri nets colored by an abstract

color domain, which is both more general than a specific
programming language, and simpler to define. We note by
D the set of all the data values (e.g., integers, Boolean values
True and False, regular “black token” •, “white token” ◦ for
errors, etc., including data structures) and assume that there is
a value ⊥ /∈ D corresponding to the undefined value. We note
by E the set of all the expressions, built on the top of D and
a set V of variables. Given e ∈ E, we note by vars(e) ⊆ V
the set of variables involved in e. We may evaluate e using
a binding β that is a function vars(e) → D ∪ {⊥}, and we
note by β(e) the result of evaluating e with respect to β;
this may be a valid value if the evaluation is possible, or ⊥
if anything goes wrong during the evaluation (e.g., a syntax
or typing error, a division by zero, etc.). For instance, for
β

df
= {x 7→ 1, y 7→ 2} we usually have β(x + y) = 3 and

β(y/(x− 1)) = ⊥ (which actually depends on the concrete
col-our domain considered).

We now define our variant of colored Petri nets with
control-flow, that is inspired from [12], [13] and adapted to
our specific needs in this paper.

Definition 1 (control-flow Petri nets): A control-flow
Petri net (CFPN) is a tuple N df

= (P, T, `, σ) such that:
• P is the non-empty set of places;
• T , disjoint from P , is the non-empty set of transitions;
• ` is the labeling function such that:

– for all p ∈ P , `(p) ⊆ D is the type of p, i.e., the
data values it may contains,

– for all t ∈ T , `(t) ∈ E is the guard of t, i.e., a
Boolean function that serves as a condition for the
firing of t,

– for all (x, y) ∈ (P ×T)∪ (T ×P), `(x, y) ∈ E? is
the arc from x to y, i.e., the multiset of expressions
representing the tokens carried by the arc;

• σ is the status function such that:
– for all p ∈ P , σ(p) ∈ {e, i, x, ε}]B where e denotes

an entry place, i denotes an internal place, x denotes
an exit place, all together forming the control-flow
places, ε denotes a buffer place that is not shared
(private to the net), and any status in B denotes a
buffer places to be shared with other nets,

– for all t ∈ T , σ(t) ∈ N]{⊥} denotes whether t is
a regular transition (⊥) or a placeholder transition
(any n ∈ N) intended to be substituted by the nth
argument of a net operation (see Sect. III-D). We
assume that {σ(t) | t ∈ T} \ {⊥} is an initial
segment of N, i.e., that placeholder transitions are

numbered starting from zero without any gap,
– for all (x, y) ∈ (P × T) ∪ (T × P), σ(x, y) is a

function D? × D? → (D ∪ {⊥})? that, given the
marking of a place and the evaluation of an arc
annotation, returns the actual multiset of consumed
or produced tokens. We shall use in particular, for
a regular arc:

σ=
df
= (m, a 7→ a) (1)

and, for an inhibitor arc:

σ¬
df
= (m, a 7→ ∅ if m− a = m else {⊥}) (2)

♦
We also adopt the following notations:

P ••◦
df
= {p ∈ P | σ(p) ∈ {e, i, x}} (3)

∀t ∈ T, •t df
= {p ∈ P | `(p, t) 6= ∅} (4)

∀t ∈ T, t• df
= {p ∈ P | `(t, p) 6= ∅} (5)

The dynamics of CFPN need not be precisely defined in
this paper and we refer the reader to [12], [13] for details.
Intuitively, Petri nets are marked by tokens that are multisets
of values from the type of each place. Then, given a binding
β, the arcs surrounding a transition t can be evaluated
through β and σ and t may fire iff (1) there are enough
tokens to be consumed as specified by the input arcs (from
•t to t), (2) the guard of t evaluates to True, and (3) the
tokens produced by the output arcs (from t to t•) are in the
type of the output places. When t is fired, it consumes and
produces tokens as specified by its arcs (and σ).

In this paper, we will consider a subset of the class of
CFPN that respect some syntactical constraints, thus we
define well-formedness as follows.

Definition 2 (well-formedness): A CFPN (P, T, `, σ) is
called well-formed iff:

1) For all p ∈ P ••◦ we have `(p) = {•, ◦}.
2) N has exactly one entry place.
3) N has exactly one exit place.
4) N has at most one place of each status in B. ♦
Black tokens • are used to represent the regular execution

of the control-flow, while white tokens ◦ represent errors or
exceptions.

B. Skill Petri nets

A skill represents a behavior or a capacity of a robotic
system. It corresponds to commands or behaviors that can
be triggered on the robot platform. These behaviors may not
only deal with achievement of movements, but also with
observations. Performance Level Profiles [17] is a recent
work that has proposed four types of modules available at
the robot platform level: Achieve, Observe, Maintain and
Detect, the two last being special cases or constructs of
the two former. The modules definition includes input and
output parameters, as well as required resources. A skill, that
corresponds to one of these modules, can then be seen as a
remote procedure available on the robot platform, that will
be called and managed by the Acting system. Although we

used the description in [17] as a starting point for describing
skills, the models described hereafter are generic enough to
meet any similar representation of robots’ skills we found in
the literature.

A skill Petri net (SkPN) models such a skill (see an
example in Fig. 1) and is parametrized by the resources it
requires in order to be executed, which may be locks (mutex
on resources), inputs (the states it reads upon start-up), or
outputs (the states it updates on completion). More precisely,
we consider two kind of resources:
• locks from a set L are resources whose access is

exclusive and may be reserved or released, but that
are not associated with a particular value. However,
several instances of a lock may be available and several
instances may be reserved or released at the same time.
Locks will be modeled by buffer places marked with as
many black-tokens • as the number of instances;

• states from a set S, disjoint from L, are resources
associated with a value which may be read (inputs) or
updated (outputs). States will me model-led by buffer
places as well, whose marking is a single token in D
representing the current value of the state.

To conveniently model resources as places, we assume that
each resource is a valid buffer place status, i.e., L] S ⊂ B.

Intuitively, a SkPN is then defined by: its control flow
places, a transition tstart that triggers the start of the skill
execution, a transition tstop fired when the skill nominally
ends, a transition texcept fired when the skill fails, and a
place pexec that stores the skill’s state during its execution.
These nodes are surrounded with buffer places to model the
resources used by the skill: when tstarts fires, it reads the
skill’s inputs and acquires its locks, then when tstop (or
texcept) fires, it writes the skill’s outputs and releases the
locks.

e

⊥ tstart

i

⊥tstop ⊥ texcept

x

pexec
ε

ret

lock

call

vret/out[ret]

•, •

v
call

•, •

(pending, [vcall])

(sto
ppe

d, ou
t)

•

vret
out[ret]

•, •

(failed, out)

◦

Fig. 1: A Skill Petri net with I df
= {call}, L df

= {lock 7→ 2},
and O df

= {ret}. Control-flow places are depicted in blue,
the other places represent resources. Places’ labels are their
status except for pexec whose name is also indicated. Some
labels • on arcs are omitted as well as curly brackets around
multisets. The arcs between texcept and ret/lock are the same
as for tstop as sketched in gray.

tstart tstop texcept

pe •
pi • •
px
pexec (stopped, out) (failed, out)
pl L(l)× •
pi vi
po vo vo

tstart tstop texcept

pe
pi •
px • ◦
pexec (pending, [vi | i ∈ I])
pl L(l)× • L(l)× •
pi vi
po out [o] out [o]

Fig. 2: Specification of the arcs in a SkPN with input arcs on the left-hand table and output arcs on the right-hand table,
where pl is the place that models a lock l, pi is the place that models an input i, and po is the place the model an output
o. Note that we may have some i’s equal some o’s in which case both types of arcs are to be considered. Unspecified arcs
are the empty multiset and all status are σ=. Curly brackets around multisets (for `) have been omitted.

Definition 3 (skill Petri nets): A skill Petri net (SkPN) is
a well-formed CFPN (P, T, `, σ) parametrized by L, I, and
O such that:

• L is a function {l1, . . . , ln} ⊆ L→ N representing the
locks required by the SkPN together with the number
of instances of each;

• I is a set {i1, . . . , im} ⊆ S representing the inputs of
the SkPN;

• O is a set {o1, . . . , ok} ⊆ S representing the outputs of
the SkPN;

• its entry, internal, and exit are respectively called pe, pi,
and px;

• there is a place pexec ∈ P such that σ(pexec) = ε and
`(pexec) = D× ([D]I ∪ [D]O), where [D]X denotes the
set of all vectors on D indexed by X;

• for each l ∈ dom(L) there is a place pl ∈ P such that
`(pl) = {•} with σ(pl) = l ∈ B is a unique status
corresponding to the resource name;

• for each i ∈ I there is a place pi ∈ P such that `(pi) =
D and σ(pi) = i;

• for each o ∈ O there is a place po ∈ P such that
`(po) = D and σ(po) = o;

• T
df
= {tstart, tstop, texcept} such that `(t) = True and

σ(t) = ⊥ for all t ∈ T ;
• arcs as specified in Fig. 2. ♦

C. Execution handlers

Skills are behaviors, or processes, available at the robot
platform level. In order to interact with actual skills exe-
cution, the Acting system needs to manage skill handlers.
SkPN must then be equipped with skill handlers in order
to interact with skill execution, i.e., start skill execution,
monitor success or failures, get returned values, etc.

A skill handler can be defined as a Petri net that contains
an execution place pexec that will be merged with the pexec
of the SkPN. Figure 3 shows a basic handler used to simulate
the execution of skills. An handler to interact with ROS
actions is presented in Sect. IV-C.

We thus define a handler net and the operation that plugs
it onto a SkPN.

pexec

tsuccesstfailure

(pending, v)

(stopped, f•(v))(pending, v)

(failed, f◦(v))

Fig. 3: Basic handler leading to success or failure. This
handler is used to simulate or analyze the SkPN behavior.
Functions f• and f◦ respectively simulate the skill outputs
given the inputs v.

Definition 4 (handlers): A handler is a CFPN Nh
df
=

(Ph, Th, `h, σh) that has no entry nor exit place, its internal
places have type {•, ◦}, and is such that there is exactly one
pexec ∈ Ph such that `h(pexec) = D × ([D]I ∪ [D]O) and
σh(pexec) = ε. Let N = (P, T, `, σ) be a SkPN, we note by
N �Nh the SkPN (P ∪Ph, T ∪Th, `∪ `h, σ∪σh) in which
the place pexec originated from N and that originated from
Nh have been merged, as well as all the places sharing the
same status in B. ♦

D. ASPiC operators

Operators are aimed at modifying or composing Petri nets
from skills up to action plans. An operator is defined by a
so-called operator net (noted N0 in the following definition)
that is a CFPN with placeholder transitions aimed to be
substituted with the operators arguments (so-called operand
nets). This substitution consists in connecting the control-
flow of operand nets as specified in the operator net, then
merging the buffer places representing the same resources.
Formally we have:

Definition 5 (SkPN operators): Take n > 0 and let
{N1, . . . , Nn} be n CFPN such that Ni

df
= (Pi, Ti, `i, σi).

Let N0
df
= (P0, T0, `0, σ0) be a CFPN such that it has n

placeholder transitions {t1, . . . , tn}. We note by ei and xi
the entry and exit place of each Ni for 0 ≤ i ≤ n. We
assume Pi ∩ Pj = ∅ = Ti ∩ Tj for 0 ≤ i 6= j ≤ n. This
allows to define a n-ary operation noted as N0[N1, . . . , Nn]
that substitutes each ti in N0 with the corresponding Ni,
yielding a new CFPN that is defined in two steps. First,
transitions ti’s are substituted by nets Ni’s whose control-

e

1t1

i

2t2

x

◦

•, ◦

(a) N�

e

1t1 2 t2

x

•, ◦ •, ◦

(b) N+

e

⊥tstart

i i

1t1 2 t2

i i

⊥
tfailure
◦ ∈ {u, v}⊥tsuccess

x

•, ◦ •, ◦

u v

◦

(c) N|

e

1t1

i

2t2 ⊥

i

3 t3

x

•, ◦

•

•, ◦

◦

•

•, ◦

(d) Nite

e

⊥tstart

i i

1t1 2 t2i

i i

⊥tfirst,1 ⊥ tfirst,2
⊥

tsnd,1

⊥
tsnd,2

x

•, ◦ •, ◦

(e) N⊗

e

1t1

i ⊥

⊥

x

•, ◦

◦

•

•

(f) Nretry

e

1t1

i

⊥ ⊥

x

•

•, ◦

◦

•

•

◦

(g) N¬

Fig. 4: ASPiC operator nets. All places are control-flow places whose status is depicted as a label. Dashed transitions are
placeholders, transitions status are depicted inside the transitions, and omitted guards are True. Omitted arcs labels are •
and all arc status are σ= except inhibitor arcs (−◦ shaped) whose status is σ¬.

flows are connected, which builds an intermediary CFPN
N

df
= (P, T, `, σ) defined by:
• P = P0 ∪

⋃
1≤i≤n(Pi \ {ei, xi});

• T = (T0 \ {t1, . . . , tn}) ∪
⋃

0≤i≤n Ti;
• ` = `′ ∪

⋃
0≤i≤n σi|P,T and σ = σ′ ∪

⋃
0≤i≤n σi|P,T ,

where `i|P,T (resp. σi|P,T) is `i (resp. σi) restricted to
the domain (Pi∩P)∪ (Ti∩T)∪ ((Pi∩P)× (Ti∩T)),
and with `′ and σ′ defined as the smallest functions such
that:

– for every 1 ≤ i ≤ n, every c ∈ P ••◦0 , and every
t ∈ Ti such that `i(ei, t) ≤ `0(c, ti), then we have
`′(c, t) = `i(ei, t) and σ′(c, t) = σ0(c, ti),

– for every 1 ≤ i ≤ n, every c ∈ P ••◦0 , and every
t ∈ Ti such that `i(t, xi) ≤ `0(ti, c), then we have
`′(t, c) = `i(ti, xi) and σ′(t, c) = σ0(ti, c).

Then, the result of N0[N1, . . . , Nn] is defined from N as
follows: for every stat ∈ B we merge all the places in {p ∈
Pi | 0 ≤ i ≤ n, σi(p) = stat}. ♦

We consider specifically the operators nets depicted in
Fig. 4 and we use natural notations for the operations, for
instance N1 �N2 instead of N�[N1, N2], retry(N) instead
of Nretry [N], or ¬N instead of N¬[N].

1) Sequential composition: N1 � N2 (Fig. 4a) enforces
the execution of N1 followed by that of N2, except if N1

terminates with an error, putting ◦ in its exit place, in which
case the execution of N2 is skipped thanks to the arc on the
right side.

2) Choice: N1+N2 (Fig. 4b) allows to execute either N1

or N2, which is chosen in a non-deterministic way if both
are possible.

3) Concurrent composition: N1|N2 (Fig. 4c) allows to
execute both N1 and N2 concurrently. When both are termi-
nated, the whole composition results in a success if both nets
succeeded (through transition tsuccess), or a failure if at least
one of the two nets has failed (through transition tfailure).

4) If-Then-Else: A common situation that arises when
decomposing actions is to react to the successful or failed

execution of a skill. In that case, one may want to execute
the sequel of a nominal plan in case of success, and perform
a specific action in case of failure. ite(N1, N2, N3) (Fig. 4d)
allows to handle such a situation by executing first N1, and
then N2 if N1 succeeds, otherwise it executes N3.

5) Race composition: The concurrent composition N1|N2

can only terminate when both N1 and N2 have terminated.
In some situations, one may want to execute N1 and N2

concurrently, and continue the plan execution as soon as
one of both has finished. N1 ⊗ N2 (Fig. 4e) allows this
by starting both N1 and N2 but then, if N1 terminates
first, it allows the firing of tfirst,1 which terminates the
whole composition; then, when N2 terminates, its resulting
token is cleared thanks to transition tsnd,2. The situation is
symmetrical if N2 terminates first. Selecting between tfirst,i
and tsnd,i is ensured through the central internal place and
the inhibitor arcs: when the place is marked (after tstart),
only the tfirst,i’s are possible and their firing consumes the
token, which allows then only the tsnd,i’s.

6) Retry: retry(N) (Fig. 4f) is another common construct
related to exception management. It allows to retry the
execution of N in case of error, until an execution eventually
succeeds.

7) Negation: ¬N (Fig. 4g) is the negation operator that
inverts the termination status of N by transforming a regular
token into an exception token and vice-versa. It is useful
when a skill returns successfully but from a supervision point
of view, this success must be considered as a failure, for
instance for skills that detect abnormal situations.

E. Initial marking

When a system has been fully composed, the resulting
Petri net has to be marked before it is executed.

Definition 6 (initial marking): Let N df
= (S, T, `, σ) be a

well-formed CFPN. An initial marking of N is a marking
M such that:
• M(pe) = {•} where pe is the entry place;

• for all l ∈ L such that we have pl ∈ P with σ(pl) = l,
then M(pl) = kl × {•} where kl ≥ 0 is the number of
available instances of resources l in the system modeled;

• for all s ∈ S such that we have ps ∈ P with σ(ps) = s,
then M(ps) = {vs} where vs ∈ D is the initial value
of state s in the system modeled;

• no other place is marked. ♦

F. Properties

Specifying an acting system using Petri nets allows to
perform some analysis to verify that the plan refinement
under execution has some good properties. By enforcing a
structured way of modeling systems, ASPiC also aims at
providing some of these properties by construction.

1) Well-formedness: This property ensures that our oper-
ations are well defined (in particular, we have the required
entry/exit places to correctly apply the substitutions of place-
holders transitions). First, we state that the result of plugin a
handler onto a SkPN is well formed; then we state that our
operations preserve well-formedness.

Proposition 1: Let Nh be a handler and N a SkPN, then
N �Nh is well-formed. �

Proof: Condition (1) holds because N is well-formed
and the internal places of Nh respect the condition. Condi-
tions (2) and (3) hold because N respect them and Nh has no
entry nor exit place. Condition (4) holds because operation
� explicitly merges the places with the same status.

Proposition 2: Let N0 be one of the operator nets from
Fig. 4, let n be the number of placeholder transitions in
N , and let N1, . . . , Nn be n well-formed nets. Then, N df

=
N0[N1, . . . , Nn] is well-formed. �

Proof: Condition (1) holds on all the Ni’s for 0 ≤ i ≤ n
so it also holds on N whose places are all copied from the
Ni’s. Conditions (2) and (3) hold because the composition
removes the entry and exit places from the operand nets and
preserves only those from N that itself respects the condition.
Condition (3) holds because the operation explicitly merges
the places with the same status.

Well-formedness is also desirable because it ensures a
consistent handling of resources through condition (4): there
is only one place for each resource so that locks and
states values are uniquely represented. In particular, acquir-
ing/releasing a lock is global on the system, and every state
has a unique value across all the system.

2) Soundness: This property can be considered as the
behavioral version of well-formedness. It guarantees that
only “good” executions can occur, i.e., that the Petri net
is well-behaved. This can be verified on the state space or
guaranteed by construction through syntactical restrictions
like those we have considered for well-formedness.

Various definitions of soundness have been considered
in the literature, depending on the particular needs of the
considered applications. For instance, in workflow PN [10],

soundness is defined by:

∀M, ([pe]
∗−→M)⇒ (M

∗−→ [px]) (6)

∀M, ([pe]
∗−→M ∧M ≥ [px])⇒ (M = [px]) (7)

∀t,∃M,M ′, [pe]
∗−→M ′

t−→M (8)

This can be read as: (6) any reachable marking allows to
reach an exit marking (i.e., a marking in which the exit
place is marked), (7) in such a case, the exit place is the
only marked place, and (8) every transition may be fired
following a path from the initial marking. Properties (6)
and (8) make sense for workflows but are rarely found in
general because they depend too much on the system being
modeled. For instance, (6) may be relaxed to requiring that
the only deadlocks are exit markings, but the system may
never reach them (which is usually highly desired for a
controller that is not supposed to stop). In [18], property (7)
is named cleanness and has been relaxed in [19] when buffer
places have been introduced. Indeed, such places may retain
tokens from one execution of a subnet to be used in a
further execution. This is the case in ASPiC where buffer
places model the resources of the system which are globally
available. The solution in [19] was to restrict cleanness to
the control-flow places, which can be formulated here for
any initial marking M0 such that M0(pe) ∈ {{•}, {◦}} and
p ∈ P ••◦ \ {pe} ⇒M0(p) = ∅ as:

∀M : M0
∗−→M ∧M(px) 6= ∅

⇒ M(px) ∈ {{•}, {◦}}
∧ (p ∈ P ••◦ \ {px} ⇒M(p) = ∅)

(9)

In the current state of ASPiC, this property can only be
verified dynamically because operator ⊗ is not clean and
allows to reach an exit marking while one of the nets is still
active (and thus has its control-flow marked).

[18], [19] also introduce another notion of well-behavior
through control-safety that states that a control-flow place
may not be marked by more than one token. This is desirable
to ensure that at any point of a system execution, each
activity cannot be activated more than once, in particular,
a skill net cannot be multiply activated which would lead
to several simultaneous invocations of the underlying skill.
Like cleanness, control-safety is guaranteed by constructions
in [18], [19] thanks to syntactic restrictions on the basic (here
SkPN) and operator nets.

Unfortunately, ⊗ is not control-safe when nested into a
retry : a new instance of the still active net may be started
when the retry loops.

We thus need to find a better definition for N⊗ before
to be able to provide a satisfactory notion of soundness that
would encompass cleanness and control-safety and would be
guaranteed by construction. This is left as a future work. In
the meantime, this property must be checked by computing
the state space of the Petri net. However, if ⊗ is not used, it is
likely that we have such a property because our operator nets
and the SkPN basically respect the syntactical restrictions
used in [18], [19] to enforce cleanness and control-safety.

IV. AREA PROTECTION WITH AN AUTONOMOUS
SURFACE VEHICLE

A. Mission description

We consider an Autonomous Surface Vehicle (see Fig. 5)
that performs an area protection mission. That ASV has to
patrol within a given zone and detect intruders. On detection,
the ASV may have to intercept the intruder. The ASV
also avoids obstacles on its path. After an avoidance or an
interception, the patrolling is resumed.

Fig. 5: An Autonomous Surface Vehicle controlled by ASPiC

B. ASV Skills

The ASV platform provides several skills, defined follow-
ing the concepts and types described in [17], each skill being
managed by a SkPN:
• Achieve skills:

– Ntraj : execute a given trajectory;
– Ngoto: move the ASV to a target pose;
– Nintercept: execute the interception maneuver;

• Observe skills:
– Ncomp: compute a patrolling trajectory according

to a given start pose, and a patrolling duration;
– Npose: observe the current pose of the ASV;

• Maintain skills:
– Nkeep: maintain the ASV at its current pose;

• Detect skills:
– Nobs: detect an obstacle triggering an avoidance;
– Navoid: detect the end of an avoidance maneuver

(the avoidance itself is automatically executed by
the platform).

These skills are implemented using the MAUVE middle-
ware [20] and provide a ROS actionlib interface in order to
be manageable by ASPiC.

C. ASPiC Implementation

ASPiC has been implemented as a ROS node that receives
actions to perform from a Planning node. SkPN and compo-
sition operators have been implemented in Python, using the
SNAKES library [21]. To interface with the ASV platform,
new handlers have been defined to manage ROS actions. The
ROS handler (see Fig. 6) has a behavior that abstracts the
state-machine of the ROS actionlib client. The pcl place owns
a ROS actionlib client object cl. When the status is pending,
transition tactivate can fire, and calls the ROS action server

pexec

⊥
tstatus

cl pcl

⊥
tactivate

(ac
tiv
e,

) cl.call(arg)

cl(pending, arg)

(cl.st, cl.val)

cl

cl(active, arg)

Fig. 6: ROS actionlib handler Nros

to execute the action. The skill status is then active. Then
each time transition tstatus is fired, the status is updated
from the client object (using cl.st) and in case of termination
(either succeeded or failed), the return value is retrieved using
cl.val.

D. Specification of ASV actions

As discussed in the introduction, ASPiC is aimed to be
the acting system of a deliberative architecture. It is then
supposed to be fed up with action plans coming from a
Planning component.

In the ASV mission, we consider that the Planning compo-
nent plans patrol actions of a given duration, intercept actions
when intruders must be intercepted, and station actions in
which case the ASV has to join a position and keep it. ASPiC
has then to refine these actions and monitor their execution.
The intercept actions are directly mapped to the execution
of the interception skill through the SkPN Nintercept. The
station actions have simple decompositions combining a
movement to the position to hold, and then keeping this
position, as described by Eq. (10), where N�

i denotes SkPN
Ni combine with a ROS handler.

N�
goto �N�

keep (10)

The patrol actions are more interesting as ASPiC uses a
more complex decomposition, including obstacle avoidance
monitoring. The expression defining the patrol action is given
by Eq. (11).

retry(ite(N�
pose �N�

comp � (N�
traj ⊗ (¬N�

obs)),

N�
pose �N�

keep,

¬N�
avoid))

(11)

The first part of the action decomposition (first argument of
ite) is a sequence of observing the current (i.e., initial) pose,
computing a patrol trajectory, and concurrently executing
this trajectory while detecting obstacles. In case of success
(trajectory completely followed), the second part of the
ite composition is executed. It consists of a sequence of
observing the current (i.e., final) pose, and maintain this pose.
In case of failure (i.e., an obstacle triggered an automatic
avoidance, or the trajectory failed for another reason), the
last part of ite is executed: ASPiC waits for the detection of

the avoidance end, then the retry operator will lead to a new
patrol computation from current pose.

E. Experiments and Results

Several area protection missions have been realized with
the ASV, on several areas, including obstacles and target
interceptions. In total, the ASV has been under ASPiC
control for 5422 seconds. In these missions, ASPiC has
managed in total 17 patrol actions, 24 intercept actions, 7
station actions, and 14 obstacle avoidances that led to retry
the patrol action. Figure 7 is a screenshot of the user interface
showing the ASV trajectory. The mission depicted in Fig. 7
has lasted 1499 seconds, and the ASV has intercepted three
targets, and performed 5 patrols.

Fig. 7: Mission performed by the ASV. The green curve
is the ASV trajectory, the green triangle the ASV position;
pink crosses are intercepted targets; the zone in light blue is
the area to protect, and the blue curve the computed patrol
trajectory. Black squares are 1km wide. The red line is y = 0.

We have computed the state space of the Petri nets
obtained from (10) and (11), using the simulation handler
of Fig. 3 in place of the ROS handler in order to simulate
possible success or failure of each skill. Then we have
checked their soundness as discussed in Sect. III-F.2:
• they terminate: an exit marking (i.e., one with the exit

place marked) is always eventually reachable from the
initial marking;

• they are clean: in every reachable exit marking, only
the exit place is marked among the control flow places
as specified by Eq. (9).

V. CONCLUSION

We have presented ASPiC, an acting system based on the
representation of the elementary skills of a robotic system
using Skill Petri nets, a Petri net model using control-flow
semantics. ASPiC comes with composition operators that
allow to build up action plans by using common operational
constructs (sequence, concurrency, branches), managing fail-
ure cases using exception tokens. We have also presented
and discussed some good properties to demonstrate on the
resulting Petri net. ASPiC has been used to control an ASV
performing a marine protection mission for more than 90
minutes, involving several actions to execute and several
failures to manage. On this mission, we have used state space
exploration to enforce the properties discussed before.

In future works, we aim at proving that the soundness
property is guaranteed by construction, and we then have
to correct the N⊗ operation net and base our proofs on the
work in [18], [19].

We would also like to define a Domain Specific Language
to help users define their own compositions without having
to directly manipulate Petri nets, and eventually use this
language to automatically translate planner’s actions from a
planning language (like PDDL) into ASPiC executable Petri
nets.

REFERENCES

[1] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A
survey,” Artificial Intelligence, vol. 247, pp. 10–44, 2017.

[2] M. Ghallab, D. Nau, and P. Traverso, “The actor’s view of automated
planning and acting: A position paper,” Artificial Intelligence, vol. 208,
pp. 1–17, 2014.

[3] V. Verma, A. Jonsson, R. Simmons, T. Estlin, and R. Levinson,
“Survey of Command Execution Systems for NASA Spacecraft and
Robots,” in ICAPS Workshop on Plan Execution, Monterey, CA, USA,
2005.

[4] V. Verma, T. Estlin, A. Jonsson, C. Pasareanu, R. Simmons, and
K. Tso, “Plan Execution Interchange Language (PLEXIL) for Ex-
ecutable Plans and Command Sequences,” in i-SAIRAS, Munich,
Germany, 2005.

[5] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and
R. McEwen, “A deliberative architecture for AUV control,” in ICRA,
Pasadena, CA, USA, 2008.

[6] J. Bohren and S. Cousins, “The SMACH High-Level Executive,” IEEE
Robotics & Automation Magazine, vol. 17, pp. 18–20, 2010.

[7] P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-Robot
Collaborative High-Level Control with an Application to Rescue
Robotics,” in ICRA, Stockholm, Sweden, 2016.

[8] H. Costelha and P. Lima, “Modelling, analysis and execution of robotic
tasks using Petri nets,” in IROS, San Diego, CA, USA, 2007.

[9] V. Ziparo, L. Iocchi, P. Lima, D. Nardi, and P. Palamara, “Petri Net
Plans: A framework for collaboration and coordination in multi-robot
systems,” in AAMAS, Estoril, Portugal, 2008.

[10] W. van der Aalst, “The application of Petri nets to workflow manage-
ment,” Journal of Circuits, Systems, and Computers, vol. 8, no. 1, pp.
21–66, 1998.

[11] E. Best, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz, “M-nets: An
algebra of high-level Petri nets, with an application to the semantics of
concurrent programming languages,” Acta Informatica, vol. 35, no. 10,
pp. 813–857, 1998.

[12] F. Pommereau, Algebras of coloured Petri nets. Lambert Academic
Publishing, 2010.

[13] ——, “ABCD: A user-friendly language for formal modelling and
analysis,” in Petri Nets, Torun, Poland, 2016.

[14] S. Christensen and N. D. Hansen, “Coloured Petri nets extended with
place capacities, test arcs and inhibitor arcs,” in Petri Nets, Chicago,
IL, USA, 1993.

[15] R. Arkin, “Integrating behavioral, perceptual, and world knowledge
in reactive navigation,” Robotics and Autonomous Systems, vol. 6, no.
1–2, pp. 105–122, 1990.

[16] R. Firby and M. Slack, “Task Execution : Interfacing Networks to
Reactive Skill Networks,” in AAAI Spring Symposium on Lessons
Learned from Implemented Software Architectures for Physical Agents,
Palo Alto, CA, USA, 1995.

[17] R. Brafman, M. Bar-Sinai, and M. Ashkenazi, “Performance level
profiles: A formal language for describing the expected performance
of functional modules,” in IROS, Daejeon, South Korea, 2016.

[18] E. Best, R. Devillers, and M. Koutny, Petri Net Algebra. Springer,
2001.

[19] R. Devillers, H. Klaudel, M. Koutny, and F. Pommereau, “Asyn-
chonous Box Calculus,” Fundamenta Informaticae, vol. 54, no. 1,
2003.

[20] D. Doose, C. Grand, and C. Lesire, “MAUVE Runtime: A Component-
Based Middleware to Reconfigure Software Architectures in Real-
Time,” JOSER, vol. 8, no. 1, pp. 128–140, 2017.

[21] F. Pommereau, “SNAKES: A Flexible High-Level Petri Nets Library,”
in Petri Nets, Brussels, Belgium, 2015.

	Introduction
	Related Works
	ASPiC
	Background and basic definitions
	Skill Petri nets
	Execution handlers
	ASPiC operators
	Sequential composition
	Choice
	Concurrent composition
	If-Then-Else
	Race composition
	Retry
	Negation

	Initial marking
	Properties
	Well-formedness
	Soundness

	Area Protection with an Autonomous Surface Vehicle
	Mission description
	ASV Skills
	ASPiC Implementation
	Specification of ASV actions
	Experiments and Results

	Conclusion
	References

