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7.1 Introduction
Determining the number G of components in a finite mixture distribution defined as

y ∼
G∑
g=1

ηgfg(y|θg), (7.1)

is an important and difficult issue. This is a most important question, because statistical
inference about the resulting model is highly sensitive to the value of G. Selecting an
erroneous value of G may produce a poor density estimate. This is also a most difficult
question from a theoretical perspective as it relates to unidentifiability issues of the mixture
model, as discussed already in Chapter 4. This is a most relevant question from a practical
viewpoint since the meaning of the number of components G is strongly related to the
modelling purpose of a mixture distribution.

From this perspective, the famous quote from Box (1976), “All models are wrong, but
some are useful” is particularly relevant for mixture models since they may be viewed as
a semi-parametric tool when addressing the general purpose of density estimation or as
a model-based clustering tool when concerned with unsupervised classification; see also
Chapter 1. Thus, it is highly desirable and ultimately profitable to take into account the
grand modelling purpose of the statistical analysis when selecting a proper value of G,
and we distinguish in this chapter between selecting G as a density estimation problem in
Section 7.2 and selecting G in a model-based clustering framework in Section 7.3.

Both sections will discuss frequentist as well as Bayesian approaches. At a foundational
level, the Bayesian approach is often characterized as being highly directive, once the prior
distribution has been chosen (see, for example, Robert, 2007). While the impact of the prior
on the evaluation of the number of components in a mixture model or of the number of
clusters in a sample from a mixture distribution cannot be denied, there exist competing
ways of assessing these quantities, some borrowing from point estimation and others from
hypothesis testing or model choice, which implies that the solution produced will strongly
depend on the perspective adopted. We present here some of the Bayesian solutions to the
different interpretations of picking the “right” number of components in a mixture, before
concluding on the ill-posed nature of the question.

As already mentioned in Chapter 1, there exists an intrinsic and foundational difference
between frequentist and Bayesian inferences: only Bayesians can truly estimate G, that is,
treat G as an additional unknown parameter that can be estimated simultaneously with the
other model parameters θ = (η1, . . . , ηG, θ1, . . . , θG) defining the mixture distribution (7.1).
Nevertheless, Bayesians very often rely on model selection perspectives for G, meaning that
Bayesian inference is carried out for a range of values of G, from 1, say, to a pre-specified
maximum value Gmax, given a sample y = (y1, . . . , yn) from (7.1). Each value of G thus
corresponds to a potential modelMG, and those models are compared via Bayesian model
selection. A typical choice for conducting this comparison is through the values of the
marginal likelihood p(y|G),

p(y|G) =
∫
p(y|θ,G)p(θ|G)dθ, (7.2)

separately for each mixture model MG, with p(θ|G) being a prior distribution for all un-
known parameters θ in a mixture model with G components.

However, cross-model Bayesian inference on G is far more attractive, at least concep-
tually, as it relies on one-sweep algorithms, namely computational procedures that yield
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FIGURE 7.1
Point process representation of the estimated mixture parameters for three mixture distri-
butions fitted to the enzyme data using a Bayesian framework under the prior of Richardson
& Green (1997). The size of each point (µ̂g, σ̂2

g) corresponds to the mixture weight η̂g. Top:
G = 3. Bottom: G = 4 with η ∼ D4 (4) (left) and η ∼ D4 (0.5) (right; the very small fourth
component is marked by a circle).

estimators of G jointly with the unknown model parameters. Section 7.4 reviews such one-
sweep Bayesian methods for cross-model inference on G, ranging from well-known methods
such as reversible jump Markov chain Monte Carlo (MCMC) to more recent ideas involv-
ing sparse finite mixtures relying on overfitting in combination with a prior on the weight
distribution that forces sparsity.

7.2 Selecting G as a Density Estimation Problem
When the estimation of the data distribution is the main purpose of the mixture modelling,
it is generally assumed that this distribution truly is a finite mixture distribution. One
inference issue is then to find the true number of mixture components, G, that is, the
order of the mixture behind the observations. This assumption is supposed to produce
well-grounded tests and model selection criteria.

The true order of a finite mixture model is the smallest value of G such that the compo-
nents of the mixture in (7.1) are all distinct and the mixing proportions are all positive (that
is, θg 6= θg′ , g 6= g′ and ηg > 0). This definition attempts to deal with the ambiguity (or
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FIGURE 7.2
Histogram of the enzyme data together with three fitted mixture distributions: G = 3 (solid
line); G = 4 and η ∼ D4 (4) (dotted line); G = 4 and η ∼ D4 (0.5) (dashed line). The dashed
and solid lines are nearly identical.

non-identifiability) due to overfitting, discussed in Section 1.3 of Chapter 1 and Section 4.2.2
of Chapter 4: a mixture with G components can equally be defined as a (non-identifiable)
mixture with G + 1 components where the additional component either has a mixing pro-
portion ηG+1 equal to zero or the parameter θG+1 is identical to the parameter θg of some
other component g ∈ {1, . . . , G}. These identifiability issues impact both frequentist and
Bayesian methods for selecting G. Hence, the order G is a poorly defined quantity and in
practical mixture analysis it is often difficult to decide what order G describes the data
best.

By way of illustration, a mixture of normal distributions N (µg, σ2
g) with G = 3 compo-

nents is fitted within a Bayesian framework to the enzyme data studied in Richardson &
Green (1997), using the same prior as Richardson & Green, in particular a uniform prior
on the weight distribution η = (η1, . . . , ηG). In addition, mixtures with G = 4 compo-
nents are fitted, but with different symmetric Dirichlet priors for η, namely η ∼ D4 (4)
and η ∼ D4 (0.5). As discussed in Section 4.2.2 above, the first prior favours overlapping
components, whereas the second prior favours small components, should the mixture be
overfitting.

Full conditional Gibbs sampling is applied for posterior inference. All three mixture
models are identified by k-means clustering in the point process representation of the pos-
terior draws of (µg, σg). The estimated component parameters (µ̂g, σ̂2

g , η̂g) are visualized
through a point process representation in Figure 7.1. Obviously, the parameters for the
four-component mixture are quite different and emerge in quite different ways than the com-
ponents of the three-component mixture. The component (µ̂g, σ̂2

g , ηg) = (0.19, 0.007, 0.61)
is split into the two components (µ̂g, σ̂2

g) = (0.16, 0.003) and (µ̂g′ , σ̂2
g′) = (0.26, 0.008) with

weights 0.38+0.23 = 0.61 under the prior η ∼ D4 (4). Under the prior η ∼ D4 (0.5), the vari-
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ance of the two components with the larger means is reduced and a fourth tiny component
with weight 0.012 and a large mean are added.

Figure 7.2 shows the density of these three mixture distributions together with a his-
togram of the data. The density of G = 4 under the prior η ∼ D4 (0.5) is nearly identical
to the density of G = 3 with the tiny fourth component capturing the largest observations.
The density of G = 4 under the prior η ∼ D4 (4) is also very similar to the density of G = 3,
but tries to capture the skewness in the large, well-separated cluster with the smallest ob-
servations. Clearly, it is not easy to decide which of these three densities describes the data
best.

7.2.1 Testing the order of a finite mixture through likelihood ratio tests
From a frequentist perspective, a natural approach to the determination of the order of a
mixture distribution is to rely on the likelihood ratio test associated with the hypotheses of
G (H0) versus G+1 (HA) non-empty components. However, as a consequence of the above-
mentioned identifiability problem, regularity conditions ensuring a standard asymptotic
distribution for the maximum likelihood (ML) estimates do not hold; see Section 4.3.3.
When one component is superfluous (H0), the parameter θG+1 under the alternative hypo-
thesis HA lies on the boundary of the parameter space. Moreover, the remainder term
appearing within a series expansion of the likelihood ratio test statistic is not uniformly
bounded under HA. Therefore, its distribution remains unknown.

Many attempts have been made to modify the likelihood ratio test in this setting; see, for
example, the references in McLachlan & Peel (2000) and Frühwirth-Schnatter (2006). Here,
we wish to mention the seminal works of Dacunha-Castelle & Gassiat (1997, 1999), which
make use of a locally conic parameterization to deal with non-identifiability. This research
has been updated and extended to ensure a consistent estimation of G with penalized ML
when G is bounded for independent and dependent finite mixtures (Gassiat, 2002). Note
that this boundary on G has been relaxed in the paper of Gassiat & van Handel (2013) for
a mixture of translated distributions. Moreover, an early reference that deals explicitly with
testing G against G+ 1 in Markov switching models (see Chapter 13) is Hansen (1992).

Adopting a different perspective, McLachlan (1987) proposed using a parametric boot-
strap test to select the number of components in a normal mixture. This approach can be
extended without difficulty to other mixture distributions. To test the null hypothesis that
G = G0 against the alternative that G = G1 at the level α, McLachlan (1987) suggests the
following procedure: draw B bootstrap samples from a mixture model of order G0 with the
parameters being equal to the maximum likelihood estimator (MLE) θ̂G0 and compute the
log likelihood ratio statistic (LRS) of G = G0 versus G = G1 for all bootstrap samples. If the
LRS computed on the original sample is smaller than the 1−α quantile of the distribution
of the bootstrapped LRSs, then the hypothesis G = G0 is not rejected. It must be pointed
out that this bootstrap test is biased since the p-value is computed from a bootstrap sample
where the parameter value θG0 has been estimated from the whole observed sample. One
way to address this bias is to resort to double bootstrapping: first, B bootstrap samples are
used to compute an estimate θ̂bG0

for each bootstrap sample b = 1, . . . , B, while a second
bootstrap layer produces an LRS for each bootstrap sample b of the first bootstrap layer.
Unfortunately, this double bootstrap procedure is extremely computer-intensive.

As far as we know, technical difficulties aside, statistical tests are rarely used to estimate
the order of a mixture. There are several reasons for this. First, the mixture models under
comparison are not necessarily embedded. And second, the proposed tests are numerically
difficult to implement and slow. Hence, other procedures such as optimizing penalized log
likelihood or resorting to Bayesian methods are preferable.
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7.2.2 Information criteria for order selection
Various information criteria for selecting the order of a mixture distribution are discussed
in this section, including the Akaike (AIC) and Bayesian (BIC) information criteria (Sec-
tion 7.2.2.1), the slope heuristic (Section 7.2.2.2), the deviance information criterion (DIC)
(Section 7.2.2.3) , and the minimum message length (Section 7.2.2.4) and we refer to the
literature for additional criteria such as the approximate weight of evidence (AWE) crite-
rion (Banfield & Raftery, 1993). Information criteria are based on penalizing the log of the
likelihood function Lo(θ;G), also known as the observed-data likelihood,

Lo(θ;G) =
n∏
i=1

[
G∑
g=1

ηgfg(yi | θg)
]
, (7.3)

of a mixture modelMG with G components. The penalty is proportional to the number of
free parameters inMG, denoted by υG, and the various criteria differ in the choice of the
corresponding proportionality factor. The number υG increases linearly in G and quantifies
the complexity of the model. For a multivariate mixture of Gaussian distributions with
unconstrained covariance matrices generating observations of dimension r, for instance,
υG = G(1 + r + r(r + 1)/2)− 1.

7.2.2.1 AIC and BIC

Let θ̂G be the MLE corresponding to the observed-data likelihood Lo(θ;G), defined in (7.3).
The AIC (Akaike, 1974) and BIC (Schwarz, 1978) are popular model selection criteria for
solving the bias–variance dilemma for choosing a parsimonious model. AIC(G) is defined as

AIC(G) = −2 log `o(θ̂G;G) + 2υG, (7.4)

whereas BIC(G) is defined as

BIC(G) = −2 log `o(θ̂G;G) + υG log(n). (7.5)

Both criteria are asymptotic criteria and assume that the sampling pdf is within the model
collection. On the one hand, the AIC aims to minimize the Kullback–Leibler divergence
between model MG and the sampling pdf. On the other hand, the BIC approximates the
marginal likelihood of modelMG, defined in (7.2), by ignoring the impact of the prior.

In some settings and under proper regularity conditions, the BIC can be shown to
be consistent, meaning it eventually picks the true order of the mixture, while the AIC is
expected to have a good predictive behaviour and happens to be minimax optimal, that is, to
minimize the maximum risk among all estimators, in some regular situations (Yang, 2005).
However, in a mixture setting both penalized log likelihood criteria face the same difficulties
as the likelihood ratio test due to the identifiability problems mentioned in Section 7.2.1.

When regularity conditions hold, the BIC is derived by a Laplace approximation of the
marginal likelihood of modelMG:

p(y|G) =
∫
RυG

exp(nL(θ))dθ = exp (nL(θ∗G)) 2π
n

υG/2 ∣∣−L′′(θ∗G)
∣∣−1/2 +O(n−1),

where L : RυG −→ R is a C2 function, here

L(θ) = 1
n

[log p(y|θ,G) + log p(θ|G)],

with unique maximum θ∗G. Moreover, the posterior mode θ∗G is approximately equal to
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the MLE θ̂G, and the Hessian of L can be approximated with the inverse of the Fisher
information I(θ̂G)−1. Hence,

−2 log p(y|G) = BIC(G) +O(1).

However, as noted above, the BIC is not truly Bayesian in that it bypasses all terms (first
and foremost the prior distribution) that do not depend on n. Moreover, if the (data-
dependent) prior pdf p(θ|G) is a normal distribution deduced from the MLE distribution
N (θ̂G, I(θ̂G)−1), then

−2 log p(y|G) = BIC(G) +O(n−1/2).

For this very reason, the BIC is mostly exploited for selecting a model estimated through
the ML methodology (and not in a Bayesian way).

Under proper regularity conditions, the BIC enjoys the following asymptotic properties.

(a) The BIC is consistent: if there exists G∗ such that the true distribution p0 generating
the data is equal to p(·|G∗), then, for n large enough, BIC selects G∗.

(b) Even if such a G∗ does not exist, good behaviour of the BIC can be expected, if p0 is
close to p(·|G∗) for the value G∗ selected by the BIC.

Unfortunately, the regularity conditions that validate the above Laplace approximation
require the model parameters to be identifiable. As seen above, this is not true in general
for most mixture models. However, the BIC has been shown to be consistent when the pdfs
of the mixture components are bounded (Keribin, 2002). This is, for example, the case for
a Gaussian mixture model with equal covariance matrices. In practice, there is no reason to
think that the BIC is not consistent for selecting the number of mixture components when
the mixture model is used to estimate a density (see, for instance, Roeder & Wasserman,
1997; Fraley & Raftery, 2002).

For singular models for which the Fisher information matrix is not everywhere invertible,
Drton & Plummer (2017) proposed the so-called sBIC criterion. This criterion makes use
of the Watanabe (2009) marginal likelihood approximation of a singular model. It is the
solution of a fixed point equation approximating the weighted average of the log marginal
likelihoods of the models in competition. The sBIC criterion is proven to be consistent. It
coincides with the BIC criterion when the model is regular. But, while the usual BIC is in
fact not Bayesian, the sBIC is connected to the large-sample behaviour of the log marginal
likelihood (Drton & Plummer, 2017).

However, the BIC does not lead to a prediction of the observations that is asymptoti-
cally optimal; see Yang (2005) and Drton & Plummer (2017) for further discussion on the
comparative properties of the AIC and BIC. In contrast to the BIC criterion, the AIC is
known to suffer from a marked tendency to overestimate the true value of G (see, for in-
stance, Celeux & Soromenho (1996) for illustrations). However, a modification of AIC, the
so-called AIC3 criterion, proposed in Bozdogan (1987), which replaces the penalty 2υG with
3υG, provides a good assessment of G when the latent class model is used to estimate the
density of categorical data (Nadif & Govaert, 1998). Nevertheless, the theoretical reasons
for this interesting behaviour of the AIC3 (in this particular context) remain for the most
part mysterious.

Finally, when the BIC is used to select the number of a mixture components for real
data, it has a marked tendency to choose a large number of components or even to choose
the highest proposed number of components. The reason for this behaviour is once more
related to the fact that the penalty of the BIC is independent of the data, apart from the
sample size n. When the bias in the mixture model does not vanish when the number of
components increases, the BIC always increases by adding new mixture components. In a
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model-based clustering context, this under-penalization tendency is often counterbalanced
by the entropy of the mixture, added to rgw BIC in the ICLbic criterion (see Section
7.3.2.1), which could lead to a compromise between the fit of a mixture model and its
ability to produce a sensible clustering of the data. But there are many situations where
the entropy of the mixture is not enough for counterbalancing this tendency and, moreover,
the ICLbic is not really relevant when the modelling purpose is not related to clustering.

7.2.2.2 The Slope Heuristics

The so-called slope heuristics (Birgé & Massart, 2001, 2007), are a data-driven method to
calibrate a penalized criterion that is known up to a multiplicative constant κ. It has been
successfully applied to many situations, and particularly to mixture models when using the
observed-data log likelihood; see Baudry et al. (2012). As shown by Baudry (2015), it can
be extended without difficulty to other contrasts including the conditional classification
log likelihood, which will be defined in Section 7.3.2.1. Roughly speaking, as with the AIC
and BIC, the penalty function pen(G) is assumed to be proportional to the number of free
parameters υG (i.e. the model dimension), pen(G) ∝ κυG.

The penalty is calibrated using the data-driven slope estimation (DDSE) procedure,
available in the R package capushe (Baudry et al., 2012). The method assumes a linear
relation between the observed-data log likelihood and the penalty. It is important to note
that this assumption must and may easily be verified in practice via a simple plot. Then
the DDSE procedure directly estimates the slope of the expected linear relationship be-
tween the contrast (here the observed-data log likelihood, but other contrasts such as the
conditional classification likelihood are possible) and the model dimension υG which is a
function of the number G of components. The estimated slope κ defines a minimal penalty
κυG below which smaller penalties give rise to the selection of more complex models, while
higher penalties should select models with reasonable complexity. Arguments are provided
in Birgé & Massart (2007) and Baudry et al. (2012) that the optimal (oracle) penalty is
approximately twice the minimal penalty. Thus, by setting the penalty to be 2κυG, the
slope heuristics criterion is defined as

SH(G) = − log `o(θ̂G;G) + 2κυG,

when considering mixture models in a density estimation framework. For more details about
the rationale and the implementation of the slope heuristics, see Baudry et al. (2012).

The slope heuristics method relies on the assumption that the bias of the fitted mod-
els decreases as their complexity increases and becomes almost constant for the most
complex model. In the mixture model framework, this requires the family of models to
be roughly nested. More discussion, technical developments and illustrations are given in
Baudry (2015).

The ability of the slope heuristics method, which is not based on asymptotic arguments,
to detect the stationarity of the model family bias (namely the fact that the bias becomes
almost constant) is of prime relevance. It leads this criterion to propose more parsimonious
models than the BIC or even the integrated complete-data likelihood criterion (to be dis-
cussed in Section 7.3.2.1). Many illustrations of this practical behaviour can be exhibited in
various domains of application of mixture models; see, for instance, a clustering use of the
slope heuristics to choose the number of components of a multivariate Poisson mixture with
RNASeq transcriptome data (Rau et al., 2015) or in a model-based clustering approach for
comparing bike sharing systems (Bouveyron et al., 2015).
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7.2.2.3 DIC

In recent years, the deviance information criterion introduced by Spiegelhalter et al. (2002)
has become a popular criterion for Bayesian model selection because it is easily computed
from posterior draws, using MCMC methods. Like other penalized log likelihood criteria,
the DIC involves a trade-off between goodness of fit and model complexity, measured in
terms of the so-called effective number of parameters. However, the use of the DIC to choose
the order G of a mixture model is not without issues, as discussed by De Iorio & Robert
(2002) and Celeux et al. (2006).

To apply the DIC in a mixture context, several decisions have to be made. As for any
latent variable model, a first difficulty arises in the choice of the appropriate likelihood
function. Should the DIC be based on the observed-data log likelihood log p(y|θ,G), the
complete-data log likelihood log p(y, z|θ,G) or the conditional log likelihood log p(y|z, θ, G),
where z = (z1, . . . , zn) are the latent allocations generating the data (see also Section 7.3.1)?
Second, the calculation of the DIC requires an estimate θ̂G of the unknown parameter θ
which may suffer from label switching, making the DIC (which is based on averaging over
MCMC draws) unstable. Finally, if the definition of the DIC involves either the complete-
data or conditional likelihood, the difficulty that z is unobserved must be dealt with, either
by integrating against the posterior p(z|y, G) or by using a plug-in estimator of z in which
case once again the label switching problem must be addressed to avoid instability.

In an attempt to calibrate these difficulties, Celeux et al. (2006) investigate in total eight
different DIC criteria. DIC2, for instance, focuses on the marginal distribution of the data
and considers the allocations z as nuisance parameters. Consequently, it is based on the
observed-data likelihood:

DIC2(G) = −4Eθ (log p(y|θ,G)|y) + 2 log p(y|θ̂G, G),

where the posterior mode estimator θ̂G (which is invariant to label switching) is obtained
from the observed-data posterior p(θ|y, G) and Eθ is the expectation with respect to the
posterior p(θ|y, G).

Based on several simulation studies, Celeux et al. (2006) recommend using DIC4 which is
based on computing first DIC for the complete-data likelihood function and then integrating
over z with respect to the posterior p(z|y, G). This yields

DIC4(G) = −4Eθ,z (log p(y, z|θ,G)|y) + 2Ez

(
log p(y, z|θ̂G(z))|y

)
,

where θ̂G(z) is the complete-data posterior mode which must be computed for each draw
from the posterior p(z|y, G). This is straightforward if the complete-data posterior p(θg|y, z)
is available in closed form. If this is not the case, Celeux et al. (2006) instead use the posterior
mode estimator θ̂G of the observed-data posterior p(θ|y). This leads to an approximation
of DIC4(G), called DIC4a(G), which is shown to be a criterion that penalizes DIC2(G) by
the expected entropy, defined in (7.16):

DIC4a(G) = DIC2(G) + 2Eθ (ENT(θ;G)|y) .

Both DIC2(G) and DIC4a(G) are easily estimated from (MCMC) draws from the posterior
p(θ|y, G) by substituting all expectations E•(·|y) by an average over the corresponding
draws. Note that label switching is not a problem here, because both log p(y|θ,G) and
ENT(θ;G) are invariant to the labelling of the groups.

However, in practical mixture modelling, the DIC turns out to be very unstable, as
shown by Celeux et al. (2006) for the galaxy data (Roeder, 1990). A similar behaviour
was observed by Frühwirth-Schnatter & Pyne (2010) who fitted skew-normal mixtures to
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Alzheimer disease data under various prior assumptions. While the marginal likelihood
selected G = 2 with high confidence for all priors, DIC4a(G) selected G = 1, regardless of
the chosen prior, whereas the number of components selected by DIC2(G) ranged from 2
to 4, depending on the prior.

7.2.2.4 The minimum message length

Assuming that the form of the mixture models is fixed (e.g. Gaussian mixture models with
free covariance matrices or Gaussian mixture models with a common covariance matrix),
several authors have proposed dealing with the estimation of the mixture parameters and G
in a single algorithm with the minimum message length (MML) criterion (see, for instance,
Rissanen, 2012; Wallace & Freeman, 1987). Considering the MML criterion in a Bayesian
perspective and choosing Jeffreys’ non-informative prior p(θ) for the mixture parameter,
Figueiredo & Jain (2002) propose minimizing the criterion

MML(θ;G) = − log p(y|θ,G)− log p(θ|G) + 1
2 log |I(θ)|+ υG

2 (1− log(12)),

where I(θ) is the expected Fisher information matrix which is approximated by the
complete-data Fisher information matrix IC(θ).

As we know, for instance from Section 4.2.2 above, Jeffreys’ non-informative prior does
not work for mixtures. Figueiredo & Jain (2002) circumvent this difficulty by only consider-
ing the parameters of the components whose proportion is non-zero, namely the components
g such that η̂g > 0.

Assuming, for instance, that the mixture model considered arises from the general Gaus-
sian mixture family with free covariance matrices, this approach leads to minimizing the
criterion

MML(θ;G) =− log p(y|θ,G) + G?

2 log n

12

+ dim(θg)
2

∑
g:η̂g>0

{log(n · dim(θg)/12) +G?(dim(θg) + 1)}, (7.6)

with G? = card{g|η̂g > 0}. In this Bayesian context, the approach of Figueiredo & Jain
(2002) involves optimizing iteratively the criterion (7.6), starting from a large number of
components Gmax, and cancelling the components g such that, at iteration s,

n∑
i=1

τ̂
(s)
ig <

dim(θ(s)
g )

2 , (7.7)

where τ̂ (s)
ig are the elements of the fuzzy classification matrix defined in (7.18). Thus, the

chosen number of components G? is the number of components remaining at the conver-
gence of the iterative algorithm. This iterative algorithm could be the EM algorithm, but
Figueiredo & Jain (2002) argue that with EM, for large G, it can happen that no compo-
nent has enough initial support, as the criterion for cancellation defined in (7.7) is fulfilled
for all G components. Thus, they prefer to make use of the componentwise EM algorithm
of Celeux et al. (2001), which updates the ηg and the θg sequentially: update η1 and θ1,
recompute τi1 for i = 1, . . . , n, update η2 and θ2, recompute τi2 for i = 1, . . . , n, and so on.

Zeng & Cheung (2014) use exactly the same approach with the completed-data or the
classification likelihood instead of the observed-data likelihood. Thus, roughly speaking, the
procedure of Figueiredo & Jain (2002) is expected to provide a similar number of components
to the BIC, while the procedure of Zeng & Cheung (2014) is expected to provide a similar
number of clusters to the ICLbic presented in Section 7.3.2.1.
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7.2.3 Bayesian model choice based on marginal likelihoods
From a Bayesian testing perspective, selecting the number of components can be interpreted
as a model selection problem, given the probability of each model within a collection of all
models corresponding to the different numbers of components (Berger, 1985). The standard
Bayesian tool for making this model choice is based on the marginal likelihood (also called
evidence) of the data p(y|G) for each modelMG, defined in (7.2), which naturally penalizes
models with more components (and more parameters) (Berger & Jefferys, 1992).

While the BIC is often considered as one case of information criterion, it is important
to recall (see Section 7.2.2.1) that it was first introduced by Schwartz (1965) as an approx-
imation to the marginal likelihood p(y|G). Since this approximation does not depend on
the choice of the prior p(θ|G), it is not of direct appeal for a Bayesian evaluation of the
number of components, especially when considering that the marginal likelihood itself can
be approximated by simulation-based methods, as discussed in this section.

7.2.3.1 Chib’s method, limitations and extensions

The reference estimator for evidence approximation is Chib’s (1995) representation of the
marginal likelihood of modelMG as1

p(y|G) = p(y|θo, G)p(θo|G)
p(θo|y, G) , (7.8)

which holds for any choice of the plug-in value θo. While the posterior p(θo|y, G) is not
available in closed form for mixtures, a Gibbs sampling decomposition allows for a Rao–
Blackwellized approximation of this density (Robert & Casella, 2004) that furthermore
converges at a parametric speed, as already noticed in Gelfand & Smith (1990):

p̂(θo|y, G) = 1
M

M∑
m=1

p(θo|y, z(m), G),

where z(m),m = 1, . . . ,M , are the posterior draws for the latent allocations z = (z1, . . . , zn),
introduced earlier in Chapter 1; see Chapter 5 for a review of posterior sampling methods.

However, for mixtures, the convergence of this estimate is very much hindered by the fact
that it requires perfect symmetry in the Gibbs sampler, that is, complete label switching
within the simulated Markov chain. When the completed chain (z(m)

1 , . . . , z
(m)
n ) remains

instead concentrated around one single or a subset of the modes of the posterior distribution,
the approximation of log p̂(θo|y, G) based on Chib’s representation fails, in that it is usually
off by a numerical factor of order O(log G!). Furthermore, this order cannot be used as a
reliable correction, as noted by Neal (1999) and Frühwirth-Schnatter (2006).

A straightforward method of handling Markov chains that are not perfectly mix-
ing (which is the usual setting) is found in Berkhof et al. (2003) (see also Frühwirth-
Schnatter, 2006, Section 5.5.5; Lee et al., 2009) and can be interpreted as a form of Rao–
Blackwellization. The proposed correction is to estimate p̂(θo|y, G) as an average computed
over all possible permutations of the labels, thus forcing the label switching and the ex-
changeability of the labels to occur in a “perfect” manner. The new approximation can be
expressed as

p̃(θo|y, G) = 1
MG!

∑
s∈S(G)

M∑
m=1

p(θo|y, s(z(m)), G) ,

1This was earlier called the candidate’s formula by Julian Besag (1989).
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where S(G) traditionally denotes the set of the G! permutations of {1, . . . , G} and where s
is one of those permutations. Note that the above correction can also be rewritten as

p̃(θo|y, G) = 1
MG!

∑
s∈S(G)

M∑
m=1

p(s(θo)|y, z(m), G) , (7.9)

as this may induce some computational savings. Further savings can be found in the import-
ance sampling approach of Lee & Robert (2016), who reduce the number of permutations
to be considered.

While Chib’s representation has often been advocated as a reference method for comput-
ing the evidence, other methods abound within the literature, among them nested sampling
(Skilling, 2007; Chopin & Robert, 2010), reversible jump MCMC (Green, 1995; Richardson
& Green, 1997), particle filtering (Chopin, 2002), bridge sampling (Frühwirth-Schnatter,
2004) and path sampling (Gelman & Meng, 1998). Some of these methods are discussed
next.

7.2.3.2 Sampling-based approximations

If G is moderate, sampling-based techniques are particularly useful for estimating the
marginal likelihood of finite mixture models; see Frühwirth-Schnatter (2004) and Lee &
Robert (2016). Frühwirth-Schnatter (2004) considered three such estimation techniques,
namely importance sampling, reciprocal importance sampling, and bridge sampling.

For sampling-based techniques, one selects an importance density qG(θ) which is easy to
sample from and provides a rough approximation to the posterior density p(θ|y, G). Given a
suitable importance density qG(θ), an importance sampling approximation to the marginal
likelihood is based on rewriting (7.2) as

p(y|G) =
∫
p(y|θ,G)p(θ|G)

qG(θ) qG(θ)dθ.

Based on a sample θ(l) ∼ qG(θ), l = 1, . . . , L, from the importance density qG(θ), the
importance sampling estimator of the marginal likelihood is given by

p̂IS(y|G) = 1
L

L∑
l=1

p(y|θ(l), G)p(θ(l)|G)
qG(θ(l))

. (7.10)

Gelfand & Dey (1994) introduced reciprocal importance sampling, which is based on the
observation that (7.8) can be written as

1
p(y|G) = p(θ|y, G)

p(y|θ,G)p(θ|G) .

Integrating both sides of this equation with respect to the importance density qG(θ) yields

1
p(y|G) =

∫
qG(θ)

p(y|θ,G)p(θ|G)p(θ|y, G).

This leads to the reciprocal importance sampling estimator of the marginal likelihood,
where the inverse of the ratio appearing in (7.10) is evaluated at the MCMC draws θ(m),
m = 1, . . . ,M , and no draws from the importance density qG(θ) are required:

p̂RI(y|G) =
(

1
M

M∑
m=1

qG(θ(m))
p(y|θ(m), G)p(θ(m)|G)

)−1

.
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These two estimators are special cases of bridge sampling (Meng & Wong, 1996):

p(y|G) =
EqG(θ)(α(θ)p(y|θ,G)p(θ|G))

Ep(θ|y,G)(α(θ)qG(θ)) ,

with specific functions α(θ). The (formally) optimal choice for α(θ) yields the bridge
sampling estimator p̂BS(y|G) and combines draws θ(l), l = 1, . . . , L, from the impor-
tance density with MCMC draws θ(m), m = 1, . . . ,M . Using p̂IS(y|G) as a starting
value for p̂BS,0(y|G), the following recursion is applied until convergence to estimate
p̂BS(y|G) = limt→∞ p̂BS,t(y|G):

p̂BS,t(y|G) =
L−1

L∑
l=1

p(y|θ(l), G)p(θ(l)|G)
LqG(θ(l)) +Mp(y|θ(l), G)p(θ(l)|G)/p̂BS,t−1(y|G)

M−1
M∑
m=1

qG(θ(m))
LqG(θ(m)) +Mp(y|θ(m), G)p(θ(m)|G)/p̂BS,t−1(y|G)

. (7.11)

The reliability of these estimators depends on several factors. First, as shown by Frühwirth-
Schnatter (2004), the tail behaviour of qG(θ) compared to the mixture posterior p(θ|y, G)
is relevant. Whereas the bridge sampling estimator p̂BS(y|G) is fairly robust to the tail be-
haviour of qG(θ), p̂IS(y|G) is sensitive if qG(θ) has lighter tails than p(θ|y, G), and p̂RI(y|G)
is sensitive if qG(θ) has fatter tails than p(θ|y, G). Second, as pointed out by Lee & Robert
(2016), for any of these methods it is essential that the importance density qG(θ) exhibits the
same kind of multimodality as the mixture posterior p(θ|y, G) and all modes of the posterior
density are covered by the importance density also for increasing values of G. Otherwise,
sampling-based estimators of the marginal likelihood are prone to be biased for the same
reason Chib’s estimator is biased, as discussed in Section 7.2.3.1. A particularly stable esti-
mator is obtained when bridge sampling is combined with a perfectly symmetric importance
density qG(θ). Before the various estimators are illustrated for three well-known data sets
(Richardson & Green, 1997), we turn to the choice of appropriate importance densities.

Importance densities for mixture analysis

As manual tuning of the importance density qG(θ) for each model under consideration
is rather tedious, methods for choosing sensible importance densities in an unsupervised
manner are needed. DiCiccio et al. (1997), for instance, suggested various methods to con-
struct Gaussian importance densities from the MCMC output. However, the multimodal-
ity of the mixture posterior density with G! equivalent modes evidently rules out such a
simple choice. Frühwirth-Schnatter (1995) is one of the earliest references that used Rao–
Blackwellization to construct an unsupervised importance density from the MCMC output
to compute marginal likelihoods via sampling-based approaches and applied this idea to
model selection for linear Gaussian state space models. Frühwirth-Schnatter (2004) extends
this idea to finite mixture and Markov switching models where the complete-data poste-
rior p(θ|y, z) is available in closed form. Lee & Robert (2016) discuss importance sampling
schemes based on (nearly) perfectly symmetric importance densities.

For a mixture distribution, where the component-specific parameters θg can be sampled
in one block from the complete-data posterior p(θg|z,y), Rao–Blackwellization yields the
importance density

qG(θ) = 1
S

S∑
s=1

p(η|z(s))
G∏
g=1

p(θg|z(s),y), (7.12)
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where z(s) are the posterior draws for the latent allocations. The construction of this import-
ance density is fully automatic and it is sufficient to store the moments of these conditional
densities (rather than the allocations z themselves) during MCMC sampling for later eval-
uation. This method can be extended to cases where sampling θg from p(θg|z,y) requires
two (or even more) blocks such as for Gaussian mixtures where θg = (µg, σ2

g) is sampled in
two steps from p(µg|σ2

g , z,y) and p(σ2
g |µg, z,y).

Concerning the number of components in (7.12), on the one hand S should be small for
computational reasons, because qG(θ) has to be evaluated for each of the S components
numerous times (e.g. L times for the importance sampling estimator (7.10)). On the other
hand, as mentioned above, it is essential that qG(θ) covers all symmetric modes of the
mixture posterior, and this will require a dramatically increasing number of components S
as G increases. Hence, any of these estimators is limited to moderate values of G, say up to
G = 6.

Various strategies are available to ensure multimodality in the construction of the im-
portance density. Frühwirth-Schnatter (2004) chooses S = M and relies on random per-
mutation Gibbs sampling (Frühwirth-Schnatter, 2001) by applying a randomly selected
permutation sm ∈ S(G) at the end of the mth MCMC sweep to define a permutation
z(s) = sm(z(m)) of the posterior draw z(m) of the allocation vector. The random permuta-
tions s1, . . . , sM guarantee multimodality of qG(θ) in (7.12); however, as discussed above,
it is important to ensure good mixing of the underlying permutation sampler over all G!
equivalent posterior modes. Only if S is large compared to G! are all symmetric modes
visited by random permutation sampling. Choosing, for instance, S = S0G! ensures that
each mode is visited on average S0 times.

As an alternative to random permutation sampling, approaches exploiting full permuta-
tions have been suggested; see, for example, Frühwirth-Schnatter (2004). Importance sam-
pling schemes exploiting full permutation were discussed in full detail in Lee & Robert
(2016). The definition of a fully symmetric importance density qG(θ) is related to the cor-
rection for Chib’s estimator discussed earlier in (7.9):

qG(θ) = 1
S0G!

∑
s∈S(G)

S0∑
s=1

p(η|s(z(s)))
G∏
g=1

p(θg|s(z(s)),y). (7.13)

This construction, which has S = S0G! components, is based on a small number S0 of
particles z(s), as qG(θ) needs to be only a rough approximation to the mixture posterior
p(θ|y, G) and estimators such as bridge sampling will be robust to the tail behaviour of
qG(θ). In (7.13), all symmetric modes are visited exactly S0 times. The moments of the
S0 conditional densities need to be stored for only one of the G! permutations and, again,
this construction can be extended to the case where the components of θg are sampled in
more than one block. Lee & Robert (2016) discuss strategies for reducing the computational
burden associated with evaluating qG(θ).

Frühwirth-Schnatter (2006, p. 146) and Lee & Robert (2016) discuss a simplified version
of (7.13) where the random sequence z(s), s = 1, . . . , S0, is substituted by a single optimal
partition z? such as the maximum a posteriori (MAP) estimator:

qG(θ) = 1
G!

∑
s∈S(G)

p(θ|s(z?),y).

In MATLAB, the bayesf package (Frühwirth-Schnatter, 2018) allows one to estimate
p̂BS(y|G), p̂IS(y|G) and p̂RI(y|G) with the importance density being constructed either
as in (7.12) using random permutation sampling or as in (7.13) using full permutation
sampling.
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Example: Marginal likelihoods for the data sets in Richardson & Green (1997)

By way of illustration, marginal likelihoods are computed for mixtures of G univariate
normal distributions N (µg, σ2

g) for G = 2, . . . , 6 for the acidity data, the enzyme data and
the galaxy data studied by Richardson & Green (1997) in the framework of reversible jump
MCMC (see Section 7.4.2 for a short description of this one-sweep method). We use the
same priors as Richardson & Green, namely the symmetric Dirichlet prior η ∼ DG (1), the
normal prior µg ∼ N (m,R2), the inverse gamma prior σ2

g ∼ IG(2, C0) and the gamma prior
C0 ∼ G(0.2, 10/R2), where m and R are the midpoint and the length of the observation
interval. For a given G, full conditional Gibbs sampling is performed for M = 12,000
draws after a burn-in of 2000, by iteratively sampling from p(σ2

g |µg, C0, z,y), p(µg|σ2
g , z,y),

p(C0|σ2
1 , . . . , σ

2
G), p(η|z) and p(z|θ,y).

A fully symmetric importance density qG,F (θ) is constructed from (7.13), where S0 = 100
components are selected for each mode. For comparison, an importance density qG,R(θ) is
constructed from (7.12) with S = S0G!, ensuring that for random permutation sampling
each mode is visited on average S0 times. However, unlike qG,F (θ), the importance density
qG,R(θ) is not fully symmetric. Ignoring the dependence between µg and σ2

g , the component
densities are constructed from conditionally independent densities, given the sth draw of
(z, θ1, . . . , θG, C0):

p(µg, σ2
g |z(s), θ(s)

g , C
(s)
0 ,y) = p(µg|σ2,(s)

g , z(s),y)p(σ2
g |µ(s)

g , C
(s)
0 , z(s),y).

Prior evaluation is based on the marginal prior p(σ2
1 , . . . , σ

2
G), where C0 is integrated out.

This yields in total six estimators, p̂BS,F (y|G), p̂IS,F (y|G) and p̂RI,F (y|G) for full per-
mutation sampling and p̂BS,R(y|G), p̂IS,R(y|G) and p̂RI,R(y|G) for random permutation
sampling, for each G = 2, . . . , 6. For each estimator, standard errors SE are computed as
in Frühwirth-Schnatter (2004). Results are visualized in Figure 7.3, by plotting all six esti-
mators p̂•(y|G) as well as p̂•(y|G) ± 3 SE over G for all three data sets. Good estimators
should be unbiased with small standard errors and the order in which the six estimators
are arranged (which is the same for all Gs) is related to this quality measure.

There is a striking difference in the reliability of the six estimators, in particular as
G increases. Reciprocal importance sampling is particularly unreliable and the estimated
values of log p̂RI,R(y|G) under qG,R(θ) tend to be extremely biased for G ≥ 4, even if the
bias is reduced to a certain extent by choosing the fully symmetric importance density
qG,F (θ). Also the two other estimators log p̂IS,R(y|G) and log p̂BS,R(y|G) tend to be biased
under qG,R(θ), and bridge sampling is more sensitive than importance sampling to choosing
an importance density that is not fully symmetric.

Unlike for reciprocal importance sampling, the bias disappears for both bridge sam-
pling and importance sampling under the fully symmetric importance density qG,F (θ), and
log p̂IS,F (y|G) and log p̂BS,F (y|G) yield more or less identical results. However, due to the
robustness of bridge sampling with respect to the tail behaviour of qG,F (θ), we find that the
standard errors of log p̂BS,F (y|G) are often considerably smaller than the standard errors
of log p̂IS,F (y|G), in particular for the enzyme data.

Based on log p̂BS,F (y|G), marginal likelihood evaluation yields the following results for
the three data sets. For the acidity data, log p̂BS,F (y|G = 3) = −198.2 and log p̂BS,F (y|G =
4) = −198.3 are more less the same, with the log odds of G = 3 over G = 4 being equal
to 0.1. Also for the enzyme data, with log p̂BS,F (y|G = 3) = −74.2 and log p̂BS,F (y|G =
4) = −74.3, the log odds of G = 3 over G = 4 are equal to 0.1. Finally, for the galaxy
data, log p̂BS,F (y|G = 5) = log p̂BS,F (y|G = 6) = −225.9. Hence, under the prior p(θ|G)
employed by Richardson & Green (1997), for all three data sets no clear distinction can be
made between two values of G based on the marginal likelihood. However, if the marginal
likelihoods are combined with a prior on the number of components such as G− 1 ∼ P(1)
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FIGURE 7.3
Marginal likelihood estimation for the benchmarks in Richardson & Green (1997): the acid-
ity data (top), the enzyme data (middle) and the galaxy data (bottom) over G = 2, . . . , G =
6. For each G, six estimators p̂•(y|G) are given together with p̂•(y|G) ± 3 SE in the order
p̂BS,F (y|G), p̂IS,F (y|G), p̂IS,R(y|G), p̂BS,R(y|G), p̂RI,F (y|G) and p̂RI,R(y|G) from left to
right.
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(Nobile, 2004), then the log posterior odds, being equal to 1.5 for the acidity and the enzyme
data and 1.8 for the galaxy data, yield evidence for the smaller of the two values of G for
all three data sets.

7.3 Selecting G in the Framework of Model-Based Clustering
Assuming that the data stem from one of the models under comparison is most often
unrealistic and can be misleading when using the AIC or BIC. Now a common feature of
standard penalized likelihood criteria is that they abstain from taking the modelling purpose
into account, except when inference is about estimating the data density. In particular,
misspecification can lead to overestimating the complexity of a model in practical situations.
Taking the modelling purpose into account when selecting a model leads to alternative model
selection criteria that favor useful and parsimonious models. This viewpoint is particularly
relevant when considering a mixture model for model-based clustering; see Chapter 8 for a
review of this important application of mixture models.

7.3.1 Mixtures as partition models
Clustering arises in a natural way when an i.i.d. sample is drawn from the finite mixture
distribution (7.1) with weights η = (η1, . . . , ηG). As explained in Chapter 1, Section 1.1.3,
each observation yi can be associated with the component, indexed by zi, that generated
this data point:

zi|η ∼M(1, η1, . . . , ηG), (7.14)
yi|zi ∼ fzi(yi|θzi).

Let z = (z1, . . . , zn) be the collection of all component indicators that were used to generate
the n data points y = (y1, . . . , yn). Obviously, z defines a partition of the data. A cluster
Cg = {i|zi = g} is thus defined as a subset of the data indices {1, . . . , n}, containing all
observations with identical allocation variables zi. Hence, the indicators z define a partition
C = {C1, . . . , CG+} of the n data points, where yi and yj belong to the same cluster if and
only if zi = zj . The partition C contains G+ = |C| clusters, where |C| is the cardinality of
C. In a Bayesian context, finite mixture models imply random partitions over the lattice

SnG = {(z1, . . . , zn) : zi ∈ {1, . . . , G}, i = 1, . . . , n},

as will be discussed in detail in Section 7.3.3.
In model-based clustering, a finite mixture model is applied to recover the (latent)

allocation indicators z from the data and to estimate a suitable partition of the data. A
useful quantity in this respect is the so-called fuzzy classification matrix τ . The elements
τig, with i = 1, . . . , n and g = 1, . . . , G, of τ are equal to the conditional probability that
observation yi arises from component g in a mixture model of order G given yi:

τig = P(zi = g|yi, θ) = P(zig = 1|yi, θ) = ηgfg(yi | θg)∑G
j=1 ηjfj(yi | θj)

, (7.15)

where zig = I(zi = g). The entropy ENT(θ;G) corresponding to a fuzzy classification matrix
τ is defined as

ENT(θ;G) = −
G∑
g=1

n∑
i=1

τig log τig ≥ 0. (7.16)
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Both τ and ENT(θ;G) are data-driven measures of the ability of a G-component mixture
model to provide a relevant partition of the data. If the mixture components are well
separated for a given θ, then the classification matrix τ tends to define a clear partition of
the data set y = (y1, . . . , yn), with τig being close to 1 for one component and close to 0
for all other components. In this case, ENT(θ;G) is close to 0. On the other hand, if the
mixture components are poorly separated, then ENT(θ;G) takes values larger than zero.
The maximum value ENT(θ;G) can take is n logG, which is the entropy of the uniform
distribution which assigns yi to all G clusters with the same probability τig ≡ 1/G.

In a Bayesian context, the fuzzy classification matrix is instrumental for joint estimation
of the parameter θ and z within Gibbs sampling using data augmentation (see, for example,
Robert & Casella, 2004). In a frequentist framework, the estimated classification matrix τ̂ ,
given a suitable estimate θ̂G of the mixture parameters θ (e.g. the MLE), can be used to
derive an estimator ẑ of the partition of the data; see also Chapter 8, Section 8.2.4. As will
be discussed in Section 7.3.2, the entropy of the estimated classification matrix τ̂ plays an
important role in defining information criteria for choosing G in a clustering context.

7.3.2 Classification-based information criteria
As discussed in Section 7.2.2.1 within the framework of density estimation, the BIC en-
joys several desirable properties; however, within cluster analysis it shows a tendency to
overestimate G; see, for instance, Celeux & Soromenho (1996). The BIC does not take the
clustering purposes for assessing G into account, regardless of the separation of the clusters.
To overcome this limitation, an attractive possibility is to select G so that the resulting
mixture model leads to the clustering of the data with the largest evidence. This is the pur-
pose of various classification-based information criteria such as the integrated complete-data
likelihood criterion that are discussed in this subsection.

In a classification context, it is useful to state a simple relation linking the log of the
observed-data density p(y|θ) and the complete-data density p(y, z|θ). The observed-data
log likelihood of θ for a sample y, denoted by log `o(θ;G), is given by

log `o(θ;G) =
n∑
i=1

log
[
G∑
g=1

ηgfg(yi | θg)
]
,

whereas the complete-data log likelihood of θ for the complete sample (y, z), denoted by
log `c(θ;G), reads

log `c(θ, z;G) =
n∑
i=1

G∑
g=1

zig log(ηgfg(yi | θg)),

where zig = I(zi = g), g = 1, . . . , G. These log likelihoods are linked in the following way:

log `c(θ, z;G) = log `o(θ;G)− EC(θ, z;G), (7.17)

where

EC(θ, z;G) = −
G∑
g=1

n∑
i=1

zig log τig ≥ 0.

Since E(zig|θ, yi) = P(zig = 1|θ, yi) = τig, we obtain that the expectation of EC(θ, z;G) with
respect to the conditional distribution p(z|y, θ) for a given θ is equal the entropy ENT(θ;G)
defined in (7.16). Hence, the entropy can be regarded as a penalty for the observed-data
likelihood in cases where the resulting clusters are not well separated.
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7.3.2.1 The integrated complete-data likelihood criterion

The integrated (complete-data) likelihood related to the complete data (y, z) is

p(y, z | G) =
∫

ΘG
p(y, z | G, θ)p(θ | G)dθ,

where

p(y, z | G, θ) =
n∏
i=1

p(yi, zi | G, θ) =
n∏
i=1

G∏
g=1

ηzigg [fg(yi | θg)]zig .

This integrated complete-data likelihood (ICL) takes the missing data z into account and
can be expected to be relevant for choosing G in a clustering context. However, computing
the ICL is challenging for various reasons. First, computing the ICL involves an integration
in high dimensions. Second, the labels z are unobserved (missing) data. To approximate
the ICL, a BIC-like approximation is possible (Biernacki et al., 2000):

log p(y, z | G) ≈ log p(y, z | G, θ̂z)− υG
2 logn,

where
θ̂z = arg max

θ
p(y, z | G, θ),

and υG is the number of free parameters of the mixture modelMG. Note that this approx-
imation involves the complete-data likelihood, Lc(θ, z;G) = p(y, z | G, θ); however, z and,
consequently, θ̂z are unknown. First, approximating θ̂z ≈ θ̂G, with θ̂G being the MLE of the
G-component mixture parameter θ, is expected to be valid for well-separated components.
Second, given θ̂G, the missing data z are imputed using the MAP estimator ẑ = MAP(θ̂G)
defined by

ẑig =
{

1, if argmaxlτil(θ̂G) = g,
0, otherwise.

This leads to the criterion

ICLbic(G) = log p(y, ẑ | G, θ̂G)− υG
2 logn.

Exploiting (7.17), one obtains that the ICLbic criterion takes the form of a BIC criterion,
penalized by the estimated entropy

ENT(θ̂G;G) = −
G∑
g=1

n∑
i=1

τ̂ig log τ̂ig ≥ 0,

with τ̂ig denoting the conditional probability that yi arises from the gth mixture component
(i = 1, . . . , n, g = 1, . . . , G) under the parameter θ̂G; see (7.15).

Because of this additional entropy term, the ICLbic criterion favours values of G giving
rise to partitions of the data with the highest evidence. In practice, the ICLbic appears to
provide a stable and reliable estimation of G for real data sets and also for simulated data
sets from mixtures when the components do not overlap too much. However, it should be
noted that the ICLbic, which is not concerned with discovering the true number of mixture
components, can underestimate the number of components for simulated data arising from
mixtures with poorly separated components.



142 Handbook of Mixture Analysis

2 2.5 3 3.5 4 4.5 5

45

50

55

60

65

70

75

80

85

90

95

eruptions

wa
itin
g

2 2.5 3 3.5 4 4.5 5

45

50

55

60

65

70

75

80

85

90

95

eruptions

wa
itin
g

FIGURE 7.4
Cluster ellipses for the Old Faithful Geyser data: (left) the BIC solution; (right) the ICLbic
solution.

An illustrative comparison of the BIC and ICLbic

Obviously, in many situations where the mixture components are well separated, the BIC
and ICLbic select the same number of mixture components. But the following small numer-
ical example aims to illustrate a situation where these two criteria give different answers.

We start from a benchmark (genuine) data set known as the Old Faithful Geyser. Each
of the 272 observations consists of two measurements: the duration of the eruption and the
waiting time before the next eruption of the Old Faithful Geyser, in Yellowstone National
Park, USA. We consider a bivariate Gaussian mixture model with component densities
N (µk,Σk) with unconstrained covariance matrices Σk.

For this data set, Figure 7.4 shows that the ICLbic selects with a large evidence G = 2,
while the BIC slightly prefers G = 3 to G = 2. The BIC solution with G = 3 components
appears to model deviations from normality in one of the two obvious clusters, rather than
a relevant additional cluster.

7.3.2.2 The conditional classification likelihood

In a model-based clustering context where a cluster is associated with a mixture component,
it is sensible in view of (7.17) to maximize the conditional expectation of the complete-data
log likelihood (Baudry, 2015),

log Lcc(θ;G) = Ez(log `c(θ, z;G)) = log `o(θ;G)− ENT(θ;G),

rather than the observed-data log likelihood function log `o(θ;G). This can be done through
an EM-type algorithm where the M step at iteration s+ 1 involves finding

θ(s+1) ∈ argmax
θ∈ΘG

(
log `o(θ;G) +

n∑
i=1

G∑
g=1

τ
(s)
ig log τig

)
, (7.18)

where the τig are defined as in (7.15) and

τ
(s)
ig = η

(s)
g fg(yi | θ(s)

g )∑G
j=1 η

(s)
j fj(yi | θ(s)

j )
.

This M step can be performed by using an adaptation of the so-called Bayesian expectation
maximization (BEM) of Lange (1999). The resulting algorithm inherits the fundamental
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property of EM to increase the criterion log Lcc(θ), which does not depend on z, at each
iteration.

In this context, Baudry (2015) considered choosing G from a penalized criterion of the
form

Lcc-ICL(G) = − log Lcc(θ̂MLccE
G ;G) + pen(G),

where θ̂MLccE
G = arg maxθ log Lcc(θ;G). Under regularity conditions and the standard condi-

tion for information criteria the following holds. Assuming that pen : {1, . . . , Gmax} → R+

satisfies {
pen(G) = oP(n), as n→∞,(
pen(G)− pen(G′)

) P−−−−→
n→∞

∞, if G′ < G,

and defining Ĝ = min argminG Lcc-ICL(G), Baudry (2015) proved that

P
[
Ĝ 6= G0

]
−−−−→
n→∞

0,

where G0 is the minimum number of components such that the bias of the models is sta-
tionary for G ≥ G0,

G0 = min argmax
G

Ep0

[
log `c(θ0

G)
]
,

with
θ0
G = argmin

θ∈ΘG

{
dKL

(
p0, p( . ; θ)

)
+ Ep0

[
EC(θ;G)

]}
,

dKL
(
p0, p( . ; θ)

)
being the Kullback–Leibler distance between the true distribution p0 of

the data and the mixture distribution with parameter θ. Moreover, Baudry (2015) deduces
that, by analogy with the BIC, an interesting identification criterion to be minimized is

Lcc-ICL(G) = − log Lcc(θ̂MLccE
G ;G) + υG

2 logn.

The criterion ICLbic can thus be viewed as an approximation of Lcc-ICL. Therefore, the
criterion Lcc-ICL underlies a notion of class that is a compromise between the “mixture
component” and the “cluster” points of view.

7.3.2.3 Exact derivation of the ICL

Like the BIC, the ICL has been defined in a Bayesian framework, but its asymptotic ap-
proximations ICLbic and Lcc-ICL are not intrinsically Bayesian, since they do not depend
on the associated prior distribution. However, if the mixture components belong to the
exponential family, it is possible to get closed-form expressions for the ICL (see Biernacki
et al., 2010, or Bertoletti et al., 2015). With such closed-form expressions, it is possible to
compute the ICL values by replacing the missing labels z with their most probable values
using the MAP operator after estimating the parameter θ̂G as the posterior mode or the
MLE (see Biernacki et al., 2010). An alternative is to optimize the exact ICL in z. The
limitations of approaches based on exact ICL computing are twofold.

Choosing non-informative prior distributions

Except for categorical data which involve mixtures of multivariate discrete distributions,
there is no proper consensual non-informative prior distribution for other classes of mix-
ture models such as Gaussian or Poisson mixture models (see Chapter 4). It is obviously
possible to choose exchangeable weakly informative hyperparameters with conjugate prior
distributions for the parameters of the mixture components. However, the posterior distri-
bution and thus the resulting ICL values will inevitably depend on these hyperparameters.
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For the latent class model on categorical data, deriving the exact ICL is easier, since the
non-informative conjugate Dirichlet prior distributions DG (e0) are proper for the weight
distribution of the mixture. Following the recommendation of Frühwirth-Schnatter (2011),
it has been demonstrated that choosing e0 = 4 is expected to provide a stable selection
of G (see, for instance, Keribin et al., 2015). Numerical experiments on simulated data
proved that exact ICL computed with plug-in estimates θ̂G of the parameter could provide
different and more reliable estimation of G than the ICLbic for small sample sizes. Thus,
when conjugate non-informative prior distributions are available, deriving a non-asymptotic
approximation of ICL can be feasible.

Optimizing the exact ICL

Several authors have considered the direct optimization of the exact ICL in z without
estimating θ. Bertoletti et al. (2015), Côme & Latouche (2015) and Wyse et al. (2017)
have proposed greedy algorithms, while Tessier et al. (2006) proposed using evolutionary
optimization algorithms. At this point, it is important to remark that the optimization
problem has to be solved in a search space with about O(Gnmax) elements, where Gmax is
the maximum number of components allowed. This means that the optimization problem
becomes quite formidable for n large. In addition, the proposed greedy algorithms are highly
sensitive to the numerous local optima and have only been experimented with for moderate
sample sizes. This is the reason why evolutionary algorithms are expected to be useful but
they need to be calibrated (to choose the tuning parameters) and are expensive in computing
time.

7.3.3 Bayesian clustering
In the context of Bayesian clustering (see Lau & Green, 2007, for an excellent review),
where the allocation indicator z = (z1, . . . , zn) is regarded as a latent variable, a finite
mixture model implies random partitions over the lattice SnG. Hence, for a given order G
of the mixture distribution (7.1), both the prior density p(z|G) and the posterior density
p(z|G,y) are discrete distributions over the lattice SnG. Although this induces a change of
prior modelling, Lau & Green (2007) discuss Bayesian nonparametric (BNP; see Chapter
6) methods to estimate the number of clusters. We discuss the BNP perspective further in
Section 7.4.4 and refer to Chapter 6 for a comprehensive treatment.

For a finite mixture model, the Dirichlet prior η ∼ D(e1, . . . , eG) on the weight dis-
tribution strongly determines what the prior distribution p(z|G) looks like. To preserve
symmetry with respect to relabelling, typically the symmetric Dirichlet prior DG (e0) is
employed, where e1 = . . . = eG = e0. The corresponding prior p(z|G) =

∫ ∏n
i=1 p(zi|η)d η

is given by

p(z|G) = Γ(Ge0)
Γ(n+Ge0)Γ(e0)G+

∏
g:ng>0

Γ(ng + e0), (7.19)

where ng =
∑n
i=1 I(zi = g) is the number of observations in cluster g and G+ is defined as

the number of non-empty clusters,

G+ = G−
G∑
g=1

I(ng = 0). (7.20)

As mentioned earlier, in model-based clustering interest lies in estimating the number of
clusters G+ in the n data points rather than the number of components G of the mixture
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distribution (7.1), and it is important to distinguish between both quantities. Only a few
papers make this clear distinction between the number of mixture components G and the
number of data cluster G+ for finite mixture models (Nobile, 2004; Miller & Harrison, 2018;
Malsiner-Walli et al., 2017; Frühwirth-Schnatter & Malsiner-Walli, 2018).

A common criticism concerning the application of finite mixture models in a clustering
context is that the number of components G needs to be known a priori. However, what is
yet not commonly understood is (a) that the really relevant question is whether or not the
number of clusters G+ in the data is known a priori and (b) that even a finite mixture with a
fixed value of G can imply a random prior distribution on G+. By way of further illustration,
let ng =

∑n
i=1 I(zi = g) be the number of observations generated by the components

g = 1, . . . , G. Then (7.14) implies that n1, . . . , nG follow a multinomial distribution:

n1, . . . , nG|η ∼M(n, η1, . . . , ηG). (7.21)

Depending on the weights η = (η1, . . . , ηG) appearing in the mixture distribution (7.1),
multinomial sampling according to (7.21) may lead to partitions with ng being zero, leading
to so-called “empty components”. In this case, fewer than G mixture components were used
to generate the n data points which contain G+ non-empty clusters, where G+ is defined
as in (7.20).

In a Bayesian framework towards finite mixture modelling, the Dirichlet prior η ∼
DG (e0) on the component weights controls whether, a priori, G+ is equal to G and no
empty components occur. In particular, if e0 is close to 0, then G+ is a random variable
taking a priori values smaller than G with high probability. Exploiting the difference be-
tween G+ and G in an overfitting mixture with a prior on the weight distribution that
strongly shrinks redundant component weights towards 0 is a cornerstone of the concept of
sparse finite mixtures (Malsiner-Walli et al., 2016) which will be discussed in Section 7.4.5
as a one-sweep method to determine G+ for a fixed G.

In Bayesian clustering (rather than Bayesian mixture estimation), the main object of
interest is the (marginal) posterior of the allocations z, rather than the (marginal) posterior
distribution of the mixture parameters θ. Depending on the mixture under investigation, the
integrated likelihood p(y|z, G) for G known may be available in closed form, in particular,
if the component densities fg(y|θg) come from exponential families and a conditionally
conjugate prior p(θg) is employed for θg. As noted, for instance, by Casella et al. (2004), for
many mixture models it is then possible to derive an explicit form for the marginal posterior
p(z|y, G) of the indicators z, where dependence on the parameter θ is integrated out. By
Bayes’ theorem, the marginal posterior p(z|y, G) is given by

p(z|y, G) ∝ p(y|z, G)p(z|G), (7.22)

where the integrated prior p(z|G) is given by (7.19) and the integrated likelihood p(y|z, G)
takes the form

p(y|z, G) =
∫
p(y|z, θ1, . . . , θG, η,G)p(θ1, . . . , θG, η|G)d(θ1, . . . , θG, η). (7.23)

To explore the posterior of the allocations, efficient methods to sample from the posterior
p(z|y, G) are needed, and some of these methods will be discussed in Section 7.4.3. This
exploration is quite a computational challenge, as the size of the lattice SnG increases rapidly
with both the number n of observations and the number G of components and is given by
the Bell number. For n = 10 and G = 3, for instance, there are 59,049 different allocations
z, whereas for n = 100 and G = 3 the number of different allocations is of the order of
5 · 1047. This means that it is impossible to visit all possible partitions C during posterior
sampling and many partitions are visited at best once.
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FIGURE 7.5
Bayesian clustering of the galaxy data (Roeder, 1990), assuming a Gaussian mixture with
G = 5 components. The data are indicated through a rug plot. Partitions resulting from
the MAP estimator (top), the minimum risk estimator (middle) and minimizing Binder’s
loss function.

This large set of partitions raises the question of how to summarize the posterior
p(z|y, G), given posterior simulations. Common summaries are based on deriving point
estimators ẑ, such as the MAP estimator, the minimum risk estimator or the partition
minimizing Binder’s loss function (Binder, 1978), see Section 8.3.2 for more details. How-
ever, these estimators (even if they differ) do not fully reflect the uncertainty in assigning
observations to clusters.

By way of illustration, a mixture of univariate Gaussian distributions is used for Bayesian
clustering of the galaxy data (Roeder, 1990), assuming that G = 5 is fixed. Prior specifi-
cation follows Richardson & Green (1997), and 12,000 draws from p(z|y, G) are obtained
using full conditional Gibbs sampling. In Figure 7.5, various point estimators ẑ derived
from the posterior draws of z are displayed, together with a rug plot of the data. While the
MAP estimator and the estimator minimizing Binder’s loss function are invariant to label
switching, the minimum risk estimator is based on an identified model. Label switching is
resolved by applying k-means clustering to the point process representation of the MCMC
draws of (µg, σg). Classification over the various point estimators ẑ is stable for observations
in the two clusters capturing the tails, but the classification for observations in the centre
of the distribution tends to be rather different.

To quantify such uncertainty, Wade & Gharhamani (2018) develop not only appropri-
ate point estimates, but also credible sets to summarize the posterior distribution of the
partitions based on decision- and information-theoretic techniques.
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7.3.4 Selecting G under model misspecification
Mixture models are a very popular tool for model-based clustering, in both the frequentist
and Bayesian frameworks. However, success in identifying meaningful clusters in the data
very much hinges on specifying sensible component densities, and Bayesian inferences to-
wards estimating the number of clusters are sensitive to misspecifications of the component
densities, as are most penalized likelihood criteria discussed in the previous subsections.
Most commonly, a finite mixture model with (multivariate) Gaussian component densities
is fitted to the data to identify homogeneous data clusters within a heterogeneous popula-
tion:

y ∼
G∑
g=1

ηgN (µg,Σg). (7.24)

Similarly to the likelihood approach, Bayesian cluster analysis has to address several issues.
First, as discussed above, even if we fit a correctly specified mixture model (7.1) to data
generated by this model, an estimate of the number of components G will not necessarily
be a good estimator of the number of clusters G+ in the data, and a more reliable estimate
is obtained when exploring the partitions.

However, problems with the interpretation of G+ might nevertheless occur, in particular
if the component density is misspecified and several components have to be merged to
address this misspecification. A typical example is fitting the multivariate Gaussian mixture
distribution (7.24) to data such as the Old Faithful Geyser data. As shown in Figure 7.4,
more than one Gaussian component is needed to capture departure from normality such as
skewness and excess kurtosis for one of the two clusters. As discussed before, the BIC is
particularly sensitive to this kind of misspecification, and classification-based information
criteria such as the ICL criterion introduced in Section 7.3.2.1 are more robust in this
respect.

In both Bayesian and frequentist frameworks, misspecification has been resolved by
choosing more flexible distributions for the components densities. Many papers demonstrate
the usefulness of mixtures of parametric non-Gaussian component densities in this context
(see Frühwirth-Schnatter & Pyne, 2010, and Lee & McLachlan, 2013, among many others),
and Chapter 10 also addresses this problem. Unsurprisingly, the estimated G+ of such a
non-Gaussian mixture often provides a much better estimator of the number of clusters than
does the Gaussian mixture. With respect to inference, the Bayesian framework offers a slight
advantage, as MCMC methods are able to deal with non-standard component densities in
a more flexible way than the EM algorithm.

In higher dimensions it might be difficult to choose an appropriate parametric distribu-
tion for characterizing a data cluster, and mixture models with more flexible (not necessarily
parametric) cluster densities turn out to be useful. The mixture of Gaussian mixtures ap-
proach, for instance, exploits the ability of normal mixtures to accurately approximate a
wide class of probability distributions, and models the non-Gaussian cluster distributions
themselves by Gaussian mixtures. This introduces a hierarchical framework where in the
upper level a non-Gaussian mixture is fitted as in (7.1), whereas at a lower level each
component density fg(y|θg) itself is described by a mixture of Hg Gaussian distributions.
On the upper level, G+ is identified as the number of such clusters, whereas the number
of subcomponents Hg in each cluster reflects the quality of the semi-parametric mixture
approximation.

Two different approaches are available to “estimate” the number of clusters in such
a framework. Any such approach has to deal with the following additional identifiability
problems for this type of mixtures: the observed-data likelihood ascertains this model just
as one big mixture of Gaussian distributions with G̃ = H1 + . . . + HG components, and
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it does not change when we exchange subcomponents between clusters on the lower level,
even though this leads to different cluster distributions on the upper level of the mixture
of mixtures model. Hence, a mixture of mixtures model is not identifiable in the absence of
additional information, and this is most naturally dealt with within a Bayesian framework.

Within the Bayesian approach, it is common to estimate the hierarchical mixture of
mixtures model directly by including such prior information; see, in particular, Malsiner-
Walli et al. (2017) who consider a random-effects prior to introduce prior dependence among
theHg means of the subcomponent Gaussian mixture defining fg(y|θg). A different approach
which is prevalent in the frequentist literature employs a two-step procedure and tries to
create meaningful clusters after having fitted a Gaussian mixture as in (7.24) with G =
Gmax. The clusters are determined by successively merging components according to some
criterion such as the entropy of the resulting partition (Baudry et al., 2010); see Chapter 8,
Section 8.2.2 for additional approaches and further details.

7.4 One-Sweep Methods for Cross-model Inference on G

From a Bayesian perspective, inference methods that treat G or G+ as an unknown para-
meter to be estimated jointly with the component-specific parameters θ are preferable to
processing G as a model index and relying on testing principles. Several such approaches
are reviewed in this section.

7.4.1 Overfitting mixtures
Rousseau & Mengersen (2011) examine the issue of an overfitting mixture, that is, the
estimation of a mixture model with G components when the true distribution behind the
data has fewer than G, say G0, components. This setting complicates even further the non-
identifiability of the mixture model, since there are

(
G
G0

)
ways of picking G0 components

out of the G (while cancelling the others); see also Chapter 4, Section 4.2.2.
Rousseau & Mengersen (2011) show that the posterior distribution on the parameters of

the overfitted mixture has a much more stable behaviour than the likelihood function when
the prior on the weights of the mixture is sufficiently concentrated on the boundaries of the
parameter space, that is, with many weights being close to zero. In fact, the central result
of Rousseau & Mengersen (2011) is that, if the dimension r of the component parameters
is larger than twice the hyperparameter e0 of a symmetric Dirichlet prior DG (e0) on the
weights, then the sum of the weights of the extra G−G0 components asymptotically con-
centrates at zero. This result has the additional appeal of validating less informative priors
as asymptotically consistent. In practice, it means that selecting a Dirichlet DG (1/2) and
an arbitrary prior on the component parameters should see superfluous components vanish
as the sample size grows to be large enough, even though the impact of the choice of e0 can
be perceived for finite sample sizes.

7.4.2 Reversible jump MCMC
Reversible jump MCMC (RJMCMC; Green, 1995) was exploited by Richardson & Green
(1997) to select the number of components G for univariate mixtures of Gaussian distribu-
tions. As briefly discussed in Chapter 1, Section 1.4.3, this simulation method is based on
creating a Markov chain that moves over a space of variable dimensions, namely between the
parameter spaces of finite mixtures with different numbers of components, while retaining
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the fundamental detailed balance property that ensures the correct stationary (posterior)
distribution.

The intuition behind the RJMCMC method is to create bijections between pairs of
parameter spaces by creating auxiliary variables that equate the dimensions of the aug-
mented spaces and to keep the same bijection for a move and its reverse. When designing
a RJMCMC algorithm, those pairwise moves have to be carefully selected in order to reach
sufficiently probable regions in the new parameter space. Richardson & Green (1997) discuss
at length their split-and-merge moves which split (or aggregate) one (or two) components
of the current mixture, with better performance than the basic birth-and-death moves, but
performance may deteriorate as the number of components increases. The design of suitable
proposals for higher-dimensional mixtures is quite a challenge, as demonstrated by Della-
portas & Papageorgiou (2006) and Zhang et al. (2004) for multivariate normal mixtures. In
an attempt to extend RJMCMC methods to hidden Markov models, Cappé et al. (2002)
had to face acceptance rates as low as 1%. RJMCMC is a natural extension of the tradi-
tional Metropolis–Hastings algorithm, but calibrating it is often perceived as too great an
obstacle to its implementation, and it is not competitive with within-model simulations in
the case of a small number of values of G in competition.

7.4.3 Allocation sampling
As discussed in Section 7.3.3, the main object of interest in Bayesian clustering is the
marginal posterior of the allocations, that is, p(z|y, G) (if G is known) or p(z|y) (if G is
unknown). Hence, Bayesian clustering has to rely on efficient methods to sample from the
posterior p(z|y, G) (or p(z|y)).

While full conditional Gibbs sampling from the joint distribution p(θ, z|y, G) will yield
draws from the (marginal) posterior p(z|y, G), several authors considered alternative algo-
rithms of “allocation sampling”. Early Bayesian clustering approaches without parameter
estimation are based on sampling from the marginal posterior distribution p(z|y, G), de-
fined earlier in (7.22), for known G. Chen & Liu (1996) were among the first to show how
sampling of the allocation from p(z|y, G) (for a fixed G) becomes feasible through MCMC
methods, using either single-move Gibbs sampling or the Metropolis–Hastings algorithm;
see Frühwirth-Schnatter (2006, Section 3.4) and Marin et al. (2005) for more details.

We want to stress here the following issue. Although these MCMC samplers operate in
the marginal space of the allocations z, neither the integrated likelihood p(y|z, G), defined
earlier in (7.23), nor the prior p(z|G), given in (7.19), can be (properly) defined without
specifying a prior distribution p(θ1, . . . , θG, η|G) for the unknown parameters of a mixture
model with G components. This problem is closely related to the problem discussed in
Section 7.3.2.3 of having to choose priors for the exact ICL criterion. As discussed in Sec-
tion 4.2.2, the choice of such a prior is not obvious and may have considerable impact on
posterior inference.

These early sampling algorithms focus on computational aspects and do not explicitly
account for the problem that the number G+ of clusters in the sampled partitions z might
differ from G, taking the identity of G and G+ more or less for granted. Still, as discussed
above and again in Section 7.4.5, whether this applies or not very much depends on the
choice of the hyperparameter e0 in the Dirichlet prior DG (e0) on the weights.

Nobile & Fearnside (2007) address the problem of an unknown number of components G
in the context of allocation sampling. For a given G, they employ the usual Dirichlet prior
η|G ∼ D(e1, . . . , eG) on the weight distribution, but treat G as an unknown parameter,
associated with a prior p(G) (e.g. G− 1 ∼ P(1)), as justified by Nobile (2004). An MCMC
sampler is developed that draws from the joint posterior p(z, G|y), by calling either Gibbs
or Metropolis–Hastings moves based on the conditional distribution of p(z|y, G) for a given
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G and by running RJMCMC type moves for switching values of G. Based on these posterior
draws, Ĝ+ is estimated from the posterior draws of the number of non-empty clusters G+.
Several post-processing strategies are discussed for solving the label switching problem that
is inherent in this sampler and for estimating ẑ.

7.4.4 Bayesian nonparametric methods
A quite different approach of selecting the number G+ of clusters exists outside the frame-
work of finite mixture models and relies on Bayesian nonparametric approaches based on
mixture models with countably infinite number of components, as discussed in Chapter 6
in full detail.

For Dirichlet process (DP) mixtures (Müller & Mitra, 2013), for instance, the discrete
mixing distribution in the finite mixture (7.1) is substituted by a random distribution
H ∼ DP (α,H0), drawn from a DP prior with precision parameter α and base measure
H0. As a draw H from a DP is almost surely discrete, the corresponding model has a
representation as an infinite mixture,

y ∼
∞∑
g=1

ηgfg(y|θg), (7.25)

with i.i.d. atoms θg
iid∼ H0 drawn from the base measure H0 and weights ηg obeying the

stick-breaking representation

ηg = vg

g−1∏
j=1

(1− vj), g = 1, 2, . . . , (7.26)

with vg ∼ Be(1, α) (Sethuraman, 1994).
As DP priors induce ties among the observations, such an approach automatically in-

duces a random partition (or clustering) C of the data with a corresponding random car-
dinality G+ (see Section 6.4). Since there are infinitely many components in (7.25) (i.e.
G =∞), there is no risk of confusing G and G+ as for finite mixtures. For a DP prior with
precision parameter α, the prior distribution over the partitions C is given by

p(C|α,G+) = αG+
Γ(α)

Γ(n+ α)
∏

g:ng>0
Γ(ng), (7.27)

where ng and G+ are defined as in (7.19). Another defining property of the DP prior is
the prior predictive distribution p(zi|z−i), where z−i denotes all indicators excluding zi.
Let G−i+ be the number of non-empty clusters implied by z−i and let n−ig , g = 1, . . . , G−i+ ,
be the corresponding cluster sizes. Then the probability that zi is assigned to an existing
cluster g is given by

P(zi = g|z−i, n−ig > 0) =
n−ig

n− 1 + α
, (7.28)

whereas the prior probability that zi creates a new cluster (indexed by G−i+ + 1) is equal to

P(zi = G−i+ + 1|z−i) = α

n− 1 + α
. (7.29)

Given this strong focus on BNP mixtures as random partition models, it is not surprising
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FIGURE 7.6
Sparse finite mixture modelling of the enzyme data: (left) 30,000 posterior draws of the
number of data clusters G+; (right) posterior distribution p(G+|y).

that the main interest in posterior inference is again in the draws from the posterior p(z|y)
of the allocations which are exploited in various ways to choose an appropriate partition ẑ
of the data and to estimate the number of clusters G+.

Lau & Green (2007) compare BNP methods to estimate the number of clusters with the
outcome associated with finite mixtures. They also show in detail how to derive a single
(optimal) point estimate ẑ from the posterior p(z|y), with the number of distinct clusters Ĝ+
in ẑ being an estimator of G+ in this framework. To derive a partition of the data, Molitor
et al. (2010) cluster the data using the pairwise association matrix as a distance measure
which is obtained by aggregating over all partitions obtained during MCMC sampling, using
partitioning around medoids. The optimal number of clusters is determined by maximizing
an associated clustering score; see also Liverani et al. (2013).

A well-known limitation of DP priors is that a priori the cluster sizes are expected to
be geometrically ordered, with one big cluster, geometrically smaller clusters, and many
singleton clusters (Müller & Mitra, 2013). This initiated the investigation of alternative
BNP mixtures and their usefulness for clustering. A popular BNP two-parameter mixture
is obtained from the Pitman–Yor process (PYP) prior PY (β, α) with β ∈ [0, 1), α > −β
(Pitman & Yor, 1997), with a stick-breaking representation as in (7.26) with vg ∼ Be(1 −
β, α+ kβ). The DP prior occurs as a special case when β = 0. PYP mixtures are known to
be more useful than the DP mixture for data with many significant, but small clusters.

For a DP as well as a PYP mixture, the prior expected number of data clusters G+
increases as the number n of observations increases, where for the DP process G+ ∼ α log(n)
(Korwar & Hollander, 1973) and G+ ∼ nβ obeys a power law for PYP mixtures. As will be
discussed in the next subsection, finite mixtures are quite different in this respect.

7.4.5 Sparse finite mixtures for model-based clustering
Inspired by the important insights of Rousseau & Mengersen (2011), Malsiner-Walli et al.
(2016) introduced the concept of sparse finite mixture models for model-based clustering as
an alternative to infinite mixtures, following ideas presented earlier in Frühwirth-Schnatter
(2011). A similar approach is pursued by van Havre et al. (2015).

While remaining within the framework of finite mixtures, sparse finite mixture models
provide a semi-parametric Bayesian approach in so far as the number G+ of non-empty
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mixture components used to generate the data is not assumed to be known in advance,
but random, as already discussed in Section 7.3.3. The basic idea of sparse finite mixture
modelling is to deliberately specify an overfitting finite mixture model with too many com-
ponents G. Sparse finite mixtures stay within the common finite mixture framework by
assuming a symmetric Dirichlet prior η ∼ DG (e0) on the weight distribution; however, the
hyperparameter e0 of this prior is selected such that superfluous components are emptied
automatically during MCMC sampling and sparse solutions with regard to the number G+
of clusters are induced through the prior on the weight distribution. This proposal leads to a
simple Bayesian framework where a straightforward MCMC sampling procedure is applied
to jointly estimate the unknown number of non-empty data clusters G+ with the remaining
parameters.

As discussed in Section 7.3.3, for such a mixture model, the number G of compo-
nents does not reflect the number of data clusters, as many components will remain un-
used. Following Nobile (2004), Malsiner-Walli et al. (2016) derive the posterior distribution
P(G+ = g|y), g = 1, . . . , G, of the number G+ of data clusters from the MCMC output of
the allocations z. Therefore, for each iteration m of MCMC sampling, all components g to
which some observations have been assigned are identified from z(m) and the corresponding
number of non-empty components is considered:

G
(m)
+ = G−

G∑
g=1

I(n(m)
g = 0),

where, for g = 1, . . . , G, n(m)
g =

∑n
i=1 I(z

(m)
i = g) is the number of observations allocated

to component g, and I(·) denotes the indicator function. The posterior distribution P(G+ =
g|y), g = 1, . . . , G, is then estimated by the corresponding relative frequency.

The number of clusters G+ can be derived as a point estimator from this distribution,
for example, the posterior mode estimator G̃+ that maximizes the (estimated) posterior
distribution P(G+ = g|y). This happens to be the most frequent number of clusters visited
during MCMC sampling. The posterior mode estimator appears to be sensible in the present
context when adding very small clusters hardly changes the marginal likelihood. This makes
the posterior distribution P(G+ = g|y) extremely right-skewed, and other point estimators
such as the posterior mean are extremely sensitive to prior choices, as noted by Nobile
(2004). However, under a framework where sparse finite mixtures are employed for density
estimation, very small components might be important and other estimators of G+ might
be better justified.

An alternative way to summarize clustering based on sparse finite mixtures is by ex-
ploring the posterior draws of the partitions z and determining some optimal partition,
such as the partition ẑ minimizing Binder’s loss function. This can be done without the
need to resolve label switching or to stratify the draws with respect to G+. The cardinal-
ity Ĝ+ of such an optimal partition ẑ is yet another estimator of the number of clusters.
The posterior mode estimator G̃+ and Ĝ+ do not necessarily coincide, and differences in
these estimators reflect uncertainty in the posterior distribution over the partition space.
As discussed by Frühwirth-Schnatter et al. (2018), the approach of Wade & Gharhamani
(2018) to quantifying such uncertainty can be applied immediately to sparse finite mixture
models.

The appropriate choice of the hyperparameter e0 is important for the application of
the sparse finite mixture approach in a clustering context. While in a density estimation
framework the asymptotic criterion of Rousseau & Mengersen (2011) suggests the choice
e0 < r/2, with r being the dimension of θg, this rule is not necessarily a sensible choice
for selecting the number of clusters G+ in a data set of finite size n, as demonstrated for
a broad range of mixture models in Malsiner-Walli et al. (2016) and Frühwirth-Schnatter



Model Selection for Mixture Models – Perspectives and Strategies 153

FIGURE 7.7
Sparse finite mixture modelling of the enzyme data, displayed as a rug plot. Partition ẑ
optimizing Binder’s loss function. The number of clusters in this partition is equal to three.

& Malsiner-Walli (2018). Indeed, these papers show that values of e0 � r/2 much smaller
than the asymptotic criterion of Rousseau & Mengersen (2011) are needed to identify the
right number of clusters, and recommend choosing either very small fixed values such as
e0 = 0.001 or applying a hyperprior with e0 ∼ G(ae, be) such that E(e0) = ae/be is very
small (e.g. e0 ∼ G(1, 200)).

Under the provision that G+ underestimates G, this approach constitutes a simple
and generic strategy for model selection without making use of model selection criteria,
RJMCMC, or marginal likelihoods. Applications include Gaussian mixtures as well as mix-
tures of Gaussian mixtures (Malsiner-Walli et al., 2017) and sparse mixtures for discrete-
valued data (Frühwirth-Schnatter & Malsiner-Walli, 2018). By way of further illustration,
the enzyme data (shown earlier in Figure 7.2) are reanalysed using sparse finite mixtures,
taking the prior of Richardson & Green (1997) as base measure. The maximum number of
data clusters is chosen as G = 10 and the hierarchical sparse Dirichlet prior η ∼ DG (e0),
e0 ∼ G(1, 200) is applied.

Figure 7.6 shows 30,000 posterior draws of the number of data clusters G+ as well
as the corresponding posterior distribution p(G+|y). The posterior mode estimator yields
three clusters with P(G+ = 3|y) = 0.57. Also two clusters are supported with P(G+ =
2|y) = 0.19, which is not unexpected in the light of Figure 7.2, showing two (albeit non-
Gaussian) data clusters. Due to this misspecification of the component densities the four-
cluster solution is equally supported with P(G+ = 4|y) = 0.19. Finally, Figure 7.7 shows
the partition ẑ optimizing Binder’s loss function together with a rug plot of the data. The
number of clusters in this partition is equal to three, supporting the choice based on the
posterior mode. The resulting clustering nicely captures the three distinct groups of data
points.
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Relation to BNP methods

The concept of sparse finite mixtures is related in various ways to DP mixtures, discussed
in Section 7.4.4. If the weight distribution follows the Dirichlet prior η ∼ DG(α/G) and
the base measure H0 serves as prior for the component parameters (i.e. θg ∼ H0), then, as
shown by Green & Richardson (2001), the finite mixture in (7.1) converges to a DP mixture
with mixing distribution H ∼ DP (α,H0) as G increases. This relationship has mainly been
exploited to obtain a finite mixture approximation to the DP mixture. In this sense, the
sparse finite Gaussian mixture introduced in Malsiner-Walli et al. (2016) could be seen as
an approximation to a DP mixture. Nevertheless, as argued by Malsiner-Walli et al. (2017),
it makes sense to stay within the framework of finite mixtures and to consider G as a second
parameter which is held fixed at a finite value, as this provides a two-parameter alternative
to DP mixtures with related properties.

Representations similar to BNP mixtures exist also for finite mixture models under the
symmetric prior η ∼ DG (e0), but are not commonly known, although they shed further light
on the relation between the two model classes. First of all, a stick-breaking representation
of the weights η1, η2, . . . , ηG as in (7.26) in terms of a sequence of independently (albeit
not identically) distributed random variables exists also for finite mixtures, with vg ∼
Be(e0, (G− g)e0), g = 1, . . . , G− 1, vG = 1; see, for example, Frühwirth-Schnatter (2011).

Second, as already discussed in Section 7.3.1, finite mixture models can be regarded
as random partition models and the prior distribution over all random partitions C of n
observations can be derived from the joint (marginal) prior p(z|G) given in (7.19) (see, for
example, Malsiner-Walli et al. (2017)):

p(C|e0, G+) = G!
(G−G+)!

Γ(Ge0)
Γ(n+Ge0)Γ(e0)G+

∏
g:ng>0

Γ(ng + e0).

takes the form of a product partition model as for DP mixtures (see (7.27)) and is invariant
to permuting the cluster labels.

Finally, as for BNP mixtures, it is possible to derive the prior predictive distribution
p(zi|z−i), where z−i denotes all indicators excluding zi. Let G−i+ be the number of non-
empty clusters implied by z−i, and let n−ig , g = 1, . . . , G−i+ , be the corresponding cluster
sizes. Then the probability that zi is assigned to an existing cluster g is given by

P(zi = g|z−i, n−ig > 0) =
n−ig + e0

n− 1 + e0G
,

which is closely related to (7.28), in particular if e0 = α/G and G increases. However, the
prior probability that zi creates a new cluster with zi ∈ I = {g|n−ig = 0} is equal to

P(zi ∈ I|z−i) =
e0(G−G−i+ )
n− 1 + e0G

, (7.30)

and is quite different from (7.29). In particular, for e0 independent of G, this probability
not only depends on e0, but also increases with G. Hence a sparse finite mixture model can
be regarded as a two-parameter model, where both e0 and G influence the prior expected
number of data clusters G+, which is determined for a DP mixture solely by α. Furthermore,
the prior probability (7.30) of creating new clusters decreases as the number G−i+ of non-
empty clusters increases, as opposed to DP mixtures where this probability is constant and
to PYP mixtures where this probability increases. Hence, sparse finite mixtures are useful
for clustering data that arise from a moderate number of clusters that does not increase as
the number of data points n increases.
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7.5 Concluding Remarks
The issue of selecting the number of mixture components has always been contentious, both
in frequentist and Bayesian terms, and this chapter has reflected on this issue by presenting
a wide variety of solutions and analyses. The main reason for the difficulty in estimating
the order G of a mixture model is that it is a poorly defined quantity, even when setting
aside identifiability and label switching aspects. Indeed, when considering a single sample
of size n truly generated from a finite mixture model, there is always a positive probability
that the observations in that sample are generated from a subset of the components of
the mixture of size G+ rather than from all components G. As shown by the asymptotic
results in Chapter 4, the issue goes away as the sample size n goes to infinity (provided G
remains fixed), but this does not bring a resolution to the quandary of whether or not G is
estimable. In our opinion, inference should primarily bear on the number of data clusters
G+, since the conditional posterior distribution of G given G+ mostly depends on the prior
modelling and very little on the data. Without concluding like Larry Wasserman (on his now
defunct Normal Deviate blog) that “mixtures, like tequila, are inherently evil and should
be avoided at all costs”, we must acknowledge that the multifaceted uses of mixture models
imply that the estimation of a quantity such as the number of mixture components should
be impacted by the purpose of modelling via finite mixtures, as for instance through the
prior distributions in a Bayesian setting.
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