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Abstract— This paper describes a fully analytic model of 

sensitivity of a vibrating magnetometer partially covered with a 

ferromagnetic thin film. This model is based on the Rayleigh’s 

energetic method and is confirmed by Finite Element Method 

(FEM) and experimental measurements. Thereby, it is possible to 

optimize the position of the ferromagnetic thin film and find the 

best tradeoff between the sensitivity increase and the reduction of 

resonator energy losses to achieve better resolution. 
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I.  INTRODUCTION  

Resonant micro-magnetometers have been developed 
during the last decade and have a wide range of applications 
[1]. Among these, magnetometers are increasingly used for 
indoor navigation in conjunction with low cost Inertial 
Measurement Units (IMUs), mainly to correct gyro drift over 
time and so acting as a heading reference [2]. More recent 
applications use magnetometers combined with IMUs in 
magneto-inertial navigation technique (MINAV) to measure 
the local distribution of the magnetic field and reach accurate 
motion estimation [3]. MEMS resonator based magnetometers 
are suitable for these applications due to low cost, small size 
and low power consumption. However, to be efficient in the 
most demanding applications, their resolution needs to be 
improved. For this purpose, vibrating beam magnetometers 
with ferromagnetic thin layer sputtered on the resonator seem 
to be a promising way [4], [5]. 

This kind of magnetometer uses the frequency shift of a 
resonator due to magnetic interaction between the 
ferromagnetic layer and the magnetic field applied to deduce 
the magnetic field value in the environment of the sensor. To 
optimize this magnetometer, a model is established to obtain 
the differential equation of the vibrating beam, with a thin 
ferromagnetic layer partially sputtered on it and subjected to a 
homogeneous magnetic field. Then it is solved by analogy with 
the Vibrating Beam Accelerometer (VBA) principle with the 
Rayleigh’s energetic method. Finally, an expression of the 
natural frequency of the beam as a function of the magnetic 
field applied is obtained, and the sensitivity of the sensor is 
deduced. In a second part, this model is validated by FEM 
simulations and compared with experimental measurements. 

II. DIFFERENTIAL EQUATION OF MOTION OF THE 

VIBRATING MAGNETOMETER 

A. Model presentation 

Fig. 1 illustrates a bending clamped-free beam which 

models the magnetometer. The beam is a rectangular cross-

section beam of width e, thickness h and length L. It vibrates 

in a flexural mode in the xy-plane with an amplitude w(x,t). 

The magnetic thin film is supposed to act as a distributed 

torque along the main axis of the beam. In this first part, 

magnetic thin film covers integrally the top of the beam. 

Magnetization Mmag of the thin film is supposed to perfectly 

match the deformation of the beam. Equation resolution is 

made under Bernoulli’s assumptions: no warping and no 

rotation inertia of the cross-section, which supposed to have L 

>> e, h. The main difference from the classical resolution of a 

bending beam comes from the distributed torque.  

B. Differential equation of motion 

Fig. 2 illustrates an elementary section of beam, where  

Q(x), M(x) and Γmag(x)  are respectively shear force, moment 

and elementary magnetic torque acting on the beam.  

 

 Elementary magnetic torque is deduced from the 

classical magnetostatic interaction, considering small 

angles: 

 Γmag=  MmagSmagB
∂w

∂x
 dx (1) 

 

Fig. 1. Schematic view of a bending clamped-free beam 



 

Fig. 2. Illustration of an elementary section of beam with forces and torques 

acting on it 

 

 

where Smag=e.t is the cross-section area of the ferromagnetic 

thin film of thickness t. 

 

 Forces acting on y-axis lead to: 

 ∂Q

∂x
 = ρS

∂
2
w

∂t2
 (2) 

where ρ is the density and S the cross-sectional area. 

 

 Considering there is no rotation inertia (Bernoulli’s 

assumption), moments acting on z-axis lead to: 

 
∂M

∂x
+ Q   MmagSmagB

∂w

∂x
= 0 (3) 

 Knowing that M(x,t)=EI
∂

2
w

∂x2
  for beam in flexion, 

differential equation of motion can be deduced from 

previous equations: 

 EI
∂

4
w

∂x4
 MmagSmagB

∂
2
w

∂x2
+ ρS

∂
2
w

∂t2
= 0 (4) 

III. RESOLUTION OF THE DIFFERENTIAL EQUATION 

It is interesting to note that the differential equation (4) is 

exactly the same as the one governing Vibrating Beam 

Accelerometers (VBA) subjected to an axial force [6] where 

the term MmagSmagB acts as an equivalent axial force. This term 

will be called Fmag thereafter. 

A. Solution without magnetic field 

A solution of (4) is found by using the technique of 

separation of variables: 

 w(x,t) = Y(x).T(t) (5) 

Hence, two ordinary differential equations are obtained; 

their solutions are well-known in the case without magnetic 

field. T(t) is a harmonic function and Y(x) is expressed in the 

clamp-free case as: 

 Yn(x)=C[sin bnx sinh bnx+Kn(cos bnx cosh bnx)] (6) 

with: 

 
bn= αn/L

Kn=  
cos αn + + cosh αn

sin αn − sinh αn

 (5) 

where αn is a numerical constant depending on the mode 

number. The natural frequency without magnetic field is then: 

 f
n,0

= 
αn

2

2π√12
√

E

ρ

e

L2
 (7) 

B. Solution for fully covered beam 

In this case two ways are possible to solve equation 4. The 

first uses the same method than previously and solves a 

characteristic equation for the system. This method is used for 

example in [6]. However, to avoid lengthy analytical 

derivations, it is easier to use Rayleigh’s energetic method, 

particularly for the partially covered beam. This method is 

based on the equality between the maximum of potential and 

kinetic energy, in the assumption there is no energy 

dissipation mechanism.    

The maximum kinetic and flexural energy are: 

 

Ec,n = 
ωn,B

2  ρeh

2
∫ Yn

2(x) dx

L

0

Ep,flexion,n = 
EI

2
∫(

∂
2
Yn

∂x2
)

2

 dx

L

0

 (8) 

 The potential torque energy is obtained by integration of an 

elementary variation of potential energy d𝐸𝑝 = 𝑇(𝑥)d𝜃. 

Where T(x) is the torque applied at point x on the beam. As the 

problem is in the small deformation assumption, the maximum 

torque potential energy is then: 

 Ep,mag,n = 
Fmag

2
∫(

∂Yn

∂x
)

2

 dx

L

0

 (9) 

 With the assumptions that the deformation of a beam is not 

changed by application of a small torque on it, previous 

integrals can be solved by using (6). In the case without 

magnetic field, natural frequency has the same expression than 

in (7) with: 



 αn
2 = L2 √

∫ (Yn
(2))

2
dx

L

0

∫ (Yn)
2dx

L

0

 (10) 

 Considering the magnetic field, natural frequency is 

modified and is expressed as: 

 f
n,B
 =  f

n,0
√1 + 

β
n
F

mag

4π2L2ρehf
n,0

2
  

 (11) 

where: 

 β
n
= L2√

∫ (Yn
(1))

2
dx

L

0

∫ (Yn)
2dx

L

0

 (12) 

 Finally, fn,B is expressed as a Taylor series around B=0: 

 f
n,B
 =  f

n,0
+ K1B + K2B2+ K3B3 + o(B3) (13) 

where:  

  

{
 
 
 

 
 
 K1 =

√3

2π

β
n

αn
2

t

eh

Mmag

√Eρ
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1

2

K1
2

f
n,0

K3 =
1

2

K1
3

f
n,0

2

 (14) 

 In (14), K1 is the sensitivity of the beam to the magnetic 

field applied. The stronger the field the larger the frequency 

shift. The others terms characterize non-linearity that can 

appear under high magnetic field. Tab. 1 summarizes 

numerical values used in (14). It is interesting to note that the 

sensitivity is almost identical for all modes used. As ultimate 

resolution needs the lowest natural frequency [5], the best 

mode for use as magnetometer is the fundamental.  

C. Solution for partially covered beam 

 For a partially covered beam, the only difference is in the 

expression of the potential energy of the magnetic torque. 

Considering the most general case with a ferromagnetic 

TABLE I. NUMERICAL VALUES OF CONSTANTS USES IN FREQUENCY AND 

SENSITIVITY EXPRESSIONS OF A CLAMP-FREE BEAM FOR THESE FIRST 

FLEXURAL MODES 

Mode 1 2 3 

𝛼𝑛 1.875104 4.694091 7.854757 

𝛽𝑛 4.647793 32.41735 77.29909 

𝛾𝑛 = 𝛽𝑛/𝛼𝑛
2 1.321892 1.471209 1.252878 

 

layer between x1 and x2 (0 < x1 < x2 < L): 

 Ep,mag,n = 
Fmag

2
∫ (

∂Yn

∂x
)

2

dx
x2

x1

 (15) 

 It is easier to solve it using the linearity of the integral: 

 In(x) = 
1

a1,n
2 bn

∫ (
∂Yn

∂x'
)

2

dx'
x

0

 (15) 

with (6) an analytical solution can be obtained for (15): 

In(x) =

(Kn
2 + 1) sinh bnx [ cosh bnx    2 cos bnx]

 + (Kn
2  1) sin bnx [ 2cosh bnx   cos bnx]

+ 2Kn[ cosh bnx    cos bnx]2 + 2bnx

 (17) 

 

 Finally, the sensitivity can be expressed as: 

 K1,partial  =  Jn(x1, x2). K1,full (15) 

with: 

 Jn(x1,x2) = 
In(x2)  −  In(x1)

In(L)
 (15) 

IV. MODEL VALIDATIONS 

A. FEM validations 

A FEM model using OOFELIE::Multiphysics solver has 

been developed by Open Engineering to model an elementary 

torque applied on elements proportionally to local 

deformation. Modal simulations with and without torques 

applied allow deducing frequency sensitivity to magnetic field 

for a resonator shape.  

Simulations on simple beams are in very good agreement 

with analytical model. As shown in Fig. 3, using surface 

elements in FEM model, sensitivity perfectly match the 

analytical model.  However, using volume elements for the 

Fig. 3. Sensitivity versus x1 (x2=L) for a Quartz beam of width 70µm, 
thickness 30µm and length 1400µm. 
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torque allows considering the thin film’s mass, that is why a 

small difference appears between results. So, analysis with 

volume elements is a more realistic model which will be more 

accurate in case where the thin film’s mass is not negligible, at 

the price of a larger computation time.  

B. Experimental validations 

Vibrating beam magnetometers presented here are made by 

chemical etching of z-cut quartz wafer. To reduce anchor 

losses and thus increase Q factor of the resonator, prototypes 

have a tuning-fork shape instead of a simple beam. Gold 

actuation electrodes are at bottom and allow actuating 

piezoelectrically the tuning-fork at its first flexural mode. A 

NiCo ferromagnetic thin film is sputtered on top of the beam 

and magnetized along the main axis of the beam (Fig. 4). 

Remanent magnetization of NiCo film is about 1e6 A/m [5]. 

Microscopic observations show the thin film forms a 

conformal coating on top and lateral faces of the beam, 

consequently this additional ferromagnetic material must be 

considered in the sensitivity calculations. The measuring 

bench uses a solenoid as magnetic field source, an oscillator 

circuit to sustain resonator’s oscillations and a frequency 

counter. Frequency measures are made under a high vacuum 

(<10
-3 

mbar) to limit viscous damping. For different magnetic 

field values applied, the resonator frequency is read, which 

makes it possible to deduce the sensitivity. Results are 

summarized in Table 2 and show a very good agreement 

between measures and analytic model. 

CONCLUSION AND PERSPECTIVES 

The analytical model presented in this paper makes it 

possible to calculate the sensitivity of a vibrating beam 

magnetometer partially covered with a ferromagnetic thin 

film. FEM analysis and experimental measurements on a small 

number of prototypes allow a first validation of this model. A 

larger number of prototypes is in manufacturing and 

measurements will be available soon. This will be useful in a  

 
Fig. 4. Illustration of a tuning-fork quartz magnetometer with 50µm width and 

500µm length. Actuation electrodes are in yellow, NiCo ferromagnetic layers 
are in grey. 

TABLE II. SUMMARRY OF SENSITIVITY MEASUREMENTS AND COMPARISON 

WITH ANALYTIC AND VOLUME FEM MODELS 

Thin film 

thickness 

(nm) 

Beam e/h/L 

(µm) 

Position of 

the film 

x1/x2 

Sensitivity (Hz/T) 

Experiment Analytic FEM 

200 80/30/1000 0 – L 5 4 4 

500 50/30/800 0 – L 17 18 16 

500 70/30/1400 0 – L 12 11 10 

1000 70/30/1400 0 – L 19 22 20 

200 150/30/1500 0.55L – L 0.8 1.0 0.9 

500 150/30/1500 0.55L – L 1.8 2.4 2.2 

 

second time to optimize the resolution of the vibrating beam 

magnetometer. Indeed, constrains in the ferromagnetic film 

generate viscoelastic losses which decrease the quality factor 

[5]. Thus, an optimization of the position of the film is 

necessary to maximize the quality factor of the resonator 

without too much reducing the sensitivity of the sensor. This 

will allow to obtain the best resolution for a vibrating beam 

magnetometer. 
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