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Schrödinger group on Zhidkov spaces

Clément Gallo
UMR de Mathématiques, Bat. 425

Université Paris-Sud
91405 Orsay, France.

Résumé On considère le problème de Cauchy pour l’équation de Schrödinger
non linéaire sur Rn, dans des espaces de fonctions non (nécessairement) nulles à
l’infini. Ce problème se pose par exemple dans l’étude de la stabilité des “dark
solitons”. On montre que l’opérateur de Schrdinger génère un groupe sur les
espaces de Zhidkov Xk(Rn) pour k > n/2, puis que le problème de Cauchy
pour SNL est localement bien posé dans ces mêmes espaces de Zhidkov. On
montre aussi la conservation des invariants classiques, et, dans certains cas, on
en déduit que le problème de Cauchy est globalement bien posé.

Abstract. We consider the Cauchy problem for nonlinear Schrödinger equa-
tions on Rn with non zero boundary condition at infinity, a situation which
occurs in stability studies of dark solitons. We prove that the Schrödinger op-
erator generates a group on Zhidkov spaces Xk(Rn) for k > n/2, and that the
Cauchy problem for NLS is locally well-posed on the same Zhidkov spaces. We
justify the conservation of classical invariants which implies in some cases the
global well-posedness of the Cauchy problem.

Key words. Nonlinear Schrödinger equations, Dark solitons, Cauchy problem

AMS subject classifications. 35Q55, 35A07

1 Introduction

This paper is devoted to the Cauchy problem for the Nonlinear Schrödinger
equation (NLS)

{
iut + ∆u+ f(|u|2)u = 0, (t, x) ∈ R × Rn

u(0) = u0
(1)

with non zero boundary condition at infinity. Such boundary conditions occur
in the “defocusing” case (e.g. f(|u|2) = 1 − |u|2), and are pertinent to many
physical contexts. In nonlinear optics, the so-called dark soliton (see [KLD]) is
a solution of (1) of the form u(x, t) = uv(x − vt). For instance, for n = 1 and
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f(r) = 1 − r, we can compute that, for v ∈ (−
√

2,
√

2), uv(x − vt) solves (1),
where uv is given by:

uv(x) =

√

1 − v2

2
tanh

(√

1 − v2

2

x√
2

)

+ i
v√
2

(2)

The Gross-Pitaevskii equation (see [BeS1], [BeS2] and references therein)

iut + ∆u+ (1 − |u|2)u = 0

with the boundary condition u → 1 as |x| → ∞ is a model for Superfluid
Helium II at a temperature near zero and for Bose-Einstein condensation. More
generally, NLS with the boundary condition |u| → ρ0 as |x| → ∞ where ρ0

is a positive constant such that f(ρ2
0) = 0 occurs in several physical contexts

(see [BGMP]), an especially interesting particular case being the cubic-quintic
“ψ3 − ψ5” NLS.

These nonlinear Schrödinger equations possess solitons or solitary waves (see
[BeS1], [dB], [M], [KLD]) and it is natural to study the Cauchy problem in spaces
the solitary waves belongs to. Of course they can not be the usual Sobolev spaces
Hs(Rn) because of the boundary condition at infinity. A possibility would be
to work in the affine space 1 + Hs(Rn), when u → 1 as |x| → ∞, and this
actually was done in [BeS1]. This approach obviously fails when only |u| (but
not u) tends to a constant at infinity, as it is the case for the dark soliton (2).
Also, the solitary wave φ could be only slowly decaying at infinity, implying that
φ− 1 6∈ L2(Rn) (see [G] for the travelling wave of Gross-Pitaevskii equation in
the 2-dimensional case).

In [Z0] Zhidkov introduces in the one-dimensional case the spaces Xk (with
k a natural number), which consist of functions defined on R, bounded and
uniformly continuous, with derivatives up to order k in L2, and proved that the
Cauchy problem for NLS is locally well-posed in Xk.

Our aim here is to complete and generalize Zhidkov results. We introduce
the Zhidkov spaces Xk(Rn) in higher dimensions and prove that the linear
Schrödinger equation defines a strongly continuous group on Xk(Rn) if and
only if k > n/2, and consequently that the Cauchy problem for NLS is locally
well-posed in Xk(Rn) if k > n/2. We also justify rigorously the conservation
of natural invariants of the NLS yielding some global well-posedness in Xk(Rn)
for some defocusing NLS. A byproduct is the complete justification of the result
of Zhiwu Lin in [ZL] that gives a criterion of stability for dark solitons of a class
of NLS equations.

This paper is organized as follows. In section 2, we define the Zhidkov spaces
Xk(Rn) and state some useful properties of these spaces. In section 3, we prove
that the linear Schrödinger equation is well posed in Xk(Rn) if and only if
k > n/2. In section 4, we show that the Cauchy problem for NLS is locally
well-posed in Xk(Rn), if k > n/2. In section 5, we introduce the renormalized
energy for (1) and prove its conservation, for n = 1 or 2, under some hypothesis
on f and u0, and we show that in dimension 1, it implies the globalness of the
solution of (1) in a defocusing case.
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Notations Throughout this paper, C denotes a constant that can change from
line to line.
If j is a positive integer and u is a map of class Cj from Rn into C, and
x, v1, ..., vj ∈ Rn, we denote by Dju(x)(v1...vj) the jth differential of u at x
applied to (v1, ..., vj).
If E is a Banach space, we denote by Cb(R, E) the space of continuous bounded
functions from R into E.

2 Some properties of Zhidkov spaces

Definition 2.1 Let n, k ∈ N∗. We define the space Xk(Rn) as the closure for
the norm

||u||Xk(Rn) := ||u||L∞ +
∑

16|α|6k

||∂αu||L2

of the space {u ∈ Ck(Rn), bounded, uniformly continuous, with ∇u ∈ Hk−1}.

Note that a function in Xk is uniformly continuous.

Proposition 2.1 Let n, k ∈ N∗. Then Xk+1(Rn) is dense in Xk(Rn).

Proof. Let u ∈ Xk(Rn), (ρl)l>1 a mollifier sequence (i.e. ρl ∈ C∞
c (Rn),

∫

Rn ρl = 1, ρn > 0, Supp ρl ⊂ B(0, 1/l)). Then ρl ∗ u is a sequence in Xk+1

that converges to u in Xk. �

We show now a regularity result for functions in Xk(Rn), for k > n/2.

Proposition 2.2 Let n ∈ N∗, let k = ⌊n/2⌋+ 1, and p ∈ R such that

{
p > n if n is even
p = 2n if n is odd

.

Then ∇u ∈ Lp(Rn) for u ∈ Xk(Rn) and there exists C > 0 such that

|u(x) − u(y)| 6 C|x− y|1−n/p||∇u||Lp , x, y ∈ R
n . (3)

Proof. By our choice of p and k, Sobolev’s embedding implies that

||∇u||Lp(Rn) 6 C||∇u||Hk−1(Rn) 6 C||u||Xk(Rn), u ∈ Xk(Rn) . (4)

Following the proof of Morrey’s theorem given in [B], we can show that there
exists a constant C > 0 that depends only on n and p such that for any compact
set K ⊂ Rn, and any cube Q = [−r, r]n containing K,

|u(x) − u(y)| 6 C|x− y|1−n/p||∇u||Lp(Q), x, y ∈ K, u ∈ Hk
loc(R

n) . (5)

Since Xk(Rn) ⊂ Hk
loc(R

n), (4) and (5) prove the announced result. �
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Remark . In our proof, we did not use the fact that the elements of Xk(Rn)
are uniformly continuous. Therefore, for k > n/2, an equivalent definition for
Xk could be

Xk(Rn) = {u ∈ L∞(Rn), ∇u ∈ Hk−1(Rn)} .
In particular, for k > n/2, Hk(Rn) ⊂ Xk(Rn).

3 The Schrödinger group on X
k(Rn)

In this section, we prove that if k > n/2, the Schrödinger operator defines a
group on Xk(Rn). More precisely,

Theorem 3.1 Let n ∈ N∗, k > n/2 and u0 ∈ Xk(Rn). For t ∈ R and x ∈ Rn,
the quantity

S(t)u0(x) =







e−inπ/4π−n/2lim
ε→0

∫

Rn e
(i−ε)|z|2u0(x+ 2

√
tz)dz if t > 0

einπ/4π−n/2lim
ε→0

∫

Rn e
(−i−ε)|z|2u0(x+ 2

√
−tz)dz if t 6 0

(6)

makes sense, and the family of operators (S(t))t∈R defines a strongly continuous
group on Xk(Rn).
Moreover, there exists a constant C > 0 that depends only on n and k, such
that for every u0 ∈ Xk(Rn) and t ∈ R,

||S(t)u0||Xk 6 C(1 + |t|ρ)||u0||Xk (7)

where

ρ =

{
1/2 if n is even
1/4 if n is odd

.

For convenience, we also denote S(t)u0(x) by u(t, x).
All the computations below will be performed with t > 0. The case t 6 0 is

similar. Before starting the proof of the theorem itself, we need to prove some
technical lemmas.

Lemma 3.1 Let n, k > 1, u0 ∈ Xk(Rn), β > 0, x ∈ Rn and t > 0.
We define g : (β,∞) → C by

g(r) =

∫

Sn−1

u0(x + 2
√
trv)dv (8)

then g ∈ Xk(β,∞) (the definition of which is clear), and for all j ∈ {1...k},
g(j) ∈ L2(β,∞, rn−1dr) with

||g(j)||L2(β,∞,rn−1dr) 6 (2
√
t)j−n/2|Sn−1|1/2||u0||Xk(Rn) . (9)
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Proof. For any r ∈ (β,∞), |g(r)| 6 |Sn−1|||u0||L∞ , hence g ∈ L∞(β,∞).
Let ε > 0. Since u0 is uniformly continuous, there exists some δ > 0 such that

|y−z| 6 δ implies |u0(y)−u0(z)| 6 ε. Let r1, r2 be such that |r1−r2| 6 δ/(2
√
t).

Then we get: |g(r1) − g(r2)| 6 |Sn−1|ε and g is uniformly continuous.
For j ∈ {1...k}, the Cauchy-Schwarz inequality and a change of variables

yield:

∫ ∞

β

|g(j)(r)|2rn−1dr

6 (2
√
t)2j |Sn−1|

∫ ∞

β

∫

Sn−1

|Dju0(x+ 2
√
trv)(v...v)|2rn−1dvdr

= (2
√
t)2j |Sn−1|

∫ ∞

2
√

tβ

∫

Sn−1

|Dju0(x+ rv)(v...v)|2 r
n−1dvdr

(2
√
t)n

6 (2
√
t)2j−n|Sn−1|||u0||2Xk(Rn)

which is the announced inequality. �

We state next two elementary lemmas which are straightforward conse-
quences of the Leibniz formula

Lemma 3.2 Let k ∈ N. There exists constants (bl,k)06l6k such that

(
d

dr

(
1

r
.

))k

=

k∑

l=0

bl,k
1

r2k−l

dl

drl
. (10)

Lemma 3.3 There exists constants (ak,j)06j6k such that

(
d

dr

(
1

r
.

))k

(rn−1.) =

k∑

j=0

ak,j
1

r2k−n+1−j

dj

drj
. (11)

We are now ready to prove theorem 3.1. We fix n ∈ N∗, and we introduce a
function χ ∈ C∞(Rn) such that:

• χ is radial

• χ increases along any half-line issued at 0

• χ ≡ 0 on {x, |x| 6 1}

• χ ≡ 1 on {x, |x| > 2}

For any β > 0, we define χβ = χ(./β). For convenience, we will also use the
notation χβ(|.|) = χβ(.).
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Proof of theorem 3.1. We assume first that k = ⌊n/2⌋ + 1. The first step
of the proof is to show that the limit in formula (6) is well defined. Let us fix
t > 0, β > 0 and ε > 0. We split the integral in (6) into two parts:

∫

Rn

e(i−ε)|z|2u0(x+ 2
√
tz)dz =

∫

Rn

e(i−ε)|z|2(1 − χβ(z))u0(x+ 2
√
tz)dz

(I)

+

∫

Rn

e(i−ε)|z|2χβ(z)u0(x+ 2
√
tz)dz

(II)

We first consider the term (I):
∣
∣
∣e(i−ε)|z|2(1 − χβ(z))u0(x+ 2

√
tz)
∣
∣
∣ 6 ||u0||L∞1B(0,2β)(z)

Then by Lebesgue’s theorem, the limit as ε→ 0 of (I) exists and
∣
∣
∣
∣
lim
ε→0

∫

Rn

e(i−ε)|z|2(1 − χβ(z))u0(x+ 2
√
tz)dz

∣
∣
∣
∣

6 ||u0||L∞ |B(0, 1)|(2β)n .(12)

We now consider the term (II). We compute it by using polar coordinates,
and with the notations of lemma 3.1, we integrate by parts (which is justified
by the regularity results on g proved in lemma 3.1) using lemma 3.3:
∫

Rn

e(i−ε)|z|2χβ(z)u0(x + 2
√
tz)dz

=

∫ ∞

0

e(i−ε)r2

χβ(r)rn−1

(∫

Sn−1

u0(x+ 2
√
trv)dv

)

dr

=

∫ ∞

β

(
1

2(i− ε)r

d

dr
.

)k (

e(i−ε)r2
)

χβ(r)rn−1

(∫

Sn−1

u0(x + 2
√
trv)dv

)

dr

=

( −1

2(i− ε)

)k ∫ ∞

β

e(i−ε)r2
k∑

j=0

ak,j
1

r2k−n+1−j

dj

drj
[χβ(r)g(r)] dr

=

( −1

2(i− ε)

)k k∑

j=0

ak,j

j
∑

l=0

(
j

l

)∫ ∞

β

e(i−ε)r2 1

r2k−j
g(l)(r)χ

(j−l)
β (r)rn−1dr(13)

where we have used the Leibniz formula in the last equality. We will now apply
Lebesgue’s theorem to each term of this sum.

For l = 0, j ∈ {0...k}, we have:
∣
∣
∣
∣
e(i−ε)r2 1

r2k−j
g(r)χ

(j)
β (r)rn−1

∣
∣
∣
∣

6
|Sn−1|||u0||L∞

r2k−n+1







||χ||L∞ if j = 0
rj

βj ||χ(j)||L∞ if j ∈ {1...k} and r 6 2β

0 if j ∈ {1...k} and r > 2β

6
|Sn−1|||u0||L∞

r2k−n+1
2j||χ(j)||L∞
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Since k > n/2,
∫∞

β
dr/r2k−n+1 = βn−2k/(2k − n) < ∞ and we can pass to the

limit as ε→ 0 by Lebesgue’s theorem. We obtain

∣
∣
∣
∣
lim
ε→0

∫ ∞

β

e(i−ε)r2 1

r2k−j
g(r)χ

(j)
β (r)rn−1dr

∣
∣
∣
∣

6
|Sn−1|||u0||L∞2j ||χ(j)||L∞

(2k − n)β2k−n
.(14)

For l > 1, j ∈ {l...k}, we have:

∣
∣
∣
∣
e(i−ε)r2 1

r2k−j
g(l)(r)χ

(j−l)
β (r)rn−1

∣
∣
∣
∣

6 ||χ(j−l)||L∞

1

βj−l

1

r2k−j
|g(l)(r)|rn−1 .

Notice that 2(2k − j) − (n − 1) > 1, so that r → 1/r2k−j ∈ L2(β,∞, rn−1dr).
The Cauchy-Schwarz inequality together with (9) lead to

∫ ∞

β

1

r2k−j
|g(l)(r)|rn−1dr

6
1

(4k − 2j − n)1/2β2k−j−n/2
(2
√
t)l−n/2|Sn−1|1/2||u0||Xk .

So Lebesgue’s theorem can be applied, and

∣
∣
∣
∣
lim
ε→0

∫ ∞

β

e(i−ε)r2 1

r2k−j
g(l)(r)χ

(j−l)
β (r)rn−1dr

∣
∣
∣
∣

6
|Sn−1|1/2||χ(j−l)||L∞

(4k − 2j − n)1/2
||u0||Xk

(2
√
t)l−n/2

β2k−l−n/2
(15)

We fix now β = 1. For j ∈ {1...k}, the quantities (2
√
t)j−n/2 are majorized

by C(t(1−n/2)/2 + t(k−n/2)/2) where C is a positive constant. Therefore, using
(12),(14) and (15), there exists a positive constant C such that for all u0 ∈ Xk,
for all t > 0,

||u(t)||L∞(Rn) 6 C(1 + t(1−n/2)/2 + t(k−n/2)/2)||u0||Xk(Rn) (16)

The second step of the proof consists in proving that u(t) → u0 in L∞ as
t→ 0. We first introduce some definitions.

Definition 3.1 For l ∈ {0...k} and h ∈ L2(β,∞, rn−1dr), we define

T l
h :=

∫ ∞

β

e(i−ε)r2

h(r)g(l)(r)rn−1dr

and we will say that such a quantity is “of type T (l)”.

If h can be written h(r) = χ
(p)
β (r)/rq with 2q − n > 0, we will say that the

“order” of T l
h in β is p+ q − n/2.

If h is given as a linear combination of such terms, we define the “order” of T l
h

as the lowest order of non-zero monomials in the expression of h (remark that
our “definition” of the order of T l

h depends on the decomposition of h).
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Let α ∈ (0, 1/(2n+1)), and m > 0 such that m > (n/2−1)/α. The following
technical lemma gives a new expression of the term (II). It consists in doing as
much integration by parts as necessary, in order to express (II) as a sum of
terms of orders > m, which we are able to estimate in an appropriate way (see
estimate (19) below.

Lemma 3.4 (II) can be written as a linear combination of terms of type T (l)

with l ∈ {0...k}, such that for l ∈ {1...k− 1}, the order of the terms of type T (l)

in this linear combination is > m.

Proof. Let l ∈ {1...k−1}, p, q ∈ N such that 2q−n > 0 and h(r) = χ
(p)
β (r)rq .

We transform T l
h by integrations by parts, as in (13). After some computations,

we get (this is actually (13) where we have replaced k by k− l, g by g(l) and χβ

by χ
(p)
β (r)/rq):

T l
h =

( −1

2(i− ε)

)k−l k−l∑

j=0

ak−l,j

j
∑

c=0

(
j

c

) j−c
∑

b=0

(
j − c

b

)

(−q)...(−q − (j − c− b− 1))

×
∫ ∞

β

e(i−ε)r2

χ
(p+b)
β (r)g(l+c)(r)

r2(k−l)+q−c−b
rn−1dr . (17)

Since 2(2(k − l) + q − c − b) − n > 2(k − l) + 2q − n, k > l and 2q − n > 0,
we have written T l

h as a linear combination of terms of types T (l), T (l+1)...T (k).
Moreover, the order of the terms of type T (l) (that correspond to c = 0) in this
sum is:

p+ b+ 2(k − l) + q − b− n/2 = p+ q − n/2
︸ ︷︷ ︸

order of T l
h

+2 (k − l)
︸ ︷︷ ︸

>1

.

The conclusion of this computation is that passing from the canonical expression
of T l

h to its new expression, the order of type T (l) terms increases at least by 2.
We now use the above calculation to show the result by induction on l ∈

{0...k − 1}.
Let us consider, for l ∈ {0...k − 1}, the induction hypothesis Hl: “(II) can be
written as a sum of terms of type T (γ), 0 6 γ 6 k, so that if 1 6 γ 6 l, the
term of type T (γ) in this sum has order > m .”
Formula (13) implies that

(II) =

k∑

l=0

T l
h(l) , whith h(l)(r) =

k∑

j=l

akj

(
j

l

)
χ

(j−l)
β (r)

r2k−j
.

We have 2(2k − j) − n > 2k − n > 0, so that H0 is true thanks to (13).
Let us now take l ∈ {1...k−1} and suppose Hl−1. The induction hypothesis im-

plies that (II) can be written under the form: (II) =
∑k

γ λγT
γ
hγ

where λγ ∈ C,

hγ is a linear combination of χ
(p)
β (r)/rq , and for γ ∈ {1...l − 1}, T γ

hγ
’s order

8



is at least m. Applying the former calculation to the term T l
hl

, we get a new

expression of (II) where the terms of type T (γ) with γ 6 l − 1 are unchanged
(in particular, the new expression still verifies Hl−1), the order of the term of
type T (l) has increased by 2(k− l) > 2. We can start this process again, as long
as it is necessary (but with a finite number of steps) to ensure that the term of
type T (l) is of order > m, and hence Hl is true.
So we have proved that Hk−1 is true, which is the result of the lemma. �

We give now an upper bound on |T l
h|, for l ∈ {1...k}, with h(r) = χ

(p)
β (r)/rq

and 2q − n > 0:

|T l
h| 6

||χ(p)||∞
βp

∫ ∞

β

1

rq
|g(l)(r)|rn−1dr

6
||χ(p)||∞√

2q − n
||u0||Xk |Sn−1|1/2

︸ ︷︷ ︸

=:C

(2
√
t)l−n/2

βp+q−n/2
(18)

where we have used the Cauchy-Schwarz inequality and lemma 3.1. If we assume
that β > 1 and T l

h’s order is at least m, then

|T l
h| 6 C

(2
√
t)l−n/2

βm
. (19)

We write β on the form β = β̃/(2
√
t)α, for t 6 1 and β̃ > 2α. Let us fix δ > 0.

The choice of m and the fact that l > 1 ensure that l − n/2 + αm > 0.
We choose β̃ > 2α large enough such that for all t 6 1,

(2
√
t)l−n/2+αm

β̃m
6 δ , l ∈ {1...k}

and
|Sn−1|||u0||∞2j ||χ(j)||L∞

(2k − n)β̃2k−n
(2
√
t)α(2k−n) 6 δ , j ∈ {0...k} .

The property Hk−1 proven in Lemma 3.4, (19) and (14) imply that there exists
a constant C > 0 (which does not depend on δ) such that

∀ε > 0,

∣
∣
∣
∣

∫

Rn

e(i−ε)|z|2χβ̃/(2
√

t)α(z)u0(x+ 2
√
tz)dz

∣
∣
∣
∣

6 Cδ . (20)
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Proposition 2.2 with p = 2n yields

∣
∣
∣
∣
lim
ε→0

∫

Rn

e(i−ε)|z|2(1 − χβ(z))u0(x+ 2
√
tz)dz

−lim
ε→0

∫

Rn

e(i−ε)|z|2(1 − χβ(z))u0(x)dz

∣
∣
∣
∣

6

∫

Rn

(1 − χβ(z))|u0(x+ 2
√
tz) − u0(x)|dz

6

∫

|z|62β

C(2
√
t2β)1/2||∇u0||Lpdz

6 C(2
√
t)1/2βn+1/2 = C(2

√
t)1/2−α(n+1/2)β̃n+1/2 . (21)

By the choice of α, 1/2 − α(n+ 1/2) > 0. So we can take t0 < 1 such that

∀t 6 t0, C(2
√
t)1/2−α(n+1/2)β̃n+1/2 6 δ (22)

Therefore, for t 6 t0,

∣
∣
∣
∣
lim
ε→0

∫

Rn

e(i−ε)|z|2u0(x+ 2
√
tz)dz − lim

ε→0

∫

Rn

e(i−ε)|z|2u0(x)dz

∣
∣
∣
∣

6

∣
∣
∣
∣
lim
ε→0

∫

Rn

e(i−ε)|z|2χβ(z)u0(x+ 2
√
tz)dz

∣
∣
∣
∣
+

∣
∣
∣
∣
lim
ε→0

∫

Rn

e(i−ε)|z|2χβ(z)u0(x)dz

∣
∣
∣
∣

+

∣
∣
∣
∣
lim
ε→0

∫

Rn

e(i−ε)|z|2(1 − χβ(z))(u0(x+ 2
√
tz) − u0(x))dz

∣
∣
∣
∣

6 Cδ + Cδ + δ (23)

by (20), (20) applied to z → u0(x) instead of u0 and (22).
Inequality (23) and the well-known identity

lim
ε→0

∫

Rn

e(i−ε)|z|2dz = πn/2einπ/4

imply that u(t) → u0 = u(0) in L∞ as t → 0, t > 0. We could prove in the
same way the left continuity at 0, and this, combined with the group property
S(t+s) = S(t)S(s), t, s ∈ R (which is easy to verify) shows that for all u0 ∈ Xk,
S(.)u0 ∈ C(R, L∞(Rn)).

We consider now the general case k > n/2. For any multi-index α such that
1 6 |α| 6 k, for any t > 0 (we have a similar formula for t < 0),

∂αu(t) =
e−inπ/4

πn/2
lim
ε→0

∫

Rn

e(i−ε)|z|2∂αu0(x+ 2
√
tz)dz .

Here, ∂αu0 ∈ L2. Since (6) defines classically a unitary group on L2, the map
t→ ∂αu(t) belongs to C(R, L2(Rn)), with ||∂αu(t)||L2 = ||∂αu0||L2 , t ∈ R.
Therefore we can conclude that for all u0 ∈ Xk, t → S(t)u0 ∈ C(R, Xk(Rn)).
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Moreover, since for all u0 ∈ Xk, S(.)u0 is bounded on [−1, 1], the Banach-
Steinhaus theorem implies that ||S(t)||L(Xk) is bounded on [−1, 1]. Combining
this with (16), we get (7). �

We give now the infinitesimal generator of S(t).

Theorem 3.2 Let k > n/2. The generator of the group (S(t))t∈R on Xk(Rn)
defined in theorem 3.1 is i∆, its domain is Xk+2(Rn).

Proof. We denote by A = S′(0) the generator of (S(t))t.
We split the proof into three steps. In the first step, we show that if u0 ∈
Xk+4(Rn), (S(t)u0−u0)/t −→

t→0
i∆u0 inXk(Rn), and therefore (Xk+4(Rn), i∆) ⊂

(D(A), A). In the second step, we prove that (Xk+2(Rn), i∆) ⊂ (D(A), A). We
conclude in the third step.

1st step. Let u0 ∈ Xk+4(Rn) ⊂ C4(Rn). We want to show that

S(t)u0 − u0

t
−→
t→0

i∆u0 in Xk . (24)

We will prove (24) for t→ 0, t > 0. The proof is similar in the case t→ 0, t < 0.
By Taylor’s formula

u0(x+2
√
tz)−u0(x) = ∇u0(x).2

√
tz+

∫ 1

0

(1−s)D2u0(x+2
√
tz)(2

√
tz, 2

√
tz)ds ,

the fact that ∫

Rn

e(i−ε)|z|2∇u0(x).2
√
tzdz = 0 ,

and

i∆u0(x) =
1

2
lim
ε→0

e−inπ/4

πn/2

∫

Rn

e(i−ε)|z|2D2u0(x)(2
√
tz, 2

√
tz)dz ,

we obtain
(
S(t)u0− u0

t
− i∆u0

)

(x)

= 4
e−inπ/4

πn/2
lim
ε→0

∫ 1

0

(1 − s)

∫

Rn

e(i−ε)|z|2(D2u0(x+ 2s
√
tz) −D2u0(x))(z,z)dzds .

Next,
∫

Rn

e(i−ε)|z|2(D2u0(x+ 2s
√
tz) −D2u0(x))(z, z)dz

=

( −1

2(i− ε)

)2 ∫

Rn

e(i−ε)|z|2∆2u0(x+ 2s
√
tz)(2s

√
t)2dz

− 1

2(i− ε)

∫

Rn

e(i−ε)|z|2(∆u0(x + 2s
√
tz) − ∆u0(x))dz ,

11



hence
(
S(t)u0 − u0

t
− i∆u0

)

(x) = −4

[

t

∫ 1

0

(1 − s)s2S(ts2)∆2u0(x)ds

+
1

2i

∫ 1

0

(1 − s)(S(ts2)∆u0 − ∆u0)(x)ds

]

.(25)

Since k > n/2, ∆2u0 ∈ Hk(Rn) ⊂ Xk(Rn). Therefore
(
S(ts2)∆2u0

)

t,s∈[0,1]
is

bounded in Xk and the first term in the right hand side of (25) tends to 0 in
Xk as t → 0. Since ∆u0 ∈ Hk+2(Rn) ⊂ Xk(Rn), S(ts2)∆u0 − ∆u0 −→

t→0
0 in

Xk, uniformly in s ∈ [0, 1]. Thus (24) has been proven.
Therefore, if u0 ∈ Xk+4(Rn), u0 ∈ D(A) and Au0 = i∆u0.

2nd step. Let u0 ∈ Xk+2(Rn). Thanks to Proposition 2.1, there exists
a sequence (vl

0)l∈N ⊂ Xk+4(Rn) such that vl
0 → u0 in Xk+2 ⊂ Xk. Hence

i∆vl
0 → i∆u0 in Hk ⊂ Xk. Therefore (u0, i∆u0) belongs to the closure of

{(v0, i∆v0), v0 ∈ Xk+4(Rn)} inXk×Xk, and since the infinitesimal generator of
a strongly continuous semigroup is a closed operator (see corollary 2.5 in [P] p5),
this implies that u0 ∈ D(A) and Au0 = i∆u0, i.e. (Xk+2(Rn), i∆) ⊂ (D(A), A).

3rd step. Let u0 ∈ D(A). We want to show that Au0 = i∆u0 in D′. Since
Xk+2(Rn) is dense in Xk(Rn), there exists a sequence (vl

0)l∈N ∈ Xk+2(Rn) that
tends to u0 in Xk(Rn), and then

Avl
0 = i∆vl

0 −→
l→∞

i∆u0 in D′ .

Let us show that Avl
0 → Au0 in D′. Let φ ∈ C∞

c (Rn). We have

< Avl
0, φ >D′,D=< φ,Avl

0 >(Xk)′,Xk=< A∗φ, vl
0 >(Xk)′,Xk

→ < A∗φ, u0 >(Xk)′,Xk=< φ,Au0 >(Xk)′,Xk=< Au0, φ >D′,D .(26)

To justify this calculation, we need to prove that φ ∈ D(A∗). Since the
Schrödinger group is continuous in the Schwartz space S, one has for any
u ∈ D(A),

< Au, φ >D′,D = lim
t→0

〈
S(t) − id

t
u, φ

〉

D′,D

= lim
t→0

∫

Rn

u(y)

(
S(−t) − id

t
φ

)

(y)dy = − < i∆φ, u >D′,D

and then
| < S′(0)u, φ >D′,D | 6 ||∆φ||L1 ||u||Xk , u ∈ D(A) .

It follows that φ ∈ D(A∗) and (26) is justified.
Therefore, Au0 = i∆u0 in D′. Now, u0 ∈ Xk, Au0 = i∆u0 ∈ Xk, hence
∆∇u0 ∈

(
Hk−1

)n
and since ∇u0 ∈

(
Hk−1

)n
, this yields ∇u0 ∈

(
Hk+1

)n
and

12



we conclude that u0 ∈ Xk+2. �

Finally, we show that the assumption k > n/2 we made in theorem 3.1 is
sharp. More precisely, we have:

Proposition 3.1 Let us take n ∈ N
∗. For x ∈ R

n, we define

u0(x) =
e−i|x|2

(1 + |x|2)n/2log
√

2 + |x|2
.

Then u0 ∈ X⌊n/2⌋(Rn), but if we define u(t, x) by formula (6), u(1/4, 0) = ∞.

Proof. It is clear that u0 ∈ L∞(Rn) and is uniformly continuous (because
∇u0 is bounded). Let α be a multi-index with 1 6 |α| 6 ⌊n/2⌋. The “worst

term” in ∂αu0 is the one obtained when deriving e−i|x|2 |α| times. This term is

(−2ix)αe−i|x|2(1 + |x|2)−n/2/log
√

2 + |x|2. Plainly,

∫

Rn

∣
∣
∣
∣
∣

(−2ix)αe−i|x|2

(1 + |x|2)n/2log
√

2 + |x|2

∣
∣
∣
∣
∣

2

dx 6 2|α|
∫

Rn

(|x|2)|α|

(1 + |x|2)nlog2
√

2 + |x|2
dx

= 2|α||Sn−1|
∫ ∞

0

r2|α|+n−1dr

(1 + r2)nlog2
√

2 + r2
.

The right hand side term in the above inequality is finite, because 2n− (2|α|+
n − 1) > 1 and

∫∞ dr
rlog2r < ∞. Therefore u0 ∈ X⌊n/2⌋(Rn). Moreover, since

u0 ∈ L2, u0 ∈ H⌊n/2⌋(Rn), and u ∈ C(R, H⌊n/2⌋) is a solution of the linear
Schrödinger equation.

For t = 1/4, x = 0,

∫

Rn

e(i−ε)|z|2u0(x+ 2
√
tz)dz =

∫

Rn

e−ε|y|2dy

(1 + |y|2)n/2log
√

2 + |y|2

= |Sn−1|
∫ ∞

0

e−εr2

rn−1dr

(1 + r2)n/2log
√

2 + r2

which tends to +∞ as ε→ 0, by the monotone convergence theorem and since
∫∞

dr/(rlogr) = ∞.
An amusing fact is that for (t, x) 6= (1/4, 0), u(t, x) is well defined by formula
(6) and then u is a continuous function of (t, x) ∈ R × R

n\(1/4, 0). �

Remark The “ill-posedness” result in proposition 3.1 pertains to the disper-
sive blow-up phenomena described in [BS1] for KdV type equations and in [BS2]
for general dispersive equations.
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4 Local existence for NLS in X
k(Rn)

We consider now the Cauchy problem (1) with a more general nonlinearity:

{
iut + ∆u+ F (u) = 0
u(0) = u0 ∈ Xk(Rn)

(27)

where k > n/2 and F : Xk(Rn) → Xk(Rn) is of class C1. We have shown in
section 3 that the Schrödinger group S(t) defines a strongly continuous group
on Xk(Rn). By a classical fixed point argument one obtains the local well-
posedness of the Cauchy problem (27). Namely, we have:

Theorem 4.1 Let M > 0. Then there exists T+(M) > 0 and T−(M) < 0 such
that for all u0 ∈ Xk(Rn) with ||u0||Xk 6 M , there exists an unique mild solution
u ∈ C([T−(M), T+(M)], Xk) of (27). We recall that a mild solution of (27) is
a solution of the integral equation

u(t) = S(t)u0 + i

∫ t

0

S(t− s)F (u(s))ds , t ∈ [T−, T+] . (28)

We also recall (see [P] or [CH]) that if u solves (28), it is a solution of (27) in the
space C(R, Hk−2

loc ), and that if u0 ∈ D(S′(0)) = Xk+2, u ∈ C1([T−, T+], Xk) ∩
C([T−, T+], Xk+2) is the classical solution of (27).

Proof. It is a direct application of proposition 4.3.3 in [CH]. �

We have furthermore

Theorem 4.2 For every u0 ∈ Xk(Rn), there exists T∗(u0) ∈ [−∞, 0) and
T ∗(u0) ∈ (0,+∞] such that

• there exists a maximal solution u ∈ C(T∗(u0), T
∗(u0), X

k) which is the
unique solution of (28), for all T±, T∗(u0) < T− < 0 < T+ < T ∗(u0),

• either T ∗(u0) = +∞ or ||u(t)||Xk −→
t↑T∗(u0)

+∞,

• either T∗(u0) = −∞ or ||u(t)||Xk −→
t↓T∗(u0)

+∞.

Proof. It is a direct application of theorem 4.3.4 in [CH]. �

Theorem 4.3 If u0 ∈ Xk+2(Rn), the solution u ∈ C(T∗(u0), T
∗(u0), X

k) of
(28) given by theorems 4.1 and 4.2 is a classical solution of (27) in Xk, which
means that u∈C(T∗(u0), T

∗(u0), X
k+2) ∩C1(T∗(u0), T

∗(u0), X
k).
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Proof. It is a direct application of theorem 1.5 in [P], because F : Xk → Xk

is of class C1, and because the domain of i∆ (which is the generator of the
group S(t)) on Xk is Xk+2. �

Here is a typical example where Theorem 4.1 applies.

Proposition 4.1 Let f : R+ → R be of class Ck+1. Then F : Xk(Rn) →
Xk(Rn) defined by F (u) = f(|u|2)u is of class C1.

Proof. Let u ∈ Xk(Rn). It is clear that F (u) ∈ L∞.
For any multi-index α such that 1 6 |α| 6 k, ∂αF (u) can be written as a

linear combination of terms of type uaubf (l)(|u|2)∂α1u...∂αru∂β1u...∂βsu, where
a, b, r , s, l are integers and αi, βj are multi-indices such that l 6 |α| 6 k and
∑ |αi| +

∑ |βj | 6 |α| 6 k.
By Sobolev’s embeddings and generalized Hölder’s inequality, it can be

shown easily that ∂αF (u) ∈ L2, and hence F (u) ∈ Xk.
The proof that for u ∈ Xk, F ′(u) maps Xk into Xk and that F ′ is continu-

ous is similar. �

We end up this paragraph by proving the persistency of higher regularity.

Proposition 4.2 Let n ∈ N
∗, k > n/2 + 1, and u0 ∈ Xk(Rn).

We suppose f ∈ Ck+1(R+). For l ∈ {⌊n/2⌋ + 1...k}, we denote by u ∈
C(T∗(l), T ∗(l), X l) the solution of (28) with F (u) = f(|u|2)u, where ]T∗(l), T ∗(l)[
is the maximal existence interval of u in X l(Rn).
Then

T ∗ := T ∗(⌊n/2⌋ + 1) = ... = T ∗(k)

and similarly, T∗ := T∗(⌊n/2⌋ + 1) = ... = T∗(k).

Proof. We make the proof for T ∗, it is similar for T∗.
A priori, for l > ⌊n/2⌋ + 1, T ∗ > T ∗(l). We suppose by contradiction that
T ∗ > T ∗(l). For t ∈]T∗, T ∗[,

u(t) = S(t)u0 + i

∫ t

0

S(t− s)
(
f(|u(s)|2)u(s)

)
ds

hence for t ∈]T∗(l), T ∗(l)[,

||u(t)||Xl 6 ||S(t)||L(Xl,Xl)||u0||Xl +

∫ t

0

||S(t− s)||L(Xl,Xl)||f(|u(s)|2)u(s)||Xlds

We know by (7) that ||S(t)||L(Xl,Xl) is bounded on [0, T ∗(l)], and that u is

continuous from [0, T ∗(l)] into X⌊n/2⌋+1(Rn), so there exists M > 0 such that
for all t ∈ [0, T ∗(l)], ||u(t)||X⌊n/2⌋+1 6 M . In particular, ||u(t)||L∞ 6 M , which
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implies that there exists M̃ > 0 such that ||f(|u(s)|2)u(s)||Xl 6 M̃ ||u(s)||Xl .
Finally,

||u(t)||Xl 6 C||u0||Xl +

∫ t

0

CM̃ ||u(s)||Xlds

and Gronwall’s lemma concludes as usual that ||u(t)||Xl can not blow up at
T ∗(l), which is a contradiction with the definition of T ∗(l). �

5 Conserved quantities and global well-posedness

of NLS in X
k(Rn)

We first show the conservation of the renormalized energy for (1), for a “regular”
initial data in Xk(Rn), in the case n = 1 or 2.

Proposition 5.1 Let n = k = 1, 2, u0 ∈ Xk+2(Rn), f ∈ Ck+1(R+).
We denote by u ∈ C(T∗, T ∗, Xk+2(Rn)) ∩ C1(T∗, T ∗, Xk(Rn)) the solution to
the Cauchy problem (1) obtained in theorem 4.3, where (T∗, T ∗) is its maximal
existence interval.
Let V (r) := −

∫ r
f(s)ds. We assume that

∫

Rn V (|u0(x)|2)dx converges (in a
sense we will precise in the proof).
Then for all t ∈ (T∗, T ∗),

∫

Rn V (|u(t, x)|2)dx converges (in the same sense), and
the energy is conserved:
∫

Rn

[
|∇u(t, x)|2 + V (|u(t, x)|2)

]
dx =

∫

Rn

[
|∇u0(x)|2 + V (|u0(x)|2)

]
dx (29)

proof. Let us multiply (1) by
−
ut and take the real part:

2Re(∆u
−
ut) = ∂tV (|u|2) .

We fix t ∈ (T∗, T ∗), x ∈ Rn and integrate over [0, t]:

2Re

∫ t

0

∆u(s, x)
−
ut(s, x)ds = V (|u(t, x)|2) − V (|u0(x)|2) (30)

We choose a non-increasing function θ ∈ C∞
c (R) such that:

θ(x) =

{
1 if x 6 1
0 if x > 2

.

For R > 0, we define θR(x) := θ(|x|/R), x ∈ Rn. We have then:

||∇θR||L2(Rn) = Rn/2−1

(∫

Rn

|θ′(|y|)|2dy
)1/2

.

The last integral is finite because θ′(|.|) ∈ C∞
c (Rn). In particular, {∇θR}R>1 is

bounded in L2(Rn).
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We now multiply (30) by θR(x) and integrate over Rn:

2Re

∫

Rn

∫ t

0

∆u(s, x)
−
ut(s, x)dsθR(x)dx

=

∫

Rn

V (|u(t, x)|2)θR(x)dx −
∫

Rn

V (|u0(x)|2)θR(x)dx . (31)

Using Fubini’s theorem and an integration by parts, we calculate the left hand
side of (31):

2Re

∫

Rn

∫ t

0

∆u(s, x)
−
ut(s, x)dsθR(x)dx

= −
∫

Rn

(
|∇u(t, x)|2 − |∇u0(x)|2

)
θR(x)dx

−2Re

∫ t

0

∫

Rn

∇u(s, x)∇θR(x)
−
ut(s, x)dxds

For convenience, we assume t > 0. Since ∇θR is supported in {x, |x| > R}, the
Cauchy Schwarz inequality implies

∣
∣
∣
∣

∫ t

0

∫

Rn

∇u(s, x)∇θR(x)
−
ut(s, x)dxds

∣
∣
∣
∣

6 sup
s∈[0,t]

||ut(s)||L∞

(∫ t

0

||∇u(s)||L2(|x|>R)ds

)

||∇θR||L2(Rn) ,

and this last quantity converges to 0 as R→ ∞, because ||∇θR||L2 is bounded.
Moreover,

∫

Rn

(
|∇u(t, x)|2 − |∇u0(x)|2

)
θR(x)dx clearly converges to ||∇u(t)||2L2−

||∇u0||2L2 as R→ ∞. Hence, if we assume that

∫

Rn

V (|u0(x)|2)dx := lim
R→∞

∫

Rn

V (|u0(x)|2)θR(x)dx

exists (it a priori depends on the choice of θ), taking the limit in (31), for all
t ∈ (T∗, T ∗), we obtain that

∫

Rn

V (|u(t, x)|2)dx := lim
R→∞

∫

Rn

V (|u(t, x)|2)θR(x)dx

exists, and the energy is conserved. �

Remark This proof does not seem to work for n > 3, because we have used
the existence of {θR}R>1 ⊂ C∞

c (Rn), with θR(x) ≡ 1 for |x| 6 R and ∇θR

bounded in L2(Rn), and it can be shown that such a sequence does not exist
for n > 3.

Next, we give a variant of theorem 5.1 in dimension 1, that will be useful
later.
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Proposition 5.2 Let φ, φ0 : R → R non-increasing functions of class C∞,
such that

φ(x) = φ0(x) ≡
{

1 if x 6 0
0 if x > 1

.

For R > 0, we define φ+
R(x) = φ(x −R)φ0(−x) and φ−R(x) = φ+

R(−x).
Then if lim

R→∞

∫

R
V (|u0(x)|2)φ±R(x)dx exists, so does lim

R→∞

∫

R
V (|u(t, x)|2)φ±R(x)dx

.

Proof. It suffices to replace θR by φ±R in the proof of theorem 5.1. We obtain
in the same way that
∫

R

[
V (|u(t, x)|2) − V (|u0(x)|2) +

(
|∇u(t, x)|2 − |∇u0(x)|2

)]
φ±R(x)dx

=∓2Re

∫ t

0

∫

R

∇u(s, x)(∇φ(±x −R)φ0(∓x) − φ(±x−R)∇φ0(∓x))ut(s, x)dxds.

Passing to the limit as R → ∞, the fact that (∇φ(±x − R))R>0 is bounded in
L2 and the assumption that

∫

R
V (|u0(x)|2)φ±R(x)dx converges as R → ∞ imply

that lim
R→∞

∫

R
V (|u(t, x)|2)φ±R(x)dx exists, with

lim
R→∞

∫

R

V (|u(t, x)|2)φ±R(x)dx − lim
R→∞

∫

R

V (|u0(x)|2)φ±R(x)dx

= −
∫

R

(
|∇u(t, x)|2 − |∇u0(x)|2

)
φ0(∓x)dx

±2Re

∫ t

0

∫

R

∇u(s, x)∇φ0(∓x)ut(s, x)dxds .

Remark that the limit lim
R→∞

∫

R
V (|u(t, x)|2)φ±R(x)dx depends on φ0 but not on

φ if lim
R→∞

∫

R
V (|u0(x)|2)φ±R(x)dx does not. �

We want now to improve Proposition 5.1, to make it work for u0 ∈ Xk(Rn),
with k > n/2, and not only k > n/2+2. The price to pay is an extra assumption
on the nonlinearity f :

Theorem 5.1 Let n = k = 1 or 2.
We suppose that f ∈ Ck+1(R+) and that there exists some ρ0 > 0 such that
f(ρ0) = 0 and f ′(ρ0) < 0. We define

V (r) := −
∫ r

ρ0

f(s)ds .

If n = 1, we assume that {r, V (r) = 0} is discrete, and if n = 2, we assume
that V is non-negative on R+.
Let 0 < C1 < 1 < C2, and δ0 > 0 (δ0 < ρ0) such that

|r − ρ0| 6 δ0 ⇒ C1
V ′′(ρ0)

2
(r − ρ0)

2 6 V (r) 6 C2
V ′′(ρ0)

2
(r − ρ0)

2
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(the assumptions on f ensure that such a δ0 does exist).
Finally we assume that u0 ∈ Xk(Rn), x → V (|u0(x)|2) ∈ L1(Rn) and there
exists 0 < δ1 < δ0 and A > 0 such that |x| > A implies ||u0(x)|2 − ρ0| 6 δ1.
Then, denoting (T∗, T ∗) the maximal existence interval of the solution of (1)
associated to u0, the energy

E(u(t)) :=

∫

Rn

[
|∇u(t, x)|2 + V (|u(t, x)|2)

]
dx (32)

is finite and conserved for all t ∈ (T∗, T ∗).

Examples. We give some examples for which Theorem 5.1 is valid

• the cubic defocusing NLS equation:

iut + ∆u+ (ρ0 − |u|2)u = 0, x ∈ R
n, n = 1 or 2. (33)

In this case, f(r) = ρ0 − r, V (r) = (ρ0 − r)2/2 > 0, and the assumptions
of theorem 5.1 are verified. In fact, here, the assumption of the existence
of δ1 and A can be relaxed, because it is a consequence of V (|u0|2) ∈ L1.

• more generally, the “pure power case”:

iut + ∆u+ α(ρp
0 − |u|2p)u = 0, x ∈ R

n, n = 1 or 2. (34)

where α > 0 and p > 1/2 if n = 1, p > 1 if n = 2. Here, f(r) = α(ρp
0−rp),

V (r) > 0 and V (r) = 0 if and only if r = 0. The assumption f ∈ Ck+1(R+)
in Theorem 5.1 is verified only if p = 1 or p > 2 in the one-dimensional
case, and if p = 1, 2 or p > 3 in the case n = 2. However, in other cases,
Xk ∋ u → f(|u|2)u ∈ Xk is of class C1, and it suffices for the conclusion
of Theorem 5.1.

• the cubic-quintic NLS equation:

iut + ∆u− α1u+ α3u|u|2 − α5u|u|4 = 0, x ∈ R (35)

where α1, α3, α5 are positive constant such that 3/16 < α1α5/α
2
3 < 1/4.

In this case, using some scale transformations (see [BGMP]), (35) can be
rewritten as

iut + ∆u+ (|u|2 − ρ0)(2A+ ρ0 − 3|u|2)u = 0 (36)

with 0 < A < ρ0. Here, f(r) = (r − ρ0)(2A + ρ0 − 3r) and V (r) =
(r − ρ0)

2(r − A), and the assumptions of theorem 5.1 are verified. They
are also verified for other values of the parameters α1, α3, α5 (for instance
A 6 0), but this seems to be less interesting from a physical point of view
(see [BGMP]).
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Proof of theorem 5.1. Let us take a mollifier sequence (ρl)l>1 (with
∫
ρl = 1,

Supp ρl ⊂ B(0, 1/l) and ρl > 0).
In a first step, we will control |ρ0 − |ρl ∗ u0(x)|2| for l large and |x| > A.

|ρ0 − |ρl ∗ u0(x)|2|

6 (
√
ρ0 + ||u0||∞)

{
|ρl ∗ u0(x)| − ρ0 if |ρl ∗ u0(x)| >

√
ρ0 (case 1)

ρ0 − |ρl ∗ u0(x)| if |ρl ∗ u0(x)| <
√
ρ0 (case 2)

In case 1, we have:

0 6 |ρl ∗ u0(x)| −
√
ρ0 6

∫

Rn

ρl(x− y)(|u0(y)| −
√
ρ0)dy

6

∫

Rn

ρl(x− y)||u0(y)| −
√
ρ0|dy . (37)

In case 2, note that for |x| > A,

|u0(x)|2 > ρ0 − |ρ0 − |u0(x)|2| > ρ0 − δ1 > 0 . (38)

Let α :=
√
ρ0 − δ1 and v ∈ C such that |v| = 1 and vu0(x) ∈ iR. For y ∈ Rn,

the decomposition of u0(y) on the R-basis (u0(x), v) of C can be written as

u0(y) = Re[u0(y)u0(x)]
u0(x)

|u0(x)|2
+ P (u0(y))v .

Then, because of Pythagoras’ theorem,

0 6
√
ρ0 − |ρl ∗ u0(x)| 6

√
ρ0 −

∣
∣
∣
∣

(∫

Rn

ρl(x − y)Re[u0(y)u0(x)]dy

)
u0(x)

|u0(x)|2
∣
∣
∣
∣

We choose p as in Proposition 2.2, and l0 ∈ N∗ such that

|x− y| 6 1/l0 implies |u0(x) − u0(y)| 6 C|x − y|1−n/p||∇u0||Lp 6 α/2 .

So for l > l0 and y ∈ B(x, 1/l), we have

Re[u0(y)u0(x)] = |u0(x)|2 +Re[(u0(y) − u0(x))u0(x)]

> |u0(x)|2 − |u0(y) − u0(x)||u0(x)| > α2/2 > 0 ,

and therefore, for l > l0,

0 6
√
ρ0 − |ρl ∗ u0(x)|

6
√
ρ0 −

∫

Rn

ρl(x− y)Re[u0(y)u0(x)]dy
1

|u0(x)|

=
√
ρ0 − |u0(x)| +

1

|u0(x)|

∫

Rn

ρl(x− y)Re[(u0(x) − u0(y))u0(x)]dy

6 |√ρ0 − |u0(x)|| +
∫

Rn

ρl(x− y)|u0(x) − u0(y)|dy . (39)
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Let ε > 0. Since ρl ∗ u0 → u0 in L∞, there exists l1 > l0 such that l > l1
implies |||ρl∗u0|2−|u0|2||L∞ 6 δ0−δ1 and then for |x| > A, ||ρl ∗u0(x)|2−ρ0| 6

δ0. Therefore, for |x| > A and l > l1, we have:

0 6 V (|ρl ∗ u0(x)|2) 6 C2
V ′′(ρ0)

2
||ρl ∗ u0(x)|2 − ρ0|2 . (40)

Let B > A+ 1. (37), (39) and (40) imply, for l > l1:

∫

|x|>B

V (|ρl ∗ u0(x)|2)dx

6 C2
V ′′(ρ0)

2
(
√
ρ0 + ||u0||∞)2

×
∫

|x|>B

[(∫

Rn

ρl(x− y)||u0(y)| −
√
ρ0|dy

)2

1|ρl∗u0(x)|−√
ρ0>0

+

(

|√ρ0 − |u0(x)|| +
∫

Rn

ρl(x− y)|u0(y) − u0(x)|dy
)2

1|ρl∗u0(x)|−√
ρ060

]

dx

6 C2
V ′′(ρ0)

2
(
√
ρ0 + ||u0||∞)2

∫

|x|>B

[∫

Rn

ρl(x− y)||u0(y)| −
√
ρ0|2dy

+ 2||u0(x)| −
√
ρ0|2 + 2

(∫

Rn

ρl(x− y)|u0(y) − u0(x)|dy
)2
]

dx . (41)

We will now control each integral in the right hand side of (41). We begin by
the first one:

∫

|x|>B

∫

Rn

ρl(x− y)||u0(y)| −
√
ρ0|2dydx

6

∫

|x|>B

∫

|y|>B−1/l

ρl(x− y)
||u0(y)|2 − ρ0|2

ρ0
dydx

6
1

ρ0

∫

|y|>B−1/l

||u0(y)|2 − ρ0|2dy

6
2

C1ρ0V ′′(ρ0)

∫

|y|>B−1/l

V (|u0|2)dy . (42)

Next,

∫

|x|>B

2|√ρ0 − |u0(x)||2dx 6
2

ρ0

∫

|x|>B

|ρ0 − |u0(x)|2|2dx

6
4

C1ρ0V ′′(ρ0)

∫

|x|>B

V (|u0|2)dx . (43)

It is a bit more difficult to find an upper bound to the third one. We provisionally
admit the following lemma:
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Lemma 5.1 Let n ∈ N∗, k > n/2 and u0 ∈ Xk(Rn). Then for all (x, y), the
function f : [0, 1] → C, t→ u0(x + t(y − x)) is absolutely continuous.

Thanks to this lemma, we can write:

|u0(y) − u0(x)| = |
∫ 1

0

(y − x).∇u0(x+ t(y − x))dt| ,

and
∫

|x|>B

(∫

Rn

ρl(x − y)|u0(y) − u0(x)|dy
)2

dx

6

∫

|x|>B

∫

Rn

ρl(x− y)|y − x|2
∫ 1

0

|∇u0(x+ t(y − x))|2dtdydx

6
1

l2

∫

|x|>B

∫ 1

0

∫

Rn

ρl(
ỹ − x

t
)|∇u0(ỹ)|2

dỹ

tn
dxdt

6
1

l2

∫ 1

0

∫

Rn

∫

Rn

ρl(−x̃)|∇u0(ỹ)|2dx̃dỹdt =
||∇u0||L2

l2
(44)

(here we have made successively the changes of variables ỹ = ty + (1 − t)x and
x̃ = x−ỹ

t ). By possibly enlarging B one may assume that

(
√
ρ0 + ||u0||∞)2

C2

C1ρ0

[
∫

|y|>B−1

V (|u0|2)dy + 2

∫

|x|>B

V (|u0|2)dx
]

6 ε/2 .(45)

We also choose l2 > l1 such that

2C2
V ′′(ρ0)

2
(
√
ρ0 + ||u0||∞)2

||∇u0||L2

l22
6 ε/2 . (46)

Combining (41), (42), (43), (44), (45), (46), we obtain finally, for l > l2,
∫

|x|>B

V (|(ρl ∗ u0)(x)|2)dx 6 ε .

In particular, V (|(ρl∗u0)|2) ∈ L1(Rn). By possibly enlarging B one may assume
that ∫

|x|>B

V (|u0(x)|2)dx 6 ε .

Moreover, there exists l3 > l2 such that for l > l3,
∫

|x|6B

|V (|(ρl ∗ u0)(x)|2) − V (|u0(x)|2)|dx 6 ε

because ρl ∗ u0 → u0 in L∞. The last three inequalities and the triangular
inequality show that for l > l3,

∫

Rn

|V (|(ρl ∗ u0)(x)|2) − V (|u0(x)|2)|dx 6 3ε
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and therefore V (|ρl ∗ u0|2) → V (|u0|2) in L1.
For l ∈ N∗, we denote by ul(t) the solution of (1) with initial data ul(0) =

ρl ∗u0, and we denote by (T∗(l), T ∗(l)) its maximal existence interval. Theorem
5.1 ensures that for t ∈ (T∗(l), T ∗(l))
∫

Rn

[
|∇ul(t)|2 + V (|ul(t)|2)

]
dx =

∫

Rn

[
|∇ρl ∗ u0|2 + V (|ρl ∗ u0|2)

]
dx .(47)

Let T∗ < T̃1 < T̃2 < T ∗. By continuity with respect to the initial data (see for
example [CH]), there exists K > 0, δ > 0 such that ||ρl ∗u0−u0||Xk 6 δ implies
T ∗(l) > T̃2, T∗(l) < T̃1, and

||ul(t) − u(t)||Xk 6 K||ρl ∗ u0 − u0||Xk t ∈ [T̃1, T̃2] .

In particular, since ρl ∗ u0 → u0 in Xk, we have that ∇ul(t) → ∇u(t) in L2.
Moreover, ∇ρl ∗ u0 = ρl ∗ ∇u0 → ∇u0 in L2 and we have already shown that
V (|ρl ∗ u0|2) → V (|u0|2) in L1. In order to take the limit as l → ∞ in (47),
it remains to take care of the term

∫

Rn V (|ul(t)|2)dx. We distinguish the cases
n = 2 and n = 1.

In the case n = 2 one has V > 0 and for l > l3, x → V (|ul(t)|2) is a L1

function and
∫

RnV (|ul(t)|2)dx has a limit as l → ∞. We apply Fatou’s lemma
to the sequence (V (|ul(t, .)|2))l∈N. We already know that it is bounded in L1,
and the continuity with respect to the initial data ensures that ul(t) → u(t) in
Xk. Therefore V (|ul(t)|2) → V (|u(t)|2) in L∞. Thus V (|u(t, .)|2) ∈ L1 and

∫

V (|u(t, x)|2)dx 6 lim inf
l→∞

∫

V (|ul(t, x)|2) .

We can now pass to the limit in (47):
∫

Rn

[
|∇u(t)|2 + V (|u(t)|2)

]
dx 6

∫

Rn

[
|∇u0|2 + V (|u0|2)

]
dx . (48)

By reversing time, we get the inverse inequality, and the conservation of the
energy (29) has been proved.

In the case n = 1, we also show that V (|ul(t, .)|2) ∈ L1. For l > l3, we know
that V (|ρl ∗ u0|2) ∈ L1(R). Hence for all choice of φ as in Proposition 5.2,

lim
R→∞

∫

R

V (|ρl ∗ u0(x)|2)φ±R(x)dx =

∫

R

V (|ρl ∗ u0(x)|2)φ0(∓x)dx ,

and Proposition 5.2 ensures that lim
R→∞

∫

R
V (|ul(t, x)|2)φ±R(x)dx exists and does

not depend on the choice of φ. This implies that V (|ul(t, x)|2) → 0 as x→ ±∞.
Indeed, we have the following lemma (we will prove it later):

Lemma 5.2 Let f : R → R an uniformly continuous function such that for all
φ as in Proposition 5.2, lim

R→∞

∫

R
f(x)φ±R(x)dx exists. Then f(x) →

x→±∞
0.

23



Since {r, V (r) = 0} is discrete and ul(t) ∈ Cb(R), there exists rl
±(t) such

that
V (rl

±(t)) = 0 and |ul(t, x)|2 →
x→∞

rl
±(t) .

Let us show that rl
± is continuous on ]T∗(l), T ∗(l)[. Let t ∈]T∗(l), T ∗(l)[, h so

that t+ h ∈]T∗(l), T ∗(l)[, ε > 0 and x ∈ R. One has

|rl
±(t+h)−rl

±(t)| 6 |rl
±(t+h)−ul(t+h, x)|+|ul(t+h, x)−ul(t, x)|+|ul(t, x)−rl

±(t)| .

ul ∈ C(]T∗(l), T ∗(l)[, Xk) ⊂ C(]T∗(l), T ∗(l)[, L∞), thus we can choose h small
enough in order that

||ul(t+ h) − ul(t)||L∞ 6 ε/3 .

We also choose |x| large enough such that

|rl
±(t+ h) − ul(t+ h, x)| 6 ε/3 and |ul(t, x) − rl

±(t)| 6 ε/3 .

Hence |rl
±(t + h) − rl

±(t)| 6 ε. Therefore rl
± is continuous with value in a

discrete set, which means that it is constant. For l > l3, the fact that |||ρl ∗
u0|2 − |u0|2||L∞ 6 δ0 − δ1 and the assumption on u0 imply that rl

±(0) = ρ0,
hence

∀l > l3, ∀t ∈]T∗(l), T
∗(l)[, |ul(t, x)|2 →

x→±∞
ρ0 .

We choose l4 > l3 such that for l > l4,

|||ul(t)|2 − |u(t)|2||L∞

6 ||ul(t) − u(t)||L∞(||ul(t) − u(t)||L∞ + 2||u(t)||L∞)

6 K||ρl ∗ u0 − u0||Xk(K||ρl ∗ u0 − u0||Xk + 2 sup
t∈[T̃1,T̃2]

||u(t)||Xk)6
δ0 − δ1

2
.

Let D > 0 such that |x| > D implies ||ul4(t, x)|2 − ρ0| 6 δ1. Then for l >

l4, |x| > D,

||ul(t, x)|2 − ρ0|
6 ||ul(t, x)|2 − |u(t, x)|2| + ||u(t, x)|2 − |ul4(t, x)|2| + ||ul4(t, x)|2 − ρ0|

6 2
δ0 − δ1

2
+ δ1 = δ0

This implies that V (|ul(t, x)|) is non-negative on {x, |x| > D}, and now (47)
yields:
∫

|x|>D

V (|ul(t, x)|2)dx

=

∫

R

[
|∇ρl ∗ u0|2 + V (|ρl ∗ u0|2)

]
dx −

∫

R

|∇ul(t, x)|2dx−
∫

|x|6D

V (|ul(t, x)|2)dx

→
l→∞

∫

R

[
|∇u0|2 + V (|u0|2)

]
dx−

∫

R

|∇u(t, x)|2dx−
∫

|x|6D

V (|u(t, x)|2)dx ,
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and
(
V (|ul(t, .)|2)1{|x|>D}

)

l>l4
is bounded in L1. We apply Fatou’s lemma to

this sequence, and we can conclude similarly to the case n = 2, V > 0. �

To complete the proof of theorem 5.1, it just remains to prove lemmas 5.1
and 5.2.

Proof of lemma 5.2. We argue by contradiction. Assume that there exists
ε > 0 such that for all A > 0, there exists x > A such that |f(x)| > ε. Since
f is uniformly continuous, there exists δ ∈ (0, 2), such that |x − y| < δ implies
|f(x) − f(y)| 6 ε/2. We may thus construct a sequence (xn)n∈N such that
xn → ∞ and |f(y)| > ε/2 as soon as |y − xn| 6 δ. We may assume moreover
that the intervals ]xn − δ, xn + δ[ are disjoint, and that for instance f(xn) > 0.
We choose φ as in proposition 5.2, namely

φ(x) =

{
1 if x 6 0
0 if x > δ/2

.

Then
∣
∣
∣
∣

∫

R

f(y)φxn−δ(y)dy −
∫

R

f(y)φxn+δ/2(y)dy

∣
∣
∣
∣

=

∫

R

f(y)(φxn+δ/2(y) − φxn−δ(y))dy

>

∫ xn+δ/2

xn−δ/2

f(y)dy > δε/2

and this is a contradiction. �

Proof of lemma 5.1. Let us fix x, y ∈ Rn with x 6= y. It suffices to show that
f : t ∈ [0, 1] → u0(x + t(y − x)) is absolutely continuous. By definition of Xk,
u0 is the limit in Xk of a sequence (vl)l∈N of functions of class Ck. Therefore
the functions fl : t ∈ [0, 1] → vl(x+ t(y − x)) are absolutely continuous.

We are reduced to prove that the moduli of absolute continuity of fl’s are
uniformly bounded. Indeed, if we assume this fact, for all ε > 0, there exists
δ > 0 such that for all positive integer m, and for all choice of (αj , βj)16j6m

with 0 6 α1 < β1 < ... < αm < βm 6 1 and
∑m

j=1(βj − αj) 6 δ, we have for all
l,

m∑

j=1

|fl(βj) − fl(αj)| 6 ε/2 .

Then

m∑

j=1

|f(βj)−f(αj)| 6

m∑

j=1

|fl(βj)−fl(αj)|+
m∑

j=1

[|f(βj) − fl(βj)| + |f(αj) − fl(αj)|]
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choosing l large enough, ||f − fl||∞ 6 ε
4m . We infer that

m∑

j=1

|f(βj) − f(αj)| 6 ε ,

and therefore f is absolutely continuous.
We now prove that the moduli of absolute continuity of fl’s are uniformly

bounded. Since vl → u0 in Xk, vl is bounded in Xk. We choose m,αj , βj as
above. For all l, we have:

m∑

j=1

|fl(βj) − fl(αj)| =

m∑

j=1

∣
∣
∣
∣
∣

∫ βj

αj

f ′
l (s)ds

∣
∣
∣
∣
∣

6

∫

n
∪

j=1
]αj ,βj[

|f ′
l (s)|ds

6





∫

n
∪

j=1
]αj ,βj[

ds





1/2



∫

n
∪

j=1
]αj ,βj [

|f ′
l (s)|2ds





1/2

6





m∑

j=1

(βj − αj)





1/2
(∫ 1

0

|f ′
l (s)|2ds

)1/2

. (49)

Observe that
∫ 1

0

|f ′
l (s)|2ds =

∫ 1

0

|(y − x).∇vl(x+ s(y − x))|2ds

6 |y − x|
∫ |y−x|

0

∣
∣
∣
∣
∇vl

(

x+ s
y − x

|y − x|

)∣
∣
∣
∣

2

ds .

Since ∇u0 ∈ Hk−1(Rn), the trace theorem ensures that the mapping that sends
a function of Hk−1(Rn) on its trace on a line D of Rn is continuous from
Hk−1(Rn) to H(k−1)−(n−1)/2(D) ⊂ L2(D) because k− 1− (n− 1)/2 > ⌊n/2⌋−
(n− 1)/2 > 0. Therefore, there exists a constant C > 0 such that

(∫ 1

0

|f ′
l (s)|2ds

)1/2

6 |y − x|1/2||∇vl |{x+t y−x
|y−x|

,t∈R} ||L2({x+t y−x
|y−x|

,t∈R})

6 C|y − x|1/2||∇vl||Hk−1(Rn)

6 C|y − x|1/2sup
l
||vl||Xk(Rn) . (50)

Finally, (49) and (50) ensure that fl’s absolute continuity moduli are uniformly
bounded. �

Remark. The only reason for which Theorem 5.1 in the case V > 0 is not
valid for n > 3 is that we did not prove Proposition 5.1 for n > 3. The whole

26



proof of Theorem 5.1 with V > 0 would be valid for n > 3 if Proposition 5.1 was.

We justify next the conservation of the momentum, in the one dimensional
case.

Theorem 5.2 Let n = k = 1. The assumptions on the nonlinearity f are as
in Theorem 5.1.
Let u0 ∈ X1(R) such that V (|u0|2) ∈ L1 and |u0| > a > 0.
Let 0 ∈ (T̃∗, T̃ ∗) ⊂ (T∗, T ∗) be the maximal interval on which |u(t, x)| > 0,
t ∈ (T̃∗, T̃ ∗), x ∈ R.
Then ∀t ∈ (T̃∗, T̃ ∗), P (u(t)) = P (u0), where the renormalized momentum is
given by:

P (u) = Im

∫ ∞

−∞

uxu

|u|2 (|u|2 − ρ0) (51)

Proof. It follows from the proof of Theorem 5.1 that for t ∈ (T̃∗, T̃ ∗), |u(t)|2−
ρ0 ∈ L2 and that |u(t)| > a(t), where a(t) ∈ R∗

+ (because |u(t, x)|2 −→
x→∞

ρ0 and

|u(t, x)| > 0). Moreover, ux(t, .) ∈ L2. Hence P (u(t)) is well defined.
If u0 ∈ X3(R), the formal proof of the conservation of P on (T̃∗, T̃ ∗) (see

[ZL], [GSS]) is valid, since u ∈ C(T̃∗, T̃ ∗, X3(R)) ∩ C1(T̃∗, T̃ ∗, X1(R)).
Proceeding as in the proof of theorem 5.1, we approach u0 ∈ X1 by ρl ∗u0 ∈

X3. Let us fix t ∈ (T̃∗, T̃ ∗). Since ul(t) → u(t) in X1, for l large enough we have
|ul(t)| > a(t)/2 > 0, and then (T̃∗, T̃ ∗) ⊂ (T̃∗(l), T̃ ∗(l)). It follows from the proof
of Theorem 5.1 that (|ul(t)|2−ρ0) → (|u(t)|2−ρ0) in L2 and ∂xul(t) → ∂xu(t) in
L2. Hence P (ul(t)) → P (u(t)), and the conservation of the momentum, which
is true for ul, is also true for u. �

Remark. The above analysis fills a gap in the proof of Theorem 1.1 in [ZL].
Namely, Zhiwu Lin proves a criterion of stability for the traveling bubbles solu-
tion of NLS in the one dimensional case, for a nonlinearity f verifying:

(1) f(ρ0) = 0, η0 = sup{η, 0 < η < ρ0, V (η) = 0} exists,
0 < η0 < ρ0, f(η0) < 0

(2) f ′(ρ0) < 0

This proof consists in applying Theorem 3 in [GSS] to the hydrodynamical
problem corresponding to (1) (i.e. with the complex unknown u replaced by
(r, v) = (ρ0 − |u|2, ∂x argu)). Theorem 5.1 and 5.2 ensure that Assumption 1 of
Theorem 3 in [GSS] is verified. Namely, in a neighbourhood of the soliton, our
results imply the following facts which were not discussed in [ZL]:

• the local existence for the hydrodynamical Cauchy problem with (r, v) ∈
H1 × L2 (and not only X1 × L2) if the energy is finite at initial time

• the conservation of energy and momentum.
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In dimension 1, we prove next that the conservation of energy implies a
global existence result for a solution of (1) in X1.

Theorem 5.3 Let n = k = 1. The assumptions on f and u0 are as in theorem
5.1, and we assume moreover that there exists some C > 0 such that V (r) >

C(ρ0 − r)2.
Then u ∈ Cb(R, X

k).

Proof. We define the energy at initial time

E0 =

∫

Rn

[
|∇u0(x)|2 + V (|u0(x)|2)

]
dx .

We know by Theorem 5.1 that the energy is conserved for t ∈ (T∗, T ∗) and
that if T ∗ is finite, ||u(t)||Xk → ∞ as t → T ∗ (and we have a similar result by
replacing T ∗ by T∗) (see [CH]). The conservation of the energy and the fact
that V > 0 imply that for all t,

∫

R
|∂xu(t)|2dx 6 E0. To prove that ||u(t)||Xk

can not blow up in finite time, it suffices then to show that ||u(t)||L∞ can not
blow up in finite time. By the Sobolev embedding H1(R) ⊂ L∞(R),

||u(t)||2L∞ 6 ρ0 + |||u(t)|2 − ρ0||L∞

6 ρ0 + C|||u(t)|2 − ρ0||H1

= ρ0 + C
√

|||u(t)|2 − ρ0||2L2 + ||∂x(|u(t)|2 − ρ0)||2L2

We now use the additional assumption that V (r) > C(1 − r)2:

||u(t)||2L∞ 6 ρ0 + C

√

E0 + 4||u(t)||2L∞

∫

|∂xu(t)|2dx

6 ρ0 + C
√

E0 + 2C||u(t)||L∞

√

E0 .

Therefore ||u(t)||L∞ can not blow up in finite time, thus (u(t))t∈R is global.
Moreover, ||u(t)||L∞ is bounded on R and therefore (u(t))t∈R is bounded in
X1(R). �

Example. In NLS with a pure defocusing power (34), with n = 1 and p > 1,
we have V (r) > αρp−1

0 (ρ0 − r)2/2, hence the assumptions of Theorem 5.3 are
verified.

Acknowledgements. The author is grateful to Anne de Bouard and Jean-
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